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STRESZCZENIE 
 

Procesy biologiczne są wewnętrznie regulowane przez małe cząsteczki i ich interakcje, 

szczególnie w postaci kompleksów białko-ligand. Transport ligandów w białkach odgrywa 

kluczową rolę w wielu procesach biologicznych, w tym w transdukcji sygnału, katalizie 

enzymatycznej oraz transporcie składników odżywczych i metabolitów. Dlatego zrozumienie 

procesów wiązania ligandów ma ogromne znaczenie dla opartego na strukturze projektowania 

leków i inżynierii ulepszonych katalizatorów enzymatycznych. W szczególności znaczna część 

enzymów ma swoje aktywne miejsce znajdujące się w głęboko osadzonych przestrzeniach, a 

wyzwania polegają na udanym uchwyceniu procesów wiązania i uwalniania ligandów, ponieważ 

dostęp do tych głęboko osadzonych miejsc przez małe cząsteczki jest ogólnie ograniczony przez 

tunele białkowe i swego rodzaju bramki molekularne. Zmiany w tunelach białkowych często 

mogą prowadzić do zmiany aktywności, selektywności, niespecyficzności i stabilności. Aby 

zaradzić tym przeciwnościom, w swoich badaniach doktorskich przyczyniłem się do zbadania 

właściwości termicznych i kinetycznych poprzez ocenę wykorzystania małych cząsteczek przez 

tunele transportowe w białkach z miejscami aktywnymi znajdującymi się w głęboko osadzonych 

przestrzeniach. Zastosowano metody dynamiki molekularnej (MD) z ulepszonym 

próbkowaniem, aby skutecznie ocenić termodynamikę i kinetykę procesów wiązania ligandów, 

jednocześnie rozumiejąc leżące u podstaw mechanizmy molekularne. Praca składa się z trzech 

manuskryptów. Pierwsza część pracy koncentruje się na opracowaniu metody poprzez 

zaprojektowanie opartych na wiedzy schematów umiejscawiania ligandów w celu skutecznego 

badania procesów interakcji ligandów w dehalogenazie haloalkanowej. Metoda wykorzystuje 

adaptacyjne symulacje próbkowania do wysokoprzepustowego próbkowania zjawisk wiązania 

kierując się modelami stanów Markowa (ang. Markov State Models – MSM) w celu 

generowania znaczących modeli kinetycznych opisujących długotrwałe stany białko-ligand w 

formie związanej i niezwiązanej, oraz procesy ich interkonwersji. W drugiej części rozprawy 

masowe wykorzystanie tuneli molekularnych w celu ułatwienia transportu ligandów zostało 

ocenione i określone ilościowo, aby uzyskać bardziej szczegółowy wgląd w procesy transportu 

ligandów, pokazując zastosowanie wewnętrznie opracowanego narzędzia. Wreszcie trzecia 

część pracy dotyczy dostępności aktywnego miejsca cytochromu C dla zatłoczonych 

hydrotropów oraz roli ich wiązania na stabilność termiczną tego enzymu. Proces badano w 

dwóch temperaturach obejmujących trzy różne kompozycje hydrotropów, stosując adaptacyjne 

symulacje próbkowania kierowane modelami Markowa. Ujawniono kilka spostrzeżeń na temat 

roli rozpuszczalników hydrotropowych w zapewnianiu stabilności funkcjonalnym częściom 

cytochromu C i regulacji dynamiki stanów otwartych i zamkniętych. Ogólnie rzecz biorąc, teza 

reprezentuje zastosowanie, ocenę, oraz opracowanie wysokoprzepustowego protokołu 

dynamiki molekularnej wykorzystującego kompleksy białko-ligand do badania procesów 

wiązania ligandów i jego roli w lepszym zrozumieniu sprzężenia między dynamiką a funkcją 

enzymów. 

Słowa kluczowe 

Adaptacyjne wysokowydajne symulacje, procesy wiązania ligandów, modele stanów Markowa, 

enzymy, tunele, bramy 
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ABSTRACT 
 

Biological processes are intrinsically regulated by small molecules and their interactions, 

particularly in the form of protein-ligand complexes. The transport of ligands in proteins plays 

a crucial role in many biological processes, including signal transduction, enzyme catalysis and 

the transport of nutrients and metabolites. Therefore, understanding ligand binding processes 

is of great importance for the structure-based design of drugs and the engineering of improved 

enzyme catalysts. Notably, a significant fraction of enzymes have their active site buried in deep 

cavities, and the challenges lie in successfully capturing the ligand binding and unbinding 

processes, as access to those cavities by small molecules is generally restricted by protein 

tunnels and gates. Changes in protein tunnels can often lead to altered activity, selectivity, 

promiscuity, and stability. To address these shortcomings, in my Ph.D. research, I contributed 

to investigating thermal and kinetic properties by assessing the utilization of small molecules 

via transport tunnels in proteins with buried active sites. Enhanced molecular dynamics (MD) 

methods were applied to effectively assess the thermodynamics and kinetics of ligand binding 

processes while understanding the underlying molecular mechanisms. The thesis consists of 

three manuscripts. The first part of the thesis focuses on developing a method by designing 

knowledge-based seeding schemes to study ligand interaction processes in haloalkane 

dehalogenase effectively. The method employs adaptive sampling simulations for high-

throughput sampling of binding phenomena, guided by Markov State Models (MSMs) to 

generate meaningful kinetic models describing protein-ligand bound and unbound long-lived 

states and their interconversion processes. In the second part of the thesis, the massive use of 

molecular tunnels to facilitate ligand transport was evaluated and quantified to gain more 

detailed insights into ligand transport processes, showcasing the applicability of the in-house 

developed software tool. Finally, the third part of the thesis deals with the accessibility of the 

Cytochrome c active site for crowded hydrotropes and the role of their binding on the thermal 

stability of this enzyme. The process was studied at two temperatures involving three different 

compositions of the hydrotropes using adaptive sampling simulations guided by Markov 

models. Several insights were revealed into the role of hydrotropic solvents in providing stability 

to functional parts of Cytochrome c and regulating the dynamics of the open and closed states. 

Overall, this thesis represents the application, evaluation, and development of a high-

throughput simulations protocol using protein-ligand complexes to study ligand binding 

processes and its role in improving the understanding of the coupling between the dynamics 

and function of enzymes. 

Keywords 

Adaptive high-throughput simulations, ligand binding processes, Markov state models, 

enzymes, tunnels, gates 
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INTRODUCTION TO LIGAND TRANSPORT PROCESSES IN PROTEINS 
 

Biological processes are governed by biomolecular interactions, particularly protein-small 

molecule, protein-protein, and protein-nucleic acid complexes.1,2  Also, transport of such small 

molecules or ligands in proteins plays a crucial role in several biological processes, including 

signal transduction, enzyme catalysis, and the transporting nutrients and metabolites.3–5 The 

understanding of ligand binding processes is therefore essential in the structure-based drug 

design6,7 and development of enzyme catalysts.8 Due to the inherent dynamic and often volatile 

nature of protein-ligand (un)binding processes, there is a long-standing quest to capture high-

resolution ligand binding processes in proteins.  Notably, a significant fraction of proteins 

(~60%) have their active site buried in deep cavities and are accessible by small molecules or 

water via molecular tunnels or channels.7–10 Tunnels can facilitate the transport of ligands to 

buried active site. Often changes in protein tunnels may result in altered activity, selectivity, 

promiscuity, and stability.11,12 Therefore, it is imperative to understand the role of tunnels in 

modulating or regulating such vital life processes, for which several critical questions have been 

assessed in the current doctoral thesis work (Figure 1).  

 

Figure 1. Schematic representation critical questions in assessing protein tunnels. The usage of 

molecular dynamic simulations in investigating ligand binding processes in proteins with buried 

active sites is highlighted. 
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Despite significant advancements in the drug design field, several challenges still need to be 

addressed. One such challenge is effectively investigating high-resolution binding processes in 

proteins with buried active sites, where protein tunnels and their gating residues often restrict 

access to the active site. Small molecules like water and others usually utilize these tunnels and 

gates for accomplishing enzymatic catalysis and reactions.11 

Several experimental and molecular dynamics (MD) simulations have captured binding 

processes in proteins with and without buried active sites. However, these methods have 

limitations, including low temporal resolution and limited conformational sampling. Hybrid-

enhanced sampling methods have been developed to overcome these limitations and capture 

binding processes with higher temporal resolution and increased conformational 

sampling.2,13,14 There is a considerable need to correctly resolve relevant protein-ligand binding 

kinetics in structure-based drug design and rational protein engineering due to their 

importance in lead compound optimization and drug screening.15 For example, classical MD 

simulations have been implemented over the years in deriving the molecular level 

understanding of some pharmaceutically relevant proteins FKBP506, Src kinase, G protein-

coupled receptors to study the protein-ligand binding processes and the associated 

kinetics.16,17 However, atomistic simulations often encounter problems in sampling effectively 

slow biological processes in milliseconds to microseconds timescales.18 Thus, enhanced 

sampling methods are very effective for studying such rare events.19 Of such implementations, 

the methods that focus on molecular dynamics are weighted ensemble (WE) methods,20–22 

milestoning,23 simulation-enabled estimation of kinetics rates (SEEKR),24 Gaussian accelerated 

molecular dynamics (GaMD)25 Metadynamics,26,27 Markov state model (MSM),28,29 Random 

accelerated Molecular dynamics (RAMD),30 scaled MD31 and many more. Among those 

enhanced sampling methods, Weighted ensemble, MSM, Metadynamics, GaMD, and SEEKR 

are the most often utilized improved sampling methods for studying biomolecular association 

and dissociation kinetics. Methods like metadynamics simulations can be used for high-

definition sampling with predefined collective variables (CVs) but are often challenged by 

hidden energy barriers and slow sampling convergence in case low-quality CVs are defined. CV-

free methods, like WE and MSM, are biased-free simulations but often suffer from exploiting 

the binding-pose and proper utilization of transport pathways for sampling ligand binding 

processes.15,16 
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Recently, hybrid methods of GaMD, such as LiGaMD and DeepWest, have been markedly 

successful in sampling the attractive conformational space in protein-ligand complexes.19,32 In 

the LiGaMD variant of GaMD, selective boosts were applied to non-bonded interactions to 

enable ligand dissociations and with the advantages of GaMD in having significantly reduced 

energy barriers associated with ligand binding processes. On the other hand, variant DeepWest 

combines GaMD and WE to effectively reach the convergence by providing a well-sampled 

initial distribution or conformations of protein-ligand complexes followed by unbiased short 

WE simulations and finally metastable states guided by deep learning were resolved using MSM 

to tackle proper equilibrium distribution in the simulations to remove the initial bias. Markov 

state models (MSMs) are advantageous as such it does not require long MD trajectories for 

sampling equilibrium distributions, enabling their efficient execution in high-throughput 

parallel manner.33,34 MSMs are useful for predicting the kinetics of protein-ligand (un)binding 

events and identifying the key conformational states involved in these slow processes or rare 

events.35–37  

The utility of adaptive sampling simulations using MSMs (Figure 2) has motivated me to 

implement MSMs in my research to gain a deeper understanding of the transport of ligands in 

proteins. Additionally, I have evaluated a methodological approach to design effective seed 

conformations for adaptive simulations to boost exploration of regions with high energy 

barriers that occur in ligand binding processes in protein with buried active sites. The approach 

is discussed in the first part of the thesis, shedding light on the effect of using additional 

knowledge to generate the initial conformations of protein-ligand complexes to streamline  the 

adaptive sampling of unfavorable regions earlier reported in adaptive sampling protocols.38 In 

the second section, I contributed to the development of new software tool, TransportTools, and 

showcased its application to effectively quantify the utilization of transport tunnels used for 

ligand mitigations from the active site to the bulk solvent environment. Finally, I tested the 

applicability of adaptive sampling in investigating the effects of binding of hydrotope solvents, 

such as ATP and Choline salicylate, to the cytochrome c metalloprotein on its stability and 

function.   

Overall, the thesis aims to contribute towards effective exploration the ligand transport 

processes in proteins with buried active sites and investigate the use of adaptive sampling 
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methods based on MSMs to capture and understand the thermodynamics and kinetics of 

association/dissociation of small molecules in proteins.  

 

Figure 2. Schematic representation of the adaptive sample protocol. Short simulations are 

respawned while generating Markov models from sampling the most interesting regions in 

ligand binding processes. 

 

SUMMARY OF DOCTORAL RESEARCH 

Using knowledge-based seeding of high-throughput molecular dynamics for 

ligand binding studies  

A large fraction of proteins has their active sites located in deep cavities within their structure 

which are connected to the bulk environment by tunnels or molecular pathways. The 

characteristics of such pathways that link the active site to the surrounding solvent impact the 

binding and release of ligands, as well as the enzyme's catalytic capabilities12. As a result, 

tunnels play a crucial role in altered activity, substrate specificity, enantioselectivity, and 

stability.10 Haloalkane dehalogenases (HLDs), LinB (EC 3.8.1.5) are one such enzyme model 

belonging to the α/β-hydrolases family. HLDs are suitable models for basic enzymology studies 

due to the demonstrated significance of the amino acid residues impacting the size and shape 
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of the tunnels connecting the active site and protein surface for substrate specificity and 

enzymatic activity.39–43 This enzyme has two halide stabilizing residues Asn-38 and Trp-109 and 

the charged residues forming the catalytic triad are Asp-108, His272, and Glu-132.  This is well 

supported by structural and biochemical data available for HLDs.44 HLDs are known to catalyse 

the hydrolysis of halogenated compounds by formation of corresponding alcohol, a halide ion 

and a proton.45 Additionally, the transport routes in LinB are well characterized with three 

major variants viz. LinB_Wt (wild type), LinB32 (closed form) and LinB86 (open form).45,46 

Among these variants, LinB86 was engineered as the most potential variants with de novo p3 

functional tunnels that can potentially utilize both alcohol and halide ion products along with 

water molecules for its catalysis.40,41 Tunnel gates and bottleneck residues play critical roles in 

facilitating significant control over the entry and exit of small molecules,47 as well as the 

involvement of multiple transient states during the process of small molecule association and 

dissociation.29 One of the key goals of my thesis work was to construct seed conformations 

utilizing tunnel bottleneck information to avoid kinetic traps that are frequently countered in 

MD simulations studies of protein-ligand binding complexes. 

This is addressed in the current part of the thesis, where I focused on the development of the 

methodological approach to investigate the role of applying more knowledge in generating 

initial conformation or seed conformations (Figure 3) for adequate sampling and systematically 

assess ligand (un)binding processes in LinB86 and its substrate 1,2-dibromoethane (DBE). To 

accomplish this goal, we devised four schemes (Figure 3), starting from positioning the 

substrate in more random places in the protein active site and bulk solvent environments. The 

more knowledge-based approaches included seed conformations of DBE at the bottleneck 

portions of the tunnels to overcome high energy barriers.  This knowledge-based strategy was 

based on coupling tunnel information in LinB86 using the CAVER3 tool48 tunnels and then 

leveraging tunnel paths and dynamics from MD simulations. Finally, the high-affinity binding 

areas were calculated using a docking tool, CaverDock49, based on the upper bound energies 

and tunnel bottleneck information. Overall, the generated seed conformations were used as 

initial conformations for adaptive sampling simulations. To examine the capability of various 

schemes in sampling relevant parts of LinB86 and developing more meaningful kinetic models, 

I ran three replicate adaptive sampling high-throughput simulations (~900 simulations) with a 

total of 45 µs duration for each replica. 
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In this study, we systematically studied the slow binding process of LinB86-DBE while assessing 

the role of applying more knowledge in generating initial inputs for adaptive sampling 

simulations guided by Markov models.33,50 We implemented the HTMD protocol50 which 

consists of several batches of short MD simulations that are iteratively run in a more 

intelligently, and only the interesting regions or rare events are respawned for next batch of 

simulations (Figure 2). Interestingly, the study indicated that applying more knowledge could 

significantly influence the binding processes in sampling protein conformational space leading 

to generation of more meaningful kinetic models. For example, scheme “Bulk” (randomly 

placed DBE seeds in bulk solvent around the protein) was very inefficient in sampling binding 

processes pertaining to DBE migration to the depth of buried active site. Hence, such a scheme 

was insufficient in investigating DBE association processes. Moving to more knowledge-based 

seeding schemes, “Cavity” could significantly sample bound poses and egress of DBE to the 

bulk but frequently failed in sampling DBE binding to the active site. Such limitation was 

overcome in the “Cavity&Bulk” approach, which was found capable of sampling a substantial 

number of bound poses and release from cavity as well as ligand access events, since the initial 

seeds had both bound and bulk locations. Finally, the information rich schemes, “Cavity&Bulk” 

and “Tunnels” could sample more effectively the complex transport pathways of LinB86 

including the auxiliary pathways of p2 and p3 than any other schemes. Additionally, “Tunnels” 

scheme had more control over the sampling of (un)binding pathways, whereas it lacked 

sampling of bound as well as bulk regions as the initial seeds were comprised of DBE positioned 

in the bottlenecks of LinB86 tunnels. Therefore, schemes like “Tunnels” could be utilized in 

exploring more meaningful states to connected with use of complex transport network in 

proteins with buried cavities. Considering the ability of the MSM models to predict koff/kon, both 

“Cavity&Bulk” as well as “Tunnels” seeding schemes consistently reached values on the same 

order of magnitude with the experimental observations. Overall, the current work argues that 

using prior information to generate seeds can systematically escape the kinetic traps that 

protein-ligand simulations can encounter while accessing all the intriguing conformational 

space of protein-ligand complexes. Also, seeding with information on tunnel ensemble could 

be beneficial for initiation of MD methods which requires prior knowledge for example, 

umbrella sampling51 or metadynamics26 to study ligand binding processes. A full description of 

the study is available in Publication 1. 
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Figure 3. Schematic representations of designed schemes for seeding. The studied schemes are 

from random to more knowledge-based seeding of ligands (1. Bulk to 4. Tunnels). The workflow 

of 4. Tunnels is depicted with 5. Identification of tunnels from MD trajectories by CAVER, 6. 

Ligand trajectory-based docking using CaverDock on tunnel ensembles, 7. Profiling for cheapest 

tunnel parts or chunks with lower energy barriers, 8. Ligand positioning at the cheapest chunks 

of tunnels and preparation of seed conformations. 

 

Identification and utilization of ligand transport processes in proteins 

Since the first part of my thesis is primarily focused on study of substrate (un)binding processes 

with the LinB86 variant of haloalkane dehalogenase, the assessment of ~45us of adaptive 

sampling simulations coupled with four different schemes and three replicates, altogether 

~10,000 simulations made it clear that we need a tool to robustly couple the rare transport 

events with utilization of individual transport tunnels in LinB86 by its DBE substrate. The 

complexity of the characterized tunnel networks for utilization of small molecules in LinB86 and 

other variants have been featured by Brezovsky et al., 2016.46 Additionally, LinB86’s vast 

sampling of substrate DBE led by Markov models provided a vivid picture of the mitigation of 

DBE, the long-live metastable states and associated transition networks. It was clearly evident 

that most of the characterized paths p1a, p1b, p2 and p3 were utilized for the transport of DBE 
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in/out of the active site to bulk. Given the complex network of the metastable states which 

involved the transient states of the ligand in preferred pathways of LinB86, it would be very 

intuitive to properly assessing which tunnels are prioritized by the substrate for traversing to 

and from active site to the bulk environment. However, having the massively sampled dataset 

of LinB86-DBE complexes, the challenge lies in systematically tracking the mitigation of ligands 

from active site to bulk environment and answering which tunnels are relevant or mostly 

preferred during transport of the small molecules. To address the issue, TransportTools52, a 

python-based library (Figure 4) was developed to properly investigate the entry/release of 

small molecules in protein with buried cavities or active sites. The utility and workflow of the 

tool have been tested and discussed in Publication 2. TransportTools relies on the CAVER tool48 

for calculating the geometry of tunnels and the AQUA-DUCT tool53 for tracking the movement 

of ligands in proteins with buried cavities to assess the composite tunnel networks.  The 

preferred selectivity of DBE was analyzed, and the p1b transport pathway was found to be the 

most preferred then other pathways.  It is noteworthy that the proportion of ligand-tracking 

pathway samples in the whole dataset was relatively minimal due to the higher saving 

frequency (100 ps) used in the adaptive simulations of LinB86 with DBE, as in the first part of 

my research work, the focus was to develop a cost-effective methodology to effectively 

investigate the ligand dynamics and kinetics from protein-ligand sampling space. However, a 

lower saving frequency of ~10-20 ps would improve the resolution of those sampling processes 

at a higher computational cost. Also, the nature of adaptive sampling simulations, which do not 

always exploit ligand migration in and out of the active site to bulk solvent and are sensitive to 

initial poses, as observed in previous studies as well as in Publication 1, clearly indicated that 

the addition of knowledge-based seeds could be very useful in tracing ligand mitigation events 

by AQUA-DUCT53 and inferring to the utilization of pathways by TransportTools.52   
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Figure 4. Brief workflow of TransportTools. The massive dataset is assessed for utilization of 

individual tunnel by small molecules or ligands based by using CAVER for information on tunnel 

geometry and AQUA-DUCT for tracking the movement of small molecules and finally unifying 

the transport events mitigating in and out of individual tunnels or those utilizing the transport 

pathways. 

 

Effect of hydrotropes’ binding on accessibility and stability of Cyt c active site 

To investigate the applicability of the study of protein-ligand binding processes and its role in 

thermal stability and activity, I studied the solvation effects of adenosine-5’-triphosphate (ATP) 

and Choline Salicylate ionic liquid (IL) hydrotrope molecules in Cytochrome c (Cyt c) 

metalloprotein in collaboration with the experimental group of Prof. Dibyendu Mondal, 

Institute of Plant Genetics, Polish Academy of Sciences, Poznan. To effectively evaluate the 

binding of those molecules to conformational ensemble of Cyt c, I used HTMD guided by 

Markov models, which I became familiar with during the assessment of LinB86-DBE (un)binding 

processes.  

To evaluate the molecular effects of hydrotropic solvents ATP and IL in dynamics and peroxidase 

activity of Cyt c, four molecular systems were investigated, one was the control with Cyt c in 

explicit water, the second system consisted of ATP added at 5 mM concentration and Cyt c, the 

third system contained IL at 300 mg/mL concentration and Cyt c and finally, the fourth system 

was simulated with Cyt c in presence of both ATP and IL at given concentrations. All simulations 

were performed using adaptive sampling methods in explicit water and at 300 K and 363.15 K 
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to assess the role of interacting molecules in room and near boiling temperatures. Hydrotrope 

molecules can solubilize and enhance protein solubility, specifically ATP at a concentration 2-

10 mM can act as an effective hydrotropic solvent.54 Additionally, IL is of particular interest due 

to their hydrotropic properties and marked effects on protein activity and stability.55   

Simulations of the four designed molecular systems revealed significant role of ATP and IL in 

regulation of the dynamics of Cyt c, at room and higher temperature. ATP was found to provide 

thermal stability to Cyt c by interacting with charged amino acids specifically Lys and Arg by 

forming hydrogen bonds. Additionally, both the molecules (ATP and IL) could synergistically 

effect the dynamics of Ω 40-54 functional loop required for substrate access to the active site 

of Cyt c (role in apoptotic interactions)56 in facilitating its reversible openings at room 

temperature. While, in higher temperature the hydrotrope solvents were stabilizing the Ω 70-

85 functional region (role in peroxidase activity).57 A representative view of the modulation and 

effects of hydrotropes is depicted in Figure 5. Overall, computational analysis revealed the 

backbone dynamics of Cyt c was nearly reduced to half in presence of ATP or IL or both the 

solvents. On the other hand, the interaction of the solvents with heme core revealed very 

limited contacts with indications the solvents could modulate thermal stability and activity 

without competing for accessibility of Cyt c active site for peroxidase activity. The work has 

been extensively discussed in Publication-3. 

 

Figure 5. Representative view of hydrotropes interacting with Cyt c. The hydrotropes viz. ATP 

and choline salicylate ionic liquid were synergistically stabilizing the Ω 40-54 and Ω 70-85 

functional parts at 26.85ᵒC and 90ᵒC respectively. The hydrotropes were mostly interacting with 

charged amino acids Lys and Arg and were shown to keep the peroxidase activity of Cyt c intact. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 
 

Using a more detailed exploration and critical assessment of ligand binding processes in 

proteins with buried active sites, the current thesis considers various considerations for the 

applicability of high-throughput molecular dynamics towards effective study of ligand 

transport and critical interactions that are essential for modulating protein dynamics and 

functions. 

Here, the challenges of exploring and exploiting rare event sampling processes using adaptive 

sampling protocols were investigated. By employing knowledge-based seeding schemes and 

adaptive sampling simulations guided by Markov State Models (MSMs), the study revealed the 

role of applying more knowledge to seed conformations while sampling rare binding events in 

the context of potential variants of haloalkane dehalogenase. Such a seeding approach could 

also be beneficial for enhanced sampling MD methods relying on path sampling that need 

more appropriate collective variables to sample biological processes of protein-ligand 

association. 

Additionally, the issues that may arise from large datasets of protein-ligand binding processes 

while systematically tackling and investigating the utilization of transport pathways by small 

molecules, were outlined, and the TransportTools package was introduced as their possible 

solution.  

Finally, the impact of different solvents on Cytochrome c dynamics and peroxidase activity was 

explored. Notably, the study revealed the stabilizing effects of the hydrotropic solvents ATP 

and IL on distinct functional regions of the metalloprotein. 

Overall, this thesis contributes to the field of molecular dynamics simulations of protein 

systems. It provides novel insights into the role of initial seed conformations, transport 

pathways, and solvent interactions in modulating ligand binding processes and protein 

behavior. The methodologies and tools developed herein offer alternative avenues for future 

research in understanding protein-ligand binding processes and revealing the molecular 

determinants governing the association and dissociation of ligands with potential hot spots for 

mutagenesis. Hence, the developed methodology and tools in the current thesis provide a vivid 

implication in drug design and in silico protein engineering applications. 

 



18 
 

REFERENCES 
 

(1) Nooren, I. M. A.; Thornton, J. M. Diversity of Protein-Protein Interactions. EMBO Journal. 2003. 

https://doi.org/10.1093/emboj/cdg359. 

(2) Wang, J.; Do, H. N.; Koirala, K.; Miao, Y. Predicting Biomolecular Binding Kinetics: A Review. J 

Chem Theory Comput 2023, 19 (8), 2135–2148. https://doi.org/10.1021/acs.jctc.2c01085. 

(3) Chu, K.; Vojtchovský, J.; McMahon, B. H.; Sweet, R. M.; Berendzen, J.; Schlichting, I. Structure 

of a Ligand-Binding Intermediate in Wild-Type Carbonmonoxy Myoglobin. Nature 2000, 403 

(6772). https://doi.org/10.1038/35002641. 

(4) Rydzewski, J.; Nowak, W. Ligand Diffusion in Proteins via Enhanced Sampling in Molecular 

Dynamics. Phys Life Rev 2017, 22–23, 58–74. https://doi.org/10.1016/j.plrev.2017.03.003. 

(5) Moreira, C.; Calixto, A. R.; Richard, J. P.; Kamerlin, S. C. L. The Role of Ligand-Gated 

Conformational Changes in Enzyme Catalysis. Biochemical Society Transactions. 2019. 

https://doi.org/10.1042/BST20190298. 

(6) Ferruz, N.; De Fabritiis, G. Binding Kinetics in Drug Discovery. Molecular Informatics. 2016. 

https://doi.org/10.1002/minf.201501018. 

(7) Marques, S. M.; Daniel, L.; Buryska, T.; Prokop, Z.; Brezovsky, J.; Damborsky, J. Enzyme Tunnels 

and Gates As Relevant Targets in Drug Design. Medicinal Research Reviews. 2017. 

https://doi.org/10.1002/med.21430. 

(8) Monzon, A. M.; Zea, D. J.; Fornasari, M. S.; Saldaño, T. E.; Fernandez-Alberti, S.; Tosatto, S. C. E.; 

Parisi, G. Conformational Diversity Analysis Reveals Three Functional Mechanisms in Proteins. 

PLoS Comput Biol 2017, 13 (2). https://doi.org/10.1371/journal.pcbi.1005398. 

(9) Pravda, L.; Berka, K.; Svobodová Vařeková, R.; Sehnal, D.; Banáš, P.; Laskowski, R. A.; Koča, J.; 

Otyepka, M. Anatomy of Enzyme Channels. BMC Bioinformatics 2014, 15 (1). 

https://doi.org/10.1186/s12859-014-0379-x. 

(10) Kingsley, L. J.; Lill, M. A. Substrate Tunnels in Enzymes: Structure-Function Relationships and 

Computational Methodology. Proteins 2015, 83, 599–611. 

https://doi.org/10.1002/prot.24772. 

(11) Gora, A.; Brezovsky, J.; Damborsky, J. Gates of Enzymes. Chem Rev 2013, 113 (8), 5871–5923. 

https://doi.org/10.1021/cr300384w. 

(12) Kokkonen, P.; Bednar, D.; Pinto, G.; Prokop, Z.; Damborsky, J. Engineering Enzyme Access 

Tunnels. Biotechnol Adv 2019, 37 (6), 1–13. https://doi.org/10.1016/j.biotechadv.2019.04.008. 

(13) Schuetz, D. A.; de Witte, W. E. A.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, D. B.; Sadiq, S. 

K.; Bosma, R.; Nederpelt, I.; Heitman, L. H.; Segala, E.; Amaral, M.; Guo, D.; Andres, D.; Georgi, 

V.; Stoddart, L. A.; Hill, S.; Cooke, R. M.; De Graaf, C.; Leurs, R.; Frech, M.; Wade, R. C.; de Lange, 

E. C. M.; IJzerman, A. P.; Müller-Fahrnow, A.; Ecker, G. F. Kinetics for Drug Discovery: An Industry-

Driven Effort to Target Drug Residence Time. Drug Discovery Today. 2017. 

https://doi.org/10.1016/j.drudis.2017.02.002. 

(14) Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron. 2018. 

https://doi.org/10.1016/j.neuron.2018.08.011. 



19 
 

(15) Jagger, B. R.; Ojha, A. A.; Amaro, R. E. Predicting Ligand Binding Kinetics Using a Markovian 

Milestoning with Voronoi Tessellations Multiscale Approach. J Chem Theory Comput 2020, 16 

(8). https://doi.org/10.1021/acs.jctc.0c00495. 

(16) Huang, D.; Caflisch, A. The Free Energy Landscape of Small Molecule Unbinding. PLoS Comput 

Biol 2011, 7 (2). https://doi.org/10.1371/journal.pcbi.1002002. 

(17) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M. A.; Shaw, D. E. How Does a Drug 

Molecule Find Its Target Binding Site? J Am Chem Soc 2011, 133 (24). 

https://doi.org/10.1021/ja202726y. 

(18) Bernetti, M.; Cavalli, A.; Mollica, L. Protein-Ligand (Un)Binding Kinetics as a New Paradigm for 

Drug Discovery at the Crossroad between Experiments and Modelling. MedChemComm. 2017. 

https://doi.org/10.1039/c6md00581k. 

(19) Ojha, A. A.; Thakur, S.; Ahn, S. H.; Amaro, R. E. DeepWEST: Deep Learning of Kinetic Models with 

the Weighted Ensemble Simulation Toolkit for Enhanced Sampling. J Chem Theory Comput 

2023, 19 (4). https://doi.org/10.1021/acs.jctc.2c00282. 

(20) Donyapour, N.; Roussey, N. M.; Dickson, A. REVO: Resampling of Ensembles by Variation 

Optimization. Journal of Chemical Physics 2019, 150 (24). https://doi.org/10.1063/1.5100521. 

(21) Lotz, S. D.; Dickson, A. Wepy: A Flexible Software Framework for Simulating Rare Events with 

Weighted Ensemble Resampling. ACS Omega 2020, 5 (49). 

https://doi.org/10.1021/acsomega.0c03892. 

(22) Nunes-Alves, A.; Zuckerman, D. M.; Arantes, G. M. Escape of a Small Molecule from Inside T4 

Lysozyme by Multiple Pathways. Biophys J 2018, 114 (5). 

https://doi.org/10.1016/j.bpj.2018.01.014. 

(23) Narayan, B.; Buchete, N. V.; Elber, R. Computer Simulations of the Dissociation Mechanism of 

Gleevec from Abl Kinase with Milestoning. Journal of Physical Chemistry B 2021, 125 (22). 

https://doi.org/10.1021/acs.jpcb.1c00264. 

(24) Votapka, L. W.; Amaro, R. E. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, 

Molecular Dynamics and Milestoning. PLoS Comput Biol 2015, 11 (10). 

https://doi.org/10.1371/journal.pcbi.1004381. 

(25) Miao, Y.; Feher, V. A.; McCammon, J. A. Gaussian Accelerated Molecular Dynamics: 

Unconstrained Enhanced Sampling and Free Energy Calculation. J Chem Theory Comput 2015, 

11 (8). https://doi.org/10.1021/acs.jctc.5b00436. 

(26) Tiwary, P.; Parrinello, M. From Metadynamics to Dynamics. Phys Rev Lett 2013, 111 (23). 

https://doi.org/10.1103/PhysRevLett.111.230602. 

(27) Wang, Y.; Valsson, O.; Tiwary, P.; Parrinello, M.; Lindorff-Larsen, K. Frequency Adaptive 

Metadynamics for the Calculation of Rare-Event Kinetics. Journal of Chemical Physics 2018, 149 

(7). https://doi.org/10.1063/1.5024679. 

(28) Plattner, N.; Noé, F. Protein Conformational Plasticity and Complex Ligand-Binding Kinetics 

Explored by Atomistic Simulations and Markov Models. Nat Commun 2015, 6 (May). 

https://doi.org/10.1038/ncomms8653. 



20 
 

(29) Buch, I.; Giorgino, T.; De Fabritiis, G. Complete Reconstruction of an Enzyme-Inhibitor Binding 

Process by Molecular Dynamics Simulations. Proc Natl Acad Sci U S A 2011, 108 (25), 10184–

10189. https://doi.org/10.1073/pnas.1103547108. 

(30) Nunes-Alves, A.; Kokh, D. B.; Wade, R. C. Ligand Unbinding Mechanisms and Kinetics for T4 

Lysozyme Mutants from ΤRAMD Simulations. Curr Res Struct Biol 2021, 3. 

https://doi.org/10.1016/j.crstbi.2021.04.001. 

(31) Schuetz, D. A.; Bernetti, M.; Bertazzo, M.; Musil, D.; Eggenweiler, H. M.; Recanatini, M.; Masetti, 

M.; Ecker, G. F.; Cavalli, A. Predicting Residence Time and Drug Unbinding Pathway through 

Scaled Molecular Dynamics. J Chem Inf Model 2019, 59 (1). 

https://doi.org/10.1021/acs.jcim.8b00614. 

(32) Miao, Y.; Bhattarai, A.; Wang, J. Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): 

Characterization of Ligand Binding Thermodynamics and Kinetics. J Chem Theory Comput 2020, 

16 (9). https://doi.org/10.1021/acs.jctc.0c00395. 

(33) Wehmeyer, C.; Scherer, M. K.; Hempel, T.; Husic, B. E.; Olsson, S.; Noé, F. Introduction to Markov 

State Modeling with the PyEMMA Software [Article v1.0]. Living J Comput Mol Sci 2019, 1 (1). 

https://doi.org/10.33011/livecoms.1.1.5965. 

(34) Doerr, S.; Harvey, M. J.; Noé, F.; de Fabritiis, G. HTMD: High-Throughput Molecular Dynamics 

for Molecular Discovery. J Chem Theory Comput 2016, 12 (4), 1845–1852. 

https://doi.org/10.1021/acs.jctc.6b00049. 

(35) Wang, W.; Cao, S.; Zhu, L.; Huang, X. Constructing Markov State Models to Elucidate the 

Functional Conformational Changes of Complex Biomolecules. Wiley Interdiscip Rev Comput 

Mol Sci 2018, 8 (1). https://doi.org/10.1002/wcms.1343. 

(36) Bringas, M.; Lombardi, L. E.; Luque, F. J.; Estrin, D. A.; Capece, L. Ligand Binding Rate Constants 

in Heme Proteins Using Markov State Models and Molecular Dynamics Simulations. 

ChemPhysChem 2019, 20 (19), 2451–2460. https://doi.org/10.1002/cphc.201900589. 

(37) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope, W. C. Automatic Discovery of 

Metastable States for the Construction of Markov Models of Macromolecular Conformational 

Dynamics. Journal of Chemical Physics 2007, 126 (15), 1–17. 

https://doi.org/10.1063/1.2714538. 

(38) Betz, R. M.; Dror, R. O. How Effectively Can Adaptive Sampling Methods Capture Spontaneous 

Ligand Binding? J Chem Theory Comput 2019, 15 (3), 2053–2063. 

https://doi.org/10.1021/acs.jctc.8b00913. 

(39) Janssen, D. B. Evolving Haloalkane Dehalogenases. Curr Opin Chem Biol 2004, 8 (2), 150–159. 

https://doi.org/10.1016/j.cbpa.2004.02.012. 

(40) Koudelakova, T.; Bidmanova, S.; Dvorak, P.; Pavelka, A.; Chaloupkova, R.; Prokop, Z.; Damborsky, 

J. Haloalkane Dehalogenases: Biotechnological Applications. Biotechnology Journal. 2013. 

https://doi.org/10.1002/biot.201100486. 

(41) Marques, S. M.; Dunajova, Z.; Prokop, Z.; Chaloupkova, R.; Brezovsky, J.; Damborsky, J. Catalytic 

Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational 

Modeling. J Chem Inf Model 2017, 57 (8). https://doi.org/10.1021/acs.jcim.7b00070. 



21 
 

(42) Damborský, J.; Kutý, M.; Němec, M.; Koča, J. A Molecular Modeling Study of the Catalytic 

Mechanism of Haloalkane Dehalogenase: 1. Quantum Chemical Study of the First Reaction 

Step. J Chem Inf Comput Sci 1997, 37 (3). https://doi.org/10.1021/ci960483j. 

(43) Damborský, J.; Koča, J. Analysis of the Reaction Mechanism and Substrate Specificity of 

Haloalkane Dehalogenases by Sequential and Structural Comparisons. Protein Eng 1999, 12 

(11). https://doi.org/10.1093/protein/12.11.989. 

(44) Hynková, K.; Nagata, Y.; Takagi, M.; Damborský, J. Identification of the Catalytic Triad in the 

Haloalkane Dehalogenase from Sphingomonas Paucimobilis UT26. FEBS Lett 1999, 446 (1). 

https://doi.org/10.1016/S0014-5793(99)00199-4. 

(45) Streltsov, V. A.; Prokop, Z.; Damborský, J.; Nagata, Y.; Oakley, A.; Wilce, M. C. J. Haloalkane 

Dehalogenase LinB from Sphingomonas Paucimobilis UT26: X-Ray Crystallographic Studies of 

Dehalogenation of Brominated Substrates. Biochemistry 2003, 42 (34), 10104–10112. 

https://doi.org/10.1021/bi027280a. 

(46) Brezovsky, J.; Babkova, P.; Degtjarik, O.; Fortova, A.; Gora, A.; Iermak, I.; Rezacova, P.; Dvorak, 

P.; Smatanova, I. K.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Engineering a de Novo Transport 

Tunnel. ACS Catal 2016, 6 (11), 7597–7610. https://doi.org/10.1021/acscatal.6b02081. 

(47) Gora, A.; Brezovsky, J.; Damborsky, J. Gates of Enzymes. Chem Rev 2013, 113 (8), 5871–5923. 

https://doi.org/10.1021/CR300384W. 

(48) Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.; 

Klvana, M.; Medek, P.; Biedermannova, L.; Sochor, J.; Damborsky, J. CAVER 3.0: A Tool for the 

Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput Biol 2012, 8 (10), 

23–30. https://doi.org/10.1371/journal.pcbi.1002708. 

(49) Vavra, O.; Filipovic, J.; Plhak, J.; Bednar, D.; Marques, S. M.; Brezovsky, J.; Stourac, J.; Matyska, 

L.; Damborsky, J. CaverDock: A Molecular Docking-Based Tool to Analyse Ligand Transport 

through Protein Tunnels and Channels. Bioinformatics 2019, 35 (23), 4986–4993. 

https://doi.org/10.1093/BIOINFORMATICS/BTZ386. 

(50) Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics 

for Molecular Discovery. J Chem Theory Comput 2016, 12 (4), 1845–1852. 

https://doi.org/10.1021/ACS.JCTC.6B00049. 

(51) Matthews, C.; Weare, J.; Kravtsov, A.; Jennings, E. Umbrella Sampling: A Powerful Method to 

Sample Tails of Distributions. Mon Not R Astron Soc 2018, 480 (3), 4069–4079. 

https://doi.org/10.1093/MNRAS/STY2140. 

(52) Brezovsky, J.; Thirunavukarasu, A. S.; Surpeta, B.; Sequeiros-Borja, C. E.; Mandal, N.; Sarkar, D. 

K.; Dongmo Foumthuim, C. J.; Agrawal, N. TransportTools: A Library for High-Throughput 

Analyses of Internal Voids in Biomolecules and Ligand Transport through Them. Bioinformatics 

2022, 38 (6). https://doi.org/10.1093/bioinformatics/btab872. 

(53) Magdziarz, T.; Mitusińska, K.; Gołdowska, S.; Płuciennik, A.; Stolarczyk, M.; Lugowska, M.; Góra, 

A. AQUA-DUCT: A Ligands Tracking Tool. Bioinformatics 2017, 33 (13), 2045–2046. 

https://doi.org/10.1093/bioinformatics/btx125. 



22 
 

(54) Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A. A. ATP as a 

Biological Hydrotrope. Science (1979) 2017, 356 (6339), 753–756. 

https://doi.org/10.1126/science.aaf6846. 

(55) Sindhu, A.; Kumar, S.; Mondal, D.; Bahadur, I.; Venkatesu, P. Protein Packaging in Ionic Liquid 

Mixtures: An Ecofriendly Approach towards the Improved Stability of β-Lactoglobulin in 

Cholinium-Based Mixed Ionic Liquids. Physical Chemistry Chemical Physics 2020, 22 (26), 

14811–14821. https://doi.org/10.1039/d0cp02151b. 

(56) Karsisiotis, A. I.; Deacon, O. M.; Wilson, M. T.; MacDonald, C.; Blumenschein, T. M. A.; Moore, 

G. R.; Worrall, J. A. R. Increased Dynamics in the 40-57 Î©-Loop of the G41S Variant of Human 

Cytochrome c Promote Its pro-Apoptotic Conformation. Sci Rep 2016, 6. 

https://doi.org/10.1038/srep30447. 

(57) Amacher, J. F.; Zhong, F.; Lisi, G. P.; Zhu, M. Q.; Alden, S. L.; Hoke, K. R.; Madden, D. R.; Pletneva, 

E. V. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding 

and Functional Implications of a Conformational Switch. J Am Chem Soc 2015, 137 (26). 

https://doi.org/10.1021/jacs.5b01493. 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

 

 

 

 

PUBLICATIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Publication 1 

Incorporating prior knowledge to seeds of adaptive sampling molecular 

dynamics simulations of ligand transport in enzymes with buried active sites  

Impact Factor 2022: NA  

MNiSW points 2023: NA  

Citations: 0  

Main text  

https://doi.org/10.1101/2023.09.21.558608  

Supplementary information  

https://www.biorxiv.org/content/10.1101/2023.09.21.558608v1.supplementary-material  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1101/2023.09.21.558608
https://www.biorxiv.org/content/10.1101/2023.09.21.558608v1.supplementary-material


1 
 

Incorporating prior knowledge to seeds of adaptive sampling molecular 

dynamics simulations of ligand transport in enzymes with buried active sites 

Dheeraj Kumar Sarkar,1,2 Bartlomiej Surpeta,1,2 Jan Brezovsky*1,2 

1 Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular 

Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-

614 Poznan, Poland. 

2 International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland. 

*Corresponding author: JB: janbre@amu.edu.pl; jbrezovsky@iimcb.gov.pl  

Abstract 

Given that most proteins have buried active sites, protein tunnels or channels play a crucial role in 

mitigating the transport of small molecules to the buried cavity for enzymatic catalysis. Tunnels can 

critically modulate the biological process of protein-ligand recognition. Various molecular dynamics 

methods have been developed for exploring and exploiting the protein-ligand conformational space 

to extract high-resolution details of the binding processes, one of the most recent represented by 

energetically unbiased high-throughput adaptive sampling simulations. The current study 

systematically contrasts the role of integrating prior knowledge while generating useful initial protein-

ligand configurations, called seeds, for these simulations. Using a non-trivial system of haloalkane 

dehalogenase mutant with multiple transport tunnels leading to a deeply buried active site, these 

simulations were employed to derive kinetic models describing the process of association and 

dissociation of the substrate molecule. The more knowledge-based seed generation enabled high-

throughput simulations that could more consistently capture the entire transport process, effectively 

explore the complex network of transport tunnels, and predict equilibrium dissociation constants, 

koff/kon, on the same order of magnitude as experimental measurements. Overall, the infusion of more 

knowledge into the initial seeds of adaptive sampling simulations could render analyses of transport 

mechanisms in enzymes more consistent even for very complex biomolecular systems, thereby 

promoting the rational design of enzymes with buried active sites and drug development efforts. 

Keywords: Protein-ligand, tunnels, ligand transport, seeding, adaptive sampling, kinetics 
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1. Introduction 

Given the fact that molecular recognition is critical for all biological processes, in this context, the 

intrinsically dynamic and volatile nature of protein-ligand (un)binding processes makes it a long-

standing quest to capture the high-resolution sampling and resolve meaningful kinetics of ligand 

binding processes in structure-based drug design1,2. Additionally, a ligand can prefer multiple routes 

of entry to interact with the environment of active site3–5. These routes, often referred to as tunnels, 

are seen to have equivalent importance as the catalytic properties of enzymes6. While in the majority 

of enzymes, the active site is buried7,8, the underlying molecular properties of the tunnels can control 

the entry and exit of ligands to a greater extent, specifically by gating residues9. In this context, the 

ligand binding processes via those transport pathways are a critical component in biocatalysis, also for 

identifying critical residues underlying the transport processes for mutagenesis and rational drug 

design6,10. Hence, protein tunnels are well-placed when considering improved catalysis and features 

like specificity and altered activity of small molecules. Because very often, tunnel lining residues or 

other gating residues can act as hot spots other than the active site residues9,10. 

The transport processes, like a migration of ligands from the active site to the bulk solvent, are often 

connected with the requirement of overcoming a high energy barrier, resulting in the rare nature of 

such an event11. Because molecular dynamics (MD) simulations can observe biologically relevant 

processes even at atomistic resolution, they are extensively used to study mechanisms, dynamics, and 

functions of biomolecular complexes12,13. Numerous computational approaches have been developed 

in recent years to sample such rare events of ligand transport processes involving the association and 

dissociation of ligands and receptors14. These approaches benefit from the improvement of 

computational hardware in terms of GPUs as well as the implementation of various path sampling 

methods and methods for sampling rare events15,16. Specifically enhanced sampling methods like 

milestoning17, weighted ensemble18, Gaussian accelerated MD19,20, metadynamics21,22, adaptive 

sampling MD (ASMD) based on Markov state models (MSM)5,23,24, Random Acceleration MDs5,25,26, 

gained popularity in studying such rare events. While most methods use additional potential or force 

to bias the simulations along a designed collective variable, the ASMD methods utilizing MSMs can 

avoid such perturbations27–29. Extensive ASMD simulations have been successfully used to study ligand 

binding processes5,24,30–33. The ASMD is an energetically unbiased protocol comprising iterative rounds 

of intelligently respawned equilibrium simulations of protein-ligand configurations. This is achieved 

by using a scoring function to select the least explored configurations from a preliminary MSM build 

on the so far generated simulations and employing those configurations to initiate subsequent 

batches of simulations (called epochs)28,29.  
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Given the rising success of ASMD simulations in ligand transport studies, the impact of designing 

individual components in ASMD workflow on the efficacy of sampling relevant regions of protein-

ligand configurational space is of interest24,31,33–35. Betz and Dror investigated the role of a scoring 

function for selecting the configuration for the successive iterations to partially overcome the 

exploration-exploitation tradeoff using the well-known test system of trypsin with benzamidine 

inhibitor and a more complex yet realistic system of membrane-bound adrenergic receptor β2 with 

dihydroalprenolol inhibitor33. They compared three scoring functions based on simple counts, in which 

states are resampled with probability inversely proportional to their occurrence in simulation; the 

population scores, which prefer states with smaller populations in MSMs; and hub scores, which select 

states with lower connectivity in MSMs, the measure of connectivity of states in MSMs. On the 

membrane-bound system, the count score could not govern the ASMD toward investigating inhibitor 

migration through the protein, focusing entirely on the membrane region. In contrast, the other two 

scores successfully sampled the relevant configurations. Hence, the use of more information-rich 

functions markedly benefited the study of ligand transport in more complex settings. 

Here, we investigated the role of employing relevant information as early as in preparing initial 

seeding structures for ASMD. We designed four schemes (Figure 1A) from random positioning of the 

ligand around the protein to more knowledge-based poses of the ligand bound in the active site or 

along the tunnels precomputed from apo simulation. We tested the capabilities of ASMD, initiated 

from these seeding schemes, in exploring and exploiting the transport tunnels in haloalkane 

dehalogenase mutant LinB86 (Figure 1B), in which an additional functional tunnel was introduced de 

novo10. By performing intensive ASMD simulations of LinB86 with one of its substrates, 

1,2-dibromoethane (DBE), for each scheme, we were able to compare to what degree the initial 

seeding impacts ability of ASMD to i) capture entire process of substrate association and dissociation, 

ii) identify metastable states adopted by substrate consistently, iii) predict kinetic parameters of the 

process, and finally iv) describe complexity of transport via multiple transport tunnels. 
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Figure 1. Overview of evaluated seeding schemes and model system used. A) Schematic representation of 
studied schemes and seeding of the substrate molecule from random to knowledge-based positions. B) 
Representative structure of tunnel network from 100 ns MD simulation of LinB86 (see Table S1 for other tunnel 
properties). The known tunnels are shown as sets of colored spheres: p1a (blue), p1b (cyan), four branches of 
p2 (green), and p3 (red). The protein structure is shown as a gray cartoon. C) Average lengths of ensembles of 
the known tunnels observed in MD simulation.  

 

2. Materials and Methods 

2.1. Seed generation for ASMD simulations 

The input model was based on the crystallographic structure of the mutant of haloalkane 

dehalogenase enzyme LinB86 (PDB code: 5LKA). The protein structure was further protonated using 

H++ web server36,37 pH 8.5. The protein was modeled using the AMBER ff14SB36 force field and the 

substrate DBE with the General Amber Force Field - GAFF38,39. The partial atomic charges on the DBE 

molecule were derived using multi-conformational, multi-orientational restrained electrostatic 

potential fit40. Each DBE conformation was geometry optimized at MP2/6-31G(d) level of theory, and 
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their multi-orientational molecular electrostatic potential was calculated at HF/6-31G(d) level using 

Gaussian v0941. Finally, two-stage charge fitting was conducted for all conformations and orientations 

using resp and antechamber modules of AMBERTools1842.  

The substrate molecule was placed according to the four designed schemes to investigate the role of 

knowledge in ASMD seeding systematically (Figure 1A). DBE was placed at 30 different positions in 

each scheme (Figure S1) as follows. i) In the Bulk scheme, DBE was positioned on an equally spaced 

grid in the bulk solvent surrounding the protein using “drawgridbox [selection], nx=5, ny=5, nz=5, 

padding=5, lw=1, r=0, g=0” function of PyMOL43. ii) In the Cavity scheme, DBE was docked to the 

enzyme's active site using AutoDock Vina44. The 30 docked poses were derived by defining the grid 

box centered at COM of catalytic residues (N38, D108, W109, and H272) with a dimension of 22.5 Å 

and exhaustiveness of 1000. iii) In the Cavity&Bulk scheme, 15 DBE positions were taken from the 

Cavity scheme and 15 DBE positions from the Bulk scheme. Finally, iv) in the Tunnels scheme, putative 

transport tunnels in LinB86 were detected from 100 ns trajectory of ligand-free LinB86 simulation, and 

the most open tunnels were then explored for binding of DBE molecules along these tunnels. Finally, 

the composite tunnels, formed from parts of tunnels with conformations ensuring minimal energy 

costs for DBE migration, were generated (see Text S1 and Figures S2-S9 for details of this protocol).  

The generated protein-ligand complexes were then solvated based on the 3D Reference Interaction 

Site Model theory45 using the Placevent46 algorithm. Such a system was then processed with the tleap 

module of AMBERTools18, placing the pre-solvated proteins in the octahedral box of OPC water 

molecules47 to the distance of 10 Å and neutralizing them with counter ions (Na+ and Cl-) to the ionic 

strength of 0.1 M. Finally, the hydrogen mass repartitioning method was applied to produce 

topologies to enable 4 fs timestep48. 

2.1. Equilibration MD simulations of seeds  

The systems were then minimized and equilibrated using PMEMD and PMEMD.CUDA modules49 of 

AMBER1842, respectively. All complexes were energy minimized in five consecutive stages, each 

composed of 100 steps of the steepest descent followed by 400 steps of the conjugate gradient 

method, with gradually decreasing restraints on the protein atoms (initially 500 to heavy atom, and 

later restraints of 500, 125, 25, and 0.001 kcal.mol-1.Å-2 applied only to the backbone atoms). 

Minimization was followed by 20 ps heating from 0 to 200 K in the NVT ensemble using the Langevin 

thermostat with a collision frequency of 2 ps-1 and coupling constant of 1 ps while keeping the protein 

heavy atoms restrained with a force constant of 5 kcal·mol-1·Å-2. Next, the temperature was raised to 

the target value of 310 K in 100 ps of NVT simulation and kept constant for 900 ps, employing the 

same parameters as previously described. This was followed by NPT simulation at 1 atm enforced by 
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the weak-coupling barostat with a coupling constant of 1 ps using positional restraints of 

5 kcal·mol-1·Å-2 on the backbone atoms for 1 ns, followed by 1 ns without any positional restraints. All 

MD simulation stages were run using a 4 fs timestep enabled by SHAKE50 and hydrogen mass 

repartitioning algorithms, periodic boundary conditions, and particle mesh Ewald method51. The 

trajectories were generated by saving coordinates every 20 ps. The MD trajectories were analyzed 

using the cpptraj module of AMBERTools2352,53. The last snapshots from the unrestrained simulation 

were used as the initial input structures for ASMD.  

2.2. High throughput ASMD to study substrate un(binding) processes 

The ASMD was set up with 30 epochs, each consisting of 30 separate production simulations. To build 

an MSM model after each epoch, we used the distances between the Cα atoms of the protein and 

four heavy atoms of DBE and reduced the high dimensional space to three dimensions using time-

dependent component analysis (TICA)54 with a lag time of 2 ns. The ASMD simulations were performed 

using HTMD v1.13.1027 and AMBER1842 software packages. The equilibration phase in HTMD consisted 

of two 250 ps NVT and NPT simulations, during which the systems were heated from 0 to 310 K with 

a Langevin thermostat and harmonic positional restraints to the backbone atoms with a force constant 

of 5 kcal·mol-1·Å-2. Finally, a 50 ns unrestrained production MD was performed in the NVT ensemble 

using a weak-coupling thermostat and a saving frequency of 100 ps. Such ASMD runs were performed 

in three replicates for each investigated seeding scheme. 

2.3. Final MSM construction and validation 

All the MSM were built using the HTMD27, which internally uses PyEMMA program55, following the 

standard PyEMMA protocol. The high dimensional data from adaptive sampling projected with 

distance feature was reduced to three dimensions using TICA54 with a lag time of 2 ns. Next, the 

reduced TICA coordinates were clustered into 1000 microstates using the MiniBatchKMeans56 

method. The metastable states were lumped using PCCA++ method57, with the number of metastable 

states based on spectral analysis55 and verified against plots of linear implied timescales 

(Figures S10-S12). The lag time of 20 ns was used during MSM construction. Finally, the Chapman-

Kolmogorov58 test was performed to confirm the Markovianity of the generated MSM models 

(Figures S13-S15).  

2.4. MSM analysis and comparison 

In order to quantify the ability of ASMD to sample the whole (un)binding process of DBE, the distances 

between the center of mass (COM) of the DBE molecule and COM of three catalytic residues (N38, 

D108, and W109, Figure S16A) were measured from the ~900 trajectories for each replicate using 
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cpptraj module of AMBERTools2352,53. Based on this distance, we can define the location of DBE in the 

active site (0-5 Å), tunnel (5-19 Å), and bulk (>19 Å). The cutoff of 19 Å for tunnels was derived from 

the average lengths of investigated tunnels measured by CAVER (Figure 1C and Table S1). Finally, the 

transition path theory approach implemented in PyEMMA was used to derive transition probability 

matrices and compute the mean first pass times of each association and dissociation process in MSMs. 

Here, the metastable states with the most prevalent bound conformation of DBE were used as sink 

states, while the metastable states featuring DBE mainly in the bulk solvent were considered as source 

states to perform the transition flux analysis and derive the transition probabilities and kinetics rates. 

Furthermore, the most frequently occurring bottleneck residues were shortlisted from the CAVER 

results as follows (Figure S16B-E): p1a (D147, F151, and V173), p1b (D147, W177, and L248), p2 (L211 

and L248), and p3 (L143, F151, and I213) and the distance between their COM to COM of DBE was 

calculated to assess localization of DBE with respect to these tunnels.  

Ensembles of 1000 representative structures of metastable states generated from individual MSMs 

were clustered to establish the correspondence of these metastable states across explored schemes. 

For this purpose, mean, 25th, 50th, and 75th percentiles were calculated for each set of characteristic 

distances to bottleneck residues and catalytic machinery described above (Figure S16). They were 

used cumulatively as a vector of 20 variables describing each metastable state. Principal component 

analysis (PCA) implemented in the Python scikit-learn library56 was used to reduce the dimensionality 

of each vector. The set of the first three principal components for each metastable state was clustered 

with HDBSCAN59 using min_cluster_size of 2, with the remaining parameters kept as default.  

2.5. Analysis of substrate utilization of tunnels 

Time-evolution of distances (Figure S16) for the entire set of trajectories was used to estimate the 

approximate position of the ligand in the context of the tunnel network. By tracking the change of the 

relative position, the movement through a particular tunnel was assigned where possible. Therefore, 

the approximate tunnels’ utilization was estimated across investigated schemes by analyzing the 

transition between subsequent positions. The procedure was composed of three stages as follows. 

i) Position assignment. First, the closest bottleneck at a particular frame to the DBE molecule was 

defined. Further, this information was used to define the approximate length of the closest tunnel, 

i.e., the distance between the COM of catalytic machinery and the COM of the particular bottleneck. 

These two distances were contrasted with the distance of the ligand to the catalytic machinery, which 

altogether resulted in the identification of the approximate ligand position. Importantly, at this point, 

additional parameters were introduced to classify the ligand position, namely bt_cutoff_along=2.0 Å 

defining the region around the bottleneck, distinguishing whether the ligand is in the bulk, bottleneck 
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region or tunnel, and bt_cutoff_across=5.0 Å that defines whether the ligand is not too far from the 

bottleneck horizontally in case it is within the bottleneck region. Considering these three distances 

and introduced cutoffs, the following scenarios and corresponding ligand states were considered: 

 Bulk (out_): Ligand is further from the active site than the sum of tunnel length and 

bt_cutoff_along. 

 Bottleneck (bt_): Ligand is within the bottleneck region, either further than the tunnel length or 

closer than the tunnel length but within bt_cutoff_along and bt_cutoff_across. 

 Unknown bottleneck (bt_unknown): Ligand is within the bottleneck region, either further than 

the tunnel length or closer than the tunnel length within bt_cutoff_along but exceeding the 

bt_cutoff_across. 

 Inside (in_): Ligand distance to catalytic machinery is shorter than the tunnel length decreased by 

the bt_cutoff_along. 

ii) Transition detection and classification. Considering defined states for each frame, the transitions 

between bulk (out) and interior (in) and vice versa were identified. Transitions via bottleneck regions 

(in-bt-out or out-bt-in) were also considered. In the case that the mismatch between assigned tunnel 

in-out/out-in was detected, we applied an additional dist_tolerance=1.0 Å parameter, which defined 

the tolerance distance that is considered for swapping the classification of one of the sides of the 

transition, promoting the tunnel that was seen in the bottleneck region for scenarios where the 

intermediate state was seen. The transitions were tracked as follows: 

 If the transition occurred from the bulk to inside or from the inside to bulk directly - the transition 

in-out/out-in was assigned by applying the dist_tolerance for cases where the mismatch between 

both sides occurred. 

 If the ligand moved from the interior to the bottleneck region or from the bulk to the bottleneck 

region – the transition was not assigned, only the information regarding the temporary state.  

 If the temporary state was a bottleneck and the closest tunnel changed, the transition was not 

assigned; only the bottleneck temporary state was updated. 

 If the temporary state was a bottleneck and the ligand moved to the same general state but 

related to a different tunnel, the transition was not assigned; only the general state was updated. 

 If the temporary state was a bottleneck and the ligand moved to the other general state (from in 

to out or from out to in), the transition was assigned, also collecting the information about the 

bottleneck used applying the dist_tolerance for cases where the mismatch between both sides 

occurred promoting the tunnel of the assigned transition bottleneck state. 

iii) Characterization of tunnel utilization. Finally, all types of unique transitions were counted across 

all simulations from each scheme and averaged across three replicates performed for each scheme. 

Importantly, we applied the following classification to assign transitions to particular categories: 

 Tunnel (p1a, p1b, p2, and p3) – all transitions that passed through the bottleneck of a particular 

tunnel or the direct transitions in-out or out-in related to the same tunnel on both sides; 

 Mixed – all direct transitions in-out or out-in, where both sides of transitions differ even 

considering applied distance tolerance; 

 Unknown – all transitions that crossed through the unknown bottleneck. 
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3. Results and Discussions 
Overall, ~900 MD trajectories (450,000 frames) with aggregated simulation time of 45 µs were 

produced using ASMD of LinB86-DBE complexes generated according to all four studied schemes 

(Table S2). For each scheme, ASMD was performed in three replicates to evaluate the abilities to 

consistently describe the transport processes in its entirety, focusing on the convergence among the 

ASMD replicates, the degree of quantitative agreement with experimental data, and the ability to 

consider the transport via all known tunnels.  

3.1 Capturing DBE association and dissociation processes in LinB86  

In order to study the applicability of the studied schemes, we initially investigated how effectively 

each scheme could sample the endpoints of the processes, i.e., the bound and unbound states of DBE 

in the active site cavity of LinB86 and bulk solvent, respectively. Those states could be effectively 

defined by the distance of DBE COM from the COM of three catalytic residues located at the bottom 

of the cavity (Figure S16A), defining the bound states within 5 Å distance, while the unbound state 

samples primarily distances above 19 Å, which are further than the length of the longest tunnels 

present in LinB86 (Figure 1C). The DBE explored the unbound state in all schemes and replicas for a 

substantial fraction of cumulative ASMD trajectories (Figure 2). Even in the Cavity scheme initiated 

from the DBE molecule bound deep in the active site, the substrate reached the bulk solvent, 

generating a minimum of 12 % unbound states. Over 10,000 unbound states were generated after at 

most seven epochs of ASMD simulations (Figure 3). Foreseeably, the unbound states were most 

prevalent (> 31 %) in the simulation seeded with DBE placed in the bulk solvent around the enzyme 

(scheme Bulk).  

Concerning the ability of ASMDs to reach the bound pose of DBE in the buried active site of LinB86, all 

schemes except for Bulk could consistently sample the bound states in all three replicates. In the case 

of the Bulk scheme, the DBE molecule was able to find a path to the active site in replicate 1, producing 

a total of 4 % of simulations in the bound state (Figure 2), with a significant ensemble of more than 

1,000 bound configurations sampled already until the fifth epoch (Figure 3). However, no bound state 

was observed in the other two replicated ASMD from the Bulk scheme (Figures 2 and 3). This is no 

surprise since unbiased simulations of ligand associations are generally rather time-consuming, even 

for less complex systems60–62.  
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Figure 2. Substrate (un)binding to the active site of LinB86 captured by ASMD simulations with four seeding 
schemes. A) The distance distribution of DBE to catalytic residues for three replicated ASMD for each seeding 
scheme. The regions corresponding to DBE in the active site (0-5 Å), shortest (p1b, 5-14 Å) and longest (p2, 14-
19 Å) tunnel lengths (Figure 1C), and bulk solvent (>19 Å) are highlighted as gold, pink, shaded pink, and white, 
respectively. The distances are between COM of DBE and COM of catalytic residues (N38, D108, and W109), 
measured in 45 µs simulations. B) The fraction of DBE seen in individual regions.  
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Figure 3. An epoch-wise sampling of the distance of DBE to catalytic residues of LinB86. The regions 
corresponding to DBE in the active site (0-5 Å), shortest (p1b, 5-14 Å) and longest (p2, 14-19 Å) tunnel lengths 
(Figure 1C), and bulk solvent (>19 Å) are highlighted as gold, pink, shaded pink, and white, respectively. 

Among the remaining schemes, Cavity AMSDs exploited the bound states the most frequently, as 

expected from the initial seeding with docked poses of DBE (Figure 2). Such setup led to the 

accumulation of over 5,000 bound states already during the first epoch in all three replicates 

(Figure 3). Such behavior was also partially retained in the Cavity&Bulk scheme, where more than 

2,000 bound states were systematically observed in the first epoch of ASMDs. Here, the additional 

seeds of DBE placed in the bulk solvent resulted in considerable sampling of more than 10,000 

unbound states within the first three epochs of ASMDs, about twice faster than in the pure Cavity 

scheme (Figure 3). Finally, we have observed the DBE spending most of the time exploring the regions 
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corresponding to transport tunnels in ASMDs from the Tunnels scheme (Figure 2). Having sufficient 

coverage of bound and unbound states, we progressed to the creation of MSMs from the assembled 

trajectories and the calculation of kinetic parameters of descriptions of (un)binding processes. Due to 

the lack of bound states in the Bulk scheme, these AMSDs were not considered for constructing MSMs.  

3.2. Identifying metastable states of DBE interacting with LinB86 and 

predicting kinetic parameters from MSMs 

To further test the capabilities of the studied seeding schemes in the diversity and consistency of 

identified metastable states, we have generated MSMs from the individual ASMD replicates. These 

MSMs consisted of three to six metastable states for the Cavity (Figures S17-S19) and Cavity&Bulk 

(Figures S20-S22) schemes, whereas six to eight metastable states were identified in MSMs from the 

Tunnel schemes (Figures S23-S25). To understand the mutual correspondence among these states 

across all generated MSMs, we have generated 1,000 representative structures of each metastable 

state and measured the distances of DBE to the catalytic residues, as well as to the bottlenecks of the 

known transport tunnels in LinB86 (Figure S16). These distances represent fingerprints characterizing 

the metastable states (Figures S26-S28), clearly identifying not only unbound and bound states but 

also their alignment to individual transport tunnels. 

Finally, those unified fingerprints enabled us to cluster the metastable states (Figure S29), forming the 

unified non-redundant ligand states (ULS) across all MSMs (Figure 4A). The only state consistently 

present in all replicates of each seeding scheme (Figure 4B) was ULS1, which corresponded to the DBE 

molecules in the bulk solvent. ULS2-ULS5 all represented DBE molecules inside the catalytic cavity, 

with DBE bound closest to the catalytic residues in ULS2, which was found only in the MSMs of the 

Cavity scheme. In ULS3 the substrate was placed closer to the cavity center, while in ULS4 and ULS5, 

the substrate was located near the exit from the cavity in the direction of p1 or p3 tunnels. ULS6-ULS9 

featured the DBE molecule bound on the LinB86 surface at the entrances to p3, p2a, p2c, and p2d 

tunnels, with the p3 tunnel entrance (ULS6) being the most prevalent across the MSMs (Figure 4B). 

Curiously, in replicate 2 from the Cavity&Bulk scheme, we have observed several metastable states 

forming ULS10, which were composed of the DBE molecules exploring the cryptic pocket located back-

to-back with the canonical active site cavity of LinB86 with the entrance located on the opposite side 

of the enzyme structure with respect to the p1 tunnel entrance.  
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Figure 4. Inference into the (un)binding process of DBE to LinB86 from MSM analysis. A) Structurally unified 
ligand states (ULS) identified among all metastable states (Figures S17-S25) resolved by MSM analysis of three 
replicated ASMD simulations initiated from the studied seeding schemes. Protein structure is shown as a gray 
cartoon while the region occupied by DBE molecule in 20 % (1 % for bulk solvent state) of 1,000 structures 
representing given ULS is shown as red surface. B) The presence of ULS among metastable states in each ASMD 
replicates with their average probabilities. The unbound and bound metastable states used as source and sink 
states during the mean first pass time analyses are highlighted. C) Average equilibrium dissociation constants 
derived from MSMs as a ratio of dissociation and association rates (Figure S30). The experimental kd was 
obtained from 66. The data represents mean±stdev from the three replicates. 
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Some identified ULSs were also observed in the recent study of transient binding sites on the LinB 

wild-type conducted with seven halogenated compounds, including DBE molecules63. Out of nine sites, 

three could be matched to ULSs as follows: i) site 5 corresponded to ULS6, the entrance to the p3 

tunnel, ii) site 9 overlayed with ULS9, the entrance to p2c tunnel, and iii) site 4 aligned to ULS8, the 

entrance to p2d tunnel. Such agreement suggests conservation of those interaction sites between LinB 

wild-type and LinB86 mutant despite the substitutions introduced into the p1 and p3 tunnels of the 

mutant. Considering the identification of ULS in replicated MSMs, the Tunnels scheme exhibited the 

best consistency since four ULS were found in all three replicates, while the other two ULS were found 

in two replicates. In contrast, only unbound ULS1 was systematically found in the Cavity and 

Cavity&Bulk schemes. In fact, those two schemes frequently led to the formation of singleton ULSs, 

present in one MSM replicate only.  

Finally, we have calculated the equilibrium dissociation constant (kd) from the rates of DBE association 

and dissociation predicted from MSMs by the mean first pass time analyses. In contrast with the other 

schemes, we noted markedly faster DBE dissociation in the Cavity scheme (Figure S30), in line with 

the overrepresentation of bound states in the ASMDs. Interestingly, we found that the computed kd 

values from all schemes were in good agreement with the experimentally determined one (Figure 4C). 

However, the computed values from the Cavity scheme were not well converged. The obtained less 

than an order of magnitude differences between simulations and experiments are still not common 

even in the case of much less complex biomolecular systems64,65. 

 

3.3. Exploration of different transport paths by substrate  

Next, we investigated the utilization of individual transport pathways of LinB86 by the substrate DBE. 

Initially, we attempted to match the substrate migration traces to the tunnel ensembles using 

Transport Tools library67. However, we could observe only very few complete migration events of DBE 

molecule between the bulk solvent and the active site of LinB86 (Table S3), with replicate 2 of the 

Cavity scheme capturing 33 transport events of DBE via known tunnels. Since such data cannot provide 

sufficient inference, we have followed by considering a simplified transition of DBE molecule through 

the tunnel bottleneck only, which corresponds to the least favorable region along the migration path 

and hence controls the transport rates9,60,66. Considering the distances of DBE to the COM of 

bottleneck residues of each tunnel and the bottom of the active site cavity (Figure S16), we have 

traced the location of DBE in all simulations, focusing on the frames where DBE came close to any of 

the bottlenecks and whether if passed through them.  
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A thorough investigation of the transport in all schemes via particular tunnels revealed the following 

observations. We observed the highest total number of transitions for the Tunnels scheme, followed 

by Cavity, Cavity&Bulk, and finally, the lowest in the Bulk only (Table S4). The overall proportion of the 

particular tunnels being utilized to the total number of transitions was consistent across all schemes. 

The most frequently used tunnel was p2, followed by p1b, p1a, p3 and finally mixed and unknown 

representing the smallest fraction of the data (Figure 5A). Interestingly, besides this trend consistency, 

schemes Cavity&Bulk and Tunnels displayed a higher percentage of p2 tunnel as compared to the 

remaining schemes (Figure 5A), suggesting that the more complex seeding schemes enable relatively 

more efficient exploration of the longest and most complex branches of p2 tunnel. In contrast, 

simplified schemes (Bulk and Cavity) tend to promote the sampling of more accessible primary 

conduits, p1 tunnels, in agreement with their preferential utilization observed in TransportTools 

analyses of replicate 2 of the Cavity scheme (Table S3).  

 
Figure 5. A statistical representation of tunnel utilization by the substrate for investigated seeding schemes. 

A) Relative utilization of particular tunnels for each scheme. B) Per tunnel average tunnel utilization. C) Per 

scheme average tunnel utilization. The data represents mean±stdev from the three replicates. 

Besides this difference, the increased amount of transitions for particular schemes mainly came from 

the proportionally boosted sampling in each tunnel (Figure 5B). Importantly, considering the standard 

deviations calculated for combined statistics from three replicates for each scheme, it is clear that the 

Tunnels scheme presents the highest consistency from all tested schemes for all tunnels. This can be 

noticed when the transitions are considered for each run separately (Table S4). While the total sum 

of transitions for the Bulk scheme differs noticeably for particular replicates (1820, 49 and 1006 

transitions for replica1, replica2 and replica3, respectively), the Tunnels scheme presents the lowest 

deviation when the three replicates are considered separately (replica1 – 2809, replica2 – 1680, 
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replica3 – 2968). Cavity and Cavity&Bulk schemes fall between these two extremes and present similar 

consistency to each other (Figure 5C).  

4. Conclusions 

This study aimed to test the effect of different seeding schemes on effective sampling in MSM-driven 

ASMD simulations, providing meaningful insights into kinetic rates and mechanisms of the transport 

of the substrate DBE in LinB86 from its deeply buried active site to the solvent environment via 

multiple transport tunnels. The four designed seeding schemes allowed the positioning of DBE by 

focusing on applying more knowledge to tackle the sampling of regions with higher energy barriers. 

The ensuing ASMD simulations could construct the kinetic models with different levels of detail based 

on the employed seeding scheme. All simulations could explore the entire transport process, visiting 

unbound and bound states except for the Bulk scheme that could not reach the bound state in two 

replicates of 45 μs ASMDs. Conversely, the Tunnels scheme was most consistent in sampling different 

metastable states of substrate in the transport-relevant regions. The application of more information-

rich Tunnels and Cavity&Bulk schemes led to the enhanced exploration of auxiliary p2 and p3 tunnels. 

In contrast, primary p1 tunnels were preferred in ASMDs initiated from the other two schemes. 

Tunnels and Cavity&Bulk schemes also provided the most converged kd values from the rates of DBE 

association and dissociation, sufficiently close to the experimental measurements despite the 

complexity of the kinetic model. We expect that analogous methodology can also be beneficial for 

defining effective collective variables enhanced sampling methods like metadynamics,21,22 and 

umbrella sampling68. Overall, the infusion of more knowledge into the initial seeds of ASMD 

simulations could render computational analyses of transport mechanisms in enzymes more 

consistent even for very complex biomolecular systems, having a clear potential to translate into faster 

rational protein design and drug development efforts.  
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Abstract

Summary: Information regarding pathways through voids in biomolecules and their roles in ligand transport is critical to

our understanding of the function of many biomolecules. Recently, the advent of high-throughput molecular dynamics

simulations has enabled the study of these pathways, and of rare transport events. However, the scale and intricacy of

the data produced requires dedicated tools in order to conduct analyses efficiently and without excessive demand on

users. To fill this gap, we developed the TransportTools, which allows the investigation of pathways and their utilization

across large, simulated datasets. TransportTools also facilitates the development of custom-made analyses.

Availability and implementation: TransportTools is implemented in Python3 and distributed as pip and conda

packages. The source code is available at https://github.com/labbit-eu/transport_tools. Data are available in a reposi-

tory and can be accessed via a link: https://doi.org/10.5281/zenodo.5642954.

Contact: janbre@amu.edu.pl or jbrezovsky@iimcb.gov.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

At any moment, living systems contain thousands of small organic
molecules that need to arrive at their sites of action to exert their
function. The transport of these molecules around the cell (and be-
yond) is governed primarily by channels and tunnels (henceforth
referred to as ‘pathways’) formed from the internal voids of biomo-
lecules (Kingsley and Lill, 2015). These pathways enable the trans-
port of ions and small molecules between different regions,
connecting inner cavities with a surface, two different cavities with
each other, or different cellular environments via transmembrane
proteins. Operating as such, the investigation of these pathways is
critical to drug discovery (Marques et al., 2017) and protein engin-
eering initiatives (Kokkonen et al., 2019). Since pathways are often
equipped with dynamic gates (Gora et al., 2013), they are mostly
transient and challenging to study.

One of the most common approaches used to characterize these
rare events of ligand transmission via transiently open pathways is
to run molecular dynamics (MD) simulations (Decherchi and

Cavalli, 2020), analyzing the pathway dynamics using tools like
CAVER (Jurcik et al., 2018) or tracking ligand migration through
the biomolecules with AQUA-DUCT (Magdziarz et al., 2020); see
Supplementary File S1 for an overview of the state-of-the-art tools
to study ligand transport pathways. The intensive development seen
in computing hardware and sampling algorithms over recent years
has led to considerable growth in the size and complexity of datasets
typically generated for a single protein system. It is not uncommon
for such datasets to consist of thousands simulations. Such high-
throughput approaches, however, impose a substantial burden on
researchers in establishing the identity of the pathways observed
across all simulations, determining which pathways are used by par-
ticular ligands, and developing means of specific quantitative analy-
ses. To this end, we present TransportTools: a library designed to
alleviate these difficulties by providing easy, efficient access to com-
prehensive details on transport processes—even for large-scale simu-
lation sets—and offering an environment for the development of
novel analyses and tools.

VC The Author(s) 2021. Published by Oxford University Press. 1752
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2 Features

TransportTools is available as a Python3 module distributed under
the GNU General Public License v3.0, and available via pip and
conda managers as the transport_tools package. In its standard
workflow (Fig. 1), TransportTools utilizes outputs from CAVER
and AQUA-DUCT analyses of MD simulation, integrating their
complementary insights to investigate transport pathways and corre-
sponding ligand migration events in soluble and membrane-
embedded proteins. To achieve efficiency in such a high-throughput
regimen, raw data on pathway ensembles and ligand-transport
events is first coarse-grained, and positioned on a spherical grid.
Next, TransportTools identifies relationships between pathway
ensembles from individual simulations and joins them into super-
clusters, to which ligand-transport events are then assigned (see
Supplementary File S2 for method details). Critical analysis parame-
ters can be controlled via a configuration file. These parameters are
thoroughly explained in the user guide, which also includes a
detailed walk-through tutorial (Supplementary File S3). Aside from
the ready-made workflow, the library offers many classes to process,
manipulate and analyze pathways and events, simplifying the pro-
duction of custom-made analyses and, hopefully, stimulating further
development of new packages (Supplementary File S4).

Outputs
The main results generated by TransportTools are presented as a set of
tables stored in text files. These contain data on the composition of
pathway superclusters, on their geometrical properties and utilization
by transport events, and on critical protein residues. Using generated
scripts, the spatial representation of superclusters and assigned events
can be visualized in PyMOL (PyMOL, Schrödinger, 2017). All results
can be refined using various filters and split by individual simulation or
by user-defined groups to facilitate their convenient comparison.

Performance and limitations
The performance of TransportTools was analyzed on three datasets
of 50 simulations (each sampling 100ns and consisting of 10 000
frames) of up to 500 residue-long enzymes with different accessibil-
ities of their active sites, resulting in the detection of up to 5 000 000
transport pathways and 50 000 water-transport events, which were
processed within 2–21h on a standard workstation (Supplementary
File S5). TransportTools inherits the limitations of the CAVER and
AQUA-DUCT packages; their descriptions of pathway geometries
and the definitions of their clusters (see Supplementary Section S2.2
of Supplementary File S3 for best practice guidelines). When MD
trajectories are utilized directly, usage is restricted to file formats

supported by either MDtraj or pytraj packages (McGibbon et al.,
2015; Roe and Cheatham, 2013).

Use cases
To illustrate the applicability of TransportTools, we applied it to the
analysis of three representative examples of biological problems con-
nected with ligand transport using an established model system—
enzymes DhaA and LinB from the haloalkane dehalogenase family
(Brezovsky et al., 2016; Pavlova et al., 2009). First, we analyzed 10
simulations of DhaA in an effort to discover rare transient tunnels and
their usage by water molecules (Supplementary File S6). Next, we
derived an understanding of the effect of mutations on the system by
contrasting simulations of LinB wild-type, LinB32 mutant with a
closed primary tunnel, and LinB86 mutant with a de novo created tun-
nel (Supplementary File S7). Finally, we studied the substrate molecule
selectivity of the pathways leading to the active site of LinB86 in almost
600 simulations (Supplementary File S8).

3 Conclusions

The TransportTools library provides users with access to (i) efficient
analyses of transport pathways across extensive MD simulations,
including those originating from massively parallel calculations or
very long simulations; (ii) integrated data regarding transport path-
ways and their actual utilization by small molecules; and (iii) rigor-
ous comparisons of transport processes under different settings, e.g.
by contrasting transport in an original system against the same sys-
tem perturbed by mutations, different solvents or bound ligands.
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Nano-structured hydrotrope-caged cytochrome c
with boosted stability in harsh environments:
a molecular insight†

Pranav Bharadwaj,‡a Dheeraj Kumar Sarkar, ‡b,c Meena Bisht,§d Sachin M. Shet,a

Nataraj Sanna Kotrappanavar, a Veeresh Lokesh,d Gregory Franklin, *d

Jan Brezovsky *b,c and Dibyendu Mondal *a,d

Green and nano-structured catalytic media are vital for biocatalysis to attenuate the denaturation ten-

dency of biocatalysts under severe reaction conditions. Hydrotropes with multi-faceted physiochemical

properties represent promising systems for sustainable protein packaging. Herein, the ability of adeno-

sine-5’-triphosphate (ATP) and cholinium salicylate ([Cho][Sal]) ionic liquid (IL) to form nano-structures

and to nano-confine Cytochrome c (Cyt c) enhanced the stability and activity under multiple stresses.

Experimental and computational analyses were undertaken to explain the nano-structured phenomenon

of ATP and IL, structural organizations of nano-confined Cyt c, and site-specific interactions that stabilize

the protein structure. Both ATP and IL form nano-structures in aqueous media and could cage Cyt c via

multiple nonspecific soft interactions. Remarkably, the engineered molecular nano-cages of ATP

(5–10 mM), IL (300 mg mL−1), and ATP + IL surrounding Cyt c resulted in 9-to-72-fold higher peroxidase

activity than native Cyt c with exceptionally high thermal tolerance (110 °C). The polar interactions with

the cardiolipin binding site of Cyt c, mediated by hydrotropes, were well correlated with the increased

peroxidase activity. Furthermore, higher activity trends were observed in the presence of urea, GuHCl, and

trypsin without any protein degradation. Specific binding of hydrotropes in highly mobile regions of Cyt c

(Ω 40–54 residues) and enhanced H-bonding with Lys and Arg offered excellent stability under extreme

conditions. Additionally, ATP effectively counteracted reactive oxygen species (ROS)-induced denatura-

tion of Cyt c, which was enhanced by the [Sal] counterpart of IL. Overall, this study explored the robust-

ness of nano-structured hydrotropes to have a higher potential for protein packaging with improved

stability and activity under extreme conditions. Thus, the present work highlights a novel strategy for real-

time industrial biocatalysis to protect mitochondrial cells from ROS-instigated apoptosis.

Introduction

Adenosine-5′-triphosphate (ATP) has shown multi-faceted func-
tions, including its participation in the electron transport
chain, acting as the energy currency of cells, holding the key
for caspase-9 activated apoptosis, and taking part in transcrip-
tion by revamping chromatin complexes.1–3 The role of physio-
logical concentrations of ATP in preventing thermally induced
protein aggregation in mammalian cells was previously
demonstrated by Nguyen and Benusaude,4 and the answer
regarding the regulation of a high concentration of ATP
(2–10 mM) in the cell was unveiled by Patel and co-workers,
whereby ATP is claimed as a biological hydrotrope.5 The term
‘hydrotrope’ was coined by Neuberg for amphiphilic molecules
having a characteristic range of minimum hydrotrope concen-
tration, which augment the solubility of partially soluble
organic or hydrophobic substances in water.6,7 This opened a

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3gc01704d
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new channel to explore ATP in the medical field to treat
Parkinson’s and Alzheimer-like diseases by preventing phase
separation of biological fluids, which causes amyloid
fibrillation.8,9 The solubilizing tendency of ATP was attributed
to its nonspecific aggregation, charge reinforcement, and self-
assembly through hydrophobic interactions (Fig. 1a).10,11

Thus, the hydrotropic mechanism of ATP follows both the
Neuberg and Hofmeister effects.12 Self-aggregated ATP is
found to provide thermal stability to lysozyme, malate dehy-
drogenase, and ubiquitin,13 and so it is important to under-
stand how the self-aggregation property of ATP is useful in
protein packaging under multiple stressors, which has not
been previously studied.

Unlike ATP, various amphiphilic nano-structured solvents
have recently emerged with promising applications in energy-
efficient bioprocesses.14 Due to their highly manipulative
nature, ionic liquids (ILs) have gained interest for their ability
to increase enzyme activity, solubility and thermal stability.15

Since the initial demonstration of ILs in biocatalysis, numer-
ous research groups have focused on utilizing imidazolium,
pyridium, tetraalkyl-ammonium, and tetraalkyl-phosphonium
based ILs for catalysis involving various classes of
enzymes.16,17 Further, with extended studies over ILs, bio-
based ILs of the cholinium family have shown hydrotropic pro-
perties18 with greater hydrophobicity and ability to enhance
the nano-structuring of amphiphilic solutes in aqueous
media.19 Although earlier reports showed protein packaging
with long-term stability and activity using cholinium ILs,15 but
there is a lack of understanding of the underlying mechanisms
by which hydrotropic ILs (potential amphiphilic molecules)
can regulate protein stability and activity.20 In this regard, an
IL with a salicylate counterpart caught our attention as it
contains carboxylic and hydroxyl groups, along with a hydro-
phobic aromatic ring featuring the salicylate ion and showing
multiple interaction sites in the aqueous medium
(Fig. 1b).21,22 Additionally, salicylic acid is an important phyto-
hormone that alters the mitochondrial processes by amplifying
the concentration of reactive oxygen species (ROS) and induces
cells to undergo programmed cell death.23,24 During apoptosis,

ATP plays a crucial role in caspase-9 activation, a process
stimulated by cytochrome c (Cyt c) release from mitochon-
dria.25 Since both ATP and salicylate are coupled to Cyt c, the
latter was chosen as a model protein for this study (Fig. 1c),
and ATP and choline salicylate ([Cho][Sal]) IL as the nano-
structured hydrotropes.

Cyt c is a mitochondrial-based 13 kDa monomeric protein
comprising of approximately 104 residues and is widely dis-
tributed across eukaryotes, bacteria, and archaea.26 Despite its
significant role in electron transfer, this protein is of great
interest in many technological applications like biosensors,
synthetic receptors, and molecular imprinting among others.26

Cyt c also shows peroxidase-like activity and serves as a bio-
catalyst in several catalytic transformations.26 The protein is
highly vulnerable to denaturation under prevailing stress con-
ditions such as extreme temperatures, oxidative stress, and
proteolytic and chemical denaturants.27 Recently, a surface
modification strategy using quantum dots, metal–organic
frame-works,28 and DNA was reported to enhance the stability
of Cyt c.27,29 However, the stability of the protein when con-
fined within a hydrotrope system has not yet been reported.
Considering the hydrotropism and probability of nano-struc-
turing,26 the present study aimed to cage Cyt c in ATP and
[Cho][Sal] IL-based hydrotropes, and thereby improve the
activity and stability of the protein in gentle and harsh
environments (such as high temperature, chemical denatur-
ants, protease digestion, and oxidative stress). Therefore,
detailed experimental and in silico approaches were under-
taken to study the structure–function relationship of nano-con-
fined Cyt c in ATP, [Cho][Sal] and ATP + IL at a molecular level
to develop a novel and sustainable solvent manipulation strat-
egy for dynamic protein packaging and robust biocatalysis.

Results and discussion
ATP and [Cho][Sal] IL as nano-structured hydrotropes

To understand the extent to which the IL affects the self-aggre-
gation of ATP, which is vital for its role as a biological hydro-
trope, we performed molecular dynamics (MD) simulations of
5 mM ATP, 300 mg mL−1 [Cho][Sal], and their mixture. The
pair-wise interactions of ATP and [Cho][Sal] molecules in water
and the mixture were investigated using radial distribution
functions (RDF). As expected, ATP exhibited a self-aggregating
tendency at 4-to-5 Å and up to 15 Å (Fig. 2a). The self-aggregat-
ing propensity of ATP molecules from a chemical perspective
in the presence of an IL can occur in three possible ways, first
the anion–π interactions between the aromatic ring and nega-
tively charged oxygen moiety of phosphate groups, secondly
through a non-bonding aromatic ring interaction (H-bonding,
π–π stacking interactions, and cation–π interactions) and third,
H-bond formation between the sugar and triphosphate
group.11 It was evident from our analysis that two ATP mole-
cules preferentially formed stack-like configurations in water
(Fig. S1a†). In the presence of [Cho][Sal], the IL-mediated
H-bonding (Fig. S1b†) markedly decreased the occurrence of

Fig. 1 Chemical structures and structural features of (a) ATP and (b)
[Cho][Sal] IL, with possible interaction sites. (c) The modeled active site
structure of Cyt c, based on the crystallographic structure of bovine
heart Cyt c (PDB code: 2B4Z) at 1.5 Å resolution.
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the stack-like configurations of ATP (Fig. 2a). Notably, we
found that the IL at a molecular concentration of 300 mg mL−1

forms dense H-bonding network mediated by cholinium and
salicylate (Fig. S1c†). Unsurprisingly, we have not observed any
perturbation of the [Cho][Sal] nano-structure upon the
addition of ATP, given its low concentration (Fig. 2b). In
addition to RDFs, the self-aggregating behavior of ATP and
ATP + IL was further verified by a concentration-dependent
ζ-potential study (Fig. 2c and Fig. S2†). At 1 mM concentration,
which is below the critical hydrotropic concentration (2 mM),
a single broad distribution peak was observed with maxima of
−8.12 mV, indicating the existence of a single non-aggregated
structure (Fig. 2c). At 2.5 mM, the distribution curve shifted to
a lower negative value with peak maxima of −5.96 mV. This
lowering in the ζ-potential indicates the beginning of aggre-
gated structures similar to the self-aggregation of nano-par-
ticles as a result of the decrease in the electrophoretic mobi-
lity.30 This is further evidenced by the shift of maxima from
−5.96 to −2.35 mV for 5 mM ATP. Finally, at 10 mM concen-
tration, a broad single peak with maxima at −1.42 mV was
obtained, which indicates the presence of a self-assembled,
nano-structured ATP state. Conversely, 200 mg mL−1 of
[Cho][Sal] shows a very broad Gaussian peak with a maximum
at −9.12 mV (Fig. S3†), which shifts to a lower value of
−4.02 mV in the presence of 5 mM ATP, justifying the hypoth-
esis that the IL enhanced the self-assembly of amphiphiles.21

The hydrodynamic radius (Rh) of 5 mM ATP was found to be
0.83 nm (slightly higher than Rh of monomeric ATP, which is
0.57–0.65 nm),10 suggesting the existence of nano-structured/
oligomeric forms and supporting our earlier evidence. In the

presence of the IL, the Rh of ATP increased to 1.12 nm
(Fig. S4†).

To demonstrate the hydrotropic property of ATP and
[Cho][Sal], solubility studies of myoglobin (Mb) were carried
out in an aqueous medium at pH 7 in the presence and
absence of 5 mM ATP, 100 mg mL−1 IL and a combination of
both (Fig. 2d). After 1 h, the maximum solubility of Mb was
found to be 6 mg mL−1. In contrast, ATP-induced solubility of
Mb increased to 16 mg mL−1 during the same duration, which
directly shows the hydrotropic nature of ATP. In the case of
[Cho][Sal], the same solubility was achieved within 5 min.
Thus, the concentration of Mb was further increased and
examined until 24 mg mL−1. Interestingly, for ATP + IL, 24 mg
mL−1 Mb showed higher solubility than the IL-only medium.
These observations of enhanced solubility in the presence of
two hydrotropes inspired us towards nano-confinement of Cyt
c using ATP and [Cho][Sal]-based nano-structured hydrotropes
to enable improved biological activity and stability of the
protein.

Structural features of nano-structured hydrotrope-caged Cyt c

To understand the structural features of caged Cyt c, four
molecular systems were prepared, namely keeping Cyt c in
water, ATP, IL, and both ATP + IL at 26.85 °C (Fig. 3a–d). All
molecular systems were solvated in a cubic box with a side
length of 10 nm prepared using a PACKMOL package.31 The
RDFs of hydrotropes in all systems with and without the pres-
ence of the protein were in agreement, indicating that the pres-
ence of Cyt c had a negligible effect on the adopted hydrotrope
nano-structures (Fig. 2a, b & Fig. S5†). A lower dielectric con-

Fig. 2 Mutual effects of ATP and [Cho][Sal] on their respective nano-structure and interactions. (a) RDF of 5 mM ATP (black) and 5 mM ATP in pres-
ence of [Cho][Sal] (blue). The N9 atom of ATP used for RDF calculation is shown by the blue arrow. (b) RDF of 300 mg mL−1 [Cho][Sal] (red) and
[Cho][Sal] with added ATP (green). The N and C6 atoms used for RDF calculation are shown by the blue arrows. (c) Concentration-dependent zeta
potential analysis of ATP. (d) Solubility data of equine heart myoglobin in an aqueous medium at pH 7 in the presence and absence of 5 mM ATP,
100 mg mL−1 [Cho][Sal], and a combination of both ATP + IL.
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stant of the protein or more negative zeta potential of ATP and
IL can be related to the colloidal stability of caged Cyt
C. Accordingly, ζ-potential analysis was employed to envisage
the electrostatic interaction between Cyt c and nano-structured
hydrotropes. We found the ζ-potential of native Cyt c solution
(10 mM) to be +1.24 mV (Fig. 3e), and the ζ-potential of ATP
(5 mM), IL (200 mg mL−1), and ATP + IL was −2.48 mV,
−9.16 mV, and −4.09 mV, respectively. After Cyt c incubation
with ATP, IL, and IL + ATP, the ζ-potential values decreased to
−1.66 mV, −6.64 mV, and −3.46 mV, respectively (Fig. 3e and
Fig. S6†). These changes in the ζ-potential demonstrate the
possible electrostatic interaction between the protein and the
nano-structured hydrotropes. Further Rh of native Cyt c was
found to be 1.25 nm, which agrees with a previous report,32

and in the presence of ATP, the value increased to 1.99 nm
showing self-assembly of ATP around the protein (Fig. 3f and
Fig. S7†). In the presence of IL + ATP, Rh of Cyt c is further
increased to 2.22 nm. Thus, the hydrotropic mechanism of
ATP occurs initially by charge reinforcement, followed by the
stacking phenomenon. Along with ζ-potential and DLS, struc-
tures of nano-confined Cyt c were further characterized by UV-
vis spectra (Fig. S8†). In the presence of 5 mM ATP, a hyper-
chromic shift (a blue shift of 2 nm) in the Soret band (409 nm)
was observed, suggesting that a non-polar environment domi-
nates around the heme. In the case of IL (300 mg mL−1

[Cho][Sal]), absorbance in the Soret band enhanced consider-
ably together with a blue shift, while the Q-band (520–550 nm)
is broadened due to enhanced absorbance. This suggests
changes in the tertiary conformations.33 Overall, it is evident
that the self-aggregation propensities of the hydrotropes per-
sisted even in the presence of Cyt c, and the structure of caged

Cyt c was partially affected (without any unfolding, as dis-
cussed below) due to multiple interactions with nano-struc-
tured hydrotropes.

Nano-structured hydrotrope-caged Cyt c with boosted
peroxidase activity: molecular insights on the improved
catalytic activity and enhanced stability

In the presence of H2O2, Cyt c undergoes covalent modifi-
cations, which facilitate peroxidase-like activity.34 The activity
of Cyt c in the presence of 5–10 mM ATP showed a similar
trend with an >8-fold higher activity than native Cyt c (Fig. 4a).
Since a typical nano-structure is formed around Cyt c in the
range of hydrotropic concentration (5–10 mM), similar relative
activity is achieved rather than a maxima–minima trend. ATP
acts as a hydrotrope initially by unwinding the protein and
then stabilizing the extended chain through electrostatic inter-
actions,11 which may be a reason for the high peroxidase
activity. In the case of the [Cho][Sal] IL, nearly the same rela-
tive activities were seen from the 200-to-500 mg mL−1 range
(Fig. 4b). A clear trend was observed with the highest relative
activity of 67-fold at the concentration of the IL of 300 mg
mL−1. The activity data agree with the UV-vis absorption
spectra that inferred the transition of Cyt c towards penta-co-
ordinated high spin complex. When the Met80 ligand is dis-
placed, Cyt c naturally exhibits pronounced peroxidase-like
activity.34 Interestingly, a replica of the IL optimization trend
pattern was observed when using the ATP + IL mixture when
[ATP] was kept constant (5 mM) and IL was varied (Fig. 4c). At
300 mg mL−1 IL and 5 mM ATP concentrations, the activity of
Cyt c was enhanced 72-fold more than native Cyt c. This
activity enhancement is indicating that the structure of Cyt c is

Fig. 3 (a–d) Representative figures of a solvent of cubic box length 10 nm for Cyt c in H2O (a), ATP + H2O (b), [Cho][Sal] + H2O (c), and ATP + IL +
H2O molecular systems (d). Graph (e) shows zeta (ζ)-potential studies of nano-structured hydrotropes and Cyt c with and without nano-structured
hydrotropes. Plot (f ) depicts the hydrodynamic radius (Rh) of native Cyt c and Cyt c caged in different nano-structured hydrotropes.
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still intact and combined hydrotropic systems boost the peroxi-
dase activity further. Some ILs enhance the self-assembly of
co-solutes in the media due to the virtue of their solvophobic
effects.19 Accordingly, the concentration of ATP was varied
with IL being constant (300 mg mL−1). A similar trend was
observed with a >69-fold increase in activity (Fig. 4d). These
trends demonstrate that both IL and ATP further enhance the
conformational changes of Cyt c, followed by stabilization of
the extended protein structure by the self-assembling of ATP to
surround it. Similar inference can be observed from Fig. S5a
(blue line),† in which ATP tends to self-aggregate, even in the
presence of IL and Cyt c. To understand the behavior of nano-
structured hydrotrope-caged Cyt c, adaptive sampling MD
simulations with a total of 10 μs simulation time for each
system were performed. In all systems, we observed reversible
structural rearrangements of the protein backbone (Fig. 4e),
which were more pronounced in mixtures containing IL and
ATP + IL. Next, we traced these changes to the reversible
opening of the loop in the Ω 40–54 residue region that was
relatively more mobile than other parts of the protein for all
four systems (Fig. 4j). This region corresponds to the mAb 1D3
binding site and is reported to be more dynamic,35 while
having specificity towards Cytochrome c oxidase.36 To delin-

eate the details of this process and its modulation by the
action of nano-structured hydrotropes, we have constructed
Bayesian Markov state models from the simulations. This
inference revealed the presence of metastable states with an
open conformation of the Ω 40–54 loop of Cyt c in all systems
(Fig. 4f–i), which were characterized by their increased RMSD
and elevated radius of gyration (Fig. S9†). The interactions of
ATP and IL with Cyt c resulted in marked effects on the stabi-
lity and dynamics of this region. In the presence of ATP, the
closing process was approximately 2 times slower, whereas the
opening became approximately 20% faster (Fig. 4g). Similarly,
the presence of the IL resulted in a much faster opening
process and the closing speed was slowed even more promi-
nently than that observed for ATP (Fig. 4h). Finally, the
dynamics of Cyt c in the mixture of ATP and IL exhibited ATP-
like closing and IL-like opening times, enhancing the
dynamics of this functionally important region (Fig. 4i). To
understand if the hydrotropes molecules interact directly with
the heme group of Cyt c, a structural analysis of was carried
out by computational study. The simulations show infrequent
interactions of hydrotropes with the heme group (Fig. S10†).
Such interactions are unlikely to contribute to markedly
improved activity observed with all three systems (ATP, IL, and

Fig. 4 Peroxidase-like activity of Cyt linked to its dynamics. Optimization results of peroxidase-like activity of Cyt c with different hydrotropic con-
centrations of (a) ATP, (b) [Cho][Sal] IL, (c) varying [IL] by keeping [ATP] constant (5 mM), and (d) varying [ATP] by keeping IL constant (300 mg mL−1).
Structural characterization of Cyt c in four solvent systems at 26.85 °C. (e, j) Stability and dynamics of Cyt c structure simulated in four solvent
systems shown as backbone RMSD and RMSF, respectively. The peaks in the RMSD plot correspond to the reversible openings of Ω 40–54 residue
region highlighted in the RMSF plot by a dashed rectangle. Figures (f–i) show the metastable states representing open (red) and closed (blue) struc-
tures of Cyt c in H2O, ATP, IL, and ATP + IL, respectively. The timescales of opening and closing processes were calculated as mean first passage
times between the two states presented as mean ± standard deviation.
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ATP + IL), in particular, considering their absence with ATP.
Since both ATP and IL were significantly affecting the
dynamics of Cyt c, we identified the residues exhibiting the
most frequent H-bonding with hydrotropes in the simulations
(Fig. 5). In general, ATP interacted preferentially with Lys resi-
dues (Fig. S11a and S12a†), which is in accordance with an
earlier report demonstrating that triphosphate group of ATP
can deliver weak, nonspecific interactions with conserved Lys
or Arg residues.10 Additionally, the IL had a wider range of
residues as relevant binding partners, although Lys was the
most populated in terms of H-bonding (Fig. S11b and S12b†).
This trend was also maintained in the mixture of ATP and IL
(Fig. S11c and S12c, d†). We observed marked overlap in par-
ticular interaction hot spots for IL and ATP on the surface of
Cyt c (Fig. S11d and e†). ATP most often formed interactions
with K13, K25, K27, K72, K86, and K87 (Fig. 5a and S11d†).
Notably, K72 is involved in site A of Cyt c, which is crucial for
interacting with cardiolipin,37 and was reported to have a sig-
nificant role in the peroxidase activity of Cyt c.38 Also, IL
demonstrated general preference to Lys, with somewhat higher
affinity towards K7, K79, R38 (Fig. 5b and S11e†). Interestingly
we also found considerable affinity towards Y97, which has
been ascribed a significant role in keeping the terminal helix
intact and hence providing structural stability to the protein.39

Nano-structured hydrotrope-caged Cyt c with enhanced
thermal stability for high-temperature bio-catalysis

The activity of Cyt c increases with temperature up to 70 °C,
above which the protein starts to denature gradually (Fig. 6a).
Above 80 °C, the activity drops due to significant denaturation
of the protein.27 A similar trend is observed in the presence of
ATP, but the activity extends to approximately a 20-fold
increase than for native Cyt c at 70 °C. In the case of IL and
ATP + IL systems, the denaturation is prevented even up to
extremes of 110 °C. At 90 °C, both Cyt c + IL and Cyt c + IL +
ATP showed an accelerated activity value corresponding to

76–80-fold higher than native Cyt c. The stability aspects of Cyt
c, when coupled to hydrotropes at elevated temperatures, were
supported by UV-vis spectra (Fig. 6b). Enhancement in the
Soret band intensity was observed for both IL and IL + ATP at
90 °C compared to the results obtained at 26.85 °C, which
implies that the secondary conformation, formed due to weak
interactions between the hydrotrope systems and Cyt c, was
preserved. ATP + IL showed an intensified Soret peak com-
pared to the other conditions at 110 °C, suggesting the advan-
tage of engineering Cyt c with two different hydrotropes when
aiming for high-temperature bio-catalysis. Additionally, as

Fig. 6 (a) Peroxidase activity of Cyt c with and without nano-structured
hydrotropes at different temperatures. (b) UV-vis spectra of Cyt c at
higher temperatures (90 °C and 110 °C) with and without nano-struc-
tured hydrotropes. (c) SDS-PAGE image of native Cyt c (lane 1), Cyt c
incubated at 100 °C (lane 2), Cyt c + ATP incubated at 100 °C (lane 3),
Cyt c + [Cho][Sal] incubated at 100 °C (lane 4), and Cyt C + ATP +
[Cho][Sal] incubated at 100 °C (lane 5).

Fig. 5 Interaction of hydrotrope molecules in metastable states in the open (orange), closed (red), and transient (pink) Cyt c conformations from
10 µs of adaptive simulation data with (a) ATP, (b) [Cho][Sal] IL, and (c) ATP + IL. The top residues that have hydrogen bond interactions between
solvent molecules and Cyt c are shown in gray squares (dashed), and the protein regions are highlighted in cyan (solid). All simulations were per-
formed at 26.85 °C. In all cases, the concentration of ATP and IL was 5 mM and 300 mg mL−1, respectively.
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evident from non-reducing SDS-PAGE (Fig. 6c), improved
activity trends at high temperatures were achieved without
structural degradation of the protein.

A systematic computational study was undertaken at 90 °C
to gain structural insights into the higher stability of nano-
structured-caged Cyt c at elevated temperatures. As expected,
the Cyt c conformational ensemble was significantly altered at
the higher temperature, with backbone RMSD being approxi-
mately 3–4 times higher than that at 26.85 °C for all four sol-
vents (Fig. S13a†). No significant effects were observed
between the mobility of the Ω 40–54 residue region in the four
systems than that observed for 26.85 °C (Fig. 4e and S13b†).
However, the thermal stability of the Ω 70–85 residues region
was significantly enhanced with nano-structured hydrotropes
compared to water (Fig. S13b†).

From Bayesian Markov state models constructed based on
the high-temperature simulations (Fig. S13c–f†), we could
observe that Cyt c in water exhibited severe conformational
instability, underlined by a very high RMSD of the open state,
as well as the presence of multiple secondary open-like states
(Fig. S14†). In contrast, the presence of ATP or/and IL approxi-
mately halved the maximal range of displacements of the Cyt c
backbone, providing heightened Cyt c resistance. Hence, it is
evident that ATP and IL could thermally stabilize the func-
tional component of Cyt c via multiple polar interactions.26

Affinity of hydrotrope molecules towards specific amino acids

at the higher temperature (Fig. 7a–c and Fig. S15†) was found
to be similar to that observed at 26.85 °C (Fig. S11 & S12†).
Overall, Lys and Arg were found to have frequent H-bonding at
90 °C to ATP (Fig. 7a, c and d). Similarly to the lower tempera-
ture environment, the IL had a broader range of specificity,
and more affinity with Lys, Glu and Thr in terms of H-bonding
(Fig. 7b, c and e). The highest affinity was seen towards K7, K8,
K13, K22, R38, K72, K86, K87 and K100 with ATP (Fig. 7d), and
K13, K25, R38, T78, K79, and E104 with IL (Fig. 7e), all of
which are crucial in maintaining thermal stability.40 It is
important to highlight that the synergistic effects of ATP and
IL were observed for the peroxidase activity of Cyt C (Fig. 4a–d)
but not for stabilization, where IL and the mixture of IL with
ATP grant similar enhancements to the Cyt C resistance
towards higher temperature (Fig. 6a). Indeed, molecules of IL
form numerous H-bonds with the protein at 26.85 °C as well
as at 90 °C indicating their key role in the observed stabilis-
ation (Fig. 7f). Moreover, the overall number of formed
H-bonds is similar in IL and ATP + IL systems corresponding
well with the observed enhancements in the Cyt C stability in
the presence of IL as well as its mixture with ATP.

Improved stability of nano-structured hydrotrope-caged Cyt c
when exposed to chemical denaturants

Above a particular concentration and on more prolonged
exposure to some chaotropic chemicals like H2O2, guanidine

Fig. 7 (a–c) H-Bonding interaction counts of individual residue types obtained from adaptive simulation data of Cyt c in the presence of ATP (a), IL
(b), ATP and IL in the ATP + IL system (c) are depicted with ATP in red and IL in blue. All simulations were performed at 90 °C. (d and e) The position
of residues having a higher occurrence of H-bonding with ATP (d) and IL (e) also in their mixtures, respectively. The concentration of ATP and IL was
5 mM and 300 mg mL−1, respectively. (f ) Overall counts of H-bonding interaction between hydrotropes and Cyt c obtained from adaptive simu-
lations, showing average across 100 performed simulations and corresponding standard error of mean.
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hydrochloride (GuHCl), and urea cause amide bond disruption
or overexpose the metallic core of the enzyme, causing a loss
of structural integrity and function. To investigate the stability
of Cyt c against chemical denaturants, the protein was incu-
bated with the three nano-structured hydrotropic systems for
10 min, followed by the addition of a chemical denaturant.
After the interaction with 6 M GuHCl for 15 min, there was a
complete disruption in the heme pocket of native Cyt c and the
activity severely declined, with the remaining activity approxi-
mately ∼20%. Conversely, hydrotrope-caged Cyt c maintained
initial activity of 8.5-fold, 63-fold, and 66-fold in the presence of
ATP, IL, and ATP + IL, respectively (Fig. 8a). While urea is known
to be a hydrotrope, it is well recognized as a chemical denaturant
at concentrations above 6 M. In the pre-denaturation concen-
trations of urea (1–6 M), a ∼30 fold increase in peroxidase-like
activity was obtained for Cyt c.41 After 30 min incubation with 8
M urea, its activity was recorded at approximately 70% of the
initial activity, while IL and ATP + IL hydrotrope-stabilized Cyt c
showed similar activity (Fig. 8b).

Native Cyt c showed a denaturing pattern in the UV-vis
spectra with GuHCl (Fig. 8c), where the Q band structure was
entirely lost and the Soret band was severely blue-shifted. In
the case of ATP, changes in the 280 nm shoulder peak suggest
partial dissociation of aromatic residues like Tyr and Trp. In
contrast, the structures remained almost the same in the cases
of IL and ATP + IL, except that the absorbance of the IL-based
system trended lower. In the case of ATP, the activity of Cyt c
almost doubled (∼24-fold higher than native Cyt c) in the pres-
ence of urea compared to the Cyt c + ATP system (Fig. 7b). This
strange observation suggested that ATP cannot prevent further
unfolding of Cyt c in the presence of urea, a behavior con-
firmed by the UV-vis spectra (Fig. S16†). Furthermore,

SDS-PAGE analysis demonstrated that Cyt c did not degrade
upon treatment with denaturing agents in the presence or
absence of ATP and [Cho][Sal] (Fig. 8d), thus, confirming that
the variation in the activity was due to the changes in the
structural conformation of the protein.

Nano-structured hydrotrope-caged Cyt c is resistant to
protease digestion

Trypsin, being a proteolytic enzyme, hydrolyses the peptide
bond at basic amino acids such as Arg and Lys residues
(Fig. 9a), thereby denaturing the target protein.42 Native and
hydrotrope-stabilized Cyt c systems were incubated with 6 µM
trypsin at 37 °C for 24 h. After the interaction, only 25% of
activity was retained for native Cyt c, whereas the hydrotropic
systems showed excellent performance and maintained Cyt c
resistant to the action of trypsin (Fig. 9b). In the presence of
ATP, Cyt c lost only ∼2-fold activity compared to activity at the
0 hour (∼700% retained), whereas IL and ATP + IL systems
retained ∼61- and ∼67-fold relative activity, respectively. This
excellent performance against protease digestion can be
deduced by close examination of the interactions of ATP and
IL with Cyt c. H-bonding analysis revealed that ATP has a
higher tendency to interact with Lys, Thr, and Gln at both
26.85 °C and 90 °C temperatures, thus suggesting the efficacy
of ATP to impart stability to Cyt c (Fig. 7a–c and Fig. S13†).
Additionally, IL also greatly affected the dynamic nature by

Fig. 8 Effect of chemical denaturants, 6 M GuHCl (a) and 8 M urea (b)
on the peroxidase activity of Cyt c and nano-structured hydrotrope-
caged Cyt c. (c) UV-vis spectra of Cyt c after incubation with 6 M
GuHCl. (d) SDS-PAGE image of native Cyt c (lane 1), Cyt c incubated
with 8 M urea (lane 2), Cyt c + ATP incubated with 8 M urea (lane 3), Cyt
c + [Cho][Sal] incubated with 8 M urea (lane 4), and Cyt c + ATP +
[Cho][Sal] incubated with 8 M urea (lane 5). In all cases, the concen-
tration of ATP and IL was 5 mM and 300 mg mL−1, respectively.

Fig. 9 (a) Plausible mechanism of Cyt c digestion in the presence and
absence of nano-structured hydrotropes. (b) Effect of protease digestion
(6 µM trypsin) on peroxidase activity of Cyt c. (c) SDS-PAGE of native Cyt
c (lane 1), Cyt c incubated with trypsin (lane 2), Cyt c + ATP incubated
with trypsin (lane 3), Cyt c + [Cho][Sal] incubated with trypsin (lane 4),
Cyt c + ATP + [Cho][Sal] incubated with trypsin (lane 5), only trypsin
(lane 6). In all cases, the concentration of ATP and IL was 5 mM and
300 mg mL−1, respectively.

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2023 Green Chem., 2023, 25, 6666–6676 | 6673

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 9
/2

1/
20

23
 1

0:
14

:4
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3gc01704d


interacting with a wide range of residues. The affinity of ATP
and IL towards Lys may be helpful to protect Cyt c by hinder-
ing the degradation mechanism of trypsin. The electrostatic
and H-bond interactions that occur when Cyt c is nano-struc-
tured with ATP completely safeguard the protein from trypsin
degradation (Fig. 9a). This was further shown by non-reducing
SDS-PAGE analysis of the Cyt c before and after digestion with
trypsin (Fig. 9c). Most of the native Cyt c in the presence of
trypsin was found degraded (lane 2, Fig. 9c). However, the
protein was intact when it was digested in the presence of ATP,
IL and a combination of both. From UV-vis spectra (Fig. S17†),
the Q band is lost in almost all the cases (except with ATP)
after incubation with trypsin. However, only marginal changes
were observed in the Soret band of Cyt c + ATP, and Cyt c +
ATP + IL systems, indicating the stability induced by the nano-
structured hydrotropes. In addition, the hydrotropic systems
enhance the activity of trypsin (Fig. S18†) with 1.4 to 2 folds
higher activity than control. These results give strong evidence
that the higher activity of Cyt c in the presence of trypsin is
due to the stabilisation provided by nanostructured hydrotro-
pic systems and not by the inactivation of trypsin.

Nano-structured hydrotrope-caged Cyt c reaction to oxidative
stress

Unlike other stress conditions where the peptide back-bone is
attacked, H2O2 initially targets the catalytic site, followed by a
breakdown of peptide bonds. Thus, even though H2O2 is
essential for the peroxidase activity of Cyt c, upon prolonged
exposure it causes severe impairment to the protein structure
(Fig. 10a). In the peroxidase activity studies mentioned above,
1 mM of H2O2 was added at the end, whereas for this study,
Cyt c was incubated with H2O2 for 30 min, and the substrate
was added afterwards. The activity of bare Cyt c following the
induction of oxidative stress was found to be reduced to
approximately 60% of its original activity (Fig. 10b).

Conversely, in the presence of ATP, ∼219% of activity was
retained. This observation can be correlated with the earlier
findings in which ATP was found to prevent the oxidation of
Cyt c from the Cyt c oxidase enzyme in the mitochondria by
hampering the electron flow rate.43,44 Alternatively, there was a
severe drop in the activity of Cyt c from 6700% to just 80% in
the presence of IL. These results are not astonishing since the
salicylate counterpart is known to enhance the formation of
ROS.24 However, the presence of ATP was found to prevent the
oxidation and Cyt c from IL-induced oxidative stress and
demonstrated 192% activity. These findings demonstrate the
stabilizing effect of nano-structured ATP surrounding Cyt c.

Conclusions

In summary, this study systematically demonstrated the robust-
ness of ATP and IL-based mixed nano-structured hydrotropes
and their utility in the improvement of protein packaging in
extreme conditions. From the Mb solubility data, it was shown
that the hydrotropic nature of ATP accelerated with the addition
of a co-hydrotrope like [Cho][Sal] and vice versa. Through RDF,
DLS, ζ-potential, and UV-vis data, we provided convincing data
that ATP forms oligomeric nano-structures at concentrations
above 2.5 mM around Cyt c, which can be augmented further
with the addition of [Cho][Sal]. A 9-fold increase in peroxidase
activity with ATP, 67-fold with IL, and 72-fold with IL + ATP
suggested a ‘partial reversible unfolding-electrostatic stabiliz-
ation’ mechanism. Reversible binding of ATP and IL with the Ω
40–54 residue loop region of Cyt c showed higher stability at
26.85 °C. Moreover, specific binding of nano-structured hydro-
tropes with Cyt c to Lys and Arg residues through H-bonding
and polar interactions with Ω 70–85 region, presented an excep-
tionally high thermal tolerance with 80-fold activity even at
90 °C. Because of such binding specificity, the structure and
activity of nano-confined Cyt c were found to be retained against
protease digestion, which explicitly cleaves at Lys and Arg resi-
dues. Furthermore, ATP and IL-based nano-structured hydro-
tropes showed efficacy in retaining the functional integrity of
Cyt c even in the presence of chemical denaturants like urea
and GuHCl, which suggested the suitability of these solvent
manipulation strategies for industrial bio-catalysis. Through oxi-
dative stress studies, a stark observation was made where
[Cho][Sal] was found to enhance ROS formation, which could be
efficiently subdued by adding ATP. These results have the poten-
tial for counteracting oxidative stress inside the living cells.
Thus, the novel strategy of protein confinement in nano-struc-
tured hydrotropes can find significant usage in protein packa-
ging under biotic and abiotic stresses, high-temperature bio-cat-
alysis, and cell protection against ROS.

Experimental

Materials and characterization techniques, IL synthesis, Mb
solubility study, SDS-PAGE analysis, peroxidase activity of Cyt c

Fig. 10 (a) Schematic mechanism showing H2O2 induced structural
degradation of Cyt c. (b) Effect of H2O2 on the peroxidase activity of Cyt
c in the presence of different hydrotropes.
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at room temperature and under harsh conditions, system
setup and Molecular Dynamics simulation details, and Markov
state models are provided in ESI.†
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