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Abstract

The majority of research in the field of Natural Language Processing is focused on processing plain text.

While this paradigm is highly effective for numerous use cases, such as machine translation, summarization,

and chatbots, it fails to fully harness the richness of many texts created by and for humans. Documents, on the

other hand, convey meaning not only through their textual content but also through their structure and visual

features. A key challenge tackled by this thesis is to develop solutions that combine recent advancements in

language modeling with structural information to improve the processing and comprehension of documents.

This thesis comprises five scientific papers in the domain of document understanding, divided into two

main sections. The first section focuses on evaluating document understanding models, introducing the first

benchmark in this area and proposing a novel dataset in the scientific domain. The proposed benchmark

includes a diverse range of document types and tasks, enabling a comprehensive evaluation of document

understanding models. The novel dataset, designed specifically for scientific documents, assesses models’

ability to reason over both tables and text simultaneously.

The second section of this thesis tackles various challenges in the document understanding domain,

proposing innovative solutions to enhance model performance. These include a diverse, multilingual corpus

for pretraining document-oriented language models, enabling improved understanding of documents across

languages and domains; a novel architecture extending capabilities of Transformer model by using structural

information, enhancing its ability to process and comprehend structured documents; and a framework for

generating tables using a language model, enabling the creation of structured data from natural language

input.

Overall, this thesis contributes to the development of more accurate and useful document understanding

models, enabling improved processing and comprehension of rich, structured documents.





Streszczenie

Większość badań w dziedzinie przetwarzania języka naturalnego koncentruje się na przetwarzaniu tekstu.

Choć ten paradygmat jest bardzo skuteczny w wielu zastosowaniach, takich jak tłumaczenie maszynowe,

automatyczne podsumowywanie i systemy dialogowe, nie potrafi w pełni wykorzystać bogactwa wielu

dokumentów tworzonych przez i dla ludzi. Dokumenty przekazują znaczenie nie tylko przez warstwę

tekstową, ale także poprzez swoją strukturę i cechy wizualne. Kluczowym wyzwaniem podejmowanym w

tej pracy jest proponowanie rozwiązań rozszerzających najnowsze modele języka o wykorzystanie informacji

strukturalnych celem poprawy jakości przetwarzania dokumentów.

Niniejsza rozprawa składa się z pięciu prac naukowych w domenie rozumienia dokumentów i jest podzielona

na dwie główne sekcje. Pierwsza sekcja dotyka problemu oceny modeli rozumienia dokumentów, wprowadza-

jąc pierwsze wyzwanie (ang. benchmark) w tej domenie oraz proponuje nowy zbiór danych oparty na

piśmiennictwie naukowym. Zaproponowane wyzwanie obejmuje różnorodny zakres dokumentów i zadań,

umożliwiając kompleksową ocenę modeli rozumienia dokumentów. Nowy zbiór danych, zaprojektowany

specjalnie dla dokumentów naukowych, ocenia zdolność modeli do rozumienia tekstu z wykorzystaniem

tabeli jako dodatkowego źródła informacji.

Druga sekcja tej pracy podejmuje różne wyzwania w domenie rozumienia dokumentów, proponując

innowacyjne rozwiązania mające na celu poprawę jakości modeli. Są to: różnorodny, wielojęzyczny korpus

do uczenia modeli języka przeznaczonych dla dokumentów, umożliwiający lepsze rozumienie dokumentów

w różnych językach i dziedzinach; nowa architektura rozszerzająca model Transformer o kodowanie informacji

strukturalnych, co pozwala na przetwarzanie dokumentów o bogatej strukturze; oraz metoda generowania

tabel przy użyciu modelu języka, umożliwiająca tworzenie strukturalnych danych z wejścia w postaci

tekstu.

Podsumowując, ta praca przyczynia się do rozwoju modeli rozumienia dokumentów, umożliwiając lepsze

przetwarzanie i analizę dokumentów o bogatej strukturze.
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1.1 Motivation

Natural Language Processing (NLP) tasks, such as sentiment analysis,

machine translation, information retrieval, and text summarization,

heavily rely on text-based representations and encoding techniques to

effectively capture the semantic, syntactic, and contextual information

within textual data. Most traditional tasks (such as the ones listed before)

operate on plain text. Nonetheless, the increasing understanding of the

inherent multimodal nature of human communication and the associated

challenges has given rise to the emergence of multimodal tasks. These

tasks leverage not only textual data but also additional modalities such

as images [1], audio [2], videos [3], or entire documents, including their

structure: layout and visual features [4].

Among the modalities listed, entire documents are particularly notewor-

thy for two reasons. First, such documents are abundant and available

across a wide range of domains, including news articles, research papers,

legal documents, and technical manuals. The majority of processing

for these documents is currently done manually, making automation

a promising avenue for improving productivity. By tackling document

understanding challenges, multimodal language models can unlock new

possibilities in areas like information retrieval, virtual assistants, and

content understanding. The intelligent document processing market is

experiencing rapid growth, with its size estimated at USD 1.1 billion in

2022 and projected to reach USD 5.2 billion by 2027 [5].

Secondly, the problems associated with multimodal documents present

novel research challenges. Understanding the semantics and relationships

within the document structure requires multimodal models to effectively

integrate textual, spatial, and visual information. In the NLP domain,

most state-of-the-art models employ the Transformer architecture, which

initially utilized trigonometry-based positional embeddings to represent

the order of tokens [6]. More recent research has explored alternative

methods for encoding token order, such as the introduction of relative

positional biases in T5 [7] and the use of Rotary Embeddings [8]. All of

these solutions share the common approach of representing the structure

of text as an ordered list of tokens. While this representation is suitable

for traditional NLP tasks, it results in significant information loss in the

domain of structure-rich documents.

Figure 1.1 displays a page from a document with different structures

highlighted. The conventional approach would involve preprocessing

this page using an Optical Character Recognition (OCR) tool. However,

during this process, structural information is lost. Figure 1.2 presents a

comparison between the top part of the page and its output after being

processed by an OCR tool. The figure also displays the reading order

generated by the OCR tool. Using plain text produced by OCR tool as

a model input may be confusing in some cases. For example, consider

the fragment of the output generated by an OCR tool: "Website: The
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plan charge as shown in Tables 1-3 is payable when the application is

deposited. www.buildingcontrolpartnershiphants.gov.uk/". This output

significantly deviates from the original meaning conveyed by the two-

column layout of the document.

In response to these challenges, there has been a surge of research in

recent years on document-focused language models. Notable examples

include LayoutLM [9, 10], TILT [11], DocFormer [12], and UDOP [13].

These models share a common goal: leveraging document structure to

enhance the processing of semantic information. To achieve this, all of

them incorporate some form of structural positional encoding, with some

models also utilizing the visual layer of a document.

Two column 
layout

Title

Table

Table 
caption

Sidenote

Key-value

list

Key-value

list

Logos

Section 
titles

Header

Two column 
layout

Figure 1.1: Example page from the CCpdf corpus featuring a structure-rich document. Color boxes have been used to highlight the

different structures present in the document.

Source of the document: buildingcontrolpartnershiphants.gov.uk.

buildingcontrolpartnershiphants.gov.uk.
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(a) Page fragment

(b) OCR output with reading order marked

Figure 1.2: Comparison between document and OCR tool output

The primary objectives of this thesis are twofold: first, to measure the

state-of-the-art in the domain of structure-rich document understand-

ing by evaluating the performance of existing models; and second, to

improve existing solutions through the development and evaluation of

novel approaches that enhance the accuracy, efficiency, and usability of

document understanding tools.

1.2 Structure and Scope of Thesis

The research presented in this thesis adheres to the standard experimental

methodology employed in the machine learning field. The process

involves four main steps: defining a set of problems to be addressed,

identifying datasets that address these problems, proposing solutions,

and conducting experimental validation of proposed solutions. Similarly,
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the structure of this thesis follows this methodology: I begin by defining

and motivating the problem of language modeling for structure-rich

documents, introduce evaluation datasets, discuss the preparation of

pretraining data, and finally present and evaluate model architectures

designed to tackle various document understanding problems.

This thesis is composed of five papers that all focus on the domain of un-

derstanding documents that have complex structure. The first two papers

are dedicated to measuring the current state of document understanding,

while the remaining three papers propose various improvements to

existing solutions. These improvements fall into three main categories:

(1) data preparation, (2) input structure representation, and (3) generating

structured output from a model.

1.2.1 Measuring state of document understanding

DUE: End-to-End Document Understanding Benchmark

Chapter 2 introduces a benchmark for measuring the current state

of document understanding. The work was presented at the NeurIPS

2021 conference. This benchmark is composed of seven datasets that

were carefully selected based on several criteria, including: (1) quality,

(2) difficulty, (3) licensing, and (4) similarity to real-world use cases of

document understanding systems. In order to ensure that these criteria are

met as closely as possible, some of the datasets were cleaned, re-annotated,

and reformulated. One of my contributions was further enriching the

datasets with diagnostic annotations, which provide valuable insights

into the strengths and weaknesses of each submitted model.

The documents included in the benchmark, such as tables, forms, or

infographics, have a complex structure that necessitates a model with

the capacity to understand them. Furthermore, for certain datasets, the

expected output format is also intricate, necessitating the model to

produce a list or a table.

Another significant outcome of this work is the introduction of a new

dataset representation format, which enables the presentation of various

document understanding tasks in a consistent and unified manner. As

a result, all datasets included in the challenge have been converted to

this standardized format. Moreover, competitive baseline models were

proposed, and all of the datasets and baselines were made publicly

available.

Arxiv Tables: Document Understanding Challenge Linking Texts and

Tables

Chapter 3 presents dataset for understanding a text sample in the context

of the accompanying table. The data comes from the scientific domain

and contains domain nomenclature and special characters (such as Greek

letters and scientific symbols), which are challenging for state-of-the-art

models. The proposed dataset is the largest publicly available dataset

in the area of table understanding. In addition, I proposed baseline

models for others to compare their solutions, and both the dataset and

these baselines have been made accessible to the public. The work was
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presented at VINALDO: Machine vision and NLP for Document Analysis

workshop at the ICDAR 2023 conference.

1.2.2 2D-Structured Language Modeling

CCpdf: Building a High Quality Corpus for Visually Rich Documents

from Web Crawl Data

Chapter 4 includes work presented at the ICDAR 2023 conference. The

focus of this work is on the preparation of a large-scale, diverse, multilin-

gual, publicly available corpus for pretraining document understanding

models. Previous corpora used for this purpose were either limited to a

single domain and monolingual or were not publicly available. This work

aims to address this gap by providing the research community with a

corpus that was created using a carefully designed pipeline.

The source of documents in this dataset is Common Crawl, an open

repository of web data. The proposed pipeline consists of four key

components: (1) document detector responsible for identifying and

extracting documents from the raw web data, (2) language detector

utilized to determine the language used in each extracted document,

(3) diversity-oriented filters implemented to ensure a diverse range of

documents are included in the dataset, avoiding excessive redundancy,

(4) OCR tools employed to convert scanned or image-based documents

into machine-readable text.

The pipeline design decisions were informed by a comparative evaluation

of different alternative methods, and the impact of each method was

measured using metrics such as data quality, quantity, processing time,

scalability, and costs. Furthermore, the shared corpus of documents

underwent a comprehensive analysis and description. On one hand, this

analysis provides valuable insights into the training data, enabling a

deeper understanding of the models trained on it. On the other hand, it

uncovers intriguing properties of the documents that are accessible on

the Internet, shedding light on the characteristics and diversity of the

web content. The resulting corpus, along with accompanying metadata,

has been made publicly available.

LAMBERT: Layout-aware language modeling for information

extraction

Chapter 5 introduces a novel method for modeling documents with

intricate structure, where non-trivial layout aspects have a significant

impact on semantics. This innovative approach modifies the encoding of

input token positions to reflect their corresponding locations on a page.

This modification is applied to a pre-trained Transformer model without

altering its existing weights, resulting in a more efficient adaptation train-

ing process compared to full pre-training. Notably, adaptation training is

considerably shorter and requires less data.

Two distinct methods are employed to incorporate layout positional

information into the model. Firstly, the embeddings are enhanced by

adding terms based on the position of each token on the page. Secondly,

a 2D relative bias is introduced into the attention weights, which is
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contingent on the vertical and horizontal distance between two tokens.

As a result of these modifications, the model surpasses the state-of-the-art

on four datasets.

A thorough ablation study compares four distinct methods of repre-

senting the structure of a document and their combinations. Two of

these methods solely encode the sequential positions of tokens, while

the other two incorporate layout positional information, as described in

the previous paragraph.

The work proposed one of the attempts to apply the NLP model in

the document understanding domain. The manuscript was submitted

for review just a few days prior to the publication of the preprint for

LayoutLM [9]. The paper was presented at the ICDAR 2021 conference and

received the IAPR/ICDAR 2021 Best Industry Related Paper Award.

STable: Table Generation Framework for Encoder-Decoder Models

Chapter 6 proposes a novel method for generating output in the structure

of a table from a language model. A table is a unique form of knowledge

representation easy to read by humans as well as easy to process by

computers. Most language models produce their output in the structure

of plain text. The simplest way to generate a table by such a model

is to generate it in natural reading order: left to right, top to bottom.

Unfortunately, such an approach is prone to errors: after a first mistake

model tends to get lost in the structure of a table and quality falls rapidly.

To avoid this issue STable model generates a table in a confidence-driven

way: instead of filling a table left to right and top to bottom, it estimates

the probability of making an error in each cell and fills a cell with the

lowest probability. Then it iteratively repeats the process until the whole

table is filled.

The model must undergo special training to generate a table in this way.

Therefore, the work proposes a training procedure in which, in each

epoch, the model is trained to predict the same table in a different order

of cells. Thanks to that, the model is capable of generating any cell at

each iteration. In addition, I propose a pretraining task and dataset that

enable the model to learn faster on downstream tasks and require fewer

training examples.

Positional encoding in the decoder was also modified. As each generated

token’s position within the tabular structure is known, the model uses

this information to encode the token’s position. Encoding operates on

multiple levels: it depends on the token’s row, column, and position

within a particular cell.

The text-to-table paradigm employed in this paper can be extended

beyond datasets with anticipated tabular outputs to other NLP tasks,

including joint entity and relation recognition and complex information

extraction. Consequently, the proposed model has the potential to be

applied to a diverse range of tasks that have traditionally been addressed

using specialized models." The proposed model was better than left to

right top to bottom approach on 5 out of 8 diverse datasets. It beat state-

of-the-art on 1 public and 3 private datasets. The paper was presented at

EACL 2024 conference.
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1.3 List of publications

Table 1.1: List of publications included in the thesis.

Title Authors Volume Points
†

DUE: End-to-End Doc-

ument Understanding

Benchmark

Ł. Borchmann*, M. Pietruszka*,

T. Stanisławek*, D. Jurkiewicz,

M. Turski, K. Szyndler, and

F. Graliński

Advances in Neural Information
Processing Systems 34 (NeurIPS

2021)

200

Arxiv Tables: Document

Understanding Challenge

Linking Texts and Tables

K. Konopka, M. Turski, and

F. Graliński

Document Analysis and Recogni-
tion – ICDAR 2023 Workshops
(ICDAR 2023)

0 or 140
‡

CCpdf: Building a High

Quality Corpus for Visually

Rich Documents from Web

Crawl Data

M. Turski, T. Stanisławek,

K. Kaczmarek, P. Dyda, and

F. Graliński

Document Analysis and Recog-
nition – ICDAR 2023 (ICDAR

2023)

140

LAMBERT: Layout-aware

language modeling for in-

formation extraction

Ł. Garncarek*, R. Powalski*,

T. Stanisławek*, B. Topolski*,

P. Halama, M. Turski, and

F. Graliński

Document Analysis and Recog-
nition – ICDAR 2021 (ICDAR

2021)

140

STable: Table Generation

Framework for Encoder-

Decoder Models

M. Pietruszka*, M. Turski*,

Ł. Borchmann*, T. Dwojak,

G. Nowakowska, K. Szyndler,

D. Jurkiewicz, and Ł. Gar-

ncarek

Proceedings of the 18th Confer-
ence of the European Chapter of
the Association for Computational
Linguistics (EACL 2024)

140

* equal contribution

† Ministerstwo Edukacji i Nauki

(Ministry of Science and Higher

Education) points

‡ Ambiguous valuation; Work-

shops proceedings were published as a

separate volume.

The thesis is based on five publications that were published between

2021 and 2024. Four of these publications were presented at international

conferences, while the fifth was presented at a workshop that accompa-

nied such a conference. A complete list of the publications can be found

in Table 1.1 and Table 1.2 presents my individual contributions to each

of the publications. Appendix A present declarations that outline the

individual contributions made by each author.
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Table 1.2: My contributions to the publications included in the thesis.

Title My contibution

DUE: End-to-End Document Un-

derstanding Benchmark

Taxonomy of diagnostic labels, methodology, organization, and control of

human annotation process, organization, and control of measuring human

performance, editing the paper

Arxiv Tables: Document Under-

standing Challenge Linking Texts

and Tables

Conceptualization and implementation of proposed baseline solutions,

running experiments, writing and editing the paper

CCpdf: Building a High Quality

Corpus for Visually Rich Docu-

ments from Web Crawl Data

Conceptualization and methodology, design and implementation of the tool

for managing the corpus, statistical analyses and exploration of the corpus,

running proposed pipeline and sharing the data, writing and editing the

paper, project leadership

LAMBERT: Layout-aware lan-

guage modeling for information

extraction

Creating final dataset for model training with methodology for filtering

out non business/legal documents, implementation of training flow for

training LAMBERT models, editing the paper

STable: Table Generation Frame-

work for Encoder-Decoder Mod-

els

Conceptualization and methodology of the research work, idea behind

pretraining, preparation of domain-specific pretraining dataset, data prepro-

cessing and postprocessing, baselines implementation, running pretraining,

experiments, and ablation studies, error analysis, writing the paper, project

leadership

1.4 The Impact of My PhD Work

During my Ph.D. (2020-2024), the field of document understanding

underwent substantial growth, both in terms of research progress and

adaptation by the industry. On one hand, the advent of generalist multi-

modal large language models dramatically transformed the landscape.

On the other hand, there was a significant increase in the number of

models and datasets specifically tailored for document understanding

tasks. In this chapter, I will provide a concise summary of how my

research contributions played a role in advancing the field during this

period of rapid progress.

1.4.1 Contribution to the development of the field

I would like to emphasize the significant impact of two of my publica-

tions.

Firstly, my paper titled LAMBERT: Layout-aware language modeling for
information extraction was one of the pioneering structure-oriented lan-

guage models in the field (along with LayoutLM [9]). It not only inspired

TILT [11], the first generative model for document understanding, but

also influenced a multitude of subsequent works, including UDOP [13].

Furthermore, this publication has been highly cited, with a total of 131

citations to date. Additionally, it received the prestigious IAPR/ICDAR

2021 Best Industry Related Paper Award in recognition of its substantial

impact on the field of document understanding.
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Secondly, my publication titled DUE: End-to-End Document Understand-
ing Benchmark has had a significant impact on the field of document

understanding as well. Numerous authors have utilized the publicly

released data from this benchmark to train and evaluate their solutions,

resulting in a total of 35 citations. Furthermore, the collaborative net-

work that was established during the development of this benchmark

has facilitated cross-institutional collaboration and has led to several

important outcomes. These include the organization of the DUDE (Docu-

ment UnderstanDing of Everything) competition [14] at the ICDAR 2023

conference, as well as the publishing of the large-scale DUDE dataset [15].

These developments have further propelled the field of document un-

derstanding and have provided a valuable resource for researchers and

practitioners alike.

1.4.2 Industrial impact

The work conducted during my Ph.D. was driven by real-world industrial

problems and its outcomes have found practical application in production

systems. The CCpdf corpus served as a training dataset for models

utilized by companies enhance their business processes. Additionally,

the LAMBERT model, developed as part of my research, has been

successfully deployed in business settings to extract crucial information

from documents. Moreover, STable, a key component of my research,

has been patented (more details in Apendix B.2) and is currently in

the process of being commercialized. I also actively participated in two

projects that were implemented as part of the Smart Growth Project,

a program funded by the European Union with the aim of promoting

research, development, and collaboration between academia and industry

in Poland. Appendix B provides a comprehensive list of all the projects

and patents in which I have been involved during the course of my Ph.D.

studies.
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@Applica.ai
firstname.lastname@applica.ai

†Poznan University of Technology ‡Jagiellonian University, Krakow

§Warsaw University of Technology ¶Adam Mickiewicz University, Poznan

Abstract

Understanding documents with rich layouts plays a vital role in digitization and
hyper-automation but remains a challenging topic in the NLP research community.
Additionally, the lack of a commonly accepted benchmark made it difficult to
quantify progress in the domain. To empower research in this field, we intro-
duce the Document Understanding Evaluation (DUE) benchmark consisting of
both available and reformulated datasets to measure the end-to-end capabilities
of systems in real-world scenarios. The benchmark includes Visual Question
Answering, Key Information Extraction, and Machine Reading Comprehension
tasks over various document domains and layouts featuring tables, graphs, lists,
and infographics. In addition, the current study reports systematic baselines and
analyzes challenges in currently available datasets using recent advances in layout-
aware language modeling. We open both the benchmarks and reference imple-
mentations and make them available at https://duebenchmark.com and
https://github.com/due-benchmark.

1 Introduction

While mainstream Natural Language Processing focuses on plain text documents, the content one
encounters when reading, e.g., scientific articles, company announcements, or even personal notes, is
seldom plain and purely sequential. In particular, the document’s visual and layout aspects that guide
our reading process and carry non-textual information appear to be an essential aspect that requires
comprehension. These layout aspects, as we understand them, are prevalent in tasks that can be much
better solved when given not only text sequence on the input but pieces of multimodal information
covering aspects such as text-positioning (i.e. location of words on the 2D plane), text-formatting
(e.g., different font sizes, colors), and graphical elements (e.g., lines, bars, presence of figures) among
others. Over the decades, systems dealing with document understanding developed an inherent aspect
of multi-modality that nowadays revolves around the problems of integrating visual information
with spatial relationships and text [36, 2, 50, 13].
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Figure 1: Document Understanding covers problems ranging from the ⌅ extraction of key information,
through ⌅ verification statements related to rich content, to ⌅ ⌅ answering open questions regarding
an entire file. It may involve the comprehension of multi-modal information conveyed by a document.

In general, when document processing systems are considered, the term understanding is thought
of specifically as the capacity to convert a document into meaningful information [10, 57, 16]. This
fits into the rapidly growing market of hyperautomation-enabling technologies, estimated to reach
nearly $600 billion in 2022, up 24% from 2020 [42]. Considering that unstructured data is orders of
magnitude more abundant than structured data, the lack of tools necessary to analyze unstructured
data and extract structured information can limit the performance of these intelligent services. The
process of structuring data and content must be robust to various document domains and tasks.

Despite its importance for digital transformation, the problem of measuring how well available
models obtain information from a wide range of tasks and document types and how suitable they are
for freeing workers from paperwork through process automation is not yet addressed. Meanwhile,
in other research communities, there are well-established progress measuring methods, like the
most recognizable NLP benchmarks of GLUE and SuperGLUE covering a wide range of problems
related to plain-text language understanding [53, 52] or VTAB and ImageNet in the computer vision
domain [59, 11]. We intend to bridge this major gap by introducing the first Document Understanding
benchmark (available at https://duebenchmark.com).

It includes tasks that either originally had a vital layout understanding component or were reformulated
in such a way that after our modification, they require layout understanding. In particular, there is no
structured representation of the underlying text, such as a database-like table given in advance, and it
has to be determined from the input file as a part of the end-to-end process. Every time, there is only
a PDF file provided as an input. Additionally, for the convenience of other researchers, we provide
information about textual tokens and their locations (bounding boxes) which are coming from the
OCR system or directly from the born-digital PDF file (see Section 4).

2



Contribution. The idea of the paper is to gather, reformulate and unify a set of intuitively dissimilar
tasks that we found to share the same underlying requirement of understanding layout concepts. In
order to organize them in a useful benchmark, we contributed by performing the following steps:

1. We reviewed and selected the available datasets. Additionally, we reformulated three tasks
to a document understanding setting and obtained original documents for all of them (PWC,
WTQ, TabFact).

2. We performed data cleaning, including the improvements of data splits (DeepForm, WTQ),
data deduplication, manual annotation (PWC, DeepForm), and converted data to a unified
format (all datasets).

3. We implemented competitive baselines and measured human performance where it was
required (PWC, DeepForm, WTQ).

4. We identified challenges related to the current progress in the DU domain’s tasks and
provided manually annotated diagnostic sets (all datasets).

These contributions are organized and described in Table 2. Additionally, a wider review of available
tasks is described in Appendix A.

2 The state of Document Understanding

We treat Document Understanding as an umbrella term covering problems of Key Information
Extraction, Classification, Document Layout Analysis, Question Answering, and Machine Reading
Comprehension whenever they involve rich documents in contrast to plain texts or image-text pairs
(Figure 1).

In addition to the problems strictly classified as Document Understanding, several related tasks can
be reformulated as such. These provide either text-figure pairs instead of real-world documents or
parsed tables given in their structured form. Since both can be rendered as synthetic documents with
some loss of information involved, they are worth considering bearing in mind the low availability of
proper Document Understanding tasks.

2.1 Landscape of Document Understanding tasks

KIE. Key Information Extraction, also referred to as Property Extraction, is a task where tuple values
of the form (property, document) are to be provided. Contrary to QA problems, there is no question
in natural language but rather a phrase or keyword, such as total amount, or place of birth. Public
datasets in the field include extraction performed on receipts [20, 38], invoices, reports [45], and
forms [24]. Documents within each of the mentioned tasks are homogeneous, whereas the set of
properties to extract is limited and known in advance – in particular, the same type-specific property
names appear in both test and train sets. In contrast to Name Entity Recognition, KIE typically does
not assume that token-level annotations are available, and may require normalization of values found
within the document.

Classification. Classification in our context involves rich content, where comprehension of both
visual and textual aspects is required since unimodal models underperform. Though document image
classification was initially approached using solely the methods of Computer Vision, it has recently
become evident that multi-modal models can achieve significantly higher accuracy [55, 56, 40].
Similar conclusions were recently reached in other tasks, e.g., assigning labels to excerpts from
biomedical papers [54].

DLA. Document Layout Analysis, performed to determine a document’s components, was initially
motivated by the need to optimize storage and the transmission of large information volumes [36].
Even though its motivation has changed over the years, it is rarely an end in itself but rather a means
to achieve a different goal, such as improving OCR systems. A typical dataset in the field assumes
detection and classification of page regions or tokens [61, 30].

QA and MRC. At first glance, Question Answering and Machine Reading Comprehension over
Documents is simply the KIE scenario where a question in natural language replaced a property
name. More differences become evident when one notices that QA and MRC involve an open set of
questions and various document types. Consequently, there is pressure to interpret the question and
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to possess better generalization abilities. Furthermore, a specific content to analyze demands a much
stronger comprehension of visual aspects, as the questions commonly relate to figures and graphics
accompanying the formatted text [33, 32, 49].

QA over figures. Question Answering over Figures is, to some extent, comparable with QA and
MRC over documents described above. The difference is that a ‘document’ here consists of a single
born-digital plot, reflecting information from chosen, desirably real-world data. Since questions in
this category are typically templated and figures are synthetically generated by authors of the task,
datasets in this category contain as many as millions of examples [34, 4].

QA and NLI over tables. Question Answering and Natural Language Inference over Tables are
similar, though in the case of NLI, there is a statement to verify instead of a question to answer.
There is never a need to analyze the actual layout, as both assume comprehension of a provided data
structure in a way that is equivalent to a database table. Consequently, the methods proposed here are
distinct from those used in Document Understanding [39, 7].

2.2 Gaps and mistakes in Document Understanding evaluation

Currently available datasets and previous work in the field cannot on their own provide enough
information that would allow researchers to generalize results to other tasks within the Document
Understanding paradigm. It is crucial to validate models on many tasks with a variety of characteristics
a Document Understanding system may encounter in real-world applications. Notably, the scope
of the challenges in a single dataset is limited to a specific task (e.g., Key Information Extraction,
Question Answering) or to a particular (sub)problem (e.g., processing long documents in Kleister [45],
layout understanding in DocBank [30]).

Simultaneously, a common practice in the community is to evaluate models on private data [27, 12,
37, 31] or task-specific datasets selected by authors independently [55, 56, 63, 40, 1, 19], making fair
comparison difficult. Many publicly available datasets are too small to enable reliable comparison
(FUNSD [24], Kleister NDA [45]) or are almost solved, i.e., there is no room for improvement due to
annotation errors and near-perfect scores achieved by models nowadays (SROIE [21], CORD [38],
RVL-CDIP [17]).

In light of the above circumstances, the review and selection of representative and reliable tasks is of
great importance.

3 End-to-end Document Understanding benchmark

The primary motivation for proposing this benchmark was to select datasets covering the broad range
of tasks and DU-related problems satisfying the highest quality, difficulty, and licensing criteria.

Importantly, we opt for an end-to-end nature of tasks as opposed to, e.g., problems assuming some
prior information on document layout. In particular, there is no structured representation of the
underlying text, such as a database-like table given in advance, and it has to be determined from the
raw input file as part of the end-to-end process.

We consider the aforementioned principle of end-to-end nature crucial because it ensures measurement
to which degree manual workers can be supported in their repetitive tasks, i.e., how the ultimate goal
of document understanding systems is supported in real-world applications. The said alignment with
real applications is a vital characteristic of a good benchmark [29, 43].

3.1 Selected datasets

Extensive documentation of the selection process, including the datasheet, is available in Appendices
A-H and in the supplementary materials. Table 1 summarizes the selected tasks described in detail
below, whereas Appendix A covers the complete list of considered datasets and reasons we omitted
them.

Lack of the classification, layout analysis and figure QA tasks in this selection results from the fact
that none of the available sets fulfills the assumed selection criteria.
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Table 1: Comparison of selected datasets with their base characteristics, including information
regarding whether an input is an entire document (Doc.) or document excerpt (Exc.)

Task Size (k documents) Mean samples Type Metric Features DomainTrain Dev Test per document Input Scanned

DocVQA 10.2 1.3 1.3 3.9 Visual QA ANLS
9
>>>=
>>>;

Doc.

+ Business
InfographicsVQA 4.4 0.5 0.6 5.5 Visual QA ANLS � Open
Kleister Charity 1.7 0.4 0.6 7.8 KIE F1 +/� Legal
PWC 0.2 0.06 0.12 25.5 KIE ANLS2 � Scientific
DeepFormF 0.7 0.1 0.3 4.8 KIE F1 +/� Finances
WikiTableQuestionsF 1.4 0.3 0.4 11.3 Table QA Acc.

�
Exc.

� Open
TabFactF 13.2 1.7 1.7 7.1 Table NLI Acc. � Open

The F symbol denotes that the dataset was reformulated or modified to improve its quality or align
with the Document Understanding paradigm (see Table 2 and Appendix C). This symbol is not used to
distinguish minor changes, such as data deduplication introduced in multiple datasets (Appendix B).

DocVQA. Dataset for Question Answering over single-page excerpts from various real-world
industry documents. Typical questions present here might require comprehension of images, free
text, tables, lists, forms, or their combination [33]. The best-performing solutions so far make
use of layout-aware multi-modal models employing either encoder-decoder or sequence labeling
architectures [40, 56].

InfographicsVQA. The task of answering questions about visualized data from a diverse collection
of infographics, where the information needed to answer a question may be conveyed by text, plots,
graphical or layout elements. Currently, the best result is obtained by an encoder-decoder model
[32, 40].

Kleister Charity. A task for extracting information about charity organizations from their published
reports is considered, as it is characterized by careful manual annotation by linguists and a significant
gap to human performance [45]. It addresses important areas, namely high layout variability (lack of
templates), need for performing an OCR, the appearance of long documents, and multiple spatial
features (e.g., tables, lists, and titles).

PWCF. Papers with Code Leaderboards dataset was designed to extract result tuples from machine
learning papers, including information on task, dataset, metric name, score. The best performing ap-
proach involves a multi-step pipeline, with modules trained separately on identified subproblems [26].
In contrast to the original formulation, we provide a complete paper as input instead of the table.
This approach allows us to treat the problem as an end-to-end Key Information Extraction task with
grouped variables (Appendix C).

DeepFormF. KIE dataset consisting of socially important documents related to election spending.
The task is to extract contract number, advertiser name, amount paid, and air dates from advertising
disclosure forms submitted to the Federal Communications Commission [47]. We use a subset of
distributed datasets and improve annotations errors and make the annotations between subsets for
different years consistent (Appendix C).

WikiTableQuestions (WTQ)F. Dataset for QA over semi-structured HTML tables sourced from
Wikipedia. The authors intended to provide complex questions, demanding multi-step reasoning on a
series of entries in the given table, including comparison and arithmetic operations [39]. The problem
is commonly approached assuming a semantic parsing paradigm, with an intermediate state of formal
meaning representation, e.g., inferred query or predicted operand to apply on selected cells [58, 18].
We reformulate the task as document QA by rendering the original HTML and restrict available
information to layout given by visible lines and token positions (Appendix C).

TabFactF. To study fact verification with semi-structured evidence over relatively clean and simple
tables collected from Wikipedia, entailed and refuted statements corresponding to a single row
or cell were prepared by the authors of TabFact [7]. Without being affected by the simplicity of
binary classification, this task poses challenges due to the complex linguistic and symbolic reasoning

2The ANLS metric used in PWC, representing KIE with property groups, differs from one used in VQA.
Since it is not known how many groups are to be returned, the basis of the metric is the F1 score (in contrast to
accuracy). Moreover, we require exact math for numerical variables. See implementation in the repository.
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Figure 2: Number of annotated instances in each diagnostic subset category. All datasets in total.

required to perform with high accuracy. Analogously to WTQ, we render tables and reformulate the
task as document NLI (Appendix C).

3.2 Diagnostic subsets

As pointed out by Ruder, to better understand the strengths and weaknesses of our models, we
furthermore require more fine-grained evaluation [43]. We propose several auxiliary validation
subsets, spanning across all the tasks, to improve result analysis and aid the community in identifying
where to focus its efforts. A detailed description of these categories and related annotation procedures
is provided in Appendix F.

Answer characteristic. We consider four features regarding the shallow characteristic of the answer.
First, we indicate whether the answer is provided in the text explicitly in exact form (extractive
data point) or has to be inferred from the document content (abstractive one). The second category
includes, e.g., all the cases where value requires normalization before being returned (e.g., changing
the date format). Next, we distinguish expected answers depending on whether they contain a single
value or list of values. Finally, we decided to recognize several popular data types depending on
shapes or class of expected named entity, i.e., to distinguish date, number, yes/no, organization,
location, and person classes.

Evidence form. As we intend to analyze systems dealing with rich data, it is natural to study
the performance w.r.t. the form that evidence is presented within the analyzed document. We
distinguished table/list, plain text, graphic element, layout, and handwritten categories.

Required operation. Finally, we distinguish whether i.e., arithmetic operation, counting,
normalization or some form of comparison has to be performed to answer correctly.

Table 2: Brief characteristics of our contribution, major fixes and modifications introduced to
particular datasets. The enhancements of "Reformulation as DU" or "Improving data splits" are
marked with F and are sufficient to consider the dataset unique; hence, achieved results are not
comparable to the previously reported. See Appendix C for a full description of tasks processing.

Dataset Diagnostic Unified Human Manual Reformulation Improved
sets format performance annotation as DU split

DocVQA + + � � � �
InfographicsVQA + + � � � �
Kleister Charity + + � � � �
PWCF + + + + + +
DeepFormF + + + + � +
WikiTableQuestionsF + + + � + +
TabFactF + + � � + �
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Datasets included in the benchmark differ in task type, origin, and answer form. As their random
samples were annotated, diagnostic categories are not distributed uniformly and reflect the character
of the problems encountered in a particular task (see Figures 10–11 in the Appendix). For example,
the requirement of answer normalization is prevalent in KIE tasks of DeepForm, PWC, and Kleister
Charity but not elsewhere. Consequently, the general framework of diagnostic subsets we designed
can be used not only to analyze model performance but also to characterize the datasets themselves.

3.3 Intended use

Data. We propose a unified data format for storing information in the Document Understanding
domain and deliver converted datasets as part of the released benchmark (all selected datasets are
hosted on the https://duebenchmark.com/data and can be downloaded from there). It assumes
three interconnected dataset, document annotation and document content levels. The dataset level is
intended for storing the general metadata, e.g., name, version, license, and source. The documents
annotation level is intended to store annotations available for individual documents within datasets
and related metadata (e.g., external identifiers). The content level store information about output and
metadata from a particular OCR engine that was used to process documents (Appendix G).

Evaluation protocol. To evaluate a system on the DUE benchmark, one must create a JSON file
with the results (in the data format mentioned above) based on the provided test data for each dataset
and then upload all of the data to the website. Moreover, we establish a set of rules (Appendix H)
which guarantees that all the benchmark submissions will be fair to compare, reproducible, and
transparent (e.g., training performed on a development set is not allowed).

Leaderboard. We provide an online platform for the evaluation of Document Understanding models.
To keep an objective means of comparison with the previously published results, we decided to retain
the initially formulated metrics. To calculate the global score we resort to an arithmetic mean of
different metrics due to its simplicity and straightforward calculation.3 In our platform we focus
on customization, e.g., multiple leaderboards are available, and it is up to the participant to decide
whether to evaluate the model on an entire benchmark or particular category. Moreover, we pay
attention to the explanation by providing means to analyze the performance concerning document or
problem types (e.g., using the diagnostic sets we provide).4

4 Experiments

Following the evaluation protocol, the training is run three times for each configuration of model size,
architecture, and OCR engine. We performed OCR pre-processing stage for DocVQA, Infograph-
icsVQA, Kleister Charity, and DeepForm datasets since they have PDF (mix of scans and born-digital
documents) or image files as an input. PWC, WikiTableQuestions and TabFact datasets contain all
born-digital documents so the ground true data are available and there is no need to run OCR engine
(see Appendix C). In both cases, the pre-processing stage as an output return textual tokens and their
locations (bounding boxes and page number) as a list (as a result the reading order is also provided).

4.1 Baselines

The focus of the experiments was to calculate baseline performance using a simple and popular model
capable of solving all tasks without introducing any task-specific alterations. Employed methods
were based on the previously released T5 model with a generic layout-modeling modification and
pretraining.

T5. Text-to-text Transformer is particularly useful in studying performance on a variety of sequential
tasks. We decided to rely on its extended version to identify the current level of performance
on the chosen tasks and to facilitate future research by providing extendable architecture with a
straightforward training procedure that can be applied to all of the proposed tasks in an end-to-end
manner [41].

3Scores on the DocVQA and InfographicsVQA test sets are calculated using the official website.
4We intend to gather datasets not included in the present version of the benchmark to facilitate evaluations in

an entire field of DU, regardless of if they are included in the current version of the leaderboard.
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Table 3: Best results of particular model configuration in relation to human performance and external
best. The external bests marked with — were omitted due to the significant changes in the data sets.
U stands for unsupervised pretraining.

Dataset / Task type Score (task-specific metric)
T5 T5+2D T5+U T5+2D+U External best Human

DocVQA 70.4±2.1 69.8±0.7 76.3±0.3 81.0±0.2 87.1 [40] 98.1
InfographicsVQA 36.7±0.6 39.2±1.0 37.1±0.2 46.1±0.1 61.2 [40] 98.0
Kleister Charity 74.3±0.3 72.6±1.1 76.0±0.1 75.9±0.7 83.6 [63] 97.5
PWCF 25.3±3.3 25.7±1.0 27.6±0.6 26.8±1.8 — 69.3
DeepFormF 74.4±0.6 74.0±0.7 82.9±0.9 83.3±0.3 — 98.5
WikiTableQuestionsF 33.3±0.7 30.8±1.9 38.1±0.1 43.3±0.4 — 76.7
TabFactF 58.9±0.5 58.0±0.3 76.0±0.1 78.6±0.1 — 92.1

Visual QA 53.6 54.5 56.7 63.5 n/a 98.1
KIE 69.1 67.7 74.8 76.4 n/a 88.4
Table QA/NLI 29.4 29.0 38.0 39.3 n/a 84.4

Overall 50.7 50.4 56.5 59.8 n/a 90.3

T5+2D. Extension of the model we propose assumes the introduction of 2D positional bias that has
been shown to perform well on tasks that demand layout understanding [56, 40, 63]. We rely on
2D bias in a form introduced in TILT model [40] and provide its first open-source implementation
(available in supplementary materials). We expect that comprehension of spatial relationships
achieved in this way will be sufficient to demonstrate that methods from the plain-text NLP can be
easily outperformed in the DUE benchmark.

Unsupervised pretraining. We constructed a corpus of documents with a visually rich structure,
based on 480k PDF files from the UCSF Industry Documents Library. It is used with a T5-like
masked language model pretraining objective but in a salient span masking scheme where named
entities are preferred over random tokens [41, 15]. An expected gain from its use is to tune 2D biases
and become more robust to OCR errors and incorrect reading order.5

Human performance. We relied on the original estimation for DocVQA, InfographicsVQA, Charity,
and TabFact datasets. For the PWC, WTQ and DeepForm estimation of human performance, we
used the help of professional in-house annotators who are full-time employees of our company (see
Appendix E). Each dataset was handled by two annotators; the average of their scores, when validated
against the gold standard, is treated as the human performance (see Table 3). Interestingly, human
scores on PWC are relatively low in terms of ANLS value – we explained this and justified keeping
the task in Appendix C.

4.2 Results

Comparison of the best-performing baselines to human performance and top results reported in the
literature is presented in Table 3. In several cases, there is a small difference between the performance
of our baselines and the external best. It can be attributed to several factors. First, the best results
previously obtained on the tasks were task-specific, i.e., were explicitly designed for a particular task
and did not support processing other datasets within the benchmark. Secondly, there are differences
between the evaluation protocol that we assume and what the previous authors assumed (e.g., we do
not allow training models on the development sets, we require reporting an average of multiple runs,
we disallow pretraining on datasets that might lead to information leak). Thirdly, our baseline could
not address examples demanding vision comprehension as it does not process image inputs. Finally,
there is the case of Kleister Charity. An encoder-decoder model we relied on as a one-to-fit-all
baseline cannot process an entire document due to memory limitations. As a result, the score was
lower as we consumed only a part of the document. Note that external bests for reformulated tasks
are no longer applicable to the benchmark in its present, more demanding form.

5Details of the training procedure, such as used hyperparameters and source code, are available in the
repository accompanying the paper.
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Irrespective of the task and whether our competitive baselines or external results are considered, there
is still a large gap to humans, which is desired for novel baselines. Moreover, one can notice that
the addition of 2D positional bias to the T5 architecture leads to better scores assuming the prior
pretraining step, which is yet another result we anticipated as it suggests that considered tasks have
an essential component of layout comprehension.

Interestingly, the performance of the model can be significantly enhanced (up to 20.6 points difference
for TabFact dataset and T5+2D+U model) by providing additional data for the said unsupervised
pretraining. Thus, the results not only support the premise that understanding 2D features demand
more unlabeled data than the chosen datasets can offer but also lay a common ground between them,
as the same layout-specific pretraining improved performance on all of them independently. This
observation confirms that the notion of layout is a vital part of the chosen datasets.

4.3 Challenges of the Document Understanding domain

Owing to its end-to-end nature and heterogeneity, Document Understanding is the touchstone of
Machine Learning. However, the challenges begin to pile up due to the mere form a document is
available in, as there is a widespread presence of analog materials such as scanned paper records. In
the analysis below, we aim to explore the field of DU from the perspective of the model’s development
and point out the most critical limiting factors for achieving satisfying results.

Impact of OCR quality. We present detailed results for Azure CV and Tesseract OCR engine in
Table 5. The differences in scores are huge for most of the datasets (up to 18.4% in DocVQA) with
a clean advantage for Azure CV. Consequently, we see that architectures evaluated with different
OCR engines are incomparable, e.g., the choice of an OCR engine may impact results more than the
choice of model architecture. Moreover, with the usage of our diagnostic datasets we can observe
that Tesseract struggle the most with Handwritten and Table/list categories in comparison to Plain
text category. It is worth noting that we see a bigger difference in the results between Azure CV and
Tesseract for Extractive category, which suggest that we should use better OCR engines especially
for that kind of problems.

Requirement of multi-modal comprehension. In addition to layout and textual semantics, part of
the covered problems demand a Computer Vision component, e.g., to detect a logo, analyze a figure,
recognize text style, determine whether the document was signed or the checkbox nearby was selected.
This has been confirmed by ablation studies performed by Powalski et al. [40] for the DocVQA and by
the fact that models with vision component achieve better performance on leaderboards for datasets
such as DocVQA and the InfographicsVQA datasets [40, 56, 23, 22]. Thus, Document Understanding
naturally incorporates challenges of both multi-modality and each modality individually (but not for
all tasks equally, see Figures 10–11 in the Appendix). Since none of our baselines contain a vision
component, we underperform on the category of problems requiring multi-modality, as is visible on
the diagnostic dataset we proposed. Nevertheless, better performance of the T5+2D model suggests
that part of the problems considered as visual, can be to some extent approximated by solely using
the words’ spatial relationships (e.g., text curved around a circle, located in the top-left corner of the
page presumably has the logo inside).

Single architecture for all datasets. It is common that token-level annotation is not available, and
one receives merely key-value or question-answer pairs assigned to the document. Even in problems
of extractive nature, token spans cannot be easily obtained, and consequently, the application of
state-of-the-art architectures from other tasks is not straightforward. In particular, authors attempting
Document Understanding problems in sequence labeling paradigms were forced to rely on faulty
handcrafted heuristics [40]. In the case of our baseline models, this problem is addressed straight-
forwardly by assuming a sequence-to-sequence paradigm that does not make use of token-level
annotation. This solution, however, comes with a trade-off of low performance on datasets requiring
comprehension of long documents, such as Kleister Charity (see Table 4).

Table 4: F1 score on the Kleister Charity challenge with various maximum input sequence lengths.

Dataset Maximum input sequence length
1024 2048 4096 6144 (max)

Kleister Charity 56.6 66 73.2 75.9
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Table 5: Scores for different OCR engines and datasets with T5+2D model performing on 1024
tokens.

OCR DocVQA IVQA Charity DeepForm Average Average scores for different diagnostic categories
Extractive Inferred Handwritten Table/list Plain text

Azure CV (v3.2) 71.8 40.0 57.7 74.8 61.1 51.3 33.0 31.3 46.0 65.3
Tesseract (v4.0) 55.7 28.3 55.7 66.8 51.6 43.1 29.5 12.5 27.2 61.1

Figure 3: Results for diagnostic subsets. See Appendix F for detailed description of these categories.

Diagnostic dataset. Our diagnostic datasets are an important part of the analysis of different
challenges in general (e.g., OCR quality or multi-modal comprehension, as we mentioned above) and
for debugging different types of architectural decisions (see Figure 3). For example, we can observe a
big advantage of unsupervised pretraining in the inferred, number, table/list categories, which shows
the importance of a good dataset for specific problems (dataset used for pretraining the original T5
model has a small number of documents containing tables). The most problematic categories for all
models were those related to complex logic operations: arithmetic, counting, comparison.

5 Conclusions

To efficiently pass information to the reader, writers often assume that structured forms such as tables,
graphs, or infographics are more accessible than sequential text due to human visual perception and
our ability to understand a text’s spatial surroundings. We investigate the problem of correctly mea-
suring the progress of models able to comprehend such complex documents and propose a benchmark
– a suite of tasks that balance factors such as quality of a document, importance of layout information,
type and source of documents, task goal, and the potential usability in modern applications.

We aim to track the future progress on them with the website prepared for transparent verification
and analysis of the results. The former is facilitated by the diagnostics subsets we derived to measure
vital features of the Document Understanding systems. Finally, we provide a set of solid baselines,
datasets in the unified format, and released source code to bootstrap the research on the topic.
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A Considered datasets

A.1 Desired characteristics

End-to-end nature. As the value and importance of Document Understanding result from its
application to process automation, a good benchmark should measure to which degree workers can be
supported in their tasks. Though Layout Analysis is oldest of the Document Understanding problems,
its output is often not an end in itself but rather a half-measure disconnected from the final information
the system is used for. We also remove all tasks which as an input takes collection of documents.

Quality. Availability of high-quality annotation was a condition sine qua non for a task to qualify.
To ensure the highest annotation quality, we excluded resources prepared using a distant annotation
procedure, e.g., classification tasks where entire sources were labeled instead of individual instances,
or templated question-answer pairs.

Difficulty. As it makes no sense to measure progress on solved problems, only tasks with a
substantial gap between human performance and state-of-the-art models were considered. In the case
of promising tasks lacking a human baseline, we provided our estimation. Moreover, we remove all
tasks were free text was dominated in documents (we don’t need to use layout or visual features).

Licensing. In publishing our benchmark, we are making efforts to ensure the highest standards for
the future of the machine learning community. Only tasks with a permissive license to use annotations
and data for further research can be considered.

At the same time, we recognized it is essential to approach the benchmark construction holistically, i.e.,
to carefully select tasks from diverse domains and types in the rare cases where datasets are abundant.

A.2 Datasets selection process

The review protocol consisted of a manual search in specific databases, repositories and distribution
services. The scientific resources included in the search were:

• https://paperswithcode.com/datasets/

• https://datasetsearch.research.google.com/

• https://data.mendeley.com/

• https://arxiv.org/search/

• https://github.com/

• https://allenai.org/data/

• https://www.semanticscholar.org/

• https://scholar.google.com/

• https://academic.microsoft.com/home

Results were reviewed by one of authors of the present paper and the resources related to classification,
KIE, QA, MRC, and NLI over complex documents, figures, and tables were identified as potentially
relevant (in accordance with inclusion criteria described in Section A.1).

The initial search assumed use of the following keywords: Question Answering, Visual Question
Answering, Document Question Answering, Document Classification, Document Dataset, Information
Extraction. Additionally, we used Machine Reading Comprehension, Question Answering, VQA in
combination with Document, and Visual, Document, Table, Figure, Plot, Chart, Hybrid in combination
with Question Answering or Information Extraction.

Table 6 presents list of relevant datasets and results of their assessment according to the criteria
of end-to-end nature, quality, difficulty, and licensing. Candidate tasks resulted from an extensive
review of both literature and data science challenges without accompanying publication and their
basic characteristics.
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Table 6: Comparison of selected and considered datasets with their base characteristic, including
information regarding whether an input is a collection of documents (Col.), entire document (Doc.)
or document excerpt (Exc.).

Dataset Type Size (thousands) Selection criteria Input Domain Comment

Tr
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n
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ev
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st
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D
iffi
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L
ic

en
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Kleister Charity [45] KIE 1.73 .44 .61 + + + + Doc. Finances
PWC [26] KIE .2 .06 .12 + + + + Doc. Scientific
DeepForm [47] KIE .7 .1 .3 + + + + Doc. Finances
DocVQA [33] Visual QA 10.2 1.3 1.3 + + + + Doc. Business
InfographicsVQA [32] Visual QA 4.4 .5 .6 + + + + Doc. Open
TabFact [7] Table NLI 13.2 1.7 1.7 + + + + Exc. Open
WTQ [39] Table QA 1.4 .3 .4 + + + + Exc. Open

Kleister NDA [45] KIE .25 .08 .2 + + � + Doc. Legal Dominated by extraction from free text
SROIE [20] KIE .63 - .35 + + � + Doc. Finances No room for improvement
CORD [38] KIE .8 .1 .1 + + � + Doc. Finances No room for improvement
Wildreceipt [46] KIE 1.27 - .47 + + � + Doc. Finances No room for improvement
WebSRC [5] KIE 4.55 .9 1.0 + � + + Doc. Open Templated input data
FUNSD [24] KIE .15 - .05 + � + + Doc. Finances Known disadvantages [51]
DocVQA [32] Visual QA 4.4 .5 .6 � + + + Col. Open Document Collection Question Answering
TextbookQA [28] Visual QA .67 .2 .21 + � + + Doc. Educational Source files are not available
MultiModalQA [48] Visual QA 23.82 2.44 3.66 + � + + Doc. Open Automatically generated questions
VisualMRC [49] Visual MRC 7 1 2 + + � + Doc. Open Human performance reached
RVL-CDIP [17] Classification 320 40 40 + + � + Doc. Finances No room for improvement
DocFigure [25] Classification 19.8 - 13.1 + + � + Doc. Scientific No room for improvement
EURLEX57K [3] Classification 45 6 6 + + � + Doc. Legal Dominated by extraction from free text
MELINDA [54] Classification 4.34 .45 .58 + � + + Doc. Scientific Semi-supervised annotation
S2-VL [44] DLA 1.3 - - � + + + Doc. Scientific Cross-validation for training and testing
DocBank [30] DLA 398 50 50 � � + + Doc. Scientific Automatic annotation
Publaynet [61] DLA 340.4 11.9 12 � � + + Doc. Scientific Automatic annotation
FinTabNet [60] DLA 61.8 7.19 7.01 � + + + Doc. Finances Different styles in comparison to sci./gov. docs
PlotQA [34] Figure QA 157 33.7 33.7 + � + + Exc. Open Synthetic
Leaf-QA [4] Figure QA 200 40 8.15 + � + + Exc. Open Templated questions
TAT-QA [62] Table QA 2.2 .28 .28 + � + + Exc. Finances Source files are not available
WikiOPS [9] Table QA 17.28 2.47 4.67 + + � + Exc. Open No room for improvement
FeTaQA [35] Table QA 7.33 1.0 2.0 + � + + Exc. Open Answers as a free-form text
HybridQA [8] Table QA 62.68 3.47 3.46 � + + + Col. Open Multihop Question Answering
OTT-QA [6] Table QA 41.46 2.24 2.16 � + + + Col. Open Multihop Question Answering
INFOTABS [14] Table NLI 1.74 .2 .6 + + + + Col. Open TabFact is very similar

B Minor dataset modifications

Deduplication. Through the systematic analysis and validation of the chosen datasets, we noticed
one of the commonly appearing defects is the presence of duplicated annotations. We decided to
remove these duplicates from InfographicsVQA (14 annotations from train, two from the dev set),
DocVQA (four from train and test sets each), TabFact (309 from train, 53 from dev, and 52 the test
set), and WikiTableQuestions (one annotation from each train and test sets).

C Tasks processing and reformulation

Since part of the datasets were reformulated or modified to improve the benchmark quality or align
the task with the Document Understanding paradigm, we describe the introduced changes in detail
below.

WikiTableQuestionsF. We prepare input documents by rendering table-related HTML distributed
by authors in wkhtmltopdf and crop the resulting files with pdfcrop. As these code excerpts do not
contain head tag with JavaScript and stylesheet references, we use the header from the present version
of the Wikipedia website.

Approximately 10% of tables contained at least one img tag with a source that is no longer reachable.
It results in a question mark icon displayed instead of the image and does not impact the evaluation
procedure since the questions here do not require image comprehension.

The original WTQ dataset consists of training, pristine-seen-tables, and pristine-unseen-tables
subsets. We treat pristine-unseen-tables as a test set and create new training and development sets
by rearranging data from training and pristine-seen-tables. The latter operation is dictated by the
leakage of documents in the original formulation, i.e., we consider it undesirable for a document to
appear in different splits, even if the question differs. The resulting dataset consists of approximately
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Year Venue Winners Runner-up 3rd	place

2005 	Pardubice 	Poland	(41	pts) 	Sweden	(35	pts) 	Denmark	(24	pts)

2006 	Rybnik 	Poland	(41	pts) 	Sweden	(27	pts) 	Denmark	(26	pts)

2007 	Abensberg 	Poland	(40	pts) 	Great	Britain	(36	pts) 	Czech	Republic	(30	pts)

2008 	Holsted 	Poland	(40	pts) 	Denmark	(39	pts) 	Sweden	(38	pts)

2009 	Gorzów	Wlkp. 	Poland	(57	pts) 	Denmark	(45	pts) 	Sweden	(32	pts)

2010 	Rye	House 	Denmark	(51	pts) 	Sweden	(37	pts) 	Poland	(35	pts)

2011 	Balakovo 	Russia	(61	pts) 	Denmark	(31	pts) 	Ukraine	(29+3	pts)

2012 	Gniezno 	Poland	(61	pts) 	Australia	(44	pts) 	Sweden	(26	pts)

Year Venue Winners Runner-up 3rd	place

Figure 4: Document in WikiTableQuestions reformulated as Document Understanding.
(Question) After their first place win in 2009, how did Poland place the next year at the speedway junior world
championship? (Answer) 3rd place

2100 documents divided in the proportion of 65%, 15%, 20% into training, development, and test
sets.

We rely on the original WTQ metric which is a form of Accuracy with normalization (see Pasu-
pat et al. [39] and accompanying implementation).

TabFactF. As the authors of TabFact distribute only CSV files, we resorted to HTML from the
WikiTables dump their CSV were presumably generated from.6 As Chen et al. [7] dropped some of
the columns present in used WikiTable tables, we remove them too, to ensure compatibility with the
original TabFact. Rendered files are used analogously to the case of WTQ.

Superleague	(Final	League)	Table	(Places	1-6)

	 Nation

v	t	e
Games

Points
Table	points

Played Won Drawn Lost For Against Difference

1 VVA-Podmoskovye	Monino 10 9 0 1 374 119 +255 37

2 Krasny	Yar	Krasnoyarsk 10 6 0 4 198 255 -57 28

3 Slava	Moscow 10 5 1 4 211 226 -15 26

4 Yenisey-STM	Krasnoyarsk 10 5 0 5 257 158 +99 25

5 RC	Novokuznetsk 10 4 1 5 168 194 -26 23

6 Imperia-Dynamo	Penza 10 0 0 10 138 395 -257 10

Figure 5: Document in TabFact reformulated as Document Understanding.
(Claim) To calculate table point, a win be worth 3, a tie be worth 1 and a loss be worth 0

Results differ from TabFact in several aspects, i.e., text in our variant is not normalized, it includes
the original formatting, and the tables are more complex due to restoring the original cell merges.
All mentioned differences are desired, as we intended to consider raw, unprocessed files without any
heuristics or normalization applied.

Another difference we noticed is that tables in the original TabFact are sometimes one row shorter,
i.e., they do not contain the last row present in the WikiTable dump. As it should not impact expected
answers, we decided to maintain the fidelity to Wikipedia and use the complete table.

We use the original splits into training, development, and test sets and the original Accuracy metric.

DeepFormF. The original DeepForm dataset consists of 2012, 2014, and 2020 subsets differing
in terms of annotation quality and documents’ diversity. We decided to use only the 2020 subset
as for 2014, and 2020 annotations were prepared either automatically or by volunteers, leading to
questionable quality. The selected subset was randomly divided into training, development and test
set.

We noticed several inconsistencies during the initial analysis that lead us to the manual correction
of autodetected: (1) invalid date format; (2) flight start dates earlier than flight end; (3) documents
lacking one or more data points.

In addition to the improved 2020 subset, we manually annotated one hundred 2012 documents, as
they can pose different challenges (contain different document templates, handwriting, have lower

6http://websail-fe.cs.northwestern.edu/TabEL/tables.json.gz

17



Rep: TELEREP, INC. REP BUYLINES Page: 1
Run On: May8/20 at 20:05 Requested by: JPRATA

E-Order#: 2416181 (Rev 0) Agy#30066235 Hdln#: 9824756 (Mod 2.0) Traffic#: 4359075
Station: KTVL-TV MEDFORD-KLAMATH FALL Dates: May12/20 - May19/20 Salesperson: JACQUELINE PINOU
Agency: SMART MEDIA GROUP Prod1: CRUMPACKER FOR CONGR Est#: 512ADD

Advertiser: POLI/J CRUMPACKER/R/CON/OR Prod2: Demo: RA35+
Buyer: ANNE BRAUNSCHEIDEL Tel #:

Mod
Code

Buy
Line Day/Time Length Rate

Starting
Date

Ending
Date

#
of

Wks
Spt/

Week
Total

Spots
Total

Dollars Program Name
Rating
RA35+

Imprsn
A35+

Rep:
RA35+

Last
Activity Last Mod/Rev

##CASH ##SMRT
1 Tue/5-6A 30S $10 May12/20 May12/20 1 1 1 $10 NEWS10 GOOD 0.9 2.1 0.9 May04/20 Rev #0: A

MORN -5A
Contract Comment: NEWS10 GOOD MORN -5A

2 Wed/5-6A 30S $10 May13/20 May13/20 1 1 1 $10 NEWS10 GOOD 0.9 2.1 0.9 May04/20 Rev #0: A
MORN -5A

Contract Comment: NEWS10 GOOD MORN -5A
3 Thu/5-6A 30S $10 May14/20 May14/20 1 1 1 $10 NEWS10 GOOD 0.9 2.1 0.9 May04/20 Rev #0: A

MORN -5A
Contract Comment: NEWS10 GOOD MORN -5A

4 Mon/5-6A 30S $10 May18/20 May18/20 1 1 1 $10 NEWS10 GOOD 0.9 2.1 0.9 May04/20 Rev #0: A
MORN -5A

Contract Comment: NEWS10 GOOD MORN -5A
5 Wed/6-7A 30S $15 May13/20 May13/20 1 1 1 $15 NEWS10 GOOD 2.2 5.3 2.2 May04/20 Rev #0: A

MORN -6A
Contract Comment: NEWS10 GOOD MORN -6A

6 Thu/6-7A 30S $15 May14/20 May14/20 1 1 1 $15 NEWS10 GOOD 2.2 5.3 2.2 May04/20 Rev #0: A
MORN -6A

Contract Comment: NEWS10 GOOD MORN -6A
7 Fri/6-7A 30S $15 May15/20 May15/20 1 1 1 $15 NEWS10 GOOD 2.2 5.3 2.2 May04/20 Rev #0: A

MORN -6A
Contract Comment: NEWS10 GOOD MORN -6A

8 Mon/6-7A 30S $15 May18/20 May18/20 1 1 1 $15 NEWS10 GOOD 2.2 5.3 2.2 May04/20 Rev #0: A
MORN -6A

Contract Comment: NEWS10 GOOD MORN -6A
9 Tue/7-9A 30S $20 May12/20 May12/20 1 1 1 $20 CBS THIS MORNING 3.0 7.3 3.0 May04/20 Rev #0: A

Contract Comment: CBS THIS MORNING
10 Thu/7-9A 30S $20 May14/20 May14/20 1 1 1 $20 CBS THIS MORNING 3.0 7.3 3.0 May04/20 Rev #0: A

Contract Comment: CBS THIS MORNING
11 Mon/7-9A 30S $20 May18/20 May18/20 1 1 1 $20 CBS THIS MORNING 3.0 7.3 3.0 May04/20 Rev #0: A

Contract Comment: CBS THIS MORNING
12 Tue/9-10A 30S $10 May12/20 May12/20 1 1 1 $10 FAMILY FEUD/ 2.0 4.8 2.0 May04/20 Rev #2: NZ

AMERICA SAYS
Contract Comment: FAMILY FEUD/ AMERICA SAYS

13 Thu/9-10A 30S $10 May14/20 May14/20 1 1 1 $10 FAMILY FEUD/ 2.0 4.8 2.0 May04/20 Rev #2: NZ
AMERICA SAYS

Contract Comment: FAMILY FEUD/ AMERICA SAYS
14 Fri/9-10A 30S $10 May15/20 May15/20 1 1 1 $10 FAMILY FEUD/ 2.0 4.8 2.0 May04/20 Rev #2: NZ

AMERICA SAYS

Figure 6: Single page from document in DeepForm.

image quality). They were used to extend development and test set. The final dataset consists of
700 training, 100 development, and 300 test set documents. We rely on the standard F1 score for the
purposes of DeepForm evaluation.

PWCF. The authors of AxCell relied on PWC Leaderboards and LinkedResults datasets [26].
The original formulation assumes extraction of (task, dataset, metric, model, score) tuples from
a provided table. In contrast, we reformulate the task as Document Understanding and provide a
complete paper as input instead. These are obtained using arXiv identifiers available in the PWC
metadata. Consequently, the resulting task is an end-to-end Key Information Extraction from real-
world scientific documents.

Whereas LinkedResults was annotated consistently, the PWC is of questionable quality as it was
obtained from leaderboards filled by Papers with Code visitors without a clear guideline or annotation
rules. The difference between the two is substantial, i.e., the agreement in terms of F1 score between
publications present in both PWC and LinkedResults is lower than 0.35. We attribute this mainly to
flaws in the PWC dataset, such as missing records, inconsistent normalization and the difficulty of
the task itself.

Consequently, we decided to perform its manual re-annotation assuming that: (1) The best result for
a proposed model variant on the single dataset has to be annotated, e.g., if two models with different
parameter sizes were present in the table, we report only the best one. (2) Single number is preferred
(we take the average over multiple split or parts of the dataset if possible). (3) When results from
the test set are available, we prefer them and don’t report results from the validation set. (4) We add
multiple value variants when possible. (5) We include information on used validation/dev/test split in
the dataset description wherever applicable. (6) We don’t report results on the train set. (7) We don’t
annotate results not appearing in the table. (8) We filter out publications that are hard to annotate
even for a human.

Interestingly, human scores on PWC are relatively low in terms of ANLS value. This can be attributed
to unrestricted nature of particular properties, e.g., accuracy and average accuracy are equally valid
metric values. Similarly, Action Recognition, Action Classification, and Action Recognition are
equally valid task names. We mitigated this problem by using ANLS-like comparison used in the F1
metric and providing multiple acceptable value variants, i.e., it is enough to provide half of the string
representing one of the valid answers.7

Nevertheless, it is impossible to provide all answer variants during the preparation of the gold standard.
We decided to keep the dataset in the benchmark as it is extremely demanding, and there is still a
large gap between humans’ and models’ performance (See Table 3).

7Please refer to the metric implementation in the Github repository for a detailed description.
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As the expected answer in PWC consists of a list of groups (property tuples that represent a complete
record of the method, dataset, and results), the F1 metric here has to take into account the miss-
placement of properties in another group. We assume the value is incorrect if placed in the wrong
group (see reference implementation in supplementary materials).

Figure 5: Qualitative comparison of different methods in a2g direction on the CVUSA dataset.
Table 2: Quantitative evaluation of the CVUSA dataset in a2g direction. For all metrics except KL score, higher is better. (�)
Inception Score for real (ground truth) data is 4.8741, 3.2959 and 4.9943 for all, top-1 and top-5 setups, respectively.

Method Accuracy (%) Inception Score⇤ SSIM PSNR SD KL
Top-1 Top-5 All Top-1 Top-5

Zhai et al. [52] 13.97 14.03 42.09 52.29 1.8434 1.5171 1.8666 0.4147 17.4886 16.6184 27.43 ± 1.63
Pix2pix [21] 7.33 9.25 25.81 32.67 3.2771 2.2219 3.4312 0.3923 17.6578 18.5239 59.81 ± 2.12
X-SO [37] 0.29 0.21 6.14 9.08 1.7575 1.4145 1.7791 0.3451 17.6201 16.9919 414.25 ± 2.37
X-Fork [36] 20.58 31.24 50.51 63.66 3.4432 2.5447 3.5567 0.4356 19.0509 18.6706 11.71 ± 1.55
X-Seq [36] 15.98 24.14 42.91 54.41 3.8151 2.6738 4.0077 0.4231 18.8067 18.4378 15.52 ± 1.73
Pix2pix++ [21] 26.45 41.87 57.26 72.87 3.2592 2.4175 3.5078 0.4617 21.5739 18.9044 9.47 ± 1.69
X-Fork++ [36] 31.03 49.65 64.47 81.16 3.3758 2.5375 3.5711 0.4769 21.6504 18.9856 7.18 ± 1.56
X-Seq++ [36] 34.69 54.61 67.12 83.46 3.3919 2.5474 3.4858 0.4740 21.6733 18.9907 5.19 ± 1.31
SelectionGAN [43] 41.52 65.51 74.32 89.66 3.8074 2.7181 3.9197 0.5323 23.1466 19.6100 2.96 ± 0.97
LGGAN (Ours) 44.75 70.68 78.76 93.40 3.9180 2.8383 3.9878 0.5238 22.5766 19.7440 2.55 ± 0.95

we refer to it as the semantic-guided discriminator Ds, as
shown in Fig. 2. It employs the input semantic map Sg and
the generated image IC

g (or the real image Ig) as input:

LCGAN(G, Ds) =ESg,Ig
[log Ds(Sg, Ig)] +

ESg,IC
g

�
log(1 � Ds(Sg, I

C
g ))

�
,

(8)

which aims to preserve scene layout and capture the local-
aware information.

For the cross-view image translation task, we also pro-
pose another image-guided discriminator Di, which takes
the conditional image Ia and the final generated image IC

g

(or the ground-truth image Ig) as input:

LCGAN(G, Di) =EIa,Ig
[log Di(Ia, Ig)] +

EIa,IC
g

�
log(1 � Di(Ia, IC

g ))
�
.

(9)

In this case, the total loss of our Dual-Discriminator D is
LCGAN=LCGAN(G, Di)+LCGAN(G, Ds).

4. Experiments

The proposed LGGAN can be applied to different gen-
erative tasks such as the cross-view image translation [43]
and the semantic image synthesis [32]. In this section we
present experimental results and analysis on both tasks.

4.1. Results on Cross-View Image Translation

Datasets. We follow [43, 36] and perform the cross-
view image translation experiments on the Dayton [46] and
CVUSA datasets [49]. The Dayton dataset contains 76,048
images with a train/test split of 55,000/21,048 pairs. The
CVUSA dataset consists of 35,532/8,884 image pairs in
train/test split.
Evaluation Metric. Similarly to [36, 37, 43], we em-
ploy Inception Score (IS), Accuracy (Acc.), KL Divergence
Score (KL) to evaluate the proposed model. These three
metrics evaluate the distance between two different distri-
butions from a high-level feature space. We also employ
pixel-level similarity metrics to evaluate our method, i.e.,
Structural-Similarity (SSIM), Peak Signal-to-Noise Ratio
(PSNR) and Sharpness Difference (SD).
State-of-the-Art Comparisons. We compare our LGGAN
with several recently proposed state-of-the-art methods, i.e.,
Zhai et al. [52], Pix2pix [21], X-SO [37], X-Fork [36] and
X-Seq [36]. The comparison results are shown in Tables 1
and 2. We can observe that LGGAN consistently outper-
forms the competing methods on all metrics.

To study the effectiveness of LGGAN, we conduct ex-
periments with the methods using semantic maps and RGB
images as input, including Pix2pix++ [21], X-Fork++ [36],
X-Seq++ [36] and SelectionGAN [43]. We implement
Pix2pix++, X-Fork++ and X-Seq++ using their public
source code. Results are shown in Tables 1 and 2. We ob-

Figure 7: Single page from document in PWC.

D Dataset statistics

Chosen datasets represent the plethora of domains, lengths, and document types. This appendix
covers the critical aspects of particular tasks at the population level.

Though part of the datasets is limited to one-pagers, the remaining documents range from a few to
few hundred pages (Figure 8). At the same time, there is a great variety in how much text is present
on a single page – we have both densely packed scientific documents and concise document excerpts
or infographics. This diversity allows us to measure the ability to comprehend documents depending
on their length.

E Details of human performance estimation

Estimation of human performance for PWC, WikiTableQuestions, DeepForm was performed in-
house by professional annotators who are full-time employees of Applica.ai. Before approaching the
process, each of them has to participate in the task-specific training described below.

Number of annotated samples depended on task difficulty and the variance of the resulting scores. We
relied on 50 fully annotated papers for the PWC dataset (approx. 150 tuples with five values each),
109 DeepForm documents (532 values), and 300 questions asked to different WikiTableQuestion
tables.
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Figure 8: Number of words, pages, and words per page in particular datasets (log scale). Part of the
datasets consist only of one-pagers.
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Figure 9: An example of an interface for annotating diagnostic subsets based on document from
DeepForm dataset.

Each dataset was approached with two annotators in the LabelStudio tool. Human performance is the
average of their scores when validated against the gold standard.

Training. Each person participating in the annotation process completed the training consisting of
four stages: (1) Annotation of five random documents from the task-specific development set. (2)
Comparative analysis of differences between their annotations and the gold standard. (3) Annotation
of ten random documents from the task-specific development set and subsequent comparative analysis.
(4) Discussion between annotators aimed at agreeing on the shared, coherent annotation rules.

F Annotation of diagnostic subsets

In order to analyze the prepared benchmark and the results of individual models, diagnostic sets were
prepared. These diagnostic sets are subsets of examples selected from the testset for all datasets.

When building a taxonomy for diagnostic sets, we adopted two basic assumptions: (1) It must be
consistent across all selected tasks so that at least two tasks can be noted with a given category (2)
It should include as many aspects as possible that are relevant from the perspective of document
understanding problem.

Initially, we adopted the taxonomies proposed in DocVQA, Infographics, and TabFact as potential
categories [33, 32, 7]. In the next step, we adjusted our taxonomy to all datasets following the
previously adopted assumptions, distinguishing seven main categories with 25 subcategories (for a
more detailed description of the category (see the section F.1). Then, for each dataset, we prepared
an annotation task in the LabelStudio tool 8 (see example 9) along with an annotation instruction.
Finally, to determine Human performance, the annotation was carried out by a team of specialists
from Applica.ai, where the selected example was noted only by one person.

F.1 Taxonomy description

The taxonomy is based on multiple aspects of documents, inputs, and answers and was designed to
be sufficiently generic for future adaptation to other tasks. Here, in each category, we describe the
predicates that annotators followed when classified an example into specific subcategories.

8https://labelstud.io/
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Answer source. This category is based on the relation between answer and text in the document.

• Extractive – after lowercasing and white-characters removing, the answer can be exact-matched
in the document.

• Inferred – other non-extractive cases.

Output format This category is based on the shape of an output.

• Single value – the answer consists of only one item.
• List – multiple outputs are to be provided.

Output type. This category is based on the semantic of an output.

• Organization – the answer is a name of an organization or institution.
• Location – the answer is a geographic location globally (e.g., a country, continent, city) or locally

(building or street, among others).
• Person – the answer is a personal identifier(name, surname, pseudonym) or its composition. It

can have a title prefix or suffix (e.g., Mrs., Mr., Ph.D.) or have a shortened or informal version.
• Number – numerical values given with the unit or percent. Values written in the free text do not

comply with this class’s definition.
• Date/Time/Duration – the answer represents the date, time, or the difference between two dates

or times.
• Yes/No – the answer is a textual output of binary classification, such as Yes/No pairs, and

Positive/Negative, 0/1 among others.

Evidence. This category is based on the source of information that allows the correct answer to be
generated. When there are multiple justifications based on different pieces of evidence (for example,
the address is in a table and block text), it is required to select all the pieces of evidence.

• Table or List – a table is a fragment of the document organized into columns and rows. The
distinguishing feature of the table is consistency within rows and columns (usually the same data
type). Moreover, it may have a header. In that sense, the form is not a table (or at least it does not
have to be). A list is a table degenerated into one column or row containing a header.

• Plain text – the answer is based on plain text if there is an immediate need to understand a longer
fragment of the text while answering.

• Graphic element – the answer is based on graphic evidence when understanding graphically
rich, non-text fragments of documents (e.g., graphics, photos, logos (non-text)) are necessary for
generating a correct answer.

• Layout – it is evidence when comprehending the placement of text on the page (e.g., titles,
headers, footers, forms) is needed to generate the correct answer. This type does not include
tables.

• Handwritten – when the text written by hand is crucial for an answer.

Operation. This category is based on the type of operations that are to be performed on the
document before reaching to the correct answer.

• Counting – when there is a need to count the occurrences or determine the position on the list.
• Arithmetic – when there is an arithmetic operation applied before answering, or a sequence of

arithmetic operations (e.g., averaging).
• Comparison – a comparison in the sense of lesser/greater. Other procedures that a comparison

operation can express (e.g., approximation) may be chosen. Here, the operation "is equal" is not a
comparison since it is sufficient to match sequences without a semantic understanding.

• Normalization – when we are to return something in the document but in a different form. It may
only apply to the output; we do not acknowledge this operation when it is required to normalize a
question fragment to match it in the document.
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Answer number. This category is based on the number of occurrences of an answer in the docu-
ment.

• 1 – when there is one path of logical reasoning to find the correct answer in the document. We
treat it as one justification for two different reasoning paths based on the same data from the
document.

• > 1 – the other cases.

G Unified format

We propose a unified format for storing information in the Document Understanding domain and
deliver converted datasets as part of the released benchmark. It assumes three interconnected levels:
dataset, document-annotation and document-content. Please refer to the repository for examples and
formal specifications of the schemes.

Dataset. The dataset level is intended for storing the general metadata, e.g., name, version, license,
and source. Here, the JSON-LD format based on the well-known schema.org web standard is used.9

Document. The documents annotation level is intended to store annotations available for individual
documents within datasets and related metadata (e.g., external identifiers). Our format, valid for all
the Document Understanding tasks, is specified using the JSON-Schema standard. This ensures that
every record is well-documented and makes automatic validation possible. Additionally, to make the
processing of large datasets efficient, we provide JSON Lines file for each split, thus it is possible to
read one record at a time.

Content. As part of the original annotation or additional data we provide is related to document
content (e.g., the output of a particular OCR engine), we introduce the document’s content level.
Similarly to the document level, we propose an adequate JSON Schema and provide the JSON
Lines files in addition. PDF files with the source document accompany dataset -, document-, and
content-level annotations. If the source PDF was not available, a lossless conversion was performed.

H Evaluation protocol

Evaluation protocol. All the benchmark submissions are expected to conform to the following
rules to guarantee fair comparison, reproducibility, and transparency:

• All results should be automatically obtainable starting from either raw PDF documents or the JSON
files we provide. In particular, it is not permitted to rely on the potentially available source file that
our PDFs were generated from or in-house manual annotation.

• Despite the fact that we provide an output of various OCR mechanisms wherever applicable, it is
allowed to use software from outside the list. In such cases, participants are highly encouraged to
donate OCR results to the community, and we declare to host them along with other variants. It is
expected to provide detailed information on used software and its version.

• Any dataset can be used for unsupervised pretraining. The use of supervised pretraining is limited
to datasets where there is no risk of information leakage, e.g., one cannot train models on datasets
constructed from Wikipedia tables unless it is guaranteed that the same data does not appear in
WikiTableQuestions and TabFact.

• It is encouraged to use datasets already publicly available or to release data used for pretraining.
• Training performed on a development set is not allowed. We assume participants select the model

to submit using training loss or validation score. We do not release test sets and keep them secret
by introducing a daily limit of evaluations performed on the benchmark’s website.

• Although we allow submissions limited to one category, e.g., QA or KIE, complete evaluations of
models that are able to comprehend all the tasks with one architecture are highly encouraged.

• Since different random initialization or data order can result in considerably higher scores, we
require the bulk submission of at least three results with different random seeds.

9See https://json-ld.org/ for information on the JSON-LD standard, and https://developers.g
oogle.com/search/docs/data-types/dataset for the description of adapted schema.
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DocVQA

InfographicsVQA

Kleister Charity

PWC

Figure 10: Number of annotated instances in each diagnostic subset category. DocVQA, Infograph-
icsVQA, Kleister Charity, and PWC considered separately.
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DeepForm

WikiTableQuestions

TabFact

Figure 11: Number of annotated instances in each diagnostic subset category. DeepForm, WikiTable-
Questions, and TabFact considered separatly.

• Every submission is required to have an accompanying description. It is recommended to include
the link to the source code.

I Experiments — training details

The experiments were carried out in an environment with NVIDIA A100-40G cards, PyTorch version
1.8.1, and the transformers library in version 4.2.2.

The parameters were selected through empirical experiments with T5-Base model on DocVQA and
InfographicsVQA collections. The T5-Large model was used as the basis for finetuning.

The training lasted up to 30 epochs at batch 64 in training, the default optimizer AdamW (lr =
2e-4), and warmup set to 100 updates. Validation was performed five times per epoch, and when no
improvement was seen for 20 validation steps (4 epochs), the training was stopped. The length of the
input documents has been truncated to 6144 tokens for all datasets (only Kleister Charity and PWC
benefited from that change, for the rest of them 1024 tokens is sufficient)10 and the responses to 256
tokens. Dropout was set to 0.15, gradient clipping to 1.0, and weight decay to 1e-5.

10The hard limit of 6k tokens results from the memory limitation of the used GPU.
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Abstract. We introduce Arxiv Tables, a novel challenge for Document
Understanding focused on tables, but in relation to text passages. In
order to build the data set, we leverage arXiv, a large open-access archive
of scholarly papers. We use both LaTEX source codes and graphical ren-
derings of papers and combine tables with their references in the main
text to create a quasi-Question Answering dataset by masking selected
fragments available in the table. What distinguishes the dataset is that
(1) the domain is science, (2) the input texts are longer than in typi-
cal Document Understanding Question Answering tasks, and (3) both
the input and output contain non-standard characters used in scientific
notation. For easier comparison for future research using this dataset,
strong baselines are also given.

Keywords: Document understanding · OCR · Question Answering ·
table processing

1 Introduction

Recently, there has been a lot of progress in the relatively new domain of Doc-
ument Understanding encompassing tasks such as classification, information
extraction, question answering done for documents of rich layout and graphical
structures, including elements such as tables, graphs, listings, formulae. A num-
ber of Transformer-based models were proposed for processing documents, such
as LayoutLM [30], LAMBERT [9], TILT [23], also including end-to-end models,
i.e. working without assuming an external OCR module, such as Donut [16],
Dessurt [7], or Pix2Struct [17].

What is even more fundamental is that a number of Document Understand-
ing datasets, challenges, and benchmarks have been proposed, examples include
SROIE [13], Kleister [26], DUE [2]. Question Answering challenges are of special
interest as they fit the generative nature of modern language models, see e.g.
the DocVQA challenge [19]. It still seems that opportunities offered by some raw
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data sets have not been fully exploited. In this paper, we are using data available
at arxiv.org, open-access archive for over 2.1M scholarly articles to create a novel
Document Understanding task related to tables.

The advantage of arXiv is that not only final documents (mostly in the
PDF format), but also their sources (mostly in LaTEX) are available. LaTEX is
a rich language that can express not only text formatting but also tables and
references between them and the main text (the \label and \ref commands).
We leveraged this data to create a quasi-QA task related to tables, called Arxiv
Tables.

The main contributions of this paper are as follows:

– we prepared and publicly shared a new large Document Understanding task1,
– the evaluations on a number of non-trivial baselines were carried out2.

2 Related Work

A number of challenges or even benchmarks (see e.g. the DUE benchmark [2])
has been proposed for Document Understanding. Some of them are in the Ques-
tion Answering (QA) setup and one of the most popular is DocVQA [19], in
which the documents were sourced from UCSF Industry Documents Library, “a
digital archive of documents created by industries that influence public health”,
in general, is a popular source of documents for Document Understanding chal-
lenges. The questions for DocVQA were crowd-sourced, the average length of
a question is only 8.12 words and about 1/4 of the questions are of ‘table/list’
type.

2.1 Tabular Question Answering

There are also a few QA datasets with tabular input. BioTABQA [18] is a Ques-
tion Answering dataset in a biomedical domain. The authors used templates
to create questions and answers to tables from a medical textbook. As all the
tables have the same format, a template approach was applicable. Unfortunately,
the dataset diversity is small: there are only 22 question-and-answer templates
and only one table format. WikiTableQuestions [22] is a dataset of crowd-sourced
question-and-answer pairs to randomly selected 2,108 Wikipedia tables. Another
work in the domain of QA using tables from Wikipedia is HybridQA [5]. The
authors created the dataset, where a table is contextualized by text, namely
they used text passages linked by hyperlinks from the table cells. Question and
answer pairs to these table-and-text examples were obtained by crowd-sourcing.

Arxiv Table dataset differs from the one mentioned about by domain – there
has not been any QA or quasi-QA dataset using tables for the scientific domain.

1 The dataset is available at Gonito.net platform: https://gonito.net/challenge/arxiv-
tables.

2 Scripts and reproduction instructions are available at https://github.com/applicaai/
arxiv-tables-baselines.
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This particular domain is challenging because of specific terminology and non-
standard characters present in scientific texts, especially in tables with mea-
surements. Our dataset is also bigger, both in terms of tables and number of
examples (see Table 1).

Table 1. Comparison of different Question Answering and quasi-Question Answering
tasks in domain of table understanding.

Dataset Domain Tables # Examples #

BioTABQA Biomedical 513 31k

WikiTableQuestions Wikipedia 2k 22k

HybridQA Wikipedia 13k 70k

Arxiv Table (ours) Scientific 96k 127k

2.2 Table to Text

There is another line of work in Document Understanding called Table to Text. In
this paradigm, the goal is to generate a textual description of a table. One of the
most popular datasets of this kind is ROTOWIRE [29], where a model is required
to generate a summary of an NBA match using statistics about it presented
in a form of a table. Another dataset is LogicNLG [4], where the inputs are
tables from Wikipedia and the goal is to “generate natural language statements
that can be logically entailed by the facts in the table”. The statements to be
entailed were written by crowd-workers. NummericNLG [27] is a dataset from
a scientific domain, where the source is articles from ACL Anthology website3.
The tables are automatically extracted from the articles and the expected texts
are obtained by a heuristic, which matches the table to its description in the text
using the table’s reference number. SciXGen [3] applies a very similar idea to
scientific articles from arXiv, but model input is contextualized by a text before
the reference. SciGen [20] is also a dataset of arXiv tables, but the expected
output texts are table descriptions, which were manually written by experts in
a particular scientific domain. There are also two datasets, where the expected
output is a summary only of a particular part of a table, and the remaining
content of the table serves as a context. The first of them is WikiTableText [1],
in which the goal is to generate a summary of a highlighted row from a table. The
second one is ToTTo [21], in which a model is required to generate a summary
of a few highlighted cells. Both datasets use Wikipedia as a table source and the
expected outputs were manually written.

The dataset presented in this paper differs from the one described in this
section because of its character. While Table to Texts challenges are focused on
generating text, the goal in our dataset is to infer one value. Because of that
different metrics are used: Table to Text challenges are evaluated using text

3 https://aclanthology.org/.
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generation metrics like perplexity or BLEU, while Arxiv Tables uses accuracy.
Text generation metric put more focus on generating coherent, grammatically
correct text, while accuracy score (in the way we use it) promotes solution which
is the best at extracting data from a table.

2.3 Table Extraction

Table Extraction is a problem where the goal is to extract either table structure,
contents, or both from an image of a table. This task has been addressed in
a number of datasets, see, for instance, TabLex [8] and PubTables-1M [25] as
recent examples of large datasets of this type. Tables generated from LaTEX
source codes were also included in these datasets. AxCell [15] (also known as
PWC) is a dataset closely related to the table extraction problem, where the
goal is to extract a machine learning leaderboard from a scientific paper. A
model is required to present a leaderboard in a standardized manner, hence this
task requires a model to perform some reasoning and normalization.

By comparison, Arxiv Tables is not a table extraction challenge, it is con-
cerned more with understanding tables in the context of a text fragment.

3 Dataset

The Arxiv Tables dataset is based on articles published on the arXiv.org4 web-
site, which provides publicly available archives of scientific documents. It collects
articles in mathematics, physics, astronomy, electrical engineering, computer sci-
ence, quantitative biology, statistics, mathematical finance, and economics, and
many of these include tables (examples are given in Fig. 1).

Each instance in the Arxiv Tables dataset consists of an image of a table,
the quasi-question (referring to a given table) with masked information, and the
expected answer (see an example in Fig. 2).

3.1 Preparation

The source data of the articles, which consist of compressed packages with LaTEX
files, were collected in bulk from Amazon S3. Then the documents were automat-
ically searched for the existence of tables and paragraphs that include a LaTEX
reference (\ref{} command) to a table.

In the last stage, each paragraph with reference had key information masked,
and the tables were saved as images. Training, test, and validation sets were
created with a structure suitable for the Gonito.net5 challenge [10].

Most of the packages are TAR archives with GNU zip the format or single
files compressed to GNU zip format. All of them include LaTEX files, which
were submitted to arXiv.org to produce PDF files after automatic processing by

4 https://arxiv.org/.
5 https://gonito.net/.
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Fig. 1. Two different examples of pages from documents published on arXiv.org with
tables marked. The table on the left contains numeric data [6] and the table on the
right has one row that contains a description of an algorithm [14].

AutoTeX software. It should be noted that the Amazon S3 storage sometimes
includes PDF files instead of source files and we filtered them out since they
could not be automatically processed.

Each compressed file or archive was automatically checked for the presence
of tables and LaTEX references. It is worth noting that only those paragraphs
that referred to exactly one table were used for the final set to avoid ambiguity
(the same value or name may appear in multiple tables, it’s hard to say which
table is the right context for a particular value). However, one table may have
multiple LaTEX references that are used in the dataset. After extraction of every
paragraph that includes LaTEX reference to only one table and creating images
of the tables, the paragraph was automatically converted into a quasi-question
that has one key information masked and the masked key information becomes
an expected answer.

Expected answer in our dataset is a specific piece of information from a table,
either:

– a text containing between 3 and 15 characters present explicitly in the table
(an ‘extractive’ example),

– or one of the eight listed adjectives: largest, smallest, better, worse, best,
worst, more, less (‘Comparative’ examples6; they do not have to be present
in the table, the assumption is that we can check deeper reasoning capabilities
of a model, not just ability to carry out information extraction, this way).

6 On the evaluation platform they are denoted as ‘degree’.
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Fig. 2. An example of an image of a table [6] with text referring to it, along with a
selected piece of information that can be masked because it is present in the table. In
this case value 0.32 can be masked because it is referenced in the table.

However words such as and, or, from, of, the, model, for, table, were
explicitly excluded as answers because of a lack of specificity.

3.2 Dataset Statistics

The total number of downloaded and correctly processed documents is 52883.
The resulting corpus, divided into a test, training, and validation sets, has

the sizes presented in Table [2]. Expected answers in each subset contain around
25% of adjectives and 11% of numbers from the table, the remaining 64% are
other kinds of entities. See Table 5 for some examples of expected answers.

The training subset has 3698 unique expected answers and the most fre-
quent phrases are more(478), better(433), best (341), less (131), largest
(82), worse (37), smallest (26), worst (25), 100 (22), 200 (17), AUC (12), mean
(12), 0.5 (10), 300 (10), 1000 (10), LSTM (10), time (9), RMSE (9), models (9),
CNN (9). 3035 values occur only once.

Table 3 presents statistics related to the length of quasi-questions. From these
data, it can be concluded that most quasi-questions contain up to 500 words, on
average they include almost 7 sentences, and quasi-questions that have around
13,000 words are an exception that is only present in the training set.
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Table 2. Training, validation and test set sizes.

Subset Quasi-questions # Images #

train 114157 86978

test 6403 4932

validation 6039 4612

Table 3. Basic quasi-question and expected answer statistics for training, test and
validation sets.

Subset Quasi-question Expected answer

characters words sentences characters

MIN train 8 4 1 3

test 36 12 1 3

validation 32 7 1 3

MAX train 256382 12950 122 15

test 18337 1250 50 15

validation 11233 2234 84 15

MEAN train 874.88 177.34 6.94 7.39

test 864.74 175.16 6.85 7.06

validation 868.69 176.32 6.94 7.11

MEDIAN train 763 154 6 7

test 763 154 6 6

validation 761 154 6 6

3.3 Evaluation Procedure

The solutions are evaluated using GEval evaluation tool [11] using Accuracy
evaluation metric. Values of Accuracy for the two subsets of items (adjectives
and strings present in the tables) are also calculated as supplementary metrics.

4 Baseline Models

4.1 LayoutLMv3

The first of our baselines is LayoutLMv3 [12]. It is a Transformer-based [28]
model for document understanding (mostly information extraction) tasks. As
input to the model, we need an image of a document (in our case it is a table
image), document tokens with bounding boxes, and a prompt. To produce tokens
and bounding boxes of a table we used Microsoft Read v.3.2. The maximum
length of a model input equals 512 tokens (for a quasi-question and document
tokens together). Because of that, we decided to truncate a quasi-question to 25
words only, we use 17 words of context before [Mask], the [Mask] token, and 7
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words of context after the [Mask]. This set-up was motivated by the intuition
that the context before the [Mask] is more important, as it is the natural order of
reading. We feed the model with all the tokens from the truncated quasi-question
and as many tokens from the table, as it fits in a vector of size 512.

LayoutLMv3 uses a sequence-labeling approach, hence to calculate loss we
need annotations at the token level. Because of that the proposed baseline can
only work with ‘extractive’ examples. To provide labels of ‘extractive’ datapoints
at a token level, we proposed a heuristic for token labeling. It finds the expected
answer in the table using fuzzy matching. The whole pipeline of training pipeline
is presented in Fig. 3.

Fig. 3. Pipeline for training LayoutLMv3 baseline.

4.2 T5

We also provide some baselines in the sequence-to-sequence paradigm, namely
T5 [24] and its adaptation for document understanding T5+2D [2]. Input to both
models is a quasi-question together with tokens from a document. T5+2D uses
also information about the bounding boxes of the tokens. Once again to provide
tokens and bounding boxes we used Microsoft OCR v.3.2. The T5 family of
models has no predefined maximum length of the input, hence the inputs we
provided to the models were only limited by GPU memory (40GB), namely not
more than 1450 tokens. Because of that, we did not truncate the quasi-question,
an input was built out of the whole quasi-question and as many tokens from the
table as possible. In more than 90% of cases, 1450 tokens input vector was long
enough to contain the whole quasi-question and all the tokens from the table.
As the model produces sequence as an output, we do not need any knowledge
about exact answer span to calculate loss, we can just compare generated tokens
with the expected answer. The whole pipeline is presented in Fig. 4.

Following the authors of the document understanding benchmark DUE [2],
we trained 4 models using such a pipeline: the T5 model, the T5+2D model,
which uses positions of tokens on a page, and their pretrained versions. T5 and
T5+2D models are publicly available and pretrained ones were shared with us
thanks to the courtesy of authors of the DUE benchmark.
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Fig. 4. Pipeline for T5 and T5+2D baselines. Bounding boxes are used only by the
T5+2D model, plain T5 ignores them.

5 Results

Table 4. The detailed results (average accuracy over 3 runs) of our baselines on the
test set. U stands for unsupervised pretraining. Value after ± is standard deviation.

Datapoints LayoutLMv3 T5 T5+2D T5+U T5+2D+U

Extractive 49.5±1.1 60.7±0.4 59.1±1.1 62.6±0.8 63.5±0.3

Comparative — 86.4±0.5 86.0±0.3 86.0±0.4 85.1±0.2

All — 66.9±0.4 65.6±0.9 68.3±0.7 68.7±0.3

The detailed results are presented in Table 4. The weakest of the presented mod-
els is LayoutLMv3. Its performance was probably limited by three factors: length
of the input sequence, OCR mistakes, and quality of token labeling. Firstly, we
were not able to feed the whole quasi-question and all the tokens from a table to
the model, for some tables expected answers were not even present in the tokens
provided. Secondly, the OCR engine used works well with Latin characters, but
when the table contains other symbols, such as Greek letters or special charac-
ters denoting units of measurement, it fails. The sequence labeling model does
not have any mechanism for correcting OCR mistakes: it may only compose an
answer from the input tokens. Finally, the heuristic for token labeling introduces
its own mistakes, especially when applied to noisy OCR output. The sequence
labeling approach cannot be applied to datapoints other than ‘extractive’ one,
hence ‘comparative’ and ‘all’ scores were not presented.

Models from the T5 family were also affected by OCR mistakes, but theo-
retically, sequence-to-sequence models can generate answers not present in the
input and, thanks to that, correct OCR (even if the OCR engine returned wrong
predictions). Unfortunately, the T5 dictionary is also limited in terms of special
characters, hence sometimes the models have no capability of generating a cor-
rect answer. They cannot even read these kinds of characters and they internally
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Table 5. Sample of 40 errors for random tables from the validation set for the
T5+2D+U model.

Expected answer Actual answer
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represent them as special tokens [unknown]. As one may expect, pretrained mod-
els perform significantly better than their not pretrained counterparts. The not
pretrained T5+2D model performed worse than the base T5 model. We hypothe-
size that it is caused by randomly initialized weights in layout related part of the
model: they probably introduce more noise than useful information for the rest
of the model. As far as the comparison between pre-trained T5 and T5+2D is
concerned, there is not any significant difference in their performance. We think
both models reached their glass ceiling caused by the level of OCR mistakes and
limited dictionary, hence layout information does not help the T5+2D+U model
to overcome these obstacles.

Note that the information about item types (‘extractive’ vs ‘comparative’)
was not used during model training and testing, in particular models were not
explicitly constrained to the eight adjectives/adverbs.

6 Error Analysis

A random sample of 40 errors for the current best (T5+2D+U) model is pre-
sented in Table 5. Six errors (15%) were directly caused by an OCR error (e.g.
64 4 instead of 64 × 4), four errors (10%) are the wrong forms of an adjec-
tive/adverb (‘comparative’ type, e.g. smallest instead of largest), in one case
of the ‘comparative’ type a non-adjective/adverb were returned (bSNR instead
of best).

7 Conclusions

By leveraging the availability of a large number of scientific papers and their
source codes, we introduced a new, relatively large challenge for the domain
of document understanding. The results of strong baselines still show that rea-
soning about a text in the context of tables requires new ideas for document
understanding models, as even layout-aware models brought no improvement
over their non-layout-aware counterparts.

In the future, a similar approach can be applied to figures/graphs (figure
environment in LaTEX) leading to a the quasi-Question-Answering challenge with
even more pronounced visual aspects.

Acknowledgments. The Smart Growth Operational Programme partially sup-
ported this research under projects no. POIR.01.01.01-00-0144/17-00 (Robotic pro-
cesses automation based on Artificial Intelligence and deep neural networks) and
POIR.01.01.01-00-1624/20 (Hiper-OCR - an innovative solution for information
extraction from scanned documents).
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Abstract. In recent years, the field of document understanding has pro-
gressed a lot. A significant part of this progress has been possible thanks
to the use of language models pretrained on large amounts of docu-
ments. However, pretraining corpora used in the domain of document
understanding are single domain, monolingual, or nonpublic. Our goal
in this paper is to propose an efficient pipeline for creating a big-scale,
diverse, multilingual corpus of PDF files from all over the Internet using
Common Crawl, as PDF files are the most canonical types of documents
as considered in document understanding. We analyzed extensively all
of the steps of the pipeline and proposed a solution which is a trade-off
between data quality and processing time. We also share a CCpdf corpus
in a form or an index of PDF files along with a script for downloading
them, which produces a collection useful for language model pretraining.
The dataset and tools published with this paper offer researchers the
opportunity to develop even better multilingual language models.

Keywords: Natural Language Processing · language models · dataset
construction · document understanding

1 Introduction

Natural Language Processing (NLP) in recent years has made significant progress
thanks to using language models such as GPT-3 [6] or T5 [23]. Usually these
models are trained in a two-step process. The first part is pretraining, which
utilizes a large corpus of text, and the second step is finetuning on a final task.
Recent works demonstrate a considerable impact of pretraining on the final
performance of a model [10,17,27]. For instance, GPT-3 was pretrained on a
combination of texts from Common Crawl, WebText2, two book corpora, and
the English Wikipedia (499 billion tokens in total) [6] while T5 was pretrained
on the C4 corpus, which is 750 GB of data [23].
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Fig. 1. The full flow of the process. Cylinders represent data, rectangles represent pro-
cessing steps, and arrows represent data flow. A solid line indicates that the information
is always used, and a dashed line represents data usage dependent on the processing
strategy.

The recent progress in document understanding (defined as “capacity to con-
vert a document into meaningful information” [5]) has been possible thanks to
2D language models such as LayoutLM [29,30], LAMBERT [9], or TILT [21].
Similarly to the models mentioned above, they also need large amounts of data
for pretraining. The input to these models is a multi-modal representation of a
document, e.g. tokens with their positions and images of pages.

The World Wide Web abounds in multi-modal documents, which contain
enormous amounts of information. This information can be used in multiple
domains: NLP, law, knowledge extraction, history, and many more. Yet, this
aspect of the Internet remains relatively unexplored. So far, attempts of docu-
ment dataset creation have been focused on either single domain (e.g. medical1,

1
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.
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academic [3], or industrial [14]), while there has been no all-over-the-Internet
approach. On the other hand, existing all-over-the Internet corpora (e.g. Web
1T 5-gram2) were focused on text only, not on multi-modal documents.

A document is a multi-modal form of communication: to interpret documents
properly, we have to understand not only text, but also the layout and graphical
elements. The most popular and portable multi-modal document format is PDF.
In this study, we aim to describe a carefully designed pipeline for PDF corpus
creation. We investigated numerous possible processing techniques and described
their impact on the final data, which allowed us to achieve satisfactory trade-off
between data quality, computing time, and monetary cost. The dataset itself
(in the form of an index of PDF files and a script for downloading them) is
also available at our website3. We share a corpus of 14.5M pages. It is useful
as a dataset for 2D language model pretraining, but may also be employed as a
source for derived datasets, in the same way as the IIT-CDIP dataset [14] was
used to create many diverse challenges. Finally, analysis of the collected PDF files
themselves yields helpful insight for language model creators, but also enhances
our understanding of the World Wide Web as a source of PDF documents.

2 Related Works

The general problem of creating a large-scale corpus of documents has been
studied extensively in recent years. IIT-CDIP [14] is a 40M pages (but according
to the authors of OCR-IDL [4] only 35.5M of them are still reachable) dataset of
reports from the Legacy Tobacco Documents Library4 collection, which was later
reused to prepare a 400k page document classification dataset [12]. Also, OCR-
IDL [4] reused IIT-CDIP to publish a 26M page dataset with high-quality OCR
output. DoRe [19] is a French dataset of 2350 annual reports from 336 companies,
unfortunately the data weren’t shared publicly. There are also two layout analysis
datasets based on scientific articles: Docbank [15] and Publaynet [33]. Their
volumes are 500k and 360k pages, respectively. In addition, Ammar et al. [3]
provided corpora of scientific documents together with a literature graph (defined
as “a directed property graph which summarizes key information in the literature
and can be used to answer the queries mentioned earlier as well as more complex
queries” [3]). The National Library of Medicine has shared a PMC Open Access
Subset5 which is a corpus of open-access, open-licensed medical publications.
Allison et al. [2] proposed a pipeline for creating a corpus of PDFs sourced from
the Internet. The goal of this work is to “identify key edge cases or common
deviations from the format’s specification”. They also provide analyses of files in
their corpus. All of these datasets are single-domain or single-language collections
(usually both), while our aim is to create a diverse, multilingual dataset. There
exists only one publication presenting such a dataset [31], but the authors limited

2
https://catalog.ldc.upenn.edu/LDC2006T13.

3
https://github.com/applicaai/CCpdf.

4
https://industrydocuments.ucsf.edu/tobacco/.

5
https://ncbi.nlm.nih.gov/pmc/tools/openftlist/.
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themselves to describing the data processing pipeline without analyzing their
decisions. Also, their dataset was not shared.

Attempts have also been undertaken to create diversified corpora of texts
sourced from the Internet. For instance, in CCNet [28], Common Crawl was
used to create curated monolingual corpora in more than 100 languages. Also
Schwenk et al. used Common Crawl in CCMatrix [24], but their purpose was
to extract parallel sentences in different languages. The result was 10.8 billion
parallel sentences in 90 languages. Another study in this vein is Smith et al. [25],
whose method allowed to extract a 278 million token corpus of parallel English-
French, English-Spanish, and English-German texts. In CCQA [13], a method for
composing multilingual question-answering task using Common Crawl was pro-
posed. The authors shared 130 million question-answer pairs. Liu and Curran [16]
used Open Directory Project6 to extract a topic-diverse English corpus of 10 bil-
lion words. To pretrain the T5 language model [23], the authors extracted a 750
GB English text corpus, called C4, employing Common Crawl. Dodge et al. [7]
explored this dataset further and analyzed the effects of the applied filtering. A
similar pipeline to that used for C4 was applied to create the mT5 [32] training
corpus, which is a multilingual version of T5. The proposed corpus has 6.3 trillion
tokens. Qi et al. [22] crawled 10 million images with captions from the Internet
and used it to pretrain the multi-modal ImageBERT model. C4Corpus [11] (not
to be confused with C4 proposed by Raffel et al., described above) utilized Com-
mon Crawl resources to provide multilingual (more than 50 languages) over 10
billion token corpus to the community. The Pile [8] is a 885 GB text corpus com-
posed of 22 different datasets, and one of its subparts are texts from Common
Crawl. Abadji et al. [1] proposed a document-oriented multilingual 12 GB corpus
of texts from Common Crawl with quality annotations. It must be noted that
the authors define the term “document” as a long, coherent piece of text, not
as a PDF file, as we do in this study. Luccioni and Viviano [18] analyzed Com-
mon Crawl in terms of undesirable content, including hate speech and sexually
explicit content, and investigated different filtering methods.

Table 1. Comparison of existing publicly available corpora. *Numbers of valid docu-
ments/pages according to the authors of OCR-IDL [4].

Dataset Documents Pages Avg pages per doc Languages Domains Years

IIT-CDIP 6.5M* 35.5M* 5.5 1 Industry documents 1990s

OCR-IDL 4.6M 26M 5.7 1 Industry documents 1990s

CCpdf 1.1M 14.5M 12.9 11 Multi-domain Mostly 2010–2022

6
http://odp.org.
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3 Collecting and Processing PDFs

In this section we describe how we addressed the challenge of finding, down-
loading, and processing a great volume of PDF documents. The full process is
presented in Fig. 1.

3.1 Common Crawl

As our input we used web indexes created by Common Crawl7. Common Crawl
is a project of The Internet Archive8 – an organization dedicated to providing a
copy of the Internet to the community. They crawl webpages and save them into
crawls dumps. A crawl dump contains billions of webpages (hundreds of terabytes
of uncompressed data) and a new dump has been published nearly every month
since March 2014. Some earlier, more irregular dumps starting from 2008 are
also available.9 Each dump also contains an index of the crawled pages.

We decided to simply use the latest (and the largest) dump available at the
time of writing this paper - the May 2022 dump.10 It contains 3.45 billion web
pages, which amounts to 462 TB of uncompressed content. It would obviously be
possible to apply the extraction procedure described in this paper to all crawls to
obtain an even larger collection of PDFs, which would also allow for a diachronic
analysis, but we wanted to focus on the most recent documents.

Note that dumps contain only files considered as text files by the Common
Crawl web robot. Mostly these are web pages in the HTML format, but, for-
tunately, PDFs are also treated as text files, being derivative of the PostScript
page description language. This is not the case with, for instance, images, Excel
files, DOCX files. Consequently, such files cannot be amassed using the methods
described in the aforementioned papers.

3.2 PDF Links Extraction

We experimented with two methods for extracting links to PDF files (step 1 in
Fig. 1):

1. using CDX files, i.e., index server files provided by Common Crawl;
2. looking for links to PDF files in WARC, i.e., raw crawl data files.

The first method is simpler, as CDX files are easy to download and take up
only 225 GB in total. The second method might yield more links to PDF files,
but:

– it is impossible for us to download all WARCs. Only a limited number of
them can be processed, though still a significant number of PDF links can be
added even if a small percentage of all WARC files are processed,

7
https://commoncrawl.org.

8
https://archive.org/.

9
https://commoncrawl.org/the-data/get-started/.

10
https://commoncrawl.org/2022/06/may-2022-crawl-archive-now-available/.
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– there is lower probability that the file linked is available at all, be it in the
crawl dump or simply at the original address.

In CDX files, the MIME type of a captured file is specified, and we limited
ourselves to the application/pdf type.

Hence, in this paper, we focus on the first method, which allows to speed up
the whole processing pipeline.

3.3 URL-Based Language Detection

We decided to limit our investigation to the following set of 11 languages: Arabic,
Dutch, English, French, German, Italian, Japanese, Polish, Portuguese, Russian,
and Spanish.

When deciding whether to process a given URL, we applied a number of
simple heuristics to determine the language. For example, we assumed that PDFs
from .pl domains are Polish unless there is lang=en inside the URL etc. Note
that this is a preliminary filter; later, when the contents have been downloaded,
we do a proper language detection (see Sect. 3.9).

In August 2018, Common Crawl added language metadata to CDX files.11
Unfortunately, the Compact Language Detector 2 employed there is applica-
ble only for plain texts or HTMLs, and only a small percentage of PDF links
contained the language metadata; therefore, it was unusable for our purposes.

This step of the pipeline is presented as block 2 in Fig. 1.

3.4 Filtering Out Spam

One of the challenges to be tackled in Web information retrieval or when creating
a massive text corpus sourced from the Web is the problem of (web) spam and,
more generally, low quality pages (step 3 in Fig. 1). Web spam is usually related
to black-hat search engine optimization, i.e., creating link farms of web pages
with automatically or semi-automatically generated content. It turns out that
PDF files found on the Internet have the advantage of a relatively low percent-
age of spam, especially when compared to HTML web pages. More generally,
we believe PDF files usually contain more formal content as most of them are
business, legal, or scientific documents.

Still, some spam PDFs were found in Common Crawl dumps. Fortunately,
the way in which spammers operate is rather homogeneous. A typical telltale of a
spammy PDF was a long name composed of lower-case letters interspersed with
hyphens. A regular expression was written to detect suspicious URLs, and if a
domain happened to contain a large percentage of such URLs, it was assumed
to be spammy as a whole and totally discarded. Thanks to this simple heuristic,
in a sample of 1k documents we manually annotated (see Sect. 3.9) we found no
spam PDFs.

11
https://commoncrawl.org/2018/08/august-2018-crawl-archive-now-available/.
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3.5 PDF Data Download Methods

In order to ensure diversity, we downloaded at most three PDF files from each
domain for a language in a random but reproducible manner. For English and
German this number was lowered to, respectively, one and two, as PDFs in these
two languages are much more numerous compared to others. This limitation also
serves as a filter against anomalies such as millions of PDFs coming from a single
domain; especially a spammy one, if not detected with the procedure described
in Sect. 3.4. Balancing is represented as step 4 in Fig. 1.

The files were downloaded from the original URLs (step 5 in Fig. 1). Option-
ally, one could extract the file from a Common Crawl dump, especially if the
file is not available at the original site. We provide a script to extract PDF files
directly from the dump; fortunately, one does not need to download the whole
dump to extract a file.

There is, however, one serious issue with extracting PDFs from crawl dumps:
all files are truncated by the crawler to 1 MB. This limit is quite high for HTML
pages, but unfortunately rather low for PDF files. This means that only small-
sized PDF files can be extracted from Common Crawl dumps; larger ones have
to be downloaded from the original sites.

The final and intermediary statistics for the files downloaded are presented
in Table 2.

Table 2. Number of documents per processing step and language. Percentage val-
ues show success rates of downloading (in the downloaded column) or downloading
and processing together (in the processed column). The success rate for processing a
downloaded document equals 94.94%.

URLs Anti-spam Domain Language Successfully Successfully

found filtered balanced balanced downloaded processed

ar 65395 65374 13142 13142 11 710 (89.10%) 10 826 (82.38%)

de 1661317 1659713 320978 200000 182 607 (91.30%) 172 668 (86.33%)

en 11515766 11501781 952776 200000 182 071 (91.04%) 175 440 (87.72%)

es 871843 871478 106143 106143 93 163 (87.77%) 88 952 (83.80%)

fr 654250 653120 143020 143020 129 927 (90.85%) 121 905 (85.24%)

it 831344 831026 129610 129610 119 731 (92.38%) 114 265 (88.16%)

ja 1160543 1160410 151686 151686 139 990 (92.29%) 134 310 (88.54%)

nl 339519 338946 92372 92372 84 848 (91.85%) 79 720 (86.30%)

pl 438770 438531 85635 85635 79 668 (93.03%) 75 374 (88.02%)

pt 697535 697285 73130 73130 64 725 (88.51%) 61 405 (83.97%)

ru 628473 628061 105535 105535 91 708 (86.90%) 85 552 (81.07%)

all 18864755 18845725 2174027 1300273 1 180 148 (90.76%) 1 120 417 (86.17%)

3.6 Born Digital Scanner

To process correctly all kinds of documents in the document understanding
domain we need to extract tokens from PDF files with their bounding boxes
sorted properly, i.e., according to the reading order. The most common approach
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[9,21,29,30] is to process each PDF file with the use of some OCR engine, e.g.
Tesseract [26], Amazon Textract12, Microsoft Azure Computer Vision API,13 or
Google Vision API14. This method simplifies the processing pipeline and removes
the need to understand the complicated PDF file format.

The biggest challenge in direct text and layout extraction lies in processing
image content since there is no easy way to detect whether an image contains
text. On the other hand, some documents lack pictures altogether; instead they
contain textual information in the PDF file structure. We call them documents
that do not require OCR. From such documents text can be extracted along
with bounding boxes using dedicated Python libraries, such as pdfminer.six15,
pdfplumber,16 or a DjVu-based tool17. Direct text extraction using these tools
leads to the reduction of the processing time and improvement of the quality of
the extracted data by preventing OCR errors. Therefore, we decided to intro-
duce a mechanism, called the Born Digital detector, for finding these kinds of
documents (step 6 in Fig. 1).

3.7 Born Digital Detection Heuristics

In order to detect documents that do not need to be processed with an OCR
pipeline, we created a fast, simple heuristic-based classifier:

– Visible Text Length > 100 - Visible text in the document contains more than
100 characters

– Hidden Text Length = 0 - There is no hidden text in the document
– Image Count = 0 - There are no images in the document

Used statistics (Visible Text Length, Hidden Text Length, Image Count) were
extracted using Digital-born PDF Scanner18 tool written by us.

Our simple method was able to classify 219 documents out of 967 as born-
digital files that do not require OCR. (In other words, we can skip the time-
consuming OCR process for more than 1 out of 5 PDF files). To check quality of
our heuristic we manually annotated the same sample of documents. The preci-
sion of the proposed method was 93.15%. All errors (15) were caused by adding
a background with logo text to the file. In the future, we can also improve that
kind of cases by extracting metadata information about PDF file background as
well.

12
https://aws.amazon.com/textract/.

13
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr.

14
https://cloud.google.com/vision/docs/pdf.

15
https://github.com/pdfminer/pdfminer.six.

16
https://github.com/jsvine/pdfplumber.

17
http://jwilk.net/software/pdf2djvu, https://github.com/jwilk/ocrodjvu.

18
https://github.com/applicaai/digital-born-pdf-scanner.
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Table 3. Results for the Born Digital detector mechanism.

Gold standard # Born Digital detector

Precision Recall F1-score TP + FP #

born digital, OCR not required 471 (48.71%) 93.15 43.31 59.13 219 (22.65%)

born digital, OCR required 321 (33.20%) – – – –

scan 175 (18.10%) – – – –

all 967 – – – –

3.8 OCR Processing

One of the initial steps of the PDF processing pipeline is the URL based lan-
guage detection method (see Sect. 3.3). Information about the language of the
document is needed for filtering documents for specific languages and also by
the OCR tool. In the next step (see Sect. 3.7), we select PDF files for processing
either by the DjVu-based tool (if the file is born digital then it does not require
OCR) or by Tesseract OCR [26]. The result is hocr files containing extracted text
with its bounding boxes. This form of data serves as the input to the subsequent
processing and analyzing steps.

Table 4. Comparison of resource utilization for different strategies of the text extrac-
tion from PDF files. *for Azure OCR we used 4 CPU (which is minimal recommenda-
tion for container in version 3.2) and multiplied the number by 4.

Strategy name Processing time (using 1 CPU) Additional cost

1k files in relation to fastest Single page 1k files

DjVu-based tool + Born-digital detector 5.6 h 1x - -

Tesseract + URL based LD 23.7 h 4x - -

Tesseract + Build-in LD mechanism 75.9 h 14x - -

MSOCR + Build-in LD mechanism 16.7 h* 3x 0.001$ 13$

Possible Alternatives. In a typical scenario of extracting text with bounding
boxes from a PDF file, researchers use a custom OCR engine [9,21,29,30], e.g.
Tesseract, Microsoft Azure Computer Vision API, Amazon Textract, or Google
Vision API. However, when we want to process millions of PDF files, we need
to think about the utilization of resources in the context of time and money.
Additionally, contrary to previous work, the language of a PDF file that we
want to process is unknown. Therefore, to choose the most economical option,
we tested the following strategies:

1. DjVu-based tool with a born-digital detector – for details, please see Sect. 3.7
2. Tesseract with URL based Language Detection (LD) – described at the begin-

ning of this section
3. Tesseract with a built-in LD mechanism – in this strategy, we use the Tesser-

act OCR [26] engine with a built-in language detection mechanism
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4. Azure CV API with a built-in LD mechanism – in this strategy we use
Microsoft Azure Computer Vision API19 with a built-in language detection
mechanism

We achieved the shortest processing time (see Table 4) with the DjVu-based
tool and a born-digital detector (see Sect. 3.7), which followed from the fact that
we did not need to run anyMLmodels. Also quality of output from theDjVu-based
tool is better than from any OCR engine, because it extracts real content of a file
and does not introduce any processing noise. Azure CV API and Tesseract with
URL based language detection are the slowest OCR engines with 3-4 longer pro-
cessing time. It’s turn out that the slowest processing time has strategy is Tesser-
act with build-in LD mechanism and, therefore, we will not apply it in our final
pipeline.

Fig. 2. Distribution of the analyzed
sample in terms of creation year.

Fig. 3. Distribution of the analyzed
sample according to PDF version.

3.9 Language Identification

In our final processing pipeline we used two language detection mechanisms:

1. URL-based method. Described in Sect. 3.3.
2. Content based method. We used the langdetect20 library to detect language

based on its text content extracted in the previous step.

We tested the quality of our language detection methods on !1k manually
annotated documents (Table 5). Both of our mechanisms can detect only a single
language but, in reality, we found out that 27 documents had multiple languages
(in 23 cases one of them was English). Fortunately, detecting a single language
allowed us to predict the language correctly for almost all documents (97.3%).

With the use of the URL based method, we achieved a 90.51% F1-score on
average, which seems reasonably good when we take into account the simplicity
of the method. The content based method works better in general with an F1-
score of 94.21% on average. The single exception here is the Japanese language.
Both mechanisms produced the least satisfactory results for two languages: Ara-
bic and English. It turned out that many documents from the .ar domain were
actually in English. Therefore, for the content based mechanism we wrongly
processed the PDF files with the Arabic Tesseract model.
19

https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr.
20

https://pypi.org/project/langdetect/.
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Additionally, we found out that when we used the proper Tesseract model our
results increased drastically to an F1-score of 98.05% on average. The main rea-
son why this happened was the fact that the language identification mechanism
was working on the proper alphabet.

Possible Alternatives. In Table 6 we present the results for different lan-
guage identification tools. All of them achieved similar F1-scores, of which spacy
(94.33%) and langdetect (94.21%) performed best. When we also take into con-
sideration the processing time, it turns out that gcld3 was the best one with a
huge advantage over the second tool, which was the langdetect library. There-
fore, we decided to balance quality and resource utilization and use langdetect
as our main tool for language identification.

Table 5. Quality of the language identification methods verified on 996 manually
annotated documents.

Gold URL based method Content based method

standard # All documents Proper Tesseract lang

Precision Recall F1 Precision Recall F1 Precision Recall F1-score

ar 20 46.51 95.24 62.50 44.19 95.00 60.32 100.0 100.0 100.0

de 94 94.68 92.71 93.68 98.94 98.94 98.94 100.0 100.0 100.0

en 119 80.46 58.82 67.96 94.34 84.03 88.89 98.55 98.55 98.55

es 75 94.52 93.24 93.88 98.65 97.33 97.99 98.57 98.57 98.57

fr 108 93.94 86.92 90.29 100.0 91.67 95.65 100.0 100.0 100.0

it 101 93.20 95.05 94.12 98.97 95.05 96.97 94.79 94.79 94.79

jp 108 100.0 98.10 99.04 100.0 89.81 94.63 92.38 92.38 92.38

nl 90 84.91 100.0 91.84 98.86 96.67 97.75 96.67 96.67 96.67

pl 88 95.56 100.0 97.73 98.86 98.86 98.86 98.86 98.86 98.86

pt 83 94.38 98.82 96.55 97.62 98.80 98.21 98.78 98.78 98.78

ru 78 96.34 98.75 97.53 97.47 98.72 98.09 100.0 100.0 100.0

other 2 0 0 0 0 0 0 0 0 0

no text 3 0 0 0 0 0 0 0 0 0

multi 27 0 0 0 0 0 0 0 0 0

all 996 88.59 92.51 90.51 93.45 94.99 94.21 98.05 98.05 98.05

Table 6. Comparison of the quality and processing time of different language identi-
fication tools.

Tool name F1-scores for content based method Processing time

ar de en es fr it jp nl pl pt ru all 1k files 1M files

langdetecta 60.32 98.94 88.89 97.99 95.65 96.97 94.63 97.75 98.86 98.21 98.09 94.21 0.28min 4.67 h

lingua-pyb 60.32 97.90 88.79 96.69 94.74 95.92 98.59 96.77 99.44 98.18 97.47 94.05 2.57min 42.8 h

spacyc 60.32 98.94 87.33 97.99 94.79 97.49 98.59 97.18 100.0 98.18 97.47 94.33 3.62min 60.3 h

gcld3d 59.01 98.94 89.91 97.96 96.15 97.49 92.16 97.73 99.44 98.78 98.07 94.08 0.03min 0.33 h
a https://pypi.org/project/langdetect/
b https://github.com/pemistahl/lingua-py
c https://spacy.io/universe/project/spacy fastlang
d https://pypi.org/project/gcld3/
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3.10 Produced Index

As a result of our pipeline, we created an index of successfully downloaded and
processed files. We decided to download up to 200k documents per language to
share a reasonably sized corpus, with a good diversity of languages. It gives an
acceptably good trade-off between the balance of languages and the size of the
dataset. Statistics about the index are presented in Table 2.

A comparison of our dataset to existing corpora is presented in Table 1.
The corpus we provided is smaller than the previous ones considering the total
number of documents and pages. Still, language models will benefit in many
aspects, (1) understanding long-distance relationships as the dataset has, on
average, the longest documents compared to previous works, (2) multi-language
training as we selected 11 different languages, (3) multi-domain training as we
sourced documents from different websites all over the Internet, (4) document
understanding of recently created documents (which may differ from the old ones
in terms of language, layout, and graphical style) as the majority of files in our
corpus were produced after 2010 (in IIT-CDIP, the most popular corpus so far,
all the documents were created in the 90s).

Fig. 4. Distribution of word count per
document.

Fig. 5. Distribution of word count per
page.

Fig. 6. Distribution of the number of
lines per page.

Fig. 7. Distribution of text coverage of
page.

4 Exploration of PDFs

Since we provide a large scale, highly diversified collection of PDFs downloaded
from all over the Internet, we want to provide some insight into the properties
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of PDF files which are accessible on the Internet. To do so we randomly picked
1k documents in each of the languages in our corpus (11k documents at total)
and analyzed them in terms of various properties.

Firstly, we analyzed them in terms of their creation date, the outcome of
which is presented in Fig. 2. For this analysis we used the CreationDate field
of metadata. Since most documents come with this field filled in, we were able
to read the creation date for more than 99.4% of our sample. However, some-
times unreasonable values such as 1442 occurred as the creation year. As we
can see, our corpus contains relatively new documents. It is an important point,
because language evolves constantly, and three years ago terms such as “lock-
down” or “post-pandemic” were absent from documents. Since we want our
language models to represent current language and document types correctly,
hence a distribution like that in Fig. 2 is desired. The spike for the year 2021
was probably caused by the use of the Common Crawl dump from May 2022.
We assume that crawlers from Common Crawl usually tend to find files that are
a few months old, which often means that they are from the previous year.

We also analyzed the documents in terms of the exact version of PDF stan-
dard used. The data is presented in Fig. 3. As we can see, the majority of our
sample (above 76%) are PDFs prior to the 1.7 version. It is an important prop-
erty, because versions 1.7 and 2.0 are defined by an ISO standard, while the
older ones were defined only by Adobe proprietary standards. Some of the issues
that we experienced during processing may have been caused by problems with
older standards.

A PDF file contains metadata about the tool used to create it (Fig. 8). There
are many different tools, and often the same tool was described by different values
(for instance Microsoft Word has different names in many languages despite
being the same program). The two most popular providers of PDF tools found
in our corpus are Microsoft (29.8% of the sample) and Adobe (21.3% of the
sample).

Fig. 8. Tools used to create PDFs.

Other properties that we
were interested in were the
length of the documents in
terms of word count (Fig. 4),
their word count per page
(Fig. 5), and line count per
page (Fig. 6). As we can see,
there is great variability in
terms of these parameters.
For instance, there are many
documents and pages with
almost no text. Up to our
manual check, most of the
documents with little text are
graphically rich, for instance,
technical drawings, or info-
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graphics. The typical value of words per page is between 0 and 500, and the
typical value of lines per page is between 0 and 55.

To provide some insight into the layout of the documents, we checked to what
extent each page was covered by bounding boxes of tokens. We may look at it
as part of the text coverage parameter. Distribution of this value is presented
in Fig. 7. 76.2% of our sample fell into the range of 5% to 40% with respect to
that parameter. Similarly to the previously described properties, once again we
see a peak for empty pages. There is also a peak for pages fully or almost fully
covered by text.

We were also interested in the ratio of page dimensions. 99.7% of x/y ratios
were in the range of 0.4 to 2; the smallest value being 0.09, and the largest – 4.79.
In our sample, 65.0% were pages with the dimension ratio close to

√
2, which is

a standard ratio for the A, B and C paper series. 86.9% of them were vertical
pages, and 13.1% – horizontal ones. Also, the LETTER format was popular; it
comprised 10.6% of the sample: 92.9% documents were vertical, and 7.1% hori-
zontal. In total, the A, B, C, and LETTER series comprised 75.5% of the sample.

To gather more information about the layout of the documents, we created
heatmaps of token bounding boxes for vertical and horizontal pages (Figs. 9 and
10, respectively). As we can see, layouts with two columns of text are fairly
popular, especially for horizontal pages. Also, text occurs more frequently on
the right side of a page.

Fig. 9. Heatmap for vertical pages
(brighter means more tokens, darker –
fewer tokens).

Fig. 10. Heatmap for horizontal pages
(brighter means more tokens, darker –
fewer tokens).

5 Discussion

In this study we analyzed a pipeline for creating a corpus of documents. Accord-
ing to our experiments, the most effective way of OCR processing of PDF files
is a two-step procedure. The first step consists in the classification of the files
according to whether they need an OCR engine or simple text extraction is suf-
ficient. In the second step, we process the file with either an OCR engine (in our
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case Tesseract) or an extraction tool (in our case the DjVu-based tool). In the
former scenario, we also discovered that predefining the OCR language speed
up the process substantially; unfortunately, this comes at some cost in terms of
data quality. However, this cost may be mitigated by a simple heuristic which
filters out documents where the predefined OCR language did not match the
one discovered by the language detector. We also analyzed different language
detection tools in terms of output quality and processing time, and discovered
that the langdetect tool offered the best trade-off between these values.

One of the limitations of this research study was that we focused only on
the processing pipeline without analyzing the impact of each project decision on
the final language model. However, this kind of study would be very expensive,
as it would require multiple pretrainings of a language model. Language model
pretraining is a costly process in terms of money, time, and environmental impact
[20].

Also, conclusions drawn from the analysis of our sample can hardly be gener-
alized to the whole content of the Internet and only provide some insight, rather
undisputed knowledge. This follows from the filtering procedure: we decided to
down-sample document-rich domains and languages, therefore, statistics calcu-
lated on the whole content of the Internet may differ from the ones presented in
this work.

The approach which we used to create the dataset may be reused to all of the
previous Common Crawl dumps in the WARC format, of which there are 84 in
total. We decided to limit ourselves to one dump only due to computational and
storage limitations. One with enough computing resources may easily reproduce
our pipeline and create a corpus up to 84 times larger.

6 Conclusions

Large corpora of documents are crucial for 2D language model pretraining.
Recent approaches to their creation have had limitations in terms of diversity
and multilinguality. Diversity of the dataset is a crucial property, as data used in
the training phase impact the biases of the model. Efficient design of a pipeline
for creating such a corpus has not been studied before. In this work we addressed
those limitations by designing a process of downloading diversified samples of
PDFs and their efficient processing. To obtain documents we used Common
Crawl, which is a popular source of data for language model pretraining, but
has rarely been used in the context of 2D language models. The PDF files used
for this project were balanced across languages and domains, which guarantees
diversity with respect to layouts and topics. To make the processing pipeline
efficient in terms of computing time and data quality, we tested different strate-
gies of OCR processing, i.e. usage of the embedded textual layer for documents
not requiring OCR, and predefining the OCR language. The language detection
step was also carefully analyzed.
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The result of this work is an index of PDF files with their URL addresses and
metadata, and the script for downloading it is available at our repository21. The
supplied data were analyzed in terms of not only document length and layout,
but also metadata connected to the PDF format (i.e., the PDF version and the
creator tool), which can help understand better the dataset itself, but also give
an insight into the content of the Internet.

Acknowledgments. The Smart Growth Operational Programme partially supported
this research under projects no. POIR.01.01.01-00-0877/19-00 (A universal platform
for robotic automation of processes requiring text comprehension, with a unique level of
implementation and service automation) and POIR.01.01.01-00-1624/20 (Hiper-OCR
- an innovative solution for information extraction from scanned documents).
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Abstract. We introduce a simple new approach to the problem of
understanding documents where non-trivial layout influences the local
semantics. To this end, we modify the Transformer encoder architecture
in a way that allows it to use layout features obtained from an OCR
system, without the need to re-learn language semantics from scratch.
We only augment the input of the model with the coordinates of token
bounding boxes, avoiding, in this way, the use of raw images. This leads
to a layout-aware language model which can then be fine-tuned on down-
stream tasks.

The model is evaluated on an end-to-end information extraction task
using four publicly available datasets: Kleister NDA, Kleister Charity,
SROIE and CORD. We show that our model achieves superior perfor-
mance on datasets consisting of visually rich documents, while also out-
performing the baseline RoBERTa on documents with flat layout (NDA
F1 increase from 78.50 to 80.42). Our solution ranked first on the public
leaderboard for the Key Information Extraction from the SROIE dataset,
improving the SOTA F1-score from 97.81 to 98.17.

Keywords: Language model · Layout · Key information extraction ·
Transformer · Visually rich document · Document understanding

1 Introduction

The sequential structure of text leads to it being treated as a sequence of tokens,
characters, or more recently, subword units. In many problems related to Nat-
ural Language Processing (NLP), this linear perspective was enough to enable
significant breakthroughs, such as the introduction of the neural Transformer
architecture [28]. In this setting, the task of computing token embeddings is
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solved by Transformer encoders, such as BERT [6] and its derivatives, achieving
top scores on the GLUE benchmark [29].

They all deal with problems arising in texts defined as sequences of words.
However, in many cases there is a structure more intricate than just a linear
ordering of tokens. Take, for instance, printed or richly-formatted documents,
where the relative positions of tokens contained in tables, spacing between para-
graphs, or different styles of headers, all carry useful information. After all, the
goal of endowing texts with layout and formatting is to improve readability.

In this article we present one of the first attempts to enrich the state-of-the-
art methods of NLP with layout understanding mechanisms, contemporaneous
with [32], to which we compare our model. Our approach injects the layout
information into a pretrained instance of RoBERTa. We fine-tune the augmented
model on a dataset consisting of documents with non-trivial layout.

We evaluate our model on the end-to-end information extraction task, where
the training set consists of documents and the target values of the properties to
be extracted, without any additional annotations specifying the locations where
the information on these properties can be found in the documents. We compare
the results with a baseline RoBERTa model, which relies on the sequential order
of tokens obtained from the OCR alone (and does not use the layout features),
and with the solution of [31,32]. LAMBERT achieves superior performance on
visually rich documents, without sacrificing results on more linear texts.

1.1 Related Work

There are two main lines of research into understanding documents with non-
trivial layout. The first one is Document Layout Analysis (DLA), the goal of
which is to identify contiguous blocks of text and other non-textual objects on
the page and determine their function and order in the document. The obtained
segmentation can be combined with the textual information contained in the
detected blocks. This kind of method has recently been employed in [17].

Many services employ DLA functionality for OCR (which requires document
segmentation), table detection or form field detection, and their capabilities are
still expanding. The most notable examples are Amazon Textract [1], the Google
Cloud Document Understanding AI platform [8], and Microsoft Cognitive Ser-
vices [20]. However, each has limitations, such as the need to create rules for
extracting information from the tables recognized by the system, or use training
datasets with annotated document segments. More recent works on information
extraction using DLA include, among others, [2,3,10,14,19,22,25]. They concen-
trate on specific types of documents, such as invoices or forms, where the layout
plays a relatively greater role: more general documents may contain tables, but
they can also have large amounts of unstructured text.

The second idea is to directly combine the methods of Computer Vision
and NLP. This could be done, for instance, by representing a text-filled page
as a multi-channel image, with channels corresponding to the features encoding
the semantics of the underlying text, and, subsequently, using convolutional
networks. This method was used, among others, by Chargrid and BERTgrid
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models [5,15]. On the other hand, LayoutLM [32] and TRIE [34] used the image
recognition features of the page image itself. A more complex approach was
taken by PICK [33], which separately processes the text and images of blocks
identified in the document. In this way it computes the vertex embeddings of
the block graph, which is then processed with a graph neural network.

Our idea is also related to the one used in [24], though in a different set-
ting. They considered texts accompanied by audio-visual signal injected into a
pretrained BERT instance, by combining it with the input embeddings.

LAMBERT has a different approach. It uses neither the raw document image,
nor the block structure that has to be somehow inferred. It relies on the tokens
and their bounding boxes alone, both of which are easily obtainable from any
reasonable OCR system.

1.2 Contribution

Our main contribution is the introduction of a Layout-Aware Language Model,
a general-purpose language model that views text not simply as a sequence of
words, but as a collection of tokens on a two-dimensional page. As such it is able
to process plain text documents, but also tables, headers, forms and various
other visual elements. The implementation of the model is available at https://
github.com/applicaai/lambert.

A key feature of this solution is that it retains the crucial trait of language
models: the ability to learn in an unsupervised setting. This allows the exploita-
tion of abundantly available unannotated public documents, and a transfer of
the learned representations to downstream tasks. Another advantage is the sim-
plicity of this approach, which requires only an augmentation of the input with
token bounding boxes. In particular, no images are needed. This eliminates an
important performance factor in industrial systems, where large volumes of doc-
uments have to be sent over a network between distributed processing services.

Another contribution of the paper is an extensive ablation study of the impact
of augmenting RoBERTa with various types of additional positional embeddings
on model performance on the SROIE [12], CORD [21], Kleister NDA and Kleister
Charity datasets [27].

Finally, we created a new dataset for the unsupervised training of layout-
aware language models. We will share a 200k document subset, amounting to
2M visually rich pages, accompanied by a dual classification of documents: busi-
ness/legal documents with complex structure; and others. Due to IIT-CDIP
Test Collection dataset [16] accessibility problems1, this would constitute the
largest widely available dataset for training layout-aware language models. It
would allow researchers to compare the performance of their solutions not only
on the same test sets, but also with the same training set. The dataset is pub-
lished at https://github.com/applicaai/lambert, together with a more detailed
description that is too long for this paper.

1 The link https://ir.nist.gov/cdip/ seems to be dead (access on Feb 17, 2021).
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2 Proposed Method

We inject the layout information into the model in two ways. Firstly, we modify
the input embeddings of the original RoBERTa model by adding the layout
term. We also experiment with completely removing the sequential embedding
term. Secondly, we apply relative attention bias, used [11,23,26] in the context
of sequential position. The final architecture is depicted in Fig. 1.

Fig. 1. LAMBERT model architecture. Differences with the plain RoBERTa model are
indicated by white text on dark blue background. N = 12 is the number of transformer
encoder layers, and h = 12 is the number of attention heads in each encoder layer.
Q, K, and V are, respectively, the queries, keys and values obtained by projecting the
self-attention inputs. (Color figure online)

2.1 Background

The basic Transformer encoder, used in, for instance, BERT [6] and RoBERTa
[18], is a sequence-to-sequence model transforming a sequence of input embed-
dings xi ∈ Rn into a sequence of output embeddings yi ∈ Rm of the same length,
for the input/output dimensions n and m. One of the main distinctive features
of this architecture is that it discards the order of its input vectors. This allows
parallelization levels unattainable for recurrent neural networks.
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In such a setting, the information about the order of tokens is preserved not
by the structure of the input. Instead, it is explicitly passed to the model, by
defining the input embeddings as

xi = si + pi, (1)

where si ∈ Rn is the semantic embedding of the token at position i, taken
from a trainable embedding layer, while pi ∈ Rn is a positional embedding,
depending only on i. In order to avoid confusion, we will, henceforth, use the
term sequential embeddings instead of positional embeddings, as the positional
might be understood as relating to the 2-dimensional position on the page, which
we will deal with separately.

Since in RoBERTa, on which we base our approach, the embeddings pi are
trainable, the number of pretrained embeddings (in this case 512) defines a
limit on the length of the input sequence. In general, there are many ways to
circumvent this limit, such as using predefined [28] or relative [4] sequential
embeddings.

2.2 Modification of Input Embeddings

We replace the input embeddings defined in (1) with

xi = si + pi + L(�i). (2)

Here, �i ∈ Rk stands for layout embeddings, which are described in detail in the
next subsection. They carry the information about the position of the i-th token
on the page.

The dimension k of the layout embeddings is allowed to differ from the input
embedding dimension n, and this difference is dealt with by a trainable linear
layer L : Rk → Rn. However, our main motivation to introduce the adapter layer
L was to gently increase the strength of the signal of layout embeddings during
training. In this way, we initially avoided presenting the model with inputs that
it was not prepared to deal with. Moreover, in theory, in the case of non-trainable
layout embeddings, the adapter layer may be able to learn to project �i onto a
subspace of the embedding space that reduces interference with the other terms
in (2). For instance, it is possible for the image of the adapter layer to learn
to be approximately orthogonal to the sum of the remaining terms. This would
minimize any information loss caused by adding multiple vectors. While this was
our theoretical motivation, and it would be interesting to investigate in detail
how much of it actually holds, such detailed considerations of a single model
component exceed the scope of this paper. We included the impact of using the
adapter layer in the ablation study.

We initialize the weight matrix of L according to a normal distribution
N (0, σ2), with the standard deviation σ being a hyperparameter. We have to
choose σ carefully, so that in the initial phase of training, the L(�i) term does
not interfere overly with the already learned representations. We experimentally
determined the value σ = 0.02 to be near-optimal2.

2 We tested the values 0.5, 0.1, 0.02, 0.004, and 0.0008.
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2.3 Layout Embeddings

In our setting, a document is represented by a sequence of tokens ti and their
bounding boxes bi. To each element of this sequence, we assign its layout embed-
ding �i, carrying the information about the position of the token with respect
to the whole document. This could be performed in various ways. What they all
have in common is that the embeddings �i depend only on the bounding boxes
bi and not on the tokens ti.

We base our layout embeddings on the method originally used in [7], and
then in [28] to define the sequential embeddings. We first normalize the bounding
boxes by translating them so that the upper left corner is at (0, 0), and dividing
their dimensions by the page height. This causes the page bounding box to
become (0, 0, w, 1), where w is the normalized width.

The layout embedding of a token will be defined as the concatenation of four
embeddings of the individual coordinates of its bounding box. For an integer d
and a vector of scaling factors θ ∈ Rd, we define the corresponding embedding
of a single coordinate t as

embθ(t) = (sin(tθ); cos(tθ)) ∈ R2d, (3)

where the sin and cos are performed element-wise, yielding two vectors in Rd.
The resulting concatenation of single bounding box coordinate embeddings is
then a vector in R8d.

In [28, Section 3.5], and subsequently in other Transformer-based models with
precomputed sequential embeddings, the sequential embeddings were defined by
embθ with θ being a geometric progression interpolating between 1 and 10−4.
Unlike the sequential position, which is a potentially large integer, bounding box
coordinates are normalized to the interval [0, 1]. Hence, for our layout embed-
dings we use larger scaling factors (θr), namely a geometric sequence of length
n/8 interpolating between 1 and 500, where n is the dimension of the input
embeddings.

2.4 Relative Bias

Let us recall that in a typical Transformer encoder, a single attention head
transforms its input vectors into three sequences: queries qi ∈ Rd, keys ki ∈ Rd,
and values vi ∈ Rd. The raw attention scores are then computed as αij =
d−1/2qT

i kj . Afterwards, they are normalized using softmax, and used as weights
in linear combinations of value vectors.

The point of relative bias is to modify the computation of the raw attention
scores by introducing a bias term: α′

ij = αij + βij . In the sequential setting,
βij = W (i−j) is a trainable weight, depending on the relative sequential position
of tokens i and j. This form of attention bias was introduced in [23], and we will
refer to it as sequential attention bias.

We introduce a simple and natural extension of this mechanism to the two-
dimensional context. In our case, the bias βij depends on the relative positions
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of the tokens. More precisely, let C � 1 be an integer resolution factor (the
number of cells in a grid used to discretize the normalized coordinates). If bi =
(x1, y1, x2, y2) is the normalized bounding box of the i-th token, we first reduce
it to a 2-dimensional position (ξi, ηi) = (Cx1, C(y1 + y2)/2), and then define

βij = H(�ξi − ξj�) + V (�ηi − ηj�), (4)

where H(�) and V (�) are trainable weights defined for every integer � ∈ [−C,C).
A good value for C should allow for a distinction between consecutive lines and
tokens, without unnecessarily affecting performance. For a typical document
C = 100 is enough, and we fix this in our experiments.

This form of attention bias will be referred to as 2D attention bias. We
suspect that it should help in analyzing, say, tables by allowing the learning of
relationships between cells.

3 Experiments

All experiments were performed on 8 NVIDIA Tesla V100 32 GB GPUs. As our
pretrained base model we used RoBERTa in its smaller, base variant (125M
parameters, 12 layers, 12 attention heads, hidden dimension 768). This was
also employed as the baseline, after additional training on the same dataset
we used for LAMBERT. The implementation and pretrained weights from the
transformers library [30] were used.

In the LAMBERT model, we used the layout embeddings of dimension
k = 128, and initialized the adapter layer L with standard deviation σ = 0.02,
as noted in Sect. 2. For comparison, in our experiments, we also included the
published version of the LayoutLM model [32], which is of a similar size.

The models were trained on a masked language modeling objective extended
with layout information (with the same settings as the original RoBERTa [18]);
and subsequently, on downstream information extraction tasks. In the remainder
of the paper, these two stages will be referred to as, respectively, training and
fine-tuning.

Training was performed on a collection of PDFs extracted from Common
Crawl made up of a variety of documents (we randomly selected up to 10 doc-
uments from any single domain). The documents were processed with an OCR
system, Tesseract 4.1.1-rc1-7-gb36c, to obtain token bounding boxes. The
final model was trained on the subset of the corpus consisting of business doc-
uments with non-trivial layout, filtered by an SVM binary classifier, totaling to
approximately 315k documents (3.12M pages). The SVM model was trained on
700 manually annotated PDF files to distinguish between business (e.g. invoices,
forms) and non-business documents (e.g. poems, scientific texts).

In the training phase, we used the Adam optimizer with the weight decay
fix from [30]. We employed a learning rate scheduling method similar to the one
used in [6], increasing the learning rate linearly from 0 to 1e−4 for the warm-up
period of 10% of the training time and then decreasing it linearly to 0. The final
model was trained with batch size of 128 sequences (amounting to 64K tokens)
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for approximately 1000k steps (corresponding to training on 3M pages for 25
epochs). This took about 5 days to complete a single experiment.

After training our models, we fine-tuned and evaluated them independently
on multiple downstream end-to-end information extraction tasks. Each evalu-
ation dataset was split into training, validation and test subsets. The models
were extended with a simple classification head on top, consisting of a single
linear layer, and fine-tuned on the task of classifying entity types of tokens. We
employed early stopping based on the F1-score achieved on the validation part
of the dataset. We used the Adam optimizer again, but this time without the
learning rate warm-up, as it turned out to have no impact on the results.

The extended model operates as a tagger on the token level, allowing for
the classification of separate tokens, while the datasets contain only the values
of properties that we are supposed to extract from the documents. Therefore,
the further processing of output is required. To this end, we use the pipeline
described in [27].

Every contiguous sequence of tokens tagged as a given entity type is treated
as a recognized entity and assigned a score equal to the geometric mean of
the scores of its constituent tokens. Then, every recognized entity undergoes a
normalization procedure specific to its general data type (e.g. date, monetary
amount, address, etc.). This is performed using regular expressions: for instance,
the date July, 15th 2013 is converted to 2013-07-15. Afterwards, duplicates
are aggregated by summing their scores, leading to a preference for entities
detected multiple times. Finally, the highest-scoring normalized entity is selected
as the output of the information extraction system. The predictions obtained this
way are compared with target values provided in the dataset using F1-score as
the evaluation metric. See [27] for more details.

4 Results

We evaluated our models on four public datasets containing visually rich doc-
uments. The Kleister NDA and Kleister Charity datasets are part of a larger
Kleister dataset, recently made public [27] (many examples of documents, and
detailed descriptions of extraction tasks can be found therein). The NDA set
consists of legal agreements, whose layout variety is limited. It should proba-
bly be treated as a plain-text dataset. The Charity dataset on the other hand
contains reports of UK charity organizations, which include various tables, dia-
grams and other graphic elements, interspersed with text passages. All Kleister
datasets come with predefined train/dev/test splits, with 254/83/203 documents
for NDA and 1729/440/609 for Charity.

The SROIE [12] and CORD [21] datasets are composed of scanned and
OCRed receipts. Documents in SROIE are annotated with four target entities
to be extracted, while in CORD there are 30 different entities. We use the public
1000 samples from the CORD dataset with the train/dev/test split proposed by
the authors of the dataset (respectively, 800/100/100). As for SROIE, it consists
of a public training part, and test part with unknown annotations. For the pur-
pose of ablation studies, we further subdivided the public part of SROIE into
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Table 1. Comparison of F1-scores for the considered models. Best results in each
column are indicated in bold. In parentheses, the length of training of our models,
expressed in non-unique pages, is presented for comparison. For RoBERTa, the first
row corresponds to the original pretrained model without any further training, while
in the second row the model was trained on our dataset. aresult obtained from relevant
publication; bresult of a single model, obtained from the SROIE leaderboard [13]

Model Params Our experiments External results

NDA Charity SROIE* CORD SROIE CORD

RoBERTa [18] 125M 77.91 76.36 94.05 91.57 92.39b –

RoBERTa (16M) 125M 78.50 77.88 94.28 91.98 93.03b –

LayoutLM [32] 113M 77.50 77.20 94.00 93.82 94.38a 94.72a

343M 79.14 77.13 96.48 93.62 97.09b 94.93a

LayoutLMv2 [31] 200M – – – – 96.25a 94.95a

426M – – – – 97.81b 96.01a

LAMBERT (16M) 125M 80.31 79.94 96.24 93.75 – –

LAMBERT (75M) 125M 80.42 81.34 96.93 94.41 98.17b –

training and test subsets (546/80 documents; due to the lack of a validation set
in this split, we fine-tuned for 15 epochs instead of employing early stopping).
We refer to this split as SROIE*, while the name SROIE is reserved for the
original SROIE dataset, where the final evaluation on the test set is performed
through the leaderboard [13].

In Table 1, we present the evaluation results achieved on downstream tasks by
the trained models. With the exception of the Kleister Charity dataset, where
only 5 runs were made, each of the remaining experiments were repeated 20
times, and the mean result was reported. We compare LAMBERT with base-
line RoBERTa (trained on our dataset) and the original RoBERTa [18] (with-
out additional training); LayoutLM [32]; and LayoutLMv2 [31]. The LayoutLM
model published by its authors was plugged into the same pipeline that we used
for LAMBERT and RoBERTa. In the first four columns we present averaged
results of our experiments, and for CORD and SROIE we additionally provide
the results reported by the authors of LayoutLM, and presented on the leader-
board [13].

Since the LayoutLMv2 model was not publicly available at the time of prepar-
ing this article, we could not perform experiments ourselves. As a result some
of the results are missing. For CORD, we present the scores given in [31], where
the authors did not mention, though, whether they averaged over multiple runs,
or used just a single model. A similar situation occurs for LayoutLM; we pre-
sented the average results of 20 runs (best run of LAMBERT attained the score
of 95.12), which are lower than the scores presented in [31]. The difference could
be attributed to using a different end-to-end evaluation pipeline, or averaging (if
the results in [31,32] come from a single run).
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For the full SROIE dataset, most of the results were retrieved from the public
leaderboard [13], and therefore they come from a single model. For the base
variants of LayoutLM and LayoutLMv2, the results were unavailable, and we
present the scores from the corresponding papers.

In our experiments, the base variant of LAMBERT achieved top scores for all
datasets. However, in the case of CORD, the result reported in [31] for the large
variant of LayoutLMv2 is superior. If we consider the best scores of LAMBERT
(95.12) instead of the average, and the scores of LayoutLM reported in [32],
LAMBERT slightly outperforms LayoutLM, while still being inferior to Lay-
outLMv2. Due to the lack of details on the results of LayoutLM, it is unknown
which of these comparisons is valid.

For Kleister datasets, the base variant (and in the case of Charity, also the
large variant) of LayoutLM did not outperform the baseline RoBERTa. We sus-
pect that this might be the result of LayoutLM being better attuned to the
evaluation pipeline used by its authors, and the fact that it was based on an
uncased language model. In the Kleister dataset, meanwhile, performance for
entities such as names may depend on casing.

5 Hyperparameters and Ablation Studies

In order to investigate the impact of our modifications to RoBERTa, we per-
formed an extensive study of hyperparameters and the various components of
the final model. We investigated the dimension of layout embeddings, the impact
of the adapter layer L, the size of training dataset, and finally we performed a
detailed ablation study of the embeddings and attention biases we had used to
augment the baseline model.

In the studies, every model was fine-tuned and evaluated 20 times on each
dataset, except for Kleister Charity dataset, on which we fine-tuned every model
5 times: evaluations took much longer on Kleister Charity. For each model and
dataset combination, the mean score was reported, together with the two-sided
95% confidence interval, computed using the corresponding t-value. We consid-
ered differences to be significant when the corresponding intervals were disjoint.
All the results are presented in Table 2, which is divided into sections correspond-
ing to different studies. The F1-scores are reported as increases with respect to
the reported mean baseline score, to improve readability.

5.1 Baseline

As a baseline for the studies we use the publicly available pretrained base variant
of the RoBERTa model with 12 layers, 12 attention heads, and hidden dimension
768. We additionally trained this model on our training set, and fine-tuned it on
the evaluation datasets in a manner analogous to LAMBERT.
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Table 2. Improvements of F1-score over the baseline for various variants of LAMBERT
model. The first row (with grayed background) contains the F1-scores of the baseline
RoBERTa model. The other grayed row corresponds to full LAMBERT. Statistically
insignificant improvements over the baseline are grayed. In each of three studies, the
best result together with all results insignificantly smaller are in bold. afiltered datasets;
bmodel with a disabled adapter layer
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NDA Charity SROIE* CORD

8×2M 128

• 78.50±1.16 77.88±0.48 94.28±0.42 91.98±0.62

• • 2.42±0.61 0.52±0.64 0.79±0.17 0.03±0.57

• 1.25±0.59 2.62±0.80 1.86±0.15 0.89±0.83

• −0.49±0.62 2.02±0.48 0.53±0.28 −0.17±0.62

• • 0.88±0.50 3.00±0.37 1.94±0.16 0.68±0.62

• • 1.74±0.67 0.06±0.93 1.94±0.18 1.42±0.53

• • 1.73±0.60 2.02±0.53 2.09±0.22 1.93±0.71

• • • 0.54±0.85 1.84±0.42 2.08±0.38 2.15±0.65

• • • 1.66±0.76 0.32±1.35 1.75±0.35 1.06±0.54

• • • 0.85±0.91 1.84±0.27 2.01±0.24 1.95±0.46

• • • • 1.81±0.60 2.06±0.69 1.96±0.16 1.77±0.46

8×2M

128 • • 1.74±0.67 0.06±0.93 1.94±0.18 1.42±0.53

384 • • 0.90±0.54 0.70±0.40 1.86±0.22 1.51±0.60

768 • • 0.71±1.04 0.50±0.85 2.18±0.25 1.54±0.51

768b • • 0.77±0.58 2.30±0.20 0.37±0.15 1.58±0.52

8×2M

128

• • • • 1.81±0.60 2.06±0.26 1.96±0.18 1.77±0.46

8×2Ma • • • • 1.86±0.66 1.92±0.19 2.60±0.18 1.59±0.61

25×3Ma • • • • 1.92±0.50 3.46±0.21 2.65±0.13 2.43±0.19

5.2 Embeddings and Biases

In this study we disabled various combinations of input embeddings and atten-
tion biases. The models were trained on 2M pages for 8 epochs, with 128-
dimensional layout embeddings (if enabled). The resulting models were divided
into three groups. The first one contains sequential-only combinations which
do not employ the layout information at all, including the baseline. The sec-
ond group consists of models using only the bounding box coordinates, with no
access to sequential token positions. Finally, the models in the third group use
both sequential and layout inputs. In this group we did not disable the sequen-
tial embeddings. It includes the full LAMBERT model, with all embeddings and
attention biases enabled.

Generally, we observe that none of the modifications has led to a significant
performance deterioration. Among the models considered, the only one which
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reported a significant improvement for all four datasets—and at the same time,
the best improvement—was the full LAMBERT.

For the Kleister datasets the variance in results was relatively higher than
in the case of SROIE* and CORD. This led to wider confidence intervals, and
reduced the number of significant outcomes. This is true especially for the Kleis-
ter NDA dataset, which is the smallest one. In Kleister NDA, significant improve-
ments were achieved for both sequential-only models, and for full LAMBERT.
The differences between these increases were insignificant. It would seem that,
for sequential-only models, the sequential attention bias is responsible for the
improvement. But after adding the layout inputs, it no longer leads to improve-
ments when unaccompanied by other modifications. Still, achieving better results
on sequential-only inputs may be related to the plain text nature of the Kleister
NDA dataset.

While other models did not report significant improvement over the baseline,
there are still some differences between them to be observed. The model using
only 2D attention bias is significantly inferior to most of the others. This seems
to agree with the intuition that relative 2D positions are the least suitable way
to pass positional information about plain text.

In the case of the Kleister Charity dataset, significant improvements were
achieved by all layout-only models, and all models using the 2D attention bias.
Best improvement was attained by full LAMBERT, and two layout-only models
using the layout embeddings; the 2D attention bias used alone improved the
results significantly, but did not reach the top score. The confidence intervals
are too wide to offer further conclusions, and many more experiments will be
needed to increase the significance of the results.

For the SROIE* dataset, except for two models augmented only with a single
attention bias, all improvements proved significant. Moreover, the differences
between all the models using layout inputs are insignificant. We may conclude
that passing bounding box coordinates in any way, except through 2D attention
bias, significantly improves the results. As to the lack of significant improvements
for 2D attention bias, we hypothesize that this is due to its relative nature.
In all other models the absolute position of tokens is somehow known, either
through the layout embeddings, or the sequential position. When a human reads
a receipt, the absolute position is one of the main features used to locate the
typical positions of entities.

For CORD, which is the more complex of the two receipt datasets, significant
improvements were observed only for combined sequential and layout models. In
this group, the model using both sequential and layout embeddings, augmented
with sequential attention bias, did not yield a significant improvement. There
were no significant differences among the remaining models in the group. Con-
trary to the case of SROIE*, none of the layout-only models achieved significant
improvement.
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5.3 Layout Embedding Dimension

In this study we evaluated four models, using both sequential and layout embed-
dings, varying the dimension of the latter. We considered 128-, 384-, and 768-
dimensional embeddings. Since this is the same as for the input embeddings of
RoBERTaBASE , it was possible to remove the adapter layer L, and treat this as
another variant, in Table 2 denoted as 768b.

In Kleister NDA, there were no significant differences between any of the
evaluated models, and no improvements over the baseline. On the other hand,
in Kleister Charity, disabling the adapter layer and using the 768-dimensional
layout embeddings led to significantly better performance. These results remain
consistent with earlier observations that in Kleister NDA the best results were
achieved by sequential-only models, while in the case of Kleister Charity, by
layout-only models. It seems that in the case of NDA the performance is influ-
enced mostly by the sequential features, while in the case of Charity, removing
the adapter layer increases the strength of the signal of the layout embeddings,
carrying the layout features which are the main factor affecting performance.

In SROIE* and CORD all results were comparable, with one exception,
namely in SROIE*, the model with the disabled adapter layer did not, unlike
the remaining models, perform significantly better than the baseline.

5.4 Training Dataset Size

In this study, following the observations from [9], we considered models trained
on 3 different datasets. The first model was trained for 8 epochs on 2M unfiltered
(see Sect. 3 for more details of the filtering procedure) pages. In the second model,
we used the same training time and dataset size, but this time only filtered pages
were used. Finally, the third model was trained for 25 epochs on 3M filtered
pages.

It is not surprising that increasing the training time and dataset size, leads to
an improvement in results, at least up to a certain point. In the case of Kleister
NDA dataset, there were no significant differences in the results. For Kleister
Charity, the best result was achieved for the largest training dataset, with 75M
filtered pages. This result was also significantly better than the outcomes for the
smaller dataset. In the case of SROIE* the two models trained on datasets with
filtered documents achieved a significantly higher score than the one trained on
unfiltered documents. There was, in fact, no significant difference between these
two models. This supports the hypothesis that, in this case, filtering could be
the more important factor. Finally, for CORD the situation is similar to Kleister
Charity.

6 Conclusions and Further Research

We introduced LAMBERT, a layout-aware language model, producing contex-
tualized token embeddings for tokens contained in formatted documents. The
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model can be trained in an unsupervised manner. For the end user, the only
difference with classical language models is the use of bounding box coordinates
as additional input. No images are needed, which makes this solution particu-
larly simple, and easy to include in pipelines that are already based on OCR-ed
documents.

The LAMBERT model outperforms the baseline RoBERTa on information
extraction from visually rich documents, without sacrificing performance on
documents with a flat layout. This can be clearly seen in the results for the
Kleister NDA dataset. Its base variant with around 125M parameters is also
able to compete with the large variants of LayoutLM (343M parameters) and
LayoutLMv2 (426M parameters), with Kleister and SROIE datasets achieving
superior results. In particular, LAMBERTBASE achieved first place on the Key
Information Extraction from the SROIE dataset leaderboard [13].

The choice of particular LAMBERT components is supported by an ablation
study including confidence intervals, and is shown to be statistically significant.
Another conclusion from this study is that for visually rich documents the point
where no more improvement is attained by increasing the training set has not
yet been reached. Thus, LAMBERT’s performance can still be improved upon
by simply increasing the unsupervised training set. In the future we plan to
experiment with increasing the model size, and training datasets.

Further research is needed to ascertain the impact of the adapter layer L on
the model performance, as the results of the ablation study were inconclusive. It
would also be interesting to understand whether the mechanism through which
it affects the results is consistent with the hypotheses formulated in Sect. 2.
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Abstract

Since the output structure of database-like
tables can cover a wide range of NLP tasks, we
propose a framework for text-to-table neural
models applicable to, e.g., extraction of line
items, joint entity and relation extraction, or
knowledge base population. The permutation-
based decoder of our proposal is a generalized
sequential method that comprehends informa-
tion from all cells in the table. The training
maximizes the expected log-likelihood for a ta-
ble’s content across all random permutations of
the factorization order. During the content infer-
ence, we exploit the model’s ability to generate
cells in any order by searching over possible
orderings to maximize the model’s confidence
and avoid substantial error accumulation,
which other sequential models are prone to.
Experiments demonstrate a high practical value
of the framework, which establishes state-of-
the-art results on several challenging datasets,
outperforming previous solutions by up to 15%.

1 Introduction

It has been previously shown that encoder-decoder
models are capable of unifying a variety of prob-
lems involving natural language. In this setting,
unification is achieved by casting different tasks
as Question Answering with a plain-text answer,
i.e., assuming the text-to-text (Kumar et al., 2016;
Raffel et al., 2020; McCann et al., 2018; Khashabi
et al., 2020) or document-to-text scenario (Powal-
ski et al., 2021; Kim et al., 2022). We argue that the
restriction of output type to raw text is suboptimal
for the plethora of NLP problems and propose a
decoder architecture able to infer aggregate data
types such as a list of ordered tuples or a database-
like table (see Figure 1).

Though the encoder-decoder architecture was
formerly used to infer lists (Powalski et al., 2021),

∗ equal contribution
firstname.lastname@snowflake.com

named tuples (Dwojak et al., 2020), or even more
complex structures (Townsend et al., 2021), it
was often achieved in an autoregressive manner,
without any architectural changes. A model
intended for the generation of unstructured text
in natural language was used to infer an output
with formal structure. In contrast, we exploit
regularities and relationships within the output
data and employ a grammar-constrained decoding
process (Section 2.5).

Specifically, we focus on the text-to-table infer-
ence with applications to problems such as extrac-
tion of line items, key information extraction of
multiple properties, joint entity and relation extrac-
tion, or knowledge base population. Tables as we
understand them are equivalent to database tables
and defined as a set of values structured in horizon-
tal rows and vertical columns identifiable by name.

From receipts and invoices, through paycheck
stubs and insurance loss run reports, to scientific
articles, real-world documents contain explicitly
or implicitly tabular data to be extracted. These
are not necessarily represented as a table per se
within the input document, e.g., the currency name
on the invoice or policy number on the loss run
can be mentioned once and be related to all the
line items within. In other cases, the evidence one
intends to comprehend and represent as a table may
be available in free-text only, as can be found in
problems of joint entity and relation extraction (see
Figure 1-2). Finally, the data may require some
postprocessing, such as the normalization of dates,
before returning them to the end-user.

1.1 Limitation of Current Approaches

Admittedly, models based on the transformer
encoder-decoder or decoder achieve remarkable
results in generating complex, formalized outputs,
such as computer programs or JSON files (Chen
et al., 2021; Townsend et al., 2021). Nevertheless,
we hypothesize that changes leading to the explicit
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Unification under table generation framework

7

Input OutputDocument, e.g.: Task-dependent data structure, e.g.:

Subject Object Relation

Riddarhuset Sweden country

Royal Court Orchestra Royal Opera part of

Entities and relations / knowledge base records

Description Quantity Unit price Total

Ice cream 2 5 10

Bread 1 2 2

Soda 1 3 3

Extracted line items

Plain text news

Wikipedia articleInvoice

Encoder-decoder 
model

Key information / property-value pairs

Property Value

Date of birth 1915-01-15

Place of birth Saint Petersburg

Citizenship Russian Empire

Figure 1: Reinterpreting diverse tasks under a unified paradigm: all these tasks essentially require generating a table
based on a given context. While they were not previously seen in this light, we reinterpret them as text-to-table
tasks, bringing them together under a single paradigm and directly model the table in the output. This unification
has led to significant improvements in each task.

modeling of structured data can outperform the said
implicit decoding that models long-range syntax
dependencies sequentially and does not guarantee
the formal validity of produced outputs.

While generating in a particular predefined order
(e.g., left-to-right, row-by-row), such approaches
have a few drawbacks. Firstly, error propagation
that causal models may show after skipping some
cells or answering them incorrectly. This flaw may
start a chain reaction and directly influence the
subsequent cells’ generation, causing error propa-
gation and a rapid decline in table quality. Strik-
ingly, an error propagation issue is known in Neural
Machine Translation when the right part of the gen-
erated sentence used to be worse than the left one
(Wu et al., 2018). Therefore, previous approaches
to table generation employed preventive measures
to keep the table layout under control (Wang et al.,
2019) and limit the negative effect of error prop-
agation. Secondly, the answers are forced; the
model that cannot give a proper answer consis-
tently has lower confidence and dispersed proba-
bility over multiple possibilities. Therefore, we
use logit-based confidence to guide the generation
process, emergently achieving the property of ab-
staining from generating answers when the model
does not indicate high confidence. Thirdly, the for-
matting of the table plays a role, and the order of
columns may be treated as a hyperparameter in the
previous approaches (Wang et al., 2019; Dwojak
et al., 2020). For example, performing generation
in a predefined and not optimized order may lead
to the case when the model is asked about, e.g.,
date of birth of the person that still needs to be

Input

Output

Name Surname Place of birth

Auguste Lumière Besançon

Luis Lumière

Charles Lumière

Besançon

NULL

People

Auguste and Luis Lumière were born in
Besançon, France, to Charles and Jeanne.

Jeanne Lumière NULL

Figure 2: Example of text-to-table generation given
plain text input. Concurrent extraction and grouping
of the detected entities simplifies the process and may
mitigate error accumulation.

specified. Therefore, we want the model to learn
the optimal order of the generation as part of the
task itself without any implicit human guidance.

Significantly, the advantage the encoder-decoder
framework has is that it can cover problems men-
tioned above in one end-to-end trainable process,
thus simplifying the pipeline and reducing the accu-
mulation of errors along the way. At the same time,
since extracted data is already in the form the end
user requires, one is able to use it directly for down-
stream application without further processing steps.

1.2 Contribution and Related Works

The specific contribution of this work in-
cludes (1) equipping transformer models with
permutation-based decoder training to allow com-
prehending complex, role-dependent relationships
in a series of similar objects we represent as a table,
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(2) a sequential, grammar-constrained decoding
mechanism which generates table content cell-by-
cell, in a dynamic, data-dependent order, and (3) in-
troduction of tabular attention bias to the decoder.
The novelty of our approach can be better under-
stood in the context of related works.

Decoding of data structures. A few authors at-
tempted the problem of table generation in the
encoder-decoder framework. Zhong et al. (2020)
proposed a table recognition model consuming in-
put images and decoupled the problem into uncon-
strained table and cell content generation. In com-
parison, (1) we use a single constrained decoder
comprehending both table structure and its content;
(2) we tackle problems of text-to-table inference
where the presence of a table at the model input is
optional. Recently, Wu et al. (2022) introduced a
model relying on constrained decoding of table and
tabular embeddings similar to ours. We share their
motivation and idea but differ as (1) our method is
not restricted to a predefined, row-by-row decoding
order and uses a permutation-based training proce-
dure aligned with the use of optimal, model-guided
cell permutation during inference; (2) we assume
the explicit prediction of the number of rows up-
front (before the table decoding starts), instead of
allowing the model to stop the generation process
after any completed row. The advantage of this
approach is discussed in Section 2 and proven by a
series of experiments reported in Section 3.

The encoder-decoder model was previously
used as is, to infer lists and tuples separated with
special characters (Powalski et al., 2021; Dwojak
et al., 2020). Similarly, Townsend et al. (2021)
experimented with the generation of more complex
data types represented as XML, JSON, or Python’s
string representation. In contrast to previous
approaches, we do not rely on implicit modeling
of the formal structure of the output but opt for
explicit structure generation.

Finally, a text-to-structure approach was recently
taken by Lu et al. (2021) for event extraction.
The authors used trie-based constrained decoding
with event schema injected as the decoder prompt.
It resembles our approach to constrained table
generation, though they rely on only one proper
decoding order resulting from the assumed tree
linearization strategy. Moreover, the authors found
it challenging to train the structure generation
model directly and thus trained it on simple event
substructures first. In contrast, we can directly train

the structure decoder, and our permutation-based
method allows one to generate the structure
flexibly, in an arbitrary order dynamically guided
by the decoding algorithm.

Flexible generation. Even though permutation-
based training, which allows for output generation
in any order, is of minor usability in the task of LM,
it was validated by Stern et al. (2019) for machine
translation and by Song et al. (2021) for summa-
rization. Accordingly, Stern et al. (2019) proposed
to equip a transformer with the insertion operation,
realized by interpreting an additional number gener-
ated with the token as the position in the output se-
quence to which the insertion should be performed.
This framework allows for the flexibility of the de-
coding process, understood as the possibility of
stubbing the output sequence with tokens that the
model recognizes with high confidence first and
then gradually adding more details in the later itera-
tions. In contrast, since the whole output sequence
is passed through the decoder anyway, our one cell-
decoding step is implemented by sampling all cells
at once and then choosing the best-scored ones to
be inserted at its location while disregarding others.
In the ablation studies we evaluate how the num-
ber of cells inserted at once influence the decoding
speed and quality, as higher values indicate more
cells generated in parallel.

Permutation-based language modeling. The
effectiveness of the permutation-based language
modeling objective was demonstrated by Yang et al.
(2019) who conditioned the BERT-like model to
work with the AR objective. However, while the
nature of the LM task allowed them to perturb the
factorization order of the input sequence arbitrar-
ily, our table-decoding problem requires additional
constraints to account for the fact that each cell may
consist of several tokens. Thus, the factorization
order of blocks of tokens (representing cells) is
permuted, while causal order is assumed within
the cell. For permutation-invariance and table-
awareness on reversed tasks (i.e., table-to-text), we
refer the reader to (Wang et al., 2022).

2 STable — Text-to-Table Framework

Serialized representation of the table permits to
treat it as a text sequence, and hence, use text-
centric methods to perform an autoregressive gener-
ation of the output sequence by employing a vanilla
Transformer decoder. However, this approach does
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Recall the Challenges

23

Color Shape

 red  circle

green  square

blue triangle

Color Shape

 red  circle

green  square

blue triangle

Figure 3: A comparative illustration of the training ex-
amples under linearized versus permuted cell ordering.
The left panel depicts a typical linearized ordering, fol-
lowing a top-down, left-to-right progression. The right
panel presents a permuted ordering example where cells
are filled in a non-sequential order.

not exploit the two-dimensional structure of the
table as it expands the answer sequentially and uti-
lizes only uni-directional context.

Consequentially, two challenging problems arise.
Firstly, how to approach the fact that some infor-
mation in the table may depend on other cells (e.g.,
name and surname or the same tax rate for sim-
ilar items on a receipt) while some may not be
dependent (prices of different articles on the shop-
ping list). In general, a model possesses flexibility
with respect to this dependence-independence as-
sumption when it can leverage dependencies during
decoding but is not forced to do so in any specific
order. Our idea (presented in Figure 3) is to solve
this problem by delaying the generation of the most
challenging and complex answers to later stages
and conditioning them on the already generated
answer.

Moreover, the decoding must remain free of
train-inference discrepancies. Generally, the
train-inference alignment means that the state of
the table at every step while decoding a particular
example must also be possible to achieve in
the training phase. Formulating the training
that allows for flexible cell generation without
providing any additional information remains a
non-trivial problem. We rise up to the challenge
and demonstrate the solution below.

2.1 Decoding Invariant Under Cell Order

Instead of generating the cell values in a top-down,
left-to-right manner as previously seen in the liter-
ature (e.g., Wu et al., 2022), we perform the pre-
training by maximizing the expected log-likelihood
of the sequence of cell values over all possible
prediction orders. More specifically, suppose that
we are given a document containing a table with

(B) Gold standard

Color Shape

 red  circle

triangle

Color Shape

 red  circle

green  square

blue triangle
(C) Output after current step

(A) Decoder prompt

(D) Expected output

red </Cell>

Figures

<Column>
Color
<Cell>
<Cell>
<Cell>

</Column>

<Column>
Shape
<Cell> circle </Cell>
<Cell>
<Cell> triangle </Cell>

</Column>

Figure 4: A training example depicting how the
answer red is produced based on the partially filled
cells containing circle and triangle. (A) The
highlighted cell denotes a position where the expected
red </Cell> should be predicted autoregressively
starting from a <Cell> token. A successfully decoded
cell will lead to the state visible in (C), i.e., the partially
decoded gold standard table (B). The generation order
of a table is random for each example in the training.

row labels r = (r1, . . . , rN ),1 and column labels
c = (c1, . . . , cM ), which we will collectively de-
note h = (r, c). A linear ordering of the table cells
can be represented with a bijection

σ : {1, 2, . . . , C} → {1, . . . , N} × {1, . . . ,M},

where C = NM is the number of cells, so that
σ(n) = (i, j) are the row and column coordinates
of the n-th cell in the ordering. Given such a σ
and cell values v = (vij)i≤N,j≤M , we factorize
the likelihood of v given h as

pθ(v|h) =
C∏

n=1

pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)
, (1)

and using this factorization, we maximize the ex-
pected log-likelihood

1

C!

∑

σ

C∑

n=1

log pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)

(2)

over θ. The likelihoods pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)

themselves can be factorized according to the stan-
dard auto-regressive approach as

pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)
=

=

ℓ(vσ(n))∏

t=1

pθ
(
vtσ(n)

∣∣(viσ(n))i<t, (vσ(k))k<n,h
)

(3)
1In practice, usually there are no row labels; however, in

the decoder, the special tokens used for distinguishing rows
take this role.
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where ℓ(vσ(n)) is the length of vσ(n) represented as
a sequence of tokens (viσ(n))i≤L. In practice, the
expected log-likelihood is estimated by sampling
bijections σ at random.

Training example is presented in Figure 4.

2.2 Tabular Attention Bias

We base our attention computation method on the
relative bias idea popularized by the T5 model.
Given a text consisting of T tokens, in the vanilla
T5 model, raw attention scores αij for tokens i and
j (with 0 ≤ i, j < T ) are modified by introducing
a bias term: α′

ij = αij+βij where βij = W (i−j)
is a trainable weight, depending on the relative
sequential position of these tokens (Raffel et al.,
2020).

We modify the decoder’s self-attention by
extending it with two new bias terms, defined
below. The tabular bias τij encodes the relative
position of table cells in which the tokens lie,
while the local sequential bias λij corresponds to
the relative sequential position of tokens belonging
to the same cell.

τij =

{
R(ri − rj) + C(ci − cj) if rj > 0

R0 + C(ci − cj) if rj = 0
,

λij =

{
L(i− j) if (ci, ri) = (cj , rj)

0 otherwise
(4)

where (ci, ri) are cell coordinates as given by its
1-based column and row indices (with 0 reserved
for the header row/column), and R(k), C(k), L(k)
and R0 are trainable weights. The special case
with rj = 0 corresponds to the situation when the
key/value token lies in the column header, in which
case we want to use the same bias independent of
the row of the query token, due to the different na-
ture of the relation between two cells, and a cell and
its column header. After these adjustments, the fi-
nal attention score takes the form α′

ij = αij+βij+
τij+λij , where βij is the bias term defined earlier.

2.3 Predicting Number of Groups

Although the previous work of Wu et al. (2022)
assumed the table is finalized when the appropriate
special token explicitly appears in the output, our
systematic study shows that the explicit prediction
of the number of groups yields better results (see
Section 4 for comparison). This explicit prediction
is achieved with a linear layer that consumes the
first input token’s embedding to perform a predic-

tion on the number of groups. During the training
stage, the layer’s output is scored against the known
number of groups using MSE loss, while during
the inference, it is used as a predictor declaring the
number of groups to populate the template with.

2.4 Inference with Model-Guided Cell Order

Since the model was trained assuming a permuted
factorization of cell ordering, in expectation, the
model learned to understand all possible variants
of a partially-filled table and predict values for all
empty cells. Because each step in the generation
process implicates uncertainty that should be glob-
ally minimized, we propose to estimate the optimal
table decoding algorithm by greedily finding the
cell that minimizes this uncertainty at each step.

The decoding employs an outer loop that pro-
gresses cell-by-cell, an inner loop that generates
each cell that is yet to render, and a selection heuris-
tics that determine which cell, from all the finalized
in the inner loop, should be added to the outer loop.
The heuristic we use selects the cell containing the
token with highest probability among all predicted
(Figure 5). The detailed study of this and alterna-
tive selection criteria is presented in Appendix C.

In the inner loop, each cell is decoded until the
special token determining the end of cell generation
is placed. As the inner loop generates each cell au-
toregressively and independently from other cells,
the process can be treated as generating multiple
concurrent threads of an answer and is well paral-
lelizable. In the worst case, it takes as many steps
as the number of tokens in the most extended cell.

After being selected by a heuristic, the cell from
the inner loop is inserted into the outer loop, and
made visible to all other cells, while the cells that
were not selected are to be reset and continuously
generated in the future steps until they are chosen
by a heuristic (see pseudocode in Appendix A).

2.5 Grammar-Constrained Decoding

As a result of the model design, incorrect tables
cannot be generated. Part of these rules is explicit
(e.g., we overwrite logits, so it is impossible to emit
particular tokens such as the end-of-cell when no
cell is opened), whereas part of the rules results im-
plicitly from the algorithm (template-filling setting,
where the well-formulated table is always ensured).
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Input Decoding steps

0.9  red 0.4 square

0.9  green 0.8 square

0.8  blue 0.5 cross

There are toys colored
red, green, and blue on
the table. The square is

green, the triangle is blue,
and the circle is in the

remaining color.

red 0.3 hexagon

green 0.9 square

1.0  blue 0.8 triangle

red 0.6 circle

green square

blue 0.8 triangle

red circle

green square

blue triangle

(2) Two values from the previous step
     are kept. We generate four candidates.

(1) Decoding starts with an empty table.
     Six candidate values are generated.

(3) Four values from the previous steps
     are kept. We generate two candidates.

(4) Table generation is complete.
     Its final form is presented below.

Outer loop with two candidates kept.

Probability   Candidate value

Probability   High-score candidate

Value kept from the previous step

Legend

Figure 5: A possible progression of decoding a table given the text on the input. Since the probabilities guide the
decoding order, the circle’s color that was not explicitly stated in the text is determined at the last step.

Table 1: Results on public and private datasets assuming task-specific metrics. The results of a sequence-to-sequence
baseline that learns and generates tables as text are provided in the Linearized column. Mean and STD over three
runs. The † symbol denotes our TILT training. Underline signifies our model is significantly better than baseline.

Dataset State-of-the-Art Reference Linearized Our Model

PWC⋆ T5 2D (Borchmann et al., 2021) 26.8 27.8± 1.0 30.8± 0.5 T5 2D + STable

CORD TILT (Powalski et al., 2021) 96.3 92.4± 0.7 95.6± 0.2 TILT† + STable

Rotowire
Player Text-to-Table (Wu et al., 2022) 86.8 84.5± 0.7 84.5± 0.2

T5 + STableTeam (BART backbone) 86.3 83.8± 0.9 84.7± 0.2

DWIE KB-both (Verlinden et al., 2021) 62.9 60.2± 1.5 59.2± 1.5 T5 + STable

Recipe. . .
TILT†

71.9 60.1± 0.3 75.5± 1.6

TILT† + STablePayment. . . 77.0 72.0± 2.3 79.1± 0.9
Bank. . . 61.1 58.7± 4.9 69.9± 4.8

3 Experiments

In addition to state-of-the-art reference and our
results, we provide scores of the same backbone
models (T5, T5 2D, and TILT) while a table lin-
earization strategy follows the assumptions of Wu
et al. (2022)’s baselines. Appendix D covers details
of training procedure.

Metrics. We rely on the original metrics for all
but the DWIE dataset, i.e., GROUP-ANLS for
PWC⋆, F1 for CORD, and non-header exact match
cell F1 for Rotowire (other variants proposed by
the authors are reported in Table 7 in Appendix D).
Use of the original DWIE metric was not possible,
as it assumes a step-by-step process. In contrast,
we tackle the problem end-to-end, i.e., return (ob-
ject, relation, subject) tuples without detecting all
entity mentions within the document and their lo-
cations. To ensure a fair comparison, we use the F1
score calculated on triples; that is, we require the

model to return the exact match of the triple. Such a
setup is very demanding for encoder-decoder mod-
els as the convention in DWIE is to require object
and subject to be returned in the longest form of
appearance in the document.

Pretraining and Adaptation. Due to the switch
to permutative training and the addition of the
regression head, there is a significant change in
the model objective. Consequently, we antici-
pated the necessity of the model adaptation phase.
It consists of the pretraining stage equivalent to
the one conducted by authors of the TILT model
(Powalski et al., 2021) extended by Natural Ques-
tions (Kwiatkowski et al., 2019) and WebTables2

datasets. To utilize WebTables we rendered web-
pages, from which the tables were scraped and
taught models to extract table contents from web-
pages. The said stage is applied to all T5+STable,
T5 2D+STable, and TILT+STable models.

2https://webdatacommons.org/webtables/
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Complex Information Extraction. The problem
of information extraction involving aggregated data
types, where one may expect improvement within
the document-to-table paradigm, is prevalent in
business cases. Nevertheless, the availability
of public datasets here is limited to PWC⋆

(Borchmann et al., 2021; Kardas et al., 2020) and
CORD (Park et al., 2019).

In the case of PWC⋆, the goal is to deter-
mine model names, metrics, datasets, and perfor-
mance, given the machine learning paper as an
input. CORD assumes the extraction of line items
from images of Indonesian receipts, among oth-
ers. To determine the gain from our STable de-
coder, the experiments are conducted with state-
of-the-art encoder-decoder models proposed for
these datasets (T5 2D and TILT), assuming the
same training procedure (Borchmann et al. (2021);
Powalski et al. (2021); see Appendix D for details).

Additionally, due to the sparsity of public bench-
marks of this kind, we decided to provide results on
three confidential datasets. They assume, respec-
tively, (1) the extraction of payments’ details from
Payment Stubs, (2) Recipe Composition from docu-
ments provided by a multinational snack and bev-
erage corporation, as well as (3) account balances
from Bank Statements. These are covered in details
in Appendix E and addressed by the TILT+STable
model with vanilla TILT as a reference.

As summarized in Table 1, we outperformed
state-of-the-art information extraction models on
several datasets. At the same time, the CORD
where we underperform was previously considered
solved, e.g., Powalski et al. (2021) point that TILT’s
output and the reference differed insignificantly.
We used it in the experiment as a safety check to
determine whether the model can maintain almost-
perfect scores after applying the STable decoder.
Consequently, we omit it in the ablation studies.

The rest of the experiments were conducted as-
suming the vanilla T5 model (Raffel et al., 2020)
equipped with the STable decoder of our proposal.

Joint Entity and Relation Extraction. To
demonstrate the broad applicability of the model,
we consider the problem of a joint entity and
relation extraction on the example of the DWIE
dataset (Zaporojets et al., 2021). Here, the tuples
consisting of entities and one of the sixty-five
relation types are to be determined given a
plain-text news article. Despite not outperforming
a multi-step state-of-the-art model, we achieved

high scores and were the first to prove that
the problem can be successfully approached
end-to-end using an encoder-decoder framework.
Here, the T5+STable’s errors and issues reflect the
very demanding assumptions of DWIE, where it is
required to return object and subject in the longest
form of appearance in the document.

Reversed Table-to-Text. Finally, following Wu
et al. (2022) we evaluate our approach on the Ro-
towire table-to-text dataset in a reverse direction,
i.e., generate tables from text (Wiseman et al.,
2017). Consequently, the complex tables reporting
teams and player performance are generated given
the game description. Results from Table 1 show
that our T5+STable model can deliver an improve-
ment over the Linearized T5 model on Rotowire
Team. The fact that Linearized BART from Wu
et al. (2022) outperforms our Linearized T5 base-
lines on Rotowire Team and Player datasets by 2.5
and 2.1 points, respectively, suggests that it has a
better capacity as a backbone for this task. Several
of the ablation studies from the next section were
designed to shed light on this subject.

The results of our model (Table 1) demonstrate a
significant improvement over the simple sequence-
to-sequence generation of tables linearized as se-
quences on three out of five public datasets. As ex-
pected, it yields better results in cases where there
is a considerable interdependency between values
in a row and no clear, known upfront name distin-
guishes it from other rows. Note that, e.g., in Ro-
towire, it suffices to correlate all statistics with team
or player name, which is always inferred first due
to the employed linearization strategy. The order
of columns being decoded is a hyperparameter in
the case of linearization. In contrast, the power of
STable comes from learning it from the data itself.

4 Ablation Studies

Models were trained three times with different ran-
dom seeds on the Rotowire, DWIE, and PWC⋆

datasets. To reduce the computational cost, we
relied on base variants of the models reported in
Section 3 – please refer to Appendix D for detailed
specifications and results. While results on a single
dataset can be considered noisy, aggregation over
a diverse set of them helps diminish the random-
ness’s impact and stabilize results on the new ones.

(1) Semi-templated Expansion. To compare our
method of group prediction with a regression-free
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Table 2: Results of studies (1), (2), (3), and (5). Mod-
ified models in relation to complete STable. See Ap-
pendix D for per-dataset results.

Model Score Change

Complete STable 62.9± 1.0 —

Semi-templated expansion 61.4± 0.1 −1.5 (1)

Fixed causal order 60.0± 0.4 −2.9 (2)

Decoding constraint (3)
Column-by-column 62.4± 0.6 −0.5
Row-by-row 62.1± 0.6 −0.8
L→R and T→B 62.0± 0.5 −0.9
No distant rows 62.2± 0.5 −0.7

Sequential decoder bias only 3.9± 0.1 −59.0 (5)
Sequential and header bias 33.2± 0.3 −29.7
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Figure 6: Results of decoding ablation (4). Three runs
for 1, 2, 3, 5, and 10 cells decoded in parallel.

alternative, we allow the model to work in a
semi-templated manner, where the template is
infinite, and the decoding stops when the group
with NULL-only tokens is generated. For this
method, we add such a group at the bottom of
the table during the training to comply with the
inference. The model performance is significantly
below the STable reference, suggesting explicit
group number prediction superiority.

(2) Non-Permutative Training. To measure
the importance of understanding the bidirectional
contexts within the model, we abstain from
permutation-based training in our study and choose
the predefined factorization order. Here, a fixed
causal order model that reads tables from left to
right and from top to bottom is evaluated. This
alternative is in line with text-to-table approach of
Wu et al. (2022). As shown in Table 3, the lack of
permutative training we introduced in Section 2
leads to significantly worse scores.

(3) Constrained Cell Order. Whereas the
permutation-based training allows for great flexibil-
ity, the questions posed here are whether limiting
the model’s ability to discover new cells can be of
any value. Methods in this group assure either that
the column-by-column constrained model predicts
the whole column before decoding a new one, the
row-by-row constrained model predicts the whole
row before entering a new one, whereas L→R and
T→B is a combination of both (ensures row-by-row
inference from left to right). The no distant rows
constraint forces the decoding to have empty cells
only on the bottom of each column, thus avoiding
skipping cells in the decoding while moving down.

As shown in Table 3, all but column-by-column
constraint lead to a decreased scores. At the same
time, the mentioned performs on par with STable’s
model-guided inference (Section 2.4), and both are
better than the method with left-to-right decoding
order. These results suggest that (1) our method
does not require constraining the decoding order,
(2) it seems to implicitly incorporate the column-
by-column constraint, and (3) it is helpful to be
elastic w.r.t. decoding order within the column.

(4) Parallelization of Cell Decoding. As
outlined in Section 2.4, one may allow multiple
candidates to be kept in each decoding step to
shorten the inference time while expecting the
performance to degrade to some extent. Results
of experiments that follow this observation are pre-
sented in Figure 6. One may notice that processing
time varies across the considered datasets since
it depends mainly on the input sequence length
(ranging from 1k for Rotowire to 6k for PWC) and
the sizes of the table to infer (we infer as many as
320 cells for the Player table). Parallelization of
cell decoding significantly reduces the total per-
document processing time — up to five times for
DWIE in the conducted experiments. Interestingly,
speed-up does not necessarily lead to a decrease in
scores; e.g., in the case of the Team table, there is
four times better processing time when ten cells are
inferred at once, whereas the scores achieved by the
model remain comparable. It can be attributed to
the fact that there are almost no inter-cell dependen-
cies and always only two rows to infer — one for
each team playing. Since the performance changes
w.r.t. this parameter is heavily data-dependent, its
value should be obtained experimentally for each
dataset separately. Additionally, we argue that it
is beneficial to use large values to speed up the
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train-time validation as it maintains a correlation
with higher-scoring lower parameter values that
can be employed during test-time inference.

(5) Tabular Attention Biases. In comparison
with the initially introduced two relations (between
cells and within cells), removing them and using
only 1D global bias disrupts the permutation-based
training as the model scores degrade since it cannot
assign answers to correct columns. However,
additional incorporation of the header name (by
attending only to row with headers, rj = 0 in
Equation 4) leads to significant improvement, but
it is still below the full model. Detailed analysis
showed that the model could not benefit from
1D global bias, as (1) the distance between cells
and header is too large for the first cells in the
training since they are randomly chosen from any
position within the table, and (2) a table itself
is considerably bigger, as in permutation-based
training we assumed that every cell in the table
is generated, while for the linearized model, the
headers are generated by the model, and a part
of them can be skipped, thus reducing the size of
the table. The consistent improvements on four
datasets indicate that proposed tabular attention
biases enhance table-modeling efforts.

5 Limitations

The state-of-the-art performance of STable is
its foremost advantage, while the constraining
factors come from different aspects. Of them,
the generated sequence’s length seems to incure
the most long-term cost during inference, while
the increase in training time per example is a
short-term obstacle. The underlying issue is that
the full table context negatively influences the
computational cost of the attention on the decoder
side. This however is also the case for the family
of encoder-decoder models generating the whole
table such as these proposed by Wu et al. (2022)
or Townsend et al. (2021). A possible solution
here is a model with table context limited to
the row and column a given table cell belongs
to. Such a change would have a positive impact
on the memory consumption in the decoder, as
self-attention complexity decreases from O(NM)
toO(N +M), where N,M denotes the number of
rows and columns respectively. The exploitation of
this optimization is an interesting future direction.

To navigate the intricacy of the order employed
by the STable framework, we performed a system-

atical analysis that did not conclude in finding a
visible decoding pattern that could be described
formally beyond the observation already provided
in Figure 5 and in constrained-decoding ablations.
Studying the generation order in the context of
data calls for designing a new explainability-related
method, which is not in the scope of this work.

6 Summary

We equipped the encoder-decoder models consum-
ing text (T5, T5 2D) and documents (TILT) with the
capabilities to generate tables in a data-dependent
order. Firstly, an aligned training procedure based
on permuting factorization order of cells was pre-
sented, and secondly, the parallelizable decoding
process that fills the table with values in a flexible
and unconstrained order was proposed. The
important design choices for both contributions
were motivated by an extensive ablation study.
The proposed STable framework demonstrates its
high practical value by yielding state-of-the-art
results on PWC⋆ and outperforming linearized
models on CORD and Rotowire Team datasets, as
well as outperforming reference models on several
confidential datasets. The highest gains due to the
permutative training were accomplished on the
PWC⋆ dataset, where 4.0 points (26.8 → 30.8)
amounts to 14.9% relative improvement, while the
8.8 point gain on Bank Statements (61.1→ 69.9)
exceeds 14.4% relative improvement.
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A Table Decoding Algorithm

The algorithm presented above operates on the out-
put of the encoder model and reuses the cached
encoded representations that are considered to be a
part of the DECODERMODEL for brevity. Another
important characteristic of the DECODERMODEL

introduced for conciseness of the pseudocode is
that it produces all cell tokens and handles the se-
quential text decoding on its own.

The decoding employs an OUTERLOOP,
parametrized by the k parameter (denoting the par-
allelization of cell decoding) that progresses cell-
by-cell, the INNERLOOP function that generates
each cell that is yet to render, and OUTERCRITE-
RION — a selection heuristics that determine which
cell, from all the finalized in the inner loop, should
be added to the outer loop. The INNERCRITERION

is a heuristic we utilize that selects the cell with the
maximum probability for its tokens’ predictions
(Figure 5).

In the INNERLOOP, each cell is decoded until
the special token determining the end of cell gen-
eration is placed. As the INNERLOOP generates
each cell autoregressively and independently from
other cells, the process can be treated as generating
multiple concurrent threads of an answer and is
well parallelizable. In the worst case, it takes as
many steps as the number of tokens in the most
extended cell.

After the selection by the OUTERCRITERION

heuristic, the cell from the inner loop is inserted
into the outer loop, and made visible to all other
cells, while the cells that were not selected are to be
reset and continuously generated in the future steps
until they are chosen by the OUTERCRITERION

heuristics.

B Negative Result: Prevention of Column
Order Leakage

In the approach outlined in Section 2, the sequence
of column labels c, on which the likelihoods are
conditioned, may leak additional unwanted infor-
mation to the decoder. If the data in the document
are indeed formatted as a table, and the order of
labels in c matches the column order, the model
might learn to extract cells by location, instead of
using the actual semantics of the cell label. How-
ever, during inference, while we know which enti-
ties we want to extract from the document, we are
not given the order in which they appear, which

can be perceived as a serious train-inference dis-
crepancy.

To remedy this problem, we tried to further mod-
ify the training objective (See Figure 7). Denote
by C the set of all non-empty sequences of distinct
column labels. Instead of all the cells v, we can pre-
dict only the cells vc corresponding to a sequence
c ∈ C of columns, in the order defined by the order
of columns in c. The expected log-likelihood over
all c ∈ C can be then expressed as

log pθ(v|h) =
1

|C|
∑

c∈C
log pθ(vc|r, c), (5)

where pθ(vc|r, c) decomposes according to the dis-
cussion in Section 2.

In practice, we found it to have no relevant im-
pact on the training process. It did not lead to
significant changes in evaluation scores when used
in the supervised pretraining stage or on a down-
stream task. Consequently, we abandoned the idea
and did not use it for any of the models reported in
the paper. This study helps us state that the model
learns the semantics of the cell labels without a
need for regularization.

C Inner/Outer Loop Decision Criteria

The heuristic we test selects the cell in the outer
loop based on the minimal or maximal inner score.
Such inner score is calculated in three different
ways: by taking the minimal, maximal, and mean
of the token’s logits score. The results, presented in
Table 3, point to the lesser importance of choosing
the inner scoring method, while the choice of
the outer loop heuristics impacts results more
significantly. The former is the desired behavior
since the algorithm we proposed in Section 2.4
is based on the assumption that it is beneficial to
decode cells starting from those with the model’s
highest confidence. On the other hand, as there
is a significant variance depending on the dataset
chosen (see Appendix D), these and other infer-
ence parameters can be subject to cost-efficient,
task-specific hyperparameter optimization.

D Details of Experiments and Ablation
Studies

All models were trained three times with different
random seeds. We relied on large variants of the
models for experiments in Table 1, and on base
variants for the ablation studies. These are ana-
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Algorithm 1 Table Decoding Algorithm of our proposal.

1: procedure OUTERLOOP(k)
2: T ← 0n,m,l ▷ n×m table with l padding tokens per cell
3: C ← 0n,m ▷ current cell status (decoded or not)
4: while SUM(C) < nm do ▷ while there is a cell to decode
5: T ′, L← INNERLOOP(T,C) ▷ create complete table candidate T ′ and cell scores
6: B ← OUTERCRITERION(L) ▷ sequence of coordinates sorted according to scores
7: for c← 1, k do ▷ for k best cells from T’
8: i, j ← Bc ▷ get coordinates
9: Ti,j ← T ′

i,j ▷ ...copy values to table T accordingly
10: Ci,j ← 1 ▷ ...and mark the appropriate cell as already decoded
11: end for
12: end while
13: return T
14: end procedure
15:

16: procedure INNERLOOP(T,C)
17: L← 0n,m ▷ scores for each cell in n×m table
18: T ′ ← T ▷ inner loop’s table copy
19: parfor i← 1, n do ▷ for each table row
20: parfor j ← 1,m do ▷ ...and each table cell processed in parallel
21: if Ci,j = 0 then ▷ ...if it was not decoded yet
22: s, t← DECODERMODEL(T, i, j) ▷ produce cell tokens t and their scores s
23: Li,j ← INNERCRITERION(s) ▷ aggregate per-token scores into cell score
24: T ′

i,j ← t ▷ update table copy
25: end if
26: end parfor
27: end parfor
28: return (T ′, L)
29: end procedure
30:

31: procedure INNERCRITERION(s)
32: /* Any Rn → R function. STable assumes max, but we test other in the ablation studies. */
33: end procedure
34:

35: procedure OUTERCRITERION(L)
36: /* Some Rm×n → (N× N)mn function returning a permutation of indices of the input
37: matrix L. STable assumes sort of matrix coordinates according to descending values of its
38: elements, but we test other functions in the ablation studies. */
39: end procedure
40:
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Figure 7: Change in training illustrated as augmentation of permuted sub-tables from the original table.

Table 3: Results of studies on decision criteria. Modified
models in relation to complete STable. See Appendix D
for per-dataset results.

Model Score Change

Complete STable 62.9± 1.0 —

Criteria (inner, outer)
min max 61.7± 0.7 −1.2
mean max 62.7± 0.7 −0.2
mean min 60.8± 0.7 −2.1
min min 62.1± 0.4 −0.8
max min 61.2± 0.2 −1.7

lyzed in Table 3 given the average results over Ro-
towire, PWC⋆, and DWIE datasets (see Table 4
for detailed scores).

Hyperparameters. We use task-independent hy-
perparameters that roughly follow these proposed
by the authors of the T5 model for its finetuning,
as during our initial experiments, they turned out
to be a robust default (see Table 5).

Maximal input sequence lengths were chosen
in such a way a fair comparison with reference
models was ensured. In particular, we use T5+2D’s
limit despite the fact one can achieve better results
when consuming a more significant part of the input
document. Similarly, the max number of updates
follows the limit in reference models except for the
DWIE dataset, where the state-of-the-art solution
is based on the incomparable multi-step pipeline.
See Table 6 for these task-specific details.

Software and hardware. All experiments and
benchmarks were performed on DGX-A100
servers equipped with eight A100-SXM4-80GB
GPUs that feature automatic mixed precision. Our
models and references were implemented in Py-
Torch 1.8.0a0 (Paszke et al., 2019) with CUDA
11.4 and NVIDIA drivers 470.82.01.

E Business Datasets

Due to the sparsity of public benchmarks for com-
plex information extraction, we decided to provide
results on three confidential datasets. They assume,
respectively, (1) the extraction of payments’ de-
tails from Payment Stubs, (2) Recipe Composition
from documents provided by multinational snack
and beverage corporation, as well as (3) account
balances from Bank Statements. Their details are
covered in the present section and Table 8.

Recipe Composition. The problem faced is ex-
tracting proprieties of food ingredients from confi-
dential food manufacturer’s documentation. This
dataset contains 165 annotated fragments from 55
documents, three pieces for each document, with
annotations sourced from the corporation’s CRM
system.

For each file, there are five tables to be extracted.
The first one describes the ingredient’s physical and
chemical parameters (i.e., parameter name, testing
method, range of allowed values, unit of measure-
ment, and testing method details). The second one
describes sub-components of the ingredient (i.e.,
its quantity, name, allergens, ingredient function,
and country of origin). The third table informs
about the presence of allergens (e.g., their names
and binary information about their presence). The
last two tables contain a quantity of the allergens
(e.g., names and their qualities) as sub-components
and caused by contamination retrospectively.

The first table needs to be extracted from the first
document fragment, the second table – from the
second fragment, and the three last tables – from
the third document fragment. Input documents
feature tables and fulfilled forms, where properties
are presented in the form of text or check-boxes.

The analysis of expected outputs shows a high
level of variability concerning the factors of table
length (1 to 60 rows) and answer type (either a
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Table 4: Per-dataset results of studies (1), (2), (3), and (4). Modified models in relation to Complete STable.

Model RW Player RW Team PWC⋆ DWIE

Complete STable (reference) 82.7± 0.3 84.1± 0.7 27.5± 2.2 56.0± 1.4

Semi-templated expansion 80.4± 0.5 84.1± 0.5 25.0± 0.8 56.1± 1.0 (1)

Fixed causal order 83.2± 0.4 84.3± 0.3 26.3± 1.6 46.5± 0.5 (2)

Decoding constraint (3)
Column-by-column 82.5± 0.4 84.0± 0.5 28.4± 1.5 54.8± 0.8
Row-by-row 80.2± 0.4 83.8± 0.4 27.6± 1.6 56.8± 0.8
L→R and T→B 83.1± 0.5 84.1± 0.7 27.7± 1.8 53.2± 0.5
No distant rows 82.7± 0.5 83.8± 0.6 28.1± 1.0 54.2± 1.2

Decision criteria (inner × outer) (4)
min max 81.9± 0.4 83.7± 0.5 26.5± 2.0 54.2± 0.8
mean max 83.0± 0.3 83.8± 0.8 27.8± 1.4 56.1± 1.1
mean min 81.2± 1.1 83.7± 0.6 26.4± 1.9 51.9± 0.5
min min 82.8± 0.6 83.8± 0.5 27.6± 1.3 54.0± 0.5
max min 82.3± 0.3 84.5± 1.0 20.7± 1.6 52.7± 0.4

Sequential decoder bias only 0.3± 0.1 0.6± 0.3 14.1± 0.3 0.6± 0.1 (5)
Sequential and header bias 16.0± 0.4 45.1± 0.4 27.7± 2.0 44.2± 1.2

Table 5: Task-independent hyperparameters used across all experiments.

Hparam Dropout Batch Learning rate Weight decay Label smoothing Optimizer
Value .1 64 1e-3 1e-5 .1 AdamW

Table 6: Task-dependent hyperparameters and training
details. (∗) Length equal to the one consumed by the
baseline model.

Dataset Max steps Max input
Ablation Final length

PWC⋆ 500 1,000 6,144∗

Rotowire 3,000 8,000 1,024
CORD — 36,000 1,024
DWIE 4,000 8,000 2,048

Recipe Composition — 400 2600
Payment Stubs —
Bank Statements — 200 7000

binary value, number, complex chemical name, or
a more extended description).

Payment Stubs. The second of our private
datasets consists of 110 American payment stubs,
i.e., documents obtained by an employee regarding
the salary received.

We aim to extract employee and employer
names, dates, and payment tables, where each row
consists of payment type, hours worked, and pay-
ment amount. Since documents come from differ-
ent companies, their layouts differ significantly.

Due to the straightforward form of information
to be extracted, a single annotator annotated each
document. We state these were annotated ethically
by our paid co-workers.

Bank Statements. The last dataset consists of
131 annotated bank statements. The goal here is to
extract bank and customer name, date of issue, and
table of account balances (e.g., account number,
balance at the beginning of the period, and balance
at the end).

Data to be comprehended is partially presented
in the document’s header and partially in multiple
forms (each for one account).

Similar to the Payment Stubs dataset, documents
here were issued by different banks and represent a
broad spectrum of layouts. The annotation process
was the same as for the Payment Stubs dataset.

F Adaptation to Table Structure
Recognition Task

Our method by design does not generate the table
header since we assume that the names of the dat-
apoints to infer are given in advance. To tackle
problems such as table structure recognition where
the set of possible header values is not limited,
one needs to slightly modify the proposed solution.
However, we do not consider it a serious limitation
as the required modification is relatively straightfor-
ward, and for the sake of completeness, we describe
it below.

To adjust the proposed method to be applicable
to the task of Table Structure Recognition, one must
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Table 7: Detailed results of experiments on reversed Rotowire dataset. See Wu et al. (2022) for metrics’ specification.

Row header F1 Column header F1 Non-header F1
Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT

Team 94.9 95.2 97.8 88.9 85.8 88.7 84.7 85.6 90.3
Player 93.5 95.3 95.1 88.1 91.2 94.5 84.5 86.8 90.4

Table 8: Summary of the confidential datasets.

Recipe Composition Payment Stubs Bank Statements

train documents 119 80 111
val documents 16 10 10
test documents 30 20 10

avg doc len (words) 0.6k 0.3k 1.3k
max doc len (words) 1.6k 2k 4, 9k
avg doc len (characters) 3.3k 2k 8.3k
max doc len (characters) 10k 14.2k 37.9k

properties total 64 11 10
properties in tables (tables columns) 64 4 4
properties outside of tables 0 7 6
mean number of table rows 12 5 2
max number of rows 60 15 5

mean length of cell (characters) 12 8 9
max length of cell (characters) 308 44 36

understand the differences in framing the problem
between the tasks here.

Table Structure Recognition or Table Extrac-
tion aims to generate headers and the table content
based on the document with the table provided ex-
plicitly. STable described in the main part of this
paper can generate the table given any text and its
position on pages. This capacity generalizes well
to any input, including when the table is provided
on the input. The difference is that the output form
in STable assumes the headers are known upfront,
while for Table Structure Recognition, inferring
them is a part of the task. STable can achieve such
capabilities to solve the Table Structure Recogni-
tion task by (1) adding a linear layer to predict the
number of columns, (2) treating headers as the val-
ues to be inferred in the first row, (3) using dummy
names of the columns, e.g., "first column," "second
column," and (4) increasing the predicted number
of rows by 1.

In this setup, the model will predict the num-
ber of columns and the number of rows, while the
first row will represent the values of header names.
The dummy headers will have to be removed dur-
ing postprocessing, and the values in the first row
should be treated as valid headers.

G Sample Input-Output Pairs

PWC⋆ (Borchmann et al., 2021). Input in the
PWC⋆ consists of born-digital, multipage PDF
files containing an article from the machine learn-
ing field. The expected output is a list of tuples
describing achieved results on arbitrary datasets
(see Figure 8).

CORD (Park et al., 2019). Input in the dataset is
a single scanned or photographed receipt. From our
point of view, the output here is twofold — there
are simple data points that can be considered key-
value pairs and data points that take the structured
form of line items. We approach the problem as
the generation of two tables from the document —
one for each data kind (see Figure 9).

DWIE (Zaporojets et al., 2021). Input in the
dataset is a plain-text article. The final goal is to
extract the normed object, relation, and subject
triples (though the original formulation assumes
several intermediate stages). Triples are always
complete (i.e., there are no NULL values, as we
understand them (see Figure 10 for an example).

Reversed Rotowire (Wu et al., 2022). Input in
the reversed Rotowire dataset, as reformulated by
(Wu et al., 2022), is a plain-text sport news arti-
cle. The task is to generate tables with team and
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player statistics. The number of rows in the Team
table is from zero (if no team is mentioned in the
text) to two, whereas the number of rows in the
Player is highly variable and content-dependent.
Figure 11 present sample pair of document and
tables to generate.

Input

Output

Multipage scientific article, e.g.:

Reported results 

Leaderboard entries

Task Dataset Metric Model

Document Classification Reuters En-De Accuracy BilBOWA

Document Classification Reuters De-En Accuracy BilBOWA

Value

86.5

75.0

Figure 8: An example from PWC⋆ dataset considered in the document-to-table paradigm.

Input OutputPhotographed receipt, e.g.: Content of receipt casted as two tables

Simple key-value pairs

Property Value

total.cashprice 100,000

total.changeprice 51,000

total.total_price 49,000

menu.nm menu.cnt menu.price

REDBEAN BREAD 1 10,000

[MD] MINI CASTELLA ORIGIN 1 10,000

Line items

[MD] SOFT STEAMED CHEESEC 1 11,000

[MD] SOFT STEAMED CHOCOCA 2 18,000

Figure 9: Sample document from CORD dataset and its expected output as interpreted in our approach.
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Input Plain-text article, e.g.:

Relations

Final four square off in German Cup semifinals. Bremen's
unprecedented four-match battle with Hamburg gets
underway with the Cup semifinal on Wednesday. But
before that Leverkusen try to seize their last chance for
some silverware against Mainz.
. 

(...)



The visitors will be bolstered by the return of superstar
playmaker Diego who was rested with a perhaps fictional
injury in the league last weekend. Hamburg, meanwhile,
are third in the league and have an outside shot at winning
a triple. But they should beware, if they think they're bound
to be victorious in something. As recently as 2002,
Leverkusen had a chance to win the Bundesliga, the Cup
and the Champions League -- only to emerge, in the end,
empty-handed.


Output Relations between normalized entities

Object Relation Subject

Germany event in0 German Cup

German Cup appears in Bremen

UEFA Cup appears in Bremen

Bundesliga appears in Bremen

Bremen
 member of, player of Diego

...

Figure 10: Sample input-output pair from the DWIE dataset. The table was shortened and consisted of 29 rows
in our approach. Suppose multiple relations appear in the same direction between the pair of object-subject. In
that case, we predict a list of them in a single cell, reducing the number of rows generated (see the example of the
Bremen-Diego pair).

Input

Output

Plain-text sport-related article, e.g.:

Statistics of teams and players performance

Team statistics  (for values that were not present there is a NULL variable in the column)

Team Losses Total points Wins

Bucks 3

Bulls

The Milwaukee Bucks (1 - 3) defeated the Chicago Bulls (3 - 1), 92 - 90, on a buzzer beating shot
Saturday in Game 4 of their Opening Round Series. In a potential close - out game for Chicago, it
was Milwaukee who did the closing Saturday at the BMO Harris Bradley Center. The Bucks were able
to put Thursday's gutting double overtime defeat behind them with a thrilling win at the buzzer to
extend the series for at least one more game. When O.J Mayo canned a three pointer to put the
Bucks up six with 1:44 remaining, it looked as though the Bucks were on their way to a victory in front
of the home crowd. 

(...)



O.J Mayo led the Bucks in scoring with 18 points in 24 minutes and John Henson had a huge impact
on the defensive end with four blocks and a steal. Henson also pulled down three offensive rebounds
and five boards overall. Three of Milwaukee's bench players scored as many or more points than all
of its starters individually. The Bucks will look to use the momentum from Saturday's victory to stay
alive in the series Monday.

1

92

90

1

3

Points in 1st quarter

NULL

NULL

No. of team assists

NULL

NULL

...

Player statistics  (for values that were not present there is a NULL variable in the column)

Player Assists Blocks

Jimmy Butler

 Derrick Rose

NULL

6

NULL

NULL

3-pointers attempted

NULL

NULL

Turnovers

NULL

8...Nikola Mirotic NULL NULL NULL NULL

John Henson NULL 4 NULL NULL

O.J. Mayo NULL NULL 6 NULL

Points

33

5

NULL

NULL

18

Figure 11: Input-output example from the reversed Rotowire dataset. We present shortened forms of tables than in
real have 13 columns for Team and 20 columns for Player tables. Note that there is a NULL value in the column for
values not present in the input text.
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The horse face emoji we feature is a part of Noto Emoji distributed under the Apache License 2.0.
Copyright by Google Inc. No animals were harmed in the making of this article.
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