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Abstract
Modeling realistic ecosystems of vegetation under variable climatic conditions is an open and a
very complex problem, demanding an approach able to capture the enormous amount of detail and
various interactions between the vegetation, soil and weather. Previous methods process trees and
other plants by coarse geometrical approximations to reduce the computational complexity at the
cost of decreased accuracy. On the other hand, there exist methods which are able to model the
vegetation at a very detailed level. These, however, are unsuitable for large ecosystem simulations
without an enormous computational power. Furthermore, the interplay between plants and weather
has received increased attention recently, because of the observation that vegetation contributes
substantially to local climatic variations.

In this dissertation, we introduce a multi-scale representation of plant ecosystems, which allows
for realistic modeling of individual plants, capturing biological features such as growth, seeding,
tropism and competition for resources. Our method leverages self-similarities of branching structures
to efficiently handle the complexity of modeling and rendering. We also model the feedback between
vegetation, soil and weather, including local variations of climate. In particular, we aim at simulating
hydrological cycle. For this purpose, we develop a cloud dynamics model, which handles evaporation
of plants and soil, cloud formation and precipitation. We also model water propagation in the soil
based on soil properties and gravity.

Our approach provides the means to run interactive simulations of hundreds of thousands of
plants, with a great amount of detail, and capture interactions with local variations of climate at the
same time. Our results adhere to biological priors known in forestry, botany and ecology research.

Consequently, our method advances the state-of-the-art of generating highly realistic outdoor
landscapes of vegetation and weather. Furthermore, it may potentially serve as the means for
validation of biological hypotheses.

1



Abstrakt
Modelowanie realistycznych ekosystemów roślin w zmiennych warunkach klimatycznych jest ot-
wartym i bardzo złożonym zagadnieniem. Wymaga ono podejścia, które jest w stanie uchwycić
ogromną ilość szczegółów i różnorodnych zależności pomiędzy roślinnością, glebą i pogodą. Poprzed-
nie metody przetwarzają drzewa i inne rośliny za pomocą zgrubnych geometrycznych przybliżeń,
aby zredukować złożoność obliczeniową kosztem zmniejszonej dokładności. Z drugiej strony istnieją
metody, które są w stanie modelować roślinność na bardzo dokładnym poziomie - te jednakże nie
są odpowiednie do symulacji dużych ekosystemów bez dysponowania ogromną mocą obliczeniową.
Ponadto badanie zależności pomiędzy roślinami i pogodą zyskuje w ostatnim czasie rosnące zain-
teresowanie, ze względu na obserwację, że roślinność wpływa znacząco na lokalne zróżnicowanie
klimatu.

W niniejszej rozprawie wprowadzamy wielopoziomową reprezentację ekosystemów roślin, która
pozwala na realistyczne modelowanie poszczególnych roślin, a także biologicznych zjawisk takich
jak wzrost, rozsiewanie, tropizm oraz współzawodnictwo o zasoby. Nasza metoda wykorzystuje
samopodobieństwo struktur drzewiastych, aby wydajnie radzić sobie ze złożonością modelowania
i renderowania. Modelujemy również sprzężenie zwrotne pomiędzy roślinnością, glebą i pogodą,
wraz z lokalnym zróżnicowaniem klimatu. W szczególności naszą motywacją jest symulacja cyklu
hydrologicznego. W tym celu rozwijamy model dynamiki chmur, który obsługuje parowanie roślin
i gleby, formację chmur i opady atmosferyczne. Modelujemy również transport wody w glebie na
podstawie właściwości gleby oraz grawitacji.

Nasze podejście dostarcza środków do przeprowadzania interaktywnych symulacji setek tysięcy
roślin, z dużą szczegółowością, z jednoczesnym uwzględnieniem interakcji na poziomie lokalnego
zróżnicowania klimatu. Nasze wyniki są zgodne z biologicznymi modelami znanymi w leśnictwie,
botanice i ekologii.

W rezultacie nasza metoda udoskonala najnowocześniejsze sposoby generowania wysoce realisty-
cznych terenów z roślinnością i pogodą. Ponadto służyć może ona potencjalnie jako narzędzie do
weryfikacji hipotez biologicznych.
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1 Introduction
Multifariousness of natural phenomena has been fascinating researches since ever. One the one hand,
biologists try to describe the laws of fauna and flora, exploring the various processes down to a great
detail. Recently, astounding computational resources opened great possibilities for validation of bio-
logical hypotheses through computer simulation. On the other hand, computer graphics community
makes a great progress towards a photo-realistic real-time rendering of synthetic scenes. This enables
the results of sophisticated mathematical experiments to be presented in almost self-explanatory way.
By combining the best of both scientific worlds, we hold the tools to better understand our natural
world, how to interact with it and eventually how to subdue it.

The focus of this dissertation is on the joint simulation of vegetation, soil, and weather. A novel
multi-scale approach to modeling plants and their interactions with the environment is introduced,
allowing for efficient simulations of large ecosystems controlled by temperature and precipitation.
Additionally, a state-of-the-art cloud simulation is adopted and extended to capture bidirectional
feedback through precipitation and evapotranspiration, modeling the water cycle between vegetation
and the atmosphere. A novel soil model is proposed to describe water infiltration and uptake by
individual plants. The results demonstrate a range of ecoclimate phenomena, including geomorphic
controls, forest edge effects, the Foehn effect, and variations resulting from deforestation and drought.
The method’s plausibility is validated through numerous experiments and by comparing results to
studies in ecology and climatology.

The following three chapters present the results of collaborative research in which I actively
participated. For each chapter, I will highlight my primary contributions to the publications. All of
these publications were composed and issued during the course of preparing this dissertation.

In particular, chapter 2 is based on the publication “Synthetic silviculture: Multi-scale modeling
of plant ecosystems” of which I am the main author. My contributions to this publication include de-
signing a modular plant representation that utilizes self-similarities of branching structures, making
it efficient and versatile for large ecosystem simulations. I introduced a novel multi-scale approach
to modeling plants and their interactions with the environment, which is controlled by average an-
nual temperature and annual precipitation. I developed a tree growth model, and implemented a
gradient-based optimization for ecosystem growth simulation. Additionally, I created an interactive
simulation tool with real-time visualization, using modern GPU features such as Geometry Shaders
and geometry instancing. I developed a parametrical tree model and designed a variety of plant
species using it. I generated some of the results, including diagrams, tree growth visualization, and
various forest simulations. I also performed validation of the results according to biological laws.

Chapter 3 is based on the publication “Stormscapes: Simulating Cloud Dynamics in the Now”
of which I am a co-author. My contributions to this publication include conducting research on
cloud models and tools for simulation of computational fluid dynamics. I also implemented realistic
real-time cloud rendering which models light scattering, and generated results of cloud formation
using real-time wind data.

Chapter 4 is based on the publication “Ecoclimates: Climate-response modeling of vegetation”
of which I am a co-author. My contributions to this publication include designing an extension of
the soil model that allows for the modeling of diffusion and advection of water in the soil and on
its surface. I also implemented the combination of ecosystem, cloud, and soil models. I proposed
a solution that simulates plant growth and cloud dynamics on different time scales, which captures
substantial characteristics of both phenomena, while still preserving their interactions. I developed
the interactive simulation tool, utilizing the possibilities of GPU computing. Additionally, I gener-
ated some of the results including the preparation of scenes and simulation of vegetation response
to climatic changes, and assisted in validating the results according to existing research.
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2 Synthetic Silviculture: Multi-scale Modeling of Plant Ecosys-
tems

Figure 1: Ecosystems of different biome types generated with our framework: a savanna with grass
and smaller trees (a), a deciduous forest composed of maple trees (b), a boreal forest with tall pine
trees (c), and a rain forest scene with a large variety of species and high density of biomass (d).
Our framework exploits inter- and intra-plant self-similarities to model plants and thereby allows
us to interactively generate complex ecosystems while maintaining biologically plausible branching
structures.

Due to the enormous amount of detail and the interplay of various biological phenomena, mod-
eling realistic ecosystems of trees and other plants is a challenging and open problem. Previous
research on modeling plant ecologies has focused on representations to handle this complexity,
mostly through geometric simplifications, such as points or billboards. In this chapter we describe
a multi-scale method to design large-scale ecosystems with individual plants that are realistically
modeled and faithfully capture biological features, such as growth, plant interactions, different types
of tropism, and the competition for resources. Our approach is based on leveraging inter- and intra-
plant self-similarities for efficiently modeling plant geometry. We focus on the interactive design of
plant ecosystems of up to 500K plants, while adhering to biological priors known in forestry and
botany research. The introduced parameter space supports modeling properties of nine distinct
plant ecologies (e.g. deciduous forest, boreal forest, tundra, etc.) while each plant is represented as a
3D surface mesh as required by commodity rendering systems. The capabilities and usefulness of our
framework are illustrated through numerous models of forests, individual plants, and validations.

2.1 Introduction
Modeling trees and plants with all their nuances in structure and appearance is a thoroughly studied,
and yet ongoing topic in visual computing. At the scale of plant ecosystems, this task is made even
more challenging not only due to the enormous complexity of geometric detail, but also because
of the intricacies of biological phenomena that affect how plants grow and interact. While existing
approaches often model plant ecosystems by simplifying the involved geometry into more organized
and hierarchical representations, such as voxels or layers, many applications benefit from detailed
models that retain a plants’ structure, faithful to all its defining features. This ranges from forests
as content in 3D simulators and games, over urban and environmental planning applications, to
research on ecosystems in forestry, and more recently the training of autonomous agents in virtual
environments [1]. Detailed models of plant ecosystems, that even enable interactions with individual
plants and their branches and leaves, play a key role in many situations. However, the computational
costs for modeling these ecosystems is often beyond the capabilities of commodity rendering hard-
ware. Furthermore, modeling the branching structures resulting from complex plant interactions as

9



part of the growth process – inevitable for realistic ecosystems – requires in-depth knowledge of the
biological processes, which is an intractable requirement for most content creators.

Traditionally, plant ecosystems are simulated by jointly generating plausible distributions of plant
species and modeling their geometry [2]–[4]. Several approaches exists to capture the various levels
of abstraction, such as volumetric textures [5], voxels [6], or branch templates [7]. Choosing the
appropriate level of detail scheme is critical for modeling plant ecosystems and a few approaches
have been proposed to enable simplifications, while also adhering to plant structure [8], [9]. Only
more recently methods focus on realistic geometric representations for trees with an emphasize
on individual parts [10], [11], and interactive authoring [12], [13] to enable large-scale ecosystem
modeling.

Methods for ecosystem modeling mostly describe trees in more abstract terms, e.g. as single
value functions to model biological processes. More detailed representations model trees with a set
of discrete elements that can express more complex phenomena, such as self-shadowing or apical
control [14]. Existing multi-scale representations allow to model tree processes at various levels of
detail [15]. However, these methods have not been shown the ability to jointly capture realistic plant
ecosystems composed of detailed representations for individual plants.

In this chapter, we present a novel multi-scale approach for the large-scale modeling of plant
ecosystems. Our method is based on leveraging self-similarities of branching structures for both,
single plants and entire forests. We define branch modules to capture characteristic branching
patterns of various species and combine multiple modules to model the whole branching structure of
individual plants. Unlike previous approaches, where branch patches are used to represent the full
surface geometry of branch parts, our modules only represent the topology of branching structures.
This allows us to adapt the modules faithfully to the conditions of each individual plant and as
required to simulate phenomena such as forest patterns, plant interactions, growth, and tropisms.
To efficiently model large-scale ecosystems we then reuse the modules across the same plant and for
the entire ecosystem by combining them through a non-convex optimization scheme, conditioned on
biological priors, such as the availability of resources and collisions of branches.

The branch modules allow us to model complex and diverse plant biomes, ranging from tundras
and deserts to boreal and deciduous forests. We introduce temperature and precipitation as a
two-dimensional effortless means of control for modeling the diversity of different ecosystems. In
forestry research, temperature and precipitation are considered as primary factors for plant growth
and development. While temperature defines the overall fertility and diversity of species, variations
in precipitation are responsible for the density of biomass [16]. We use these parameters to adapt
the branch modules during the growth process for each plant and to select trees species common for
each type of biome. Our modeling framework allows us to interactively design large-scale ecosystems.
This is meant to provide an efficient feedback-loop for content creators to design the ecosystem.

Figure 1 shows examples of plant ecosystems simulated with our pipeline. In summary our con-
tributions are (1) we advance the state-of-the-art in ecosystem modeling by introducing a modeling
and editing framework that enables generating the diversity of nine biomes ranging from tundra to
tropical rainforest, (2) a novel approach for modeling the geometry of plant ecosystems with unpar-
alleled fidelity, (3) a representation for trees and plants based on self-similar branch modules that
lends itself well to effcient rendering, (4) we evaluate our growth model by comparing simulation
results to real and simulated data.

2.2 Related Work
Faithfully modeling plant ecosystems has been a motivation of computer graphics research for
decades. While early approaches predominantly focus on modeling the branching structure of sin-
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gle plants – fractals [17], repetitive patterns [18], and L-systems [19], [20], are prominent examples
– recent methods provide more principled ways to model trees and plants. While sketch-based
techniques provide content creators with the artistic freedom to model plants according to their
requirements [21]–[23], data-driven methods have proven to be an efficient way to capture plants at
convincing and plausible levels of detail. Today, advanced methods exist to reconstruct plants from
images [24]–[27], videos [28], and laser-scanned point sets [7], [10].

It has been recognized that the underlying biological processes play an important role for pro-
ducing realistic models of vegetation. This ranges from biological priors in procedural models [29]
and growth simulations [30], to modeling the environmental response [31], [32] and motion of plant
models [33]–[35]. Pirk et al. [36], [37] show the interaction of plant models with fluid dynamics to
simulate realistic sway-motions and the combustion of tree models. Hädrich et al. [38] model the
behavior of climbing plants and their adaptation to support structures and surfaces. Wang et al. [39]
go even further and propose a realistic solver for the biomechanical properties of plant materials.

Due to the enormous complexity of plants, not only in their geometric detail, but also in their
materials, and the involved biological phenomena, modeling large ecosystems is challenging. Many of
the existing methods for modeling plant populations focus on jointly computing plant distributions
and the geometry for each plant [3]. Modeling concepts like L-systems [40], Xfrog [41], or AMAP
[42] readily model plant structures, while also adhering to biological attributes of plant species.
Furthermore, several approaches address the rendering of ecosystems at different scales [43], [44].
But only more recent approaches also consider plant-plant interactions in the growth process of
ecosystems and environmental factors [45]. Unlike the existing approaches, our method is a more
holistic approach to ecosystem design, including realistic distributions, detailed plant geometry, and
an intuitive parameter space to model different biomes.

To efficiently render ecosystems, specifically at a larger scale, selecting the appropriate level
of detail is of utmost importance. Several approaches exist to represent ecosystems at different
levels of abstraction, such as points and lines [46], images [47], [48], or voxels [49], to reduce the
geometry necessary to render single plants and to even support processing large amounts vegetation
at interactive rates. Leveraging the repetitive and self-similar nature of plants, has also been a
focus of plant modeling research [42]. Other methods simplify the foliage of plants while considering
species relevant properties [8] and camera setups [9]. Similar to these approaches, our framework
allows us to efficiently process large amounts of vegetation, but it is complementary in that we focus
on the interaction of plants in their growth process to generate more realistic branching structures.

Finally, research in botany and forestry studies models of ecosystems with an emphasis on the
biological processes of plants and biomes ranging from developmental attributes [50], availability of
resources [51], diversity and influence of plant species [52], plant productivity [53], to the impact of
climatic changes [54]. Only a few methods are based on detailed models of trees and plants. As a
recent example, Eloy et al. [55] use articulated plant models to study the effect of environmental
factors, such as wind and light. Similar to our approach they explore the relationship of allometries
and self-similarities; however, unlike them, our method also supports modeling ecosystem types at
interactive rates, which is more suited for applications in computer graphics.

2.3 Overview
The core idea behind our approach is to employ a multi-scale representation for plant ecosystems
based on branch modules defining the skeletal graphs of branching structures. Each module can be
combined with other modules in order to form the graph of a plant. To find plausible combinations
of modules, we attach them through a non-convex optimization scheme during the growth process,
that considers a number of biological factors. The combined modules are then adapted and pruned
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according to tropisms, developmental changes, and collisions with other modules of neighboring
plants.

-10 0 10 20 30

100

200

300

400

A
nn

ua
l P

re
ci

pi
ta

tio
n 

(c
m

)

Average Annual Temperature (°C)

Boreal 
Forest

Temperate 
Seasonal  

Forest

Temperate Rainforest

Tundra

Tropical 
Seasonal 
Forest / 

Savanna

Subtropical 
DesertTemperate Grassland 

/ Cold Desert

Woodland/ 

Shrubland

Tropical 
Rainforest

Tr
op

ic
al

 R
ai

nf
or

es
t

B
or

ea
l F

or
es

t
S

ub
tro

pi
ca

l D
es

er
t

Biome Photographs

Figure 2: Temperature-precipitation diagram: we introduce temperature and precipitation, as a
lightweight means of control for modeling the diversity of ecosystems. While temperature defines
the overall fertility and diversity of species, variations in precipitation are responsible for the density
of biomass. The photographs show characteristic biomes located in the diagram.

To create different types of plant biomes we introduce temperature and precipitation as parame-
ters for ecosystem design. As shown in Fig. 2, temperature and precipitation span a two-dimensional
parameter space that can be used to characterize plant ecosystems. Based on both parameters, we
select branch modules along with their allometric properties and model the availability of plant
species. Furthermore, we simulate the growth process of the entire ecosystem to model branching
structures resulting from complex plant-plant interactions.

While being constrained and adapted by individual requirements of each plant, a module can
occur multiple times across the same plant as well as across the entire ecosystem. The use of branch
modules allows for GPU instancing which still retains enough flexibility to dynamically adapt each
module to its specific environment while keeping a very light memory and performance footprint.
Altogether, this results in realistic models of large-scale ecosystems with plausible branching struc-
tures.

2.4 Multiscale Modeling of Growth
We present a method to efficiently simulate the growth of plant ecosystems that captures essential
biological properties of plant growth for both, individual plants and plant populations. In this
section we discuss biological concepts related to plant growth.
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2.4.1 Single Plant Growth

Our formal description of plant growth is based on two biological hypotheses. Sachs [56] proposes
that plant form is the result of self-organization of branches. On the other hand, Barthélémy [57]
postulates that tree architecture can be described as hierarchies of self-similar elements. Barthélémy
calls these elements architectural units and defines them as a set of morphological and physiological
features. Hence, plant form is the result of a specific configuration of architectural units. We combine
the concepts of self-organization and self-similarity of branches in the following way.

We assume that the deterministic development of architectural units repetitively produces branch-
ing structures leading to self-similarity. This process is analogous to the development of mammals
where the morphology of the same species is similar, i.e., development of one head, two arms and
two legs. In contrast to the development of architectural units, the development of the whole plant
is unpredictable and plastic, i.e., responsive to environmental cues (e.g., light). Specifically, we
describe plant form as the result of a multi-scale development which is deterministic at the scale of
architectural units and self-organizing at the scale of the whole plant.

Single plant growth is commonly separated into primary growth, which refers to the lengthwise
extension of shoots, and secondary growth, which describes the radial growth of branches. Most
plant shoots produce branches, which emerge from lateral buds attached to the shoot axis. Diverse
plant forms can be explained by apical buds inhibiting lateral buds and is referred to as apical
control. Moreover, the overall growth potential of buds and shoots is called vigor, which may change
over time; a phenomenon which can be assessed as the branch’s physiological age. The adaptation of
growth direction of branches to environmental stimuli is called tropism, most prominent categories
of tropism are photo- and gravitropism (response to light and gravity). The growth of branches
can further be classified as determinate, where buds become flowers thereby terminating further
growth (determinacy), and indeterminate, where branches may grow indefinitely. Caraglio and
Barthélémy [58] provide an overview of these concepts.

In summary, we describe single plant growth based on the following biological concepts: (1)
competition of architectural units for light; (2) apical control; (3) gravitropism and phototropism;
(4) determinacy (effects of flowering on tree architecture).

2.4.2 Plant Population Growth

Ecosystems are commonly characterized by the average annual temperature and annual precipitation
(Fig. 2). Nine forest biomes composed of different plant species are defined as: desert, tundra,
savanna, grassland, shrubland, boreal forest, temperate seasonal and rainforest, as well as tropical
seasonal and rainforest. The variation of plant species is due to different climatic adaptation traits
exhibited by the plants [59].

Growth of plant populations in an ecosystem is often described in terms of ecological successions,
that describe the change in plant species compositions at a given location in the ecosystem [60]. A
succession is defined by developing populations of grasses, forbs, and shrubs. These plants are
gradually replaced by pioneering tree species, which grow slower but are more shade tolerant. This
replacement of species continues until a set of environmentally well-adapted climax species establishes
themselves as the dominant plant species. The climax species usually forms the canopy of the forest.
Subsequent disturbances of the forest canopy, e.g., as a result of fire or wind damage, lead to diverse
microclimates as various plants try to exploit the newly available space for growth. This pattern of
plant growth is called gap dynamics [61]. Fig. 3 and 12 show an example of this phenomenon.

Apart from temporal forest patterns, such as successions, ecologists also study spatial patterns.
Plants employ a number of seed dispersal strategies, such as via wind, water, and animals, which
naturally results in different spatial seeding patterns. However, plants are rarely distributed at
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Figure 3: Successional stages of an evolving plant ecosystem: after the ecosystem is disturbed, e.g.
through fire, populations of grasses, forbs, and shrubs develop. These plants are gradually replaced
by pioneering tree species, which grow slower but are more shade tolerant. This replacement of
species continues until a set of environmentally well-adapted climax species establishes themselves
as the dominant plant species in the ecosystem.

random in a forest but are classified as either over-dispersed or clustered. Over-dispersed patterns
emerge due to the competition of plants for the same resources, such as light. Interestingly, the
strength of inter- and intra-species competition may not only depend on the distance (isotropy) but
also on the direction between plants (anisotropy). An example is a treeline, where with increasing
elevation a transition from trees to shrubs can be observed. Below the treeline trees are over-
dispersed due to the competition for resources, while above the treeline the environment becomes
so inhospitable that plants tend to aggregate in clusters around favorable growth conditions [62]. In
summary, we assume that forest growth patterns emerge as a result of a number of variable plant
species traits: (5) climatic adaptation, (6) shade tolerance and (7) seeding strategy.

2.5 Self-Similar Plant Models
We use the concept of architectural units as a data structure referred to as branch modules to describe
plant growth as a multi-scale process. A plant is represented as a graph of branch modules (plant
scale), where each module formally expresses the morphology and physiology of branching patterns
(module scale). Branch morphology is represented by generalized cylinders that are generated using a
parametric definition, whereas, branch physiology is defined by variable parameters for each module.

Modules can be used multiple times across the same plant and the entire ecosystem. Repeatedly
using the same modules to define plants is based on the assumption that branching structures
are self-similar and hierarchical. Plant growth is described at both plant and module scale. At
plant scale, we add and remove branch modules to express development according to the biological
concepts of competition for light (1) and apical control (2). We define a single scalar variable vigor v̄
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Figure 4: Self-similar plant models: we define plant architectures as collections of branch modules
exploiting the self-similarity of plant structure (a). Branch modules are represented as graphs of
nodes and edges (b) and structural parameters (thickness, length). We construct the geometry
and develop them in time by interpolating structural parameters (c). The geometry of individual
modules is adapted to model environmental effects, such as gravi- and phototropism (d).

for branch modules and calculate it based on the extended Borchert and Honda model (Sec. 2.5.1).
At plant scale, growth is thus defined as a process of self-organization.

In contrast, at module scale growth is expressed deterministically by interpolating morphological
parameters from axiomatic to their final values (Sec. 2.5.3, Fig. 4 b). Specifically, we interpolate
positions, diameters and lengths of branches to represent changes of morphology based on the con-
cepts of tropisms (3). Moreover, we express the effects of flowering on the branching structure (4)
by choosing an appropriate branch module based on the parameter determinacy D. While high
values of D result in monopodial (single trunk) forms, low values produce sympodial (multi trunk)
branching patterns. As is the case at plant scale, physiology of branches is defined with vigor v.

2.5.1 Plant Architecture

A plant model in our method is represented as an ordered tree graph of connected modules U referred
to as the module architecture (Fig. 4, a) with root module uroot. This architecture is developed during
the simulation (Fig. 5, c). At each simulation step we first estimate the light exposure Q for each
module and calculate its growth potential vigor v̄. Then, we determine how quickly each module
develops (i.e. the physiological age) and whether, where, and how to attach or detach modules.

2.5.1.1 Light and Vigor Distribution We assume that plant growth is constrained by light
availability (space). To estimate the available space for module growth, we define spherical bounding
volumes Bu for each module (positions are computed using center points of their geometries). Then,
we calculate the intersection volume Vintersect between Bu and all intersecting neighboring bounding
volumes Bw. Finally, we sum up the intersection volumes for each module, as

fcollisions(u) =
∑

u 6=w∈U
Vintersect(Bu, Bw) , (1)

in order to obtain a measure of the light exposure Q(u) which is described by an exponential decay
Q(u) = exp(−fcollisions(u)).

For the simulation of plant growth we describe the amount of vigor for each branch module as a
scalar vigor quantity v̄ at plant scale. Specifically, we adapt the extended Borchert-Honda method
to the scale of branch modules instead of branch segments. In this method, a basipetal (tip-to-base)
pass from tips to root accumulates a value of total light exposure Qtotal in uroot, summing up light
fluxes at each branching point Q(u) = Q(um) + Q(ul). This value is then redistributed as the
vigor v̄ in an acropetal (base-to-tip) pass calculating vigor fluxes v̄(um) and v̄(ul) at each module
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intersection (v̄(ul) = v̄(u) − v̄(um)). The vigor v̄(um) is calculated as a weighted function, where
the weight λ represents apical control:

v̄(um) = v̄(u) · λQ(um)
λQ(um) + (1− λ)Q(ul)

. (2)

Values of λ > 0.5 result in excurrent architectures, whereas λ ≤ 0.5 in decurrent architectures [14].
We assume that each plant is limited in growth potential by a maximum value of vigor v̄rootmax,
i.e., we never allocate more than this amount of vigor to the root module uroot.

Branch modules can also be removed from the plant architecture. We define a shedding threshold
(v̄min) that defines when a module is shed (v̄ < v̄min). Additionally, we define the age of a plant for
each plant model as pt (initially pt = 0). When pt ≥ pmax we linearly interpolate v̄rootmax to zero
using a constant step size. Hence, the vigor allocated in each simulation step to the plant model is
decreased until all modules are shed from the architecture, representing gradual plant senescence.

2.5.1.2 Orienting Modules Due to the exponential growth of the module architecture, modules
and their associated branching segments could eventually collide. However, natural branches tend
to avoid collisions while also exhibiting tendencies of growing in certain directions [63]. Hence, there
seems to be a balancing mechanism between different branch orientation strategies. To capture this
important phenomenon we propose an optimization process for determining module orientations
that takes into account both, the constraints of space and the effects of tropisms.

We apply several optimization steps of the iterative gradient descent method to find an optimal
orientation for a new module. A module’s orientation is represented using three Euler angles. A
default starting orientation (i.e., orientation of the parent module) is chosen as the first step of the
optimization process. We define fdistribution as a weighted sum

fdistribution(u) := ω1 · fcollisions(u) + ω2 · ftropism(u) , (3)

in which ω1,2 ∈ R+ are weights controlling the impact of the optimization criteria. We optimize for
spatial constraints using fcollisions according to Eq. 1 and constraints emerging from tropisms using

ftropism(uα) = ‖cos(αtropism)− cos(uα)‖ (4)

with tropism angle α.
We choose a default starting orientation (i.e. orientation of the parent module) for the first step

of the optimization process. Let the Euler angles of module u be denoted with ρu = [ϕu, θu, ψu].
The module u is rotated by ρ = [ϕ, θ, ψ] such that one obtains u′: ρu′ = ρu + ρ, i.e. [ϕu′ , θu′ , ψu′ ] =
[ϕu + ϕ, θu + θ, ψu + ψ].

We write u′ = rot(u, ρ) and optimize the distribution by finding a local minimum of a distribution
quality function (fdistribution). In a single step, we iterate through all the modules separately. Let u(i)

be the module u in the i-th step:

ρ∗ ∈
{
ρ ∈ P

∣∣∣ fdistribution(rot(u(i), ρ)) = fmin

}
, (5)

fmin = minρ∈P

{
fdistribution(rot(u(i), ρ))

}
. (6)

We make use of P = {[α, 0, 0], [−α, 0, 0], [0, 0, α], [0, 0,−α]} with a small angle α. Finally, we apply a
rotation of the module: u(i+1) = rot

(
u(i), ρ∗

)
. After a few steps or fdistribution < error, we apply the

most recently obtained orientation to the module. The function fdistribution is defined as a weighted
sum given by Eq. 3.
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Figure 5: Multi-scale representation: we define module prototypes to represent common branching
patterns agnostic to species (plant types) and developmental stages (a). We generate branch modules
from prototypes and adapt them (b). To model a plant we combine modules to an architecture (c);
prototypes and modules are used several times for the same plant and across a plant ecosystem (d).
We simulate the growth of each module and plant as connected sets of modules with morphological
and physiological parameters. Plant architecture development in the ecosystem is defined via plas-
ticity parameters. In this example the prototypes and modules are color-coded to indicate module
instances of the same prototype.

2.5.2 Branch Module Prototypes

We define the topology of a branching structure as a module prototype. The prototypes are used
as templates to instantiate branch modules that define the geometry (Fig. 5, a, b). This allows us
to represent trees with just a small number (we used 9) of prototypes instead of modeling all their
individual branching structures.

A branch module is defined as a tree in the sense of a connected acyclic graph G = (N,E), where
N and E are sets of nodes and edges (referred to as branch segments). Each edge e ∈ E connects
two nodes n1, n2 ∈ N and represents an individual branch segment e = (n1, n2). The module has
a single root node nroot ∈ N and terminal nodes nti ∈ N serving as connectors for other modules
during the growth process.

We provide a set of module prototypes S = {G1, G2, . . . , G|S|}. A module prototype can either
be generated procedurally or manually designed by an artist (examples are shown in Fig. 5, a). A
branch module is an instance of a specific module prototype Gi ∈ S and describes the branching
structure along with parameters associated with each node n; including position, physiological age,
and a thickening factor (φ). The parameters associated with each node n describe how to generate
the surface mesh for each branch segment e.

2.5.2.1 Selecting Modules To attach a new module to a terminal node of an existing fully
developed module, we create a new module instance unew selected from the set of module prototypes S

λ D

(Sec. 2.5.2). The module prototypes contained
in S are positioned in a special parameter
space referred here as the morphospace that is
spanned by plant type parameters apical control
λ and determinacy D. The concept of a theoret-
ical morphospace was discussed by McGhee [64]
and in our case describes the variations of self-
similar branching structures due to flowering
and apical control. We define nine regions of
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prototype modules in the morphospace. Regions are calculated using Voronoi partitioning where
points of cells are given by prototype positions (chosen arbitrarily; see inset figure for a geometric il-
lustration). In order to generate a new branch module, we determine its position in the morphospace
as λ and D′ = v̄(uparent) ·D/v̄max. This means, that new modules attached to vigorous parent mod-
ules tend to express more deterministic module prototypes providing a means for intra-architectural
variation.

2.5.3 Module Development

Once we have calculated a vigor value for each branch module, we determine structural changes to
the module architecture. Each module u is assigned a growth rate Υ(u) specifying how quickly a
module is developed:

Υ(u) = S((v̄(u)− v̄min)/(v̄max − v̄min)) · gp , (7)
in which the vigor v̄(u), clamped to v̄max, is smoothly interpolated by a sigmoid-like function S : x 7→
3x2 − 2x3, and gp denotes the growth rate of the whole plant. Consequently, modules may develop
at different rates, taking into account the availability of light and apical control. The physiological
age (Sec. 2.4.1) of a newly created module u is defined by

au(tu) =
∫ tu

0 Υ(u)dt (8)

appropriately measuring its real biological state. It is initially set to au = 0. The chronological age
of the module, i.e. the time since its creation, is denoted by tu. As simulation time proceeds, au is
increased until a maximal value amature is reached (Fig. 4, c). Any subsequent growth is expressed via
the attachment of new modules to the fully developed one. Please note, that unlike the chronological
age, the physiological one is not a quantity of the dimension “time”.

For any module u where au > amature, we calculate the light exposure q for all terminal nodes ni
by q(ni) = Q(u)/#n, in which #n denotes the number of terminal nodes of module u. Next, we
calculate vigor values v for all terminal nodes of the module u using the extended Bochert-Honda
model. Here v denotes vigor at module scale as opposed to v̄(u) at plant scale. At each terminal
node n with vigor v > v̄min, we attach a new branch module. The diameter of the terminal nodes
with the attached modules is set to the diameter of the root node of the child module.

To obtain a geometric representation of a module during the growth process, we simulate its
physiological age. Unlike the self-organizing development of the module architecture (Sec. 2.5.1),
the development of branch modules is expressed deterministically. We calculate intermediate growth
stages by interpolating branch diameters and branch lengths. For a branch b, its physiological age
ab is defined by

ab = max(0, au − an) , (9)
in which an is the physiological age of the end node of the branch (which describes when the branch
starts to grow). The branch’s diameter db is defined by

db =
{ √∑

c∈Cb d
2
c , Cb 6= ∅ ,

φ, otherwise ,
(10)

in which Cb is the set of children of b. The branch’s length `b is defined by

`b = min(`max, β · ab) , (11)

in which β a scaling coefficient and `max the maximum length a branch can attain. Please note that
Eq. 10 is a specific case of the Pipe Model [65], where parameter n = 2. Once all the branch segment
parameter values are obtained we construct a surface mesh as generalized cylinders.
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2.5.3.1 Module Adaptation We simulate a module’s response to different kinds of tropism
allowing for the realistic capturing of plant growth [42]. Positions and orientations of branch segments
are transformed in order to account for the effect of tropisms on individual branches (Fig. 4, d).
Given a node n and the age of the corresponding branch segment, we define the tropism offset as

τ offset(ab) = g1 · gdir · g2
ab + g1

, (12)

where gdir is the normalized direction of gravity, g1,2 is the strength of tropism. The offset τ offset
is added to the current positions of the nodes. A negative value of g2 represents gravitropism, a
positive value phototropism.

2.6 Ecosystem Simulation
In this section we describe how our multi-scale plant representation can be used to model complex
plant ecosystems based on individual plant models that dynamically adapt according to develop-
mental traits, terrain features, and climatic conditions.

2.6.1 Plant Types and Biomes

We use our multi-scale plant representation to model different plant species, referred to as plant
types, as a set of values for structural and environmental parameters. The parameters allow us to
constrain the adaptation of module prototypes to generate plant graphs with features common to
plant species, such as characteristic branch lengths or branching angles. A plant model is generated as
an architecture of instantiated prototypes by individually developing and adapting them according
to their unique location in the plant graph and their environment, as described in Sec. 2.5. A
selection of plant types used in this chapter and their corresponding parameters are shown in Fig. 6
and Tab. 1. For finding these parameter values we rely on existing literature [14], [58].

Fig 6 pmax v̄rootmax gp λ/λmature D/Dmature Fage α ω2 g1 φ β
a 20 42 0.19 0.62/- 0.25/- 0 0.52 0.63 -0.38 0.57 0.47
b 200 78 0.30 0.84/- 1.0/- 0 0.52 0.63 -1.2 1.00 0.79
c 80 11 0.80 1.0/- 1.0/- 0 0.9 0.5 1.0 5.00 1.95
d 16 1.7 0.23 0.44/- 0.31/- 0 1.0 1.0 1.0 5.00 3.00
e 430 600 0.15 1.0/0.5 1.0/0.33 58 0.52 0.63 0.56 3.00 1.23
f 550 450 0.20 0.76/- 0.82/- 0 0.17 0.5 0.47 1.20 1.90
g 550 700 0.20 0.9/0.5 0.93/0.74 55 0.17 0.5 0.47 1.38 0.94
h 500 570 0.24 1.0/0.5 1.0/0.5 55 0.5 0.27 -0.66 1.38 1.29
i 950 900 0.12 0.87/0.34 0.93/0.55 57 0.66 0.14 0.2 1.41 1.29
j 950 600 0.14 1.0/0.5 1.0/0.51 57 0.45 0.63 -0.9 0.82 0.93
k 950 600 0.14 1.0/0.5 1.0/0.51 57 -0.2 0.63 -0.9 0.82 0.93
l 1000 815 0.19 0.92/0.7 0.59/0.56 80 -0.19 0.72 -0.21 5.00 1.54

m 130 400 0.21 0.88/0.43 0.9/0.7 66 0.85 0.55 0.9 1.42 1.11
n 52 200 0.55 0.96/0.43 0.48/0.7 0 -0.27 0.43 0.73 1.50 2.50
o 300 600 0.20 0.8/- 0.86/- 0 -0.19 0.81 1.0 1.00 1.60
p 450 450 0.15 1.0/0.5 0.66/0.33 135 0.52 0.32 0.42 1.50 1.06

Table 1: Parameter values for plant types used to generate results for Fig. 6.

A key aspect of plant ecosystem simulation is the virtual environment. It is described by the
plants that occupy it (instantiated plant types) and their locations in a spatially partitioned Eu-
clidean space. We describe climatic conditions as the averaged annual parameters temperature and
precipitation for the virtual environment. Furthermore, we model terrain with variable elevation
based on a height map and represent it as a surface mesh. Additionally, we define a binary soil map
to exclude areas of the terrain to be covered by vegetation, to account for natural (e.g., mountains
or water) and unnatural (e.g., streets) landmark features (0 represents open terrain; 1 indicates
blocked terrain).
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Figure 6: A selection of various plant models generated with parameter configurations reported in
Tab. 1.

As described in Sec. 2.4 and shown in Fig. 2, we define the 9 most common plant biomes desert,
tundra, savanna, grassland, shrubland, boreal forest, temperate seasonal, and rainforest, as well as
tropical seasonal and rainforest. We select plant species in a biome based on their sensitivity to
temperature and precipitation. We define parameters of climatic adaptation for each plant type
and report them in Tab. 2. We manually select values for temperature and precipitation sensitivity
according to Bassuk et al. [66] and use them to compute the probability of a plant to appear in a
biome.

2.6.2 Global Shadowing

Based on the optimization of module orientations (Sec. 2.5.1.2) our method allows us to model local
interactions of plants. These interactions are defined by bounding volumes that are limited by their
geometric extent and do not account for shadowing over larger distances, such as branches in the
crown, shadowing the understory. To allow for long distance interactions between individual plant
types, we use shadow propagation [14]. We spatially partition the environment into a uniform grid of
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Fig. Seeding Frequency Seeding Radius stol TA PA

9 a 3.0 1.0 0.9 28.0 4100
9 b 3.0 9.0 0.9 28.0 4100
9 c 3.0 1.0 0.1 28.0 4100
9 d 3.0 9.0 0.1 28.0 4100

16 (I) 5.0 8.0 0.15 8.0 672
16 (II) 2.0 3.0 0.45 12.0 672
16 (III) 1.0 3.0 0.6 16.0 672

Table 2: Plasticity parameters for plant types used to generate the results shown in Fig. 9 (a-d) and
16. (I)-(III) refer to the three plant types, shrub, conifer, deciduous tree.

cells, where each cell describes the availability of light at a particular location. Whenever a module
is associated with a cell, values of light availability QG for this grid cell and all cells underneath are
updated. Unlike previous approaches, we apply the method at the scale of modules instead of buds
and extend the shadowing cone into the bottom-most cells in the grid (approx. 2 meters). Therefore,
we calculate effective light exposure values Qeff = lerp(stol, 1, Q ·QG) that are used instead of values
Q in case global shadowing is activated for a scene (stol denotes the shade tolerance of the plant
type). An example of two plants interacting with each other and an obstacle is shown in Fig. 7.

Figure 7: A conifer and a deciduous tree are interacting with each other and an obstacle (house). By
modeling plants with branch modules our method is able to maintain realistic branching structures
throughout the simulation.

These long-distance, spatial interactions enable modeling successions. An example with three
plant types is shown in Fig. 3: a fast growing shrub with a low stol value, a coniferous tree with
a medium stol value, and a slow growing coniferous tree, with a high stol value. During 500 years
of simulation time, several distinct successional stages emerge. Finally, the shade tolerant conifer
grows tallest and establishes itself as the climax species. Our growth model is capturing temporal
forest growth patterns where plant type compositions may change over simulation time (Sec. 2.4.2,
(5)). Although, a state of homeostasis is reached at some point further variations in composition
appear when large trees are removed from the virtual environment forming a gap in the canopy.
The subsequent growth into the gap is called gap dynamics. In case the forest stand is composed
of uniformly aged trees, many plants might be removed simultaneously. This phenomenon creates
large gaps and is known as cohort senescence [67] (Fig. 16).

2.6.3 Flowering and Seeding

In addition to defining structural growth of plants, we also model the ability of plants to repro-
duce. We use a flowering age parameter to indicate when in the simulation a plant type reaches
maturity. Once this threshold has been reached a new plant model is generated periodically (param-
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eter seeding frequency) in a circular area around the position of the plant (parameter seeding radius,
Tab. 3); the positions are computed based on a Gaussian distribution function (Fig. 8, left). Further-
more, we use the flowering age of a plant to determine changes to its structural growth. Specifically,
we calculate Feff = Fage · v̄rootmax/v̄root to determine the flowering age to allow vigorous plants to
reach maturity quicker than less vigorous ones (Fage is a user-controlled parameter). Since the event
of buds turning into flowers ends their ability to continue branch growth, it has impact on the plant
architecture. We model this phenomenon of maturity by adapting apical control (λ) and determi-
nacy (D) with λmature and Dmature. In Fig. 8 (right) high apical control and determinacy values
have been replaced with smaller values to describe the growth pattern of Baobab trees.

Seeds

Old Baobab TreeYoung Baobab Tree
(reaching flowering age)

Seeding Radius

Change of Parameters
(Apical Control, Determinacy)

Figure 8: Flowering and Seeding: a 200 year old Baobab tree reaching maturity is seeding new
plant models in a circular area around it (left). A 450 year old Baobab tree after changing the
growth parameters apical control and determinacy (right). Flowering impacts the structure of the
tree crown.

Seeding enables the representation of spatial forest patterns in our method. Over-dispersion
emerges naturally as plant models compete in the virtual environment for space. By adjusting
shade tolerance values a progression from tightly packed forest patterns to more distributed ones is
simulated. Clustering patterns of forest growth can be obtained by varying the values of seeding
radius. Lower values will result in a clustered and higher values in a homogeneous distribution
(Fig. 9, a-d). More unusual patterns, studied as labyrinths and gaps [68], emerge due to cohort
senescence of plants (Fig. 9, e-f). Finally, it is possible to set these parameters for each plant type
resulting in varied forest patterns (Fig. 9, g-h).

2.6.4 Climatic Adaptation

We define the climate of an environment to model different biomes (climate space). We assume a
constant temperature T and precipitation P across the simulation. While precipitation is defined as
a constant for the whole virtual environment, the temperature T is given by a linear function h 7→
T (h) = T (0) + γ · h of the elevation h with a constant negative slope parameter γ < 0. Appropriate
measurements for γ can be found in the literature [69]. A sensitivity towards temperature and
precipitation is defined for each plant type as TA and PA. We compute the probability of a plant
appearing in a biome by 2D Gaussian kernel (adaptation) functions in the climate space. This is
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Figure 9: Bird’s eye view of simulated plant populations. Different forest patterns emerge due
to plasticity parameter changes: smaller seeding radius (top row); higher seeding radius (bottom
row). (a)-(b): small stol values; (c)-(d): high stol values. (e)-(f): gaps and labyrinths emerge due to
senescence. (g)-(h): variable plasticity parameter settings of two species resulting in different plant
distributions.

analogous to a Gaussian mixture model by setting up corresponding parameter values:

o = NT (T ) · NP (P )
NT (TA) · NP (PA) , (13)

where NT (·) and NP (·) denote the normal distributions of temperature (mean is TA) and precipi-
tation (mean is PA); see Table 3. Fig. 10 (b) illustrates the design of climatic adaptation by setting
the mean and variance values for the adaptation functions of a plant type. For each plant type in
the virtual environment we use the difference of the adaptation function and the position in climate
space to linearly scale the v̄rootmax and seeding frequency parameter with probability o.

Parameter Explanation Range Unit
Temperature Avg. yearly temperature. -10 - 33 ◦C
Precipitation Yearly precipitation. 10 - 4300 mm
Seeding frequency Num. of seeds/seeding period. 1-10 1/year
Seeding radius Radius of placing plant seeds. 0.01 - 100 m
Shade tolerance Plant adaptation to shade. 0-1 -
Temperature Adaptation Optimal habitat temperature. -10 - 33 ◦C
Precipitation Adaptation Optimal habitat precipitation. 10 - 4300 mm

Table 3: Environmental parameters for modeling ecosystems (top) and plasticity parameters for
modeling plant adaptation (bottom).
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Plant types with high values for climatic adaptation express their full v̄rootmax and seeding fre-
quency parameter values in a virtual environment, whereas plants with lower adaptation value receive
only a portion of their parameter values during simulation time. Well adapted plant types, therefore,
grow more vigorously and reproduce at a faster rate, whereas less adapted species might not grow
at all or at a very slow rate. This allows capturing anisotropic, spatial interactions between plants
mentioned in Sec. 2.4.2. Fig. 16 illustrates how temperature changes (due to elevation increase)
reduce vigor and seeding frequency. This results in the gradual segregation of the three plant types
at different levels of elevation. Moreover, individual plant model architectures adapt to changes of
temperature.

2.6.5 Interactive Design of Ecosystems

We create virtual biomes in two steps. First, the plasticity parameters values (Table 3) are selected
for all plant types the user wants to have appear in the biome. We provide a library for various
default plant types (Fig. 6). Moreover, the parameters characterizing the environment have to be
defined. This includes setting the climatic conditions by selecting values for temperature T and
precipitation P as well as specifying the number of initial plant models and the time step for the
simulation. A plant can be modeled by setting values for temperature and precipitation sensitivity,
shade tolerance, and seeding radius. Upon simulation start plant models are instantiated at random
locations in the terrain using the plant types in the library.

All parameter values can be modified during the simulation resulting in an interactive authoring
process to design a specific biome (Fig. 10). We also allow users to select and remove individual
plants at any moment. Once a desired simulation state has been reached, the branching structures
of the whole ecosystem can be exported. We only export the skeletal graph of the branch modules
and their individual transformations along with metadata for connectivity, branch diameter, and
plant type.

Environmental Parameters Plasticity Parameters

Figure 10: Screenshots of our interactive modeling tool. Environmental parameters (temperature
and precipitation) are used on ecosystem level (left) to specify the climate. For each plant type
plasticity parameters are set to describe the interaction with the environment (right).

2.7 Implementation and Results
We implemented our interactive framework in C++ and DirectX. To generate the results shown
in the chapter we used an Intel(R) Core i5, 4 × 2.5GHz with 8GB RAM, and a NVIDIA Geforce
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GTX 1050 GPU (4 GB RAM). We employ the instancing capabilities of DirectX to generate several
instances of the same module and to transform and render them. Furthermore, we use a common
shader pipeline of Vertex-, Geometry-, and Fragment Shaders along with the provided attributes of
the nodes in the skeletal graph (branch thickness) to build and render intermediate branch geometry
to provide users with visual feedback of the scene configuration. We used the L3DT Terrain Editor
to generate a terrain mesh and a soil map for Fig. 16. Furthermore, we render the majority of the
results shown throughout the chapter with Houdini. Table 4 reports the simulation times for the
different components of our framework.

We implemented a framework to effortlessly generate ecosystems with plant interactions and
realistic branching structures at interactive rates. Thereby, the framework allows users to efficiently
explore the parameter space of the simulation. This allows for both, exploring natural phenomena
related to plant ecosystem development as well as to generate complex forest geometry with high
visual fidelity. Details of our framework and a screenshot of the developed user interface can be
found in the Appendix 2.6.5.

Fig. # P PT M MP B N TS TR TRO TEMP PREC AGE
1 a 218 3 4.6 8 57.05 61.64 7 4 21 29.8 224.5 164
1 b 87 3 14.0 7 182.80 196.83 11 5 24 -2.1 267.4 273
1 c 611 3 34.4 4 392.45 435.50 14 19 32 6.0 940.1 382
1 d 1,248 6 18.9 7 215.97 113.89 45 12 36 28.0 3770.9 452
12 a 938 7 8.4 10 123.30 131.48 43 15 54 26.9 3055.9 389
12 b 926 7 7.40 10 111.78 118.89 43 15 52 26.9 3055.9 389
12 c 984 7 8.0 10 112.29 120.00 42 15 53 26.9 3055.9 423
12 d 950 7 7.6 9 97.13 104.60 42 15 53 26.9 3055.9 487
12 e 848 7 7.5 9 94.26 101.58 41 15 51 26.9 3055.9 543
11 a 147 2 2.9 3 30.39 33.35 4 3 19 -8.1 153 42
11 b 205 2 3.8 5 49.73 53.58 11 5 20 -2.6 310.3 145
11 c 264 3 4.1 4 48.16 52.23 10 4 22 -0.2 510.5 138
11 d 428 3 20.40 4 188.72 208.98 35 9 27 1.7 639.2 249
11 e 640 5 37.49 8 412.22 449.52 87 18 30 5.6 939.5 432
11 f 330 3 4.2 7 45.96 50.15 15 6 21 17.0 439.0 228
11 g 423 4 14.38 11 191.15 205.39 30 8 21 17.5 667.8 134
11 h 776 4 19.8 11 273.21 292.67 34 8 23 18.3 939.5 201
11 i 967 4 6.68 8 56.48 62.27 17 4 24 18.3 1239.8 223
11 j 1,404 3 9.23 4 103.45 112.47 20 7 24 18.3 1239.8 272
13 a 463 10 8.5 9 105.47 113.89 18 5 22 18.1 739.3 121
13 b 168 2 2.6 5 38.83 41.39 6 4 25 30.2 396.1 73
13 c 767 5 13.6 5 148.70 162.13 20 8 29 17.7 2526.8 486
16 g 468,199 3 2,271 15 23,283 26,776 18,796 3620 N/A 15.2 672.6 1400

Table 4: Performance settings and parameter values for figures in the chapter. P=Num. Plants,
PT=Plant Types, M=Modules (K), MP=Module Prototypes, B=Branches (K), N=Nodes (K),
TS=Time Simulation Step (ms), TR=Time Rendering (ms), TRO=Time Rendering Offline (min),
TEMP=Temperature (°C), PREC=Precipitation, AGE=Simulation Age (years).

2.7.1 Results

In Fig. 1, 11, and 13 we show the final results produced with our modeling pipeline. The simulated
plant populations show the characteristic features of the corresponding ecosystem types, ranging
from small bushes and forbs in the Savanna, to tall growing pine trees for the Boreal Forest and
densely populated plants in a Rain Forest. Altogether, our method is able to capture the properties
of the nine biome types, introduced by the temperature-precipitation diagram (Fig. 2). As our
method relies on representing branching structures as individual plants we can also produce realistic
close-up renderings of the generated ecosystems, shown in Fig. 14.

We capture a variety of biological phenomena including successions, climatic adaptation, and
gap dynamics. Moreover, our method is able to generate unique branching structures for each
plant and the whole ecosystem. Fig. 3 and Fig. 12 show the successional stages of a developing
ecosystem. During the simulation, plants die and decay, which opens space for existing and new
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Figure 11: Biome transitions: by selecting temperature and precipitation our framework allows us to
transition from one biome to another and thereby to generate a large variety of plausible ecosystems.
The top row shows the transition from tundra to boreal forest (a)-(e), while the bottom row (f)-(j)
shows the transition from temperate grassland to shrubland, and then to temperate forest. The
diagrams show the locations of the corresponding biomes types in the temperature-precipitation
diagram (Fig. 2). Each biome was simulated for a period of several hundred years.

Figure 12: Gap dynamics: starting from a fully grown plant population (a), a few plants are
abruptly removed from the population and cause gaps in the ecosystem (b). This yields space to
faster growing plants (palm trees) that quickly conquer the gaps (c), (d). Eventually, the well-
adapted climax species (deciduous tree) establishes itself as the dominant species (e). The sequence
shows the development over a period of 150 years.
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Figure 13: By selecting temperature and precipitation values we can generate other biomes. Here
we show the results for a shrubland (a), a subtropical desert (b), and a temperate rainforest (c).

Figure 14: Close-up renderings of articulated branching structures. As our method relies on modeling
plants based on individual branch skeletons we can produce complex in-forest renderings of the
various biome types: temperate seasonal forest, savanna, desert, and boreal forest (left to right).

Figure 15: Tree architecture adapting to different environmental conditions: a solitary growing tree
develops a wide crown covering the available space (a). When growing in more densely populated
environments, it grows taller but less vigorous. It develops an asymmetric architecture due to the
competition for light with neighboring plants (b, c).
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Figure 16: Temporal progression of a developing ecosystem composed of about 500K plant models
and three plant types: a shrub, a conifer and a deciduous tree. We start the simulation with a
mountainous environment devoid of vegetation such as is the case, e.g. after an ice-age. (a) fast
growing shrubs populate all the terrain, (b) slower growing tree models start overshadowing shrubs at
lower elevation levels, (c) a mixed forest of conifers and deciduous trees at lower elevations emerges,
(d) the segregating forest forms a tree line with the cold-adapted shrub appearing only at the top
of the mountain, (e) cohort senescence leaves large gaps in the conifer forest stand, (f) after several
successions of trees a mixed age-forest emerges.
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plants. In forestry this process is called gap dynamics and creates complex branching structures
that are difficult to model manually. After an occurring disturbance of a plant ecosystem, new
plants, such as grasses, forbs, and shrubs develop. Over time these plants are gradually replaced by
pioneering tree species, which grow slower but are more shade tolerant.

The results in Fig. 11 show transitions through the temperature precipitation diagram. Our
method is able to capture the variations of the different biome types, which allows to simulate
plausible plant ecosystems. We show transitions from Tundra to Boreal Forest (a)-(e), as well as
from Temperate Grassland to Temperated Forest (f)-(j).

The adaptation of branching structures according to varying distances to other plants is shown in
Fig. 15. A plant growing together with surrounding plants develops a different branching structure
compared to solitary grown plants. When growing in more densely populated environments, it grows
taller but less vigorous and develops an asymmetric architecture due to the competition for light
with neighboring plants.

In Fig. 16 we show a large-scale plant ecosystem developed on an initially empty terrain patch
(e.g. the period of time just after an ice age). As we use instancing for the branch modules, we can
model and render plant populations with up to 500K plants. Each plant is modeled with a unique
branching structure interacting with neighboring plants and the terrain.

2.8 Evaluation, Discussion, and Limitations
We evaluated our framework based on visual and quantitative comparisons of plant ecosystem
growth.

To validate the module orientation optimization algorithm, we calculate the intersection volume
ratio of the bounding spheres of each module. We define it as the sum of volumes of intersections be-
tween modules divided by the total volume of all modules in the ecosystem. Fig. 18 (a), shows a com-
parison of ecosystem development with and without module orientation optimization. The naive ap-
proach increases quickly to a high percentage of volume intersection ratios indicating a high overlap of
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Figure 17: Comparison of simula-
tion data for the ecosystem shown
in Fig. 16 (d) to the 3/2 power law
of self-thinning.

modules. Conversely, the approach with orientation optimiza-
tion maintains volume intersection ratios below 5% through-
out the simulation, indicating a very small overlap of module
bounding volumes. We conclude that the optimization process
successfully prevents most collisions of branches in the ecosys-
tem. Usually, no more than 3 optimization steps are necessary
to converge.

To evaluate self-thinning of plant populations, we compare
our results to the logistic growth function [70]. We simu-
late the growth of 1,000 pine trees and measured the total
biomass of the ecosystem (assuming a homogeneous wood den-
sity). Fig. 18 (b) illustrates that the curve resembles the logistic
growth function. We also evaluate the self-thinning through
comparison of simulation data for the ecosystem shown in
Fig. 16 (d) to the 3/2 power law [71]. Results are shown in
Fig. 17 and indicate a high-degree of correlation of the regres-
sion line (for plants with a diameter > 5 cm) and the 3/2 power
law.

Tree structure is known to vary allometrically in branch lengths and diameters within the archi-
tecture. Therefore, we measured emerging allometries of tree height and trunk diameter as well as
leaf dry mass and trunk diameter for a growing stand of simulated pine trees (Fig. 19). The results
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Figure 19: Emerging tree allometries of a simulated stand of about 1,000 pine tree models. (a): tree
height vs trunk diameter; (b): leaf dry mass vs trunk diameter. Results conform with Eloy et al.
(c.f. Figs. 6 a, b).

are in agreement to simulated and real data reported by other sources [55].
In Fig. 20 we report the results of modeling a single tree with variable numbers of branch modules

as well as module prototypes with different complexity. Three examples of instantiated module
prototypes are shown in the circles. Our multi-scale method allows balancing the deterministic
development at module scale and self-organizing development at plant scale. Model (a) was generated
with a few (99), but complex branch modules (deterministic development), while model (c) was
simulated with many (1204) but less complex branch modules (self-organizing development). Model
(b) represents the middle ground (294 modules). Even though the models were simulated with
varying emphasis on these scales, all models (a-c) can be reproduced with similar visual fidelity and
geometric complexity (about 200K polygons). This indicates the usefulness of the plant description
given in Sec 4.1, i.e. plant architectures are the result of self-organization of self-similar architectural
units. Balancing the number of modules and the complexity of prototypes thereby is a means to
address accuracy and efficiency requirements for large-scale growth simulations. Furthermore, this
can be seen as a compression scheme for branching structures.

To evaluate the modeling capabilities of our framework for single tree models, we compare our
results to those produced by the procedural model of Stava et al. [29]. Their approach allows
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Figure 20: Results of modeling a single tree with variable numbers of branch modules (a: 99, b: 294,
c: 1204) as well as module prototypes with different complexity. Three examples of instantiated
module prototypes are shown in the circles. Despite the varying number of branch modules (99 vs.
1204), all models (a-c) can be reproduced with similar visual fidelity and geometric complexity.

Figure 21: A comparison to the approach of Stava et al. [2014]. We use their procedural model to
generate a tree model similar to the examples on the left. We decompose it into 10 modules and
then use our modeling approach to replicate their modeling results. The figure shows the result of
two trees growing together based on their (left) and our (right) method.

generating a large variety of plant species based on 25 parameters. While we aim at simulating
ecosystems and not particular plant species, we use their method to generate plants, decompose them
into branch modules, and then use our framework to produce new plants based on the generated
modules. As we rely on the previously generated branching patterns, is not possible to directly
compare the generated results, however, our module selection allows to connect the available modules
so as to generate plausible branching structures, similar to state-of-the-art work in the field. In
Fig. 21 we show the modeling results of plant-plant interactions of both systems (left: Stava et al.
2014, right: ours).

2.8.1 Discussion and Limitations

Our focus was to explore plant growth on the level of large-scale plant ecosystems. The visual results
of our simulations evaluate the hypotheses stated in Sec. 2.4.1 that plant models can sufficiently be
described as a collection of architectural units for ecosystem modeling. Branch modules facilitate
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the instancing of geometry to efficiently design complex plant ecologies.
Moreover, our results indicate that the hypotheses given in Sec. 2.4.2 allow to produce com-

plex plant ecosystem geometries that would be extremely challenging to model manually. Given
our method it is now possible to explore the development of plant ecosystems, including temporal
successions, gap dynamics, and spatial forest patterns.

Current methods for plant modeling mostly focus on more detailed representations of branch
geometry and their development, while methods for modeling ecosystems often abstract away the
complexity of single plant structures. Our method enables both: we can realistically model individual
branching structures as well as biologically plausible forests. As a result, this allows us to evaluate
ecological hypotheses formulated at the scale of branches instead of plants. This is novel and has
the potential to stimulate future research in computer graphics and ecology.

We provide a library of plant types to model a range of plausible biomes. More realistic ecologies
require a larger biodiversity that can only be obtained by manually defining more plant types. While
we aimed at providing an efficient modeling tool, the introduced biological concepts to model plants
and ecosystems are complex phenomena that require a range of parameters. While we limited the
number of parameters, finding an appropriate configuration to author specific plant shapes can be
challenging. The proposed parameters of our method allow us to generate a variety of biomes,
however, we did not conclusively explore this parameter space.

2.9 Conclusion
We have presented a novel framework for large-scale ecosystem modeling that allows us to generate
a variety of plant biomes of individual plants. We simulate the growth process of the entire ecosys-
tem, which enables the plants to interact with their neighbors and in turn to generate plausible
and complex branching structures. Our approach exploits the inherent self-similarity of plants to
efficiently model large amounts of vegetation. We introduced plant modules as an efficient means of
abstraction to define plant skeletons. Each module captures allometric properties that allows us to
define convincing plants. We showed that the modules can be reused across single plants and across
entire ecosystems.

Additionally, we have introduced a low-dimensional parameter space (2 environmental, 5 plas-
ticity parameters), to efficiently design complex and diverse plant ecosystems. In combination with
modeling plausible plant distributions this allows us to design different biome types, ranging from
savannas and deciduous forests, to deserts and rain forests. The simulated ecosystems show a variety
of properties also found in real forests, such as gap dynamics, successional stages, and self-thinning.
Based on the introduced framework content creators can efficiently model complex ecosystems that
can then be produced through commodity rendering software.
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3 Towards Modeling Complex Interactions between Weather
and Vegetation

Figure 22: An aerial photograph of clouds over a forest. The vapor released by the foliage is an
important factor in cloud formation. In return the clouds affect the sunlight and precipitation
available to the plants.

3.1 Introduction
In Chapter 2 we presented our method for simulating vast ecosystems. The results shown that a
great variety of biomes can be generated by adjusting temperature and precipitation. However,
for a given scene these parameters were in principle uniform, allowing for a simple height-based
temperature gradient. Therefore, we seeked to explore modeling of more environmental conditions
that interplay with vegetation growth, e.g. wind, clouds, fog, mist, local variations of precipitation
and temperature.

We decided to develop a cloud dynamics model, which allows for the simulation of evaporation,
cloud formation and precipitation. Clouds are among the most common weather phenomena and
have a close connection with vegetation (see Figure 22). The vapor released by the foliage is eventu-
ally condensing as fog or clouds. In return the clouds produce precipitation which is crucial for the
growth of the plants. Depending on the cloud cover, a variable amount of sunlight is available to
the plants. In result, all these factors induce local variations of humidity and temperature, and this
way so called ecoclimates emerge. In Chapter 4 we show how to simulate ecoclimates by combining
our models for vegetation and clouds.

3.2 Cloud Model
In this section we provide an overview of our cloud dynamics model, which can be divided into
an atmospheric model that describes temperature and pressure changes as a function of altitude, a
0D thermodynamics model that determines local forces and the formation of clouds, and the fluid
dynamic model that determines the motion of humid air in the atmosphere.
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3.2.1 Atmosphere

The background atmosphere is determined by the temperature distribution and the fundamental
hydrostatic equation [1] for compressible fluids.

3.2.1.1 Atmospheric Pressure The hydrostatic equation relates the density ρ of a fluid to the
pressure gradient,

dzp = −ρg , (14)

in which g ≈ 9.81 m/s2 denotes the acceleration due to gravity. In an ideal gas, pressure p is
related to density and temperature T as ρ = p/(RT ), where R = R/M is the specific gas constant,
i.e. the ratio of the general gas constant R and the molar mass M . We introduce a temperature
distribution analogous to the ‘International Standard Atmosphere’ (ISA) using the temperature
lapse rate dzT = Γ, so that 14 can be integrated to

z∫
0

dp

p
= g

R

z∫
0

dz

T (z) = g

R

z∫
0

dz

T0 + Γz , (15)

yielding an equation for pressure as a function of altitude,

p(z) = p0

(
1− Γz

T0

) g
RΓ

. (16)

3.2.1.2 Temperature Profile Interesting weather phenomena occur at an inversion layer at
high altitudes, for which we introduce a second lapse rate Γ1, valid beyond an altitude of z1, so that
the temperature profile is described as

0 ≤ z ≤ z1 : T (z) = T0 + Γ0z ,

z1 < z : T (z) = Tz1 + Γ0z = T0 + Γ0z1 + Γ1(z − z1) . (17)

An interesting stratification is given for Γ0 < 0, Γ1 > 0, then the temperature inversion at z1
would act as an obstacle for the rising thermal, allowing the distinct flattened top (the ‘anvil’) of a
cumulonimbus to form. Usually, we employ a simple inversion by making use of a single lapse rate
Γ setting Γ0 := Γ and Γ1 := −Γ.

3.2.2 Thermodynamics

The thermodynamics model based on first-principles provides local descriptions of air-water mixture
properties, the temperature change of the rising thermal, the buoyancy and thus resulting local
acceleration, and the phase transitions between vapor, cloud, and rain.

3.2.2.1 Generalities In the present model, the background air is assumed to be dry. Then its
molar mass is constant with

Mair = 28.96 g/mol . (18)

The thermal (i.e. a column of rising air) is an air-water mixture, with a water vapor mole fraction
XV , and the water molar mass

MW = 18.02 g/mol , (19)
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so that, using the water vapor mole fraction XV , an average molar mass for the humid air in the
thermal can be calculated as

Mth = XVMW + (1−XV )Mair . (20)

Mole fractions X and mass fractions Y are related through

YV = XV
MW

Mth
. (21)

Following Kessler [2], the amount of water in the atmosphere can be expressed in terms of the mass
ratio qi of water per mass unit of dry air, specifically vapor qv, cloud qc, and rain qr. The mole
fractions Xi are related to the mass ratios qi via

Xi = qi
qi + 1 . (22)

3.2.2.2 Temperature in the Rising Thermal The warm and humid air in a thermal rises
when it has a lower density than the surrounding air. The temperature profile of the atmosphere
is prescribed and ultimately a function of the weather, whereas the rising thermal changes its local
temperature because of its expansion to lower pressures at higher altitudes. Heat exchange with the
surrounding atmosphere can be neglected, and the process is slow enough to assume an isentropic
expansion to take place.

The change in pressure directly determines the change in temperature through the classical
isentropic relations [3]

Tth(z) = T̂

(
p(z)
p̂

) γth−1
γth

, (23)

where T̂ and p̂ are the conditions at the ground. The isentropic exponent γ for water vapor and air
are, respectively γair = 1.4 and γV = 1.33, so that the isentropic exponent of the humid thermal is
approximately

γth = YV γV + (1− YV )γair , (24)

where YV is the mass fraction of water in the thermal.

3.2.2.3 Buoyancy and Acceleration of the Thermal A difference in density between atmo-
sphere and thermal will result in a vertical acceleration following Archimedes’ principle. The humid
thermal air parcel of volume V and density ρth experiences an upward lift force in air of density ρair
of

L = V g(ρair − ρth) . (25)

Then, the buoyant acceleration on this thermal parcel, from Newton’s second law F = ma, is given
by

B = L

m
= V g(ρair − ρth)

V ρth
= g

(
ρair
ρth
− 1
)
. (26)

We can treat thermal and air as ideal gases, for which

ρ = p

RT
= p

(R/M)T , (27)
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with the universal gas constant R = 8314 J/g K and the gas molar massM. The pressure at every
altitude is equilibrated between the thermal and the surrounding air, so that 26 can be simplified to

B = g

(
Mair
Mth

Tth
Tair
− 1
)
. (28)

The air temperature Tair = f(z) is specified by our atmospheric model, Eq. (17), and the thermal
temperature from the cooling due to expansion, Eq. (23), the molar masses Mi as introduced in
Sec. 3.2.2.1.

3.2.2.4 Condensation and Cloud Formation The initial water content rises with the ther-
mal. However, the rising humid air in the thermal cools down as it gains altitude and loses capacity
to keep the water vapor solved. When the partial pressure on the water vapor in the air drops below
the saturation pressure at the local temperature, the excess water vapor that cannot be solved in
the air anymore condenses into tiny droplets – clouds. This saturation mixing ratio qvs(T, p) can be
approximated for the relevant temperature range as

qvs(T, p) = 380.16
p

exp
(

17.67T
T + 243.50

)
(29)

for given temperature and pressure in Celsius respectively Pascal [4].

3.2.2.5 Heat Release from Condensation In order to account for the energy released by
water vapor condensing into droplets when saturation is reached at the base of the cloud, the
temperature of the thermal, 17 has to be extended. The energy release per condensed water mass
fraction XC is the latent heat L. The associated temperature increase ∆TV then depends on the
heat capacity, so that

Tth(z) = T̂

(
p(z)
p̂

) γth−1
γth

+ ∆TV = T̂

(
p(z)
p̂

) γth−1
γth

+ L

cp
XC . (30)

Now, the heat capacity cp of the air in the thermal is required. This is with respect to only the
gaseous part of the thermal, i.e. dry air and water vapor XV ,

cth
p = γthR

Mth(γth − 1) , (31)

with the thermal air molar mass Mth from 20, and the thermal air ratio of specific heats γth from
24.

3.2.2.6 Prediction of Cloud Boundaries This static model already allows for parameter
studies and identification of relevant variables. Figure 23 shows how the relative humidity φrel =
qv/qvs and the buoyancy B determine the base and the top of the cloud. As an approximation for
this initial exploration, the effect of latent heat is neglected. Specifically, the buoyancy is determined
by the temperature gradient; the relative humidity in the thermal is controlled by the temperature
and the vapor mass ratio qv. Figure 24 shows a number of atmospheric profiles of temperature,
density, buoyancy, vapor fraction, and relative humidity, to illustrate representative profiles for fog,
stratocumulus, cumulus, and cumulonimbus clouds that can be created with this model.

Figure 24 further reveals the physical parameters that can be used to control the cloud dimen-
sions. The cloud base is determined from the point where the relative humidity exceeds unity and
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Figure 23: Illustration of relation between atmospheric profile data and cloud boundaries. A warm/
humid thermal will form on the ground and rise up, cooling down in the process. The cloud base
will form at the point where the relative humidity φrel has increased to unity due to the reduced
temperature. (a) the thermal will be accelerated upwards to neutral buoyancy B(h0) = 0, and will
be decelerated beyond. For the linear buoyancy profiles found here, the top of the cloud will be
found where the thermal has come to rest at approximately h = 2h0. (b) An inversion layer will
stop the upward draft of the air that has not been decelerated, creating the characteristic flat anvil
shape of the cumulonimbus cloud top.

the vapor condenses. The top is reached where the upward velocity of the rising thermal vanishes,
with the altitude of vanishing buoyancy marking the mid-point altitude.

The temperature and density plots are mostly similar across fog, stratocumulus, and cumulus
clouds. They differ for cumulonimbus as the temperature values of the thermal are higher relative
to the atmospheric temperature values, which can be controlled by the temperature lapse rate Γ.
The intersection point of the graphs indicates the altitude of the top of the clouds, which is several
dozen meters for fog, 2 000 meters for stratocumulus clouds, 2 500 meters for cumulus clouds and
8 000 meters for cumulonimbus clouds. Alternatively, the top of the clouds is shown by the buoyancy
graph. Relative humidity φrel defines the base altitude at which a cloud forms. Fog forms close to
the ground surface, while cumulus and cumulonimbus clouds form at an altitude of 1 500 meters and
stratocumulus at 1 800 meters. Analogously, this relationship can be expressed by the proportions
of vapor fraction qv and saturation mixing ratio qvs. Varying the parameter values over time allows
us to describe the temporal development of weather, such as the transition of fog to stratocumulus
clouds. By additionally applying an external (rotating) wind field to the simulation we can transition
to a typical summer afternoon thunderstorm.

3.2.3 Fluid Dynamics

The fluid dynamics model solves the motion of air in the atmosphere, as caused by external wind
and differences in density.

3.2.3.1 Transport Equations The system of equations for fluid transport is developed from the
principles of conservation of mass, energy, and Newton’s second law. Following Boussinesq’s classical
assumption, we account for variable density in the source terms, but assume an approximately
constant density in the flow dynamics due to the very low Mach numbers involved. From this follows
directly that the momentum and energy equations are decoupled and can be solved independently.
Our model is closed by using the water phase transport equations for vapor qv, condensed cloud qc,
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(a) Simulated fog, stratocumulus, cumulus, and cumulonimbus clouds (left to right). The corresponding
altitude-temperature, -density, -buoyancy, -vapor fraction and -relative humidity profiles can be found below.
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(b) Fog: Vanishing buoyancy at ground level prevents thermals from rising, a relative humidity of one at
ground level causes formation of fog.
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(c) Stratocumulus: Finite buoyancy at ground causes thermal to rise, with a top of 2000 m, and a base with
φrel = 1 at 1800 m.
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(d) Cumulus: Buoyancy at ground causes thermal to rise, the higher humidity increases the top to 2500 m,
and reduces the base with φrel = 1 to 1500 m.
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(e) Cumulonimbus: a higher temperature lapse rate causes a constant upward acceleration of the thermal
to the inversion layer at 8000 m, while maintaining a base of 1500 m.

Figure 24: Simulation of the development of different cloud types (24a) and corresponding altitude-
temperature, -density, -buoyancy, -vapor fraction and -relative humidity profiles: fog (24b), stra-
tocumulus (24c), cumulus (24d), and cumulonimbus (24e) clouds. In accordance with Fig. 23, the
cloud base is determined by the vapor reaching saturation conditions with the relative humidity φrel
reaching unity; the top of the cloud is where the upward motion of the rising thermal has vanished.
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Figure 25: Illustration of Kessler’s scheme [2] for modeling the transport between vapor, cloud water,
and rain.

and rain qr based on Kessler’s classical model [2].
The simulation of fluids is an established and ongoing research topic within the computer graphics

community. Among others, Bridson and Müller provided a detailed introduction to fluid simulation
from a computer graphics’ perspective in their SIGGRAPH course [5].

As usual, in our model, the fluid’s state is described by a velocity field u : (x, t) 7→ u(x, t) which
for given time t ∈ R+

0 and position x ∈ R3 returns the corresponding local flow u(x, t) ∈ R3.

3.2.3.2 Mass The conservation of mass prescribes the continuity equation of a solenoidal velocity
field as

∇ · u = 0 . (32)

3.2.3.3 Momentum The change in momentum according to Newton’s second law is expressed
in terms of the Navier-Stokes equations, allowing for the solution of the temporal evolution of the
velocity field,

∂tu = −u · ∇u− ρ−1∇p+ ν∇ · ∇u+ b+ f , (33)

in which the density is denoted by ρ, the pressure by p, and the kinematic viscosity by ν. The first
term on the right side of 33 describes phenomena caused by advection followed by a pressure and
a viscosity term. Buoyancy is taken into account by the force b ∈ R3 and other external forces are
combined and described by an additional external net force f ∈ R3. Please note, that the vector
Laplacian in 33 is similarly defined as its scalar counterpart and simply acts component-wise.

3.2.3.4 Energy The conservation of energy in temperature form can be written [1] as

∂tθ + (u · ∇)θ + L

cpΠ
Cc = 0 , (34)

in which Cc = ∂tqc + (u · ∇) qc denotes the rate of condensation. In 34, the latent heat is given by
L ≈ 2.5 J/kg, and the ratio Π := T (t0)/θ of the absolute and the potential temperature is written
as the Exner function used in atmospheric modeling. Π can be considered as a non-dimensionalized
pressure.

3.2.3.5 Water Continuity The simplest model for rain, based on Kessler’s methodology as
illustrated in Figure 25, includes a third transport equation for a rain phase qr in addition to vapor
and cloud, along with source terms that couple the transport equations. Using the material derivative
Dtϕ = ∂ϕ/∂t+ υ · ∇ϕ [6], we can write

Dtqv = −Cc + Ec + Er , (35)
Dtqc = Cc − Ec −Ac −Kc , (36)
Dtqr = Ac +Kc − Er , (37)
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with the source terms Cc describing condensation, Ec describing the evaporation of clouds, Er
describing the evaporation of rain, Ac describing autoconversion of raindrops from clouds, and Kc

describing the accretion of cloud water due to falling drops. Kessler suggests models in the form
Ac = αA(qc − aT ) with aT = 0.001 kg/kg, and Kc = αKqcqr. Rain drops technically fall and are
accelerated, but they reach a constant terminal velocity almost right away (≈ 10 m/s). We employ
a constant vertical terminal velocity and the local lateral wind velocity.

3.3 Conclusion
We presented a novel approach to physically accurate simulation of clouds based on first-principles.
Using our framework, we can simulate several different cloud types, their transitions, and complex
cloud phenomena. With this method we are prepared for the next steps towards modeling complex
interactions between weather and vegetation. In Chapter 4 we combine the simulation of ecosystems
with cloud dynamics model and explore the feedback between plants and cloud formation.
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4 Ecoclimates: Climate-response Modeling of Vegetation

Figure 26: We simulate ecoclimates by combining models for vegetation, soil, and weather. This
allows us to simulate complex and realistic outdoor landscapes with vegetation growth and weather
dynamics (left, center). Our method can simulate over 500K plants with individual geometries at
interactive rates (center). Additionally, we can also simulate the climate-response of vegetation, e.g.
resulting in forest dieback (right).

One of the most intriguing problems is understanding the underlying principles of climatic
changes. Over the last years, the role of forests in climatic change has received increased attention.
This is due to the observation that not only the atmosphere has a principal impact on vegetation
growth but also that vegetation is contributing to local variations of weather resulting in diverse
microclimates. The interconnection of plant ecosystems and weather is described and studied as
ecoclimates. In this work we take steps towards simulating ecoclimates by modeling the feedback
loops between vegetation, soil, and atmosphere. In contrast to existing methods that only describe
the climate at a global scale, our model aims at simulating local variations of climate. Specifically,
we model tree growth interactively in response to gradients of water, temperature and light. As a
result, we are able to capture a range of ecoclimate phenomena that have not been modeled before,
including geomorphic controls, forest edge effects, the Foehn effect and spatial vegetation patterning.
To validate the plausibility of our method we conduct a comparative analysis to studies from ecol-
ogy and climatology. Consequently, our method advances the state-of-the-art of generating highly
realistic outdoor landscapes of vegetation.

4.1 Introduction
Understanding the complex interconnection of plant ecosystems and their impact on the climate
system plays a central role in predicting climate dynamics. While it is well understood that climatic
variations cause changes in ecosystem distribution, structure and function, only recently it has been
recognized that the composition of vegetation also impacts the development of weather, which – in
turn – leads to the development of local climatic variation (microclimates) [1]. Researchers study
the interconnection of plant ecosystems and their impact on the climate system as ecoclimates.
Understanding these ecoclimates is a challenging and open research problem.

The primary goals of ecoclimate research are to understand the growth response and functioning
of vegetation according to changing climatic conditions [2], the impact of vegetation on thermody-
namics and the water cycle [3], and the feedback loop of vegetation and the climate [4]. Many of
the current approaches for modeling ecoclimate processes rely on meteorological or macroclimate
data, such as free-air temperature or open-field precipitation, that is measured in weather stations.
However, recent studies indicate that climatic parameters in forests are determined to a greater
degree by microclimatic rather than macroclimatic processes [5]. Furthermore, most of the analyt-
ical ecoclimate approaches do not leverage geometric representations of individual plants to explore
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vegetation-climate interactions but instead treat plants as averaged populations.
In computer graphics, modeling plant ecosystems has a long tradition [6]–[9], that more recently

also encompasses complex physical simulations, such as required for modeling wildfires [10], erosion
feedback [11], or the interaction with fauna [12]. The goal of many of these methods is to employ de-
tailed geometric representations to faithfully simulate the underlying physical or biological processes.
The breadth of these approaches is a testament of the complexity of this undertaking. Simulating
the growth response of vegetation according to climatic variations and the impact of vegetation on
local weather and climate has not yet been studied in computer graphics. Closest to this objective
is the method of Makowski et al. [13], who simulate the development of plant ecosystems in different
climatic conditions. However, their method only simulates the feedback from the atmosphere to
vegetation at a global scale disregarding the influence of the microclimate.

In this chapter, we propose a method to capture feedback loops between vegetation, soil, and the
atmosphere at a local scale. We extend existing vegetation and atmosphere models and combine them
with a novel soil model. This allows us to jointly simulate the hydrologic cycle, heat transfer, and
light availability. We model tree growth interactively in response to gradients of water, temperature
and light. As a result, we are able to capture a range of ecoclimate phenomena that have not been
emergently modeled before, including geomorphic controls, forest edge effects, the Foehn effect and
spatial vegetation patterning. This not only allows us to generate highly realistic outdoor landscapes
of vegetation, but also to capture essential ecoclimate variations resulting from deforestation and
drought.

Our framework allows us to interactively explore complex ecoclimate phenomena by explicitly
considering climatic gradients. This is the first attempt that combines a detailed vegetation growth
model with a climate representation comprised of a hydrological cycle, heat transfer, and a light
model. Unlike existing methods in climatology that focus on physically detailed representations of
these processes, our goal is to find a light-weight description that emergently captures ecoclimate-
related phenomena. For this reason, we refrain from a detailed description of irradiance. Our
approach considers the geometry of individual plants, the terrain, and cloud formation to simulate
climates locally. We show that explicitly modeling 3D geometry and simulating physically and
biologically plausible scenes enables studying microclimate phenomena.

To summarize, our contributions are as follows: (1) we propose a novel model for simulating
ecoclimates that allows us to plausibly model vegetation-climate feedback loops for individual trees;
(2) our method is the first to simulate gradients of water, temperature and light which allows
capturing local phenomena of vegetation development, such as varying vegetation distribution at
forest edges, the formation of spots, stripes, and gaps, as well as complex geomorphic effects; (3) we
validate the plausibility of our method through numerous experiments and by comparing our results
to studies from ecology and climatology.

4.2 Related Work
In this section, we aim to provide an overview of terrain and vegetation modeling, weather simula-
tions, and modeling ecoclimates.

Vegetation Modeling. Modeling trees and plants has been content of computer graphics
research for decades. A key objective of this research is to generate plausible and realistic branching
structures of single plants and existing methods include fractals [14], repetitive patterns [15], L-
Systems [16], and rule-based techniques [17]. On a different trajectory, data-driven approaches aim
to reconstruct branching structures from images [18]–[22], videos [23], or laser-scanned point sets [24],
[25]. Furthermore, it has been recognized that user-defined sketches provide an efficient means
to generate realistic plant structures, while also considering artistic requirements [26]–[28]. More
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recently, methods aim to further improve the realism of plant models [29] ranging from explicitly
describing the environmental response of plants [30]–[32] to modeling with biological priors [33].
Previous work on plant dynamics ranges from modeling the growth process [34], [35], successfully
capturing biophysical and biomechanical deformations [36], and addressing plant plasticity [37], to
recent work on the machine learning-assisted acceleration of dynamic tree geometry [38]. Pirk et
al. [39], [40] and Hädrich et al. [10] introduce methods for coupling plant models with fluid dynamics
to capture the growth response in wind fields and the combustion process of plants. Similar to these
methods our goal is to couple detailed plant models with fluid dynamics, however, unlike them we
focus on large-scale ecosystems.

Plant Ecosystems. Methods for generating models of plant ecosystems aim to jointly compute
plausible distributions of plants and to represent plants with an appropriate level of geometric
detail [8], [9], [41]. A number of approaches exists that represent plant ecosystems as layers [42],
voxels [7], volumetric textures [43], through more principled level of detail strategies [44], or based
on simulating erosion feedback with vegetation [11]. Furthermore, it has been recognized that the
artistic authoring of ecosystems plays an important role [45], [46], which can even be facilitated
based on neural networks [47]. Furthermore, in forestry and ecology researchers widely explore stand-
based, individual-based, and agent-based models of ecosystems at various scales of abstraction. The
interested reader is referred to the surveys of Pretsch et al. [48] as well as Zhang and DeAngelis [49]. A
related work to the method we propose can be found in Ch’ng [50]. The work of Makowski et al. [13]
is the most advanced for simulating ecosystems with respect to climatic conditions and geometric
representation of plants: different plant biomes are simulated based on individual, spatially-adapted
plant instances and by considering temperature and precipitation as the driving factors of ecosystem
development and plant growth. In contrast to this work, our goal is to simulate the weather-based
growth response of individual plants and – in turn – to also simulate the impact of vegetation on
weather.

Weather and Cloud Simulations. Physics-based approaches for cloud modeling employ
Eulerian solvers to advect fluids for simulating different forms of clouds [51]–[53]. Due to the impor-
tance of clouds in various application domains, there exists a number of representations for clouds
that range from particles [54]–[56], position-based dynamics [57] to layers [58], interpolation-based
methods [59], and cellular automata [53]. However, despite these advances, simulating cloud dy-
namics remains a challenging research problem. Only very recently, Hädrich et al. [60] proposed a
physically-accurate solver for various cloud types and their formations that even enables the simula-
tion of precipitation in the form of rain. In this work, we apply this solver to simulate the interaction
of fluid dynamics and vegetation.

Vegetation Climate Response. Research in forestry, botany, and ecoclimates focuses on un-
derstanding the complex interplay of vegetation and climate. A number of methods investigate the
impact of climate and weather on vegetation to explain the dynamics and functioning of plants, for
example when exposed to climate warming [2], [5]. Furthermore, climate can have a profound influ-
ence on the self-organization of plant ecosystems, which results in the formation of spatial patterns,
such as labyrinths and gaps [1], [61]. Conversely, it has also been recognized that vegetation affects
weather and thus the climate. To understand this phenomenon, research focuses on establishing
models that allow us to investigate the impact of vegetation on the water cycle and the climate
system [3], heat transfer [62] as well as on understanding microclimate dynamics [5]. Vegetation
defines a complex surfaces that interfaces with the weather system. Therefore, a number of methods
investigate the impact of ecosystem composition on the formation of clouds [63], [64]. Many of the
existing approaches aim at defining accurate models for ecoclimates. However most of these meth-
ods cannot be directly applied to geometric models of plants or be used to simulate the emerging
phenomena of coupling weather and ecosystem at interactive rates.
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4.3 Overview
Our main goal is to increase the realism of plant ecosystem models by simulating the interaction
of vegetation, soil, and weather as shown in Fig. 27. The interaction of these models allows us to
define ecoclimates and to simulate the water cycle (Fig. 28).

Vegetation 
Model

Soil 
Model

Plant Species

Climate Graphs
Digital Elevation Model Weather 

Model

Inputs Ecoclimate Simulation

Interactive 3D Scenes

Figure 27: Framework overview: we employ models for vegetation, soil, and weather to simulate
eoclimates. Our system operates at interactive rates and thereby allows users to efficiently explore
configurations and parameters settings for plant species, terrain, and climate.

Precipitation

Evapotranspiration

Surface Water Uptake

Evaporation

Water Run-offSurface Heterogenity

Figure 28: We define ecoclimates by simulating the water cycle, including effects such as the water
infiltration and water uptake of plants from the soil, the evaporation and transpiration of water from
the ground and from leaves. Our model can realistically simulate the interaction of vegetation and
fluid dynamics, resulting in complex microclimates.

In our framework we have integrated and extended a tree growth model for large-scale plant
ecosystems [13]. Tree models are composed of a number of self-organizing branch modules that
define the 3D branching structure of a tree model. Modules can be instantiated and are used
multiple times across the same tree as well as across other trees in the ecosystem. The advantage
of this module-based representation is that it enables the efficient processing of large collections of
plants. This means that we simulate the developmental process of the ecosystem as a collection of
individually interacting plants, which results in unique and realistic branch geometry.

To simulate the atmosphere we integrated and extended a state-of-the-art method for simulating
cloud dynamics [60], which allows us to capture various weather conditions and the formation of
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clouds. We couple the atmosphere and vegetation model by introducing a novel soil model. The
soil model describes water infiltration into the soil as well as the water uptake by individual plants,
which in turn can transpire water back to the atmosphere. Important to our work is that the
coupling of fluid dynamics and plant ecosystems enables us to locally define the interactions of
plants and weather – plants respond to the changes in the weather model, while the weather model
is simultaneously affected by the vegetation. Sampling the weather over time establishes the climate
for a simulated ecosystem.

In summary, we couple a module-based representation for vegetation with a state-of-the-art
atmosphere model and a novel soil model for water infiltration. This allows us to model the feedback
loops between vegetation, soil, and atmosphere to simulate essential ecoclimate phenomena.

4.4 Ecoclimates
Relatively recently earth’s climate has been described by a system of several interacting spheres [65].
The main components of this earth system are the atmosphere (air), hydrosphere (water), cryosphere
(frozen regions of earth), biosphere (living organisms), pedosphere (soil), and anthroposphere (hu-
mans). The major mediators between these different spheres can be defined by temperature and
water in various phases. In this work, we emphasize the role of the climate on the biosphere: the
ecoclimate.

In the atmosphere, water undergoes phase transitions between condensed form and rain. When
liquid water reaches the ground as rainfall some of it drains downward due to the force of gravity.
This vertical flow of water is called infiltration. The water that infiltrates into the soil is stored
as soil water. When the infiltration capacity of soil is exceeded, water collects as puddles in
small depressions of the ground surface. When these are filled, water runs off over the ground
surface as overland flow. Soil water returns to the atmosphere through evaporation from bare
ground and transpiration from plants. Evaporation is understood as the physical process by
which water turns from liquid to vapor in the air. Transpiration is evaporation of water held inside
plants. Due to the difficulty in clearly separating these processes, they are also jointly referred to
as evapotranspiration. Plants consume large amounts of water during growth. However, plants
cannot grow if leaf pores (stomata) are not open. In case stomata have opened, water contained in
the leaf may diffuse out as transpiration. If too much water is lost, the plant becomes desiccated
and will die in case its internal water is not replenished through the roots from water in the soil.
Therefore, plants have to compromise between the need to transpire and grow, and to prevent water
loss and not grow.

The complexities of the hydrologic cycle on land can be reduced to a simple form in which the
change in soil water (∆qw) is the balance between water input from rainfall (R), water loss from
evapotranspiration (E), and water lost as runoff (qo). This cycle has a major impact on vegetation
growth patterns, such as spatial self-organization of plants due to climate variations, forest
edge effects which are defined by stark climatic gradients, and the influence of the topography on
vegetation (geomorphic effects).

Conversely, wet soil or dense vegetation matter creates a cool, moist atmospheric boundary layer
which may feed back to increase precipitation. In addition, rough surfaces such as forests generate
more turbulence of air flow compared to smoother surfaces such as grasslands. A smoother surface
can lead to a warmer, drier atmospheric boundary layer and therefore to different cloud formation.
The surface characteristics of a given geographic location are described as surface heterogeneity.
This bidirectional coupling of ecosystems and climate occurs over a continuum of timescales from
minutes to seasons to millennia.
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4.5 Model
For a realistic 3D simulation of ecoclimates we formally describe cloud formation and plant growth
at a detailed geometric scale. Our ecoclimate model is distinguished by a vegetation model based on
space-constrained plant growth (Figure 29a), a soil model describing terrain hydrology (Figure 29b),
and a weather model simulating fluid dynamics (Figure 29c).

(c) Weather  Model

Condensed Water qc

Water Vapor qvSoil Water qw

Plant Density B

(i) Vapor Map

Surface Water qo

(b) Soil  Model

dt = 1 month dt = 10 seconds

(d) Climate DataPlant Species (g) Digital Elevation 
Model

(h) Plant Growth

(f) Evaporation

Evapotranspiration

Plant P

Module U

(j) Ecosystem

(a) Vegetation Model

Ecosystem Geometry
Transpiration

Rain qr

(e) Precipitation Map

User Input

Rainfall R

Figure 29: Detailed overview of our ecoclimate model. Our model can be distinguished by a vegeta-
tion (a), soil (b), and weather model (c). We explicitly describe the water cycle which mediates the
feedback between the three models. While the weather model describes dynamic cloud formation
over time scales of seconds the vegetation and soil model describe phenomena occurring on time
scales of months. A user provides input in the form of a set of plant species, a digital elevation
model and data describing macroclimatic variation over time. A description of the processes that
our model is able describe and the underlying hypotheses expressed by our ecoclimate model is given
in Section 4.5.3.

4.5.1 Spaces

To simulate ecoclimates based on the vegetation, soil, and weather models we rely on four different
spaces as illustrated in Fig. 31. First, we define a continuous 3D space in which we embed a digital
elevation model and vegetation geometry that is suitable for 3D rendering (Ecosystem Continuous
Space). For most of our scenes we define terrains of size 4 km2. Second, we use a 3D voxel space with
a resolution 1.5 m to compute light exposure and temperature values to express plastic development
of plants (Ecosystem Voxel Space). Third, we define 2D grids with a resolution 1.5 m to store
values for average monthly vapor and precipitation over the terrain (Vapor and Precipitation Maps).
Finally, we use a 3D voxel space with a resolution 20 m for our cloud simulation (Weather System
Voxel Space). Exchange of water quantities between Weather Voxel Space (WVS) and Ecosystem
Voxel Space (EVS) is facilitated via vapor and precipitation maps. The use of precipitation and
vapor maps to express components of the hydrological cycle instead of operating on the respective
3D grids improves the computational efficiency of our method. The local storage of water, light
exposure and temperature values defines the microclimate in our method.
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Figure 30: We use the monthly average temperature (red) and precipitation (blue) as input to our
framework. Two different temperature and precipitation graphs for San Diego and Juno shown as
example inputs.
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Figure 31: Mathematical spaces used in our framework. We use a continuous space to embed terrain
surface and vegetation meshes used for 3D rendering (a); a discrete 3D grid composed of cubic voxels
to store temperature and light information relevant to computing ecosystem development (b); a vapor
and precipitation map to transfer data about water and temperature between individual models of
our method (c); and a discrete 3D grid composed of cubic voxels for calculating the dynamics of
fluid motion (d).

4.5.2 Input and Output

Our framework allows us to interactively explore ecoclimates. To define an ecoclimate a user can
specify a terrain (digital elevation model) and a set of plant species. We use the the method of
Makowski et al. [13] to design a set of plant species P . This method requires setting a number of
parameter values that define plant growth in an ecosystem, such as for shade tolerance, precipitation
and temperature adaptation.

A macroclimate is defined as a set of monthly average values for temperature and precipitation
describing climatic variation during an average year. Examples of two macroclimates for different
geographic locations are shown in Fig. 30. Moreover, a user can specify a wind field that defines
additional input for the fluid dynamics. Our framework allows to specifiy a wind vector fw applied to
all grid cells of the Weather Voxel Space. The wind field can either be defined manually or obtained
from online weather services as shown in Hädrich et al. [60].

The output of our algorithm is terrain surface mesh and a set of 3D plant models with their
geometry adapted to their environment. Plant models are defined as sets of branch modules which
are used multiple times across the same plant and within the entire ecosystem. Each module is
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individually adapted to its location in the plant and its geometry is generated on the GPU. This
way modules can be instantiated, which facilitates the efficient rendering of large plant collections.
In addition, condensed water qc in the Weather Voxel Space is rendered as clouds using volume ray
marching.

4.5.3 Hypotheses

We aim to create an ecoclimate model that expresses realistic vegetation growth and cloud dynamics,
as well as the feedback loops between them. This feedback is mediated by water and temperature
quantities stored in the Ecosystem Voxel Space, vapor and precipitation maps, and the Weather
Voxel Space. In the following we list the major hypotheses described by our formal model:

1. Water is treated as an extensive quantity that can vary according to global weather influx as
defined by the macroclimate input (Fig. 29d, Sec. 4.5.7).

2. Water in the atmosphere undergoes phase transitions between vapor qv, rain qr, or in condensed
form qc as proposed by the Kessler scheme [66] (Fig. 29c, Eqs. 47, 48, 49).

3. Rain R increases the amount of surface water qo (Fig. 29e, Eq. 44).

4. Surface water qo moves by diffusion, is advected by the slope of the terrain v, evaporates back
into the air as qv, and can infiltrate into the soil (Fig. 29b, f, g, Eq. 44).

5. Water infiltration into the soil is proportional to the density of plants B (Fig. 29b, Eq. 43).

6. Plants P take up soil water qw and transpire it as qv to grow (Fig. 29a, h, i, Eq. 43).

7. Plant growth is expressed by competition for light, apical control, tropisms, flowering, climatic
adaptation, shade tolerance and seed dispersal (Fig. 29i). For a more detailed explanation
please see Makowski et al. [13] (Secs. 5.2-5.3, 6.1-6.4).

8. Plants P decrease light exposure and temperature (Fig. 29j, Sec. 4.5.5.1). For a more detailed
explanation please see Makowski et al. [13] (Sec. 6.2).

Hypotheses (1-5) are described by partial differential equations. Whereas, hypotheses (6-8) are
described by a discrete, graph-based method. Both the continuous and discrete formalism exchange
quantities between each other. Specifically, the density of plants B is computed from the number
of plants P and the growth of plants P is modulated by the soil water qw. This means that we use
a coupled continuous and discrete formalism to describe the major empirical hypotheses underlying
our ecoclimate model.

4.5.4 Time Scales and Model Integration

It is important to note that our ecoclimate model operates on two different timescales. The simula-
tion of vegetation development and water cycle in the soil takes place at a timescale of one month
∆tE (Fig. 32 indicated by green horizontal line). This timescale allows us to simulate the long-
term development of plant ecosystems and consequently the vapor maps necessary for computing
corresponding weather variations for a given month. To simulate the annual variation of climate,
we define 12 unique weather conditions for each month by defining macroclimatic vapor and heat
emission (Sec. 4.5.7). For each month we simulate weather at a small time scale (10s-60s) until
we obtain a plausible sample of the local weather conditions for a given day. Sampling monthly
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Figure 32: We simulate ecoclimates at two time scales. First, we sample daily weather conditions
by simulating weather over a period of time at a time step of 10s (dashed blue lines). Second, we
obtain a precipitation map to represent the monthly weather conditions by simulating weather for
a number of days each month. These monthly average weather conditions are used as input for the
ecosystem simulation which uses a time step of one month (green line). After a step of ecosystem
simulation we compute a vapor map as input for the subsequent month of weather simulation.

weather multiple times allows us to obtain an average temperature and precipitation profile for
a given ecosystem (Fig. 30) that we store as a precipitation map (Fig. 32). The partitioning of
monthly weather simulation into batches of individual days allows us to use plausible precipitation
profiles for a given ecosystem. The coupling of weather and ecosystem simulation based on maps of
precipitation and vapor defines the ecoclimate feedback loop in our model.

4.5.5 Vegetation Model

We use the method introduced in Makowski et al. [13] to model vegetation development. This
method allows modeling the growth of a large number of interacting plant instances while maintaining
an individual, geometric representation at branch scale. Furthermore, this method also describes
climatic adaptation, shade tolerance, and seed dispersal strategies to place plant models realistically
into an environment.

A plant model in our simulation is represented as an ordered tree graph of connected modules
u ∈ U (plant graph) embedded in a continuous 3D space representing the environment and a set of
plant type parameters χ – altogether this defines a plant P . A module represents the skeletal graph
(defined by nodes c ∈ Cb) of a branch cluster. During simulation time we express plant development
by modifying the plant graph through adding, removing or adjusting modules. At each simulation
step we calculate plant development based on light exposure values obtained for each module to
express constraints of space and to avoid module collisions. When new modules are added to the
plant graph they are interpolated from an axiomatic developmental stage (a single branch segment)
to a maximally developed stage. The maximally developed stage is defined by one of nine pre-defined
branch templates (as illustrated in Fig. 33).

To express the invasion of foreign species that did not start in the initial scene we place, with
uniform distribution, seeds of other plant types at fixed time intervals (global seeding). We compute
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Figure 33: Module-based plant representation: plants are composed from a set of modules (a).
Modules adapted through self-organization and are reused across the same plant and the entire
ecosystem (b). Once the branch graph has been defined we generate the final plant geometry as
illustrated in (c).
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Figure 34: Our model describes the interaction between the available water and the vegeation (a).
We define maps to store the average monthly vapor (b) and precipitation (c) of a terrain. Based
on these maps we define the exchange of water quantities between the Weather Voxel Space and the
Ecosystem Voxel Space.

a climatic adaptation parameter o that scales the global seeding interval for all plant types defined
for the scene:

o = NT (T ) · NP (qw)
NT (TA) · NP (PA) , (38)

where NT (·) and NP (·) denote the normal distributions of local temperature (mean is T ) and local
soil water (mean is qw) which are obtained by reading the values from the voxel cell where the plant
is located (Ecosystem Voxel Space). In contrast to Makowski et al. [13] (Sec. 6.4), where global
temperature and precipitation values are used to linearly interpolate the maximum value of vigor
(vr) by o, our local sampling enables simulating microclimates.

4.5.5.1 Calculating Vapor Maps In the final step of a cycle of the development of vegetation
we calculate vapor maps which are used as input data for the weather model (Fig. 34, b). We project
all modules into a 2D grid. Then each grid cell that contains the geometric center of a module is
updated with its biomass, scaled by a transpiration coefficient τ to define a final vapor value Ep at
this cell

db =
{ √∑

c∈Cb d
2
c , Cb 6= ∅ ,

φ, otherwise ,
(39)
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`b = min(`max, β · ab) , (40)

Mm =
∑
u∈U

∑
c∈Cb

`b(2db)2πρ , (41)

Ep = τ
∑
u∈U

Mm,u . (42)

where db denotes branch segment diameters, ab the age of a branch segment, `b branch segment
lengths, and Mm the total mass of a module u. β is a scaling coefficient. `max the maximum
length a branch can attain and ρ the average wood density. This process describes the amount
of evapotranspiration over the terrain during a period of growth in our method. Furthermore, we
define the cooling of air induced by plants by linearly interpolating the weather temperature to a
minimum temperature Tsh in complete shade by the light exposure value Q of the Ecosystem Voxel
Space. This linear interpolation of Q values represents a coupling of the Weather Voxel Space with
the Ecosystem Voxel Space. Both voxel spaces are embedded in the Ecosystem Continuous Space
which allows us to coherently sample them.

4.5.6 Soil Model

Our soil model expresses the change of soil (∂qw) and surface water (∂qo) due to precipitation (R),
and the plant density (B). The model describes the interaction between the available water and
the vegetation (Fig. 34, a). This interaction occurs on different time scales between the spreading
of water and of vegetation growth which leads to spatial vegetation patterns. The soil model is
defined by a set of partial differential equations which are coupled to the dynamics of the discrete
vegetation growth model. It is therefore neither continuous nor discrete but instead represents a
hybrid modelling approach. The differential equations are:

∂qw
∂t

= α · qo ·
B + k2 ·W0

qw + k2
− gmax ·

qw
qw + k1

B

−rw · qw +Dw ·∆qw + vw∇qw ,
(43)

∂qo
∂t

= R− α · qo ·
B + k2 ·W0

qw + k2
+DO ·∆qo + vo∇qo , (44)

where gmax is the maximum water uptake, k1 is a half-saturation constant of water uptake, α is
the maximum infiltration rate, k2 is the saturation constant of water infiltration, W0 is the water
infiltration rate in the absence of plants, rw is the specific soil water loss due to evaporation and
drainage, Dw is the diffusion coefficient for soil water, R is precipitation (Sec. 4.5.7.2), and DO is
the diffusion coefficient for surface water. Plausible parameters were obtained from the literature
[67], [68] A Laplacian operator is used to express water diffusion. We account for the slope of the
terrain to model water runoff by adding advection terms vw∇qw and vo∇qo, in which vw and vo
represent the downhill flow. The two-dimensional numerical simulations are solved using the forward
Euler integration scheme resulting from the spatial discretization (precipitation map) of the diffusion
operator.

In each simulation step, the plant density B (Eq. 43–44) of each grid cell is calculated by summing
the biomass values of all the plant models Pi located in this cell. The plant models Pi are defined
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by the vegetation model in Section 4.5.5:

B =
∑
Pi∈P

Pm,i
A

, (45)

Pm,i =
∑
u∈U

Mm,u , (46)

where Mm,u is the mass of module u of a plant model Pi, and Pm,i the total biomass of the plant,
and A the area of a side of a voxel cell. This coupled continuous and discrete model exhibits a
Turing-like mechanism similar to the continuous model proposed by HilleRisLambers et al [68]. It
is characterized by a short-range negative feedback and a long-range positive feedback of vegetation
on itself (Eq. 43). Please note that these type of reaction-diffusion models are used to describe a
variety of pattern formation, e.g. pigmentation patterning in flowers [69].

4.5.7 Atmosphere Model

Our weather model is based on the method described in Hädrich et al. [60] which includes additional
derivation steps of the equations introduced here. This method enables a realistic simulation of
the exchange of water, vapor, and heat between parcels of air and the terrain. Furthermore, it
captures turbulent air flows enabling the simulation of a range of phenomena such as stormscapes
and dynamic transitions between different cloud types.

Our weather model can be divided into an atmospheric model that describes temperature and
pressure changes as a function of altitude and time, a 0D thermodynamics model that defines local
forces and the formation of clouds, and the fluid dynamics model defining the motion of air in
the atmosphere. The complex terrain-cloud feedback in the original method is expressed by noise
functions defining ground vapor and heat values introduced at the bottom domain boundary of
the fluid field. These functions are scaled by vapor V and heat emission E. Here, we extend the
notion of ground vapor and heat by assuming that vapor and heat can be added from any boundary
to the fluid domain to represent influx from the macroclimate. We refer to this vapor and heat
as macroclimatic vapor EM and heat E. Unlike Hädrich et al. [60] the cloud-terrain feedback is
expressed in our model by the Ecosystem Voxel Space and the vapor maps generated by the soil and
vegetation model. We add macroclimatic vapor EM and evapotranspiration Ep stored in the vapor
maps to the boundary of the Weather Voxel Space.

4.5.7.1 Fluid dynamics To account for phase transitions of water in the air, i.e. from water
vapor qv to condensed cloud qc, and rain qr, we extend Kessler’s methodology [66]. Using the
material derivative Dtϕ = ∂ϕ/∂t+ υ · ∇ϕ [70], the transport equations are

Dtqv = −Cc + Ec + Er + Ep + EM , (47)
Dtqc = Cc − Ec −Ac −Kc , (48)
Dtqr = Ac +Kc − Er , (49)

where the source term Cc denotes condensation, Ec the evaporation of clouds, Er the evaporation of
rain from the ground, Ac autoconversion of raindrops from clouds, Kc the accretion of cloud water
due to falling water drops, EM the macroclimatic vapor, and Ep the evapotranspiration of plants.
EM is calculated from the macroclimatic vapor function and Ep is obtained from the vapor maps.
Ep and EM are non-zero only at the domain boundary (representing the terrain). Fig. 35 illustrates
the phase transitions of water encapsulated by this model. Please refer to the derivation of the
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source term Cc, the remaining variables, as well as the numerical implementation to Hädrich et al.
[60].

Condensation:

Evaporation:

Autoconversion:

Accretion:
Evaporation:

Macroclimatic Vapor:  
Plant Evapotranspiration:  

Figure 35: Illustration of our extended Kessler’s scheme [66] for modeling the transport between
surface water, soil water, vapor, cloud water, and rain.

4.5.7.2 Calculating Precipitation Maps To simulate the yearly variation of weather over
a terrain we rely on our weather model to generate precipitation maps (Fig. 34c). These maps
contain the input for the soil model describing the hydrological cycle on the ground. This provides
us a detailed enough description to express a variety of microclimatic phenomena (e.g. forest edge
effects). The macroclimatic parameters for the corresponding time in the year are obtained using
the climate interpolation functions p0 and T0. Next, we simulate cloud formation for a fixed number
of time steps, e.g. 10-100 steps. We then project the rain values qr of each cell from top to bottom
(a column in voxel space) of the grid as rain R into the precipitation map:

R =
∑
qr∈Qr

qr . (50)

The variable R is used to compute the surface water qo (Eq. 44). This process is repeated a number
of times for each month to express a daily variation of weather conditions. To express this idea
formally we sample a normal distribution of EM and θ once for each day to finally obtain an average
precipitation map for the given month. We compute 12 average precipitation maps representing the
monthly rainfall over a year by using 12 sets of macroclimatic parameters (T0, p0) based on a climate
graph (Fig. 30).

4.6 Implementation Details
We have implemented our interactive framework using C++, DirectX and CUDA. To generate the
results shown in this chapter we used an Intel(R) Core i5, 4 x 2.5GHz with 8GB RAM, and a NVIDIA
Geforce GTX 1050 GPU (4 GB RAM). We used the L3DT Terrain Editor to generate terrain meshes.
The figures shown throughout the chapter are rendered with our interactive framework. Details
about the plant types are provided in Tab. 2.

Joining models expressed with different formalisms, namely the continuous formulation of soil
and weather with the discrete representation of vegetation is a non-trivial implementation task. At
the beginning of each update step, we compute a set of parameter values for the weather simulation
runs that will serve to represent annual weather conditions (Alg. 1, Lines 2-4). We then simulate for
each instance of climatic conditions ψ a weather scene (Alg. 1, Lines 5-10). For the implementation
of the fluid solver we rely on the integration scheme described in Hädrich et al. [60], which includes
diffusion, advection and pressure projection (Alg. 1, Lines 5-10).

The WVS is used to store all relevant quantities representing the state of the weather simulation.
For the advection process, we employ no-slip conditions at the bottom and free-slip conditions at
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the ceiling. The vertical velocity is set identically to zero at the side boundaries and if an external
wind field is specified, the horizontal velocities are computed as the corresponding wind speeds.

We provide the input for the soil simulation in the form of 2D precipitation maps obtained from
the WVS (Alg. 1, Line 10). The soil is represented by two 2D grids representing the surface and
soil water. We use Eulerian solvers to compute the diffusion and advection of water [71] based
on the input of rain R obtained from the precipitation map (Alg. 1, Lines 11-14). We use free-slip
conditions at the boundaries.

Next, we compute the light exposure values for the EVS. After computing local light and soil
water values we initiate the growth simulation of vegetation for all plants P of a scene S (Alg. 1,
Lines 11-14). First, we compute vr based on the climatic adaptation parameter o which is obtained
from the local temperature T and soil water qw as described in Eq. 38. Then, we traverse all modules
(M) of a plant P to compute their state changes, as well as orienting and positioning plant modules
using stochastic gradient descent (Alg. 1, Lines 18-22) as outlined in Makowski et al. [13]. Finally,
we update vapor and temperature values in the WVS based on the new state of the vegetation
simulation and seed new plants in the scene (Alg. 1, Lines 24-27).

ALGORITHM 1: Overview of our numerical procedure.
Input: Current system state.
Output: Updated system state.

1 Procedure:
2 for each γ ∈ Γ do
3 | Compute normally distributed pair of E and EM as vector ν
4 based on annual climate profile as described in Sec. 4.5.4.
5 for each ψ ∈ Ψ do
6 | Update atmospheric temperature T (x). Diffuse, advect and
7 pressure project temperature θ, field u and atmospheric
8 water content qj following the Eulerian solver
9 of Hädrich et al. [60].

10 | Update precipitation map as described by Eq. (50).
11 Compute water transfer between soil surface
12 and atmosphere as explained in Eq. (42).
13 Compute water exchange between surface, soil and plants
14 as explained in Eqs. (43), (44).
15 for each P ∈ S do
16 | Update Light exposure values in EVS according to shadow
17 propagation algorithm as described in Makowski et al. [13].
18 for each P,M ∈ S do
19 | Compute vr as explained in Eq. (38).
20 | Compute vigor values for all modules, shed branches and remove
21 plants, update module positions and orientations using SGD, as
22 described in Makowski et al. [13].
23 for each P ∈ S do
24 | Update vapor values Ep in WVS as described in Sec. 4.5.5.1.
25 | Update temperature values T in WVS as described in Sec. 4.5.5.1.
26 | Seed new plants as described in Makowski et al. [13].
27 end
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4.7 Results and Evaluation
In this section we describe how our ecoclimate framework can be used to model highly complex
and realistic landscapes. As we are proposing a large parameter space our main goal is to carefully
validate our results based on a range of different experiments that assess the impact and usefulness
of each of the introduced models – atmosphere, soil, vegetation. The main advantage of our model,
compared to other approaches that consider modeling the macroclimate (e.g. Makowski et al. [13]),
is the simulation of a microclimate. Consequently, we can generate more realistic landscapes with
a larger variety of ecoclimate phenomena. We consider our method to be interactive, meaning we
generate all results with frame rates high enough to allow for a fast response of the simulation to
user interaction. Finally, we compare our simulation results to recent theoretical studies of climatic
changes and real world examples.

4.7.1 Ecoclimate Dynamics

Jointly simulating the soil, vegetation, and atmosphere models generates feedback loops that allow
us to capture effects of climatic changes mediated by the water cycle. Specifically, we show that
our atmospheric model is able to represent different climatic conditions by providing examples of
a variety of cloud formations. We also establish that the dynamics of the atmosphere affect the
development of the vegetation model. Conversely, we show that the development of vegetation
influences the atmospheric conditions which – in turn – may lead to changing cloud formations.

4.7.1.1 Atmosphere Similar to previous results on cloud formation [60] we also simulate cloud
dynamics. Unlike the previous work we couple our vegetation and atmosphere models through a
dynamically computed vapor map, which allows us to establish the necessary feedback loop between
vegetation and atmosphere. In Fig. 36 we vary parameter values for vapor and heat emission of the
macroclimate over the same boreal forest patch. This parameter space exploration results in the
formation of different cloud types ranging from foggy clouds to stratocumulus and cumulus clouds.
For this experiment we extended the model of Häedrich et al. [60] by using a vapor map obtained
from the vegetation simulation, described in Section 4.5.5.1, instead of a vapor map defined by a
noise function.

4.7.1.2 Atmosphere-Vegetation Our framework allows us to simulate the impact of the at-
mosphere on the vegetation. The interaction between atmosphere and vegetation models is defined
by a precipitation map, which is used to provide soil water necessary for vegetation growth. This
means, that changing atmospheric conditions of macroscopic vapor will impact vegetation develop-
ment. In Figure 37 we demonstrate the atmosphere-vegetation feedback by simulating an ecoclimate
in the Yosemite Valley around Half Dome (a) resulting in a dense population of pine trees (a, in-
set). Reducing the macroscopic vapor leads to a reduced availability in soil water resulting in forest
dieback (b). In this case, ribbon-like structures of pine trees emerge as result of this climatic change
(b, inset). Further decreasing the vapor eventually causes more trees to die (c), which leads to an
arid landscape with fewer and feebler trees (c, inset).

The visual forest patterns emerging due to changing climatic conditions are very complex. In
Fig. 40 we show the transition of a tropical forest to an arid landscape by reducing the macroscopic
vapor gradually with simulation time. The tropical forest is characterized by 6 species which are
organized in a mixed stand (a). As precipitation decreases to 3700mm the less well-adapted tree
species die back forming large forest gaps (b). This allows fast growing and more climate-adapted
species to proliferate, changing the forest composition in the process (c, 2500mm). As the climate
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Figure 36: We varied macroclimatic parameters of vapor and temperature to approximate different
cloud types for the same ecosystem scene. This includes clouds types such as stratocumulus, stratus,
and cumulus.

Figure 37: Forest growth in the terrain around Half Dome in the Yosemite National Park: We
simulate an ecoclimate with a dense population of pine trees (a). We then modify vapor values and
continue growing the forest to simulate a change of climate. Typical ribbon-like structures emerge
due to spatial patterning of plants (b). Finally, severe forest dieback occurs resulting in an arid
landscape with fewer an feebler trees (c).

Figure 38: Illustration of a climatic change for a small vegetation patch: our approach represents
trees with individual branch geometry, which allows trees to individually adapt to changing condi-
tions. From initially beneficial conditions (a), we gradually decrease average precipitation from 1200
mm to 100 mm (b-h). The more precipitation-adapted oak trees exhibit changes to its architecture
before the less precipitation-adapted pine trees. After shedding most of its branches the oak trees
continue to adapt to the drier conditions growing even under severe water stress (e, f). Shrubs
continue to grow throughout the drought conditions as they are highly adapted to either climate.

Figure 39: Results of evapotranspiration from vegetation: we set microclimatic parameter values
constant in four different biomes. The plant species determines the evapotranspiration rate of a
plant leading to different cloud formations in a shrubland (a) and a patchy oak forest (b). In (c)
we show denser cloud formations over a pine forest; by reducing the density of pines less vapor is
available for cloud formation (d). Please note that clouds in the images are rendered at low altitudes
for visualization purposes.
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Figure 40: In this result we demonstrate the visual complexity of ecosystems in relation to climate
dynamics. A tropical forest scene with 4300mm average annual precipitation contains six mixed
species uniformly distributed across the terrain (a). As precipitation decreases to 3700mm the less
well-adapted tree species die back forming large forest gaps (b). This allows fast growing and more
climate-adapted species to proliferate, changing the forest composition in the process (c, 2500mm).
As the climate further changes plant species segregate to exploit climatic niches on the terrain (d,
1260mm). Finally, continued precipitation decrease results in arid vegetation pattern (e-f, 900-
400mm).

Figure 41: Our method models the feedback between vegetation, soil, and weather. To illustrate
this, we conduct a deforestation experiment while keeping the macroclimate in our weather model
constant. In (a) we show a tropical rainforest with cumulus clouds. In (b) we remove a large portion
of the rainforest thereby modifying the vapor emission from the terrain. Consequently, fewer cumulus
clouds form, especially over the deforested area. After continuing ecosystem growth cloud formation
increases slightly (c). Only after significant portions of the rainforest have regrown, cumulus cloud
formation is restored (d). Please note that clouds in the images are rendered at low altitudes for
visualization purposes.
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further changes plant species segregate to exploit climatic niches on the terrain (d, 1260mm). Finally,
continued decrease of precipitation results in arid vegetation pattern.

In Fig. 38 we show a close-up simulation of a changing climate on a smaller patch of vegetation
consisting of oaks, pines and shrubs. Our framework specifically models both the above-ground as
well as below-ground interactions between different plants. This allows us to generate vegetation
structures with unique geometries adapted to their local environment. For example, in (a) - (d)
the right oak tree sheds its left facing branches first due to the shade of the nearby pine tree.
Furthermore, after the oak trees lose most of their branches and their shade impact vanishes, shrubs
grow into the space with the now better light conditions (g) - (h). These detailed above-ground
vegetation interactions could not be simulated by soil-mediated interactions due to the coarseness
of the precipitation and evaporation maps.

4.7.1.3 Vegetation-Atmosphere To validate the impact of vegetation on the atmosphere we
conducted the following experiment: we selected four different ecosystems with the same atmospheric
conditions – parameter values are identical across all scenes. Then, we simulated the atmospheric
model for the exact same amount of steps of weather simulation. Figure 39a shows an arid shrubland
comprised by a species with a low evaporation rate. In this case, only a small, faint patch of clouds
is forming over the terrain. In contrast, a young oak forest with a high evaporation rate generates
more visible clouds as depicted in Figure 39b. In Figure 39c, d we created two different pine forests
with the same evaporation rate. The overall higher biomass of the denser pine forest (Figure 39c)
results in higher vapor values in the vapor map and consequently in the formation of cumulonimbus
clouds. In contrast, the sparser pine forest with overall lower vapor values generates only faint cloud
formation (Figure 39d). These results showcase the feedback of vegetation on the atmosphere via
plant evaporation rates and biomass.

4.7.2 Microclimate

The main motivation behind our ecoclimate model is to describe the feedback loops between soil,
atmosphere and vegetation locally. Therefore, all spaces used to represent the soil, atmosphere and
vegetation components of our ecoclimate model are described by grids. This local representation
allows us to express spatial gradients of temperature, light availability and water representing the
microclimate. In contrast to a global definition of climatic parameters such as used in [13], this
enables simulating various important phenomena controlled by the microclimate. We demonstrate
the usefulness of a local, bidirectional vegetation-soil feedback by simulating the effects of topography
of vegetation growth and the plausible vegetation growth dynamics at forest edges. Furthermore, we
present the Foehn effect as an example of how a local description of the atmosphere allows modeling
realistic vegetation distribution along mountain sides. Finally, we show how deforestation can locally
affect the atmosphere by changing cloud formation dynamics.

4.7.2.1 Geomorphic Effects and Plant Cooperation Our method emergently expresses the
effects of the topography on vegetation growth via the hydrological cycle. In Eq. 44 of the soil model
we describe the diffusion and run-off of surface water based on ground slopes. Water infiltration is
diminishing with the steepness of slopes. Consequently, this means that plant development is affected
by the geomorphology of the terrain – more water is available in terrain crevasses. Therefore, soil
water can establish elevational gradients of species distributions. Additionally, we model that the
presence of vegetation improves soil permeability based on Eq. 44. This allows us to simulate
plant species cooperation: less precipitation-adapted species serve as pioneers for improving soil
permeability, which consequently becomes a preferential habitat for a more precipitation-adapted
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species. Geomorphic controls on vegetation composition and plant species cooperation are well
documented in scientific literature [65], [72].

In Fig. 42 we show the results of an ablation study of the impact of the soil model with enabled and
disabled microclimate. We compare two identical developing ecosystems that are comprised of two
plant species. The yellow plant species is more precipitation-adapted than the green species. After a
few iterations, in both microclimate-enabled (top) and microclimate-disabled (bottom) simulations
the distribution of yellow and green species is similar (a, e). However, after further development
an elevational gradient for the green species is emerging in the microclimate-enabled case (b, c),
whereas the microclimate-disabled simulation exhibits uniform growth (f, g). After soil permeability
has been increased by the green species, the more precipitation-adapted yellow species appears in the
crevasses of the terrain for the microclimate-enabled case (d) – an example of species cooperation.
The microclimate-disabled simulation does not capture this succession of species (h). This result
demonstrates that our model effectively captures emergently plant species successions by simulating
competition as well as cooperation.

4.7.2.2 Edge Effects It has been recognized that human-caused forest fragmentation leads to
increased edge effects, e.g. in the South American rainforest [73]. Edges of forests are known to
exhibit steep climatic gradients which lead to different vegetation distribution, species richness, and
vegetation growth attributes.

Our microlimate models allows us to emergently simulate edge effects. In Fig.43 we show the
results of an developing ecosystem composed of four different plant species. Three smaller species
are more drought-adapted compared to a taller climax species. Initially, we start with a mixed
stand of plants (a). Over time, the locally varying microclimate leads to drier regions at the forest
edge and a wetter region inside the forest. This causes the drought-adapted species to preferentially
grow at the edges of the forest, while the climax species favors the wetter interior (b). To show the
emergence of edge effects we removed all tree models near the center line of the forest patch (c).
The regrowing forest patch exhibits similar edge effects as before, where drought-adapted species
develop near the center line (d). This phenomenon is completely dependent on a local specification
of the climate and cannot be obtained by non-local ecoclimate models.

4.7.2.3 Deforestation Effects Simulating vegetation in a detailed and individual-based way
also allows us to express a local vegetation-atmosphere feedback. We demonstrate this in Fig. 41
where we show an extreme case of this feedback to cloud formation. By keeping the macroclimatic
parameter values constant during the simulation we ensure consistent cloud formation patterning
over a dense rainforest landscape (a). Then, we remove a large patch of the rainforest, which results
in drastic changes to the values stored in the vapor map. As a result, vapor values in the Weather
Voxel Space above the deforested area drop below the cloud formation threshold (b). Finally, we
continue vegetation growth for several years until clouds are again observable above the previously
deforested region (c, d). In our simulation, each plant of the vegetation model contributes through
evaporation to the hydrological cycle leading to local variations of the atmosphere. This local
feedback is a novel topic of climate research and referred to as surface heterogeneity control of cloud
formation [63].

4.7.2.4 Foehn Effects As another example for the importance of the microclimate we simulate
the Foehn effect – a phenomenon that requires a local atmosphere-vegetation feedback instead of
a purely global one. The Foehn effect is characterized by a temperature gradient resulting from a
laminar wind flow over a steep mountain ridge. This atmospheric change may impact vegetation

63



Figure 42: Comparison to [13]: Temporal progression of a developing ecosystem composed of a
drought-adapted green-leaved and a yellow-leaved species generated with microclimates (a-d) and
without microclimates (e-h). The inclusion of microclimates allows for more realistic patterning
of vegetation at the slopes of the terrain capturing geomorphic effects. Additionally, patterns of
self-organization emerge as the yellow-leaved species establishes itself primarily in the valleys of
the terrain after water infiltration is sufficiently improved through the presence of the green-leaved
species (top row): a case of plant cooperation (d and h, inset).

Figure 43: A mixed stand forest patch emerging from centrally distributed seeds of four different
species (a). After further simulation a climax species establishes itself in the center of the forest
patch with the remaining species at the forest edges due to microclimates (b). We interactively cut
back trees to fragment the forest into two patches (c). After several years plants grow back into the
gap with similar species distributions at the edges as before the disturbance (d). Our microclimate
model realistically captures increasing edge effects due to forest fragmentation. In the bottom row
we visualize plant species with colors red, blue and yellow for edge species and green for the climax
species.
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Figure 44: Our method is able to capture complex wind-vegetation interactions (left). One example
is the Foehn effect which causes a temperature gradient over a mountain slope. The change of
temperatures in the microclimate leads to different compositions of vegetation on the leeward and
windward side of the mountain (center). Different species are highlighted with different color (right).

Figure 45: Top and middle row: side view of velocity (top) and temperature (middle) profiles
illustrating the Foehn effect discussed in Fig. 44. Due to the interaction of the wind field with the
mountain side a differential temperature gradient results. The left side of the mountain is cooler
than the right side (velocity field rendered as RGB colors). The color image indicating velocities
shows turbulence on the right side of the mountain. Bottom row: top-down views of the vapor,
temperature, soil and precipitation maps, respectively. The vapor map indicates the less pronounced
vegetation presence on the left side of the mountain (a), cooler temperatures at higher elevation (b),
wetter soil on the right side (c) and the regions of high precipitation (d). For all maps brighter
colors indicate higher values.
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development resulting in differential ecosystem compositions on either side of the mountain. This
complex effect is captured in an emergent way by our method (Fig. 44, left). Due to the non-uniform
boundary conditions imposed by a mountainous height map the uniform, unidirectional wind field
is oriented upwards in our simulation grid, which results in a cooling of air. Fig. 45 shows the
resulting velocity (top) and temperature (bottom) profiles. On the other side of the mountain the
down-flowing air heats up again and exhibits turbulent air motion. This results in a warmer leeward
mountain side (center), which is indicated by the lighter colors in the temperature profile. In this
scene, we placed two species with varying temperature adaptation and simulated their growth for
200 years. For the resulting ecosystem we can observe that the forest on the windward side is
composed of only the cold-adapted conifers. Whereas, on the other side both plant species establish
themselves. The species distribution is illustrated in Fig. 44 (right) by color-coding the two plant
species of the ecosystem (red denotes the cold-adapted conifers, green the warm-adapted deciduous
trees). Please note that for this experiment we do not consider the geographic orientation of the
scene, e.g. the light exposure differences between north and south facing slopes.

4.7.3 Comparative Analysis

To evaluate the plausibility of our simulations we conduct a series of comparative analyses to theo-
retical studies in climatology and ecology research, as well as to real world examples.

In Fig. 46 we show a comparison of our simulated results to Meron [74], an analytical study of
the formation of spot and stripe patterns. Meron [74] describes the response of vegetation to various
precipitation regimes. Specifically, they propose a vegetation growth model which only depends on
the impact of precipitation. Further, their method expresses vegetation abstractly as concentrations
of biomass. In contrast, our method considers also light, temperature and represents vegetation
geometrically. This way our method allows us to express non-trivial feedback loops for competition
for water and light, as well as cooperation for improving water infiltration (Eqs. 43 and 44). This
allows us to express Turing-like patterns via short-distance inhibition due to plants competing for the
same space and long-distance promotion of plant development due to improving soil permeability.
We explore the capability of our method and compare to the results reported by Meron [74] describing
a variety of spot, gap, and stripe patterns, as well as their morphological transitions (Fig. 46, top).
Analogously, to their method we can express all these spatial vegetation patterns as a function of
the vapor parameter EM (Fig. 46, bottom). These patterns can be simulated in a steady state
over longer periods of simulation time, i.e. we simulated an ecosystem for 500 years and observed
no qualitative change for specific patterns. Additionally, our soil model considers the topography
and therefore also captures the feedback between terrain slopes and spatial vegetation patterning
(Fig. 40). These results indicate that our method is realistically modeling the precipitation response
of vegetation.

Time scales of forest growth make experimental research studies on ecoclimates inherently diffi-
cult to conduct. Therefore, ecologists commonly employ analytical approaches. Recent theoretical
results indicate that vegetation response to climatic changes can vary according to the rate of such
changes. For example, [1], [67] conducted theoretical experiments to study the differential response
of vegetation to climate changing at varying speeds by reducing the rate of precipitation by a factor
of 10. In their slow climatic change experiment they observe that spatial patterning of vegetation
corresponds to a more uniform distribution compared to the fast climatic change experiment. This
discrepancy is explained by the additional time that plants have to redistribute across space and
more efficiently take up soil water. Furthermore, the interconnection between climate and vegeta-
tion has been described as a tipping point phenomenon [75]. According to these findings response of
vegetation to climatic change may be unnoticeable for long periods of time and then unexpectedly
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Figure 46: Our results correspond to the recent analytical study performed in ecology research
(top row, adapted from [74], Fig. 5) which highlights morphological transitions (black and white
panels) between gap, stripe and spot patterns (green panels). Our method simulates similar spatial
vegetation patterns obtained by different the macroscopic vapor EM (values decreasing from left to
right).

Figure 47: Comparison of a photograph of an arid ecosystem in Niger (a) and our simulation result
(b), as well as a photograph of peatlands in Western Siberia (c) and our corresponding simulation
(d). Our method is able to generate realistic spatial vegetation patterns for different environments.
Photographs are taken from Rietkerk et al. [75].

shift catastrophically.
Similar to these studies, we conducted experiments to evaluate whether our method also captures

(1) varying response of vegetation to slow and fast changes of climate; and (2) the occurrence of
tipping points and catastrophic shifts. The results are shown in Fig. 48. Our goal is to compare
a slow (a-f) and a fast (m-r) climatic change scenario by changing vapor EM with different rates
(10 times difference) over time. Additionally, we compare both scenarios with a baseline that does
not use microclimates (h-l). The initial ecosystem used for all scenarios is shown in (g). Plant
distributions are shown as scatter plots with blue points. To quantitatively assess the progression
of the three ecosystems we use persistent homology to measure the topological features of plant
distributions, such as spots, gaps, and stripes. To illustrate the changes of vegetation patterning
over time we assess the persistence of topological features as H1 barcodes for each plant distribution.
Long barcodes indicate persisting topological features whereas short barcodes indicate noise.

Starting with an initial ecosystem the result of a climatic change scenario without microclimates
is shown in (g-l). As shown in the scatter plots (g, i, k), the plant distributions for this simulation
remain randomly distributed, while the overall number of plants diminishes. The barcodes (h, j, l)
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do not contain persistent topological features indicating a lack of catastrophic shifts of vegetation
patterning.

The fast climatic change scenario is shown in the plots (m-r). Starting from the initial plant
distribution (g) we simulate climatic change over a period of 10 years. In contrast to the base-
line without microclimates, the scatter plots illustrate clustered distributions of plants (m, o, q).
Moreover, the corresponding barcodes (n, p, r) expose the presence of persisting topological features
indicating the presence of gaps in the plant distributions. These features appear over a short period
of time (p, r) thereby indicating a tipping point phenomenon.

Finally, the slow climatic change scenario is shown in the plots (a-f). For this scenario the
change of climate takes place over a period of 80 years. The distribution of plants initially changes
less significantly, but then also hits a tipping point after 64 years (c) that consequently results in a
severely reduced plant distribution (f). The changes of plant distributions and topological features
for this scenario can be observed in (b, d, f).

These climatic change scenarios illustrate that our method realistically captures the formation
and expansion of forest gaps resulting from catastrophic shifts. In addition, our method produces
more dispersed plant distributions for the slow climatic change scenario which corresponds to research
results reported in ecology [1], [75]. The model without microclimates does not capture these
phenomena and thus does not simulate climatic changes in a plausible way.

We further evaluate our model by quantitatively assessing canopy height distributions. We
simulate two forest patches, one composed of a mixed stand of different plant species, and a forest
composed only of pine trees. The results of this experiment are reported in Fig. 49. Canopy height
gradients at the forest edge are steeper for the pine forest (right) compared to the mixed tree stand
(left) as a result of differential microclimates. This qualitatively conforms to observations in the
subtropical region reported by Delgado et al. [76].

Our method enables the exploration of a vast array of different ecoclimatic phenomena, which
can be validated with comparisons to real world observations. In Fig. 47 we show qualitative
comparisons of our simulation results to real photographs. In particular, we show a comparison
of an arid ecosystem in Niger (a, b) and a comparison to peatlands in Western Siberia (c, d). As
illustrated our method enables simulating ecoclimates with high visual similarity of spatial vegetation
patterning compared to real ecosystems. Photographs were taken from [75].

4.8 Discussion and Limitations
We have presented a method for simulating ecoclimates capable of generating highly realistic images.
At the core of our method lies the modeling of a detailed, bidirectional feedback between clouds and
vegetation that captures phenomena such as spatial patterning in ecosystems, varied vegetation
gradients on forest edges, realistic features in different climatic change scenarios, and plausible dy-
namics of cloud formation over different biomes. In contrast to methods that are based on authoring
clouds or ecosystems our approach relies on a mechanistic description of the various biological and
physical processes. This allows our method to generate not only momentary views of the cloud-
and ecosystem-related phenomena but also to express their emergent dynamics over different time
scales. However, these advantages are balanced by a generally slower run-time compared to a more
descriptive, authoring approach.

Furthermore, we extend existing simulation work in graphics by demonstrating how stable pat-
terning of vegetation can be obtained. In previous methods [13] spatial vegetation patterns are only
modeled transiently and not to the same degree of realism. Our method improves cloud dynamics
by incorporating heat transfer and vapor released by vegetation resulting in more realistic cloud
distribution. Moreover, the joint simulation of ecosystem, soil and cloud models allows emergently
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Figure 48: We evaluate the impact of three climatic change simulations on the same initial vegetation
pattern composed of a single plant species. We show plant distributions as scatter plots with blue
points indicating plant positions on the ground surface and the correspondingH1 persistent homology
barcodes obtained from the point clouds. The initial vegetation scene before decreasing vapor values
is depicted in (g), and its barcode is shown in (h). The results of a naive ecoclimate model without
microclimates is shown in (i-l) - no persistent topological features emerge. In the top row (a-f),
we show plant distributions and barcodes for a slow climatic change scenario with microclimates.
In this case, more persistent topological features emerge. In the bottom row (m-r), we show plant
distributions and barcodes for a fast climatic change scenario (10 times faster vapor value decrease
than the slow scenario) with microclimates. Here, the barcodes reveal that topological features are
more persistent than in the other scenarios. The plant distribution appears less uniformly spread
across space compared to both the naive, as well as the slow climatic change model.
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Figure 49: Canopy height depicted as a function of distance to the forest edge (canopy > 1 meter)
for a mixed forest (left) and a pine forest (right). These canopy profiles conform with observations
reported for forests in a subtropical climate [76]: the pine forest has a steeper gradient of canopy
height compared to the mixed forest.
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capturing phenomena, such as the Foehn effect. However, we do not take into account the complex
hydrological dynamics between water bodies, soil and vegetation, which limits the scope of cloud
formation phenomena that can be modeled.

Compared to analytical models studied in ecology research, our method expresses plant growth
and their spatial interaction with considerably greater realism by describing detailed 3D geometry
of plants and their microclimate. We aid research in ecology by demonstrating that realistic spatial
patterning of vegetation can be explained by a model relying on plant competition for light as
well as their cooperation for soil permeability, rather than competition for water uptake alone.
Furthermore, we show that emerging microclimates due to weather and vegetation feedback are
sufficient to qualitatively explain forest edge effects. These findings indicate that our model may
serve as a theoretical framework for testing ecological research hypotheses in the future.

In climate research, large eddy simulations are used to study ecoclimates with similar spatial
fidelity compared to our method. These approaches generally describe the water transfer between
vegetation and atmosphere using some variation of the Penman-Monteith (PM) equation. These
types of models rely on a spatially averaged description of vegetation and consequently do not allow
for the realistic rendering of individual plant geometry. In our method, plants are treated in an
individual-based way meaning that vegetation-atmosphere feedback is described at a lower scale of
abstraction compared to PM models. This allows to formulate and test hypotheses which rely on
such detailed representation. In general, state-of-the-art climate models describe and study feedbacks
which we did not take into account, e.g. the diurnal cycle, variations of directional lighting caused
by seasonal changes, or light-mediated feedback between terrain and the atmosphere (i.e. solar
irradiance). Specifically, adding the geographic orientation and the resulting shading differences of
sloped terrain would make a reconstruction of ecoclimates in mountainous scenes more realistic. On
the other hand, our results indicate that for the phenomena simulated in this work a detailed model
of irradiance is not required.

4.9 Conclusion
In this chapter, we have advanced 3D outdoor scene modeling by introducing a method that for the
first time captures realistic vegetation development in response to climatic changes. Our method
is based on the coupling of complex models of plant ecosystems, soil hydrology, and weather. This
enables us to express important feedback loops between the different climate systems to simulate
ecoclimates with an unprecedented degree of detail. We have presented a variety of patterns that
can be explored with a coupled vegetation, soil and weather model. These patterns are controlled by
mechanisms occurring at different time scales - from seconds to years. This poses considerable mod-
elling challenges which we addressed here by leveraging state-of-the-art models for cloud formation,
vegetation modeling and recent advances in climate research. Although complex in construction,
by a lightweight interface our method allows for the interactive exploration of a parameter space
containing phenomena which have never been described before in computer graphics. These in-
clude detailed descriptions of self-organized spatial patterning in arid ecosystems, varied vegetation
gradients on forest edges, realistic features in different climatic change scenarios, and feedback of
vegetation on cloud formation dynamics.
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5 Future work
There are several areas for future work that can be pursued based on the current state of our
framework. One potential direction is to further explore the utility of our method in validating and
improving hypotheses in forestry and botany research that rely on detailed structural descriptions of
plants. Examples of such research include the study of the effects of timber harvesting on the health
and productivity of a forest ecosystem and the examination of plant responses to stressors such
as drought, wildfires, or disease. Our method may also be useful in forest restoration projects by
helping to select the appropriate species for local climate and soil conditions, improving the chances
of successful restoration efforts.

Another promising area for future development is the adaptation of vegetation to climatic
changes, as recent ecology research suggests that microclimates may have a significant impact on
ecosystem development. Our detailed geometric plant representation could aid research in this area,
as current models for climatic changes do not focus on modeling microclimates.

Integrating our method with models of the biosphere and anthroposphere is another possibility
for future work. This could allow for the simulation of more complex ecological systems and provide
valuable insights into the mutual relations between ecosystems, humans, and animals. For example,
interactions between plants and animals, such as pollination, seed dispersal, and herbivory, as well
as human activities like agriculture and urbanization, can alter the availability of resources and in-
troduce new species. Understanding all of these interactions is important for conserving biodiversity
and improving agricultural productivity.

Finally, we want to further improve the realism and performance of our model. Specifically, we
plan to incorporate a diurnal cycle that captures temperature variations during the day and night,
simulate solar irradiance, model seasonal changes in directional lighting, and consider the impact
of wind on plants. We also hope to investigate how our modeling approach can be combined with
other level of detail techniques to improve the efficiency of modeling larger ecosystems. All of these
research directions have the potential to advance our method towards a more universal simulation
of ecoclimate dynamics.
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