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Abstract

Magnetism, a fundamental phenomenon of nature, drives many technologies ranging from data
storage to energy conversion. At the heart of modern magnetism is the ability to control the
dynamics of magnetization, which is governed by the complex interplay of exchange interactions,
magnetic anisotropies, and demagnetizing fields. As devices continue to miniaturize and increase
in functionality, understanding these dynamics becomes critical — especially for applications in
spintronics and magnonics. The latter focuses on the propagation of magnetization perturbations
known as spin waves, which show promise for information processing at low energy levels.

The study of magnetic domains has evolved from the macroscopic bulk materials to the
miniaturized systems, allowing the investigation of spin-wave phenomena in confined geometries.
Low-dimensional structures, such as thin films (2D) and nanowires (1D), have enabled scientists
to study spin-wave control through boundary effects, chirality, and periodic texturing, leading to
applications such as frequency filtering and signal processing. However, the recent development
of three-dimensional nanostructures (3D) introduced an entirely new research direction. The
nanoscale periodicity in complex geometries, such as gyroids or scaffold-like networks, enables
the unprecedented control of spin-wave localization, dispersion, band structure, and other
essential dynamic properties. These advances represent a natural progression toward using
highly complex and small structural elements to fine-tune magnetization dynamics in all spatial
directions.

The rapid growth of this field is fueled not only by innovations in nanofabrication methods,
such as atomic layer deposition or self-assembly techniques, but also by improved computational
capabilities that enable advanced numerical methods. Theoretical tools such as finite difference
and finite element methods are essential to solve the complex magnetization dynamics described
by the Landau-Lifshitz—Gilbert equation. The ability to model magnetic phenomena with high
precision further supports the simulation of high-resolution 3D systems that were previously
considered too computationally expensive. They allow researchers to study how complex 3D
nanostructures affect the control of spin waves, opening up new possibilities for the design of
new magnonic and spintronic devices. From bulk materials to nanostructures, and from planar
systems to complex three-dimensional nanoarchitectures, the field of magnetism is pushing
the boundaries of magnetization control, driving innovation in dynamic phenomena for next-
generation technologies.

This dissertation investigates the control of spin waves in ferromagnetic materials through
multidimensional structuring, with an emphasis on micromagnetic simulations as a central
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research tool. It begins by presenting the basic theoretical concepts of magnetism, especially
micromagnetism, to explain some of the key aspects of spin-wave dynamics, including exchange
interactions, demagnetizing fields, and the Landau-Lifshitz—Gilbert equation. A substantial part
of the thesis then discusses the numerical methods used for these simulations, describes the
special features of software tools such as MuMax3, COMSOL Multiphysics, and tetmag, and
shows how they can be used to design, simulate, and analyze complex magnetic systems.

The fundament of this thesis is a collection of published research papers demonstrating new
strategies for controlling spin waves by progressively increasing the geometric complexity of
structured ferromagnetic media. Knowing the advances in manufacturing and using numerical
simulation, I demonstrate how geometry and dimensionality affect spin-wave propagation, dis-
persion, and localization. I study one-dimensional gratings, two-dimensional antidot lattices,
and fully three-dimensional magnetic nanostructures to show how higher-dimensional systems
enable new magnonic functionalities and define future trends. The main goal was to connect
theoretical spin-wave optics with practical magnonic applications, and to show that geometric
structuring can be as important as intrinsic material properties in controlling interference, diffrac-
tion, nonreciprocity, and localization. Through theoretical modeling, large-scale micromagnetic
simulations, and close collaboration with experimental groups, my work ensures both compu-
tational accuracy and experimental feasibility, aiming to advance next-generation magnonic
circuits, logic architectures, and hybrid spintronic devices.

An important result of my Ph.D. research is the first micromagnetic demonstration of the Tal-
bot effect for spin waves, revealing self-imaging phenomena emerging in systems patterned with
periodic 1D gratings. Using MuMax3 simulations and convolution-based computational tools, |
show how Talbot “carpets” can be harnessed to perform logic operations, introducing a reconfig-
urable and scalable framework for magnonic computing. MuMax3 and COMSOL simulations of
two-dimensional antidot lattices with a predetermined defect show that the periodic structuring
modifies the band structure of the spin waves and enhances the induction of higher harmonics
suitable for fast information processing. Further studies on crescent-shaped waveguides show
that the localization of spin waves depends on the chirality of the profile, demonstrating how
shape anisotropies lead to unidirectional propagation. The most advanced aspect of my research
involves three-dimensional nanostructures, where spatial modulation in all three dimensions
allows unprecedented control of magnetization dynamics. Through COMSOL Multiphysics
and tetmag simulations, I study gyroid networks to show that complex geometries combined
with crystallographic orientation produce strongly field-dependent ferromagnetic responses and
spin-wave mode localization. Notably, the surface-localized ferromagnetic resonance modes
found in gyroids and scaffold-like lattices exhibit field-switchable high-magnetization states,
opening new possibilities for reconfigurable magnonic waveguides and functional spin-wave
devices.
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In short, my main contributions include:

the first micromagnetic demonstration of the Talbot effect for spin waves and the introduc-
tion of spin-wave self-imaging as a novel computing paradigm:;

* the investigation of edge modes in crescent-shaped waveguides, establishing a link between
structural chirality and spin-wave localization;

* the adaptation and optimization of finite-element solvers and numerical methods to enable
efficient large-scale 3D micromagnetic simulations;

* the coordination and contribution to an international collaboration exploring gyroidal
structures as platforms for unconventional magnetization dynamics;

* the discovery of tunable, surface-localized ferromagnetic resonance modes in three-
dimensional magnetic networks.

Overall, this work contributes to the expanding field of magnonics by demonstrating how di-
mensionality and geometry can create new functionalities in spin-wave dynamics. By combining
theoretical modeling, advanced micromagnetic simulations, and collaborations with international
experimental groups, it highlights promising strategies for spin-wave control. As 3D magnonics
continues to evolve, the findings presented in this thesis can support future efforts to design
devices for energy-efficient information processing, storage, and communication systems.






Streszczenie

Magnetyzm, fundamentalne zjawisko natury, odgrywa kluczowa rolg¢ w wielu technologiach,
od przechowywania danych po konwersj¢ energii. Sercem nowoczesnego magnetyzmu jest
kontrola dynamiki magnetyzacji, ktéra jest regulowana przez wzajemne oddziatywania wy-
mienne, anizotropie i pola rozmagnesowujace. W miarg jak urzadzenia staja si¢ coraz mniejsze
1 bardziej wydajne, zrozumienie dynamiki magnetyzacji staje si¢ niezbedne — szczegdlnie w
zastosowaniach w spintronice i magnonice. Druga z tych dziedzin koncentruje si¢ na propagu-
jacych zaburzeniach magnetyzacji, zwanych falami spinowymi, ktére wykazuja potencjat do
przetwarzania informacji przy bardzo niskim zuzyciu energii.

Badania nad domenami magnetycznymi ewoluowaty od analiz objgtoSciowych (makro)ma-
teriatéw do zminiaturyzowanych systemow, umozliwiajac eksploracje fal spinowych w ogra-
niczonych geometriach. Struktury o nizszych wymiarach, takie jak ultracienkie warstwy (2D)
i nanodruty/nanoprety (1D), umozliwity naukowcom manipulacj¢ falami spinowymi poprzez
efekty brzegowe, chiralnos$¢ i periodyczne teksturowanie, prowadzac do zastosowan takich jak
filtrowanie czestotliwosci i przetwarzanie sygnaléw. Jednakze, niedawny rozw6j badan nad na-
nostrukturami tréjwymiarowymi (3D) sygnalizuje rozwijajacy si¢ trend, ktory otwiera zupelnie
nowe mozliwoSci dla badan nad falami spinowymi. Periodycznosci w zlozonych geometriach,
takich jak gyroidy czy kaskadowe matryce nanopretéw, pozwalaja uzyskac niespotykana dotad
kontrol¢ nad lokalizacja fal spinowych, ich dyspersja oraz strukturg pasmowa, a takze innymi
kluczowymi wtasciwosciami dynamicznymi. Postgpy te stanowig naturalny krok w kierunku
wykorzystania niezwykle matych i ztozonych struktur do precyzyjnego strojenia dynamiki
magnetyzacji we wszystkich kierunkach przestrzennych.

Szybki rozwdj tej dziedziny jest napgdzany nie tylko innowacjami w technikach nanofabryka-
cji, takimi jak osadzanie warstw atomowych 1 metody samo-organizacji, ale rOwniez rosnacymi
mozliwosciami obliczeniowymi, ktére umozliwiaja stosowanie coraz bardziej zaawansowanych
metod numerycznych. Narzedzia teoretyczne, takie jak metody réznic i elementéw skonczonych,
sa niezbedne do rozwigzania ztozonej dynamiki opisanej réwnaniem Landaua—Lifshitza—Gilberta.
Wazrost dostgpnych zasobéw obliczeniowych przetozyt si¢ rowniez na mozliwos¢ precyzyjnego
modelowania zjawisk magnetycznych w tréjwymiarowych uktadach o wysokiej rozdzielczosci,
ktére do niedawna byly zbyt wymagajace. Metody numeryczne pozwalaja badaczom odkrywac,
w jaki sposob nanostruktury 3D moga kontrolowac fale spinowe, otwierajac nowe mozliwosci
projektowania urzadzen magnonicznych i spintronicznych. Od uktadéw objetosciowych po nano-
struktury 1 od cienkich warstw po skomplikowane nanoarchitekury 3D, dziedzina magnetyzmu



stale rozszerza mozliwosci kontroli magnetyzacji, napedzajac innowacje w zakresie zjawisk
dynamicznych dla technologii nowej generacji.

Niniejsza rozprawa doktorska bada kontrolg fal spinowych w materiatach ferromagnetycz-
nych poprzez wielowymiarowa strukturyzacje, koncentrujac si¢ na symulacjach mikromagne-
tycznych jako gtéwnym narzgdziu badawczym. Prace otwieraja niezbgedne podstawy teoretyczne
z magnetyzmu, w szczegdolnosci mikromagnetyzmu, w celu wyjasnienia kluczowych aspektéw
dynamiki fal spinowych, takich jak oddzialywania wymienne, pola rozmagnesowujace i rOw-
nanie Landaua—-Lifshitza—Gilberta. Znaczna czg¢sS¢ pracy pos§wigcona jest nastgpnie metodom
numerycznym stosowanym w symulacjach. Przedstawiono szczegétowe analizy metod réznic
1 elementéw skonczonych zaimplementowanych w srodowiskach obliczeniowych takich jak
MuMax3, COMSOL Multiphysics i tetmag, oraz pokazano ich zastosowanie w projektowaniu,
symulowaniu i analizowaniu ztozonych uktadéw magnetycznych.

Podstawa rozprawy jest zbiér opublikowanych artykutéw naukowych, ktore przedstawiaja
nowe strategie kontroli fal spinowych poprzez stopniowe zwigkszanie zlozonosSci geometryczne;j
nosnikéw ferromagnetycznych. Znajac postepy w technikach ich wytwarzania oraz wykorzy-
stujac metody numeryczne demonstruj¢, w jaki sposob geometria i wymiarowos$¢ wptywaja na
propagacje, dyspersje i lokalizacj¢ fal spinowych. Badam jednowymiarowe siatki dyfrakcyjne,
dwuwymiarowe sieci dziur kotlowych, a takze w pelni tr6jwymiarowe nanostruktury magnetyczne
aby pokazac, w jaki sposéb uklady o wyzszej wymiarowosci 1 ztozonej strukturyzacji moga
prowadzi¢ do nowych funkcjonalno$ci magnonicznych, definiujac przyszte kierunki rozwoju tej
dziedziny. Gtéwnym celem bylo potaczenie teoretycznej optyki fal spinowych z praktycznymi
zastosowaniami magnonicznymi, oraz pokazanie, ze strukturyzowanie geometryczne moze by¢
rownie istotne jak wlasciwos$ci materiatowe w kontrolowaniu interferencji, dyfrakcji, asymetrycz-
nej propagacji 1 lokalizacji fal spinowych. Poprzez modelowanie teoretyczne, wielkoskalowe
symulacje mikromagnetyczne oraz Scista wspétprace z grupami eksperymentalnymi, moja praca
zapewnia zarowno doktadnos¢ obliczeniowa, jak i mozliwos¢ realizacji laboratoryjnej, dazac
do rozwoju nowej generacji uktadow magnonicznych, architektur logicznych i1 hybrydowych
technologii spintronicznych.

Waznym rezultatem mojej pracy doktorskiej jest pierwsza mikromagnetyczna demonstracja
efektu Talbota dla fal spinowych, ujawniajaca samo-obrazowanie zaburzenia magnetyzacji po
przejsciu przez periodyczng jednowymiarowa przeszkode. Wykorzystujac symulacje w MuMax3
oraz narzgdzia obliczeniowe oparte na mnozeniu splotowym (konwolucji), pokazuj¢ réwniez, w
jaki sposob ,,dywany” Talbota umozliwiaja przeprowadzanie operacji logicznych, proponujac
rekonfigurowalny i skalowalny model do przeprowadzania obliczen magnonicznych. Symulacje
dwuwymiarowych periodycznych sieci nanodziur z odgérnie zaprojektowanym defektem w
MuMax3 i COMSOL wykazaty, ze takie uktady modyfikuja strukturg pasmowa fal spinowych i
umozliwiaja generacj¢ wyzszych harmonicznych, korzystnych w technologiach przetwarzania
informacji o wysokiej czgstotliwos$ci. Badania nad falowodami o przekroju poprzecznym w
ksztatcie potksigzyca ujawniaja natomiast zalezna od chiralnoSci profilu lokalizacje fal spino-
wych, podkreslajac rolg anizotropii ksztattu we wzbudzaniu jednokierunkowej propagacji.
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Najbardziej zaawansowany aspekt moich badan obejmuje tréjwymiarowe nanostruktury,
w ktérych modulacja przestrzenna we wszystkich trzech wymiarach umozliwia niespotykana
dotad kontrolg nad dynamika magnetyzacji. Korzystajac z COMSOL Multiphysics oraz tetmag,
badam sieci gyroidalne aby pokazac, ze ztozona geometria i orientacja krystalografii prowadza
do silnie zaleznych od pola odpowiedzi ferromagnetycznych i lokalizacji modéw fal spinowych.
Demonstruj¢ w szczegdlnosci, ze zlokalizowane przy powierzchni mody rezonansu ferromagne-
tycznego, zaobserwowane w strukturach gyroidalnych oraz kaskadowych matrycach nanopretow
(przypominajacych rusztowanie), wykazuja stan silnej magnetyzacji przetaczalny zewnetrznym
polem, co otwiera nowe perspektywy dla rekonfigurowalnych falowodéw i funkcjonalnych
urzadzen magnonicznych.
W skrécie, moje gtdwne osiagnigcia obejmuja:

 pierwsza mikromagnetyczng demonstracj¢ efektu Talbota dla fal spinowych oraz wprowa-
dzenie samo-obrazowania fal spinowych jako nowego paradygmatu obliczeniowego;

* identyfikacj¢ modéw krawedziowych w falowodach o przekroju pétksigezycowym, taczaca
chiralnos¢ strukturalng z lokalizacja fal spinowych;

* dostosowanie i optymalizacj¢ metod elementéw skonczonych oraz technik numerycznych
w celu umozliwienia wydajnych, wielkoskalowych symulacji mikromagnetycznych w
trzech wymiarach;

* koordynacje i aktywny udzial we wspotpracy miedzynarodowej dotyczacej badan nad
strukturami gyroidalnymi jako platformami dla niekonwencjonalnej dynamiki magnetyza-
cji;

* odkrycie powierzchniowo zlokalizowanych modéw rezonansu ferromagnetycznego w
tréjwymiarowych nanostrukturach, oferujacych mozliwos¢ projektowania kontrolowalnych
urzadzen magnonicznych.

Niniejsza praca wnosi wktad w rozwijajaca si¢ dziedzing magnoniki badajac, w jaki sposéb
wymiarowos¢ i geometria nosnikow magnetycznych moga by¢ wykorzystane do uzyskania no-
wych funkcjonalnosci fal spinowych. Laczac modelowanie teoretyczne, zaawansowane symulacje
numeryczne oraz mi¢dzynarodowa wspétprace z grupami eksperymentalnymi, podkre§lono obie-
cujace strategie kontroli fal spinowych. W miarg dalszego rozwoju tréjwymiarowej magnoniki,
zaprezentowane tutaj wyniki moga stanowi¢ wsparcie dla przysztych dziatan ukierunkowanych
na projektowanie urzadzen do energooszczednego przetwarzania, przechowywania i przesytania
informacji.
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Preface

In the current era of widespread digitization and increasing computing demands, the scientific
community is focused on discovering new ways to perform logical operations, store data, and
transport information.

As we approach the physical limits of traditional electronic circuits — challenged by quantum
effects, heat dissipation, and the resulting decrease in device efficiency and longevity — the
need for alternative information carriers becomes essential. This dissertation, entitled “Novel
approaches to control spin waves using structuring and complex geometry of ferromagnetic
nanostructures,” seeks to contribute to one of the promising research fields addressing these
challenges: magnonics.

The main objective of magnonics is to analyze magnetism in solid states by studying the
propagation of spin waves. Spin waves, as carriers of angular momentum without charge
transport, offer a bypass of traditional electronic constraints. With their ability to transmit
signals without thermal loss, while offering a broad frequency spectrum and dual amplitude
and phase information encoding capabilities, spin waves show potential for next-generation
information carriers. This thesis investigates spin-wave properties through one-, two-, and
three-dimensional material structures, which represents an innovative approach in the field of
magnonics. By studying magnetization dynamics and spin-wave responses throughout complex
multidimensional magnetic systems (including their edges, surfaces, and bulk regions) this
research reveals interesting phenomena that deepen our understanding of spin-wave behavior
and offer new opportunities for functional magnonic design.






List of publications included in the Thesis

[P1]

[P2]

[P3]

[P4]

[P5]

[P6]

[P7]

[P8]

[P9]

Golebiewski, M.; Gruszecki, P.; Krawczyk, M.; Serebryannikov, A. E.
Spin-wave Talbot effect in a thin ferromagnetic film
Physical Review B 102, 13, 134402 (2020)

Golebiewski, M.; Gruszecki, P.; Krawczyk, M.
Self-imaging of spin waves in thin, multimode ferromagnetic waveguides
IEEE Transactions on Magnetics 58, 8, 1-5 (2022)

Golebiewski, M.; Gruszecki, P.; Krawczyk, M.
Self-imaging based programmable spin-wave lookup tables
Advanced Electronic Materials 8, 10, 2200373 (2022)

Golebiewski, M.; Reshetniak, H.; Makartsou, U.; Krawczyk, M.; van den Berg, A.; Ladak, S.;
Barman, A.

Spin-Wave Spectral Analysis in Crescent-Shaped Ferromagnetic Nanorods
Physical Review Applied 19, 6, 2200373 (2023)

Kumar, N.; Gruszecki, P.; Golebiewski, M.; Klos, J. W.; Krawczyk, M.

Exciting High-Frequency Short-Wavelength Spin Waves using High Harmonics
of a Magnonic Cavity Mode

Advanced Quantum Technologies 2400015 (2024)

Makartsou, U.; Golgbiewski, M.; Guzowska, U.; Stognij, A.; Gieniusz, R.; Krawczyk, M.
Spin-Wave Self-Imaging: Experimental and Numerical Demonstration of Caustic
and Talbot-like Diffraction Patterns

Applied Physics Letters 124, 19, 192406 (2024)

Golebiewski, M.; Hertel, R.; d’ Aquino, M.; Vasyuchka, V.; Weiler, M.; Pirro, P.; Krawczyk, M.;
Fukami, S.; Ohno, H.; Llandro, J.

Collective Spin-Wave Dynamics in Gyroid Ferromagnetic Nanostructures

ACS Applied Materials & Interfaces 16, 17, 22177-22188 (2024)

Gotebiewski, M.; Krawczyk, M.
Gyroid ferromagnetic nanostructures in 3D magnonics
arXiv preprint arXiv:2407.05851 (2024)

Golebiewski, M.; Szulc, K.; Krawczyk, M.

Magnetic field controlled surface localization of ferromagnetic resonance modes
in 3D nanostructures

Acta Materialia 283, 120499 (2025)






Chapter 1

Introduction

Harnessing and controlling spin waves is a major focus in the growing field of magnonics. Their
ability to transport signals without heat dissipation [1-4] provides high energy efficiency without
compromising the processing speed [1, 5—7]. The wavelength spectrum of spin waves (from
micrometers to tens of nanometers) corresponds to frequencies from a few to several hundred
gigahertz [8—10]. In addition, the ability to control the dispersion and group velocity of spin
waves greatly increases their potential applications [11-14]. These properties make spin waves
an attractive alternative to conventional charge-based electronics in computing, memory and
microwave technologies. Recent advances have also demonstrated the need to reduce the size of
magnonic devices, such as majority gates [15], down to nanometer levels. This approach allows
the use of ferromagnetic materials with moderate Gilbert damping, which remain suitable at
the nanoscale where its low value is not essential [15]. Moreover, the interaction between spin
waves and different magnetization textures, such as skyrmions and domain walls, leads to chiral
effects that enable advanced magnonic applications, e.g., nonreciprocal waveguides (diode-like
behavior), directional spin-wave couplers, or reconfigurable logic gates and memory devices [16,
17]. The development of magnonic systems requires precise control of the magnetization
dynamics through static factors such as geometry and material, as well as dynamic parameters
such as excitation frequency and external magnetic field. This thesis focuses on novel design of
(nano)structures and geometries as a method to control and improve functional performance of
spin waves.

1.1 Shape related effects on spin waves

In ferromagnetic materials, spin waves are shaped by the interplay between strong isotropic
exchange interactions and anisotropic long-range magnetostatic effects. The miniaturization of
magnonic systems together with improved magnetization control has made spin-wave localization
a fundamental property of nanoscale operations. Edge modes, driven by a geometry and boundary
effects, represent a well-documented example of localization [18-30], where spin waves are
confined or propagate along the edges of the system. The inhomogeneous internal magnetic
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field near the edges becomes essential for wave confinement as waveguide dimensions decrease.
This localization at the boundaries allows the trapped spin-wave modes to function as sensitive
probes [31, 32], revealing the magnetic properties of the entire system.

Despite recent progress, the study of geometric properties affecting spin-wave propagation
in complex magnonic systems remains at an early stage. In my study, I implemented such
geometries to simulate the spin-wave Talbot effect, also known as self-imaging. This phenomenon
occurs when a plane wave passes through a one-dimensional array of periodic obstacles, such
as nanodots, creating a distinctive near-field diffraction pattern that reconstructs the periodic
structure at some specific intervals. Furthermore, the circular antidots have shown growing
interest [33] due to their potential to excite spin waves at higher harmonic frequencies through
nonlinear effects — an aspect I also explore in this thesis. The intentional design of nanoscale
geometries in planar magnonic systems offers exciting possibilities for controlling spin-wave
behavior.

In addition to planar systems, this thesis also investigates more complex, higher-dimensional
structures for advanced spin-wave manipulation. Particularly intriguing are nanowires with
a crescent-shaped cross section, which — when arranged in a diamond-bond network — show
promise for studying near-degenerate magnetic states and developing reconfigurable magnonic
devices [34, 35]. However, in this work, the research focuses exclusively on single crescent-
shaped nanowires to study their fundamental spin-wave properties.

Even more structurally complex are gyroids — fully interconnected three dimensional periodic
networks, composed entirely of chiral triple junctions [36—39]. The magnetic gyroidal nanostruc-
tures, with at least one dimension in the nanoscale, show potential to demonstrate monopole-type
excitations, which have been observed so far only in 2D systems [40, 41]. Furthermore, the
unit cell of a 3D gyroid is not only intrinsically chiral, but also exhibits continuous curvature,
providing a rich platform for the development of controllable, nonlinear, and spatially localized
spin textures [42—44].

The structures and phenomena discussed in this dissertation are in line with current trends in
magnonics, particularly the growing interest in the use of nontrivial shapes to control spin-wave
properties. While many challenges remain, the results presented here can contribute to this
growing area of research and suggest exciting paths for further investigation, both in fundamental
studies and potential applications.

1.2 From patterned thin films to intricate 3D ferromagnetic

nanostructures

The primary objective of this dissertation is to develop prototypes of novel, geometrically
complex magnonic nanostructures that have the potential for experimental realization and offer
promising spin-wave control properties.
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Figure 1.1 Schematic representation of the main systems studied in this thesis, presented in a sequence
based on their increasing dimensional complexity. In (a), a one-dimensional antidot diffraction grating
is shown (publications P1, P2, P3, and P6). In (b), there is a two-dimensional antidot lattice (ADL)
with a defect in the center (publication P5). In (c), a crescent-shaped waveguide is shown, occupying a
transitional regime between two- and three-dimensional structures. Although the simulations assume a two-
dimensional geometry of infinite length, the resulting magnetic effects extend into the third dimension, as
highlighted in publication P4. In (d) a scaffold-like three-dimensional lattice structure is shown, which was

investigated in publication P9. Finally, (e) illustrates the gyroidal nanostructure presented in publications
P7, P8 and P9.

The examination of nanostructures with complex shapes and nontrivial curvature brings
multiple potential advantages to magnonics. First, it enhances our knowledge about magnon
interactions with local magnetic properties, which might enable new methods for spin-wave
manipulation. Second, the strategic implementation of different textures can enhance stronger
magnonic band gaps and asymmetric spin-wave propagation, paving the way for the creation
of efficient magnonic devices such as spin-wave-based logic circuits. Finally, these geometries
provide a platform to study nonlinear and quantum effects that may drive progress in quantum
magnonics and spintronics research. By investigating these nanostructures, this work aims
to increase the theoretical knowledge of magnonic phenomena and ultimately support the
development of magnon-based technologies for information processing. However, the design
and development of complex material nanoarchitectures faces major obstacles. The fabrication
of structures with lattice dimensions below 100 nm is particularly demanding and represents
a significant technical challenge, which is being addressed by the efforts of the collaborating
experimental groups. From a theoretical perspective, modeling and simulating of complex
geometric systems demands advanced computational methods. To address these issues, my
research has employed state-of-the-art micromagnetic simulations that allow reliable numerical
investigations through the careful selection of parameters to optimize both the design and
functionality of the simulated prototypes.
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By means of the simulations, I have systematically studied magnetization dynamics, dis-
tribution, and localization in various metastructures, uncovering the mechanisms that drive
these phenomena, developing methods to control them, and identifying their most effective
applications. The term metamaterial refers here to engineered structures that exhibit unique,
often unconventional magnetic properties not found in natural materials. The designed structural
features allow precise and tunable control of wave propagation through their mutual interactions.
The proposed geometric models were developed in the context of existing research, building on
and extending the findings of other groups. This work focuses on five types of ferromagnetic
metastructures (see Fig. 1.1) across different spatial dimensions:

* one-dimensional nanodot arrays that act as spin-wave diffraction gratings, giving rise to
the Talbot (self-imaging) effect (Fig. 1.1a);

* two-dimensional planar nano-ADLs, where the structured geometry supports the forma-
tion of edge modes and enables nonlinear spin-wave excitation (Fig. 1.1b);

* crescent-shaped waveguides, studied for their influence on spin-wave dynamics, including
curvature-induced localization effects (Fig. 1.1c¢);

* scaffold-like three-dimensional lattices, providing a fully interconnected probe for spin-
wave modes localization in complex spatial environments (Fig. 1.1d);

* three-dimensional gyroidal networks, investigated for how their crystallographic orien-
tation influences the ferromagnetic resonance (FMR) frequency and facilitates spin-wave
modes localization (Fig. 1.1e).

One of the key tasks was to use structured ferromagnetic thin films with antidots to ver-
ify theoretically and numerically the induction of the Talbot effect for spin waves (see P1 in
Sec. 5.1.1, and P2 in Sec. 5.1.2). The self-imaging has been successfully described and demon-
strated by micromagnetic simulations, and the results have also been experimentally verified by
collaborating partners (see P6 in Sec. 5.1.4). The control of spin-wave interference patterns by
phase adjustments at the apertures between antidots led to the design of a yttrium iron garnet
(YIG)-based logic device using the Talbot effect (see P3 in Sec. 5.1.3).

Another important research direction was the generation of high-frequency spin waves by
exploiting nonlinear effects and localized cavity modes in the ADL (see P5 in Sec. 5.2.2). This
study allowed for the excitation of magnons with very short wavelengths, a critical element in
the development of compact magnonic devices.

Crescent-shaped waveguides also form a significant part of this study (see P4 in Sec. 5.2.1).
The distribution of spin-wave modes in such systems depends on the precise control of the
magnetic energies determined by the structural geometry. Here, I investigated how the curvature
and edge sharpness of crescent-shaped nanowires affect the spin-wave dynamics in single
nanorods. This particular design allows the distinction between edge-localized and volume-
confined modes, which produce different spatial profiles and alter the spin-wave propagation
properties.
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Gyroids, while still relatively unexplored within the field of magnonics, represent a promising
and novel direction of research (see P8 in Sec.5.3.2). Building on studies primarily concerned
with their magnetostatic properties, I have conducted an extensive theoretical and numerical
investigation of these structures. This involved systematic modification of parameters such
as material filling fraction, structure size, and crystallographic orientation relative to external
magnetic fields. These efforts were coordinated with the experiments of partner groups that
measured the gyroid samples (see P7 in Sec.5.3.1).

The research also focused on an significant aspect of spin-wave localization in three-
dimensional systems. The gyroid stands out as a promising example because it represents
a periodic chiral network of nanorods that combines natural curvature with crystallographic
symmetry. These geometric and structural features guided my research to design 3D gyroid
architectures which demonstrate a novel form of surface-localized spin-wave FMR modes (see
P9 in Sec. 5.3.3). Interestingly, the study revealed a similar localization effect in scaffold-like
nanostructures, suggesting that this phenomenon is general. The comparative analysis of gy-
roids and scaffold-like lattices not only established the robustness of the localization effect
across different 3D geometries, but also identified essential structural parameters needed for this
phenomenon to occur.

The most difficult part of this research was to integrate multiple interrelated challenges into
a single, comprehensive computational strategy. Besides, I was responsible for implementing
specialized numerical methods for solving both frequency-domain and time-domain problems
in complex multidimensional structures (see Ch. 4). These methods were crucial for obtaining
the relaxed magnetization states and for capturing the spin-wave dynamics in noncollinear
configurations. Using simulation environments such as MuMax3, COMSOL Multiphysics, and
tetmag, I was able to systematically study how metamaterials, especially 3D architectures, allow
for the unprecedented control of spin-wave propagation and localization. With new experimental
techniques enabling the fabrication and measurement of these complex nanosystems, the numeri-
cal framework I use serves as a bridge between theoretical modeling and practical application in
next-generation magnonic devices.






Chapter 2
Fundamentals of magnetism

2.1 Historical overview

The history of magnetism spans thousands of years, beginning with ancient observations of
magnetic properties in materials and evolving into a scientific discipline. The first recorded
mentions date back to ancient Greece, where magnetite (Fe3O4) was first discovered in the
region of Magnesia, from which the term magnetism is derived. The ancient Greeks and Chinese
recognized the unique properties of lodestone, a naturally magnetized form of Fe304. While
the former primarily observed and studied its magnetic behavior as a subject of curiosity and
natural philosophy as early as the 2nd century BC', the latter later developed and used it as a
navigational tool. The earliest confirmed use of the compass for navigation in China dates to
around the 11th century AD? [45].

The scientific study of magnetism began as a systematic discipline in the late Middle Ages.
In 1269, Petrus Peregrinus de Maricourt described the behavior of magnetic materials in his
book Epistola de Magnete, introducing the idea of magnetic poles and describing how magnets
interact [46]. A major advance came in 1600 when William Gilbert published De Magnete,
which separated magnetism from static electricity, and also explained that the Earth itself acts as
a giant magnet. Gilbert established the basic principles of magnetism as a property of matter and
created concepts that remain important in modern science [47].

In the 19th century, a major breakthrough deepened our understanding of the relationship
between electricity and magnetism. In 1820, Hans Christian @rsted discovered that an electric
current generates a magnetic field — a finding that directly contributed to the foundation of elec-
tromagnetism. André-Marie Ampere further quantified these findings by articulating Ampere’s
law, which details how electric currents produce magnetic fields [48]. This development con-
tinued with Michael Faraday, who discovered electromagnetic induction in 1831, showing that
time-varying magnetic fields could induce electric currents [49]. These groundbreaking findings

'BC means ‘Before Christ’ and refers to years before year 1.
2AD stands for Anno Domini, Latin for “in the year of the Lord,” and refers to years after year 1.
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were eventually combined by James Clerk Maxwell in 1873 into Maxwell’s equations [50],
which unified electricity and magnetism into a framework known as electromagnetism.

Although classical theories successfully described macroscopic magnetic phenomena, they
were insufficient to explain the microscopic origins of magnetism. The development of quantum
mechanics in the early 20th century revolutionized the entire field. The discovery of the intrinsic
angular momentum of the electron (spin) by George Uhlenbeck and Samuel Goudsmit in
1925 [51], along with the introduction of quantum mechanical spin theory by Wolfgang Pauli [52],
represented fundamental breakthroughs. These discoveries enabled the formulation of the
Heisenberg model [53], which describes ferromagnetism in terms of exchange interactions.
Werner Heisenberg’s model also extended the concept of the Curie temperature (above which
thermal energy disrupts magnetic order) by explaining that spontaneous magnetization above it
vanishes due to thermal excitation overcoming the exchange interaction [54]. The Ising model,
developed by Ernst Ising in 1925, provided further insights into magnetic order and phase
transitions [55].

Building on earlier pioneering research, significant developments in the mid-20th century
greatly deepened our understanding of the electronic origins of magnetism. Felix Bloch presented
his seminal work on electrons in periodic potentials in 1929 [56], where he introduced the concept
that the wavefunction of an electron in a crystalline lattice can be expressed as the product of
a plane wave and a lattice periodic function. This became known as Bloch’s theorem and
is a principle of modern band theory of solids. By characterizing the allowed and forbidden
energy bands within a periodic potential, Bloch’s framework enabled systematic studies of
how the quantum properties of electrons drive both conduction and magnetic effects. In the
1930s, John C. Slater built on these band theoretic concepts to develop an explanation of
ferromagnetism in terms of exchange-induced splitting of electronic states [57]. Slater’s key
insight was that the Pauli exclusion principle, coupled with Coulomb interactions, can shift the
energies of spin-up and spin-down bands differently. This splitting leads to unequal populations
of electrons with opposite spins, creating a spontaneous net magnetic moment. His model linked
the quantum-mechanical properties of electrons to the macroscopic ferromagnetic behavior
observed in materials such as iron (Fe), cobalt (Co), and nickel (Ni). Subsequently, in the
1960s, John Hubbard introduced a more comprehensive framework to explain strong electron—
electron correlations [58]. The Hubbard model captures local Coulomb repulsion by balancing
two competing effects: the tendency of electrons to delocalize and form energy bands, and
their tendency to localize due to strong interactions. By adjusting parameters such as hopping
amplitude and local repulsion, the model shows how electrons can switch between moving freely
(itinerant) and staying in place (localized). This has become a key tool for understanding effects
such as metal-insulator transitions.

In the 20th century, scientists also made important breakthroughs in creating new mag-
netic materials. Although the naturally occurring magnetite mentioned above has been known
since ancient times, the industrial synthesis of ferrites by Takeshi Takei and colleagues in the
1930s [59] led to the development of materials that combine high magnetic permeability with
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low electrical conductivity. The engineered ferrites proved essential to transformer and inductor
technology. The discovery of samarium—cobalt (SmCo) magnets in the late 1960s, followed
by the introduction of neodymium—iron—-boron (Nd,Fe4B) magnets in the early 1980s [60],
revolutionized the field with permanent magnets offering exceptional power and thermal stability,
enabling a wide range of applications in motors, sensors, and data storage.

Louis Néel’s pioneering research on antiferromagnetism and ferrimagnetism, for which he
was awarded the Nobel Prize in Physics in 1970, revolutionized the understanding of complex
magnetic ordering in solids [61]. Néel explained how interactions between different magnetic
sublattices govern these phenomena, and showed that the net magnetic moment of a material can
vanish when neighboring atomic spins are arranged in opposite configurations. These findings
laid the groundwork for future spin-based technologies.

In parallel, the formalism of magnetization dynamics took shape. Building on Bloch’s
quantum-mechanical treatment of electrons in crystalline lattices described above, in 1935 Lev
Landau and Evgeny Lifshitz introduced a differential equation describing how the magnetization
of a material evolves with time under external fields [62]. This equation was extended by
T. L. Gilbert [63] in the mid-1950s, by adding a damping term to account for energy losses
during magnetization precession. The resulting Landau—Lifshitz—Gilbert (LLG) equation is a
fundamental tool in micromagnetism for modeling magnetization dynamics.

Major experimental milestones during this period also changed the practical applications
of magnetism. Albert Fert and Peter Griinberg made an independent discovery of giant mag-
netoresistance (GMR) in 1988 [64, 65], showing that the electrical resistance in thin magnetic
multilayers can change drastically with applied magnetic fields when electron scattering depends
on spin orientation. This effect allowed engineers to reduce the size of magnetic sensors while
revolutionizing data storage by increasing the density of hard drives. This was soon followed
by the discovery of tunnel magnetoresistance (TMR) in magnetic tunnel junctions [66, 67],
where electron tunneling across an insulating barrier also depends on spin orientation. TMR’s
larger magnetoresistance ratios have further advanced the efficiency and scalability of spintronic
devices.

Alongside spintronics, the closely related field of magnonics uses collective excitations
of spin waves to transfer and process information. The study of spin-wave dynamics began
with Bloch’s work on ferromagnet spin-wave excitations [68] and Néel’s research on antifer-
romagnet collective modes in multi-sublattice systems. The development of micromagnetic
theory through the LLG equation established predictive methods for the control and design
of spin-wave propagation in various media. In the late 20th century, the phenomenon of spin-
transfer torque (STT) became the link between spintronics and magnonics by demonstrating how
spin-polarized electric currents can generate torques on local magnetization states. In parallel
research, J. C. Slonczewski and L. Berger demonstrated how STT enables electrical switching of
magnetization — essential for high-speed, low-energy magnetic memory and other spin-based
devices [69, 70]. These discoveries revealed the complex relationship between electron spin,
charge transport, and collective magnetic excitations, opening new avenues for both fundamental
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research and technological innovation. In recent decades, the study of magnetism has broadened
its scope to include quantum magnetism, exploring new phenomena in nanoscale and complex
magnetic structures. The discovery of topological insulators and magnetic skyrmions has opened
new perspectives on magnetic materials, focusing on the interaction between topology, spin
textures, and electronic properties [71]. These recent breakthroughs demonstrate the potential to
develop energy-efficient non-volatile memory and logic devices.

Overall, the evolution of magnetism reflects a journey from early empirical observations
to a deep theoretical understanding that includes both classical and quantum aspects. This
development has advanced our knowledge of fundamental physical principles and stimulated
technological progress in many fields of human activity.

2.2 Magnetic moments and magnetic fields

The magnetic moment p is a fundamental concept of magnetism at both the microscopic and
macroscopic levels. It arises from the motion of electric charges, mainly the electron’s orbital
motion around the nucleus (acting like a current loop) and its intrinsic spin magnetic moment.
The orbital magnetic moment p 4, is given by

e
Horb = _%La

(]

2.1)

where L is the orbital angular momentum of the electron, e is the elementary charge® (= 1.602 x
10~1° C), and m, is the electron mass (=~ 9.109 x 103! kg) [72]. As mentioned above, electrons
also have an intrinsic angular momentum known as spin. The magnetic moment associated with
it, g, is defined as

B, = gelsS, (2.2)

where g, is the electron spin g-factor (approximately —2; see Sec. 3.2.1 for details), and S
denotes the spin angular momentum [73] (further discussed in Sec. 2.5). The Bohr magneton Lig
is a fundamental physical constant that represents the magnetic moment of an electron resulting
from its spin or orbital motion. It is defined as

eh

- 2me

Us ~9.274 x 1072 J/T, (2.3)
where 7 is the reduced Planck constant (= 1.055 x 10734 J-s) [74]. The Bohr magneton sets the
natural scale for magnetic moments in atomic and solid-state physics.

The total magnetic moment of an atom, u, is the vector sum of the magnetic moments
resulting from the orbital and spin contributions. When viewed from a distance, a localized
magnetic moment behaves like a magnetic dipole, producing a magnetic field similar to that of a

3Although the charge of the electron is negative, e is conventionally defined as the positive elementary charge.
The negative sign in Eq. 2.1 accounts for the electron’s actual charge.
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tiny bar magnet — hence, in the literature, it is often referred to as a dipole magnetic moment.
This leads to the concept of magnetization, M, which quantifies the magnetic moment per unit
volume. For a discrete system with n atoms per unit volume, the magnetization is expressed as

M = np, 2.4)

and describes how a material responds to an external magnetic field, making it one of the most
important quantities in determining the magnetic properties of materials [45]. In ferromagnets,
the alignment of the magnetic (dipole) moments leads to a net magnetization even in the absence
of an external field, a phenomenon known as spontaneous magnetization, which is discussed in
detail in Sec. 2.3. The magnetic field, in turn, can be described in two different but related forms:
as the magnetic flux density B and as the magnetic field intensity H*. The flux density B is
defined as the force per unit charge per unit velocity acting on a charged particle moving through
a magnetic field and is measured in tesla (T). The field intensity (or strength) H, characterizes
the magnetic field produced by free currents and external sources, and it is measured in amperes
per meter (A/m). The relationship between B and H in a material is given by

B = up(H+M), 2.5

where L is the permeability of free space (vacuum permeability, = 47 x 10~7 H/m). Outside
the magnetic material, however, M = 0, and the Eq. 2.5 simplifies to B = tigH [75]. The field
H is particularly useful for describing the influence of external (free) currents on the magnetic
field within a material or in free space, and under magnetostatic conditions (i.e., when fields and
currents are time-independent), it is governed by Ampere’s law:

VxH = Jext. (26)

If a given region of vacuum contains no free currents, then Jex; = 0 and the equation reduces to
V x H = 0, indicating that H is curl-free there. However, if charged particles or current-carrying
wires pass through the vacuum, then Jex; # 0, and V x H remains equal to that current density.

The interaction between a magnetic moment and an external magnetic field plays a key role
in determining the magnetic behavior of materials and, as noted above, can be approximated as
the dipole—field interaction. For a single magnetic dipole p in an external magnetic flux density
B, the potential energy is defined as

Udipole = —u-B, (2.7)

which is minimized when both vectors are aligned. However, in most physical systems there is a
continuous distribution of magnetic dipoles, p(r), rather than a single one. Transforming the
Eq. 2.4 into a derivative expression, the magnetization M(r) can be introduced to represent the

4The terms B and H are often used interchangeably in the literature — the convention used in this work is to refer
to both symbols as ‘magnetic field’ representations unless a distinction is necessary.



12 Fundamentals of magnetism

5

continuous” magnetic moment per unit volume:

dp(r)

M(r) = =4y

(2.8)
Consequently, the total magnetic potential energy can be expressed as an integral over the volume
V of the material:

Unag = — /V M(r) - BdV. (2.9)

This formulation generalizes Eq. 2.7 from a single dipole to a continuum of dipoles, which
reflects the behavior of real magnetic materials. Regardless of whether one uses B or H (see
Eq. 2.5), the physical picture remains the same: the system lowers its energy when the dipoles,
or equivalently the magnetization, align with the external field. This alignment leads to a stable
magnetic configuration, influencing phenomena such as hysteresis, domain formation, and other
key aspects of magnetic materials described in the following sections.

Magnetic susceptibility is a dimensionless quantity that measures how strongly a material be-
comes magnetized in response to an external magnetic field. In the most general formulation, the
susceptibility is expressed as a second-order tensor, denoted ¥, which relates the magnetization
M to the applied® magnetic field H via

M = 7H. (2.10)

This form is essential for the description of anisotropic materials, where M is not necessarily
aligned with the applied field H (more in Sec. 2.7). The tensor ¥ is then a 3 x 3 matrix whose
elements depend on the crystal symmetry or other anisotropic properties of the material. However,
in many practical cases, the magnetic medium can be approximated as isotropic and linear in its
response to an external field. Under these conditions, ¥ reduces to a single, dimensionless scalar
X, simplifying the Eq. 2.10 to M = y H. Here, M is strictly parallel (or antiparallel) to H, and
the value of ¥ does not change as long as the material remains in its linear response regime.
Materials are classified into different categories based on their susceptibility values, e.g.,
diamagnets with a negative Y (indicating magnetic moments in opposite directions to the applied
field), paramagnets with a small positive x (slight alignment with the field), and ferromagnetic
materials with large positive y, indicating strong alignment [72] — more details in Sec. 2.3. The
permeability u (not to be confused with the magnetic moment vector p) of a material is related
to its susceptibility by
po= po(l+ ). @.11)

>For clarity, M denotes the magnetization in both discrete and continuous forms; when necessary, the spatial
dependence is given explicitly as M(r).

®In this chapter, the distinction between the applied and general magnetic fields is not needed, so the symbol H
is used throughout. In the following chapters, where several magnetic field components appear, the applied field
will be denoted explicitly as Hy.
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2.3 Types of magnetism

As outlined in the previous section, materials can be categorized into different types based
on their response to external magnetic fields. These types include diamagnetism, paramag-
netism, ferromagnetism, antiferromagnetism, and ferrimagnetism, each arising from different
microscopic mechanisms and exhibiting unique material behaviors, as shown in Fig. 2.1.

(a) Diamagnetism (b) Paramagnetism (c) Ferromagnetism
H=0 H_, H=0 H_, H=0 —H
<« <« N\ Z > > 7 7 —_ —>
« <« 1 v > > 7 7 —_ -
« <« N - -> > 7 7 - —
(d) Antiferromagnetism (e) Ferrimagnetism (f) Vagnetization _
H=0 H ' H=0 _H> —ParamagieticI

s Diamagnetic

NN —— NN ——

Magnetic field

NN\ —_— — NN —_ —

Figure 2.1 Schematic illustration of different types of magnetic responses to an external magnetic field,
from (a) to (e): diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism.
Black arrows represent magnetic moment vectors, while blue arrows indicate the direction of the applied
magnetic field (if present). The last panel (f) shows model hysteresis loops for ferromagnetic, paramagnetic
and diamagnetic materials to illustrate their different magnetic behavior. Note: Under sufficiently strong
external fields, some antiferromagnets and certain ferrimagnets can undergo spin-flop transitions, where
the antiparallel spins reorient to a tilted configuration. The configurations shown in (d) and (e) reflect field
strengths below this threshold.

Diamagnetism (Fig. 2.1a) is the basic form of magnetism that exists in all materials regardless
of temperature [72, 73]. It results from the response of electrons to an applied magnetic field,
where their orbital motion generates small currents that create a magnetic field in the opposite
direction. This effect is typically very weak, meaning that diamagnetic materials are only slightly
repelled by external magnetic fields. A special case of diamagnetism occurs in superconductors,
which exhibit perfect diamagnetism below a critical temperature due to the Meissner effect [76].
In this state, superconductors completely expel magnetic flux from their interior, making their
diamagnetic response much stronger than in typical materials [77].

Paramagnetism occurs in materials containing unpaired electrons, i.e., electrons whose spins
are not canceled out by a partner with the opposite spin. Although each unpaired electron has its
own magnetic moment, in the absence of an external field these are randomly oriented due to
thermal fluctuations, resulting in zero net magnetization (Fig. 2.1b). When an external magnetic
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field is applied, these magnetic moments tend to align with it, resulting in a small positive net
magnetization. The strength of this response decreases as temperature 7" increases, following
Curie’s law: c

X = k (2.12)
where C is a material-specific Curie constant. This inverse relationship between susceptibility
x and T is due to thermal oscillations that perturb the alignment of the magnetic moments.
Common examples of paramagnetic materials include aluminum (Al) and platinum (Pt) [72, 78].

In my research, I focus on ferromagnetism — a type of magnetic ordering characterized by
the spontaneous alignment of magnetic moments within the material, even in the absence of an
external magnetic field (Fig. 2.1c). This behavior is driven by strong exchange interactions in
these materials (overlapping electron orbitals), which force the spins of neighboring atoms to
align parallel to each other, resulting in a strong collective magnetization. This alignment persists
up to a critical temperature, known as the Curie temperature (7¢), beyond which thermal energy
disrupts the ordered state and the material becomes paramagnetic. Fe, Co, and Ni are classic
examples of ferromagnetic materials, and their alloys are widely used in various technological
applications [45, 73].

Antiferromagnetism occurs when adjacent magnetic moments align in opposite directions
(Fig. 2.1d), effectively canceling each other out and resulting in zero net magnetization. This
arrangement is energetically favorable because of the antiferromagnetic exchange interaction.
The characteristic temperature at which the antiferromagnetic order is lost is called the Néel
temperature (7y). Below Ty the material show no macroscopic magnetization, but above this
temperature it behaves like a paramagnet. Manganese oxide (MnO) and chromium (Cr) are
typical examples of antiferromagnetic materials [54, 73].

Ferrimagnetism (Fig. 2.1e) is similar to antiferromagnetism in that it involves inversely
oriented magnetic moments. However, the magnitudes of these moments are not equal, resulting
in a net magnetization. This behavior occurs in materials with multiple magnetic sublattices,
each contributing differently to the total magnetization. A well-known example is magnetite
(FezO4), where the unequal magnetic contributions of different Fe ions result in a non-zero
overall magnetization. Analogous to ferromagnets, ferrimagnets have a Curie temperature, above
which they lose their ordered magnetic state [61, 78].

Altermagnetism: a novel magnetic phase

Altermagnetism is a recently recognized magnetic phase that integrates properties of ferro-
magnetism and antiferromagnetism [79]. In altermagnetic materials, adjacent electron spins
are antiparallel, resulting in zero net magnetization, similar to conventional antiferromagnets.
However, unlike them, altermagnets exhibit significant spin splitting in their electronic band
structures, a characteristic typically associated with ferromagnets.

Spin splitting is the separation of electronic energy levels or bands according to their spin
orientation. In magnetic materials, this effect usually arises from exchange interactions, where
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one spin channel (e.g., spin-up) is energetically favored over the other (spin-down), producing
separate band structures. In conventional ferromagnets, this splitting underlies a net magnetiza-
tion, whereas in altermagnets a substantial spin splitting coexists with collinear antiparallel spins.
This combination leads to unique magnetic and electronic properties, positioning altermagnets
as promising candidates for next-generation spintronic applications [80]. Experimental evidence
for altermagnetism has been reported in compounds such as manganese telluride (MnTe) and
ruthenium dioxide (RuQO;) [81-83].

2.4 Magnetic materials: properties and hysteresis behavior

The previous section explained the basic types of magnetism by showing how different materials
respond to external magnetic fields based on their intrinsic electronic and magnetic properties.
Among these, the complex response of ferromagnetic (and ferrimagnetic) materials to cyclic
magnetic fields (see Fig. 2.1f) is characterized by magnetic hysteresis behavior, which will be
the focus of this section.

Magnetic materials can be broadly classified as soft or hard magnets. Soft magnetic materials
are characterized by their low coercivity, meaning that they can reverse their magnetization
in response to small changes in external magnetic field. As a result, they have a relatively
narrow hysteresis loop (see Fig. 2.2), which typically corresponds to relatively low remanent
(residual) magnetization and minimal energy loss over repeated magnetization cycles. Soft
magnets are mostly used in applications that require rapid magnetization and demagnetization,
such as transformers and inductors [73, 84]. It also makes them important for studying and
exploiting fast magnetization dynamics in magnonics — more details in Sec. 3.2.

Examples of soft magnetic materials include:

* soft Fe, often used in transformer cores due to its low coercivity and high magnetic
permeability,

* ferrites, oxide materials commonly used in high-frequency transformers and inductors
due to their low eddy current losses and ease of magnetization,

* permalloy (NigoFez), widely used in read heads and magnetic sensors due to its high
permeability and low coercivity. Its good soft-magnetic properties, negligible magnetostric-
tion and low Gilbert damping [84] make it a preferred material for magnonic waveguides
and spintronic devices (used in my publications P1-P6),

* Ni, which has a relatively low coercivity and is often used in thin films or multilayer
structures for magnetic sensing and spintronic applications (used in P7-P9).

In contrast, hard magnets are high coercivity materials that maintain their magnetization even
in relatively strong opposing magnetic fields. Their wide hysteresis loops (Fig. 2.2) indicate
strong remanence properties and high energy requirements for demagnetization. Hard magnets
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are used in applications where permanent magnetization is required, such as in motors, generators,
and magnetic storage devices [85]. Examples of hard magnetic materials include:

¢ alnico (acronym from Al-Ni—Co) alloys, being one of the first commercially significant
permanent magnet material, offering high remanence and relatively good thermal stability.
Although surpassed by modern alloys, alnico magnets remain valuable for certain high-
temperature applications,

* rare-earth magnets, like neodymium-iron—boron (NdFeB) and samarium—cobalt (SmCo),
are known for their exceptional coercivity, making them ideal for high-power applications
such as electric motors, wind turbines, and magnetic data storage,

* layered systems with Lj-ordering, where the tetragonal structure provides very high
magnetocrystalline anisotropy. As a result, thin-film Ly FePt or CoPt materials are
particularly relevant for advanced data storage technologies (e.g., perpendicular magnetic
recording) and other applications requiring high coercivity [86].

In addition to coercivity, a typical hysteresis loop describes how the magnetization of a
material responds to an external magnetic field, as shown in Fig. 2.2. It is plotted as the
magnetization component (or projection) M versus the applied field value H, with both quantities
typically aligned with one of the “easy” magnetization axes of the material. Under these
conditions, the hysteresis loop reveals several key material properties, such as the previously
mentioned coercivity, remanence, saturation magnetization, and energy loss (given by the area of
the loop).

In materials with significant magnetocrystalline anisotropy (see Sec. 2.7), hysteresis loops
can look different when measured along different crystallographic orientations. The easy axis
(or axes) typically exhibits higher remanence and coercivity than other directions, due to the
presence of anisotropy energy barriers. As a result, hysteresis loops measured with the field
applied along the easy axis tend to be more “square” in shape and enclose larger areas. In contrast,
loops measured along a hard axis have lower remanence and reduced coercivity. Understanding
these orientation-dependent behaviors is critical for designing magnetic materials tailored to
specific applications.

Coercivity (H.), as outlined above, is defined as the magnitude of the reverse (negative)
magnetic field required to reduce the net magnetization of a material to zero after it has been
magnetically saturated. In essence, it quantifies the material’s resistance to demagnetization,
reflecting how robustly it retains magnetization when subjected to an opposing external field.

Remanence (M) is the residual magnetization that remains in a material after the external
magnetic field has been reduced to zero (from saturated state), i.e., it quantifies the ability
of the material to remain magnetized in the absence of an external field. High remanence is
advantageous in hard magnetic materials (e.g., permanent magnets) because it indicates that a
substantial magnetic field can be maintained without distortion. In contrast, soft magnets tend
to have relatively low remanence. While it s consistent with easy magnetization cycling, it is
mostly the low coercivity that enable rapid switching of magnetization [85].
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Figure 2.2 Representative magnetic hysteresis loops for soft and hard magnets (light and dark blue curves,
respectively), illustrating key parameters such as coercivity field (H.), remanence magnetization (M,), and
saturation magnetization (Ms).

Saturation magnetization (M) is the maximum magnetization that a material can reach.
Beyond this point, increasing the field will not result in any additional magnetic induction
because all the moments are already aligned in the direction of the field. Saturation magnetization
is a fundamental material property and is strongly dependent on the type of magnetic material
and its temperature. Materials with high saturation are preferred in applications where strong
magnetic fields are required, such as in electromagnets and permanent magnets [73, 84].

The energy loss in magnetic materials during a magnetization cycle is proportional to the area
enclosed by the hysteresis loop. This energy loss, often referred to as hysteresis loss, is dissipated
in the form of heat. It becomes significant in applications such as transformers and induction
motors, where materials are exposed to rapidly changing magnetic fields. Reducing hysteresis
loss is a key goal in the design of efficient soft magnetic materials for such applications [87].

2.5 The quantum theory of magnetism

To understand the diverse behavior of magnetic materials, one must delve into their quantum-
mechanical foundations. Although classical approaches can successfully describe many macro-
scopic properties such as magnetic susceptibility and hysteresis, they cannot fully explain the
microscopic origins of magnetism, including the exchange interactions and the role of electron
spin at the atomic level. The quantum theory of magnetism addresses these limitations. A
prominent example of the interplay between quantum origins and classical descriptions is found
in magnonics. Although magnons (the quanta of spin waves) originate from quantum spin
interactions, their propagation through a magnetic medium can often be described by classical
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wave models. Remarkably, this approach remains valid down to the nanometer scale, linking
quantum many-body physics with classical continuum models.

As introduced in Sec. 2.2, the basis of quantum magnetism lies in electron spin that generates
a magnetic moment (see Eq. 2.2). Unlike orbital magnetic moments, which result from the
motion of the electron around the nucleus, the spin magnetic moment is an intrinsic property of
the electron, analogous to a tiny bar magnet [72, 73]. It can be represented by the spin angular
momentum operator S, which obeys:

§218,m) = R*S(S+1)|S,m), (2.13)

where the quantum number S = 1/2 for the electron, and m is the spin projection quantum number.

Spin arises from the quantum field theory, and its associated magnetic moment underlies many
of the physical phenomena observed in magnetic materials [73]. However, many macroscopic
and mesoscale theories treat it as a classical vector, especially when studying collective spin
behavior. For example, in micromagnetism, the magnetization M(r) in any infinitesimal volume
(Eq. 2.8) is modeled as a continuous vector field satisfying the LLG equation [62, 63, 88] — more
in Ch. 3.

Another key concept in quantum magnetism is the exchange interaction, which is a direct
consequence of the Pauli exclusion principle and the Coulomb repulsion between electrons.
It determines how adjacent spins in a material are aligned, either parallel or antiparallel. In
ferromagnetic materials, the positive exchange interaction favors parallel alignment of spins,
resulting in a net macroscopic magnetization. In contrast, antiferromagnetic materials exhibit a
negative exchange interaction, which causes neighboring spins to align antiparallel, effectively
canceling out the overall magnetization [74]. These behaviors are described quantitatively by the
Heisenberg model developed in the late 1920s [53], which is based on the Heisenberg exchange
Hamiltonian:

H=-27) S-S, (2.14)

(i.J)

where J is the exchange integral, and S; and S; are the spin operators of neighboring atoms
i and j. The sign and magnitude of the exchange constant J determine how the neighboring
spins are aligned. For a simple quantum Heisenberg model with spin S, a rough mean-field
approximation [89, 90] relates the exchange constant J to the Curie or Néel temperature, with the
coordination number z capturing the lattice geometry and interaction strength. This relationship
takes the form:

zS(S+1)|J] Tc ferromagnets

Ten ~ (2.15)

kg Ty antiferromagnets

where the Boltzmann constant kg ~ 1.3806 x 10723 J/K. In essence, the stronger the exchange
coupling (larger |J|), the more thermal energy is required to disorder the spins (transition to a
paramagnetic phase), leading to higher 7¢ or Ty.
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Among quantum approaches to describing ferromagnetism is the itinerant electron (band)
model [90], often associated with the Stoner criterion [91]. In this framework, electrons are
treated as delocalized quasiparticles occupying conduction bands, and the interplay of exchange
interactions with the band structure can induce a spontaneous splitting between spin-up and
spin-down bands, thereby leading to ferromagnetism. In contrast to localized spin models, such
as the Heisenberg model, this approach emphasizes the importance of the electronic structure in
driving the magnetic order.

An even more rigorous quantum description that includes electron—electron correlations is
the Hubbard model, briefly introduced in Sec. 2.1. By integrating local interactions, it provides a
unified framework capable of describing both localized and itinerant limits of magnetism.

In addition to the Heisenberg and band models, the Ising framework provides insight into
magnetic phase transitions and critical phenomena. Here, the spin of each atom is constrained to
be either parallel or antiparallel along a chosen axis, which simplifies the analysis of magnetic
ordering in one- and two-dimensional systems. The Ising model was originally developed to
describe ferromagnets, but it has been extended to study complex behavior also in systems with
competing interactions, such as spin glasses and frustrated magnets [55].

An important aspect of quantum magnetism is also the role of spin-orbit coupling (SOC),
which arises from the interaction between an electron’s spin and its orbital motion around the
nucleus. SOC is a relativistic effect that links the electron’s spin degree of freedom to its orbital
angular momentum. From a quantum-mechanical perspective, this coupling originates from the
Dirac equation, but it is commonly described using an effective interaction Hamiltonian:

Heoc = AL-S, (2.16)

where A is an effective SOC constant, and L is the orbital angular momentum operator [72, 92]. In
a more detailed approach (e.g., for atoms with spherical symmetry), the radial coordinate function,
A = {(r), indicates that the coupling strength can change with the distance r of the electron from
the nucleus. Solids modify this interaction through their crystal environment, affecting both
electronic band structures and the resulting magnetic properties. A key consequence of SOC
in magnetic materials is a magnetic anisotropy, which means that the total energy of a system
depends on the direction of magnetization relative to the crystallographic axes — more in Sec. 2.7.

A semi-classical framework provides accurate and convenient analyses of spin-wave dy-
namics in many magnetic materials, but certain regimes require a fully quantum-mechanical
formalism. For example, at low temperatures, thermal excitations may be dominated by few-
magnon processes, making classical approximations insufficient. In materials with strong electron
correlations, topological band structures cannot be captured by purely classical spin-wave theory.
Also, when describing ultrafast or ultralow energy processes, including single-magnon excita-
tions or quantum-entangled spin states, methods like the Holstein—Primakoff transformation and
exact diagonalization are necessary [90, 93].
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2.6 Magnetic domains and domain walls

To minimize their free energy, ferromagnetic and ferrimagnetic materials tend to split into do-
mains — subregions where spins are uniformly aligned in the same direction (see Fig. 2.3). While
exchange interactions favor uniform spin alignment across the entire material, this is opposed
by the magnetostatic (dipolar) field, which promotes flux closure. Additionally, magnetocrys-
talline anisotropy introduces a directional preference for the magnetization based on the crystal
structure. The balance among exchange, magnetostatic, and anisotropy energies leads to the
formation of a mosaic of domains with different magnetization directions, rather than a single,
uniformly magnetized state. The boundaries between these domains, known as domain walls,
represent continuous rotations of the local spin orientation (see Fig. 2.3). Although domain walls
carry an energy cost — primarily due to exchange and anisotropy — they help reduce the overall
magnetostatic energy by minimizing stray fields. Consequently, key magnetic properties such as
coercivity, remanence, and hysteresis behavior in ferromagnetic and ferrimagnetic materials are
largely governed by the nucleation, growth, and stability of domains and their walls.

The concept of magnetic domains was first introduced in the early 20th century by Pierre
Weiss, who proposed that ferromagnetic materials are composed of small, uniformly magnetized
regions — even in the absence of an external magnetic field. While the magnetization within each
domain is aligned, the overall magnetization of the material remains zero due to the random
orientation of the domains relative to one another [84]. This domain structure helps reduce the
system’s magnetostatic energy, as the presence of multiple domains with different orientations
lowers the stray magnetic fields generated by the material.

There are two primary types of domain walls, distinguished by how the magnetization
transitions across them: Bloch and Néel walls (Fig. 2.3). In a Bloch wall, the magnetization
rotates within the plane of the domain wall (the surface that separates the two domains), resulting
in a spiral-like transition of the magnetic moments from one domain to the other. This type
of wall typically occurs in bulk materials with moderate/low magnetic anisotropy. The width
of a Bloch wall, d5, is determined by the competition between exchange energy, which favors
a gradual change in spin direction, and anisotropy energy, which favors alignment along easy
axes [87], and can be determined as

g = /o (2.17)

where Ax 1s the exchange stiffness constant (introduced in Sec. 3.1.1) and K, is the uniaxial
anisotropy constant (more in Sec. 2.7). A larger Acx or smaller K, leads to a wider Bloch wall,
reflecting a smoother transition between domains.

Néel walls, on the other hand, are characterized by a rotation of magnetization that occurs
perpendicular to the domain wall plane. This type of wall is commonly observed in thin films
and nanostructures, where surface effects and demagnetizing fields play a dominant role. The
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width of a Néel wall, denoted as v, is typically smaller than that of a Bloch wall and, like it, is
governed by the balance between exchange and anisotropy energies [87].

MAGNETIC DOMAINS

1Ql

NEEL WALL BLOCH WALL

itrr-\| j W

Figure 2.3 Schematic illustration of a two-domain magnetic system, with domain walls separating regions
of opposite magnetization. The left panel shows a Néel domain wall where the magnetization rotates
perpendicular to the wall plane. The right panel shows a Bloch domain wall where the magnetization
rotates within the wall plane. Both configurations provide a continuous transition between different
domains.

The stability and mobility of magnetic domain walls are governed by their domain wall
energy per unit area, approximated by

0 =~ 4\/AexKuy, (2.18)

that holds under certain assumptions:

* asingle-axis or easy-axis anisotropy (described by Eq. 2.20);

* a uniform rotation of the magnetization across the wall width, (ignoring in-plane variations
or complex curling);

* magnetostatic contributions within the wall region itself do not significantly affect the
fundamental scaling behavior. However, in practice, especially in thin films, magnetostatic
energy can influence which type of domain wall is energetically preferred;

* a micromagnetic continuum approximation.

A lower o generally indicates that domain walls are easier to form and require less energy to
move. In contrast, a higher wall energy tends to stabilize domain configurations against external
fields or perturbations. Table 2.1 summarizes typical values of domain wall energies and widths
for selected materials, highlighting the differences between Bloch and Néel wall types.
Domain wall dynamics, including nucleation, motion, and pinning, are influenced by external
magnetic fields, temperature, and material defects. Understanding these factors is crucial for the
development of advanced magnetic devices. A prominent example is racetrack memory, where
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Table 2.1 Typical domain wall energies (o) and approximate domain wall widths (dpw) for selected
ferromagnetic and ferrimagnetic materials. Reported values may vary depending on factors such as
microstructure, temperature, and sample preparation. Lattice structures: hcp = hexagonal close-packed,
fcc = face-centered cubic, bcc = body-centered cubic.

Material Wall type o (mJ/m?) Opw (nm) Refs.
Fe (bcc, bulk) Bloch 50-100 20-40 [85, 87]
Ni (fcc, bulk) Bloch 10-30 50-70 [73]
Co (hcp, bulk) Bloch 100-200 10-20 [87]
NiggFeyq (fcc, thin film) Néel 2-10 100-150 [85, 87]
YIG (garnet, bulk) Néel 1-5 100-300 [73]

information is stored in domain wall regions within magnetic nanowires [94]. In such devices,
precise control over domain wall motion is essential for achieving fast and reliable operation.

2.7 Magnetic anisotropy

Magnetic anisotropy refers to the directional dependence of magnetic properties, meaning that the
energy required to magnetize a material varies with the direction of magnetization. This property
influences the behavior of magnetic domains, domain walls, and the overall magnetization
dynamics. It also plays a key role in magnetization reversal processes (see the hysteresis loops in
Fig. 2.2). When an external magnetic field is applied, the magnetization tends to rotate in the
direction of the field. However, anisotropy introduces energy barriers that must be overcome
for complete reversal. The stronger the uniaxial or cubic anisotropy, the higher the external
field is required [73]. In addition, the orientation of the applied field relative to the easy axis
significantly changes the shape of the hysteresis loop, as explained in Sec. 2.4.

Magnetic anisotropy results from several factors such as crystal structure, shape, and me-
chanical stress, each affecting the magnetic response in a different way.

Crystalline anisotropy

This specific type of anisotropy results from the interaction between the crystal lattice and
the magnetic moments of the electrons, that are affected by SOC. In such materials, certain
crystallographic directions require less energy to orient the magnetization (easy axes). This
dependence can be captured by the general expression for the anisotropy energy:

Ecrystal = Klf(ai) + KZf(ai) +oey (2.19)

where K|, K, and higher-order terms are anisotropy constants, and f(o;) represents a function
of the direction cosines ¢; of the magnetization with respect to the crystal axes. This equation is
general, and specific cases such as uniaxial and cubic anisotropies, represent different realizations
of this form [73, 84].
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Uniaxial anisotropy occurs when the material has a single preferred direction of magneti-
zation (easy axis). Crystalline hcp systems or certain tetragonal structures often exhibit strong
uniaxial anisotropy due to their lattice symmetry and SOC effects (for example hcp-Co, Lig
FePt or CoPt alloys [72, 73]). Similarly, many rare-earth—transition-metal compounds (e.g.,
SmCos, NdyFe4B) have a strong uniaxial anisotropy axis that dominates their macroscopic
magnetic behavior. Beyond crystallographic origins, engineered thin films or nanostructures can
also exhibit uniaxial anisotropy due to epitaxial strain, surface effects, or shape anisotropy in
elongated geometries. The energy associated with this type of anisotropy is often described by
the simplified form of Eq. 2.19:

Euniaxiat = Ky Sin2 97 (220)

where K, is the uniaxial anisotropy constant and 0 is the angle between the magnetization and
the easy axis. Materials with positive Ky, such as Co, tend to orient their magnetization along
the easy axis, while materials with negative K, prefer alignment perpendicular to it [95].

Cubic anisotropy is observed in materials with cubic crystal symmetry, such as Fe and Ni [84].
For this type of crystalline anisotropy, the associated energy is given by

Ecupic = Ke1 (003 + 0303 +o5a7) + Ko af 0303, (2.21)

where K| and K, are the cubic anisotropy constants. Physically, these terms originate from
SOC in a crystal field with cubic symmetry. The spin—orbit interaction induces certain degen-
eracies in the electronic states, favoring specific orientations of electron spins — and hence, the
magnetization — along particular crystallographic directions. In contrast to uniaxial crystals,
which have a single easy axis, cubic systems can exhibit multiple equivalent easy directions,
depending on the signs and magnitudes of K.; and K¢,.

Shape anisotropy

Shape anisotropy originates from magnetostatic interactions: the geometry of a magnetic body
influences the distribution of magnetic charges (poles) on its surfaces, thereby creating an internal
demagnetizing field [87, 95]. In essence, any geometry — whether an elongated nanowire, a thin
film, or a bulk ellipsoid — has different demagnetization factors (Ny, Ny, N;) along its principal
axes (more in Sec. 2.8). The magnetization M thus adopts an orientation that minimizes the total
magnetic energy, often along the direction of the smallest demagnetization factor. For example,
in thin films and nanowires, the magnetization is typically parallel to the long axis, thus reducing
the demagnetizing field. Such geometry-induced anisotropy becomes more pronounced at the
nanoscale, where the high surface-to-volume ratio enhances the influence of surface magnetic

poles.
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Stress-induced anisotropy

Stress-induced anisotropy arises from the inverse magnetostrictive effect (also known as inverse
magnetostriction or the Villari effect), where mechanical strain influences the orientation of
magnetization [84]. When a material is subjected to stress, the magnetization tends to align
along directions that minimize the magnetoelastic energy — typically those associated with either
tensile or compressive strain. The magnetic strain energy can be expressed as

3
Emgsw = A0 sin” 6, (2.22)

where A is the magnetostriction constant, ¢ is the applied stress, and 0 is the angle between the
magnetization and the direction of the applied stress [85]. This type of anisotropy is especially
important in thin films and nanostructures, where stresses from the substrate or fabrication
process can strongly affect the magnetic properties.

2.8 Magnetostatics and demagnetizing fields

Magnetostatics is the branch of classical electromagnetism that deals with magnetic fields in
systems where both currents and fields are constant in time. In this regime, magnetic fields
arise from stationary currents or static distributions of magnetic dipoles (magnetization). The
governing principles start from Maxwell’s equations, especially Gauss’s law for magnetism,
which states that the net magnetic flux through any closed surface must be zero. This condition
underlies the distribution of magnetic flux lines in static field configurations.

The magnetostatic approximation is also widely used and important framework in magnonics.
Certain components of the internal magnetic field can evolve on much slower timescales (thus
remaining quasi-static), when compared to the rapid precessional motion of the spins. As a result,
calculations often use magnetostatic boundary conditions and field distributions to simplify the
analysis of spin-wave modes and their interactions — more in Sec. 3.2.

Gauss’s law for magnetism

As noted above, Gauss’s law states that the net magnetic flux through any closed surface is zero,
which means that magnetic field lines do not originate from or terminate at any point, unlike
electric field lines, which begin and end on charges. This law reflects the fact that there are no
magnetic monopoles and is expressed mathematically as

V.B = 0. (2.23)
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This equation shows that the divergence of the magnetic flux density is always zero, meaning
magnetic field lines form closed loops [46]. In integral form, Gauss’s law for magnetism states

B-dA = 0, (2.24)
av
where the surface integral is taken over the closed surface dV, and dA is the infinitesimal area
element on the surface.

Demagnetizing field and demagnetizing tensor

In addition to externally applied fields, magnetic materials generate their own demagnetizing
field Hy. This field arises from surface (and sometimes interface) magnetic charges that appear
when the magnetization M is non-uniform or terminates at a boundary. On a microscopic level,
these so-called magnetic poles create stray fields that oppose the internal magnetization. The net
effect is a reduction of the internal magnetic field — hence the term “demagnetizing field.” In
many theoretical treatments, it is expressed in a linearized form:

Hy = —NM, (2.25)

where N is the demagnetizing tensor, a real symmetric 3 x 3 matrix whose elements depend
solely on the sample’s geometry and orientation, assuming uniform magnetization. For special
shapes with high symmetry, such as ellipsoids, the magnetization can be assumed to be uniform
at equilibrium, allowing an analytical derivation of the tensor components. In this case, one
can define the principal axes x, y, z along the three major directions of an ellipsoid, making N
diagonal:

0
0], with Ny+N,+N, =1 (2.26)
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Each diagonal component N; (i = x, y, z) is the demagnetizing factor for magnetization aligned
along the i-th principal axis, and these factors sum to unity for ellipsoids [95, 96]. Often, a
simplified scalar form of Eq. 2.25 is used:

Hy= -NM, 2.27)

but this holds strictly for geometries where the magnetization is uniform and the shape is
ellipsoidal, or in one-dimensional approximations (e.g., infinite cylinders). Non-ellipsoidal
shapes (like rectangular prisms) introduce inhomogeneous internal fields that invalidate a simple
uniform N factor, though approximate formulas or numerical methods can still be used.
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Demagnetizing factors in standard shapes

* Ellipsoids: In an ellipsoid, each principal axis i has a corresponding demagnetization
factor N;, satisfying the condition Ny + Ny + N, = 1. For a prolate spheroid (needle-like
shape), the demagnetization factor along the elongated axis (e.g., N;) is much smaller
than those in the transverse directions (N, and N,). In contrast, for an oblate spheroid
(disc-like shape), the in-plane demagnetization factors (e.g., Ny, Ny) are small, while the
factor perpendicular to the plane (N;) becomes large.

* Spheres: Due to the perfect symmetry of a shape, the demagnetization factors are equal
along all principal directions: N, = N, = N, = 1/3. As a result, the magnetization experi-
ences the same demagnetizing effect regardless of its orientation.

* Cylinders (long rods): An extremely elongated cylinder aligned along the z-axis has
N, = 0, while N, + Ny ~ 1, indicating a negligible demagnetizing field along the length
of the rod. As a result, the magnetization tends to align with the long axis in order to
minimize the magnetostatic (demagnetizing) energy.

* Thin films: For a thin film with negligible thickness along the z-direction, the demagneti-
zation factor satisfies N, ~ 1, while N, ~ N, =~ 0. This results in a strong demagnetizing
field normal to the film plane, effectively confining the magnetization to lie in-plane unless
a sufficiently large external field is applied perpendicular to the surface.

Why Ellipsoids? Ellipsoids, of which spheres, rods, and discs are special cases, are conve-
nient because a uniform magnetization M mathematically satisfies Maxwell’s equations within
such a shape. For more complex geometries (e.g., rectangular prisms, polycrystals with irregular
boundaries, or multilayer thin-film stacks), the demagnetization tensor N can only be estimated
or computed by numerical methods (see Ch. 4).

The chapter has provided a historical perspective on the development of magnetism and
presented the basic theoretical concepts of the field, starting with the microscopic origins
of magnetic moments. Various types of magnetic order have been reviewed, followed by a
discussion of magnetic domains and domain walls. In exploring these energetic contributions,
this chapter has considered both discrete, atomic-level perspectives on spin interactions as well as
the classical continuum framework used to describe magnetization behavior in extended media.

Building on these foundations, the next chapter addresses magnetization dynamics, moving
from static and quasi-static domain configurations to time-dependent processes occurring on
micro- and nanoscales. It employs a continuum formulation of the Gibbs free energy, which in
our investigations includes exchange, anisotropy, and magnetostatic contributions, to model spin-
wave excitations and support the description of my micromagnetic simulations. This approach
bridges the discrete quantum origins of magnetism with classical field-based descriptions,
allowing a detailed analysis of magnetization dynamics.



Chapter 3

Micromagnetism

Micromagnetism is a theoretical framework that describes magnetism at the continuum level,
linking the atomic-scale interactions with macroscopic magnetic behavior [88]. This approach
goes beyond traditional “classical models” of magnetism, which often treat a magnetic medium
either as a single, uniform macrospin or rely on bulk-averaged properties without capturing
spatial variations. In contrast, micromagnetism uses a continuum description in which the
magnetization M(r) is treated as a smoothly varying vector field throughout the material. This
refinement makes it possible to analyze magnetic structures and phenomena on the submicrometer
or nanometer length scale — much smaller than what can be handled by simplistic approaches. It
also avoids the impracticality of full atomic or quantum mechanical simulations, which require
tracking the states and interactions of an astronomically large number of individual spins. As
a result, micromagnetism provides a powerful framework for studying domain-wall motion,
spin-wave excitations, topologically protected spin textures, and many other effects arising from
the interplay of exchange, anisotropy, and magnetostatic energies. — The primary objective of
micromagnetism is to determine both the equilibrium configuration and the dynamic behavior
of the magnetization vector by minimizing the total free energy of a system. This energy
includes several key contributions: exchange interactions, magnetostatic (dipolar) interactions,
magnetocrystalline anisotropy, the Zeeman energy due to external magnetic fields, and, in
some cases, additional effects such as Dzyaloshinskii-Moriya interactions (DMI) or thermal
fluctuations. The interplay among these energy terms governs the resulting magnetic structure
and its evolution over time.

This chapter outlines the fundamentals of micromagnetic theory, beginning with the contin-
uum formulation of the Gibbs free energy and its constituent energy terms. It then introduces the
dynamics of magnetization as described by the LLG equation and examines how these principles
underpin spin-wave propagation and its manipulation. This theoretical framework is essential for
understanding modern applications in spintronics and magnonic crystals, where precise control of
nanoscale magnetization is critical to technological advancement. In this thesis, micromagnetic
simulations serve as the primary tool for investigating advanced ferromagnetic systems and
for analyzing how various energy contributions influence both their static configurations and
dynamic behavior.
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3.1 Gibbs free energy

The Gibbs free energy represents the total energy of a magnetic system in the presence of an
external magnetic field and serves as the central quantity in micromagnetic theory for determining
stable magnetic configurations [88, 95]. As mentioned above, the magnetization M is treated as
a continuous field that varies spatially and evolves to minimize the total energy. The interplay
between competing energy contributions determines whether the static magnetization aligns
uniformly, forms complex domain patterns, or gives rise to more exotic textures [87].

The total Gibbs free energy, G, of a magnetic system is generally expressed as the sum of
several contributions, the most prominent of which are:

G = Eexchange + Edipolar + Eanisotropy + EZeeman + Epmr + -+ -, (3.1)

where each term corresponds to a distinct physical interaction that influences the magnetization
dynamics and equilibrium state [73, 88]. Determining the stable magnetic configuration requires
minimizing G while accounting for the material’s geometry and any applied external fields.

The following subsections systematically describe the individual energy terms from Eq. 3.1
most relevant to my research. Each of them is important in determining the magnetization
distribution and its time-evolution. Moreover, understanding these contributions allows the
interpretation of the magnetic phenomena observed in micromagnetic simulations and in real
materials.

3.1.1 Exchange interactions

The exchange interaction in magnetically ordered materials reflects a fundamental tendency for
adjacent spins to align. In a discrete, atomic-level picture, this behavior can be captured by the
Heisenberg Hamiltonian (Eq. 2.14) introduced in Sec. 2.5. There, the energy increases when
neighboring spins deviate from parallel alignment, reflecting the quantum-mechanical origin of
the interaction.

For macroscopic or mesoscopic descriptions, where the atomic lattice is not resolved, the
spins are replaced by a smoothly varying magnetization field M(r). Physically, large spin—spin
misalignments in the discrete model correspond to rapid spatial changes of M in the continuum
model. By adapting the discrete Heisenberg energy to a spatially averaged description, one can
obtain the exchange energy term in the continuum model:

Eexchange = Aex y [(me)z + (me)Z + (sz)2] a’V7 (3.2)

where m,, my, m; are the components of the normalized magnetization m = M/n. In the discrete
model (Eq. 2.14), J describes the exchange coupling between spins at sites i and j. When
transitioning to a continuum description, the sum over discrete sites becomes an integral, and
spin dot products are replaced by spatial gradients of the magnetization field. Consequently,
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Aex contains the net effect of all the J terms and acts as the effective coupling constant in the
continuum limit. Conceptually, it encodes the strength of the interaction between infinitesimal
volume elements, just as J does for spins in the discrete lattice (see Eq. 2.14).

This formulation shows that any spatial variation in the magnetization profile will increase
the total exchange energy. Therefore, in the absence of other competing effects (e.g., anisotropy
or dipolar fields), the exchange interaction causes the magnetization to remain as uniform as
possible throughout the material [87, 88]. Mathematically, the gradient terms (Vm;)? measure
the “strain” or local deviation from a perfectly parallel spin configuration. The integral in Eq. 3.2
sums these deviations over the entire volume V, penalizing nonuniform orientations. In the
total Gibbs free energy, this contribution serves as a local force favoring smooth magnetization
textures and suppressing abrupt changes.

The exchange stiffness constant Acx measures the intensity of the exchange interaction in a
magnetic material. The larger A¢x the stronger the preference for uniformly aligned spins, while
a smaller value indicates that other energies (magnetostatic or anisotropy) can more easily induce
non-uniform magnetization. A very useful parameter related to Aey is the exchange length (e,

defined as
2Aex
HoMZ

lex = (3.3)

Physically, fex sets the characteristic distance over which the exchange interaction dictates
the spin orientation. If a magnetic feature (e.g., a domain wall, a vortex core, or a spin-wave
wavelength) is smaller than /., the exchange energy dominates and effectively “overrides”
the competing magnetostatic energy, forcing the spins to align uniformly. Thus, on length
scales larger than /¢x, magnetostatic fields (as well as anisotropy and other long-range interac-
tions) become increasingly important, potentially allowing more variation in the magnetization
structure.

Thus, /ex can be viewed as the distance at which exchange determines spin orientation relative
to magnetostatic effects, making it an important parameter in the design and understanding of
nanoscale magnetic systems. For example, the exchange interaction resists abrupt changes in
magnetization direction between magnetic domains, leading to the formation of a finite width
domain wall (see Sec. 2.6). Similarly, in systems with noncollinear magnetization textures,
such as spin spirals or skyrmions, the exchange interaction stabilizes them by moderating local
variations in spin orientation [87].

3.1.2 Dipolar interactions

Dipolar (magnetostatic) interactions are a significant component of the total Gibbs free energy in
micromagnetic systems. Unlike exchange interactions, which act mainly between neighboring
spins, dipolar interactions extend over large distances and arise from the fact that each magnetic
dipole creates a stray field that affects other dipoles [73, 87, 97].
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From a microscopic perspective, a single magnetic dipole moment m generates a magnetic
field that typically decays as 1/-*. When two dipoles, m; and my,, are separated by a vector r of
magnitude r = |r|, the dipolar interaction energy between them is given by

Empm; = 7o [myms =3 (my ) (my )|, (3.4)
’ 4mr3
where = r/r is the unit vector pointing from one dipole to the other. This energy depends not
only on the distance between the dipoles, but also on their relative orientations, reflecting the
long-range and anisotropic nature of dipolar interactions.

In the macroscopic (continuum) approach, the demagnetizing field Hy(r) can be derived by
solving Maxwell’s equations for magnetostatics. In particular, Gauss’s law 2.23, discussed in
Sec. 2.8, provides the foundation for this derivation and leads to

VxHg=0, V-B=0, B=pu(Hs+M). (3.5)
From these relations, the magnetostatic potential ¢(r) can be defined such that
Hy(r) = —Vo(r), (3.6)

and
Vio(r) = —V-M(r). (3.7)

Equations 3.6-3.7 represent a general formulation of the demagnetizing field derived from
the magnetostatic potential, in contrast to the specific tensor form introduced in Sec. 2.8. As
described there, for certain geometries such as ellipsoids with uniform magnetization, solving
the magnetostatic boundary-value problem for @(r) yields a constant internal field proportional
to —M. In these cases, the gradient of the scalar potential, V@, remains uniform throughout
the sample, and the demagnetizing factors Ny, Ny, N, appear as the diagonal elements of the
demagnetizing tensor N (see Eq. 2.26). The negative sign in Eq. 3.6 is often chosen by convention.

In the magnetostatic formulation, it is convenient to introduce the concept of hypothetical
magnetic charges. These arise mathematically from the distribution of magnetization in a material
and can be categorized as volume or surface types [95]. The volume magnetic charge density is
defined by

Pu(r) = —V-M(r), (3.8)

while the surface magnetic charge density is
On(r) = M(r) -1, (3.9)

where 1 is the outward unit normal vector at the surface of the magnetic body. Although these
quantities do not represent actual physical charges, they provide a convenient way to visualize
the sources of magnetostatic potential and field within a material (especially where V- M # 0).
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From the perspective of magnetic charge densities, the magnetic scalar potential at a point r
in space can be expressed as the sum of the contributions from both volume and surface charge
densities [95]:

L pm(r/) dvl+ 1 /Gm(r/) dS/

= — . 3.10
4w Jy r—r'| 4w Js |r—r'| (3.10)

o(r)

The integrals run over the volume V and the surface S of a magnetic body. By treating variations
and discontinuities of the magnetization M(r) as sources of a scalar potential, the magnetostatic
boundary-value problem can be formulated and solved more systematically.

Once Hy(r) is known (from substituting Eq. 3.10 to Eq. 3.6), the magnetostatic/dipolar
energy (generalized form of Eq. 3.4) can be written as

Edipolar = % /V Hy(r)-M(r)dV, (3.11)

where the factor of 1/2 prevents double-counting of dipole—dipole interactions [73, 95, 98].
Physically, this energy penalizes configurations that produce large stray fields outside the sample
and thus favors magnetization arrangements that minimize surface poles. This means that
the demagnetizing field is strongly dependent on the magnetization distribution, making the
magnetostatic energy particularly sensitive to the shape and size of the sample.

In micromagnetic simulations, the computation of Hg(r) is often the most challenging step,
since it involves solving the Poisson-like boundary-value problem for the magnetostatic potential
(more in Sec. 4.1.3). Nevertheless, understanding how the demagnetizing field emerges from
the magnetization distribution is crucial for accurately modeling domain structures, spin-wave
excitations, and other magnetic phenomena that rely on long-range dipolar interactions.

3.1.3 Anisotropic contributions

Magnetic anisotropies (introduced in Ch. 2, Sec. 2.7), play a fundamental role in shaping the
magnetic behavior of materials. In micromagnetism, anisotropy energies interact and compete
with exchange and dipolar contributions as part of the total Gibbs free energy (Eq. 3.1).

As described earlier, (magneto)crystalline anisotropy arises from SOC, causing the magneti-
zation to align preferentially along certain crystallographic axes (hence, called easy axes). Within
a micromagnetic model, this anisotropy term serves as a local energy well, that can stabilize
magnetic configurations near an easy axis, thereby influencing the formation and evolution of
magnetic domains [95].

Shape anisotropy, on the other hand, is a purely magnetostatic effect that depends on the
geometry of the sample. As discussed in detail in Sec. 2.7, it arises from the demagnetizing field
generated by surface poles whenever the magnetization distribution meets the material boundary.
This is particularly relevant at the nanoscale, where large surface-to-volume ratios amplify the
role of magnetostatic interactions. Thus, shape anisotropy is inherently contained in the dipole
energy term of the micromagnetic free energy.
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In summary, crystalline anisotropy tends to align the magnetization along specific crystallo-
graphic axes, while shape anisotropy favors alignment along directions dictated by the sample
geometry. The interplay between these anisotropies — along with exchange and dipolar interac-
tions — governs the formation of complex domain patterns and magnetization configurations [73].

3.1.4 Zeeman energy

The interaction between magnetization and an external magnetic field is described by the Zeeman
energy, which originates from the Zeeman effect — first observed by Pieter Zeeman in 1896 [99].

This energy term, Ezeeman, describes how an applied magnetic field Hy tends to align the
magnetization vector M(r) along its direction [73, 95], and is given by

Ezeeman = —,uo/vM(l')-HodV. (3-12)

The negative sign and the dot product indicate that the energy is minimized when M and H are
aligned — that is, when the magnetization points in the direction of the applied field.

In magnetic systems, the Zeeman energy serves as a driving force that promotes full align-
ment of the magnetization with the external field. However, exchange interactions, magnetic
anisotropies, and dipolar effects counteract this tendency — particularly in complex geometries
and for field strengths below the saturation magnetization Mg [87].

The Zeeman energy governs not only static magnetization configurations but also plays a
key role in magnetization dynamics, particularly under time-dependent applied fields. The LLG
equation, discussed in the following sections, incorporates the Zeeman term as an effective torque
that drives the magnetization toward alignment with the external field. The rate of this alignment
depends on the intrinsic damping of the system and the influence of competing interactions.

3.1.5 Dzyaloshinskii-Moriya interactions

DMI is an antisymmetric exchange interaction that is significant in systems with broken inversion
symmetry, either in the crystal lattice (bulk DMI) or at interfaces between materials (interfacial
DMI). It promotes noncollinear spin configurations, favoring chiral magnetic textures such as
spin spirals, domain walls with fixed chirality, and skyrmions.

In the context of the total Gibbs free energy, the DMI adds a new term that competes with
the symmetric exchange interaction, which favors parallel or antiparallel alignment of spins, as
explained in Sec. 3.1.1. The Dzyaloshinskii—Moriya energy is defined as

Epyvi = D/VM(r)- [V xM(r)]dV, (3.13)

where D is the DMI constant that quantifies the strength of the interaction [73, 100]. The cross
product term introduces a preference for twisted spin configurations by favoring spins that rotate
continuously rather than uniformly aligned. DMI also modifies the structure of domain walls by



3.2 Magnetization dynamics and spin waves 33

imposing a fixed chirality, leading to Néel-type domain walls instead of Bloch walls in certain
systems [101].

3.1.6 Effective field

To describe the magnetization behavior in micromagnetic models and simulations, it is necessary
to calculate an effective magnetic field Hegr. This effective field is a major component of the
LLG equation, as it captures the cumulative influence of all energy contributions at each point
within the system. It thus determines how the magnetization evolves under internal forces and
external perturbations [102], and can be derived directly from the Gibbs free energy:

Her = —i?—f/l (3.14)
As mentioned above, at equilibrium the magnetization is aligned with this field, minimizing the
total energy of the system. However, when perturbed by an external magnetic field, thermal
fluctuations, or other stimuli, the magnetization start to precess around Heg, leading to dynamic
phenomena such as spin-wave propagation or magnetization reversal [73, 87].

In short, the exchange energy promotes uniformity, anisotropies favor specific magnetization
orientations, and the magnetostatic interaction creates long-range effects that lead to domain
formation. The Zeeman energy, if present, adds a directional force from external fields, while the
DMI introduces chiral structures into the system [95]. All of this is captured in the effective field,
which serves as the main parameter in the LLG equation describing the magnetization dynamics.

The energy terms described in this section cover the primary contributions typically addressed
in micromagnetism, but it is important to recognize other interactions that exist but are beyond
the scope of this thesis. For example, in systems where indirect exchange coupling occurs
through conduction electrons (e.g., magnetic multilayers), the Ruderman—Kittel-Kasuya—Yosida
(RKKY) energy term should be included in the analysis [103—108]. This interaction can induce
the spatially-variable coupling between ferromagnetic or antiferromagnetic layers, depending on
the distance between them. Other effects, such as thermal fluctuations or relativistic corrections
like magnetoelectric coupling, can also influence the total energy in certain cases.

3.2 Magnetization dynamics and spin waves

The static configuration of the magnetization, obtained by minimizing the total Gibbs free
energy, is only one aspect of magnetic systems. In many practical scenarios, magnetic materials
experience external stimuli — such as applied magnetic fields, spin-polarized currents, or thermal
fluctuations — that perturb them away from energetic equilibrium. Even the magnetization
relaxation is a dynamic process. Consequently, the magnetization vector M(r,¢) typically
evolves with time under the influence of exchange, magnetostatic, anisotropy, and other energy
contributions.
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Figure 3.1 Schematic representation of a magnon, illustrating the precession of the magnetization vector
M around the effective magnetic field Hegr. On the left, the precession components are shown with Gilbert
damping (M x 9M/g;), causing the magnetization to gradually spiral toward equilibrium. On the right are
time-frames for a complete spin-wave precession over a wavelength A, capturing its the oscillatory nature.

Spin waves are collective excitations involving spatially and temporally correlated precessions
of magnetic moments throughout the material. Contrary to a common misconception, a single
magnetic moment undergoing precessional motion around an effective field is not itself a
spin wave — this scenario simply reflects the gyromagnetic precession of a localized spin.
Classically, a spin wave can be understood as a propagating disturbance in the local magnetization
vectors, characterized by a wavelength A and frequency @. From a quantum-mechanical
perspective, these wave-like excitations are quantized into particles known as magnons — the
spin-wave analogues of photons in electromagnetic waves or phonons in lattice vibrations [5,
109]. Figure 3.1 illustrates this concept: each magnetic moment precesses slightly out of phase
with its neighbors, forming a collective oscillatory pattern. A single magnon corresponds to one
quantum of spin-wave energy.

As mentioned above, in micromagnetism the time evolution of M(r,#) results from its
precession around an effective magnetic field Hesr. When the magnetization is perturbed — for
example, by a small thermal fluctuation — it does not immediately return to equilibrium. Instead,
it precesses around Hegr, with the possibility of exciting spin waves if the disturbance has spatial
structure or if the system couples to neighboring spins in a coherent manner. Once excited, these
spin waves carry both angular momentum and energy through the material.

The foundation of magnetization dynamics and the LLG equation lies in the gyromagnetic
precession proposed by Joseph Larmor [110], which describes how a magnetic moment precesses
around an external magnetic field.

3.2.1 Gyromagnetic (Larmor) precession

Gyromagnetic precession, also known as Larmor precession, is the fundamental motion that
determines the dynamic properties of magnetization in response to an external magnetic field.
When M is displaced from its equilibrium orientation, it experiences a torque that causes it to
precess around the direction of Hegr. This precession is at the heart of many dynamic magnetic
phenomena, including spin-wave generation.
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The gyromagnetic ratio is defined as the proportionality constant between a magnetic moment
and its angular momentum. For an isolated electron, this is a well-defined parameter, often
denoted as 7%. As introduced in Sec. 2.2, in free space g. ~ —2.0023', yielding

ye:ge}’_;‘B ~ —1.76086 x 10" rad -~ . T~ (3.15)

In classical terms, when a magnetic moment (such as that of an electron) is placed in a static
magnetic field, it experiences a torque that causes it to precess around the field direction at a
characteristic angular frequency. This is known as the Larmor frequency @, , and is given by

Wy, = |%|‘LLOH(). (3.16)

In other words, the magnetic moment precesses around the external field at a rate proportional to
its magnitude. The Larmor frequency sets a fundamental timescale for magnetization dynamics
in magnetic materials and underpins many spin-related phenomena.

In the micromagnetic approach, the gyromagnetic ratio is often treated as a material-
dependent effective parameter. While the free-electron value, ¥, serves as a useful reference,
real magnetic materials may exhibit g-factors that deviate from exactly —2 due to crystal field
effects and SOC. Therefore, in this work, the subscript is omitted, and the material-dependent
gyromagnetic ratio is simply denoted as y. This convention reflects the fact that while the con-
cept of the gyromagnetic ratio remains consistent, its numerical value can vary across different
materials.

It is also important to clarify the sign convention for y. Although the gyromagnetic ratio of
the electron is inherently negative — reflecting the negative g-factor and the antiparallel alignment
between the magnetic moment and angular momentum — this thesis adopts the convention of
treating 7y as a positive quantity, |y|, with an explicit negative sign included in equations where
appropriate. This practice is common in the literature because it provides practical clarity: by
making the sign of the precession term explicit, it removes ambiguity regarding the sign of 7,
avoids non-intuitive negative magnitudes of physical variables (such as the frequency in Eq. 3.16),
and reduces potential confusion when interpreting the direction of magnetization precession. This
formulation preserves the correct physical behavior — namely, that the magnetization precesses
in a direction consistent with the negative electron gyromagnetic ratio — while improving the
consistency and readability of the mathematical expressions. It also facilitates comparison with
numerical implementations and standard micromagnetic software packages, many of which
adopt the same convention.

I'The electron g-factor has been determined to an extraordinary precision of fourteen decimal places by precise
measurements of a single electron in a Penning trap [111]: g/2 = —1.00115965218059 (13). This experimental
value is in excellent agreement with the theoretical predictions of quantum electrodynamics.
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The relationship between the torque experienced by the magnetization and the rate of change
of the magnetization vector [63] is given by

aa—l\t/l = —|¥| oM X Heg. (3.17)
This equation describes the gyromagnetic precession of the magnetization around the effective
field, where the torque M x Hcg acts to change the orientation of the magnetization vector
without affecting its magnitude.

Physically, gyromagnetic precession can be understood as a consequence of the conservation
of angular momentum. The magnetization vector, associated with the collective magnetic
moments of individual spins, responds to the external magnetic field by undergoing a precessional
motion. This motion occurs because the torque generated by the cross product M x Hegr is
perpendicular to both the magnetization vector and the applied field, creating a circular path
for the magnetization (see Fig. 3.1). In the absence of damping (discussed in the next section),
this motion would continue indefinitely at a constant rate. In real magnetic materials, however,
damping mechanisms cause the magnetization to gradually align with the direction of the
effective magnetic field, leading to the relaxation of the system to its equilibrium state.

3.2.2 Landau-Lifshitz—Gilbert equation

To fully capture the dynamics of magnetization M(r,7) under the influence of internal and
external magnetic fields, the classical description of gyromagnetic precession (Eq. 3.17) was
extended by incorporating a damping term. This modification allows the magnetization to relax
toward energetically favorable equilibrium states, rather than precessing indefinitely.

In 1935, Lev Landau and Evgeny Lifshitz introduced an equation that describes the precession
of magnetization around an effective field, supplemented by a damping term to account for energy
dissipation [62]. Thus, the Landau-Lifshitz (L) equation was the first significant theoretical
step in describing magnetization dynamics beyond simple precession. The phenomenological
damping term was introduced in a form that depends on the instantaneous effective field. In
International System of Units (SI) form, the original LL equation is defined as

oM

= = —|7|tto (M X Hegr) — A [M x (M x Heg)], (3.18)

where A is a phenomenological constant characteristic of a material. The first term on the right
is responsible for the gyromagnetic precession around Hegr (known from Eq. 3.17), while the
second part models the dissipation. Although this framework was a major advance, its damping
torque being proportional to Hegr led to unphysical behavior when the field was very large.
About 20 years later (in unpublished work from 1955, and made widely known in 2004 [63]),
Thomas Gilbert refined this formalism by proposing that the damping should be proportional to
the time derivative of M, rather than to the instantaneous magnetization itself. This proposition
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has been accepted as more physically accurate, and is now referred to as the LLG equation:

88_1\;[ = —[¥|po (M x Hegr) +1\%<an8_1\;[>’ (3.19)
where o is the dimensionless Gilbert damping constant of a material [63, 73, 95]. Gilbert’s
approach resolves certain inconsistencies in the original LL form and has become the standard in
modern micromagnetism.

Building on the LLG equation, it is sometimes useful to explicitly isolate the time derivative
dM/9; as a function of M and Heg. This step is especially practical for numerical integration,
where the magnetization dynamics must be cast into a standard first-order ordinary differential
equation (ODE) form (more in Sec. 4.2). The explicit version of the LLG is:

OM _ |¥lmo (MxHeff> - o[yt [MX (MXHeff)]_ (3.20)

at 1+ a? 1+ o) Mg

In this form, both the precession and damping terms are rescaled by 1/(1+a?), preserving the
physics of the LLG equation but allowing a direct integration approach. The representations 3.18
and 3.20 are related by the following substitutions:

7] |y|Ho
1+ a?’ (14 a?) My

(3.21)

Microscopically, the damping term and the associated energy dissipation processes result
primarily from:

* spin-lattice (magnon—phonon) interactions, where spin excitations exchange energy with
lattice vibrations;
* spin—electron (magnon—electron) scattering, which can be enhanced by SOC;

* defects or impurities, acting as channels for energy relaxation via scattering.

The dimensionless parameter o thus reflects how effectively the magnetic system couples to
its environment and loses energy during precession. Typical experimental values of ¢ range
from 10~* to 10!, depending on material composition, spin—orbit strength, and temperature [73,
112].

3.2.2.1 Normalization

For numerical and analytical convenience, it is common to normalize the dynamic magnetization
by M and measure time in units of |y o M;|~!. Dividing the Eq. 3.19 by |y| uo M2, yields

1 oM 1 a oM
|’}/|‘LL0M§27 - _W(M X Heff) + —|’}/|‘LLOM§ (M X 7), (3.22)
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The normalized quantities are now defined as

oM He
eff Ms,

T = |yluoMyt, (3.23)

and by substituting them into Eq. 3.22, the following dimensionless form is obtained:

Jom

W = —(m X heff) + a(m X a—m> (3.24)

at
Here, m and h.¢ are dimensionless vectors, and 7 is a dimensionless time variable that advances
in units of one radian of precession per field of magnitude M. This form isolates & as the
primary parameter controlling the relaxation rate. Equation 3.24 is also useful for simulations
because, by working in normalized units, the algorithm deals with numerically stable quantities.
The single dimensionless parameter o then determines how fast (or slow) the system relaxes to
equilibrium.

The LLG equation is fundamental to the understanding of dynamic magnetic phenomena in
a wide range of materials and applications. It underlies the study of FMR, domain wall motion,
and the propagation of spin waves, all of which are critical for the development of modern
magnetic technologies such as magnetic random-access memory (MRAM), spintronic devices,
and magnonic crystals [5, 109].

3.2.2.2 Equilibrium state and linearization

Linearization is particularly useful for studying small-amplitude magnetization dynamics, such
as spin waves. For minor deviations from equilibrium, the nonlinear terms in the governing
equations can be neglected, allowing the system to be described by linear differential equations.
This greatly simplifies the mathematical treatment and thus reduces the computational complexity
in numerical simulations.
It is important to emphasize, that this technique is only valid around an equilibrium state,
i.e. it assumes a magnetic system in which the magnetization M(r) is aligned with the effective
magnetic field Heg. It can be expressed by the equilibrium magnetization configuration My,
which satisfies
My x Hegr(Mp) = 0, (3.25)

where Hegr(Mp) is the static, equilibrium part of the effective field.
Next, let SM(r) and SH. represent the small transverse deviation of the magnetization and
the effective magnetic field, respectively. In this context, the following can be written:

M(r,7) = Mo+ OM(r,1) = |6M| < |Mp|, (3.26)
Heff(r,t) = Heff(M()) + 5Heff(l‘,l‘) < |5Heff| <K |Heff<M())‘. (3.27)
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The goal is to keep only first-order terms in M and dH.g, discarding their products or higher
powers. Substituting Eqgs. 3.26 and 3.27 into Eq. 3.19 gives

d(Mp + M
% = — Y|t [ (Mo + M) x (Hegr(Mp) + SHegr) |
o 3(My + 5M)
or | (Mo+8M) x —=—=5 ——1. (3.28)

Since the vector My is constant in time, 9Mo/9: = 0, and the term My X Heg(Mj) vanishes due
to equilibrium (Eq. 3.25). To eliminate second-order terms in small quantities, cross products
such as M x dHegr, and (6M x 96M/g;) can be neglected. Thus, the Eqs. 3.26 and 3.27 are
concretized to

My + 6M — M) + (1st-order term M), (3.29)
Heff(MO) + OHg — Heff(MO) + (1st-order term 0 Heg), (3.30)

and the precessional term is simplifies to

—|’}/|/J0 [(M0+5M) X (Heff(M()) +5Heff):| ~ —|Y|‘LL0 (M() X OHer+ OM X Heff(MO)) . (3.31)

The damping term, in turn, yields

a d(My+ 6M) o JdoM
Thus, collecting only the first-order terms of M and 6 He¢s returns
d(6M d(6M
(at ) = _|Y‘.uO (MO X OHegr + OM X Heff(M())) + A% |:M0 X (at ):| . (3.33)

In practical linearized treatments, 6 He¢r depends linearly on 6M. Symbolically:
SH. ~ ['6M, (3.34)

where [ is a suitable linear operator. Substituting Eq. 3.34 into Eq. 3.33 results in a linear partial
differential equation for 6M(r,?):

d(6M)
ot

= —|7lto[Mo x (I'6M) 4+ M x Her(Mo)] + 1\% [MO X @] , (3.35)

which can be solved using standard techniques (Fourier transforms, eigenmode expansions, etc.),
greatly simplifying the analysis of small-angle precession modes.

The linearization shows that small fluctuations behave as damped precessional modes around
M. In spin-wave theory, these modes propagate with wavevectors determined by the system
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geometry and the operator I (e.g., from exchange stiffness, anisotropy fields, or magnetostatic
boundary conditions). In many small-amplitude oscillation analyses, it is also convenient to

consider the dynamical component of Eq. 3.26 in the form of a monochromatic wave ¢'®’:

M(r,t) = My + SM(r) ', (3.36)

where @ is the angular frequency of the oscillation. In particular, assume that the static applied
magnetic field along Z dominates the effective field at equilibrium, such that My ~ M;Z and
Hei(My) =~ HyZ, with SM(r) = (mx, my, O) representing small transverse components. Substi-
tuting this into the linearized LLG equation (3.33, neglecting the damping part), results in two
coupled frequency-domain equations:

iomy = |y|Ho(Homy — Mshy), (3.37)
iom, = |y|u0(—Homx+Mshx).

Here, h, and h, are small transverse components of an external excitation field. These linear
equations capture the essential precessional spin-wave dynamics around the z-axis, ignoring
dissipative effects [73, 113].

3.2.3 Ferromagnetic resonance and the Kittel formula

FMR is a fundamental phenomenon in which a coherently precessing magnetization in a fer-
romagnetic material absorbs electromagnetic radiation at a characteristic resonant frequency
determined by the material’s magnetic properties and the applied field. Resonant (coherent)
precession arises from the dynamic response of the magnetization to an external radio-frequency
(RF) magnetic field hgg(7). The applied static magnetic field Hy sets the resonance condition,
with the strongest excitation occurring when hgg(z) L Hy. FMR provides a key method for
probing internal fields, anisotropies, and damping in magnetic materials [85, 114].

A concise way to analyze FMR starts with the gyromagnetic precession (Eq. 3.17). At
equilibrium, the magnetization M is static and aligned with the effective field Hegr. Small
oscillations around this equilibrium are described by the linearized Eqs. 3.37, which provide the
resonance condition — namely, the angular frequency @gyr When the mode is uniform. This is
given by the well-known Kittel formula [114], expressed in SI units as

Ofvr = 71215 (Ho + (Ny — N2)Mege) (Ho + (Nx — No)Mege), (3.38)

where Hj is a magnetic field large enough to saturate the magnetization, and M. 1s an effective
magnetization term that can include contributions from internal anisotropies. In simple cases
without significant anisotropy, Megr =~ M. The demagnetizing factors Ny, Ny, N, introduced in
Sec. 2.8 enable the calculation of FMR frequencies for various geometries directly from Eq. 3.38.
Examples include:
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* sphere (Ny = Ny = N; = 1/3): wpwr = |Y|1oHo;
* thin film magnetized out-of-(xy)-plane (Ny = Ny = 0, N; = 1): 0wpvr = |7|tto(Ho — Ms);

* thin film magnetized in-(xy)-plane (Ny = 1, N, = N; = 0): @pur = |Y|1o/Ho(Ho — Ms).

FMR measurements not only identify the resonant frequency, but also provide information
about the linewidth or damping — indicators of energy losses due to spin—lattice relaxation and
other dissipation channels. Consequently, FMR has become a standard technique in magnetic
materials research, revealing intrinsic properties such as g-factors, anisotropy constants, and
spin-pumping effects. In magnonics, FMR underpins the study of uniform precessional modes
and serves as a foundation for understanding more complex spin-wave excitations.

3.2.4 Spin-wave spectra

In the magnetostatic limit, the spin-wave wavelength is much larger than the exchange length.
When A > /e, the exchange interaction can be neglected, and the spin-wave dynamics are
dominated by dipolar (magnetostatic) interactions. In this regime, the resonance condition and
dispersion relation can be derived by solving the linearized LL equation (Eq. 3.17) without the
exchange term. This leads to the description of so-called magnetostatic modes.

If the magnetic medium is a bulk sample in which boundary effects can be neglected, the
spin-wave frequency is given by [102]

© = [yltto/Ho(Ho+ My sin® 6. (3.39)

where 0y is the angle between the magnetization direction and the spin-wave wavevector k.
The wavevector defines both the propagation direction and the spatial periodicity of the spin
wave. In three dimensions, its components (ky, ky, k;) represent the projections along the
Cartesian axes, and its magnitude — commonly referred to as the wavenumber k — is given by
k=|k|=/ki+k}+k2.

Notably, in Eq. 3.39, the spin-wave frequency depends solely on the direction of propagation,
not on the magnitude of the wavevector. The frequency is maximal when the spin wave propagates
perpendicular to the magnetization direction and minimal when the propagation is parallel.

In a thin film, the magnetization dynamics are influenced by both exchange and dipolar
(magnetostatic) interactions. The presence of surfaces at z =0 and z = d (for a film of thickness
d extending in the xy-plane) introduces boundary conditions that constrain the behavior of
the dynamic magnetization. This leads to a series of discrete thickness modes, referred to as
perpendicular standing spin waves (PSSWs). Each mode is indexed by an integer n, which
corresponds to the number of half-wavelengths that fit between the film surfaces [1, 5]:

ko A (3.40)
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where k_ , is the quantized wavevector component along the film thickness. The approximation
symbol (=) indicates that corrections from finite interface effects — such as surface anisotropy —
are neglected in this expression.

In the thin-film scenario, out-of-plane quantization is treated separately by discrete standing
modes rather than a continuous wavevector component k,. Therefore, in cases where the
magnetization is assumed to be uniform across the film thickness (i.e., the fundamental thickness
mode with k; o = 0), the wavenumber k refers to the magnitude of the in-plane wavevector,

defined as k = | /k2 + k%. The standing modes overlap with the in-plane propagation, resulting in
a full 3D dispersion that depends on both the exchange stiffness and the dipolar interactions. At
small wavevectors (long wavelength), dipolar interactions dominate, giving a nearly linear (k)
relationship (see inset in Fig. 3.2). For larger k the exchange takes over, bending the dispersion
into a quadratic form. This crossover between dipolar- and exchange-like regimes is a feature of
thin-film spin waves (Fig. 3.2).

In addition to the thickness quantization, spin-wave dispersion is strongly affected by the
orientation of the magnetization vector M relative to the wavevector k. Three standard configura-
tions are often distinguished in thin films [113]:

1. Damon-Eshbach (DE) geometry, where the film is magnetized in-plane, and k is perpen-
dicular to M, both confined to the film plane [115]. In the magnetostatic limit (i.e., at long
wavelengths), these modes evolve into surface spin waves whose amplitudes are localized
near the film boundaries. This localization can reduce scattering from the interior of the
film, often resulting in lower damping for long-wavelength modes. Experiments have
shown that the DE geometry often supports efficient spin-wave propagation [116, 117].
In practice, however, the range still depends mostly on material-specific damping (&), as
well as on structural imperfections and surface roughness. In addition, the orthogonal
arrangement of M and k facilitates stronger coupling to external RF fields, allowing more
efficient excitation and detection of spin waves [118].

2. Backward volume (BV) geometry, where the film is magnetized in-plane and K is parallel
to M. A characteristic feature of this configuration is that the group velocity can be
opposite to the phase velocity — hence the name backward volume wave. As a result,
increasing the wavenumber k can lead to a decrease in spin-wave frequency, a behavior
linked to the magnetostatic boundary conditions for M || k. The close alignment between
the wavevector and magnetization also enhances the coupling of the spin precession ellipse
to external fields, which facilitates nonlinear spin-wave phenomena such as three-magnon
splitting. These effects are valuable for advanced signal processing, broad tunability of
spin-wave spectra, and spin-wave comb generation [119, 120].

3. Forward volume (FV) geometry, where the magnetization is oriented perpendicular to
the film plane (out-of-plane), while k lies in-plane. In an ideal, uniformly magnetized film
with M out-of-plane, the dispersion is fully isotropic, which, combined with relatively
high group velocities for moderate wavevectors, is a favorable scenario for magnonic
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circuits [121]. The out-of-plane M also allows greater control over perpendicular fields,
which can be integrated with standard perpendicular magnetic anisotropy systems (such as
CoFeB/MgO). Finally, the FV spin waves can interact with other quasiparticles (phonons,
photons) across the (small) thickness of the film, offering the prospect of hybrid magnon—
photon or magnon—phonon coupling [4, 122].
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Figure 3.2 Spin-wave dispersion relations in the dipolar—exchange regime for thin films, shown for the
three primary configurations, plotted as a function of the dimensionless parameter kd. The frequency f
dependence on kd illustrates the transition from the dipolar-dominated linear regime at low wavevectors
to the exchange-dominated quadratic regime at higher k values. The inset provides a magnified view
of the magnetostatic regime, emphasizing the behavior of long-wavelength spin waves. On the right,
schematic illustrations of the thin-film configurations show the orientations of the magnetization vector
M (magenta arrows) and wavevector k (black arrows): DE with k L M, both in-plane; BV with k || M,
both in-plane; and FV with M out-of-plane and k in-plane. The dispersion curves were calculated using
material parameters Mg = 800 kA/m, A¢x = 8 pJ/m, d = 100 nm, with external magnetic fields set to
Hy = 0.5 M; for the DE and BV configurations, and Hy = 1.5 M, for the FV configuration.

The dominance of dipolar or exchange interactions in spin-wave dynamics depends on the
spin-wave wavelength (1), wavenumber (k = 27/2), and the material’s exchange length ({ex
— see Eq. 3.3). The dipolar interaction dominates in the long-wavelength limit (A > fx or
k < 1/ts). In this regime (i.e., for small k), spin-wave dynamics are dominated by magnetostatic
interactions, resulting in a linear dispersion relation, @(k) o< k. As the wavelength decreases and
approaches the exchange length (A < /e, or equivalently k = 1/¢), the exchange interaction
becomes significant. Under these conditions, the dispersion relation transitions to a quadratic
form, @ (k) o< k?. Exchange interactions stabilize magnetization at the nanoscale, which is critical
for high-frequency spin waves. The reciprocal of the exchange length, often referred to as
the exchange wavenumber, kex = 1/t., provides a useful criterion for distinguishing between
dipolar- and exchange-dominated regimes of spin-wave excitations. In typical ferromagnetic
materials, (cx ranges from a few to several tens of nanometers, corresponding to kex on the order
of 10’-108m~".
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The crossover between the dipolar and exchange regimes, along with the discrete thickness
modes, is critical in the design of spin-wave based devices. By adjusting film thickness, saturation
magnetization, and applied field, one can tailor where this crossover occurs and which modes
are most effectively excited.

3.2.4.1 Kalinikos—Slavin theory of spin waves in thin films

The Kalinikos—Slavin theory provides a well-known approximate analytical framework for
describing spin-wave dispersion in uniformly magnetized thin ferromagnetic films [123]. It takes
into account both dipolar and exchange interactions, as well as finite-thickness boundary effects.
The spin-wave angular frequency @ depends on the in-plane wavevector magnitude &, the angle
¢ between k and the magnetization direction M, and the polar angle 6 of M relative to the film
normal. It is expressed as

ok, $,0) = |y|u0\/<Heff+Msegxk2) (Heff+MS£gxk2 +MSF(I<,¢,9)>, (3.41)

where F(k, ¢, 0) is the dipolar interaction factor given by

F(k,$,0) = P(k) + sin®8 |1 —P(k) (1 +cos’ ¢) + sin’¢ M (1 - ) (3.42)
,0,0) = sin — cos sin , .
4(Ho+ M; (% k?)
and P(k) is related to the surface conditions:
1— e*kd
Pk) =1— ——. 3.43
() = (3.43

The exchange length £ex was defined in Eq. 3.3, while the term M ¢2, k> in Eq. 3.41 captures the
exchange contribution, growing with k*> and dominating at short wavelengths.

The Eq. 3.43 represents decoupled approximations for individual spin-wave modes quantized
along the thickness of the film. In reality, solving the full spin-wave problem in a finite-thickness
system leads to a set of matrix equations involving thickness quantization and potential coupling
between higher-order modes [113, 123]. The formulas here assume each mode can be treated
separately, which is valid when the mode-mode coupling is weak.

Kalinikos—Slavin theory applies over a wide range of angles for M relative to k. Three
common special cases in thin films are, as described above, DE, BV, and FV geometries, each
offering different dispersion characteristics [102].

DE configuration. Here, 6 = 90° corresponds to the in-plane magnetization, and ¢ = 90°
indicates that the wavevector is perpendicular to M. Assuming that the static applied field Hy
dominates the internal fields, the effective field at equilibrium can be approximated as Hefr ~ H.
In this case the dipolar interaction factor F(k,90°,90°) simplifies to Ms(1—¢~**)/4(Hy+ M2 K2).
Substituting this expression into Eq. 3.41 yields the dispersion relation [115] for surface spin
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waves:
2 M2
wpe(k) = |¥|to Ho M, 02 k2) n Ts(l —e—2kd>. (3.44)
For large k (short wavelength), the dipolar part (1 — e~2¢) saturates to 1, and exchange domi-
nates:
2 M2
wos(k — ) = |7lto Ho M2 k2) 3 (3.45)

BV configuration. Here 0 = 90° (in-plane magnetization) but ¢ = 0°, meaning the wavevector
is parallel to the magnetization direction (k || M). Assuming Heg ~ Hy (same reasoning as in
the DE case), the dipolar interaction factor becomes F (k,0°,90°) = (1-¢~**)/k4. Substituting this
into Eq. 3.41 yields

1— —kd
oy (k) = ww()\/ (H0+Msezxk2) (Ho MER +M5%). (3.46)

As k — oo, the term (1-¢**)/kd — O (see the proof in the gray box below), indicating that the
dipolar interaction becomes negligible and the exchange interaction dominates the spin-wave
behavior:

Wgy(k — o) = |y|to (Ho + M L2 K?). (3.47)

As mentioned earlier, BV modes often exhibit a backward dispersion (group velocity opposite to
phase velocity) at lower k in the dipolar regime [113]. They also exhibit propagation anisotropy,
but differ from DE in that k || M can result in a narrower angular bandwidth for low-damping
propagation.

For all £ > 0 and d > 0, the following inequality holds
0<1—e™ <.

Dividing through by kd > 0 gives
—kd
1

l1—e
0 < < —.
- kd ~ kd
Since limy . I/kd = 0, the squeeze (sandwich) theorem [124] implies that
1— e—kd

1i -
e kd

FV configuration. In the FV geometry, the magnetization is oriented out-of-plane (6 = 0°).
In this case, the dipolar interaction factor F(k,¢,0°) becomes independent of the in-plane
wavevector angle ¢, and simplifies to 1 — (1=¢™*/)/ka. As a result, the dispersion relation of this
configuration is isotropic within the in-plane propagation directions (see Fig. 3.3b). Here, the
effective magnetic field is typically approximated as Heg ~ Ho — M, accounting for the full
demagnetizing field produced by the out-of-plane magnetization. Substituting this into Eq. 3.41
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yields the corresponding dispersion relation:

1 —ekd
(DFV(k) = "}/LU()\/(H() _Ms +Ms£§Xk2> (HO +Ms£gxk2 - Ms%) . (348)

The finite-thickness factor (1—6”’”)/ (ka) still governs the dipolar corrections, but at large k, where
the exchange dominates, Eq. 3.48 is simplified to

oy (k= ) = |1 uo\/ (HO — M, +Mszgxk2) (HO +Ms£gxk2>. (3.49)

When studying spin-wave propagation in thin ferromagnetic films, it is common to analyze
isofrequency contours in the two-dimensional wavevector space (ky, k) at a fixed spin-wave
frequency f. Each contour represents all in-plane wavevector directions and magnitudes that
satisfy the film’s dispersion relation at a given frequency. They provide insight into the anisotropy
of spin-wave propagation: circular contours imply isotropic behavior, while highly distorted
contours indicate strong directional dependence — see Fig. 3.3.
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Figure 3.3 Isofrequency contours for spin waves in thin ferromagnetic films. For in-plane magnetization
(a), the external magnetic field is oriented along the y-axis, which denotes the DE configuration along k;
and BV for k,. For out-of-plane magnetic field and magnetization (b), the circular contours typical of
the FV configuration are shown. The magnetic parameters used here are consistent with those in Fig. 3.2
(Mg = 800 kA/m, Aex = 8 pJ/m, d = 100 nm, Hy = 0.5 M, for DE and BV, and Hy = 1.5 M; for FV).

Figure 3.3a shows an eight-shaped (or lemniscate-like) isofrequency contour for a film
magnetized in-plane. At low wavenumbers, dipolar contributions dominate the dispersion and
give rise to a strong angular dependence. At larger k (shorter wavelengths), exchange interactions
gradually reduce the influence of dipolar anisotropy, and the isofrequency contours become more
elliptical. Figure 3.3b shows circular isofrequency contours for a film magnetized out-of-plane.
In this configuration, each in-plane direction of k experiences similar boundary and internal field
conditions, resulting in isotropic dispersion.
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3.3 Chirality effects

Chirality, broadly defined as the property by which an object or configuration cannot be su-
perimposed on its mirror image (lack of mirror symmetry), appears in various contexts within
magnonics. In some cases, chirality emerges from specific magnetostatic textures, in others it
reflects dynamical or topological aspects of magnetization similar to those recognized in photons,
phonons, and electrons. There is also a class of chirality arising from antisymmetric exchange
DMI (described in Sec. 3.1.5). Each type affects the behavior of spin waves in a different way,
giving rise to phenomena such as topologically protected modes or directional propagation.

As mentioned above, chiral effects appear not only in specific magnetization textures, such
as chiral domain walls and spiral states, but also in the dynamics. Even in saturated systems,
the time evolution of the dynamic magnetization can follow a trajectory that breaks the mirror
symmetry. This form of dynamical chirality is inherent to spin waves, which have an intrinsic
sense of rotation around the equilibrium magnetization direction.

A well-known route to chiral properties in magnetism involves the DMI, that favors tilted spin
alignments that do not map onto their mirror images [11] (see Sec. 3.1.5). From a wave-dynamics
perspective, it induces an asymmetric dispersion relation in which spin waves acquire different
energies (frequencies) for forward and backward propagation. The resulting nonreciprocal
propagation can be used to design magnonic diodes and isolators [125].

Magnetically chiral textures can also arise in artificial nanostructures, where chirality is
imposed by the physical geometry rather than by magnetic interactions [126]. A notable example
is the gyroid structure (introduced in Sec. 5.3), which features a three-dimensional periodic
network of interconnected curved channels that imposes the intrinsic geometric chirality. As a
result, spin-wave dynamics in such architectures can be strongly affected by complex magnetic
interactions, leading to nontrivial dispersion characteristics and mode localization. Furthermore,
gyroids are predicted to support the interplay between geometric chirality and DMI [127], or
with topological effects, broadening the design space of 3D magnonics.

Beyond magnetostatic and dynamical considerations, topological chirality has also been
extensively studied in various quasiparticle systems [128, 129]. It can arise from topologically
nontrivial band structures, leading to protected magnon edge states, or from spin textures,
such as skyrmions, which exhibit real-space topological winding of the magnetization. These
topologically protected chiral spin textures host unique localized eigenmodes that are sensitive
to their topology. Furthermore, propagation through a skyrmion lattice can quantize spin waves
into discrete modes and enable robust, chiral magnon properties [130].

In summary, chirality in magnonics can arise from several sources: magnetostatic textures,
dynamic magnetization processes, topological band structures, and antisymmetric DMI interac-
tions. While nonreciprocity is often associated with chiral states, it is not always due to chirality
alone. Nevertheless, its presence typically enriches the magnonic spectrum with directional
propagation, topological protection, and novel domain-wall or skyrmion-based functionalities.
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3.4 Magnonic crystals

Magnonic crystals are periodic magnetic structures that enable the control of spin waves by ex-
ploiting wave interference effects analogous to those found in photonic and phononic crystals [35,
6]. In these systems, the periodicity in one, two, or three dimensions modifies the spin-wave
dispersion relation, often leading to band gaps where certain frequencies are forbidden. The
theoretical basis for understanding these band structures is Bloch’s theorem [56], which states
that for a medium with discrete translational symmetry (periodic structure), wave solutions y(r)
can be expressed as the product of a plane wave and a periodic function u(r):

y(r) = X u(r), (3.50)

where u(r) has the same periodicity as the underlying lattice or crystal. Importantly, this
description introduces an equivalence between wavevectors, since k and k + K, where K is
any reciprocal lattice vector, describe the same Bloch state. This equivalence occurs because
the periodic lattice symmetry ensures that the same physical properties are represented for
wavevectors that differ by reciprocal lattice vectors.

To eliminate redundancy and ensure a unique representation of all Bloch states, the wavevec-
tors are restricted to the first Brillouin zone, a region in reciprocal space where each k uniquely
represents an equivalence class of states related by reciprocal lattice translations. This region
is defined as the Wigner—Seitz cell of the reciprocal lattice [131]. For any wavevector k lying
outside the first Brillouin zone, there exists an equivalent wavevector k' = k — K, such that k'’
lies within the zone. This convention ensures that each Bloch state is uniquely represented by a
wavevector confined to the first Brillouin zone.

The same principles apply to magnonic crystals in one, two and three dimensions (see
Fig. 3.4). Periodicity in the magnetic structure gives rise to a reciprocal lattice in spin-wave
dynamics, making the first Brillouin zone the natural framework for describing magnonic band
structures. The periodic modulations in magnonic crystals can be achieved in the following
ways:

» geometry modulation — periodic structuring of the geometry of a magnetic medium (e.g.,
an array of dots, stripes, or antidots);

* material modulation — periodic changes in the magnetic properties, such as magnetization
or anisotropy (e.g., layered structures with different materials);

* magnetization texture modulation — repeating spin textures, such as strip domains, skyrmion
lattices, or vortex arrays, can locally modify the effective magnetic fields and thus act as a
spatially varying potential for spin waves [132—134]. Such magnetization textures can be
stabilized by balancing multiple material or geometry parameters, providing reconfigurable
magnonic functionalities.
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Figure 3.4 Classification of magnonic crystals based on the dimensionality of periodic variation in their
material parameters. The figure shows 1D, 2D, and 3D magnonic crystals from left to right. Thin-film
magnonic crystals (upper part of each) are laterally patterned structures, confined in the vertical direction
with periodic modulation within the plane. On the other hand, bulk magnonic crystals (lower part) occupy
the entire three-dimensional volume, with internal periodicity that depends on the specific crystal type.

In one-dimensional magnonic crystals (Fig. 3.4, left), periodic modulation of properties
such as film thickness or material composition gives rise to Bragg reflections for spin waves
propagating along the direction of periodicity, particularly for wavelengths matching the lattice
constant. These reflections lead to the formation of band gaps in the spin-wave spectrum, which
can be tuned by varying the lattice period, the applied magnetic field, or the magnetic anisotropy.

When the periodicity is extended to two dimensions, a richer band structure emerges, often
supporting localized edge modes and multiple gap openings. In particular, ADLs — periodic
arrays of holes etched into thin magnetic films — have become a model system for the study of 2D
magnonic crystals (Fig. 3.4 in the center) [7, 135, 136]. The geometry of the holes (size, spacing,
and shape) has a strong influence on the resulting band gaps and can also lead to nonreciprocal
propagation. However, the results of the ADL study included in this thesis (P5) highlight the
versatility of these structures for controlling and inducing higher harmonic spin waves through
edge or defect modes.

The concept of three-dimensional magnonic crystals has attracted growing interest in recent
years. In that case, the magnetic material is periodically modulated along all three spatial
directions (Fig. 3.4 on the right), either by forming intricate networks (like the gyroid structures)
or by stacking multilayers with patterned in-plane periodicities [5]. Bloch’s theorem still applies
in full 3D, resulting in a band structure that is even more complex than in lower dimensions.
Three-dimensional nanocrystals are a major focus of ongoing magnonic research, as they enable
novel spin-wave phenomena such as multidirectional band gaps and complex mode hybridization.
These features can lead to advanced functionalities, including broadband filters, low-crosstalk
waveguides, and spin-wave ‘cavities’ capable of confining modes in all spatial directions. The
thesis places special emphasis on 3D magnonic crystals, where curvature, connectivity, and vol-
ume constraints open new frontiers for exploring spin-wave dynamics and potential applications
in three-dimensional logic or sensor nanoarchitectures.
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3.5 Localization of spin waves

Spin-wave localization refers to the confinement of spin-wave propagation to specific regions in
a magnetic medium. Several mechanisms can induce this localization, including structural or
chemical disorder, engineered geometry, and boundary/surface effects.

An important class of localization phenomena arises from engineered periodic structures,
such as ADLs in thin films (see Sec. 3.4 or 5.2.2). This structuring significantly alters the local
internal magnetic field around each hole, resulting in a periodically modulated effective potential
landscape for spin waves [7, 136]. The resulting spin-wave band structure often features modes
that are spatially confined either within the antidot cavities or along the narrow connecting
“corridors.” While the periodicity of the lattice can give rise to Bragg band gaps, even slight
variations in geometry (like a defect) or the introduction of additional structural complexity can
enhance the localization of certain modes within specific antidot regions. This type of geometry-
induced localization is fundamentally different from the Anderson localization observed in
disordered media [137-139]. Here, it is the intentional lattice design that constrains spin-wave
propagation.

Related, but more general form of spin-wave localization occurs at interfaces between two
magnetic phases — when a spin wave encounters a mismatch in material parameters such as
magnetization, exchange stiffness, anisotropy, or simply the physical edge (which is the extreme
case of parameter difference). These interfaces act as effective potential barriers, resulting in
the confinement of spin waves to specific regions (e.g., around antidot edges). In some cases,
this leads to distinct boundary modes with characteristic frequencies and damping. When the
magnetostatic and exchange interactions break the inversion symmetry at the interface, the
propagation of these modes can become nonreciprocal, meaning that the spin waves travel more
efficiently in one direction along the interface [6]. Such localized modes have been exploited
in magnonic devices, where one-way propagation along domain walls or interfaces facilitates
spin-wave routing [140-142].

Three-dimensional magnonic crystals also offer opportunities for spin-wave localization.
By periodically modulating material parameters in all three spatial dimensions, it is possible to
partially or completely confine bulk modes to specific regions or ‘layers’ of the structure. This
thesis focuses on 3D architectures such as gyroid-based magnonic crystals, where the complex,
chiral network of struts can potentially guide spin waves along specific channels. As shown in
P9 (Sec. 5.3.3), this curvilinear geometry gives rise to localized FMR modes at the surfaces,
leading to novel types of spin-wave phenomena.

Spin-wave localization underlies many advanced magnonic functionalities. For example,
ADLs can support the generation of higher-order harmonics, while domain walls containing
localized modes show potential for reconfigurable spin-wave waveguides. The ability to spatially
confine spin waves with high precision enables logic operations based on interference and phase
manipulation. Importantly, these concepts extend beyond planar systems: three-dimensional
nanostructures introduce additional degrees of freedom for tailoring mode confinement, opening
new avenues for functional and compact magnonic devices.
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3.6 Spin-wave optics

Magnonics, by its wave-based nature, shares a profound conceptual similarity with optics. Just
as electromagnetic waves follow Maxwell’s equations, spin waves in ferromagnets obey a wave
equation that exhibits interference, diffraction, and other canonical wave phenomena [6, 113].
The magnetodynamic equations can be rearranged [143] into a form that reveals parallels to
Fresnel and Fraunhofer diffraction theory, the Huygens—Fresnel principle, and the Talbot effect.

When spin waves propagate in a thin ferromagnetic film, their amplitude and phase evolution
can often be described using methods similar to those used in scalar or vector wave optics.
Writing the small transverse components of the magnetization as a complex amplitude y/(r,7) =
W(r)e '@, it satisfies a Helmholtz-type differential equation:

V2 ¥(r) + K*(0)¥(r) = 0, (3.51)

where Vi is the in-plane Laplacian (for a thin film) and k(®) depends on frequency, local
effective fields, and exchange stiffness [113]. This is analogous to the wave equation
VA E(r) + n(0)(2)°E(r) = 0 (3.52)

in optics, where E is the electric field and n(®) is the refractive index. The effective ‘index’ for
spin waves can be strongly anisotropic, including dipolar fields, exchange contributions, and
possible DMI, thereby leading to wave-optical effects with distinct magnetic properties [116].

Just as light diffracts around apertures and interferes when it encounters multiple slits, spin
waves exhibit the same phenomena. Narrow apertures in a thin magnetic waveguide diffract
spin waves in patterns determined by wavevector-dependent phase accumulation, and coherent
superposition of two spin-wave beams produces interference fringes known from conventional
optics [144]. A particularly compelling demonstration of spin-wave optics is the Talbot effect
(P1-P3, P6). The discrete wavevector spectrum generated by the periodic grating leads to
interference that reproduces the initial pattern (more in Sec. 5.1.1). These findings confirm that
conventional optical diffraction integrals can be effectively applied to describe spin-wave fields.

The wave-theoretical framework allows researchers to design resonators, gratings, or couplers
using the same conceptual toolkit as in photonics. This unified approach accelerates device pro-
totyping, by allowing proven and well-established optical designs such as lens shapes, gradient
indices, and multi-slit interferometers, to inspire magnonic analogues [6].

The field of micromagnetism provides a deep understanding of the fundamental principles
governing magnetization dynamics in magnetic materials. The core concepts of the micro-
magnetic model have been explored throughout this chapter, with particular emphasis on the
contributions to the Gibbs free energy — namely exchange interactions, magnetostatic (dipolar)
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interactions, various forms of magnetic anisotropy, and the Zeeman energy. Together, these
terms form the basis for exploring complex magnetic phenomena, even in systems with reduced
dimensions and patterned nanostructures.

The evolution of micromagnetic theory has been followed by the development of advanced
magnetic nanostructures, where the control of magnetization occurs on length scales from tens of
nanometers to a few micrometers. Initially, the manipulation of spin waves was mainly studied
in homogeneous materials, but the introduction of 1D and 2D patterned nanostructures marked
a significant advance in the ability to control these magnetic excitations. In such systems, the
confinement of magnetic moments along one or two spatial directions allowed the first insights
into localized spin-wave modes and their band gap formation.
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Figure 3.5 The transition from 2D to 3D nanomagnetic systems requires advanced fabrication, characteri-
zation, and sophisticated modeling tools, enabling the discovery of new phenomena driven by complex
geometries and nanoscale magnetization dynamics. Credit: Sanz-Herndndez, D. et al. Nanomaterials
2018, 8, 483 [145]. © 2018 by the Authors. Licensee MDPI, Basel, Switzerland.

The latest frontier in micromagnetism is the exploration of 3D complex magnetic nanos-
tructures where the periodicity and connectivity of the material extend into all three spatial
dimensions (Fig. 3.5). Gyroidal magnonic crystals, with their complex chiral geometry, are a
state-of-the-art example of these structures. In 3D systems, the curvature and chirality of the
lattice offer new possibilities for controlling the spin-wave dynamics, and the ability to localize
it in such complex geometries enables the development of novel, advanced magnonic devices.

In conclusion, this chapter lays the theoretical foundation for understanding the rich variety
of magnetic phenomena observed in magnetic nanostructures, while also highlighting the future
research in magnonic crystals and the use of geometry to control magnetization dynamics.



Chapter 4

Numerical methods and micromagnetic
simulations

Micromagnetic simulations are at the heart of my research, serving as a powerful tool to gain
deep insight into spin-wave dynamics in ferromagnetic nanostructures, as well as a compelling
research topic in its own right. My expertise spans different simulation frameworks, from finite
difference methods (FDM) used in MuMax3 [146] to finite element methods (FEM) implemented
in tools such as COMSOL Multiphysics [147] and tetmag [148]. Alongside FDM and FEM,
the boundary element method (BEM) is also investigated within the tetmag environment as a
complementary technique. This broad experience with different numerical approaches allows
me to tailor simulations to the specific needs of the systems I investigate, taking into account
complex geometries, boundary conditions, and material properties. These methods not only
provide theoretical predictions but also serve as a bridge to experimental research, enabling the
design and optimization of magnonic devices that are often difficult or costly to fabricate and
test directly.

One of the key equations governing the systems studied in this work is the LLG equation,
already introduced in Sec. 3.2.2. This is a nonlinear partial differential equation (PDE) and due
to its nonlinearity and the spatial dependence of the effective magnetic field, analytical solutions
are impractical except for the simplest geometries and conditions. This is where numerical
methods come in. Tools such as FDM and FEM discretize both space and time, breaking down
the continuous magnetization field and its associated interactions into small, manageable steps.
In essence, these methods transform the PDE into a system of algebraic equations that can be
solved iteratively.

However, performing these simulations is a multidisciplinary process that, in addition to a
solid understanding of physics, integrates programming expertise, mathematical modeling, and
even elements of visual and geometric design. Accurate representation of three-dimensional
nanostructures often requires the use of computer-aided design (CAD) software, where precise
geometric definitions must be established as a critical basis for initiating simulations. Once the
geometries are defined (with proper computational meshes), the simulation process involves
implementing the governing equations (such as LLG) and specifying material parameters and
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boundary conditions, all of which are essential for obtaining accurate and physically meaningful
results (see Fig. 4.1). In addition, the post-processing stage requires proficiency in data anal-
ysis and visualization techniques to transform the large amounts of raw simulation data into
meaningful interpretations of the system’s magnetic behavior.

The demand for computational power in micromagnetic simulations is increasing as we push
the boundaries of what can be modeled, especially in complex three-dimensional nanostructures.
High quality simulations require fine spatial discretization to accurately capture key phenomena
such as domain wall motion or spin-wave propagation. Ironically, we need immense computing
power to simulate devices that are themselves intended to reduce energy demands by utilizing
spin waves for logic operations. This paradox is reflected in the humorous quote attributed
to Bill Gates: “The computer was born to solve problems that did not exist before” [149]. In
the case of micromagnetic simulations, researchers are in a unique position to understand this
irony. However, the paradigm-shifting potential of magnonic technology, which promises energy-
efficient computing solutions that can meet the growing demands on conventional architectures,
justifies these efforts.

As mentioned above, simulations play an increasingly important role in guiding and opti-
mizing experimental procedures. However, they also serve as effective tools for interpreting
experimental data — especially in cases where measurements are affected by imperfections, noise,
or limited resolution. For example, simulations can reveal how spin waves scatter from defects
or interact with domain walls — phenomena that may be challenging to observe directly, but can
be understood through indirect experimental indicators when supported by accurate modeling.

In this context, micromagnetic simulations have become indispensable in the modern research
and development of magnonic devices. Despite all the advantages, however, the combination of
high computational demands and the inherently interdisciplinary nature of numerical modeling
highlights the complexity and sophistication of these studies. The following sections provide
a detailed examination of the specific numerical methods I have used, with a focus on their
implementation in MuMax3, tetmag, and COMSOL Multiphysics.

4.1 Spatial and temporal discretization methods

This section introduces the spatial and temporal discretization methods used throughout my
research — FDM, FEM, and BEM. These methods form the numerical basis for solving the
LLG equation and related micromagnetic problems. Their inclusion here is justified by their
widespread use, established theoretical background, and compatibility with frequency- and time-
domain formulations. Presentation of these methods provides a foundation for understanding the
simulation strategies and computational frameworks discussed in later sections.
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(a)

Figure 4.1 Illustration of the discretization meshes used in various models in this thesis, highlighting
mesh adaptations tailored to specific simulation goals. (a) A homogeneous cubic FDM-based mesh
used in the model with a single-cell thickness, representing an array of narrow waveguides entering a
wider multimode waveguide — studied in the context of the Talbot effect (publications P1-P3 and P6).
(b) An antidot structure discretized with a tetrahedral FEM mesh, also with a single-cell thickness. For
visualization purposes, the mesh is stretched in the out-of-plane direction. High-resolution meshing around
the antidots is essential to capture edge-localized spin-wave modes (publication P5). (c) A triangular
FEM mesh used to model the cross section of a crescent-shaped waveguide, representing an infinitely
long structure in a 2D simulation (publication P4). (d) A tetrahedral FEM mesh used to simulate the full
three-dimensional geometry of the gyroid structure (publications P7-P9). (e) A scaffold-like structure
discretized by FEM, specifically designed for the FMR mode simulations presented in publication P9.

4.1.1 Finite difference method

The FDM is a widely used approach in micromagnetic simulations for numerically solving
PDEs governing magnetization dynamics [87, 113]. The graphics processing unit (GPU)-based
micromagnetic solver MuMax3 [146] provides an exemplary FDM-grounded implementation,
extensively used in publications P1, P2, P3, and P6.

In FDM-based micromagnetism, a computational system is divided into a three-dimensional
Cartesian mesh with cell sizes Ax, Ay, and Az. The continuous magnetization M(x,y,z,?)
becomes discrete, M; ; ¢(t), at each mesh cell (i, j, k). Finite difference approximations replace
spatial derivatives in the effective field Heg. For example, a first-order derivative along x is

approximated by
oM, j i
dx

M1k —Mjx
~ 1 1 4.1
a— (“.1)

Xi

and the second-order derivative (for exchange interactions') becomes
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oMk —2M Mg ik
ox? '
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!In micromagnetism, exchange interactions are modeled by the term proportional to V2M (see Eq. 3.2), requiring
second-order spatial derivatives.
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Similar discretization schemes apply to y and z. An appropriate grid resolution must be chosen
to resolve critical magnetic length scales (e.g., the exchange length /ex — Eq. 3.3) to accurately
capture subtle magnetization features.

Time is discretized into intervals of length Af. The magnetization is updated iteratively from
M" at time #,, to M +! at th+1 = t, + At. The numerical scheme uses an explicit solver for the
LLG equation:

ML= MY+ AE(MG ) Hep(M ), (4.3)

where f includes precession and damping terms. Common time integrators based on these
discretization methods are described in Sec. 4.2.

4.1.2 Finite element method

FEM is a versatile numerical approach often used in micromagnetism to handle complex geome-
tries, irregular boundaries, and spatially varying material properties [87, 113]. Unlike the regular
Cartesian discretization of the FDM, FEM uses meshes composed of arbitrary elements (often
triangles in 2D or tetrahedra in 3D, see Fig. 4.1). Each element approximates the magnetization
M(x,y, z) within its volume or area using local basis functions. This flexibility ensures accurate
modeling in regions with curved edges or intricate shapes.

Let Q be the entire simulation domain, partitioned into N finite elements €,:

Q= Q.. (4.4)

Within each element, the magnetization M(x,y, z) is approximated as a linear (or higher-order
polynomial) combination of basis functions N;(x,y,z) that interpolate the nodal values M;(t).
Thus, for element .,

M, (x,y,z,t) ZN x,,2) M;(t), 4.5)

where n, is the number of nodes in the element. Each node has a time-dependent magnetization
vector. By assembling the elementwise approximations (local solutions within each finite
element), one constructs a global representation of M(r,7) across the entire domain.

4.1.2.1 Weak formulation and variational principle

The core of FEM lies in the transformation of a PDE (here LLG) into its ‘weak form’ [87, 113].
The LLG equation is multiplied by appropriate test functions (often the same basis functions N;)
and integrated over . This procedure leads to an elementwise system of equations that, when
assembled, yields a global system describing the magnetization evolution. Symbolically, the
weak form of the LLG equation can be expressed as

oM

/ (aal\t/[+|j/|u0M><Heff M>< W) ‘N;dQ =0 Vi. 4.6)
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Within each element €2, one obtains a local system of the form
KM, = Fe> 4.7

where K, captures elementwise stiffness-like relations (incorporating exchange, anisotropy,
or dipolar contributions), M, holds nodal magnetization values, and F, includes effects from
external magnetic fields and boundaries. Compilation of these elementwise contributions over
all elements results in a global system, which has to be solved at each time step.

4.1.3 Boundary element method

BEM is a numerical approach that, in contrast to volume-based discretization techniques such as
FEM or FDM, solves certain boundary value problems by transforming the governing PDEs into
boundary integral equations [150, 151]. This allows only the domain boundary to be discretized,
making BEM particularly effective for problems involving large or unbounded regions. A scalar
potential ¢ is defined to satisfy the Poisson equation:

A9 = f inQ, (4.8)

where f is a source term, and A is the Laplace operator (V- V or V?). Let Q C R” be a domain
that may be finite, semi-infinite, or infinite, and let JQ denote its boundary. For ¢(x) governed
by the Poisson equation, Green’s functions provide a fundamental framework for expressing the
solution in terms of boundary values and source distributions within the domain Q.

Green’s function. A Green’s function G(x,y) for the Poisson equation (4.8) satisfies
—AG(x,y) = 6(x—y) inQ, 4.9)

along with the appropriate boundary conditions on dQ. Here, §(x —y) is the Dirac delta
function” centered at y. In physical terms, G(x,y) describes the effect at the field point x € Q
due to a unit point source placed aty € Q.

An integral representation of ¢(x) in terms of the boundary values can be written by using
Green’s theorem [152] and the Green’s function:

o) = [ (603 520 - o) “ ) asiy), @10

2The Dirac delta function §(x —y) is a generalized function (or distribution) that is zero everywhere except at
x =Y, where it is infinitely large in such a way that its integral over the entire domain is unity. It is commonly used
to represent a point source in PDEs.
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where x € Q and y € dQ. The operator 9/dn denotes the normal derivative on the boundary. In
other words, if n is the outward unit normal to the surface dQ, then

— = Vo n (4.11)
dan
Equation 4.10 shows that if ¢(y) and its normal derivative at the boundary dQ are known, the
value of ¢(x) at any interior point X € Q can be obtained via the surface integral. This boundary
integral representation is particularly useful for solving boundary-value problems for the Poisson
equation, since it transforms a PDE into an integral equation only at the boundary.
BEM discretizes dQ into N’ boundary elements, typically line segments in 2D or surface
panels in 3D. Within each element, the boundary fields (such as ¢ or its normal derivative) are
approximated by shape functions N/ (y). For example

!

u / a(P & e /
oW =~ Y oM, 5w~ Y (5) M), (4.12)
i=1 i=1

where ¢; and (3<P/an)l. are the unknown nodal values. Substituting these expansions into the
boundary integral equation 4.10, and collocating at selected boundary points reduces the problem
to a linear algebraic system in terms of ¢; and (3<P/an)l.. Depending on whether Dirichlet or
Neumann boundary conditions are applied (see Sec. 4.3), a set of these nodal fields may be
known a priori, simplifying the system [150].

In micromagnetism, one of the most prominent uses of BEM is to handle the nonlocal dipolar
field. Instead of solving magnetostatic potentials throughout the entire volume, BEM forms an
integral equation at the boundary (or outer surface) to determine the scalar potential ¢ [153].
This approach can be more efficient than volume discretization when large parts of the domain
are effectively vacuum or extend to infinity, since BEM only needs to discretize the interface
between magnetic and nonmagnetic regions. Many modern micromagnetic codes and specialized
solvers use hybrid techniques — FEM/FDM for exchange and anisotropy terms, and BEM for
dipolar fields — to exploit on the efficiency of boundary-only representations.

4.2 Time-stepping approaches

An essential aspect of solving the LL.G equation — and, more generally, any time-dependent
system — is the choice of time-stepping method [88, 154, 155]. This section presents several
time-stepping approaches commonly used in micromagnetic simulations, all of which I have
used in the course of my research. These methods have been implemented in several simulation
environments, each with different strengths and numerical capabilities.

A key distinction between these approaches is whether they are explicit or implicit. In
explicit methods, the solution at the next time step is computed directly from the known values
at the current (or previous) steps, making them computationally simple, but often limited by
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stability constraints that require relatively small time-step sizes. Typical explicit methods used
in micromagnetism include forward Euler, Runge—Kutta (RK), and Adams—Bashforth (AB)
schemes. In contrast, implicit methods require that the unknown future state satisfy an equation
that includes its own value, necessitating the solution of a system of equations at each time
step. Although more computationally expensive, implicit methods such as backward Euler,
backward differentiation formulas (BDF), and generalized-c, often allow for larger time steps
and improved numerical stability.

In micromagnetic simulations, certain problems can be stiff, meaning that they involve rapidly
varying fields or contain widely separated time scales (e.g., one part of the solution evolves much
faster than another). Such stiffness often requires more stable (implicit) methods to proceed
efficiently without extremely small time steps. Conversely, non-stiff problems can be effectively
addressed by explicit schemes, which may be more computationally efficient if small time
steps are acceptable. Table 4.1 summarizes some key differences between explicit and implicit
methods, along with representative examples. Since micromagnetic simulations can exhibit stiff

Table 4.1 Concise comparison of explicit and implicit numerical methods used in simulations.

Aspect Explicit methods Implicit methods

Definition Next-step solution calculated Next-step solution calculated
from known past/current values from unknown future values

Computational Lower per-step cost (no large Higher per-step cost (requires

cost system of equations to solve)  solving a nonlinear equations)

Stability Conditionally stable (demands Unconditionally stable (allows
smaller time steps) larger time steps)

Implementation  Straightforward (no solver or it- Complex (requires iterative or
eration needed) direct solvers)

Applicability For non-stiff problems or when For stiff problems or large time
temporal resolution is feasible  steps

Examples Forward Euler, RK, AB Backward Euler, BDF,

generalized-o

or non-stiff behavior, having access to both explicit and implicit time-stepping techniques is
useful for balancing computational efficiency and stability. The following subsections provide a
detailed description of each of the aforementioned methods, outline their theoretical foundations,
and discuss practical considerations related to their implementation in MuMax3, COMSOL, and
tetmag.
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4.2.1 Runge-Kutta methods

A generic system of ODEs can be written in the form:

dy

o = fy), (4.13)

where y = (y1,¥2,...,vn)" depends on t. Let t, = nAt, where At is the time step, and y, ~ y(z,,)
is the numerical approximation of the solution at time 7,,. The classical fourth-order Runge—Kutta
method (RK4) updates y, to y,+ via four intermediate ‘slopes’ ki, Kk;,k3, k4. Specifically,

k) =f£(t,,y,) slope at the beginning of the interval, using y (Euler method), (4.14)
k, = (¢, + lAt Yo+ lAt ki) slope in the middle of the interval, using y and k;,  (4.15)
ks =f(t, + 2At Yo+ zAt k) slope in the middle of the interval, using y and ky,  (4.16)
ky =f(t, + At, y, + Arks) slope at the end of the interval, using y and k3. 4.17)

More information about the Euler methods can be found in Sec. 4.2.3. Finally, the new step
solution is updated by

At
Yot = Y + o (Ki+2ke 4 2ks Ky ). (4.18)

In the context of the LLG equation, it is advantageous to use the form that explicitly isolates
the time derivative 9M/9; as a function of the magnetization vector M and the effective magnetic
field Hegr — Eq. 3.20. As explained in Sec. 3.2.2, this arrangement facilitates the direct application
of numerical integration schemes by adapting the LL.G equation to the standard first-order ODE
structure introduced in Eq. 4.13, allowing it to be expressed in generic form:

y=M, f(r,M)=— 1'1“2?2 (M « Heff) . % [M x (M x Heff)} . (4.19)

Then, given a time step At and a known approximation M,, of M(#,), we apply the Eq. 4.19 to
the RK4 methodology from Eq. 4.17, and compute:

ki =f(M,, ,), (4.20)
ko = f(M,, + SAtKy, t, + 3A1), (4.21)
ks = f(M,, + 3At Ky, 1, + 3A1), (4.22)
k4 = £(M,, + Arks, 1, +At). (4.23)

In this way, M(¢) at discrete times #,, 1 = t,, + At can be solved numerically:

At
M, = M, + g(kl 1 2ky +2ks +k4). (4.24)
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Since LLG describes a rotational dynamics (plus damping) of the magnetization vector,
some methods are specifically designed to preserve ||M|| (or keep it close to its saturation value
M;). The standard RK4 method does not strictly preserve ||M|| unless additional constraints
or projections are used (see Eq. 4.49). In practice, M,,; | 1s often renormalized after each step,
or alternative geometric integration schemes are used that better preserve the magnetization
norm [156, 157].

In summary, the classical RK4 method is straightforward to implement and achieves fourth-
order accuracy in time. When applied to the LLG equation, it provides an explicit way to step
the magnetization forward in time in a manner that is accurate for moderate step sizes. Although
more specialized integrators exist (in particular, those that preserve geometric properties and
introduce adaptive time steps), RK4 remains a popular choice for its simplicity and generally
good performance.

Adaptive RK methods. The RK methods family, introduced above, is widely used for solving
ODEs and PDEs due to its versatility and accuracy. The methods approximate solutions by
evaluating the function at multiple points within each time step, allowing for a better estimate of
the solution [158, 159]. RK4 refers to the classical, fixed-step fourth-order RK scheme applied
to a spatially discretized PDE. In other words, once the PDE is transformed into a large system
of ODEzs, the solution evolves in time without adaptive error control, using a fixed time-step size.
In contrast, the adaptive RK methods (such as RK34 and RK45) are general-purpose explicit
ODE solvers that incorporate embedded error estimation within each time step. By comparing
the higher- and lower-order solutions, the solvers dynamically adjust the time-step size, refining
the solution where rapid changes occur and coarsening the time steps where the solution varies
more slowly. This adaptive feature can significantly improve computational efficiency while
maintaining a desired level of accuracy.

* RK34: Building on the classical RK4 approach, the embedded RK34 scheme provides
both third- and fourth-order solutions within each step. The difference between these
solutions serves as an error estimate and guides the automatic adjustment of the time step.
RK34 is well suited for non-stiff problems that do not require the highest possible accuracy,
but still benefit from a reliable way to control local errors.

* RK45: A more common adaptive strategy uses an embedded fourth-order approximation
alongside a fifth-order approximation, collectively referred to as ‘RK45’ [155, 160]. There
are several sets of coefficients under this category, each balancing efficiency and accuracy
differently:

— Cash-Karp 5 (CKS): A fifth-order RK method paired with a fourth-order solution
for error estimation. The local truncation error is evaluated by comparing the fifth-
order and fourth-order solutions at each step, allowing precise control over time-step
adjustments. CKS3 is efficient for moderate to high accuracy requirements in non-stiff
problems, where an implicit solver would be unnecessary.
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— Dormand-Prince 5 (DPS): Another well-known RK45-type scheme. Like CKS,
DPS5 uses a fifth-order solution with an embedded fourth-order estimate, but its
coefficients are chosen specifically to optimize the accuracy of the fifth-order solution
rather than the embedded approximation. This design choice often results in slightly
better efficiency in cases where high accuracy of the main solution is a priority
over very long time integrations. In practice, DP5 is a popular default in many
software packages due to its robustness and favorable accuracy-per-function-call
characteristics.

4.2.2 Adams-Bashforth method

The AB family of methods belongs to the class of linear multistep ODE solvers. Consider a
general system of ODEs in first-order form (see Eq. 4.13) with discrete times ¢, =ty + n At and
approximate solutions y, = y(#,). While one-step methods like RK depend only on the solution
at the current time step to move forward, the linear multistep method uses information from
several previous time steps. The k-step AB method can be derived by using an interpolating
polynomial to approximate the integral

Int1

Y(tar1) = y(tn) + £(z,y(1)) dt, (4.25)

In

and then replacing the 7-dependency by values of f at previously known times. In its explicit
form, the k-step AB formula can be written as
k=1
Yorl = Yn + A Y Bif(tu—j ¥u-), (4.26)
Jj=0

where the coefficients f3; are determined by integrating an interpolating polynomial of degree-k
over the interval [f,,,#,,11]. Table 4.2 lists the coefficients for the AB methods of orders 1 < k < 4.

Table 4.2 Coefficients 3; for the AB family (up to fourth order).

order k Bo Bi B> B3
1 (Euler method) 1 0 — —
2 3 —l)2 0 —
3 212 —16/12 5/12 0
4 55/24  —59/24 37/24 —9/24

For example, the two-step AB method is

3 1
Yotr1=Yn + At (E f(lnayn) - Ef(tn—MYn—l)) ) (427)
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and the four-step:

59

55 37 9
Yotr1 = Yn + At (_f<tn7Yn) - _f(tn—l >Yn—1) + _f(tn—27Yn—2) f<tn—37Yn—3) . (4'28)

24 24 24 24

A k-step scheme uses k past solution values or function evaluations, so a dedicated ‘starting
procedure’ is needed to initialize the first few steps. Often, a one-step method such as the RK4 is
used for this, before the AB method can be applied in a pure multistep fashion.

To numerically integrate the LLG equation using the AB method, the general multistep
formula given in Eq. 4.26 is applied directly to the magnetization vector M,,, choosing the
desired order k based on the required accuracy and available previous evaluations of the right-
hand side. For example, employing the second-order scheme (k = 2), the update step becomes:

1. Initialize My and compute M| with a one-step method (like RK4) so that f and f; are
known.

2. For n > 1, update:

3 1
Mn—H =M, + At (Efn_ Efn—l) .

3. Evaluate f, | = F(M,1,2,11) in preparation for the next time step.

For higher-order AB schemes, Eq. 4.26 is used analogously with the appropriate coefficients

(given in Table 4.2), again ensuring that enough initial steps are computed by a one-step method.
As with RK, standard AB methods do not strictly preserve the ||M(z)|| ~ Mg norm, also

requiring the normalization step after each update or using special geometric integrators.

4.2.3 Euler methods

In finite element micromagnetism, a robust time-integration scheme is essential to handle the
rapid precessional motion of the magnetization and the strong nonlinearity arising from the
LLG equation. While various algorithms (including RK or AB) can be used in principle, FEM
implementations generally favor implicit solvers to achieve better stability for moderately large
time steps [88].

The most basic time-integration scheme is the Euler method®, of which there are two main
variants described below.

Forward Euler (explicit):

M = M" + Acf(M™ HY). (4.29)

31n this section, time-step indices are written as superscripts to avoid confusion with subscripts used for other
quantities. In other sections, where there is no such ambiguity, the subscript notation is used.
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Here, the right-hand side is evaluated at the known state M". This approach is computationally
cheap per step (only f needs to be evaluated), but is conditionally stable and often requires very
small Ar to capture the fast gyromagnetic dynamics without numerical blowing up. It is generally
not favored in FEM micromagnetism due to severe time-step constraints and stability issues.

Backward Euler (implicit):
M = M 4 Acf(MT HEED). (4.30)

Note that M"*! appears inside the function f on the right-hand side — this makes the scheme
implicit. Consequently, at each time step, a nonlinear system of equations must be solved to find
Mn—H .

For micromagnetic simulations where M can change rapidly and nonlinearly, backward Euler
and related implicit methods offer a pragmatic balance between stability and cost, allowing larger
time steps while accurately tracking the magnetization dynamics [88].

4.2.4 Backward differentiation formulas

The BDF is a family of implicit, linear, multistep methods that are particularly well suited
for stiff differential equations [158, 161, 162]. In FEM software such as COMSOL, the BDF
scheme is implemented in an adaptive manner: both the time step Ar and the method order p can
change dynamically based on local error estimates. This adaptability is highly advantageous in
micromagnetic simulations, where the LLG equation can be stiff, with fast precessional modes
alongside slower magnetization relaxation dynamics.

In analogy to Eq. 4.13, a generic initial-value problem is

du

i f(t,u®)), ulto) = uo. (4.31)

A BDF scheme of order p approximates du/a: at the current time #, by referencing the solution
values at p previous time steps:

l}’ll7 42
dt Atzéu (4.32)

where Ar = t, —t,,_1 is the time step (which can be adjusted from one step to the next), and &;
are coefficients of order p. In practice, this discrete approximation is then implicitly combined
with the original differential equation:

p
Y Giuni = Atf(tn,un). (4.33)
i=0
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Since u, (the unknown at time #,) appears on the right-hand side, each step involves solving
a (potentially nonlinear) algebraic system for u,,. If f is nonlinear, methods such as Newton’s
iteration are used (see Sec. 4.4.3.6).

A-stability and L-stability. BDF schemes up to a certain order (especially BDF; and BDF),)
have A-stability, i.e., they do not introduce artificial growth in solutions for stiff problems
whose eigenvalues have non-positive real parts. Some BDF variants also have L-stability,
which enhances A-stability by further damping transient high-frequency modes. These stability
properties are important in micromagnetism, where rapid oscillations can coexist with slower,
more dissipative processes [158].

During micromagnetic simulations (e.g., magnetization relaxation), the LLG equation can
behave in a stiff manner: high damping can cause fast initial transients, while the system
eventually evolves slowly toward an equilibrium state. BDF methods handle such stiffness by
allowing relatively large time steps At without sacrificing stability. In COMSOL’s adaptive
BDF solver, both Ar and the method order p are automatically selected to balance accuracy and
efficiency.

Because of these properties, BDF methods have been the primary choice for my time-domain
simulations in COMSOL, especially for magnetization relaxation. Their implicit multistep nature,
coupled with A/L-stability, provides a reliable way to handle the stiffness of the LLG equation
while maintaining a practical compromise between accuracy, stability, and computational cost.

4.2.5 Generalized-o method

The generalized-o method was originally developed for second-order problems in structural
dynamics [163, 164]. However, its ability to introduce user-controllable numerical damping
at high frequencies makes it attractive also for transient micromagnetic simulations, where
rapid magnetization oscillations can coexist with slower relaxation processes. By tuning two
parameters, 0, and 0, high-frequency noise can be suppressed without excessively damping
lower-frequency modes, thereby preserving long-time accuracy. Moreover, this implicit approach
handles stiffness well and impose fewer restrictions on the time step Az than typical explicit
methods.

While the method is most commonly used for second-order systems (e.g., structural vibration
with mass, damping, and stiffness matrices), it can be adapted to first-order problems such as the
LLG equation. In the standard second-order form, ¢, and o, are used to evaluate the system at
‘intermediate’ time steps:

du ta du
" dt

In

— (1—ap) : (4.34)

In+1

tn+txm

U(tnyap) = (1—otp) u(ty) + Qpultyyr). (4.35)
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In the micromagnetic context, where the magnetization M(r,¢) satisfies a first-order partial
differential equation in time, the generalized-or method can be applied directly by interpreting
u — M and du/ar — IM/9; in the Eqgs. 4.34 and 4.35. The core idea remains unchanged: the method
introduces intermediate evaluations of both the solution and its time derivative — specifically at
tnta, and 1 q,,, Tespectively — by forming convex combinations of their values at the previous
and current time steps. These interpolated states are then used to evaluate the effective magnetic
field and any nonlinear contributions in the LLG equation. The result is a nonlinear, implicit
system for M,,; 1, that must be solved at each time step. By tuning the parameters &, and «y,
the numerical damping of high-frequency modes can be controlled (and reduced if unwanted)
while preserving the accuracy of physically relevant dynamics.

While BDF remains a ‘go-to’ method for highly stiff problems, generalized-o can be
advantageous when a controlled damping of high-frequency components is desired, or when
slightly lower computational cost is beneficial.

4.3 Boundary conditions

Appropriate boundary conditions are essential for realistic simulations. Three typical classes are:

* Periodic boundary conditions (PBCs), used in simulations of translational symmetry
systems such as photonic, phononic, or magnonic crystals. They assume that the field is
invariant under translations by lattice vectors, effectively modeling an infinite periodic
medium using a single unit cell. This can be expressed as:

u(r+R) = u(r), (4.36)

where u(r) is a scalar or vector field, and R is any lattice translation vector (e.g., R =
nyL,X +nyL,y + n.L,Z with integers ny, ny, n, and unit cell dimensions L,, Ly, L;). These
conditions allow a finite computational domain to mimic the behavior of an infinite periodic
system.

* Bloch/Floquet* boundary conditions which extend the PBC concept by including a phase
relationship between opposite faces of a periodic unit cell. Formally, these conditions are

u(ry) = u(ry)e® ), (4.37)

where u(r;) and u(r;) are the field values at the corresponding points r; and r; on opposite
sides, and k is the wavevector capturing the phase shift between them. This approach is
particularly relevant for the analysis of wave propagation and dispersion in periodic media.

“4Bloch’s theorem (commonly used in solid-state physics) and Floquet’s theorem (from the mathematical theory
of differential equations) describe essentially the same concept in the context of solutions with periodic structures;
hence the terms ‘Bloch boundary conditions’ and ‘Floquet boundary conditions’ are often used interchangeably.
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* Free boundary conditions, which represent the absence of external constraints at the
boundaries of the simulation domain. They allow the field — whether magnetization,
displacement, or any other physical quantity — to evolve naturally at the boundaries, without
forcing continuity or fixed values. This approach is particularly useful for modeling finite,
isolated systems such as nanostructures or localized excitations, where boundary effects
are important.

* Absorbing boundary conditions are used to minimize the reflections of spin waves or
other excitations at the simulation boundaries. They effectively ‘absorb’ energy at the
boundaries, preventing artificial reflections that could affect the simulation results.

4.4 Overview of software tools for micromagnetic simulations

This section provides an overview of three software packages that I have used for micromagnetic
simulations: MuMax3, tetmag, and COMSOL Multiphysics. Each of these tools employs a
distinct numerical formulation and excels in addressing specific classes of problems, offering
comprehensive support for both time- and frequency-domain simulations. Moreover, they
collectively incorporate all the time-integration and spatial discretization methods discussed
earlier in this chapter. By leveraging their complementary solver capabilities, it becomes possible
to simulate a wide range of advanced micromagnetic systems. The insights gained from working
with these diverse tools have significantly broadened the scope of this research, enabling more
robust and detailed analyses of complex magnetization dynamics.

4.4.1 MuMax3 (used in P1, P2, P3, P6)

MuMax3 is a highly optimized GPU-accelerated micromagnetic simulation software that solves
the LLG equation in the time domain using the FDM [146]. It is specifically designed to handle
extensive simulations by GPU parallelization, which significantly reduces the computation time.
This section describes how MuMax3 implements the core components of the micromagnetic
model used to perform the simulations for papers P1-3 and P6.

The kernel uses a one-size cubic grid to discretize the entire simulation domain. Each
cell holds the local magnetization vector and material properties (such as Mg and A¢x), and its
uniform shape ensures that each simulated region has identical resolution, which is optimal
for GPU-based parallel computation. Although the grid simplifies the implementation, it is
crucial to ensure that the spacing is fine enough to resolve important magnetic length scales,
depending on the specifics of the simulation. For simulations involving short spin waves (such
as dipole—exchange or pure exchange modes), or in systems with highly noncollinear static
magnetization configurations, the discretization cell size must be sufficiently small to accurately
capture these spatial variations and avoid numerical artifacts. In the one-dimensional case, the
exchange length /¢x (see Eq. 3.3) provides an inherent scale for setting the spatial resolution. A
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generally accepted condition [165] is that the cell size Ax should satisfy
Ax < lex. (4.38)

This criterion ensures that the exchange interaction is properly captured within the numerical
mesh and that the spatial features of the magnetization are well resolved. It should be noted,
however, that this condition is not universally required. For uniformly magnetized systems, or
for long wavelength excitations, a coarser discretization may still give accurate and stable results.

According to the Nyquist—-Shannon sampling criterion [166], to resolve a wave propagating
in x direction of wavelength A in a discrete mesh, the cell size must also satisfy

A
Ax < —. (4.39)
2
By ensuring this condition, the simulation correctly captures wave propagation and dispersion. If
Ax is greater than half of the wavelength, the mesh will effectively ‘undersample’ the spin wave,
resulting in aliasing or even inability to detect these excitations.

There is also the Courant—Friedrichs—Lewy (CFL) condition [167], which ensures numerical
stability in time-dependent PDE solvers. It is particularly relevant in FDM, especially when
applied to hyperbolic PDEs such as wave equations. The condition states that the time step
must be sufficiently small relative to the spatial discretization to maintain stability. In its basic
one-dimensional form for a wave equation, the CFL condition is expressed as

A< 2 (4.40)

Vmax

where v, 1s the maximum wave propagation speed along the x-axis. This requirement ensures
that a numerical wave does not travel more than one spatial grid cell during a single time step,
thereby preserving stability and accuracy in the simulation. If this condition is violated, the
simulation may become numerically unstable, leading to unphysical results. In micromagnetic
simulations, the effective speed of wave propagation is given by the spin-wave group velocity.
Thus, the time step A must be carefully chosen to always satisfy the Eq. 4.40 for a given velocity
and spatial discretization Ax. In MuMax3, the RK45 adaptive time-stepping scheme [155, 160]
generally handles this by dynamically adjusting the time step to ensure stability. However, if a
user manually sets a time step in MuMax3 (e.g., using fixed-step methods), the CFL condition
should be considered. If the time step is too large, the simulated system may “skip” important
dynamics.

MuMax3 efficiently calculates the demagnetizing (dipolar) field using the fast Fourier trans-
form (FFT). Its long-range nature makes it computationally expensive, but MuMax3 reduces the
complexity from O(N?) to O(NlogN), where N is the number of grid cells, applying FFT-based
convolution techniques®. For dipolar interactions, a naive approach requires computing pairwise

3In computational complexity, the notation O describes how the runtime or resource consumption of an algorithm
scales with the size of the problem.



4.4 Overview of software tools for micromagnetic simulations 69

interactions between all N grid cells, resulting in a quadratic scaling of computation, expressed as
O(N?). However, specialized algorithms (such as those using FFTs) can reduce this complexity
to O(NlogN). This means that as N grows, the computational complexity of FFT-based methods
increases more slowly than that of direct pairwise computations, making large-scale simulations
more computationally feasible. This enables the MuMax3 software to simulate such systems
while accurately accounting for the nonlocal nature of the dipolar field. For time integration,
however, this software uses the adaptive RK45 method described in Sec. 4.2.1.

For efficient energy minimization of the magnetic system, MuMax3 provides a built-in
relax() function [146]. It modifies the LLG equation by disabling all precessional terms,
thereby transforming it into a dissipative form. As a result, the magnetization evolves directly
along the gradient of decreasing total energy, allowing rapid convergence to a stable equilibrium.
The system is first allowed to evolve over time until the total magnetic energy drops to the
level of numerical noise, indicating that it has nearly reached equilibrium. The algorithm then
begins to track the magnitude of the torque, which decreases steadily near equilibrium. The
minimization process is terminated once the torque falls below a predefined threshold, indicating
convergence. This method ensures that the system settles into a locally stable energy minimum
before any dynamic simulations are initiated.

In most of my FDM simulations, I used PBCs and absorbing boundary conditions simultane-
ously. For example, to reproduce the magnetization patterns of the Talbot ‘carpet’ (publications
P1-P3), it was necessary to simulate a quasi-infinite one-dimensional array of apertures. Mean-
while, along the boundary perpendicular to this array, spin waves had to be absorbed to prevent
reflections that would otherwise interfere with the results. In MuMax3, absorbing boundary
conditions are typically implemented by gradually increasing the Gilbert damping parameter
« near the edges of the simulation domain to ensure that spin waves are absorbed when they
reach the boundary. Specifically, & is increased from its bulk value o to a larger value Ogax
according to

Ot(x) = 0p + (amax - OC()) <x _dx0> s (441)

where xg is the coordinate that marks the start of the absorbing, and d is the distance over which
the damping increases. This gradual transition prevents reflection artifacts that might occur if the
damping were increased abruptly.

Equipped with FDM, appropriate time integrators, and customizable boundary conditions,
MuMax3 is a well-established numerical framework for micromagnetic simulations. Its sim-
plicity, combined with GPU acceleration, provides a powerful tool for modeling spin-wave
phenomena, magnetic domain evolution, and other nanoscale magnetic behaviors.

4.4.2 Tetmag (used in P7)

In my research P7, I used the open-source GPU-accelerated micromagnetic finite element micro-
magnetic solver called tetmag [148]. It simultaneously employs both FEM and BEM concepts
(see Secs. 4.1.2 and 4.1.3) to handle complex nanomagnetic geometries. As discussed earlier,
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FEM offers flexibility in capturing curved or irregular boundaries, while tetmag further enhances
this with a hybrid finite/boundary element approach (FEM-BEM) for efficient magnetostatic
computations in open-boundary conditions [168].

A key feature of its performance is the hierarchical .7#>-matrix technique, which significantly
reduces the computational cost of large-scale magnetostatic field calculations (described below).
Classical solvers often face an O(N?) complexity when considering all pairwise interactions
among N elements. To address this problem, tetmag also uses finite elements within the magnetic
domain and boundary elements on the surfaces, thus limiting the region that must be discretized
for long-range field calculations [168]. This approach implies that the finite-element domain
only represents the magnetic body itself, while the BEM handles the outer boundaries, thus
ensuring physically correct open-boundary conditions without the need for large artificial vacuum
extensions.

4.4.2.1 Hierarchical /#>-matrices algorithm.

The largest computational cost in magnetostatic analysis comes from the dense matrix opera-
tions required to capture interactions among all pairs of elements (or surface panels). Tetmag
overcomes the O(N?) bottleneck by using FEM—-BEM formalism, as well as by adopting .77
matrices [168]. This approach approximates far-field interactions (where elements are spatially
distant) by low-rank factorizations while preserving near-field interactions in full detail. In par-
ticular, the global interaction block A;; between the element clusters i and j can be approximated
by a low-rank factorization:

Aij ~ UiB;; V], (4.42)

where U; and VjT are low-rank basis matrices associated with clusters i and j, respectively,
and B;; is a small coupling matrix. This structure allows efficient representation of long-range
interactions by reusing basis matrices across multiple blocks®.

By organizing these approximations hierarchically, the memory and computational cost is
reduced to O(NlogN), while maintaining good accuracy for large problems. This makes it
possible to simulate micromagnetic systems with tens or hundreds of millions of degrees of
freedom on modern GPU-accelerated platforms.

In practice, my simulations with tetmag for work P7 proceeded in two main phases:

1. Magnetization relaxation. The solver first increases the damping parameter « in the
dynamic equation, driving the magnetization to a stable equilibrium under a given external
field. Once the torque falls below a threshold, the damping is reset to its nominal value.

2. Dynamic perturbation. After relaxation, the specialized frequency-domain algorithm
(proposed by d’Aquino et al. [156, 169]) is used to study FMR-like excitations. Although
not part of the tetmag kernel, this algorithm is integrated into the simulation workflow.

%The block A; ;j 1s the submatrix of the global matrix A, which represents interactions between all elements in
clusters i and j.
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For time integration, tetmag uses the SUNDIALS/CVODE library [170], which provides adaptive
time stepping through robust implicit solvers, well-suited for stiff micromagnetic systems. This
allows to accurately capture complex dynamics, even in cases with strong exchange interactions
or magnetic anisotropy.

By combining the FEM-BEM approach with .7#?-matrices, tetmag achieves high efficiency
and scalability for open-boundary nanomagnetic simulations. This architecture enabled the
large-scale computations presented in P7, where the solver accurately modeled magnetization
distributions and resonance phenomena in geometrically complex gyroidal nanostructures.

4.4.3 COMSOL Multiphysics (used in P4, PS5, P8, P9)

COMSOL Multiphysics has been my primary tool for conducting micromagnetic simula-
tions [147]. Its strength lies in its ability to accurately model and solve complex physical
phenomena while integrating multiple physics modules within a finite-element-based framework.
For example, it can capture magneto-elastic interactions, thermal effects, and electrical phenom-
ena such as STT or magnetoresistance — all in addition to standard magnetization dynamics.
These capabilities make COMSOL a powerful and versatile micromagnetic simulation tool
for detailed analysis of magnetization interactions and dynamics in time and/or frequency do-
main. Furthermore, COMSOL allows for manual definition and customization of the governing
equations through the interface Coefficient Form PDE.

This section explains how the LLG equation is implemented in the software, focusing on
time-domain, eigenfrequency, and frequency-domain simulations. It also covers the numerical
methods used and how the environment manages error control to ensure accurate outcomes.

4.4.3.1 Coefficient Form PDE

The Coefficient Form PDE in COMSOL allows users to manually implement custom PDEs
by specifying various terms and coefficients. It provides the flexibility to work with custom
equations, or simply those not included in the built-in physics modules, as in this case. They
are expressed in a general form with up to second-order derivatives in time and space, which is
suitable for the LLG equation. The Coefficient Form PDE is represented as:

9° d
€aa—t;£+daa—btt+V-(—cVu—Oc'u+}/)+ﬁ~Vu+au:f in Q, (4.43)
n-(cVutou—y)=g—qu+h'u on 0Q, (4.44)
0=R on 896, (445)
u=r on 0Qy, (4.46)

where u is the dependent variable, corresponding here to components of magnetization M. In
Eq. 4.43, from left to right, there are several coefficients which represent to the following physical
terms:
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e ¢, — mass coefficient,

* d, — damping or mass coefficient,

¢ ¢ — diffusion coefficient,

¢ o/ — conservative flux convection coefficient (not to be confused with Gilbert damping o),
* B — convection coefficient,

* a — absorption coefficient,

¢ ¥ — conservative flux source term (not to be confused with gyromagnetic ratio y),

e f —source term.

Equation 4.44 represents a generalized form of the Neumann boundary condition, that must be
satisfied at the domain boundary d€, where:

* n denotes the outward-pointing unit normal vector at the boundary dQ,
* g is the boundary source term,
* g is the boundary absorption coefficient.

Equations 4.45 and 4.46 represent a general constraint, with a Dirichlet boundary condition as a
special case, respectively, where R and r are predefined boundary terms.

In the context of my calculations of the LLG equation, the Coefficient Form PDE was used to
manually define the cross-product term M x Heg, and the damping term M x dM/9;. The spatial
and time derivatives were computed in the FEM framework, and the various contributions to the
effective magnetic field Heg were taken from the Eqs. 3.1 and 3.14. Its final form is

2Aex

V’M — Vo, (4.47)
HoM? ¢

Hefr = Hof +

and contains, in order, components responsible for magnetization interactions with the external
field (Zeeman energy — Sec. 3.1.4), exchange interactions (Sec. 3.1.1) and dipole interactions
(Secs. 2.8 and 3.1.2). To represent LLG with the assumed effective field (Eq. 4.47), the following
matrix form coefficients were adapted to the Eq. 4.43:

1 m; —ny 0z -§
da — ﬁ _mz l my , a = |’)/|[,LQH0 —Z 0 X s
M j % 0
my —my 1 y
(4.48)

o o
- my3; —Mzgy
2Acx |7l e " 8(; 8qyo
¢ = M2 —mg 0 my |, f= |Y‘“0 Mz oy —Mxg,

Mxgy — Myox

All other undefined coefficients from Eq. 4.43 are equal to 0. To ensure the physical consistency
of the simulations, it was also necessary to impose a condition that preserves the magnitude of
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the magnetization vector throughout each stage of the simulation:
m; +my +m? = M;. (4.49)

4.4.3.2 Implementation of boundary conditions in COMSOL

FEM handles boundary conditions naturally through its variational (or weak) formulation. For
example, Dirichlet conditions can be enforced by specifying nodal values along the domain
edges or faces, and Neumann conditions (typically involving the normal derivative 9M/9n) appear
as flux terms in surface integrals (more details in Sec. 4.3). The resulting constraints affect
the global system KM = F (see Sec. 4.1.2.1) by modifying rows or columns corresponding to
boundary nodes.

This process results in an algebraic system that captures both the internal physics and the
boundary conditions. At each time step (once the global system is assembled), it is solved
using iterative methods (e.g., the conjugate gradient, more in Sec. 4.4.3.6) or direct factorization
techniques, depending on the size and stiffness of the problem. The result is a piecewise
polynomial approximation of the magnetization vector M that naturally satisfies the geometry
and boundary conditions, providing greater flexibility than uniform-grid approaches. However, as
with FDM, cell sizes must be carefully chosen to resolve the relevant magnetic lengths, ensuring
that the solution accurately captures domain walls, spin waves, or vortex cores.

The boundary conditions used in my COMSOL simulations depend on whether the system
is finite or quasi-infinite/periodic. For the former, I used zero flux boundary conditions (as
described in Sec. 4.3) to represent open boundaries. This condition ensures that no magnetic
flux crosses the domain boundary, allowing magnetization dynamics (such as spin waves) to exit
the simulation region with minimal reflection. Mathematically, this boundary condition can be
expressed as a modification of Eq. 4.45:

n-(cVu+ad'u—y) =0 ondQ. (4.50)

In addition, accurate convergence of micromagnetic simulations in pure FEM requires surround-
ing the magnetic structure with a sufficiently large non-magnetic volume (typically air or vacuum)
in which the static magnetic potential can dissipate and decay smoothly. To ensure that the
simulation results are unperturbed by boundary effects, Dirichlet conditions are applied to the
outer boundaries €2, of this surrounding domain (¢ = 0 on Q.). They eliminate the magnetic field
at the boundaries, thus preventing reflections or artifacts that could interfere with the magnetic
behavior of the system under study.

For periodic systems, such as those used to study FMR modes in P9, PBCs have been applied
by matching magnetization values at opposite edges (see Eq. 4.36), effectively simulating an
infinitely repeating structure. However, for dispersion relations in periodic structures, COMSOL’s
Pointwise Constraint Boundary node proved more suitable. This tool allows the constraint to be
defined between corresponding points on opposite sides of the unit cell, effectively extending the
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standard PBCs by enforcing phase continuity across boundaries. In doing so, it implements the
Bloch/Floquet boundary condition (Eq. 4.37), as discussed in Sec. 4.3.

4.4.3.3 Time-domain solver

COMSOL Multiphysics offers many time-stepping methods suitable for both stiff and non-stiff
systems, including those described earlier — such as RK, Euler, BDF, and the generalized-« (see
Sec. 4.2). When solving micromagnetic or other coupled multiphysics systems, the stability and
convergence of the solution are highly sensitive to the choice of time-integration scheme. As
outlined in the Tab. 4.1, for stiff problems, implicit methods like BDF or generalized-o provide
the robustness needed for stable and accurate results. In contrast, for non-stiff scenarios, explicit
methods such as RK or Euler may offer a more efficient solution strategy due to their lower
computational cost.

4.4.3.4 Frequency-domain solver

The frequency-domain solver in COMSOL computes the steady-state magnetization response
under harmonically varying external fields, making it well-suited for simulating spin-wave
propagation and resonance phenomena in dynamically excited magnetic materials. In this
formulation, the magnetization M oscillates about an equilibrium configuration My according
to Eq. 3.36. The solver iterates over a specified frequency range, treating @ as a parameter
in the governing equations and solving for §M(x,y,z) at each frequency. By capturing the
steady-state harmonic solution, it shows how the system’s resonances and spin-wave modes
depend on @. Key results include amplitude and phase distributions of M from which damping
or band structures relevant to spin-wave dispersion can be identified. This method complements
time-domain analysis by allowing direct mapping of the magnetic response over a range of
frequencies, rather than simulating the entire transient process.

It is important to note, however, that unlike the eigenfrequency solver (described in the next
section), the results obtained with this approach are inherently dependent on the specific form of
the applied excitation field. This field can be designed to approximate experimental measurement
techniques, such as coplanar waveguides (CPW), thus allowing a more accurate comparison
between numerical simulations and experimental observations. Because the solver linearizes
the dynamical equations around My (see Sec. 3.2.2.2), it remains efficient for exploring spin-
wave behavior for sufficiently small-amplitude oscillations. For nonlinear or large-amplitude
excitations, time-domain or nonlinear methods (Sec. 4.4.3.6) are more appropriate, but for a
broad class of small-signal analyses, the frequency-domain approach provides a direct and
efficient path to understanding the spectral characteristics of spin waves and other magnetization
dynamics [73, 113].
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4.4.3.5 Eigenfrequency solver

The eigenfrequency solver in COMSOL computes natural frequencies (eigenfrequencies) and
associated eigenmodes (vector fields) by solving large-scale eigenvalue problems, typical of
finite element formulations. It is based on the ARnoldi PACKage (ARPACK), which focuses on
finding a selected subset of eigenvalues and eigenvectors in sparse eigenvalue problems [171,
172]. ARPACK employs the implicitly restarted Arnoldi method (IRAM), an iterative procedure
that approximates eigenvalues for large sparse matrices with reduced computational cost. In
scenarios involving harmonic oscillations, it is convenient to use COMSOL’s eigenvalue version
of the Coefficient Form PDE to solve the eigenfunction u:

V-(—cVu—a/u)+ﬁ-Vu+au = Adyu—Aequ, 4.51)

where A is the complex eigenfrequency, while d, and e, capture the linear and quadratic frequency
dependencies that are crucial for the oscillatory behavior. The imaginary part of A represents
the decay rate, while the real part corresponds to the oscillation frequency . The eigensolver
was applied to the linearized LLG equation to determine the eigenmodes and corresponding
eigenfrequencies of the magnetization dynamics. The coefficients were then defined analogously
to those in Eqgs. 4.43—4.46.

Generalized eigenvalue problem. In finite element contexts, an eigenvalue problem often
appears in the generalized form:
Au=«xBu, (4.52)

where A and B are typically stiffness- and mass-like matrices, respectively, and eigenvalues K
correspond to the squares of the angular frequencies, k = @>. Direct diagonalization of such
large sparse matrices is computationally expensive, so COMSOL implements iterative methods,
notably IRAM, which projects the problem onto a lower-dimensional Krylov subspace:

Kn(A,v) = span{v, Av, A%y, ...,Amflv}, (4.53)

where v is an initial vector, and the term span refers to the set of all possible linear combinations
of the listed vectors. The method constructs an m x m Hessenberg matrix H,, so that

with V,,, forming an orthonormal basis of the subspace. Then a smaller eigenvalue problem with
H,, is solved, and the corresponding eigenvalues approximate those of A. IRAM periodically
restarts with a smaller basis to focus on the relevant part of the spectrum, reducing memory and
computational cost while accurately converging to the target eigenvalues [171, 172].
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Search methods. In COMSOL, the eigenfrequency solver has three main search methods that
control how ARPACK finds the desired eigenvalues:

1. Manual search. The user specifies a shift o, which prompts the solver to apply shift and
inverse transformations:

B 1
(A—0B) 'Bu = wu, A= c+—, (4.55)
e

where L, is the transformed eigenvalue. Eigenvalues near 6 dominate, enabling efficient
convergence in a specified frequency range.

2. Region search. The region search method limits ARPACK to a complex rectangular region:
9{(1) € [mmimg{max]y S()L) € [SmimsmaxL (4-56)

extracting eigenvalues within user-defined real and imaginary boundaries. It is especially
useful for systems with damping or complex frequency response.

3. All (filled matrix). This method attempts to capture the entire spectral range by constructing
a broader Krylov space, effectively extracting many eigenvalues. Although computationally
expensive, this approach is suitable for problems requiring extensive modal analysis over a
wide range of frequencies.

In my research P4, P5, P8, and P9, ARPACK’s IRAM proved to be sufficient to accurately
capture the relevant eigenmodes in the simulated systems.

4.4.3.6 Linear and nonlinear methods

In COMSOL, the choice of linear or nonlinear solution methods is determined by the characteris-
tics of the analyzed system. Linear methods are appropriate when the model can be represented
by a constant coefficient matrix, while nonlinear methods are required when responses depend
on the current state, demanding iterative refinement. This distinction has a significant impact on
computational cost, convergence, and accuracy.

Linear solvers. For systems of the form A x = b, where A is a constant matrix (independent of
the vector of unknowns x), and b is known, COMSOL provides a set of linear solvers:

* LU decomposition: A direct method factorizing A into lower (L) and upper (U) triangular
matrices such that A = LU. Solving Ly = b then U x = y gives x. Although robust, it can
be memory intensive for large, sparse systems.

* Generalized minimal residual method (GMRES): An iterative solver suitable for large,
sparse, and nonsymmetric matrices. It minimizes the residual || — A x|| within a Krylov
subspace generated by successive applications of A. Restarted versions limit the growth of
the subspace to save memory [173].
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* Conjugate gradient (CG): The conjugate gradient method targets symmetric positive-
definite matrices by minimizing f(x) = 1/2xTAx — b x. Its efficiency and speed make it
attractive for problems with suitable symmetry [174].

Nonlinear solvers. If the system has a nonlinear dependence on unknown variables, it can
be written in the general form F(u) = 0 (discretized residual form of the PDE and boundary
conditions). Here, u can represent an equilibrium solution of a PDE or a set of unknown
parameters in a nonlinear boundary-value problem. To solve such systems, COMSOL uses a
Newton-based approach: it linearizes F(u) around the current approximation u®) by constructing

the Jacobian matrix
B OF

J=—
ou |,

(4.57)

and then solving a sequence of linearized subproblems at each iteration k to progressively
improve the solution. While this approach is more computationally intensive than solving
linear systems, it is critical for accurately handling strongly nonlinear material models, complex
boundary conditions, and multiphysics couplings.

To improve the stability of these iterations, COMSOL uses the damped Newton method [175]:

w1 = 0 o TR (), (4.58)

where op is a damping factor that is dynamically adjusted to ensure that each update reduces the
residual. This helps avoid large, destabilizing adjustments when improvements in the solution
are marginal. Such damping also helps prevent divergence in regimes characterized by high
nonlinearity, ensuring a more stable convergence to the accurate solution.

COMSOL also offers two main strategies for handling systems of multiple coupled equations:

* Fully coupled method. All equations are solved simultaneously within each iteration.
This maximizes accuracy for strongly coupled problems but can be computationally and
memory intensive.

* Segregated method. Equations are partitioned into smaller subsets that are iterated se-
quentially. This approach reduces memory requirements and often speeds up convergence
for weakly coupled systems or very large models [175].

4.4.3.7 Termination criteria

COMSOL’s iterative solvers stop searching for a solution when certain convergence conditions
are met or when further progress is deemed unlikely. Standard termination checks include

* Tolerance on residual norm. The solver monitors the residual vector r(u) (e.g., r(u) =
Au— b in a linear system) and stops when the norm ||r(u)|| < &ups, Where &g is a user-
defined absolute tolerance. This threshold indicates that the steady state has effectively
been reached, such that additional iterations will yield negligible improvement in r(u).
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* Relative tolerance. Convergence can also be checked by examining the ratio of successive

solution updates:
| @) —u®))

I @®)]

where € 1S a user-defined relative tolerance. If this ratio falls below &4, the solver

< &g, (4.59)

assumes that further iterations would only marginally improve to the solution.

* Maximum number of iterations. Each solver iteration requires computation to assemble
and/or invert matrices. Therefore, COMSOL enforces a practical upper limit on the number
of iterations. If neither the residual norm criterion nor the relative tolerance criterion is
met before this limit is reached, the solver terminates. In such cases, users may need to:

— refine the mesh or initial guess,
— adjust solver settings (e.g., damping factors or step sizes),

— or modify model parameters (such as boundary conditions or material properties) to
improve convergence.

These termination checks — along with automatic selection of linear vs. nonlinear solvers,
adaptive damping strategies for stability, and adaptive time stepping — allow COMSOL to balance
accuracy and computational cost for a wide range of applications [173, 175].

4.4.4 Concluding comparison

The FDM in MuMax3, FEM-BEM in tetmag and FEM in COMSOL Multiphysics offer different
approaches to simulating micromagnetic phenomena, with each approach optimized for specific
applications and geometries.

In terms of discretization, the FDM in MuMax3 operates on a uniform cubic grid, which
makes it computationally efficient for large-scale and periodic simulations. However, this
regular grid structure also comes with limitations: it struggles to accurately represent complex,
non-rectangular geometries, as it cannot easily conform to curved or irregular boundaries (see
Fig. 4.1). In contrast, FEM in tetmag and COMSOL allows for highly customizable meshes that
enable accurate modeling of complex 3D nanostructures with irregular boundaries.

Boundary conditions are another area where each method has distinct advantages. MuMax3
applies PBCs efficiently, but to approximate the open boundaries, it requires a gradual increase in
Gilbert damping near the domain edges — a method that may not eliminate reflections sufficiently
for systems sensitive to wave dynamics. In contrast, finite-element-based tools such as tetmag and
COMSOL offer more precise control over boundary conditions, including direct implementation
of Dirichlet and Neumann conditions, allowing more accurate modeling of open or constrained
domains.

MuMax3 solves the full LLG equation in the time domain, tetmag originally has only
the time domain, but with an add-on module (used in my research) it allows for frequency-
domain capabilities. COMSOL Multiphysics, on the other hand, in addition to the standard
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time domain for full LLG, has native frequency-domain and eigenfrequency solvers that can
linearize the LLG equation around a given steady-state solution. This is enhanced by the
ability to define custom PDEs, further extending the versatility of FEM in this environment. By
calculating the eigenvalues and eigenvectors of the linearized system, COMSOL can identify
all intrinsic magnetic modes independently of any specific driving field. This eigenfrequency
analysis provides a comprehensive characterization of the system’s resonant behavior, making
it particularly valuable for identifying fundamental spin-wave modes and their corresponding
eigenfrequencies.

In terms of computational efficiency, MuMax3 benefits significantly from GPU acceleration,
enabling fast simulations in extensive domains. This makes it ideal for studies of large domain
dynamics, where geometric complexity is limited. Tetmag, while also GPU-accelerated, generally
demands more memory and processing power due to the complex structure and elements of
FEM. The use of .7#">-matrices helps reduce the computational cost, but FEM still requires more
resources per degree of freedom than FDM. The FEM solver used in COMSOL is CPU-based,
so the computation time can be relatively long, especially for large or highly dynamic systems.

For time stepping, MuMax3 uses an explicit RK45 method, which provides good accuracy
but requires smaller time steps in stiff systems. Both tetmag and COMSOL use implicit methods
by default, which handle stiffness more effectively. The BDF and generalized-o methods, for
example, allow larger time steps in stiff systems and provide stability for highly dynamic con-
ditions, but at a higher computational cost. Although computationally intensive, COMSOL is
well-suited for applications requiring complex boundary control, multiphysics coupling, and,
most importantly (from my perspective), a dedicated frequency-domain and eigenfrequency
solver with the ARPACK algorithm. The options for targeted resonance studies are particularly
useful for analyzing frequency-dependent behavior in complex nanostructures.

The exploration of numerical methods in micromagnetism reveals a rich and intricate field,
with each approach offering unique strengths suited to different types of simulations. The
methods presented in this chapter illustrate the variety of numerical techniques available to
researchers. Whether it is the GPU acceleration of MuMax3, the open-boundary treatment of
tetmag’s hybrid FEM—BEM approach, or the advanced frequency-domain analysis capabilities
of COMSOL Multiphysics, each software tool has unique strengths that allow different facets of
micromagnetic phenomena to be investigated with efficiency and precision.

The development and application of numerical methods in micromagnetic simulations play a
crucial role in advancing both the theoretical and applied aspects of magnetism. By bridging
complex physical theories with practical computational tools, these methods allow us to study
magnetic behaviors that are difficult to capture experimentally, especially at the nanoscale.






Chapter 5

Research

This chapter presents the core publications that form the foundation of my Ph.D. research, each
addressing specific aspects of spin-wave dynamics and their control in nanostructured magnetic
systems. These studies cover a spectrum of topics ranging from planar waveguide simulations
with 1D diffraction gratings to spin-wave behavior in complex 3D architectures. Each publication
is preceded by a short introduction summarizing the objectives, methodology, and main results
of the study, followed by a brief statement outlining my contributions to the given work.

The research sequence reflects a structured progression from fundamental analyses of spin
waves obstructed by 1D antidot arrays and their unique interference patterns, through dynamics
in 2D systems such as ADLs and crescent-profile waveguides, to explorations of more advanced
multidimensional and periodic 3D structures, including gyroid and scaffold-like networks.
However, it is important to note that the chronological order of the studies is reflected by the
labels P1-P9, which follow the sequence of their publication dates.

This collection demonstrates how targeted nanoscale structuring enhances control over
magnetic and spin-wave properties, providing insights relevant to the development of magnonic
devices and spin-based computing applications.

5.1 One-dimensional nanostructures

By introducing periodic modulations in magnetic properties or geometry, 1D nanostructures act
as engineered scattering centers, selectively influencing spin-wave modes and enabling tailored
dispersion characteristics. In particular, diffraction gratings exploit periodicity to create resonant
conditions that enable unique wave interactions, including diffraction, bandgap formation, and
mode coupling. In magnonics, such structures can support phenomena analogous to those in
optics. In my research, diffraction gratings serve as a platform for studying complex wave
phenomena, such as the Talbot effect, where self-imaging of wavefronts can occur under certain
conditions. These effects provide fundamental insights into wave behavior in structured magnetic
systems and offer practical applications by creating reconfigurable magnonic interference patterns
that hold promise for future spintronic and magnonic computing architectures.
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Although the waveguides are modeled using 2D micromagnetic simulations, the self-imaging
patterns observed in this research are governed by the one-dimensional diffraction grating (or 1D
array of single-mode input waveguides), justifying the categorization of this work as focused on
1D textures.

5.1.1 Demonstration of spin-wave self-imaging effect (P1)

This paper investigates the self-imaging phenomenon, or Talbot effect, for spin waves — a novel
demonstration of this well-known wave phenomenon outside the field of optics. By introducing a
1D diffraction grating in a thin ferromagnetic film, we show through LLG-based micromagnetic
simulations that spin waves can undergo self-imaging, a behavior typically associated with
light waves. To our knowledge, this study is the first to establish and describe the Talbot effect
for spin waves, and to show that the resulting Talbot ‘carpets’ can be effectively characterized
using approximate analytical expressions adapted from general wave theory. This work not only
opens avenues for the experimental realization of spin-wave self-imaging, but also highlights
potential applications in magnonics, where structured interference patterns could be exploited
for wave-based data processing.

Contribution of the Author

In this publication, I have systematically collected, structured, and adapted theoretical concepts
from physical optics and wave theory, adapting them to provide a comprehensive framework for
describing the Talbot effect in the context of magnonics. I also performed all the micromagnetic
simulations using MuMax3, post-processed the data, and contributed to the interpretation of the
results in collaboration with M. Krawczyk and P. Gruszecki. Finally, I wrote the first draft of
the manuscript, managed its submission to the journal, and corresponded with the reviewers
throughout the review process.

The article reprinted with permission from Gotgbiewski, M.; Gruszecki, P.; Krawczyk, M.;
Serebryannikov, A. E. Physical Review B 102, 13, 134402 (2020) ©2020 American Physical
Society. License number: RNP/25/FEB/088088.
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The Talbot effect has been known in linear optics since the 19th century and has found various technological
applications. In this paper, with the help of micromagnetic simulations, we demonstrate the self-imaging phe-
nomenon for spin waves in a thin, out-of-plane and in-plane magnetized ferromagnetic film whose propagation
is described by the Landau-Lifshitz nonlinear equation. We show that the main features of the obtained Talbot
carpets for spin waves can be described, to a large extent, by the approximate analytical formulas yielded by the
general analysis of the wave phenomena. Our results indicate a route to a feasible experimental realization of the
Talbot effect at low and high frequencies and offer interesting effects and possible applications in magnonics.

DOI: 10.1103/PhysRevB.102.134402

I. INTRODUCTION

Spin waves (SWs) are coherent disturbances of the magne-
tization which may propagate in magnetic material as waves.
In ferromagnetic materials, the SW dynamics is determined
by strong isotropic exchange interactions coexisting with
anisotropic magnetostatic interactions. In thin ferromagnetic
films, the magnetostatic interactions cause the SW properties
to be strongly dependent on the magnetization orientation
with respect to the film plane and also dependent on the
relative orientation of the propagation direction and the static
magnetization vector. This makes the studies of SWs interest-
ing and offers properties uncommon for other types of waves,
such as negative group velocity, caustics, and dynamic recon-
figurability control. Their frequency spans range from a few
to hundreds of gigahertz, with the corresponding wavelength
range extending from micrometers to tens of nanometers,
which makes them very attractive for applications in mi-
crowave technology. In this context, it is interesting to test
in magnonics the basic laws that govern wave phenomena and
search for analogs of the effects known for electromagnetic
or acoustic waves. Basic equations describing propagation
of SWs differ from those for electromagnetic and acoustic
waves, so that justification of an analog of each phenomenon
known for the latter invokes a solution of the Landau-Lifshitz
equation for the former—this approach was used in demon-
stration of the SW graded index lenses [1], SW Luneburg
lenses [2], and SW Fourier optics [3], to name a few. Recently,
Snell’s law for SWs in thin ferromagnetic films [4], the mirage
effect [5], and the spin-wave Goos-Hénchen effect has been
predicted and demonstrated [6,7]. Also, self-focusing of SWs
[8], SW diffraction on gratings [9], and formation of the SW
beams [10-12] have found experimental confirmation. The
analogs of the graded refractive index structures [1,13,14],
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metamaterials [15,16], and metasurfaces [17] have recently
been introduced to magnonics. Thus it may be expected
that other phenomena and concepts are also transferable to
magnonics, but these need to be verified. Among them, the
Talbot effect (self-imaging effect) should be mentioned.

The Talbot effect was observed for light in the 19th century
[18] and then explained in Ref. [19]. In recent years, this effect
has been extensively revisited, e.g., see [20] and references
therein. It has been used to improve x-ray imaging [21] and
advance the process of lithographic patterning [22-24], and
proposed for the realization of some physical models and
computing scenarios [25-27], the applications of which can
be interesting also for magnonics. Apart from electromagnetic
waves propagating in a medium, the Talbot effect has already
been demonstrated for plasmons [28], waves in fluids [29,30],
and exciton polaritons [31], but for SWs it has not been shown
so far.

In this paper we demonstrate the Talbot effect with the use
of micromagnetic simulations for SWs propagating in a thin
ferromagnetic film magnetized out of plane. We show that the
diffraction grating created by the periodically located holes
in a thin ferromagnetic film allows obtaining Talbot carpets,
which are formed by the SWs propagating in the film and
passing through the grating. The demonstration is presented
at high frequencies where the exchange interactions dominate
and at low frequencies where the magnetostatic interactions
also contribute. Furthermore, we study also the influence of
SW damping on the Talbot effect to show the possibility for
its experimental verification, and we perform simulations of
the Talbot effect for in-plane magnetized permalloy (Py) film
in order to check the impact of changing the external magnetic
field direction on the Talbot carpets and the possibility of
using smaller field values.

The structure of the paper is as follows. In Sec. II we
present derivation of the main parameters of the Talbot pat-
tern based on the wave optics model. Then we focus on the
case of out-of-plane magnetization. In Sec. Il we present
the results of micromagnetic simulations for short and long

©2020 American Physical Society
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SWs, in Sec. IV we study the impact of SW damping on
potential applications, and in Sec. V we carry out simulations
for in-plane magnetization. Finally, we summarize our results
in Sec. VI. The Appendixes are put at the end, which present
the model development and analysis of some issues presented
in the main part of the paper.

II. TALBOT EFFECT-MODEL DESCRIPTION
A. Talbot length

The phenomenon of self-imaging, known as the Talbot
effect, results from the interference of a plane wave passed
through an array of the periodically arranged objects, which
often represents a diffraction grating. Using the knowledge
that SWs may behave similarly to electromagnetic and acous-
tic waves, we can explain the essence of the SW Talbot
effect with the help of an analysis of the basic wave phe-
nomena, such as diffraction and interference. According to
the principle formulated by Christian Huygens [32] and later
supplemented by Augustin Fresnel [33],

Each unobstructed point of the wavefront at a given moment
acts as a source of secondary spherical elementary waves with
the same frequency as the primary wave. The amplitude of
the resultant field at any other point is the superposition of all
these elementary waves taking into account their amplitudes
and relative phase differences.

This principle is particularly important not only for under-
standing the phenomenon of wave diffraction, but first of all,
for the design of the simulation system and building a suitable
mathematical model. It can be used when an aperture width
is comparable to a length of incident plane wave. An angle of
secondary waves is so large that this aperture can be treated
as an elementary source of circular waves (or cylindrical in
a two-dimensional view), and the entire diffraction grating
can be treated as a one-dimensional infinite matrix of the
periodically spaced elementary sources of circular waves. The
presented concept of diffraction grating allows us to describe
its effects and thus the diffraction field with a high accuracy
by means of the superposition principle.

Repetitive modulation of intensity occurring along the
propagation direction of the waves diffracted on periodic ob-
stacles, i.e., the Talbot self-imaging effect we study, defines
the length parameter also called from his name. The Talbot
length determines the period over which secondary beams
refocus their source image, i.e., when the diffraction image is
created after passing through a diffraction grating, at a certain,
precisely determined distance zr in the direction perpendic-
ular to the grating plane, an image identical to our original
grating is formed. The classical formula for the Talbot length
[19] can be derived based on the geometrical consideration,
which is known from wave optics. It yields

d2
ar =m—-, ey
where m is an integer specifying the number of subsequent
self-images, d is a diffraction grating period, and A is an
incident wavelength. For even m values, we obtain the dis-
tance between the primary (basic), not laterally shifted in
phase Talbot images, whereas for odd m values we observe

m=0 m

grating

primary

u

I secondary secondary
L
I

L.

r4

Zr

FIG. 1. Diagram of self-images arising behind the diffraction
grating with indicated Talbot length z7, diffraction grating constant
d, aperture width s, wave vector kg as a function of incident angle 6,
and wave vector k, propagating along the z axis.

the secondary Talbot images laterally shifted in phase by half
the period of the diffraction grating, as shown in Fig. 1. More
details are given in Appendixes A and B.

B. Talbot carpet

In order to obtain an analytical expression for the intensity
distribution of the waves after passing through a periodic,
infinitesimally thin diffraction grating, we start with writing
[34] the transformation equation at the grating in z = 0:

Vix,z=+0) =y, z=-0)(x), 2
where v (x, z) represents incident wave and #(x) is a peri-
odic grating transmission function. The term z = —0 means

the coordinate z = 0 at the incidence side of the diffraction
grating, and z = 40 similarly means the coordinate z = 0 at
the transmission side of the grating. Under assumptions that
the one-dimensional periodic structure has an infinite length
along the x axis and the incident beam is a plane wave propa-
gating along the normal towards the grating, the transmittance
of the diffraction grating 7(x) can be defined as

()= 3 Asexp [2”;”"}. 3)

n=—0Q

Formula (3) is a so-called rectangular function, which means
it has a “binary” nature, i.e., a plane wave passes through
the structure when its transparent parts are illuminated, with
the maximum value [7(x) = 1], and does not pass through
it when its opaque parts are illuminated [f(x) = 0]. For the
unlimited (max|n| = oo) rectangular function along the x axis,
components of the Fourier decomposition A, are described by
the formulas

A . (mm) @
n = sinc{ — ),

d
where sinc(w) = sinw/w, and

Ao = s/d. 5)
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FIG. 2. Talbot carpets obtained from Eqgs. (12) and (13) for
31 sum terms and (a) the aperture width s = A = 1 [arb. units]
and diffraction grating constant d =31, and (b) s=A=
0.25 [arb. units], d = 121. The grating is located at the left
edge of each plot.

Substituting Eq. (3) into Eq. (2), using a plane-wave equation
as ¥ (x, z = —0), and remembering that instead of the wave
vector k = 27 /A, its projection on the x axis depending on the
incidence angle 0, kg = k sin 6, should be taken into account,
we get

Y. z=40)= Y Ayexplix(kan +kg)l,  (6)

n=—00

where k; = 21 /d.
Next we extend the function ¥ to describe the wave prop-
agation in the direction of positive z values by

¥ (2) = exp (ik.2), @)

where £, is the axial wave vector associated with propagation
along the z axis.

Therefore the complete expression describing the plane
wave after passing through the diffraction grating at an arbi-
trary distance from it can be written as

Yx,2)= Y Aexplixtkan +kg) +ikzl.  (8)

n=—00

The axial wave number k, can be expressed as the function of

the wave vector k as follows:
K = k2 + (kgn + kg)* — k= VK2 — (kan + k). (9)

Assuming that k > (kyn + kg) and using the Taylor’s expan-
sion so that

kan + kg \ > 1/ kgn + kg \>
k.1 — LJFR ~ kll—-= LJFR . (10)
k 2 k

we finally obtain

(kan + k)
2%

For the purposes of numerical study, we assume that the initial
plane wave incident along the normal to the diffraction grating
plane (@ = 0). Then we obtain the following formula:

- C2m . (2m  n*A
Yi(x,z)~ Z A, exp [zxnd +zz()L — cﬂ)] (12)

k, ~ k — (11)

n=—00

Here, the last term contains the inverse Talbot length formula,
see Eq. (1) form = 1. To generate energy density graphs in the
near diffraction field, we calculate the field intensity function,
i.e.,

1(x,2) = ¥ (x,2) x ¥*(x, 2). 13)

The theoretical results are shown in Fig. 2 for the selected
parameters set and 31 sum components in order to demon-
strate the basic features of these Talbot carpets. They clearly
show the primary and secondary Talbot images, as well as the
lower orders of these images [visible especially in Fig. 2(b)],
which testify to the fractal nature of the effect [35]. Being ob-
tained with the use of a rather general formalism, these results
form the basis for the understanding of and comparing with
the numerical results presented for SWs in the next section.

III. MICROMAGNETIC SIMULATIONS

To demonstrate the Talbot effect for SWs and examine
the theoretical assumptions and predictions of Sec. II B, we
have conducted a series of micromagnetic simulations by
taking into account dipolar interactions and employing MU-
MAX3 software [36]. The simulations have been performed for
a uniformly out-of-plane magnetized 5-nm-thick permalloy
(Py) film, which is characterized by the following mag-
netic parameters: saturation magnetization Ms = 860 kA /m,
exchange stiffness A.x = 13 pJ/m, gyrometric ratio y =
176 rad GHz/T, and damping constant « = 0.0001. The film
has been uniformly magnetized by an external magnetic field,
woHy = 1.1 T (Hy > Ms), which is directed perpendicular
to the film’s plane. The above given magnetic parameters
are kept the same for all performed numerical simulations.
We compute the diffraction of normally incident plane SWs
of frequencies 3 and 40 GHz for various parameter sets of
a diffraction grating. The distance between individual holes
creating the diffraction grating is adjusted to approximately
correspond to the incident SW wavelength (it is calculated
analytically in Appendix E). The simulated steady state, i.e.,
the state with a fully evolved interference pattern, is ana-
lyzed. For better visualization of the Talbot effect, the periodic
boundary conditions have been also used along the z axis
(i.e., perpendicular to the grating plane), at the edges of the
simulated area, so that the diffraction grating was much longer
compared to the near diffraction field range. Further details of
simulations can be found in Appendix D.

A. Spin-wave Talbot carpets and Talbot length

The simulated Talbot carpets are presented as the SW in-
tensity maps, i.e., averaged in time, squared dynamic in-plane
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0 max

FIG. 3. Spin-wave intensity distribution at frequency of 40 GHz
after passing through a one-dimensional diffraction grating with pe-
riod of (a) 80, (b) 200, and (c) 280 nm. The grating is located at the
left edge of each plot.

component of the magnetization, (mz). These diffraction
fields for SWs of frequencies 40 and 3 GHz and for different
values of d are shown in Figs. 3 and 4, respectively. To make a
comparison of interference images for both frequencies more
direct, every periods of the analyzed diffraction gratings were
selected so that for each pair of results plotted in Figs. 3
and 4, the same kind of scaling takes place. In other words,
visually the same (or very similar) carpets can be obtained for
different choices of period and frequency. For more clarity,
compare the peaks in the reciprocal (wave-vector) space, see
Fig. 7. They approximately correspond to the same angle for
40 and 3 GHz, while geometrical parameters were selected
depending on frequency.

Figure 3 shows the well-resolved Talbot carpets for SWs
excited at frequency 40 GHz. It is observed that with the
increasing period of the grating the Talbot length increases
as well, and the effect of self-imaging is well recognizable in
the form of bright focal points. The resulting diffraction field
obtained for 3-GHz SWs (shown in Fig. 4) presents similar
Talbot carpets. However, Talbot carpets for 3 GHz are slightly

IBARRARRERANE

Intensity (arb. uni
0 max

FIG. 4. Spin-wave intensity distribution field at frequency of
3 GHz after passing through a one-dimensional diffraction grating
with period of (a) 400, (b) 1000, and (c) 1400 nm. The grating is
located at the left edge of each plot.

less regular than in the case of 40 GHz. Later in this paper
we will prove that both Talbot carpets for SWs are consistent
with theoretical predictions, in spite of the above-mentioned
irregularity.

The first, naturally occurring compliance test for the ob-
tained numerical results is to compare the distance between
the primary self-images (Fig. 1), Talbot length, with the the-
oretical predictions. For this purpose we use Eq. (1) as the
function of d for the two selected frequencies. As can be
seen in Fig. 5, the simulation results well coincide with the
general theory given in Sec. Il A. Therefore the simulated
interference patterns behave very similarly to the Talbot car-
pets theoretically described in Sec. II B. The Talbot lengths
data used in Fig. 5 come from the simulations carried out
in an identical manner to those shown in Figs. 3 and 4. The
distances between primary Talbot images were measured by
analyzing the lengths between individual subsequent intensity
maximums [i.e., between each pair of integers, m and m + 2,
see Eq. (1) and Fig. 1] on the two-dimensional Talbot carpets.
The measured lengths were averaged to obtain one, possibly
accurate value of Talbot length for each of the selected values
of d.
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FIG. 5. Functions representing the Talbot length depending on
the diffraction grating period from Eq. (1) together with the data
taken from micromagnetic simulations for (a) 40 and (b) 3 GHz.

The obtained results show that the resulting SW Talbot
carpets are in good agreement with the theoretical description
of wave optics. The visualizations in Figs. 3 and 4 show the
distribution of SW intensity in the diffraction field according
to Eq. (12), which has been proven by comparing the numer-
ically obtained and theoretically predicted Talbot lengths in
Fig. 5.

B. Talbot carpets in wave-vector space

The next stage of the results analysis is to apply Fast
Fourier transform (FFT) to the obtained Talbot carpet visu-
alizations in order to transform the results from the space
domain to the wave-vector domain.

To maintain greater accuracy, the absolute amplitude val-
ues of the FFT results (along the z axis) were averaged over
a perpendicular axis. The purpose of this averaging was to
confirm that the frequency set used in the simulations corre-
sponds to the theoretical values of the wavelengths given by
the analytical dispersion relation [37] and observe the discrete
components of perpendicular wave vectors (i.e., transverse
modes). In Fig. 6 we can see that for frequency of 40 GHz,
the wavelength is about 30 nm, while for 3 GHz its value
oscillates at around 160 nm. These values satisfactorily co-
incide with those obtained from the dispersion relation, see
Appendix E. Attention should also be paid here to the peaks
occurring at larger wavelengths: they are associated with the
transition of the plane SW through the periodic object. It is
clear that the larger the value of d is, the more pronounced
the transverse components of the wave vector in our Talbot
carpets are. A plane wave after encountering an obstacle (in
our case, in the form of a hole array) gains a nonzero com-
ponent of the wave vector k, perpendicular to its propagation
direction. Due to the nature of the obstacle, it also has discrete
values being a multiple of 277 /d; see Sec. II B for details.

To find transverse components of the wave vector cocre-
ating the Talbot carpets, we perform two-dimensional FFT.
In Fig. 7, we can see the wave-vector-space maps of SW
amplitude, on the left side for 40 GHz and on the right side
for 3 GHz, along with the marked isofrequency contours of
the dispersion relation lines (IFDRLs) for the given frequency,
and the lines specific for the quantized wave vector k; (lo-
cated on the k, axis). As we can read from these figures, the
results obtained from the simulations agree very well with the

1.0/ (a) Wavelength equal (d) Wavelength equal
to 30.23 nm to 159.56 nm
0.5
T
1.0
% (b) Wavelength equal (e) Wavelength equal
o "  t030.25nm " t0159.29 nm
2
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r_g J
6 0.0 J
1.0
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to 30.13 nm " t0160.42 nm
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FIG. 6. SW spectra with marked first peaks responsible for the
propagation direction wavelength. On the left panel there are spectra
from simulations performed for 40 GHz for period d, which is equal
to (a) 80, (b) 200, and (c) 280 nm. On the right panel, we have
analogous results for 3 GHz for period of (d) 400, (e) 1000, and (f)
1400 nm.
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FIG. 7. Reciprocal-space maps of SW amplitude distribution at
40 GHz for the grating period equal to (a) 80, (b) 200, and (c) 280 nm,
and at 3 GHz for the period equal to (d) 400, (e) 1000, and (f)
1400 nm. Isofrequency contours are presented as red circles. The
quantized wave-vector lines are shown in green.
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theoretical data. Indeed, the individual peaks in the (k;, k)
planes perfectly match the straight lines corresponding to the
multiples of 27 /d provided in Eq. (12). They are also located
directly on the circular isofrequency lines, which confirms that
the simulated propagation of SWs in a thin Py film is isotropic.

The results directly show that the Talbot effect can be
successfully developed with SWs for its subsequent use for
applications. The outcome visible in Fig. 7 also indicates that
by manipulating the reciprocal space of the diffraction image
we can predict its properties and shape in the real space. This
feature is particularly useful, because it opens a way for the
use of the Talbot effect for SWs in the systems, in which
the location of self-images may provide information about
the input signal or the nature of the previously encountered
obstacle.

IV. EXPERIMENTAL FEASIBILITY

The purpose of this work was, among others, to demon-
strate the Talbot effect for SWs and to test its compliance with
theoretical predictions derived from standard wave optics. For
this reason, the system used for micromagnetic simulations
assumed a very small damping constant (@ = 0.0001) as a
factor not significant from the viewpoint of the SW Talbot
effect demonstration. As we have successfully shown and
described the effect, the next step was to test it in terms
of real application, so we decided to increase the damping
constant, as an inevitable parameter in magnonics, to a value
of @ = 0.005, being characteristic for a thin Py film [38]. The
simulation results are shown in Fig. 8.

Based on the simulation results for systems with a higher
damping constant, we can see that the Talbot effect is clearly
visible until the first secondary self-image is formed, so the
diffraction field effective range for this specific set of pa-
rameters can be estimated by calculating the Talbot length
formula (1). It is worth emphasizing that the SW intensity

Intensity (arb.

(b)
2 —— along a line leading from an aperture
5 along a line between apertures
a
5
‘; First secondary Talbot image
= /\J e
(%) |
QC) \j\)‘ \/\/J\ First primary Talbot image
=
£ AL AN A v .
1 3 9 11 13

7
Distance (um)

FIG. 8. Spin-wave Talbot effect in thin Py film with damping
constant & = 0.005 for 3 GHz and diffraction grating period d =
1000 nm as (a) a 2D intensity plot with mapped two lines (red and
green) along which (b) 1D intensity plots were created. Diffraction
grating is located at the left edge, and the line colors are analogous
on both graphs.

level on the first secondary self-image should be measur-
able using microfocus Brillouin light scattering (micro-BLS)
[39,40]. The simulation carried out shows that this effect, al-
though significantly limited, can be observed in systems with
higher damping, and its effectiveness will strongly depend on
the choice of material, its dimensions, and geometry of the
diffraction grating.

V. IN-PLANE MAGNETIZATION

The demonstration of the Talbot effect for SWs was carried
out so far for out-of-plane magnetization due to the isotropic
properties of SW dynamics in this configuration—and thus the
closest to electromagnetic waves in an optically homogeneous
medium. The proof of this can be seen directly in Fig. 7 in
the form of circular [IFDRLs matching with simulations data.
This situation changes if the applied external magnetic field
saturating magnetization is directed parallel (or nonperpendic-
ular) to the plane of the film—then we will observe, especially
in the regime where dipolar interactions play a significant
role, an anisotropy in SW propagation and related caustic
effects [41,42]. We have performed simulations of the Talbot
effect for SWs in Damon-Eshbach (DE) and the backward
volume (BV) magnetostatic wave geometry, where propaga-
tion of SWs is perpendicular and parallel, respectively, to
the direction of external magnetic field, 0.1 T. The results
are shown in Fig. 9, for the frequency equal to 15 GHz, for
which the system anisotropy is already clearly visible in these
magnetization configurations. The material parameters remain
unchanged compared to the simulations in the Sec. III.

The simulations show that it is possible to obtain SW
self-imaging also in much lower fields than required in out-
of-plane cases. This property can be decisive when it comes to

|
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FIG. 9. Spin-wave intensity distribution fields after passing
through a diffraction grating d = 500 nm with corresponding rep-
resentations in reciprocal spaces at frequency of 15 GHz for (a) BV
and (b) DE geometry. Analytical isofrequency contours are presented
as red ellipses, and quantized wave-vector lines separated by &k, =
27 /d are shown in green.
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the use of magnonic systems based on the Talbot effect in real
devices. We can see that Talbot carpets obtained for exactly
the same material parameters differ significantly only under
the change of the external magnetic field configuration. The
anisotropy of SW dynamics brings additional challenges, but
it also extends the possibilities of controlling and manipulat-
ing SWs through an additional degree of freedom, such as an
external magnetic field orientation. This opens the way for fur-
ther research, e.g., on magnonic logic devices that can perform
more than one function by changing the angle or the value of
the external magnetic field, thus changing the distribution of
self-images, which in turn will results in a different signal at
the output. This is a clear benefit of using the Talbot effect for
SWs and is in contrast to analogous devices in photonics and
electronics that cannot be programmed in this way.

The analysis of anisotropic effects associated with the use
of lower frequencies in DE and BV geometries, in combina-
tion with counteracting the damping impact [11], provides a
very interesting issue for further work of the Talbot effect in
magnonics.

VI. CONCLUSIONS

In this paper we have shown by using micromagnetic sim-
ulations based on solutions of the Landau-Lifshitz equation
that the Talbot effect occurs when SWs propagate in a thin
ferromagnetic film after passing through a periodic diffraction
grating created in the film. We demonstrated that the prop-
erties of SW self-imaging are consistent with the theoretical
predictions based on the general formalism of wave optics.
Thus it can be used to describe this phenomenon quite ac-
curately in the considered range of parameter variation. This
compliance cannot be introduced in advance, i.e., based on
the knowledge of the Talbot effect in optics that is described
by Maxwell equations. Rather, the Landau-Lifshitz nonlinear
equation describing SW propagation must be solved for this
purpose. This has systematically been done in our study. By
performing micromagnetic simulations in Py film with char-
acteristic damping, we showed that the observation of the
first secondary Talbot images shall be feasible with standard
micro-BLS. We expect that in yttrium iron garnet thin films,
the (first) primary images can be reached due to ten times
smaller damping [43]. Moreover, we demonstrated that the
Talbot effect exists for SWs in the out-of-plane magnetized
and in-plane magnetized film when the SW isofrequency con-
tours of the dispersion relation are isotropic and anisotropic,
respectively.

The obtained results open an avenue to practical applica-
tions of the Talbot effect in future magnonic devices. Indeed,
it is a promising phenomenon from the viewpoint of analysis,
control, and manipulation of SW propagation. That is why it
may find applications in magnonics, where devices of such a
type could be used in signal processing, e.g., in logic circuits
and SW analyzers. In the coming years, further theoretical
research, experimental demonstration, and development of
prototypes of magnonic devices based on the SW Talbot effect
are expected to occur. This work is the first step in understand-
ing the main features and assessing the potential of the studied
effects.
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APPENDIX A: DERIVATION OF THE TALBOT
LENGTH-MODEL ANALYSIS I

In order to determine the Talbot length, we analyze the
intensity (distribution of a flux density) as a function of a
distance between the grating and a given observation point P
in the diffraction field according to Refs. [44—46].

At point P away from the source (being one of the aper-
tures, see Fig. 10) by distance r,, the resulting wave ¥ (7, t)
can be written as a superposition of the N waves in the follow-
ing form:

(N=1)/2
U(rt)= 5}%( Z Cne” ' [cos (kr,) + i sin (kr,,)]).
n=—(N—1)/2

(AD)
Then the intensity can be defined as follows:

2

2 N=1)/2
1) = (92 1)) = DO ( > cos(kr,,)), (A2)

2
n=—(N—1)/2

where

rw =22+ (nd + x)2.

In order to simplify further analysis, we neglect the constant
(NC)?/2, remembering that N is the number of apertures
of the diffraction grating, C is a numerical factor, and we
consider the calculations for the point P such that x = 0 (as
shown in Fig. 10). This results in the distribution of intensity

(A3)

FIG. 10. Diagram showing the situation described in this section
together with relevant markings—a diffraction grating consisting of N
sources distant from the analyzed point P by r,, where n is a number
indicating the given aperture. The center of the coordinate system is
in the aperture n = 0.
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in the diffraction field being a function of the z coordinate:

N—1)/2 2
I(z,x =0) = ( Z cos( 27”\&2 + (nd)2>> . (A4)
n=—(N—-1)/2

To examine the course of the expression (A4), the following
substitution has been made:

2
Un = T]TV ZZ + (nd)2

As we are looking for the maximum of the (A4) expression in
the z function (self-image of the source intensity), cos? (U,)
has to take the value 1 (for any n). We can easily see that it
takes place only when U,, = mb, for b being a natural number
(b= 0,1, 2, ...). To extract the classical formula for the
Talbot length, now we assume that

(A5)

nd\*
—) «1 (A6)
z
and use Taylor’s expansion as follows:
nd\’ 1 (nd\’
I+ — ) =1+-{—). (A7)
b4 2\ z

All terms of the Taylor series above the second one were
omitted. We can now substitute the approximate result of
(AT)—(AS), and remembering that U, = b, we get the condi-
tion

2z (nd)?

— =b. A8

A + AZ (A8)
Note that the fraction 2z/A is, in fact, a certain integer indicat-
ing the doubled number of wavelengths A along the z axis. We
can therefore substitute 2z/A = by, thanks to which we get

n* d*
Cb—by A
Since for all n there exists an integer b — by that satisfies
Eq. (A9), every aperture (i.e., every circular wave source)
contributes to the resulting phase at a certain position, which

can be finally found by using the following formula for the
Talbot length:

z (A9)

d2
ir =m-—,
A
where m is an integer specifying the number of subsequent

self-images.

(A10)

APPENDIX B: DERIVATION OF THE TALBOT
LENGTH-MODEL ANALYSIS II

Another, slightly more intuitive method of determining the
Talbot length [45,47] uses the fact that each order (greater than
0) of the wave front which has passed through the diffraction
grating must have, in the direction parallel to the apertures
plane (i.e., along x axis), a period that is a natural multiple of
the distance between them:

br, =d, (B1)

where b denotes natural numbers, b= 0,1, 2, ..., and A, is
the distance between wave fronts along the x axis (x direction

1st diffraction order 2nd diffraction order

FIG. 11. Propagation scheme of two diffraction orders of the
plane wave fronts behind a diffraction grating, in accordance with the
rule described by Eq. (B1). Gray lines are the wave fronts with equal
phases, while the black arrows indicate the wave-vector directions.
Wavelength representations on the axes are marked below.

modulation, for simplicity called ‘“horizontal wavelength,”
while 2, is the “vertical wavelength,” remembering that they
are not wavelength projections). The described physical situ-
ation is presented in Fig. 11.

In order to find the dependence between those particular
wavelengths, the geometrical property presented in Fig. 11
is used, from which a simple relationship can be obtained as
follows:

Lol (B2)
A2 A2 Y

Using the above introduced Eq. (B1) and simple mathematical
derivations, we get the following formula for the “vertical
wavelength”:

A
A= —7—— (B3)

Ji-cke

As we know, a period of repetitive intensity modulation in
the direction parallel to the z axis, after passing through
the periodic structure, has a strictly defined value. Therefore
we considered points on this axis for which the secondary
waves coming from each of the apertures will have the same
phase—it is the condition of occurrence of the constructive
interference. The phase distribution of the waves along the z
axis is introduced as

2
¢, =kz=—z (B4)
Az

For the points on the z axis that are a multiple of the wave-
length A, the phase will be constant and equal to 2w. By

combining Eqgs. (B3) and (B4), we obtain the phase distribu-
tion of the diffraction image along the z axis:

2z a2
¢=T 1—(d). (B5)

o
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Assuming that the grating constant is much larger than the
wavelength, it can be written

) (B6)
y .
Next, again using Taylor’s expansion, we obtain
2nz7 1 an\? 2wz Az
~—|1—-=— =— - . B7
¢ A |: 2( d ) ] A d? ®7)

Having already expressed the phase distribution in the
diffraction field along the z axis, we could think about partic-
ular points we are interested in. As we know, the Talbot length
determines the distance between the successive maxima of
intensity perpendicular to the diffraction grating plane and
coming from one of the apertures. Obviously, the maximum
intensity also occurs on the apertures themselves (at x = 0).
Therefore their subsequent repetitive modulation will be the
reproduction of the image from the beginning of the system,
and thus the reconstruction of the diffraction grating itself
(self-imaging) takes place. We are looking for a constructive
interference along the z axis for each of the values x = nd,
which correspond to the subsequent apertures positions. The
first term on the right-hand side of Eq. (B7) does not depend
on which aperture we choose as a reference point, so we
should make its second term a multiple of the full period.
Then, this formula could fulfill the condition of constructive
interference, so we can write in our case

2wz
¢Z - T - 27'[]12.

(BY)
Comparing Eq. (B7) with the above-given condition of

constructive interference, we can see that they are identical

only if Az/2d* =1, which leads us to the desired Talbot

length, i.e.,

_2d?

ir = P

In Eq. (B9) the obtained Talbot length is multiplied by 2,
which can be omitted in the general case. As we can see in
Eq. (1), the factor by which d?/x is multiplied determines
only the order, i.e., the number of the Talbot image analyzed
in the sequence, and the fact whether the self-image is shifted
laterally in a phase (secondary image, for an odd factor) re-
garding the original image or is it the phase compatible with
that image (primary image, for an even factor), see Fig. 1.
Equation (B9) gives the distance between the source and the
first-order primary self-image.

The laterally shifted Talbot image would be, in turn,
extinguished by taking over the condition for destructive in-
terference,

(B9)

(B10)

which yields

r=—, (B11)

being the Talbot length for the odd factor m = 1, according to
Eq. (1).

APPENDIX C: ANALYSIS OF COMPUTATIONAL
UNCERTAINTIES

It should be emphasized [48] that the analytical formulas
obtained in Appendix A and Appendix B give correct results
in the systems for which the approximations

d> A (C1)

and

z>d (C2)

are applicable. Thanks to them, it was possible to apply Tay-
lor’s expansion in each of the cases described by Eqs. (10),
(A7), and (B7). While the condition (C2) can be easily met in
most cases, the condition (C1) is no longer so obvious. Indeed,
for diffraction gratings whose spatial period is comparable
to a given wavelength, then Eq. (B9) can cause significant
discrepancies as compared to experimental or numerical data.

In the case when d ~ X, the verification of experimental
and numerical results is based on the exact, general solution
derived by Lord Rayleigh in 1881 [19], defining the Talbot
length as

A
= — (C3)

Llyen. = .
1= /1=y

To quantify the difference of results obtained from Eqgs. (B9)
and (C3), a graph of the function z7(d) generated from the
both equations is presented in Fig. 12.

The discrepancy function (expressed in percent) is defined
as the relative difference of values obtained from Eqs. (C3)
and (B9):

_ et — 2l

8 x 100%. (C4)

yen,
Analyzing the results presented in Fig. 12, we can conclude
that the discrepancy function increases as the diffraction grat-
ing period decreases and reaches 100% when d = A. Thus it is
justified to use Eq. (B9) only in the systems where the grating
constant is properly greater than the incident wavelength;
otherwise it is necessary to use its general form (C3).

zr{A]

20 -1 100

L5 2.0 25 3.0

FIG. 12. Graph of the Talbot length as a function of the diffrac-
tion grating constant. The general form and the form derived in this
paper are shown by blue and green lines. The discrepancy function
is shown by the red line.
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FIG. 13. The dispersion relation for 5-nm-thick Py film in the
presence of a 1.1-T out-of-plane magnetic field. The two marked
values of the wave vector correspond to 3- and 40-GHz frequencies.

APPENDIX D: SIMULATIONS DETAILS

The performed simulations consist of two parts. First,
the static magnetic configuration has been reached which, in
turn, was perturbed by a source emitting plane SWs incident
normally on the grating. SWs have been excited by the con-
tinuously applied RF field, localized on the left side of the
diffraction grating within a 15-nm-wide region. SWs have
been continuously induced until reaching the resultant steady
state, i.e., the state when a fully evolved interference pattern
is formed. Along the film’s edges perpendicular to the grat-
ing, the periodic boundary conditions have been introduced
to mimic an infinitely long diffraction grating. In contrast,
at the edges parallel to the grating, the absorbing bound-
ary conditions with a gradually increasing damping constant
have been used [49]. The out-of-plane simulations have been
performed for two frequencies, 40 and 3 GHz, which cor-
respond to the wavelengths 31.2 and 156.9 nm, respectively
(see Appendix E). Pure exchange SWs are definitely eas-
ier to model for higher frequencies, since the wavelength
for 40 GHz is only a few times greater than the exchange

length [lx =
not yet accessible experimentally. Therefore we have decided
to perform simulations for a more realistic regime to check

whether this effect is obtainable for frequencies and wave-
lengths available in contemporary laboratories, which would

2Aex/(oM3) = 6 nm]. However, this case is

directly affect its application potential. We also investigated
the spin-wave Talbot effect in BV and DE configurations for
15 GHz, where the isofrequency contours indicate that the
calculations were made for the dipole-exchange regime, i.e.,
both dipole and exchange interactions play a significant role.
A much smaller required external magnetic field (in plane, 11
times smaller than out-of-plane in our simulations) is a step
towards experimental prototypes.

For each analyzed SW frequency, the studied system was
discretized by the 5 x 5 x 5 nm? unit cells.

APPENDIX E: SPIN-WAVE DISPERSION

The analytical theory of SWs in thin ferromagnetic films
was developed by Kalinikos and Slavin in Ref. [37]. Follow-
ing that theory, in the linear approximation the dispersion
relation, where wave vector k propagates in the film plane
at an angle ¢ with respect to the direction of the external
magnetic field Hy projected onto the film plane, and the Hy
and static magnetization vector Mg form an angle ¢+ with the
normal to the film plane, takes the form

o = (on + Louk®) (on + Lowk® + onF (¢, 9)). (E1)

where w = 27 f is the angular frequency of SWs, f is the
frequency, 1 is the vacuum permeability, wy = |y |pno(Hy —
Ms), wm = y HoMs, and the function F (¢, ©) is defined as

F(p,9) =P +sin*(®)

.2
X |:1 —P(l—l—cos2 (go)—|—MSP(1_P)Sln(W>],

Hy + 12 Ms
(E2)

where
1— e—kL
P=1———, (E3)
kL

and L is the thickness of the analyzed ferromagnetic film. The
contribution of dipolar interactions to the SWs dynamics is
expressed by the term F (¢, ), and the effect of the exchange
interaction is represented in Eq. (E1) by the terms proportional
to k2.

The dispersion relation of the simulated Py film is pre-
sented in Fig. 13. We can see that for 40 GHz the wave-vector
value along the z axis k, is equal to 32.01 rad/um, which
corresponds to the wavelength A, = 31.24 nm. For 3 GHz,
k, = 6.37 rad/um, so A, = 156.92 nm.
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5.1.2 Spin-wave Talbot effect in various multimode waveguides (P2)

Building on previous work demonstrating the Talbot effect for spin waves (P1), this paper
advances the study by investigating self-imaging in various multimode waveguides. We consider
thin ferromagnetic films with a series of single-mode spin-wave sources/inputs, and investigate
how these sources induce the self-imaging effect. Through micromagnetic simulations, we
systematically analyze how the phenomenon depends on key parameters, including the waveguide
width, the number of inputs, and their spatial periodicity. These findings lay the foundation for
the development of advanced magnonic devices that exploit the Talbot effect, such as the logic
systems discussed in the next section (paper P3).
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Abstract—Self-imaging of waves is an intriguing and
spectacular effect. The phenomenon was first observed
for light in 1836 by Henry Fox Talbot and to this day
is the subject of research in many areas of physics,
for various types of waves and in terms of different
applications. This paper is a Talbot-effect study for spin
waves in systems composed of a thin, ferromagnetic
waveguide with a series of single-mode sources of spin
waves flowing into it. The proposed systems are studied
with the use of micromagnetic simulations, and the spin
wave self-imaging dependencies on many parameters are
examined. We formulated conditions required for the
formation of self-images and suitable for experimental
realization. The results of the research form the basis for
the further development of self-imaging-based magnonic
devices.

Index Terms—magnonics, spin waves, Talbot effect,
self-imaging, waveguides.

I. INTRODUCTION

Due to their unique properties, such as a strong depen-
dence on the material parameters and the magnetization
orientation in relation to the direction of propagation or
the film plane, spin waves (SWs, i.e, coherent magnetization
disturbances propagating in magnetic materials in the form
of waves) are a fascinating research object[1]. Their dynamic
properties are related to coexisting short-range, strong, and
isotropic exchange interactions and long-range, weak, and
anisotropic magnetostatic interactions. Moreover, one of the
essential advantages of SWs as an information carrier is
the fact that their frequency spans range from a few to
hundreds of gigahertz, with the corresponding wavelength
range extending from micrometers to tens of nanometers.
All this adds up to the type of medium that can be influ-
enced and configurable on many levels, making them flexible
for applications in devices that can potentially support or
replace conventional electronic solutions[2], [3].

Usually, the transmission and processing of SWs in narrow
waveguides[4], [5] that are often coupled[6] are considered
in magnonics. Another promising line of research is the use
of elements much wider than the waveguides themselves
to redirect[7], [8], [9] and process SWs[10], [11], [12], [13],
[14]. These elements, being multimode waveguides, can
be referred to as processing blocks. Most commonly, SWs
are delivered to these elements via a single or a group
of narrow waveguides. Subsequently, these entering SWs
interfere with each other. Moreover, this interference can be
further molded in processing blocks by properly modifying

the medium where SWs propagate. It can be achieved by
the introduction of defects[14], programmable magnetic ele-
ments on top of that region[12], or utilization of noncolinear
magnetization textures[15]. The main advantage of this
approach is the possibility of using interference effects to
process SW-carried information[12], [13], [14].

It is important to note that as waves fall into the process-
ing block from a group of evenly spaced waveguides, the in-
terference image with the same symmetry as the waveguide
array is formed. There is a strong analogy to the Talbot
effect[16], [17] that was firstly observed for electromagnetic
waves. It results from waves interference coming from a
series of periodically arranged sources. The most visible
distribution of self-images, the so-called Talbot carpet, is
created for infinitely many sources, corresponding to an
infinitely long diffraction grating through which a plane
wave passes. This phenomenon is extensively studied in
recent years for many types of waves[18] and found already
applications, for instance to improve x-ray imaging[19]. It
has been theoretically demonstrated that this effect can
occur also for SWs[20]. However, the conditions of the
formation of the SWs’ self-images in a thin ferromagnetic
multimode waveguide have never been studied.

In this paper, we numerically investigate prototypes of
SW multimode waveguides with multiple input single-mode
stripes (see Fig. 2) and use the phenomenon of multimode
interference (MMI). The fact that self-imaging is here an
inherent property of the system allows assuming that in this
type of device the interference images will form patterns
analogous to the classic Talbot carpets. We will analyze
how the width of the multimode waveguide, the number
and separations between input waveguides influence the
interference pattern, and finally we will discuss prospects
for applications. We believe that due to the advantage
of magnonic systems over the photonic ones in terms of
miniaturization, the self-imaging effect may result in effi-
cient magnonic devices, such as logic gates, couplers, multi-
/demultiplexers, or phase controllers.

The paper is organized as follows. In Section II we
describe system and method used in our investigations. In
Section III we present the simulation results for different
geometrical parameters and in Section IV we discuss the
influence of damping on formation of the self-images. The
paper is finishing with conclusions of the results.



II. MODEL DESCRIPTION

A. Self-imaging

The phenomenon of the self-imaging of waves is well
described and widely used today[18], [21]. It dates back to
the early 19th century when Henry Fox Talbot first observed
it for light passing through a diffraction grating and a
lens with high magnifying power[16]. The Talbot effect is
the result of waves’ interference as they pass through any
periodic aperture. In its close diffraction field, at strictly de-
fined distances from the sources, replication of the periodic
structure — self-imaging will take place [see Fig. 1(a)]. The
effect is the more visible, the wider diffraction grating is in
relation to the wavelength of waves passing through it. For
an infinitely long periodic grating (or sources array), one can
obtain the Talbot carpet — ideal and repeated recreations
of the periodic structure in every period, so-called Talbot
lengths, described by a formula

zr =nd? /), (1)

where n is an integer specifying the number of subsequent
self-images, d is a period of the object, and A is a wavelength.
The theory of the Talbot effect has been described many
times for various types of interactions [20], so in this paper,
we will limit it only to the general description.
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Figure 1. Illustrative self-imaging representation for (a) an infinitely
long array of sources on the left and (b) for a finite number of inputs,
where the near diffraction field quickly turns into the far diffraction
field, and the Talbot effect disappears. In both cases, SW frequency
is equal to 40 GHz, inputs period is 120 nm and infinitely wide
waveguides were assumed.
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Figure 2. Scheme of a M-input multimode device.

B. Micromagnetic simulations

In order to present magnonic systems based on the
self-imaging effect with MMI, the micromagnetic package

MUMAX3 was used[22]. The studied systems were
discretized uniformly by 5 x 5 x 5 nm® unit cells, with one
cell per thickness. The following magnetic parameters were
applied in the simulations: saturation magnetization of
Mg = 860 kA/m, an exchange constant of A =13 pJ/m,
these are the parameters related to permalloy, and initially
negligibly low damping constant o = 107°. In each of
the analyzed cases, the waveguide was homogeneously
magnetized by the external magnetic field of the value
uoHop = 1.1 T (Hy > Mg), directed perpendicular to the
plane of the system. Low amplitude harmonic SWs were
excited continuously by a microwave antenna placed on
each of the input single-mode waveguides of 40 nm width,
at a distance of 90 nm from the multimode part (see Fig.
2), until the system reached a steady state, i.e. a state
where the interference image in the multimode layer is
no longer dependent on time. The analyzed frequency
of the SWs in our systems is 40 GHz enabling to excite
exchange interaction dominated SWs of the wavelength
(A = 68.83 nm) only a dozen times greater than the

exchange length (lex = 1/2A/(uoMZ) = 6 nm). To illustrate

the propagation of SWs through the system, the intensity
maps were calculated as the square of the m,-component of
magnetization and averaged over time <m320> . after reaching
the steady state.

III. MULTIPLE, LONG-RANGE SELF-IMAGING IN
MULTIMODE WAVEGUIDES

The simulations were divided into three parts, where the
Talbot effect in the M-input MMI systems was examined in
terms of parameters like the distance between the inputs,
the number of inputs, and the multimode waveguide width.
In each of the presented cases, the impact of changing
only one of these parameters was analyzed, leaving the
other unchanged. This allows to access the possibilities of
manipulating interference images in terms of their best use
in future magnonic devices.

1) Variable distance between inputs: The first studies
are for systems with a variable distance between the in-
puts while maintaining a constant number of them and
unchanged width of the system. We assume M=8 inputs
and the waveguide width equal 1.64 pm.

The analysis of the SW interference images in the multi-
mode layer in Fig. 3 clearly shows that the interference first
causes the formation of self-images in the near diffraction
field, then due to the MMI, the structure is reconstructed
further away from the source. As the distance between the
inputs increases, so does the distance at which the repro-
ductions of Talbot carpets appear. By further increasing
the distance between the inputs while keeping the condition
of their number and system width constant, we will come
to the point where the series of inputs will span the entire
width of the waveguide (see Fig. 4).

For large distances, when the inputs fill whole waveguide
width, it can be noticed, that in near field the self-imaging
effect is very clear. The first Talbot images (a series of first
reproductions of periodic sources, laterally shifted in phase
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Figure 3. Intensity maps of SWs entering from a series of 8 single-mode
40 nm wide waveguides (on the left) into a 1.64 pm wide multimode
film. The distance between the sources is respectively (a) 80 nm, (b)
110 nm, and (c) 140 nm. The red and green vertical lines represent the
cross-section along which the normalized SW intensities as a function
of width are plotted (on right).

Figure 4. Intensity maps of SWs in the near diffraction field of
multimode, 1.64 pm wide waveguides, with 8 inputs separated by (a)
170 nm and (b) 200 nm.

by half of their period) are very similar to the theoretical
ones [see Fig. 1(a)], despite the finite dimensions of the
system. The difference is only visible at the edges of the
system, where the resulting SW focus points are clearly out
of line with the others, disturbing the self-imaging. For the
first two Talbot lengths (see Eq. 1), this disturbance does
not significantly affect the phenomenon, however, for further
distances the pattern regularity is increasingly disturbed.
Nevertheless, due to reflections from the waveguide edges,
the reproductions of the entire patterns are created also at
a distance of a dozen nm. However, the self-images resulting
from the Talbot effect in the near field are more interesting
from the application point of view, because they maintain
their regularity and high intensity (see the insets on the
right side of Fig. 3), even in materials with relatively high
damping, as will be discussed in Section IV.

2) Variable number of inputs: The second type of nu-
merical simulation is performed to check how the change
in the number of single-mode inputs affects the formation
of both Talbot carpets and their reproductions on the
further sections of multimode waveguide. Analogically to

the previous paragraph, the width of the system and the
distance between the sources will remain unchanged here,
i.e.,, 80 nm and 1.64 nm, respectively.

max

Figure 5. Intensity maps of SWs in a 1.64 pm wide multimode film
coming from (a) 3, (b) 5, and (c) 10 single-mode inputs, separated by
80 nm. The red and green lines represent the cross-section along which
the normalized SW intensities as a function of width are plotted (on
right).

In Fig. 5 it can be seen that, in contrast to the distance be-
tween the inputs, their number does not affect the distance
at which the Talbot pattern is reconstructed in a multimode
waveguide. However, for a small number of sources, this self-
imaging in far field practically does not occur — for three
sources in Fig. 5(a), a specific interference pattern can be
seen, but with significantly lower intensity. Only in the case
of 5 or more sources, we can observe the reproduction of the
near diffraction field.

3) Variable MMI waveguide width: The last type of sys-
tem in which we decided to analyze SW self-imaging are
multimode waveguides with different widths. Here again,
as in the previous cases, the remaining parameters tested,
i.e., the number and the distance between the inputs, are
constant, M=10 and 80 nm, respectively.

The simulation results presented in Fig. 6 clearly show,
following the intuition from geometric optics, the tendency
of the SWs’ re-focus area to move away from the inputs
with increasing width of the waveguide. It points that
the width of the multimode waveguide and its edges are
important factors influencing reproduction of the pattern in
far field. Comparing Figs. 6(a)-(c), it can be seen that the
interference image shown in Fig. 6(a) most closely resembles
the classical Talbot image, a similar conclusion may be
drawn from comparing Fig. 3(a)-(c). This indicates that by
properly choosing the width of the multimode waveguide,
the number and a separation between the input single-mode
waveguides, one can reproduce a Talbot carpet in relatively
far distances in multimode waveguides, the same as for an
infinite number of periodically arranged SW sources. This
is because, the lateral edges on which reflections occur can
act similarly to periodic boundary conditions. This means
that for materials with low damping, it can be possible
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Figure 6. Intensity maps of SWs entering from a series of 10 single-
mode 40 nm wide waveguides (on the left) into a (a) 1.25 pm, (b)
1.75 pym and (c) 2.5 pm wide multimode film. The distance between
the sources is equal in all cases 100 nm. The red and green lines
represent the cross-section along which the normalized SW intensities
as a function of width are plotted (on right).

to transmit information about a geometry of a diffraction
grating/array of sources over long distances thanks to the
self-imaging phenomenon.

IV. IMPACT OF GILBERT DAMPING ON THE
SELF-IMAGING EFFECT

The Talbot effect in finite systems of thin ferromagnetic
layers can be used in two ways. (i) At short distances
from the source array, as we have presented in Fig. 4
for a wide distribution of a number of sources. Here the
near diffraction field is distributed over the width of the
multimode waveguide and is close to the classic Talbot
carpet, and it doesn’t significantly depend on the edges of
the waveguide (see Figs. 3-6). (ii) As we presented in the
other examples, where the near field pattern is reproduced
over longer distances. Of course, especially the latter case
raises the question of the SW damping and whether this
effect is achievable experimentally.

On the basis of micromagnetic simulations, we analyzed
the influence of a damping constant on the self-imaging
effect, by simulations with the two values of a: 3.2 x 1074
[characteristic for yttrium iron garnet (YIG)], and a =
5x 1073 (permalloy). The remaining material parameters,
characteristic for permalloy, are unchanged in relation to the
previous simulations. YIG and permalloy are some of the
most popular magnetic materials in magnonics due to low
damping; therefore, the choice the tabular damping values
characteristic for these materials as an example is justified.

Figure 7 shows the SW amplitude distribution for two
types of system geometries, with smaller separation between
the inputs [(a) and (c)] and large separation [(b) and
(d)], for the two values of a. The conclusion that arises
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Figure 7. SW intensity maps in multimode waveguides with Gilbert
damping factors equal to (a), (b) @ =5x 1072 and (c), (d) a=3.2x
10~%. The graph (e) shows the intensity of SWs on a line from the
fourth source for both analyzed damping values (and smaller input
period cases). The Talbot length is marked as zr, while the length of
reproducing self-images as znvr-

is certainly a large decrease in the intensity of self-images
in the far diffraction field for the « of permalloy — here
detection by measuring techniques such as micro-BLS may
be limited only to classic Talbot images formed near the
source array. However, in systems with small damping, the
situation is much more promising — reproductions at the
distance of even a few pm from the sources should be
measurable using standard techniques for measuring the
dynamics of magnetization.

Figure 7(e) shows the SW intensity as a function of the
distance from the array sources along the line crossing the
fourth source. It can be clearly seen that in the system with
the damping constant characteristic for permalloy (orange
line) the decrease in SW energy by 50% occurs after around
700 nm, thus only classic Talbot effect (z) can be exploited.
For YIG-value of damping the signal decreases by 50%
only after around 8 pm, which allows for observation at
least 3 reproduced Talbot images (3zymr) and makes it
a good candidate for applications. It is also important to
point out that both YIG, permalloy, and materials with
a slightly higher damping factor can be used in systems
where the Talbot effect in the near field will be used. This is
especially promising for future potential magnonic devices
where miniaturization, e.g. computing systems, will be a
key.

V. CONCLUSIONS

The propagation of high-frequency SWs in multimode
structures is of a great interest. Such studies allow under-
standing the dynamics of SWs in structures that can replace
conventional CMOS systems in high-speed signal process-
ing, logic circuits, and information storage technologies in
the near future. Using different types of system geometry,



materials and changing the direction and value of the
external magnetic field, we can manipulate the interference
field generated in the multimode part.

The combination of the Talbot effect with MMI was the
core of the structures proposed in this paper. We showed
that a series of single-mode SW sources causes the forma-
tion of self-images in multimode waveguides in the near
diffraction field and also to be transferred for much further
distances creating reproduced Talbot carpets due to MMI.
The quality of these reproduced carpets depends on the
multimode waveguide widths, edges and the arrangement
of single-mode waveguides. In materials with low Gilbert
damping, this may result in focusing SW beams at far
distances from the sources, while the near diffraction field
may retain properties close to the theoretical undisturbed
Talbot carpets even for moderate values of damping.

The out-of-plane alignment of the magnetization used in
the paper is advantageous in the analysis of Talbot phe-
nomena due to the circular shape of isofrequency contours.
It makes the analyzed magnonic systems a good analogue
of the systems known from photonics. However, there are
still a number of technical issues, including high frequency
and the value of the external magnetic field assumed in our
simulations required to uniformly magnetize the system.
One of the solutions may be the use of in-plane magne-
tized ferromagnetic layer, which would certainly contribute
to lowering these two parameters, but at the same time
introducing an anisotropy to the system.

We hope that this work will draw the attention of the
magnonic community to the potential of SW self-imaging
in many sorts of future technological solutions.
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5.1.3 Concept of a magnonic logic device based on the self-imaging phe-
nomenon (P3)

This work explores a novel approach to incorporate spin waves into the computing paradigm,
with the goal of advancing the integration of magnonics with conventional complementary metal-
oxide-semiconductor (CMOS) technology. We exploit the Talbot effect in the spin-wave domain
to design and simulate interference-based logic systems. By utilizing self-imaging phenomena
in thin, ferromagnetic multimode waveguides, we demonstrate that it can be effectively used
to implement fundamental logic operations — a concept that, to the best of our knowledge,
has not yet been explored. Using micromagnetic simulations, we design and evaluate spin-
wave-based lookup tables (LUTs) that exploit self-imaging and demonstrate its high degree of
programmability and scalability. This design allows for flexible control of spin-wave phases
and amplitudes, a capability essential for implementing a variety of logic operations. The
ability of these LUTSs to support multiple logic configurations makes them highly suitable for
field-programmable gate array (FPGA) applications where reconfigurability is essential. This
work presents a novel use of spin-wave self-imaging as a mechanism for logic reconfiguration.
Such functionality has the potential to complement conventional CMOS technology and pave
the way for energy-efficient, magnon-based computing architectures.
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Self-Imaging Based Programmable Spin-Wave Lookup Tables

Mateusz Gofebiewski,* Pawet Gruszecki, and Maciej Krawczyk

Inclusion of spin waves into the computing paradigm, where complementary
metal-oxide-semiconductor devices are still at the fore, is now a challenge for
scientists around the world. In this work, a wave phenomenon that has not
yet been used in magnonics-self-imaging, also known as the Talbot effect,

to design and simulate the operation of interference systems that perform
logic functions on spin waves in thin ferromagnetic multimode waveguides
is utilized. Lookup tables operating in this way are characterized by high
programmability and scalability; thanks to which they are promising for their
implementation in field-programmable gate arrays circuits, where multiple

logic realizations can be obtained.

1. Introduction

Over the last decades, there has been a steady increase in the
demand for computing power and multipurpose systems for
information processing. One of the strategies is the utiliza-
tion of reprogrammable integrated circuits whose functionality
can be determined and changed multiple times after manufac-
turing. The most popular class of such circuits are field-pro-
grammable gate arrays (FPGAs),l!! which allow for hardware
implementation of customer-specified functions. Moreover,
FPGA-based devices can on-demand, partially or even entirely,
change their configuration during their operation. In a nut-
shell, an FPGA is made up of interconnected (by routing chan-
nels) configurable logic blocks (CLBs) that perform specific
logic functions (see Figure 1). FPGA structures contain from
tens to thousands of CLBs with a very diverse structure. The
essential elements of the CLBs are multi-input RAM-memory-
based lookup tables (LUTs) that realize the array indexing oper-
ation, that is, they can be used to implement any logic function.

Reprogrammable logic circuits such as FPGA could benefit
greatly from using beyond-CMOS solutions such as the replace-
ment of the electric charge as an information carrier, by spin
waves (SWs) that are coherent and precessive magnetization
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oscillations propagating without charge
transfer in magnetic materials.? This
property, combined with a wider range of
available frequencies than in electronics
and the ability to encode information both
in amplitude and phase, makes SWs an
important candidate for an information
carrier in a new generation of computing
devices, where Joule-Lenz heat and other
obstacles may be significantly reduced.®!

Magnonic circuits (systems utilizing
SWs)IoU may consist of waveguides
through which SWs propagate,12~5
and interference areas at crossings, for
example, for creating majority gates.[16-20]
The waveguides may also couple with other waveguides?'?2 to
implement a logical operation. In this manner, it has been pos-
sible to demonstrate a 32-bit magnonic full adder® and SW-
based approximate 4:2 compressor.23l Another strategy is to use
wide ferromagnetic film areas for SW operation and narrow
waveguides as SW inputs. This approach was used to redi-
rect?*26] and process SWs.[?-32l Operation of these systems is
based on the interference of incoming SWs. Therefore, a local
modification of the medium (the magnonic equivalent of the
refractive index) in which SWs propagate is crucial to design
and optimize its functionality. It was recently shown that it
could be achieved by an introduction of defects in so-called
inverse design approach,??l placement of programmable mag-
netic elements on top of that region,’% or utilization of non-
colinear magnetization textures.?>>3°l This interference based
strategy appears promising also for the realization of physical
neural networks operating on SWs.2%33] Thereby, interference
effects open a promising avenue for the development of SW-
based beyond-CMOS solutions.

A plane wave passing through a system of periodically
spaced obstacles (diffraction gratings or holes) interferes, cre-
ating a characteristic diffraction pattern in the near field, repro-
ducing the grating image at specific distances from the input
apertures. This phenomenon is known as the Talbot or the self-
imaging effect, and was observed for light already in the 19th
century.?®l The resulting interference pattern is called a Talbot
carpet, and we have recently theoretically demonstrated that
this effect can also occur for SWs.[¥”! The properties of Talbot
carpets created by SWs strongly depend on material parame-
ters, geometry, type, thickness of a magnetic material, and on
dynamic parameters such as wavelength, orientation, and the
value of an external magnetic field.

Here, we exploit the self-imaging phenomenon occurring
in a thin ferromagnetic multimode waveguide with SWs intro-
duced by periodically spaced single-mode input waveguides.
SWs entering the multimode waveguide have a controllable
phase. In particular, we present a new class of reprogrammable
magnonic blocks implementing array indexing operations.

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH
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Figure 1. Schematic structure of the FPGA matrix with the CLB build inset (DFF: “delay” flip-flop circuit; MUX: multiplexer; Clk: clock; Rst: reset).

Therefore, we propose a fully magnonic LUT, an essential
FPGA building block. We show that our device can be relatively
easily configurable by dynamic parameters, that is, without the
need to physically change the structure. More specifically, in
the paper we describe a logic block with eight magnonic input
waveguides—six of them having a control function (control
input), that is, the responsibility for defining the functionality
of our device and the other two feeding the SW carrying infor-
mation. On the opposite side of the device, in well-defined posi-
tions, there are five outputs. Our LUT is programmed by the
phase of the SWs entering the control inputs, and the output
logic level is encoded in the SW amplitude. Therefore, we
demonstrate 2-input and 5-output LUT. The proposed idea of
the self-imaging magnonic LUT can be further developed to
include more inputs/outputs and integrate them into CLB and
FPGA circuits. In addition, most of the research provided here
was obtained using an efficient technique for calculating the
steady-state SW amplitude distribution, specifically developed
for this purpose. This method provides a satisfactory approxi-
mation of full micromagnetic simulations and, at the same
time, is several orders of magnitude faster.

2. Results

2.1. Talbot Carpet from a Finite Source Sequence

Let us consider a 5 nm thick yttrium iron garnet (YIG) film,
uniformly magnetized by the out-of-plane magnetic field of
value tioH = 1.1 T with 1, being the permeability of the vacuum,
where SWs propagate at frequency f= 40 GHz (see the mag-
netic parameters and simulation details in Experimental

Adv. Electron. Mater. 2022, 2200373 2200373 (2 of 11)

Section). We have chosen this arrangement for the simplicity of
calculation, and it guarantees the isotropic propagation of SWs
of several dozens of nanometers (i.e., in the so-called exchange
regime). The effect of the anisotropy of the dispersion relation
on self-imaging is discussed in ref. [37].

First, let us analyze the Talbot carpet obtained by interfer-
ence of incident SWs at f= 40 GHz from a finite sequence of
periodically arranged 40 nm wide waveguides with a period
equal to 200 nm, supplying SWs to a thin film. We study
the effect of small changes in the width of a thin film on the
quality of the interference pattern (as shown in Figure 2). It is
clearly visible that the self-images obtained in the systems with
the width equal to the exact multiple of the period (multiplied
by the number of inputs), here being 1.60 um, are the most
accurate and closest to those with an infinitely wide layout for
which the Talbot effect is theoretically described.2 A slight
change in this parameter causes the interference pattern to
become distorted (Figure 2a,b), and the self-images are less
accurate. In this analysis, the most significant result is that,
despite the disturbance of the arrangement that may occur in
experimental implementations, the Talbot images remain at
the same distance from the sources, and their distribution is
qualitatively similar (green dashed rectangle in Figure 2) after
spatial averaging by the detectors. Despite the high sensitivity
to geometric changes, the Talbot effect retains its properties,
especially as we analyze changes in the intensity of the self-
images in relation to their calibration distribution rather than
the top-down values.

Due to the limited dimensions and the number of sources
entering the multimode waveguide, it is not possible to rec-
reate an ideal Talbot carpet in a waveguide with finite widths.
However, it is visible that the self-imaging effect is almost

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH
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560 nm
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Figure 2. Comparison of Talbot carpets (SW intensity distribution in a
near diffraction field) obtained from micromagnetic simulations for the
same parameters except for the system width. In (a—c), the width is suc-
cessively reduced by 20 nm for an unchanged input period of 200 nm.
The region of self-image occurrence (each time at a distance of 560 nm)
is marked with a green dashed rectangle. In each picture the input source
is placed at the top.

perfect when the sources are spread over the entire width of
the system.1®l Consequently, we are able to acquire high-quality
self-images at a distance as close to the Talbot theoretical length
as possible, which is described by the following equation

zr =nd’ A Q)

where d is the period of the input waveguides, A is the wave-
length, and n is an integer specifying the number of subse-
quent self-images (here we consider only n = 1). It is crucial that
zr depends only on the period and wavelength of the waves that
creates the interference pattern.

It is also worth emphasizing the scalability of this effect—
the presented results are correct for each range of system
dimensions/spin wavelengths, where the proportions remain
the same as long as the propagation of SWs is isotropic
and are only limited by technical capabilities. In this paper,
we analyze systems with sources distributed over the entire
width of the waveguide, with the distance between them
equal to 200 nm. This is justified by the need to control and
manipulate self-images, which is favored by a Talbot length
that is at least an order of magnitude longer than the wave-
length. These issues will be discussed in the following parts
of this paper.

The linear approximation of the Kalinikos—Slavin (K-S) SW
dispersion relation®)! for out-of-plane magnetized ferromag-
netic thin films is described by the equation

0" = (04 + 1204k ) (0 + ok’ + ©yF (kL)) ()
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where @ = 27f is the angular frequency, L is a film thickness,
wy = |[Y|uo(H — Ms), iy = YloMs, k is the wavenumber, v is the
gyromagnetic factor, I, is the exchange length, Ms is the mag-
netization saturation and

(=)
F(kL)=1-"—— (3)

We can use Equation (2) to estimate the value of the
wavelength and the group velocity of SWs that have a direct
impact on the speed of the device. Furthermore, the equa-
tion for the Talbot length (Equation (1)) can be used to
verify whether this distance agrees with the simulations.
After substituting all the data, we get the group velocity
Vg = do/dk = 1.9 km 57, the wavelength A = 67 nm, and thus
zr (n =1) = 581 nm. As we can see in Figures 2 and 5, this
corresponds well to the distance at which we analyze the
refocusing of SWs.

2.2. Input Phase Coherence Control

Knowing that self-imaging of waves from a number of sources
is very sensitive to any incoherence, we can first analyze Talbot
carpets and self-images from this point of view. We use Huy-
gens—Fresnel principle-based calculations (HFPBC) to make
these calculations. This method provides a satisfactory approxi-
mation of the interference patterns in waveguides created by
various apertures of the incoming SWs. At the same time,
HFPBC is a few orders of magnitude faster than the con-
ventional full micromagnetic simulations (see Experimental
Section).

If N coherent in phase and amplitude signals enters a mul-
timode waveguide, then at distance zp we get N — 1 readings
with the possibility of reusing them. The single-signal loss
results from the lateral shift of the Talbot images (character-
istic for odd n values—see Equation (1)) and the finite width of
the functional area. If, on the other hand, signals with slight
incoherence enter the system, then we expect the output read-
ings to be disturbed. Indeed, a phase shift of random three
out of ten sources by ¢ = 7/4 causes a significant change in
the output amplitude, as can be seen in Figure 3b. The sen-
sitivity of such a system would clearly depend on the detector
accuracy, but after appropriate calibration, when even one
source is out of phase with the others, the amplitude of at
least one detector will be significantly different from the
reference one.

As can be seen in Figure 3, the configuration of such a
device is very similar to a LUT with eight inputs and seven
outputs, and the functional area is a multimode waveguide
in which self-imaging occurs. This perfectly shows the huge
potential and flexibility of the effect. This property can be
used in many types of magnonic devices, where high accu-
racy and coherence of the source signals are required. For
instance, we can combine the operation of logic gates and
phase control functionality in one system, and even use it to
calibrate and estimate, before logic operations, the system’s
geometry regularity, whether the expected wavelength is
propagating, and, finally, whether the sources are coherent
in phase.

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH
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Figure 3. Functionality of the proposed phase coherence controller cal-
culated using HFPBC. In (a) we have the reference state where the input
signals (on the top) are perfectly coherent in phase and amplitude. There-
fore, the functional area reproduces the exact Talbot carpet with regular
and symmetrical distribution of self-image intensities. In (b), we can see
the disturbed phase coherence controller, where three of the input signals
entering the functional area have shifted phase by 7/4. Afterward, irreg-
ular self-images appear in the diffraction pattern. In both figures there
is a line graph showing the averaged and normalized intensity of SWs
from the marked rectangular area (green line — reference, orange line
— disturbance).

2.3. Spin-Wave Lookup Table

For a given SW wavelength and a period of sources, the Talbot
length zr is fixed (see Equation (1)). However, by changing the
phase and amplitude of the SWs coming out of the individual
input waveguides, the near diffraction field of SWs may be
manipulated. Let us discuss the functionality of these changes in
the context of their application as logic elements. In the prepared
models, we directly use the first Talbot images indicated by the
marked region in Figure 2a and analyze how the amplitude of
SWs in the location spots of subsequent input self-images varies.
The Talbot effect theory, described in more detail in ref. [37],
does not quantify the amplitude distribution on consecutive
self-images, but is limited only to the Talbot length z7 (1), which
defines the distance at which self-images appear from a series
of input sources depending on their period, wavelength, etc. By
manipulating the input phase, we do not change the distance,
but we influence the amplitude distribution at individual focal
points, which is crucial for the functionality presented. In order
to be able to quantify them, without carrying out separate micro-
magnetic simulations each time, we use the HFPBC method.
All the calculations presented in this section are obtained
using HFPBC.

A typical modern FPGA is built of four input LUTs. How-
ever, for simplicity, let us examine here only a simpler version
of LUTS consisting of two inputs. In the following sections, we
present two examples of 2-input and 5-output programmable
LUTs operating on SWs. In both examples, two of the input
waveguides act as logic inputs, while the other waveguides

Adv. Electron. Mater. 2022, 2200373 2200373 (4 of 11)

ELECTRONIC
MATERIA

WWW. advelectromcmat de

act as control inputs that are used to steer the functionality of
the element. The type of operation the devices provide can be
changed by the modulation of the amplitude and phase SWs
incoming from the control waveguides. Furthermore, one of
the biggest challenges is the interconnection of individual CLBs
(or LUTS). Potentially, this could be accomplished using fully
magnonic components (which seems to be a big challenge at
the moment) or electronic circuits similar to those in co-sensor
FPGAs. However, this issue is beyond the scope of this paper
and we will not explore it.

2.3.1. Example 1— Symmetric Geometry

The schematic diagram of the first exemplary LUT is shown in
Figure 4. The device consists of two inputs I1 and 12, which are
maximally separated from each other, and a series of coherent
control inputs Cls, necessary to induce and control the Talbot
effect in the functional area. The five outputs O1-O5 are defined
by the location spots of subsequent self-images of the source
waveguides at z = zp = 581 nm.

There are two main options for programming a LUT—by
defining a logic value at the input in the SW phase or ampli-
tude. However, in the case of the self-imaging phenomenon,
the amplitude manipulation on inputs seems to be less effec-
tive, so we decided to use the phase to encode the input infor-
mation. At the same time, at the output, there are threshold
detectors analyzing the amplitudes of SWs, assigning them an
appropriate logic value. It is possible to design systems where
both the phase and the amplitude of the inputs would be the
information carrier, but this is beyond the scope of this work.

In amplitude SW logic gates, a certain threshold value of
the magnetization precession angle (MPA) is defined, "’ above
which we treat the output signal as logic “1”, and below it as
“0”. The magnetization amplitude can then be defined as

—2 | =2

N, +m

MPA = arctan| ~———= 4
N

where m, and m, denote magnetization mean components in

the waveguide plane and Mg is the saturation magnetization.
In turn, the information on the inputs is encoded in the SW

SW antenna |

L DI%

—

l'%’FI" -
d

Functional area

ol o o o o

Figure 4. Scheme of the symmetric SW LUT with the first (n = 1) Talbot
length z; and the inputs period d marked. CI denotes the control input
and the numbered markings | and O denote the inputs and outputs,
respectively.
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Figure 5. HFPBC results showing the operation of a logic gate based on the self-imaging of SWs (state for inputs 11=“1", 12=“0", CI=“0", see Table 1).
The upper part shows the intensity distribution on the inputs (the gray columns) and their phase shift (the maroon line). Below is a colormap repre-
senting the amplitude and phase of SWs (color and its intensity denote the phase and amplitude of SWs, respectively) of the functional area where the
inputs are on the top edge. The inset at the bottom zooms in on the region where self-imaging takes place. It contains normalized graphs of MPA in
2D and the averaged one in 1D. The orange dashed line indicates the predefined threshold value.

phase, which can be controlled by phase shifters placed behind
the spin plane-wave source (Figure 4). We can separately set a
phase shift in 11 and 12 and arbitrarily change the logic value
of the CI switch. Thus, in our simulations we assume that the
phase shift ¢ = 7/2 determines logic “1”, and no shift (¢ = 0)
is logic “0”. So, we have a two-input system with a CI switch,
which can also have many states—in our case, it will be
responsible for the phase shift of ¢ = 77/4 or no such shift. This
allows to programme the LUT and obtain completely new func-
tionality by changing only one switch parameter.

The situation shown in Figure 5 visualizes the system
response to the input signal [1,0] and C1=“0" (¢ = 0)—then we

get the output array [0,0,1,1,0]. This result is strictly dependent
on the threshold value selection, which should be calibrated/
normalized in relation to the intensity plot for an undisturbed
Talbot carpet (I1 =12 = C1 =“0" )—the green line in the inset in
Figure 5, visualized also in Figure 3a. In this simulation, the
threshold value is equal to 55% of the maximum self-image
MPA of the calibration pattern.

The described example was examined for all possible combi-
nations of input signals and the truth tables of two binary vari-
ables were made (Table 1). Each individual output (self-image)
performs a separate logic function that can be programmed via
CI switches. Therefore, with five outputs, we can get a system

Table 1. Two-input five-output symmetric LUT behavior for CI=“0" and CI="1". Symbols +, <, and — stand for material nonimplication, converse
nonimplication, and negation, respectively—glossary of terms in Table S1, Supporting Information.

1 12 Cl o1 02 o3 04 o5
1 1 0 0 0 1 0 0
1 0 0 0 0 1 1 0
0 1 0 0 1 1 0 0
0 0 0 1 1 1 1 1
Logic func.: NOR = TRUE —l2 NOR
1 1 1 0 0 1 0 0
1 0 1 1 1 1 1 0
0 1 1 0 1 1 1 1
0 0 1 0 1 1 1 0
Logic func.: - NAND TRUE NAND o>
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Figure 6. Scheme of the asymmetric SW LUT with the first (n =1) Talbot
length zr and the inputs period d marked. The Cl mark denotes the control
input, and the numbered | and O denote inputs and outputs, respectively.

that performs up to ten logic operations without the need to
interfere with physical parameters.

2.3.2. Example 2 — Asymmetric Geometry

The second example of an SW LUT functionality based on the
selfimaging effect is to use an asymmetric arrangement of
sources and switches in relation to the array of outputs so that the
resulting self-image amplitudes are more varied. In Table 1 we can
see that the logic functions performed in the outputs [01-O5] are
mirrored, which is clearly due to the symmetrical arrangement of
the inputs. Here, we propose a model that disrupts this symmetry
to see how the system behaves in a different configuration.

All the HFPBC simulation parameters of the model in
Figure 6 remain identical to the previous example for symmetric
geometry. We can see that here the sources I1 and 12 are placed
next to each other, and the CI switch does not cover all other
inputs—two most distant waveguides remain inactive regarding
information transmission, but they are important from the view-
point of creating self-images (so that the Talbot carpet is the
closest to the theory, the sources should be distributed as widely
as possible along the multimode waveguide, as in Figure 2).

Based on the truth tables presented in Table 2 for the asym-
metric model, we see that the implemented logic functions
are no longer mirrored on the outputs, which proves that it is
possible to create a 2-in 5-out magnonic logic gate based on
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the Talbot effect, carrying out five different functions simul-
taneously (not counting the switch functionality). The above
example, for both CI=“0" and CI=“1", performs only four logic
functions each, but it results from the difficulty to find a suitable
configuration from the numerous possibilities of parameter
choice. The optimization of the obtained functionality in terms
of the most efficient use of self-imaging for logic operations
in magnonics certainly requires development and extensive
research. Visualization of the diffraction field intensity distribu-
tions for each of the configurations shown in Tables 1 and 2 are
provided in Figures S1 and S2, Supporting Information.

3. Discussion

Analysis of computing system functionality requires taking
into account the potential speed of operation of such a device.
It is a complex task since it depends on i) the group velocity
of information-carrying wave packets (which depends on the
wavelength), ii) the frequency of propagating waves (the car-
rier wave frequency should be larger than the information
frequency), and iii) on the geometry of the system (in the pre-
sented case here, in particular, the Talbot length). The maximal
speed of the LUT can be estimated by testing the time in which
the system stabilizes after the change of state at the input, that
is, how quickly the output reaches a new logic level after the
“instantaneous” input change. This responsiveness plays a key
role in the design of all types of processors and is often visual-
ized by a waveform chart.

A simple calculation allows estimating that due to the input/
output time-delay t; of around 0.3 ns visible in Figure 7, the
presented device allows for the implementation of logic func-
tions with an operating frequency up to roughly 3.3 GHz. How-
ever, it should be emphasized that the device can be optimized
to a great extent. It includes reducing the duration of one logic
level at the input to the smallest value that still maintains the
stability of the device, by device miniaturization and short-
ening zy, or increasing the group velocity. The Talbot length
can be decreased by either decreasing the period of the input
waveguides or increasing the wavelength. The group velocity of
SWs in our system is =1.90 km s™! (according to Equation (2)).
Simply, for dipolar SWs (long wavelengths with negligible

Table 2. Two-input five-output asymmetric LUT behavior for CI=“0" and CI="1". The symbols — and « stand for material implication and converse,

respectively—glossary of terms are in Table S1, Supporting Information.

n 12 a 01 02 03 04 (e}
1 1 0 0 1 1 1 1
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1
0 0 0 1 1 1 1 1
Logic func.: NOR XNOR - «— -
1 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0
0 1 1 0 1 1 1 1
0 0 1 1 1 1 1 0
Logic func.: NOR TRUE - TRUE 12

Adv. Electron. Mater. 2022, 2200373 2200373 (6 of 11)

© 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH



ADVANCED
ELECTRONIC
MATERIALS

www.advelectronicmat.de

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

T T | | 180
o) T f
- OUTPUT
= 90
50.9 —_
2 ;
. —~ (%]
Zosl 1 i (=03ns) g
= | | |

| | | |

| | 1] 1]
0.6 | 1] 11 —-180
' 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time [ns]

Figure 7. Waveform of one of the input/output pairs of the proposed logic gate, where the /2 phase shift causes a decrease in self-image intensity by
about 10%. The figure shows the time-delay areas of device initialization until the amplitude stabilizes (in green) and the output change response to
the input change of both the “0”/“1” and “1"/“0” logic levels (in blue). The duration of one logic state is 4.5 ns.

exchange interactions), the group velocity increases while kL
decreases, for example, at fixed k the thicker film, the larger Vg
In the case of short-wavelength exchange SWs that are more
suitable for LUTS, the group velocity is proportional to Ak,

LUTs based on self-imaging to determine their response time
to the input signal. In the present discussion (Figure 8 and
Equation (5)), the length of single-mode waveguides has been
neglected for the sake of clarity. Making the Talbot length

where A, =I2Ms is the exchange stiffness constant. There-
fore, we can increase the group velocity at kept wavelengths,
by increasing the value of A.. An integral factor in deter-
mining the device’s operation speed and its time-delay is also

dependent on the parameter M = d/A and the wavenumber k,
we can also derive the formula for the time-delay (tq = z7/vg)
of devices based on self-imaging in the exchange interactions
regime, where @ =I.wuk’®, getting

the length of the input waveguide, that is, the distance from
the SW source to the multimode waveguide (functional area). ¢,
This factor must be added to the Talbot length when designing Vg

(a)

_z(M) M1
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(b)
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Figure 8. The time-delay t4 (=z1/v,,) dependence on the wave vector. a) t4(k) dependencies for the same ratio M = d/A (here equals three) and three
different materials, that is, YIG, Py (Ms =800 kA m~, A., =16 p) m™") and Ga-substituted YIG (M5 =15.9 kA m™, A,, =1.37 p) m™").¥!l The solid lines
represent the results obtained assuming dispersion relation described by Equation (2)) whereas the dashed lines represent the exchange approxima-
tion (Equation (5)). b) t4(k) dependencies for different M values. The positions corresponding to the wave vectors kj, k;, and k; are marked with black,
vertical lines for SWs of wavelengths 70, 50, and 30 nm, respectively. The red dot marks the parameters used in this work (40 GHz SWs in YIG) and
the corresponding time-delay.
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To validate these predictions, we calculate the relationship
between the Talbot length values and the group velocity charac-
teristic for a given material (t = z1/vg) as a function of the wave
vector. We perform this analysis assuming M = 3 and com-
paring results for films of thickness L = 5 nm made of three dif-
ferent materials, that is, YIG, permalloy (Py) and Ga-substituted
YIG (Ga:YIG),"! see Figure 8a.

The results displayed in Figure 8a confirm that the adopted
exchange approximation works very well for the simulated
scenario and the resulting time-delay for YIG agrees with the
estimated value in Figure 7 for 40 GHz. We can see that the
time-delay t; decreases with increasing wave vector, and there-
fore frequency. Finally, one may conclude that the higher value
of A the better performance of the designed LUT. This indi-
cates that films made of Ga:YIG are the best candidates for
these types of application. The vertical black lines in Figure 8a
correspond to the wavenumbers ki, k;, and k; to show the
potential resulting from the reduction in the spin wavelength.
It is evident in the inset for k; (1 = 30 nm), where for Py, YIG,
and Ga:YIG, t4 is equal to 0.089, 0.063, and 0.021 ns, respec-
tively, which, in turn, correspond to frequencies of 11.24, 15.87,
and 4762 GHz. The analysis shows that, by using Ga:YIG in
the presented design, we are able to obtain about three times
higher device clock speed than in YIG and more than four
times higher than in Py, for the same wavenumber.

Figure 8b illustrates the impact of the M coefficient, that is,
the geometry of the input period with respect to the applied spin
wavelength. One may notice that the smaller it is (i.e., the closer
the period is to the wavelength), the shorter the time-delay and
the better the LUTs efficiency. The limit for this parameter is
around M =1, which is directly related to the geometry of a series
of single-mode inputs, the width of which must be comparable
to the wavelength and to the Talbot length formula applicability
used in this analysis (discussed in more detail in ref. [37)).

Another important topic worth discussing is how we esti-
mate the logic output level in our system. Adopting a certain,
strictly defined thresholding intensity value of SWs is a solu-
tion well known in this type of systems and, apart from the
phase shift, is the basic method of determining the logic value.
Of course, as in the case of the time-delay and the resulting
maximum speed of information processing, we can also opti-
mize the system by selecting the device parameters appropriate
for a given application. The thresholding value common to all
outputs, despite its simplicity, may prove problematic due to
the different level of the reference intensity of the self-images
(see Figures 5 or 3a). Selecting it in such a way that the dif-
ference between logic “1” and “0” is significant in each output
needs further optimization of the system and requires sensi-
tive detection methods. The functionality of the device can also
be expanded by increasing the number of input/output wave-
guides and by appropriately defining functional inputs, control
inputs, or inputs not involved in the information processing
(such as the two edge inputs in the scheme of Figure 6). Nei-
ther the Talbot effect nor the HSPBC method we use limit
the geometry in this way, and the configuration we chose is
an example. Nevertheless, any change in the SW LUT system
will result in a different intensity distribution at the output.
If we keep the wavelength and the period constant, the Talbot
length does not change, as described earlier, but the amplitude
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distribution may. As such, it will be necessary to choose an
appropriate threshold amplitude for each device configuration
separately to fulfill the expected logical functions. As alternative
ideas, we can propose separate thresholding for each output or
a detection based not on a threshold intensity, but on its change
in relation to the previous value. It is called an edge-triggered
circuit, and the coding is as follows: if the signal is higher
(from the previous value by at least a given value), we get logic
“1”, and if it is lower, “0”. The last idea points to a possibility
of using the proposed SW self-imaging system to design mag-
nonic flip-flop circuits. A possible solution is also to encode
information in both the input and output phases. It would be
a much more complicated task than conventional amplitude
detection, but it would certainly simplify the system and most
likely reduce its energy consumption, especially in the applica-
tion of many interference gates based on self-imaging in one,
purely magnonic circuit.

Our study focuses on linear effects, however, we believe
that the non-linear regime for SW self-imaging is very inter-
esting, albeit a separate topic for further research. In a sense,
the functionality we propose is essentially a generalization of
SW majority gates (as shown in refs. [16-20]), but with the
possibility of any increase in the number of inputs/outputs
of the system. The flexibility and scalability of the Talbot
effect for SWs allows to create a gate for any logic function,
while majority gates generally implement one function-
ality (majority function). We believe that this will interest
the magnonic community in the use of the Talbot effect in
information processing.

4. Conclusions

In this paper, we demonstrate the operation of magnonic LUTS
based on the self-imaging effect of SWs in a thin ferromagnetic
multimode waveguide. For this purpose, we used micromag-
netic simulations and Huygens—Fresnel principle based calcu-
lations. The results were presented in the form of truth tables
with binary logic operators and SW intensity maps in the
functional areas, confirming them. The obtained results show
the great potential of the Talbot effect in magnonics, espe-
cially in the context of computational wave-based systems and
controlling SWs.

The LUTSs presented in this paper process by converting
the information encoded in the SW phase at the input into
information contained in its amplitude at the output. In the
functional area, there is interference of waves from a number
of input sources, which forms a Talbot carpet. It is character-
ized by the reproduction of the input amplitude distribution
at a specific distance. We showed that, as a result of indi-
vidual input wave manipulation, it is possible to influence
these reproductions without changing the distance of their
creation. The flexibility of this effect allows for implementa-
tion in various types of computing system that can perform
any logic function. Thanks to the use of control input, we can
dynamically change the functionality of the system, which
would be crucial for potential applications in FPGA circuits.
The programmable LUTs proposed here can be an alterna-
tive to modern transistor-based systems, in terms of increased
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operation speed, greater miniaturization, and reduced

energy consumption.

Wave self-imaging is a general phenomenon, and because
of its scalability and controllability, it can be used almost any-
where where wave interference occurs. The logic device opera-
tion presented in this paper is an example of such an imple-
mentation, additionally, to control the coherence of input SWs
with their subsequent reconstruction. In addition, its scalability
and simplicity allow it to be widely used in a new generation
of magnonic devices. We expect a continuation and increased
interest in SWs’ self-imaging in the next years.

5. Experimental Section

Micromagnetic Simulations: Micromagnetic simulations were used
to solve the full Landau-Lifshitz equation using the finite-difference
time domain method.3] The MuMax3 software used for this purpose
calculated this equation in the following explicit form

%—T=y#(mx38f;+a(mx(mxBeﬁ))) ©)
where dm/dt is the time evolution of the reduced magnetization m(x, z),
y is the gyromagnetic ratio, and o stands for dimensionless damping
coefficient. The effective field B.g, around which the magnetization
precess forming SWs, may contain many components depending on the
system characteristics. In this case, the effective field consisted of an
externally applied field B, magnetostatic field Bgemag and a Heisenberg
exchange field B, that is,

Bef =Bex + Bdemag +Bexch 7)

A 1.60 u m wide, around 600 nm long waveguide with an array of
eight 40 nm wide and 300 nm long narrower input waveguides was
considered. The distance between them was equal to d = 200 nm. The
entire system had a uniform thickness of 5 nm and was made of YIG
with the following magnetic parameters: the saturation magnetization
Ms = 137 kA m™, the exchange constant A, = 4 p] m™, and the
gyromagnetic ratio |y| = 176 GHz rad T'. The geometry was uniformly
discretized by 5 x 5 x 5 nm® unit cells, while the exchange length
Loy =2A0 [ (HoM3) =18 nm (U is the vacuum permeability). An out-
of-plane applied external magnetic field of uyHy = 1.1 T being enough
to uniformly magnetize the sample in this direction was assumed.
Therefore, SW in the so-called forward volume (FV) geometry, which is
the only scenario where the propagation of SWs is fully isotropic, that is,
the wavelength does not depend on the direction of propagation, was
considered.

SWs were excited only in narrow waveguides by locally applying a
magnetic microwave field of frequency f; = 40 GHz polarized along the x-axis
in the region of a width 10 nm located 290 nm from the entrance to the
functional block (wide waveguide) (see Figures 4 or 6). To obtain the steady-
state, SWs were continuously emitted by 2.5 ns. At the top and bottom
sides of the system the 65 and 260 nm-wide absorbing boundary layers
were assumed, respectively, to neglect the influence of backward reflection
of SWs from there and mimic the propagation of SWs only downward. In
this region, the damping coefficient increased quadratically up to the value
of o= 0.099 at the outer domain boundaries. The issue of SW damping
for Talbot effect in the analyzed multimode waveguide had already been
analyzed in detail in refs. [37,38], where it was showed that after appropriate
selection of parameters, the detection of at least the first order of self-images
was possible. Therefore, the authors found it better to focus on functionality
itself in this paper, leaving the damping constant negligibly small.

Huygens—Fresnel ~ Principle  Based — Calculations: ~ Micromagnetic
simulations of SW propagation in large planar magnetic systems are
time- and resource-consuming. Knowing i) the distribution of the
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complex amplitude of SWs emitted by an ideal point source s(x, z), and
ii) the function describing the amplitude and phase of waves entering
the system (aperture function, a(x) = |a(x)|exp[i@(x)]), one can quickly
calculate the resulting distribution of SW amplitude in a steady-state
utilizing Huygens—Fresnel principle. In this paper, this method is referred
as the HFPBC. That is, the complex profile of SWs, m(x, z), emitted
by a series of sources, spanned along the x-axis and located at z = z,
could be described by the integral m(x,z) o< | a(x")s(x —x',z—zo)dx .
The aperture function describing the profile, amplitude and phase of the
SWs emitted from the line located at z = z, could be derived analytically
or numerically. Here, similarly in ref. [26], the distribution of a complex
amplitude of the SWs emitted by the point source based on the results
of micromagnetic simulations was determined. First, the steady-state
of SWs emitted at frequency fy was obtained, which was sampled at a
frequency of 4f,. Subsequently, a fast Fourier transform was performed
over time and the result was left corresponding to the frequency f;. This
allowed to obtain the SW amplitude distribution in the complex form
(m(x,z) € C) required to solve the above integral equation.

The finite width of the waveguide was taken into account by
folding the distribution of m(x, z) multiple times for a waveguide
of given widths. To represent SW reflections from the edges, the
distribution of the complex SW amplitude should be determined
over a region much wider than the width of that waveguide.
However, in this case, the width of the wave profile from a point
SW source was equal to the width of the subsequently folded system
with eight input sources (1.60 pm). The reason for this was that in
the analysis of the first Talbot image case, the distance from the
sources was small and reflections did not play a significant role in
their formation, especially when self-images near the side edges
were not taken into account.

This method gave almost the same results as full micromagnetic
simulations; see the comparison in Figure S3, Supporting
Information. Potential differences between these methods might
arise from i) differences in the representation of reflections from the
waveguide edges; ii) an incorrectly chosen aperture function and;
iii) imperfections in the prepared composite amplitude distribution
of SWs emitted by the point source. The proposed method worked
very well for homogeneous systems, where a diffraction field would
be affected only by the interference of waves propagating from
(several) source waveguides and from edge reflections. The HFPBC
was therefore ineffective in the case of SWs propagating in systems
with different magnetic parameters within it, such as for example,
magnonic crystals. However, the method was significantly faster than
conventional micromagnetic simulations. For comparison, using this
method, one steady-state could be obtained in seconds. At the same
time, a complete micromagnetic simulation of the same system,
the results of which still need to be processed, takes a couple of
minutes.*] This means an acceleration of the calculations by about
two orders of magnitude. The Talbot effect was presented in this
paper as a way to obtain amplified and localized spin wave beams at
precisely defined and predictable points in a multimode waveguide.
Since this was purely a wave phenomenon and had already been
described using the analogous nomenclature for both electromagnetic
and SWs, the HFPBC tool was used as an approximation of full
micromagnetic simulations. The Huygens—Fresnel principle described
wave propagation in the near and far diffraction field, taking into
account the laws of interference and reflection. Basically, it stated that
every point on a wavefront can be considered a source of spherical
waves, and the secondary waves that arise from different points
interfere with each other. Combined, these spherical wavelets form
a wavefront. This justified the use of the HFPBC method to analyze
the self-imaging effect for SWs, where a series of single-mode
input waveguides could, with high accuracy, be treated as a series
of point sources of circular SWs, which then interfered and created
diffraction patterns. Therefore, this approach is much better suited
for prototyping logic circuits. In this work, most of the results were
obtained using this method, and full micromagnetic simulations were
used to confirm only the most important one.
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Code Availability: The source code of the HFPBC technique is
available in the HFPBC-code repository https://github.com/mateusz-
golebiewski/hfpbc-code.git.

Supporting Information

Supporting Information is available from the Wiley Online Library or
from the author.
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the middle, there are intensity maps of the functional areas (with inputs at the top edge). In turn, below are normalised plots of the
dynamic magnetisation intensity averaged over the red region. The orange dashed lines indicate the predefined threshold value.
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Tab. S1. Truth table for all 16 possible logic functions of two binary variables

p qg | F NOR ¢ -p —# -g XOR NAND AND XNOR ¢ — P <— OR T

1 1 0 (] 0 Q (7] %) 0 (7] 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 0 (] 0 0 1 1 1 1

Q 1 Q 0 1 1 (7] 0 1 1 0 0 1 1 (] (7] 1 1

0 0 0 1 0 1 0 1 (] 1 0 1 0 1 0 1 0 1
where:

p — first argument/input

q — second argument/input

T — true

F — false

- — negation, returns ’1’ when its argument is '0’, and '@’ when its argument is ’1’
OR - returns ’1’ unless both of its arguments are '@’

NOR - negation of logical OR

XOR - returns ’1’ whenever the arguments differ

XNOR - returns ’1’ if and only if both arguments are @’ or both arguments are ’1’
AND - returns ’1’ if and only if both of its arguments are ’1’

NAND - negation of logical AND

—> — material implication, returns ’1’ unless p is 1’ and q is ’ @’

—» — material nonimplication, negation of material implication

<— — converse, returns ’1’ when p is ’1’ if and only if q is also ’1’

«~ — converse nonimplication, negation of converse
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5.1.4 Experimental demonstration of spin-wave self-imaging (P6)

Building on previous theoretical and simulation studies of the Talbot effect in magnonics, this
work presents the first experimental verification of this phenomenon in a magnetic system. The
experimental part of this work has been carried out by the research group from Biatystok, whose
contributions have been instrumental in validating the theoretical predictions and numerical
simulations developed by our group. Using an in-plane magnetized YIG film, we demonstrate
and analyze spin-wave self-imaging in a configuration where plane spin waves propagate through
a diffraction grating, and the resulting interference pattern is captured by Brillouin light scattering
microscopy. By varying the frequency of the dynamic magnetic field, we investigate the influence
of the anisotropic dispersion relation and the caustic effect on the self-imaging.

Contribution of the Author

In this work, together with M. Krawczyk, I co-supervised the first author, U. Makartsou. I intro-
duced him to the topic of the spin-wave self-imaging effect and contributed to the interpretation
of his micromagnetic simulations, as well as to the analysis of experimental results provided by
the collaborating team (U. Guzowska, A. Stognij, R. Gieniusz). I assisted in the preparation of
the manuscript, managed its submission to the journal, and handled correspondence with the
reviewers throughout the peer-review process.

The article reprinted from Makartsou, U.; Gotgbiewski, M.; Guzowska, U.; Stognij, A.; Gien-
iusz, R.; Krawczyk, M. Applied Physics Letters 124, 19, 192406 (2024), with the permission of
AIP Publishing. ©2024 Authors. License number: 5965900682142.
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ABSTRACT

Extending the scope of the self-imaging phenomenon, traditionally associated with linear optics, to the domain of magnonics, this study
presents the experimental demonstration and numerical analysis of spin-wave (SW) self-imaging in an in-plane magnetized yttrium iron gar-
net film. We explore this phenomenon using a setup in which a plane SW passes through a diffraction grating, and the resulting interference
pattern is detected using Brillouin light scattering. We have varied the frequencies of the source dynamic magnetic field to discern the influ-
ence of the anisotropic dispersion relation and the caustic effect on the analyzed phenomenon. We found that at low frequencies and diffrac-
tion fields, the caustics determine the interference pattern. However, at large distances from the grating, when the waves of high diffraction
order and number of slits contribute to the interference pattern, the self-imaging phenomenon and Talbot-like patterns are formed. This
methodological approach not only sheds light on the behavior of SW interference under different conditions but also enhances our under-
standing of the SW self-imaging process in both isotropic and anisotropic media.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0195099
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Spin waves (SWs) represent coherent magnetization disturbances
that propagate in magnetic materials as waveforms. In ferromagnetic
materials, SW dynamics is shaped by a blend of strong isotropic
exchange and anisotropic magnetostatic interactions."” Particularly in
thin films, the magnetostatic interactions render SW properties highly
sensitive to the orientation of magnetization relative to the film plane
as well as to the alignment of the propagation direction with the static
magnetization vector.” ° This interplay of factors makes the study of
SWs interesting, endowing them with distinct properties uncommon
in other wave types, such as negative group velocity, the formation of
caustics,” and dynamic reconfigurability control.”

The governing equations for SW propagation diverge from those
of electromagnetic and acoustic waves, thereby each analogy, such as
those found in SW graded index lenses,”'” SW Luneburg lenses, ' and

SW Fourier optics,'” necessitates solving the Landau-Lifshitz equation.
Notable and related advances also include the numerical or experimen-
tal demonstration of phenomena such as self-focusing of SWs,'? SW
diffraction on gratings,”* and the formation of SW beams."” "’
Ferromagnetic films with a line of nanodots, analogous to those in this
paper, have also been used to observe the phenomenon known in the
literature as total non-reflection of SWs.'*

The self-imaging effect, often referred to as the Talbot effect, first
observed in the 19th century for light'” and later elucidated in Ref. 20
has recently experienced a renewed research interest, as outlined in
Ref. 21 and associated references. When a plane wave passes through a
system of periodically spaced obstacles, it interferes, creating a charac-
teristic diffraction pattern and reproducing the obstacles image at spe-
cific distances from the input.

Appl. Phys. Lett. 124, 192406 (2024); doi: 10.1063/5.0195099
Published under an exclusive license by AIP Publishing
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Its applications have been diverse, ranging from enhancing x-ray
imaging” to advancing lithographic patterning,” > and even extend-
ing to the realization of certain physical models and computing scenar-
ios.”” " Beyond electromagnetic waves, the Talbot effect has been
demonstrated in diverse mediums, including plasmons,” fluid
waves,””" and exciton-polaritons.”” Theoretical explorations suggest
that this effect is also feasible for SWs,”** with proposed logic scenar-
ios in the magnonic domain.™

In this paper, we take a step forward by experimentally and
numerically demonstrating the self-imaging effect resulting from the
diffraction of SWs on a one-dimensional antidot array, with dimen-
sions comparable to the SW wavelength, in a yttrium iron garnet
(YIG) film in the Damon-Eshabach (DE) configuration. The simula-
tions, performed at various frequencies, different antidot periods, and
two antidot shapes, ie., circular and square, and juxtaposed with
experimental analogs, allow an understanding of the interference pat-
terns in the transition of the caustic and self-imaging effects.

The samples measured were monocrystalline YIG, 4.5 um thick
films (see Fig. 1) grown by liquid phase epitaxy on transparent gado-
linium gallium garnet substrates. A one-dimensional array of antidots
was chemically etched on the surface of the films, functioning as a dif-
fraction grating. In the two systems analyzed, we make use of an 5-
element array of square antidots [50 x 50 um—scheme in Fig. 1(a)]
with period d=100 um, and a 10-element array of circular antidots
[diameter equal to 50 um—scheme in Fig. 1(b)] with period
d=150 um. The samples were magnetized by the external magnetic
field Bey directed along the line of the antidots (y-axis). We use 36 and
98 mT fields for the samples with square and circular antidots, respec-
tively. Magnetostatic SW's were excited using a 50 um wide microstrip
antenna deposited on a light-opaque dielectric substrate, below the
YIG film, and placed about 185um in front of the grating, with a
continuous-mode microwave generator (see Fig. 1).

The interaction of SWs with the line of antidots was visualized
using a Brillouin light scattering (BLS) spectrometer with a spatial

FIG. 1. Schematic representations of two YIG-samples and BLS measurement con-
figuration used in the research, with the major dimensions marked. Image (a) shows
the system with a diffraction grating made of square-shaped antidots, while (b)
shows one made of circular antidots. In all experimental measurements and finite-
width simulations, the square and circular antidot arrays contain 5 and 10 elements,
respectively.

ARTICLE pubs.aip.org/aip/apl

resolution of 30 um. Measurements are made in the reflection configu-
ration due to the opaque substrate used to mount the microwave
antenna. A laser beam with a wavelength of 532 nm was scanned over
the area around the line of antidots and the interference area behind
the grating with 20 um step, and the BLS intensity was recorded at
each point. This technique provides a 2D color map of the amplitude
of the magnetostatic SWs scattered on the line of antidots [see Figs.
3(b), 3(c),and 5(a)].

Simulations were carried out using MuMax3, a GPU-accelerated
micromagnetic simulation software.”” The implemented simulation
system (100 x 100 x 4.5 um3) was discretized with 512 x 512 x 10
computational cells, giving a size of about 195.3 x 195.3 x 450.0 nm”
each. The cell size clearly exceeds the length of the exchange interac-
tion for YIG films due to computational limitations. However, accord-
ing to the dispersion relation graphs (see the supplementary material,
Fig. S1), the discrepancies are insignificant for small wavevectors, justi-
fying the use of numerical methods for this research.

To replicate the SW's excited by the microstrip in the experiment,
in micromagnetic simulations, we employ the dynamic magnetic field
h(x, t), homogeneous in the area of width w = 50 um along the x-axis
(extended along the y direction and across the film thickness) and
placed at xy = 185 um before the grating. The microwave field is
expressed as

h(x,t) = [ho, 0, ho] sin(27ft), (1)

where h, is the amplitude of the dynamic magnetic field
(hg = 0.0014 Bey).

The distribution of the SW intensity within the magnetic material
is determined by averaging the magnetization component m, over the
thickness of the material (along the z-axis) and integrating its squared
value over time t. The SW intensity I is then quantified by the follow-
ing equation:

= J<mz(t)>§dt. @)

This method effectively captures the spatial intensity distribution of
SWs in the material, allowing for direct comparison with BLS mea-
surement results.

In the simulations, we use geometries shown in Fig. 1, with
dimensions matching those of our experiment. In all cases, we imple-
mented absorbing boundary conditions along the x-axis (at the end of
a system). These are characterized by an exponential increase in the
damping factor o, approaching a maximum value of 1 at the edges.
Additionally, to better visualize the diffraction patterns formed behind
the grating, periodic boundary conditions (PBCs) along the y-axis
were used in most simulations (indicated if not). It enabled the imita-
tion of an infinitely wide film and an array of antidots, extending a
given SW diffraction field to longer distances. The YIG is characterized
by the following magnetic parameters: saturation magnetization
M, = 139kA/m, exchange constant Ae =4p)/m, [y] =176
GHz - rad/T, and reduced Gilbert damping o = 1 x 1077.

Previous investigations of the self-imaging of SWs, manifesting
the Talbot effect,”””* have extensively utilized the out-of-plane mag-
netic field configuration, i.e., forward volume SWs. In this orientation,
the isofrequency lines tend to be circular due to the symmetry of the
applied field with respect to the film plane, leading to the isotropic
propagation characteristics of SWs. This isotropic nature facilitates the

Appl. Phys. Lett. 124, 192406 (2024); doi: 10.1063/5.0195099
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formation of distinct interference patterns, critical for achieving the
clear SW Talbot effect, also in relatively thick YIG films, considered in
this paper (see Fig. S2 in the supplementary material). However, the
out-of-plane magnetic field configuration has several disadvantages
when applied to thin magnetic films. A primary limitation is the need
for high magnetic field values or strong out-of-plane anisotropy to sat-
urate the magnetization. They impose practical limitations on the gen-
eration and control of large magnetic fields in experiments, and thus
in potential applications, where compact and efficient magnetic field
generation is critical. These challenges underscore the importance of
exploring alternative configurations, such as the in-plane magnetic
field orientation.

Avoiding the high magnetic field requirements associated with
the forward volume SW configuration is a key feature of the DE con-
figuration. However, this naturally leads to anisotropic SW propaga-
tion due to the asymmetry introduced by the in-plane magnetic field.””
This anisotropy results in hyperbolic isofrequency contours at small
wavenumbers (Fig. 2), offering directional control over SW propaga-
tion.”® When studying the dynamics of SWs in ferromagnetic films
with a thickness of 4.5 yum in an in-plane magnetic field configuration,
the interplay between the magnetic field magnitude, SWs frequency,
and diffraction grating period together is of primary importance on
the interference pattern, which determines the appearance of caustic
waves or the Talbot effect.

At lower magnetic field values and SW frequencies, the system
with hyperbolic isofrequency lines predominantly forms caustic beams
post-interaction with a narrow slot.””* When a plane SW passes
through a diffraction grating, its wavefront is modulated, resulting in a
discrete spectrum of wavevectors.'* As these diffracted waves propa-
gate through the magnetic medium, their paths are influenced by the
strong anisotropic dispersion relation (Fig. 2). It causes the SWs to
focus along certain trajectories, leading to the convergence of the waves
at specific focal points or lines."""” This convergence is the fundamen-
tal mechanism behind the formation of caustic beams, where the wave
intensity is significantly amplified.

A theoretical model for caustic beam formation is usually based
on analysis of the function f (k) and the angle ¢, representing the ori-
entat‘i(?lri ?;f the group velocity v, relative to the external magnetic field
B, 10

Wavevector ky (rad/um)

-04 -0.2 0 02 04
Wavevector ky, (rad/um)

-1.2 -06 0 06 1.2
Wavevector ky (rad/pum)

FIG. 2. Diagram of the SW dispersion relation for an external magnetic field of (a)
Bext = 36 mT and (b) Bext = 98 mT applied in-plane of the YIG film and along the y
direction. The highlighted isofrequency lines correspond to the values used in the
study and are obtained from the analytical model of Ref. 37 with free boundary
conditions.
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¢ = arctan(vg,/Vgrx) = —arctan(dk, /dk, ). (3)

At each point, the SW group velocity is indicated by the normal to the
isofrequency curve. Caustic rays are formed when the direction of the
group velocity, defined by the angle ¢, remains constant for SWs with
different wavevectors k. This specific condition for caustic beam emer-
gence is mathematically expressed as 5—2 = 0, which ensures that SW's
with different wavevectors maintain a uniform group velocity direc-
tion, resulting in wave convergence. When a plane wave passes
through a periodic structure, such as the one-dimensional antidot
array in our study, it acquires a distinct transverse wavevector compo-
nent k, quantized as multiples of 27/d. Depending on the change in
angle ¢ for the surface wavefront and its intensity for a discrete set of
k,, one of the aforementioned patterns—caustic rays, diffractive self-
imaging effect, or a combination of them—is obtained.

Figure 3(a) shows the amplitude-frequency characteristic of the
sample with square antidots at Bey = 36 mT. In the experiment,

I (b)— (a)
= . ]
50754 Simulation (d) |
= 1—1(c)
o
= 0.50-
o251 4
U |
= i
0 1 T T T T T T
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Frequency (GHz)
0 (arb. unit) {arb. unit) 1
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FIG. 3. Experimental and simulation results for a diffraction grating composed of
square antidots [Fig. 1(a)] at a magnetic field Bex = 36 mT. Panel (a) shows the
amplitude-frequency characteristic of the excited SWs in the interference region.
Panels (b) and (c) show the dynamic magnetization pattern obtained from BLS
measurements, while panels (d) and (e) display the SW intensity distribution [see
Eq. (2)] calculated by MuMax3 for f=2.51 and 2.54 GHz, respectively. The vertical
arrows indicate the distances to the nearest caustic beam intersections.
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which is well reproduced in the simulations, frequencies in the range
of 2.5-2.6 GHz exhibit the most efficient excitation. In addition, these
frequencies are slightly higher than the ferromagnetic resonance fre-
quencies, which can be attributed to the selectivity of the antenna in
exciting SWs with non-zero wavevectors.

In Fig. 3, we see the results of both the experimental studies (b)
and (c) and micromagnetic simulations (d) and (e) of plane wave
propagation through a diffraction grating with square antidots
[scheme shown in Fig. 1(a)]. The choice of frequencies in the simula-
tions slightly shifted from those of the experiment (by 10 MHz each) is
determined by the best fit of the rhombic pattern to that of the experi-
ment. In addition, the goal was also to show the difference in the dis-
tance at which the caustic beams intersect for two different, excited
SW frequencies from the region of high excitation [marked with
arrows in Figs. 3(d) and 3(e)]. For example, in Fig. 3(a), we see that at
2.55 GHz, the experimental intensity is high, but in the simulations, it
is already quenched, hence the need for a slight offset. The chosen SW
frequencies (f=2.51 GHz and f=2.54 GHz) fit for the high transmis-
sion range at Be = 36 mT [Fig. 3(a)] and allow us to observe the
caustic, non-diffractive propagation of the beam after passing through
the obstacles.

As seen in Fig. 2(a), the isofrequency lines are nearly straight. It is
confirmed by a two-dimensional Fourier transform of the SW signal
performed over the simulation area behind the grating shown in
Fig. 4(a). It allows to extract of the individual sets of wavevectors
involved in the formation of the diffraction images."” Each of the visi-
ble intensity peaks corresponds to a packet of wavevectors with very
similar angles and group velocity vector values that can independently
produce a caustic effect. In the experiment and simulations, Fig. 3, we
see a blend of several such packets with varying intensities, producing
a complex combination of caustic and interference effects. In the spec-
tra from Fig. 4(a) at 2.53 GHz, we see that the difference between the
angles A¢ for the group velocity vectors vy for the second and fourth
diffraction spots (range of most intensive high order diffraction) is
only 2.7°, which explains the clear observation of the caustic effect for
this configuration. The discrepancy between them is closely related to
the difference in the diffraction angle of the passed waves, and its value
is a function of the excited plane wave’s frequency (see also Fig. S3 in
the supplementary material).
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FIG. 4. Reciprocal space maps of the simulated SW intensity distribution after pass-
ing the grating for the two cases analyzed: (a) the 100 um period square grating
and (b) the 150 um period circular grating. The graphs illustrate the group velocity
vectors for selected peaks and their slope ¢ [see Eq. (3)] with respect to the SW
propagation direction. Interpolated isofrequency contours are shown as green
dashed lines.
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It is expected that at higher frequencies, as the caustic condi-
tions weaken, the system will begin to exhibit behavior similar to
the Talbot effect. This will be the case if the group velocity direc-
tion angles differ for each excited wavevector, i.e., the isofrequency
curve becomes more parabolic than hyperbolic, as shown in
Fig. 2(b) and also in Fig. 4(b) for Bey = 98 mT at f=4.95GHz
(4 = 84.4 um). For these parameters, the self-imaging effect shall
be more pronounced due to larger differences in the group velocity
angles than in the pure caustic case, still being below the caustic
angle ¢ = 69.3° (obtained from the linearly interpolated disper-
sion relation from Fig. 2 for k, up to 3.5rad/um). For Bey =
36 mT and a frequency of 2.53 GHz, this angle was only
¢c = 44.7°. This combination of factors allows us to observe peri-
odic diffraction patterns of SWs and the Talbot-like -effect.
Experimentally, however, these observations were only possible for
the circular antidots sample with 150 um period. Therefore, in the
following analysis, we present the experimental and simulation
results for this separation at Beyy = 98 mT and 4.95 GHz.

As shown in Fig. 5, initially, after passing through the diffraction
grating, the SW beams still have a caustic nature. However, as the dis-
tance from the grating increases, these beams gradually form the inter-
ference pattern. This is due to the increasing influence of larger
wavevectors with distance from the source, which no longer satisfies
the causticity condition described earlier [see Fig. 4(b)], where A¢
= 11.4° between the spots of the second and fourth diffraction order.
Nevertheless, it is clear, especially from the micromagnetic simulations
(see Fig. $4 in the supplementary material) that caustic beams and self-
imaging coexist even at large distances from the grating. The Talbot-
like effect observed in the simulations [Figs. 5(b) and 5(c)] agrees well
with the BLS measurements shown in Fig. 5(a). Experimentally, the
interference pattern is limited to a triangular shape due to the finite
number (10) of circular antidots used in the sample. This limitation is
replicated in simulations [Fig. 5(b)] with 10 antidots and absorbing
boundaries at the edges.

Comparing the interference patterns obtained in micromagnetic
simulations for diffraction on circular and square antidots for the same
period, field, and frequency, we found that the self-imaging patterns
are very similar (see Fig. S5 in the supplementary material). However,
a more intense signal is obtained for the circular antidots. This differ-
ence between the shapes can be attributed to the difference in the
demagnetization fields near the antidots.”” Furthermore, this may be
an additional reason for the difficulties in measuring self-imaging pat-
terns in the sample with square antidots discussed earlier for higher
frequencies.

In summary, this paper provides a numerical and experimental
analysis of SW self-imaging by a diffraction grating in the in-plane
magnetized thin YIG films, traversing the intricate transition from
caustic beam formation to the Talbot-like effect and demonstrating the
nuanced interplay between anisotropic SW dynamics, magnetic field
configurations, and diffraction grating geometries. We explore SW
behavior at static magnetic field values of 36 and 98 mT and, sequen-
tially, excited SW frequencies of (2.51 GHz) 2.53 and 4.95GHz,
respectively.

At lower fields and frequencies, we observed the formation of
caustic beams, a phenomenon emerging due to the strong anisotropic
nature of SW propagation in the DE configuration. As we increase the
magnetic field strength and SW frequency, a transition to diffractive
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FIG. 5. The SW field intensity distributions at Bexy = 98 mT and f=4.95 GHz in the in-plane external magnetic field of 98 mT. Panel (a) shows the results of BLS measure-
ments, and (b) the corresponding micromagnetic simulation, where a finite-length diffraction grating was used. In the SW intensity plot (c), PBC is applied along the y-axis,
revealing a clear SW self-imaging effect. All the results were obtained for a diffraction grating composed of 10 circular antidots [Fig. 1(b)] separated by 150 nm. Due to matching

zooms from the experiment, the visualizations show only eight nanodots.

self-imaging patterns is observed. This switch from caustic beams to
the interference self-imaging not only exemplifies complex wave
dynamics in magnonic systems but also enhances our understanding
of SW diffraction mechanisms in ferromagnetic films.

See the supplementary material for additional data, including
numerical results of the dispersion relations and their comparison
with theoretical predictions. These data confirm the accuracy of the
numerical approaches and discretization methods used. In addition, it
includes extended results from micromagnetic simulations of diffrac-
tion fields, specifically illustrating the Talbot effect over various mag-
netic field configurations, diffraction grating constants, and nanodot
geometries.

This work was supported by the National Science Centre
Poland project OPUS-LAP under No. 2020/39/1/ST3/02413 and
project M-ERA.NET 3 under No. 2022/04/Y/ST5/00164. The
authors thank Andrzej Maziewski for valuable discussions.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Uladzislau Makartsou: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Methodology (lead); Software (lead);
Validation (lead); Visualization (lead); Writing - original draft (equal).
Mateusz Golebiewski: Conceptualization (equal); Methodology
(equal); Supervision (equal); Validation (equal); Visualization (sup-
porting); Writing — original draft (lead); Writing - review & editing
(equal). Urszula Guzowska: Data curation (equal); Validation (equal);
Visualization (equal); Writing — review & editing (supporting).
Alexander Stognij: Data curation (equal); Resources (equal). Ryszard
Gieniusz: Conceptualization (equal); Data curation (equal); Writing -
review & editing (supporting). Maciej Krawczyk: Conceptualization
(equal); Formal analysis (equal); Funding acquisition (lead);

Methodology (equal); Supervision (lead); Writing - original draft
(equal); Writing - review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able on Zenodo at https://doi.org/10.5281/zenodo.10962369, Ref. 46.

REFERENCES

'D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer
US, 2009), pp. 1-355.

2A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC
Press, Boca Raton, 1996).

3F. Garcia-Sanchez, P. Borys, R. Soucaille, J. P. Adam, R. L. Stamps, and J. V.
Kim, “Narrow magnonic waveguides based on domain walls,” Phys. Rev. Lett.
114, 247206 (2015).

“K. Wagner, A. Kékay, K. Schultheiss, A. Henschke, T. Sebastian, and H.
Schultheiss, “Magnetic domain walls as reconfigurable spin-wave nanochan-
nels,” Nat. Nanotech. 11, 432-436 (2016).

G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler, “Enhanced trans-
mission through squeezed modes in a self-cladding magnonic waveguide,”
Phys. Rev. Lett. 108, 227202 (2012).

6]. Lan, W. Yu, R. Wu, and J. Xiao, “Spin-wave diode,” Phys. Rev. X 5,041049 (2015).

7A.Y. Annenkov, S. V. Gerus, and E. H. Lock, “Superdirectional beam of surface
spin wave,” Europhys. Lett. 123, 44003 (2018).

8p. Pirro, V. L. Vasyuchka, A. A. Serga, and B. Hillebrands, “Advances in coher-
ent magnonics,” Nat. Rev. Mater. 6, 1114-1135 (2021).

oN. J. Whitehead, S. A. R. Horsley, T. G. Philbin, and V. V. Kruglyak, “Graded
index lenses for spin wave steering,” Phys. Rev. B 100, 094404 (2019).

TOM. Kiechle, A. Papp, S. Mendisch, V. Ahrens, M. Golibrzuch, G. H. Bernstein,
W. Porod, G. Csaba, and M. Becherer, “Spin-wave optics in YIG realized by
ion-beam irradiation,” Small 19, 2207293 (2023).

IN. J. Whitehead, S. A. R. Horsley, T. G. Philbin, and V. V. Kruglyak, “A lune-
burg lens for spin waves,” Appl. Phys. Lett. 113, 212404 (2018).

2M. Vogel, B. Hillebrands, and G. von Freymann, “Optical elements for aniso-
tropic spin-wave propagation,” Appl. Phys. Lett. 116, 262404 (2020).

3V, E. Demidov, S. O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss, “Mode
interference and periodic self-focusing of spin waves in permalloy micro-
stripes,” Phys. Rev. B 77, 064406 (2008).

T4, Mansfeld, J. Topp, K. Martens, J. N. Toedt, W. Hansen, D. Heitmann, and S.
Mendach, “Spin wave diffraction and perfect imaging of a grating,” Phys. Rev.
Lett. 108, 047204 (2012).

Appl. Phys. Lett. 124, 192406 (2024); doi: 10.1063/5.0195099
Published under an exclusive license by AIP Publishing

124, 192406-5

12:Tr'8L ¥20Z AeN 60



Applied Physics Letters

T5R. Khomeriki, “Self-focusing magnetostatic beams in thin magnetic films,” Eur.
Phys. ]. B 41, 219-222 (2004).

'6R. Gieniusz, P. Gruszecki, M. Krawczyk, U. Guzowska, A. Stognij, and A.
Maziewski, “The switching of strong spin wave beams in patterned garnet
films,” Sci. Rep. 7, 8771 (2017).

7H. Korner, J. Stigloher, and C. Back, “Excitation and tailoring of diffractive
spin-wave beams in nife using nonuniform microwave antennas,” Phys. Rev. B
96, 100401 (2017).

18R, Gieniusz, V. D. Bessonov, U. Guzowska, A. L. Stognii, and A. Maziewski, “An
antidot array as an edge for total non-reflection of spin waves in yttrium iron
garnet films,” Appl. Phys. Lett. 104, 082412 (2014).

T9H. Talbot, “Lxxvi. Facts relating to optical science. No. iv,” London, Edinburgh
Dublin Philos. Mag. J. Sci. 9, 401-407 (1836).

20, Rayleigh, “On copying diffraction gratings and on some phenomenon con-
nected therewith,” Philos. Mag. 11, 196 (1881).

21]. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: Recent advances in classical optics,
nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5, 83-130 (2013).

227 Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: From pre-
clinical applications towards clinics,” Phys. Med. Biol. 58, R1-R35 (2012).

23T, Sato, “Focus position and depth of two-dimensional patterning by Talbot
effect lithography,” Microelectron. Eng. 123, 80-83 (2014).

243 Zhou, J. Liu, Q. Deng, C. Xie, and M. Chan, “Depth-of-focus determination
for Talbot lithography of large-scale free-standing periodic features,” IEEE
Photonics Technol. Lett. 28, 2491-2494 (2016).

25A. Vetter, R. Kirner, D. Opalevs, M. Scholz, P. Leisching, T. Scharf, W. Noell,
C. Rockstuhl, and R. Voelkel, “Printing sub-micron structures using Talbot
mask-aligner lithography with a 193nm CW laser light source,” Opt. Express
26, 22218-22233 (2018).

26p), Bigourd, B. Chatel, W. P. Schleich, and B. Girard, “Factorization of numbers
with the temporal Talbot effect: Optical implementation by a sequence of
shaped ultrashort pulses,” Phys. Rev. Lett. 100, 030202 (2008).

270, J. Farfas, F. de Melo, P. Milman, and S. P. Walborn, “Quantum information
processing by weaving quantum Talbot carpets,” Phys. Rev. A 91, 062328 (2015).

28K, Sawada and S. P. Walborn, “Experimental quantum information processing
with the Talbot effect,” J. Opt. 20, 075201 (2018).

29M. R. Dennis, N. I. Zheludev, and F. J. G. de Abajo, “The plasmon Talbot
effect,” Opt. Express 15, 9692-9700 (2007).

30N, Sungar, J. Sharpe, J. Pilgram, J. Bernard, and L. Tambasco, “Faraday-Talbot
effect: Alternating phase and circular arrays,” Chaos 28, 096101 (2018).

1A. Bakman, S. Fishman, M. Fink, E. Fort, and S. Wildeman, “Observation of the
Talbot effect with water waves,” Am. J. Phys. 87, 38-43 (2019).

32T, Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C.
Schneider, S. Hofling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for
exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).

ARTICLE pubs.aip.org/aip/apl

33M. Golebiewski, P. Gruszecki, M. Krawczyk, and A. E. Serebryannikov, “Spin-
wave Talbot effect in a thin ferromagnetic film,” Phys. Rev. B 102, 134402
(2020).

34M. Golebiewski, P. Gruszecki, and M. Krawczyk, “Self-imaging of spin waves in
thin, multimode ferromagnetic waveguides,” IEEE Trans. Magn. 58, 1-5
(2022).

35M. Gofebiewski, P. Gruszecki, and M. Krawczyk, “Self-imaging based
programmable spin-wave lookup tables,” Adv. Electrode Mater. 8, 2200373
(2022).

36A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B.
Van Waeyenberge, “The design and verification of mumax3,” AIP Adv. 4,
107133 (2014).

37B. A. Kalinikos and A. N. Slavin, “Theory of dipole-exchange spin wave spec-
trum for ferromagnetic films with mixed exchange boundary conditions,”
J. Phys. C: Solid State Phys. 19, 7013 (1986).

38T, Ogasawara, “Time-resolved vector-field imaging of spin-wave propagation
in permalloy stripes using wide-field magneto-optical Kerr microscopy,” Phys.
Rev. Appl. 20, 024010 (2023).

39V. Veerakumar and R. E. Camley, “Magnon focusing in thin ferromagnetic
films,” Phys. Rev. B 74, 214401 (2006).

40T Schneider, A. A. Serga, A. V. Chumak, C. W. Sandweg, S. Trudel, S. Wolff,
M. P. Kostylev, V. S. Tiberkevich, A. N. Slavin, and B. Hillebrands,
“Nondiffractive subwavelength wave beams in a medium with externally con-
trolled anisotropy,” Phys. Rev. Lett. 104, 197203 (2010).

“IR. Gieniusz, H. Ulrichs, V. D. Bessonov, U. Guzowska, A. L. Stognii, and A.
Maziewski, “Single antidot as a passive way to create caustic spin-wave beams
in yttrium iron garnet films,” Appl. Phys. Lett. 102, 102409 (2013).

425, Muralidhar, R. Khymyn, A. A. Awad, A. Alemén, D. Hanstorp, and J.
Akerman, “Femtosecond laser pulse driven caustic spin wave beams,” Phys.
Rev. Lett. 126, 037204 (2021).

“30. Biittner, M. Bauer, S. O. Demokritov, B. Hillebrands, Y. S. Kivshar, V. Grimalsky,
Y. Rapoport, and A. N. Slavin, “Linear and nonlinear diffraction of dipolar spin
waves in yttrium iron garnet films observed by space- and time-resolved Brillouin
light scattering,” Phys. Rev. B 61, 1157611587 (2000).

“4A. Wartelle, F. Vilsmeier, T. Taniguchi, and C. H. Back, “Caustic spin wave
beams in soft thin films: Properties and classification,” Phys. Rev. B 107,
144431 (2023).

"5], Grafe, P. Gruszecki, M. Zelent, M. Decker, K. Keskinbora, M. Noske, P.
Gawronski, H. Stoll, M. Weigand, M. Krawczyk, C. H. Back, E. J. Goering, and
G. Schiitz, “Direct observation of spin-wave focusing by a Fresnel lens,” Phys.
Rev. B 102, 024420 (2020).

461, Makartsou et al. (2024). “Spin-wave self-imaging: Experimental and numeri-
cal demonstration of caustic and talbot-like diffraction patterns,” Zenodo.
https://doi.org/10.5281/zenodo.10962369

Appl. Phys. Lett. 124, 192406 (2024); doi: 10.1063/5.0195099
Published under an exclusive license by AIP Publishing

124, 192406-6

122781 ¥20Z Ae 60



SUPPLEMENTARY MATERIAL
Spin-Wave Self-Imaging: Experimental and Numerical Demonstration
of Caustic and Talbot-like Diffraction Patterns

Uladzislau Makartsou,® Mateusz Gotebiewski,! Urszula Guzowska,? Alexander Stognij,3 ® Ryszard Gieniusz,

Maciej Krawczyk!

D Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznariskiego 2,
61-614 Poznani, Poland

2 Department of Physics of Magnetism, Faculty of Physics, University of Biatystok, Konstantego Ciotkowskiego IL,

15-245 Biatystok, Poland

3)Scientific-Practical Materials Research Center at National Academy of Sciences of Belarus, Pietrusia Broiiki 19, 220072 Minsk,

Belarus

2 and

(*Electronic mail: ulamak @amu.edu.pl)

|. DISPERSION RELATION AND VALIDATION OF THE DISCRETIZATION IN MICROMAGNETIC SIMULATIONS

In Fig. S1 we show the spin wave (SW) dispersion relations for two different configurations and different magnetic field values
obtained in numerical simulations (MuMax3) and analytical model (based on Ref. [s1]) for 4.5 pm thick YIG film. Fig. S1(a)
shows the dispersion for the forward volume (FV) configuration (magnetic field and the magnetization perpendicular to the film
plane), where the discrepancies between the methods are minimal and mainly due to the coarse discretization along the film
thickness. The dispersions in Fig. S1(b,c) are for the Damon-Eshbach (DE) configuration (propagation direction perpendicular
to the in-plane magnetization and the external magnetic field) and two different values of the applied external magnetic field. The
plots also show non-dispersive signals from thickness quantized SW modes, the so-called perpendicular standing SWs (PPSWs).
Again, we obtained a very good fit to the theoretical model for small wavevectors close to zero, validating the numerical approach

used in the micromagnetic simulations.
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FIG. S1. The dispersion relations for SWs in two different magnetic configurations and different external magnetic field values. (a) Dispersion
curve for the FV configuration under a magnetic field of 360 mT. (b) Dispersion in the DE configuration under an external field of 36 mT and
PPSW signal lines are visible. (c) DE and PPSW signals for an enhanced field of 100 mT, showing a significant shift in the frequency values.
In all panels, the dashed lines represent the analytical calculations based on Ref. [s1].
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The process of calculating the SW dispersions using Mumax- involved three main steps:

1. System Initialization: Prompting the system to relax into a stable magnetic ground state for selected configurations.

2. SW excitation: The SWs were excited from the central part of the waveguide by applying the time- and space-dependent
dynamic magnetic field h, defined as: h(x,t) = [ho, ho, ho] - sinc(2Tkeyex) - Sinc (27 foyet ), where hg = 0.015Hcx;. By using
this equation, we can apply broadband SW excitation within the frequency range f € [0, feu] and wavevectors along the
x-axis ky € [—keut, keut]-

3. Data Analysis: The dispersion relations were extracted by applying a 2D Fast Fourier Transform to the space and time
resolved magnetization data using Python with the NumPy package. This analysis was further refined by evaluating the
SW width profiles over the m, component across the width of the waveguides using a single frequency excitation.

The dispersion relations from micromagnetic simulations and analytical calculations match precisely for the fundamental
mode, as indicated in Fig. S1. In the simulations with DE configuration, a low-frequency branch emerges due to quantization
effects within the significant thickness (4.5 um) of the YIG sample, visible in Fig. S1(b,c). The theoretical curve was calculated
using the formula (22) from Ref. [s2]. The results demonstrate the agreement between MuMax3 simulations and the analytical
dispersion relation based on Refs. [s1 and s2]. The simulation cell size used is 195.3 x 195.3 x 450.0 nm’.

Il. TALBOT EFFECT IN A FORWARD VOLUME CONFIGURATION - SIMULATION RESULTS
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FIG. S2. The evolution of the SW interference pattern after passing through a diffraction grating with a square antidot structure and a period
of 100 um. These micromagnetic simulations were performed in an FV configuration at different frequencies (5.35, 5.6 and 6.2 GHz) and for
Bexi= 100 mT. Panel (a) shows SWs with a wavelength of 213 um propagating unaffected by the obstacle, and (b) visualizes the generation
of the Talbot effect after the passage of 72.3 um long SWs through a diffraction grating. Panel (c) shows the Talbot effect at a much shorter
wavelength of 20.9 um, resulting in a more pronounced self-imaging effect. Periodic boundary conditions along the diffraction grating (y-axis)
were applied to each of these simulations.

The Talbot effect in magnonics has been numerically demonstrated for the configuration with the isotropic dispersion relation,
i.e., in the FV configuration for the thin ferromagnetic films*>**. In Fig. S2 we show the numerical results indicating the
possibility of observing the Talbot effect in a 4.5 um thick YIG film, a system considered in this paper, with a line of antidots



of square shape (50 x 50 um) and the period of 100 um. We can see that the diffraction of SWs with wavelengths similar to
the grating period forms self-imaging patterns (Fig. S2(a,b)), which is the Talbot effect, and it is more clear for shorter SWs as
shown in Fig. S2(c). In Fig. S2(c) we observe clear self-repeating patterns over a longer distance (the Talbot length zt = 956 pm)
than in Fig. S2(b) (zr = 276.7 um) with SW wavelengths of 20.9 pm and 72.3 um, respectively.

11l.  DAMON-ESHBACH CONFIGURATION
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FIG. S3. The SW interference pattern after passing through a diffraction grating with a square antidot structure and a period of 100 um. The
micromagnetic simulations were performed in a DE configuration for the frequencies 2.50, 2.52 and 2.54 GHz and for Bex;= 36 mT.

In Fig. S3 we show the extended progression of SWs following diffraction on square antidots in the in-plane magnetized
YIG film in DE configuration. The analysis is performed over a larger spatial domain compared to the figures in the main text,
allowing a comprehensive observation of the SW pattern evolution. Fig. S3 shows the micromagnetic simulation results for SWs
at 2.50, 2.52, and 2.54 GHz for Bexi= 36 mT. The dominant behavior of the SWs is characterized by the caustic effect, as shown
in Fig. S3(a). However, as the frequency increases (wavelength shortens), the angle of caustic beam propagation increases,
resulting in a decrease in the distance of crossing beams from adjacent slits along the propagation axis, from 170 to 150 pm
with the frequency change of 40 MHz, leading to a more complex picture, as shown in Fig. S3(b,c). Furthermore, in Fig. S4
for circular antidots and 150 um period, we show the diffraction of SWs at a higher frequency (4.95 GHz) and a larger external
magnetic field strength (Bex;= 98 mT). This corresponds to exciting SWs with different group velocity angles, resulting in even
more complex and periodically repeating patterns.
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FIG. S4. The SW interference pattern after passing through a diffraction grating with a circular antidot structure and a period of 150 um. These
micromagnetic simulations were performed in a DE configuration for frequency 4.95 GHz and for Bex= 98 mT.
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FIG. S5. Panel (a) shows a section of the simulation from Fig. S4 with a circular grating having a period of 150 um. Panel (b) shows the
interference pattern formed by SWs passing through a square antidot grating having the same period of 150 pm.

IV. INFLUENCE OF ANTIDOT SHAPE ON SELF-IMAGE

We changed the shape of the antidots to investigate their effect on the SW propagation in a YIG film and the formation of
the self-image pattern. We use the same parameters as in the simulation in Fig. S4 (lattice period 150 um, frequency 4.95 GHz,
and Bex= 98 mT), and the obtained pattern with the circular antidots as a reference image. By changing the antidot shapes from
circles [Fig. S5(a)] to squares [Fig. S5(b)], we preserve the self-image pattern in diffraction with the same distance between
repetitions, i.e., 415 um. However, the circular antidot grating provides better signal quality, resulting in the formation of clearer
patterns. ’ghis difference between the shapes of the antidots can be attributed to the difference in the demagnetization field near
the holes®.
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5.2 Two-dimensional systems

In line with the goals of my Ph.D. research plan, the natural continuation of the study of one-
dimensional textured systems is to extend the investigation to two-dimensional nanostructures.

This transition enables the study of spin-wave phenomena in more complex geometries,
such as waveguides with crescent-shaped cross section and ADLs, in line with the broader
goal of advancing functional magnonic architectures. These structures are considered two-
dimensional in this study, because the spatial variation of their physical parameters is confined to
two dimensions, while the third dimension is held constant and/or excluded from the analysis.
For example, we model an infinitely long structure where the cross section is crescent-shaped,
meaning that properties such as magnetization and material composition can only change within
the profile (in two dimensions) but remain uniform along the length of the waveguide.

ADL’s micromagnetic simulations are in fact fully 3D because they include out-of-plane
boundary conditions that make the structure finite in the thickness direction. However, the
periodicity and primary magnetic behavior are restricted to the in-plane dimensions, with a
single unit cell across the thickness of a film (same as in the MuMax3 simulations for Talbot
effect studies). Although the out-of-plane thickness affects the spin-wave dynamics, there are no
structural variations occurring along this direction, allowing the main effects to be accurately
described in a two-dimensional context.

The structures manipulate spin waves in a planar framework, allowing for precise control
over wave confinement, propagation, and interference within the plane, which is invaluable for
designing efficient magnonic devices.

Two-dimensional nanostructures, such as ADLs with periodic arrays of dots, create frequency-
selective channels by establishing tunable bandgaps. These bandgaps filter spin waves according
to their frequency, making ADLs highly effective for frequency-selective applications. Similarly,
crescent-shaped waveguides exploit structural asymmetry to achieve tailored propagation modes,
further extending the ability to control spin-wave behavior.

The research presented in this section builds on the principles established in 1D studies and
extends them to more complex geometries that enable sophisticated wave manipulation and open
new avenues for applied magnonics.

5.2.1 Spin-wave localization and dynamics in crescent cross-section
nanorods under geometric and field manipulations (P4)

This research investigates the properties of spin waves in crescent-shaped waveguides — structures
that are inherently three-dimensional due to their curved, asymmetric cross-sectional geometry.
However, to focus specifically on the cross-sectional dynamics of magnetization, we perform
micromagnetic simulations in two dimensions, modeling the waveguide as infinitely long.

The study shows that changing the direction of the applied magnetic field breaks the inherent
symmetry of the crescent-shaped waveguide, which in turn shifts the localization of the spin-wave
modes with respect to the static demagnetizing field. This shift affects the frequencies of the
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spin waves and provides a way to control the mode confinement. These results demonstrate that
such sophisticated waveguides support chirality-based, nonreciprocal dispersion relations for
high-frequency spin waves that can be tuned by changing both the direction and the strength of
the magnetic field.

This work was carried out in an international collaboration with research groups from the
United Kingdom and India, bringing together advanced theoretical expertise and experimental
methodologies. It highlights the potential of crescent-shaped waveguides as two-dimensionally
textured but fundamentally three-dimensional magnetic structures with tunable spin-wave prop-
erties. Such architectures are promising for applications in spintronic and magnonic devices,
where precise control of the wave behavior by field and geometry offers new functionalities.

Contribution of the Author

In this publication, I co-supervised the work of the student H. Reshetniak (the second author),
and was primarily responsible for the execution of the micromagnetic simulations in COMSOL
Multiphysics, which we performed together. I also participated in the interpretation of the
simulation results (from COMSOL and from MuMax3 performed by U. Makartsou), established
and maintained the international collaboration for this project (with A. van den Berg, S. Ladak,
and A. Barman), post-processed the data, wrote the first draft, managed the submission of the
manuscript to the journal, and handled all correspondence with the reviewers.

The article reprinted with permission from Gotebiewski, M.; Reshetniak, H.; Makartsou, U.;
Krawczyk, M.; van den Berg, A.; Ladak, S.; Barman, A. Physical Review Applied 19, 6, 2200373
(2023) ©2023 American Physical Society. License number: RNP/25/FEB/088094.
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The research on the properties of spin waves (SWs) in three-dimensional nanosystems is an innovative
idea in the field of magnonics. Mastering and understanding the nature of magnetization dynamics and
binding of SWs at surfaces, edges, and in-volume parts of three-dimensional magnetic systems enables
the discovery of alternative phenomena and suggests other possibilities for their use in magnonic and
spintronic devices. In this work, we use numerical methods to study the effect of geometry and external
magnetic field manipulations on the localization and dynamics of SWs in crescent-shaped (CS) waveg-
uides. It is shown that changing the magnetic field direction in these waveguides breaks the symmetry and
affects the localization of eigenmodes with respect to the static demagnetizing field. This, in turn, has a
direct effect on their frequency. Furthermore, CS structures are found to be characterized by significant sat-
uration at certain field orientations, resulting in a cylindrical magnetization distribution. Thus, we present
chirality-based nonreciprocal dispersion relations for high-frequency SWs, which can be controlled by the
field direction (shape symmetry) and its amplitude (saturation).

DOI: 10.1103/PhysRevApplied.19.064045

I. INTRODUCTION

Today, the topic of spin waves (SWs) and their control
in magnetic materials covers a broad spectrum of research.
The technological potential of signal transport without the
emission of Joule-Lenz heat [1-3], the wavelength of SWs
from micrometers to tens of nanometers for frequencies
from few GHz to several hundred GHz [4—7], the ability
to control the dispersion and group velocity of magnons
[8—11], and high-energy efficiency without compromising
the conversion speed [1,12—14], make them a desirable
successor to conventional electric currents, among others
in computing, memory, and various types of microwave
systems [15-20].

It is promising to design advanced magnonic systems
where, thanks to static (e.g., geometry, topology, mate-
rial properties, magnetization texture) and dynamic factors
(e.g., frequency of SWs, dynamic couplings, and direc-
tion of the external magnetic field), it is possible to control
magnons and adjust their dynamics to the given goals. In
ferromagnetic materials, the properties of SWs are deter-
mined by strong isotropic exchange interactions coexisting
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with anisotropic magnetostatic interactions. The localiza-
tion of SWs is a natural consequence of the development
and miniaturization of nanoscale magnetic systems and
attempts to manipulate their magnetization. One example
of such localizations is the edge mode [21-35], where SWs
are bound or propagate only along the outer parts of a
system. The strong heterogeneity of the internal demagne-
tizing field at the edges perpendicular to the magnetization
allows the localization of SWs in these regions, and the
localization allows the trapped wave modes to act as
information carriers or sensitive probes of the magnetic
properties of an entire system.

In recent years, there has been significant development
of alternative fabrication techniques, such as two-photon
lithography and focused electron-beam-induced deposi-
tion, which now allow the fabrication and analysis of com-
plex three-dimensional (3D) structures at the nanometer
scale [36-41]. Understanding the influence of geometric
and topological properties on the propagation of SWs in
3D systems is at a very early stage of research. Excit-
ing effects are shown by crescent-shaped (CS) nanowires
arranged in diamond bondlike networks, i.e., enabling the
analysis of states close to degeneration and providing a
platform for reconfigurable magnonic devices [42—46]. In
the above research, the nanorods are building blocks of

© 2023 American Physical Society
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more complex systems, demonstrating the existing imple-
mentation of CS structures in experimental and theoretical
studies. A single CS waveguide may also be of inter-
est in its own right. Moreover, the knowledge of single
nanowires will provide a better understanding of the com-
plex dynamics of magnetization in 3D structures’ entire
system.

This study investigates the shape and curvature of CS
nanowires to determine how they affect the magnetization
dynamics. In this context, there are key studies showing
effective Dzyaloshinskii-Moriya and anisotropy interac-
tions associated with curvature, as proposed in Ref. [47].
There are also numerous other intriguing effects in curved
magnetic wires and films [48], the understanding of which
opens other research avenues and motivates the systematic
analysis of the CS structures performed in this work.

The geometry of the simulated structure is shown in
Fig. 1, where the coordinate system and field direction
are defined. The SW modes have different spatial distribu-
tions in the described structure, ranging from localized to
volumetric, spreading throughout the volume, and having
different quantization numbers and properties. We study
two types of nanorods with CS cross sections—those with
rounded edges and those with sharp edges. With this
approach, we combine the practical and theoretical anal-
ysis of eigenmodes and determine the range where and
to what extent the contribution of the edge changes the
results for the whole nanorod. In addition, the SW prop-
agation and its dependence on the transverse localization
of the modes have been analyzed. The obtained disper-
sion relations show interesting nonreciprocal properties
that can be used for dynamic manipulation of SWs in these
waveguides.

The structure of the paper is as follows. First, we
describe the system geometry (Sec. II) and the numerical
methods used in the simulations (Sec. III). In Sec. IV we
present the results and analyze the SW spectra. The results
obtained in magnetization saturation at different external
field orientations with respect to the CS nanorod axis are
presented in Sec. IV A. The SW spectrum in the continu-
ous transformation from elliptic to CS nanorod is shown in
Sec. IV B, and we conclude how the edge sharpness influ-
ences the magnonic response of the structure in Sec. IV C.
In Sec. IVD we study the effect of decreasing magnetic
field and static magnetization distribution. Finally, in Sec.
IV E we examine the influence of the magnetic field orien-
tation on the dispersion relation of the SWs along the long
axis. The last section is a summary of the paper.

II. GEOMETRY AND MATERIAL PARAMETERS

In this research, infinitely long ferromagnetic nanorods
with CS cross sections (Fig. 1) are studied. Thus, the
magnetic properties (magnetization, demagnetizing field,
etc.) are considered to be homogeneous along the z axis.

FIG. 1. Model of the nanorod with a CS section. Spherical
coordinates for the external magnetic field Hey and the main
dimensions are marked.

Such nanowires can be realized using a combination of
two-photon lithography and evaporation [42—45].

The simulation model has 65 nm at the thickest point,
the width between the edges is 210 nm, and their round-
ing radius is 5 nm. Rounded edges of the waveguide are
closely related to maintaining the integrity of the simula-
tion by avoiding too thin elements. In addition, as shown
in Ref. [42], it is experimentally justified, and its simu-
lated edge modes retain their physical properties. We use
the following parameters of permalloy (Py): the satura-
tion magnetization Mg = 800 kA/m, the exchange constant
Aex = 13 pJ/m, and the gyromagnetic ratio |y | = 176 GHz
rad/T. To saturate the sample at all analyzed angles, we use
an external magnetic field of woHexy =3 T.

II1. MICROMAGNETIC SIMULATIONS

To comprehensively analyze the properties of the SW
modes in the CS nanorod, we perform a series of numer-
ical simulations in the COMSOL Multiphysics software.
It uses the finite-element method (FEM) to solve cou-
pled systems of partial differential equations, including the
Landau-Lifshitz equation and Maxwell equations in the
magnetostatic approximation.

All magnetic moments in numerically defined unit cells
are modeled in the simulations as normalized unit vec-
tors m = M/Mg, where M is the spatiotemporal distribu-
tion function of the total magnetization. Then, neglecting
damping as a parameter irrelevant to our analysis, the
Landau-Lifshitz equation takes the form:

dm

? = _y [m X BeFF] > (1)
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where dm/dt is the time evolution of the reduced mag-
netization. The effective magnetic flux density field By
determines the direction around which the magnetiza-
tion precesses and contains many system-related magnetic
components. In our simulations we assume only the influ-
ence of the external magnetic field, exchange interactions,
and demagnetization.

The demagnetizing field H,, contributes to the shape
anisotropy in ferromagnets and to the SW dynamics.
Since it is governed by Ampére’s law (V x H; = 0), the
demagnetizing field can be derived from a gradient of the
magnetic scalar potential U,,:

H; = —VU,, 2)
which, inside the magnetic body, yields
VU, =V M. )

All presented equations have been implemented in COM-
SOL to solve the eigenproblem derived from Egs. (1)—(3),
assuming full magnetization saturation by the magnetic
field, linear approximation, and analyzing only the CS
planes. Assuming that ferromagnetic materials are sat-
urated along the i axis (orientation of Hey), a linear
approximation can be used to split the magnetization
vector into static and dynamic (time #- and position r-
dependent) components m(r, t) = m;i + dm(r, 1) V (Sm L
1), neglecting all nonlinear terms in the dynamic magne-
tization dm(r, #). For further methodological details, see
Refs. [49,50]. Therefore, the numerical simulations are
performed in two spatial dimensions with a triangular dis-
cretization of nearly 10000 cells. To visualize the static
demagnetizing field on a two-dimensional xy area in the
form of a color map, we use the formula for its module:

Hy(x,y) = V(dU,/dx)* + (dU,, /dy)>. 4)

To elucidate the SW spectra and SW dispersion rela-
tion in unsaturated CS nanorods, we use the finite-
difference method based micromagnetic simulation pack-
age—Mumax3 [51]. Here we solve the Landau-Lifshitz
equation with the damping term (assuming damping coef-
ficient « = 0.0001), leaving other B.g terms the same as
in COMSOL simulations. To calculate the ferromagnetic
resonance intensity spectra (Fig. 8) and dispersion rela-
tions (Fig. 9), we apply the fast Fourier transform (FFT).
By applying the FFT, we are able to convert the time-
and space-domain signals from our simulations into fre-
quency and wave-vector domain spectra and determine
the resonant frequencies and SW mode profiles of CS
waveguides.

Mumax3 field-rotation simulations are discretized by
256 x 128 x 1 cells, each 0.92 x 0.90 x 1 nm? in size,
along the x, y, and z axes, respectively. Periodic bound-
ary conditions (PBC) are applied along the z axis to

mimic an infinitely long system. To excite the SW dynam-
ics, we use a homogeneous in-space microwave magnetic
field h(z, ) = [ho, ho, holsinc (27 foef) With amplitude iy =
0.015Hy; and f¢y = 100 GHz.

For the dispersion relation simulation, however, the
computational volume without PBC had to be increased
to 20 pwm, which required the discretization reduction
to 64 x 64 x 5120 cells. To avoid reflections of SWs at
the waveguide ends, an absorbing boundary condition is
assumed. These adjustments did not affect the mode pro-
files, although a minimal shift in frequencies is observed.
Of note, in none of the simulations is the unit cell larger
than the exchange length, which is 5.69 nm for Py. The
SWs are excited from the central part of the waveg-
uide by applying the time- and space-dependent dynamic
component of the magnetic field h, defined as

h(Z, t) = [hOa hOs hO]SinC(ZNkCutz)Sinc(znﬁutt)s (5)

where hy = 0.015H. By using Eq. (5), we can apply
broadband SW excitation in ranges of frequencies f €
[0, feut] and wave vectors along the z axis k, € [—keut, keut]-

IV. RESULTS

A. Dependence of SW spectra on the orientation of the
magnetic field

We analyze the SW eigenmodes of the system shown
in Fig. 1, saturated by the external magnetic field (3 T)
directed at different angles ¢ and 6. The results are shown
in Figs. 2—4. They reveal interesting changes in the fre-
quencies and distribution of the SW amplitude for different
field configurations.

The analysis of changing the azimuth angle ¢ (at 6 =
90°) on the SW eigenmodes in Fig. 2 shows the evident
influence of the system symmetry on their properties. This
is manifested by the edge localization of some modes and
the bulk concentration of others. The frequency shift with
increasing ¢ is nonmonotonic, revealing more and less
favorable configurations for some applications. At ¢ = 0°,
the two low-frequency modes [see mode 1 in Figs. 2(a)
and 2(b)] are the edge-localized SWs with antisymmet-
ric and symmetric oscillations at the opposite edges of
the nanorod, see Fig. 3(a). Their frequency difference is
only 100 MHz, indicating a weak coupling between the
SW oscillations at the opposite edges. Interestingly, their
responses to field rotation vary significantly, as the fre-
quency of the symmetry branch increases linearly with
increasing angle, from 75.76 GHz at 0° to approximately
88 GHz at 30°. The antisymmetric branch shows a com-
pletely different trend. We observe the transition from
edge mode at ¢ = 0° (no. 1), to asymmetric single-edge
localization at ¢ = 45° (no. 3), to low-frequency volume
mode at ¢ = 90° (no. 5). The edge localization and its
changes with magnetic field rotation can be explained by
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FIG. 2. Eigenanalysis of the CS nanowire as a function of the changing direction of the external magnetic field that saturates the
magnetization, noHe = 3 T. Plot (a) shows the dependence of the eigenfrequencies on the azimuthal angle ¢ in the range 0—90° for
the polar angle 6 = 90°. The colors correspond to the intensities of the individual eigenmodes according to Eq. (6). In (b) we can
see the distribution of the magnetization precession intensity, while in (c) the static demagnetizing fields, Eq. (4), are shown for the
selected ¢ values. The number insets in the plots refer to the eigenmode visualizations.

the enhancement of the demagnetizing field, which locally
reduces the internal magnetic field, as shown in Fig. 2(c).
Thus, the observed transition is strongly associated with
the breaking of the symmetry of the internal magnetic
field and the associated changes in the demagnetizing field.
For the examples in Fig. 2 labeled 3 and 4, we see that
the demagnetizing field is strongly localized at the right
edge; therefore, mode no. 3 has a lower frequency. On
the other hand, modes 5 and 6 are volumetric, but both
the magnetization and the demagnetizing field are not uni-
formly distributed over the cross section, which results in
a lower frequency of mode 5 than 6, since the peak of
the magnetization intensity coincides with the rise of the
demagnetizing field. Thus, the minima in the band struc-
ture for the polar angle ¢ = 45° are also related to the
localization of these low-frequency modes in one half of
the CS, e.g., see mode no. 3 in Fig. 2(b). The demagne-
tizing field in the CS nanorod fluctuates with changing ¢,
so does the frequency of the modes. Thus, the graph pre-
sented in Fig. 2(a) shows some crossing and anticrossing
between different modes, but we have left their origin and
interpretation for further study. Instead, in this paper we

(a wax: (b)
©=90 ®=0" g576GHz 12 ©*5.®=0 87.40 GHz
7566 GHz  mex. 87.33 GHz

[ 4 \

FIG. 3. Edge-mode amplitude distribution for the first two
eigenfrequencies and external magnetic field polar angle equal
to (a) 90° and (b) 45°. In both cases the azimuthal angle remains
0°, and the colors represent the sum of the dynamic components
of the magnetization.

focus on analyzing the effect of field rotation on the CS
system eigenfrequencies and SW propagation in them.
The above analysis of the external magnetic field rota-
tion reveals the decoupling of the edge-localized SW
modes. Consequently, the two edges can behave as sepa-
rate, weakly dipolar coupled paths for SW guiding along
the nanorod, with their frequencies controlled by the mag-
nitude and orientation of the field. Furthermore, after the
field rotation breaks the symmetry, CS nanorods can be
used as two-channel SW waveguides capable of simulta-
neously supporting different frequencies on both sides.
Qualitatively, the situation is very similar for polar
angles 6 other than 90°, while the eigenfrequency values
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100 ® =90 (deg) -Imensity

(arb. units)

4 \9
700 [/ Hgs

(arb. units)

Eigenfrequency (GHz)

max
0 10 20 30 40 50 60 70 80 90
Rotation © (deg)

FIG. 4. Frequencies of the SWs in the CS nanowire as a func-
tion of the polar angle 8 for a constant azimuthal angle ¢ = 90°
of the 3-T external magnetic field (auxiliary diagram in the
lower-left corner). The dark color of the dots represents the
resulting intensity of the eigenmodes calculated according to Eq.
(6). The images of the cross sections show the distribution of
the magnetization precession intensity for successively marked
values of 6.
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FIG. 5. Scheme of the analyzed shape transformation—from
ellipse to the crescent.

change significantly. In particular, the frequency of the
edge mode increases from approximately 76 to approxi-
mately 88 GHz with a rotating magnetic field from 6 = 90
to 45° (Fig. 3), since decreasing the demagnetizing field
results in increasing the internal field. By changing 6 from
90 to 45° (and keeping ¢ = 0°), we drive the first edge
eigenmode to change its nature from antisymmetric to
symmetric.

For this reason, we also decide to study the influence
of the polar angle 6 on the response of the ferromagnetic
system. In this case, the symmetry between the geometry
and the external magnetic field is maintained, i.e., for the
constant angle ¢ = 90°.

Figure 4 shows the distinct and monotonic frequency
drop (by approximately 30 GHz for the lowest mode)

along with the “skew” of the external magnetic field from
the long axis of the nanowire. As for the variation of ¢,
one can also observe a transition from the edge mode
for small 6 values to the volume mode already formed
at about # = 20°. The frequency drop is also accompa-
nied by a greater separation of eigenmodes, especially
the low-frequency ones, compared to the others. This is
related to the increasing propensity of the system to gener-
ate an intense fundamental mode as 6 grows. Furthermore,
homogeneously precessing magnetization vectors are ener-
getically more favorable for the field directed along a
volume section of finite thickness. It will therefore oscillate
with greater intensity and lower frequency.

In addition, the data markers on the frequency plots,
Figs. 2(a) and 4, are colored according to values of the
following formula:

| 2
I = (-/8m(r, t)dS) , (6)
S Js

where S is an area of the nanorod’s CS cross section.
It defines the intensity of the eigenmodes, formulated to
estimate their visibility in experiments, e.g., ferromagnetic
resonance measurements. The most intense lines are asso-
ciated with the fundamental mode (no phase change in
the nanorod cross section); see mode 2 in Figs. 2(a) and
2(b). This is predictable since symmetric edge modes are
enhanced by a strong demagnetization field, while volume
modes occur over a larger area. However, azimuthal rota-
tion of the field reduces the intensity and is only restored at
¢ > 70°. Here we have two modes of comparable intensity
at 65 and 70 GHz [see modes 5 and 6 in Fig. 2(b)]. These
modes have amplitudes concentrated in different parts of
the inner and central parts of the nanorod with a nodal line
perpendicular to Hey. Their frequency splitting is due to
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FIG. 6.
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Eigenanalysis of a variably shaped nanowire going from a full ellipse to the CS cross section (according to Fig. 5). In (a),

the magnetization precession intensity distributions for the lowest eigenfrequency branch are shown for the five selected steps of
overlapping distance |Z| = 350, 270, 240, 90, and 0 nm. In (b) the distributions of the static demagnetizing field [see Eq. (4)] are

presented.

064045-5



GOLEBIEWSKI et al.

PHYS. REV. APPLIED 19, 064045 (2023)

different curvatures of the lower and upper nanorod edges
and thus different demagnetizing fields (see Fig. 2(c) at
¢ = 90°). Interestingly, rotating the field along the long
axis (from 6 = 90° to 0°) decreases the intensity as they
transform to the edge-type mode (see Fig. 4).

B. Crescent-ellipse shape transformation

We further investigate the shape and curvature depen-
dence of the analyzed cross section on the formation of
low-frequency modes. Therefore, we perform a series of
simulations for different geometries resulting from the
superposition of two elliptical shapes, from a full ellipse to
the crescent shape, controlled by a single parameter L. The
scheme of the reasoning is shown in Fig. 5. This allows us
to capture the transition of the localization of the modes.
In addition, we could also observe the effect of changing
the geometry on the demagnetizing field. This analysis is
performed for the 3-T external magnetic field along the x
axis.

In Fig. 6 it can be seen that the crossings of the indi-
vidual frequency branches occur at the moment of transi-
tion, at L ~ —270 nm. Notable is also the nonmonotonic
dependence of the lowest-frequency branches. By choos-
ing the appropriate shape of the cross section, we can
significantly influence their energy without changing the
character of the modes (in this case, the edge-mode exci-
tation at the lowest frequency, i.e., 64.81 GHz, occurs
for L &~ —90 nm). For L > —90 nm, the frequency of all
modes increases with increasing L, indicating the dominant
role of exchange interactions. An interesting phenomenon
is also found for the first three pairs of eigenmodes—we
see that as the cross section is brought closer to the cres-
cent shape, these modes degenerate. This is opposite to
the behavior of Fig. 2, where symmetric and antisymmet-
ric edge modes split. It is also interesting from the point
of view of designing such structures, since the geometry
can tune the coupling between modes localized on opposite
sides.

C. Edge sharpness impact

Comparing the simulations for 6 = 90° and ¢ = 0°, we
see that the first edge and volume modes (numbered 1 and
2 in Fig. 2) appear at 75.66 and 84.39 GHz, respectively.
In the sharp-edged case (analogous to L = 0 nm), the first
eigenmode appears already at 70.88 GHz and is strictly
localized at the edges. It shows a strong edge geometry and
sharpness dependence of the eigenfrequencies obtained.
This property provides another degree of freedom in this
system to tune a magnonic spectrum. However, unlike the
thickness, curvature and length of the nanowire, the shape
of the edges is difficult to control experimentally. There-
fore, in this analysis we examine only what differences
can be expected and how essential this element is for the
results of micromagnetic simulations. From experimental

y
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FIG. 7. Comparison of the localization of the SW modes and
their frequencies (a),(c) depending on the different edge sharp-
ness and comparison with the corresponding demagnetizing
fields (b),(d). The color distributions for the modes represent
the magnetization precession intensity from Eq. (6), while the
demagnetizing field is from Eq. (4).

studies, it can be observed that the evaporation of a mate-
rial on a polymer framework with an elliptical cross section
[42] leads to the formation of CS nanowires with partially
rounded edges. This is mainly due to the roughness of the
underlying resist of about 5 nm.

In Fig. 7 it is evident that for the illustrative exam-
ple (¢ =0°, 6 =90°), where the first eigenmodes are
edge localized, there are obvious differences in their dis-
tribution and oscillation frequency, up to 4.78 GHz. As
shown in the previous section, a strong demagnetizing field
in thin regions, relative to a normally oriented magnetic
field, causes the modes to be localized there. The crucial
observation from Fig. 7 is that the frequency decreases sig-
nificantly for the sharper edge case. This most likely means
that the localization is still forced by the demagnetizing
field (magnetostatic effect), since the exchange contribu-
tion would increase the frequency with persistent phase or
amplitude inhomogeneities in the edge region.

D. Unsaturated system

The eigenproblem simulations in COMSOL assume a uni-
form static magnetization and focus on the change of field
direction and its influence on the localization of harmonic
SW modes and their frequencies. For this reason, a large
3-T magnetic field is assumed. An interesting observation
is made when comparing the results of the frequency-
domain simulation with the results obtained in Mumax3
with the relaxation of the static magnetization distribution.
As shown in Fig. 8 (right panels), even at 3-T field, the

064045-6



SPIN-WAVE SPECTRAL ANALYSIS...

PHYS. REV. APPLIED 19, 064045 (2023)

© =90 deg 0 W max

Intensity (arb. unit)

@ =0deg

® =45deg

Frequency (GHz)

0 20 40 60 80
Rotation @ (deg)

FIG. 8. Comparison of the CS nanowire’s eigenanalysis
results from COMSOL (gray dots) and time-domain simulation
results from Mumax3 (color scale) as a function of the azimuthal
angle ¢ for the polar angle & = 90° at external magnetic field
3 T. On the right, the static magnetization plots of the CS cross
section from Mumax3 for three magnetic field configurations are
shown. The color map visualizes the angle deviation of the static
magnetization vector (arrows) from the direction of the external
magnetic field.

infinite CS nanowire still maintains a nonuniform magneti-
zation (up to 8.6° from the magnetic field orientation at the
edges of the CS nanowire for ¢ = 0 and 90°), the strength
and distribution of which vary with the magnetic field ori-
entation. This leads to slight frequency differences (up to
2.5%) between the Mumax3 and COMSOL calculations (for
low-frequency modes at ¢ = 0° and higher frequency at
¢ = 90°), while maintaining their qualitative agreement,
as seen in Fig. 8 (left panel). The intensity of a mode is
also correlated for both solvers, which can be seen by com-
paring the intensity of the color map in Fig. 8 with the
intensity of the dots in Fig. 2(a). The unexpectedly large
saturation field drew our attention to the use of CS waveg-
uides for the propagation of high-frequency SWs, whose
frequency will be strongly tunable with the propagation
direction (chiral anisotropy) and the value and direction of
the external field.

E. Dispersion relation

Curvilinear magnetism, and in particular the propaga-
tion of SWs in cylindrical nanotubes, is the subject of
analysis in recent studies [47,52—54]. They focus on the
influence of the magnetization chirality, forced by the
geometry, on the dispersion relation of SWs, obtaining dif-
ferent frequency values with the same wave number but
propagating in opposite directions. By analogy with the
cylindrical cross section of a nanotube, we can assume that
the magnetization in the CS nanorods spreads along their
curvature at low magnetic fields, giving rise to SWs with
chiral properties. In Fig. 9 we show the dispersion relations
for a wave vector directed along the z axis for two values
of the external magnetic field, 1 T and 3 T, and its two
orientations, ¢ = 0 and 90° (for both 6 = 90°).
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FIG. 9. Dispersion relations of CS nanorods for (a),(c) 1-T
and (b),(d) 3-T external magnetic field directed along the x axis
(a),(b) and the y axis (c¢),(d) for 1 T and (d) for 3 T. The wave
vector is directed along the z axis. Nonreciprocity is shown in
insets as the frequency differences §f between the most intense
branches for positive (yellow dots) and negative (red dots) wave
vectors. The plots also include visualizations of volumetric and
edge modes (where they occur) for &k, = 0.

The results for the field directed along the x axis [Figs.
9(a) and 9(b)] show a clear, field-value-dependent non-
reciprocity for the bulk mode, represented by the inset
plots 8f (|k.|) = f (k) — f (—k.). The highest value of this
function for the bulk mode at 1 T along the x axis is
max(§f ) ~ 1.35 GHz, and for the analogous case at 3
T—max(§f ) ~ 1.03 GHz. Interestingly, as we can see in
Figs. 9(a) and 9(b), the lowest frequency bands are the edge
modes. In the case of 3 T [Fig. 9(b)], this mode is strictly
edge localized (see also mode no. 1 in Fig. 2). Simulations
also show that this mode has a symmetric parabolic dis-
persion relation, indicating the propagation nature of this
excitation, which supports the thesis of a two-channel SW
conductor in structures with CS cross sections. For smaller
fields [e.g., 1 T in Fig. 9(a)], the demagnetization exceeds
the external magnetic field and the magnetization rotates
tangentially to the edge of the nanowire, causing the ampli-
tude to spread over the volume and lose its edge character.
This results in a small nonreciprocity also for this mode.
On the other hand, at the vertical magnetic field orien-
tation, shown in Figs. 9(c) and 9(d), there is a perfectly
symmetric dispersion relation for both 1-T and 3-T field
values.

The peculiar dependence of the SW dispersion relation
on the value and direction of the magnetic field described
in this section is a direct effect of the curvature when
the magnetic field breaks the shape symmetry and its
low amplitude does not allow it to saturate, leading to a
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quasichiral magnetization distribution. Therefore, the non-
reciprocity can be explained by the fact that the static mag-
netization is distributed in a nonlinear way—the smaller
the field value, the more significant the nonreciprocity.
Interestingly, we are still able to observe detectable nonre-
ciprocity in the CS nanorods at fields as high as 3 T (asym-
metrically directed). A feature of the presented systems
is the wide operating frequency range and the dynamic
tunability using an external magnetic field. Another inter-
esting step may be to test their operation in small fields (or
even remanence), where the chirality and thus the nonre-
ciprocity should be stronger and the SW frequencies lower.
In addition, it is worth noting that the fabrication of struc-
tures with a CS cross section is less expensive than that of
nanotubes, which is also an invaluable parameter for future
applications.

V. CONCLUSIONS

In this study, an infinitely long waveguide with a CS
cross section is investigated. The magnetic response of the
system is examined (by eigenfrequency analysis) for dif-
ferent angles of the external magnetic field and the ratio
of the edge curvature to the total volume of the cross
section. From the obtained results we conclude that the
dynamic manipulation of the field direction significantly
changes the frequency and character of the eigenmodes,
especially the low-frequency ones, shifting from edge to
volume localization. The critical factor in this transition
is the effect of the symmetry breaking and the magnitude
of the internal demagnetizing field in the edge and vol-
ume regions, respectively. An analogous transition from
the low-frequency edge to the volume mode is observed by
gradually changing the cross section from an elliptical to a
narrow crescent. However, the relationship between shape
and frequency remained nonmonotonic, allowing the iden-
tification of the parameters analyzed to obtain the desired
SW localization at a given frequency.

The analysis of CS structures is based on experimen-
tal research. Here, we numerically demonstrate that very
long nanowires with such cross sections are interesting
objects of study, allowing us to better understand magnonic
effects in complex nanostructures. In 3D systems, where
the nanorod elements are oriented at different angles to
the external magnetic field, the magnetic effects resulting
from the cross sections have a crucial impact on the global
dynamic properties. There are also interesting aspects of
CS waveguides whose magnetization is not fully saturated
and is distributed along the curvature of the structure. For
certain angles of incidence of the external magnetic field
(in particular, ¢ = 0° and 6 = 90°) it corresponds to a
quasi-chiral-like texture and thus to an asymmetric disper-
sion relation for SWs propagating along its long axis. In
addition, it is found that the saturation of this structure (in

this configuration) is surprisingly high, which may favor
the nonreciprocal propagation of high-frequency SWs.

An in-depth understanding of SW performance in
waveguides with nontrivial shapes and cross sections is
essential to understand the collective effects and advan-
tages of using them in complex magnonic circuits. Ulti-
mately, this research demonstrates the unique nature of CS-
section nanorods and their real potential for use in future
magnonic devices, where waveguides enabling advanced
SW dynamics control will be critical.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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5.2.2 Thin-film magnonic crystals for high-frequency spin-wave generation
(P3)

This paper explores the potential of spin waves for high-frequency signal processing, highlighting
the role of two-dimensional texturing in achieving nano-wavelength confinement and high-
frequency operation. Using a periodic ADL — a two-dimensional magnonic crystal structure —
we demonstrate through micromagnetic simulations that a microwave-pumped spin-wave mode,
confined within the lattice cavity (region in ADL without the antidots — a defect), can generate
spin waves with frequencies in the tens of GHz and wavelengths below 50 nm. This represents a
significant advance in the generation of high-frequency, short-wavelength spin waves.

The 2D texturing by the ADL creates a magnonic bandgap that overlaps the frequency of the
cavity mode, enhancing confinement and enabling magnetic field tunability. We find that higher
harmonics emerge when the RF amplitude exceeds a certain threshold, indicating nonlinear
magnetization dynamics. The cavity mode frequency is aligned with the FMR frequency of the
planar ferromagnetic film, providing a stable mechanism for wave generation and control.

This study highlights the importance of two-dimensional texturization for high-frequency
spin-wave applications and presents a scalable method for generating short spin waves, under-
scoring the potential of magnonic crystals in advanced magnonic and quantum technologies.
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Exciting High-Frequency Short-Wavelength Spin Waves
using High Harmonics of a Magnonic Cavity Mode

Nikhil Kumar, Pawet Gruszecki, Mateusz Gotfebiewski, Jarostaw W. Ktos,

and Maciej Krawczyk*

Spin waves (SWs) are promising objects for signal processing and future
quantum technologies due to their high microwave frequencies with
corresponding nanoscale wavelengths. However, the nano-wavelength SWs
generated so far are limited to low frequencies. In the paper, using
micromagnetic simulations, it is shown that a microwave-pumped SW mode
confined to the cavity of a thin film magnonic crystal (MC) can be used to
generate waves at tens of GHz and wavelengths well below 50 nm. These
multi-frequency harmonics of the fundamental cavity mode are generated
when the amplitude of the pumping microwave field exceeds a threshold, and
their intensities then scale linearly with the field intensity. The frequency of
the cavity mode is equal to the ferromagnetic resonance frequency of the

electronics and photonics in terms of high
operating frequency, low power consump-
tion, and miniaturization.[?’-111 MCs are
the magnetic equivalent of photonic or
phononic crystals, which are important el-
ements of photonic!!>"3] and phononicl**!°]
technologies, respectively, and are also con-
sidered to be an important element of
future magnonic circuits.'*!? The char-
acteristic in-plane sizes of planar MCs
are in the range of tens or single hun-
dreds of nanometers, while the thicknesses
are about a few or tens of nanometers.
In this context, the SW modes in an-

planar ferromagnetic film, which overlaps with the magnonic bandgap,
providing an efficient mechanism for confinement and magnetic field
tunability. The effect reaches saturation when the microstrip feed line covers

the entire cavity, making the system feasible for realization.

1. Introduction

Magnonics, which uses SWs to transmit and process informa-
tion, is one of the fastest developing areas of research in mod-
ern magnetism.[% It covers a wide frequency range from sub-
GHz to tens of THz, with corresponding wavelengths from mi-
crometers to nanometers, and is free of translational electron mo-
tion and Joule heating. This makes it a promising alternative to
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tidot lattices (ADLs), i.e, thin ferromag-
netic films periodically structured with
holes (antdots), have attracted considerable
interest?*?7] and were used for control-
ling SW velocity,?8] exploiting magnonic
bandgaps and SW diffraction.[2-31]

However, the fundamental obstacles in
the design of magnonic devices are, among
others, difficulties related to the excitation of SWs, especially of
high frequency and short wavelengths. To excite short SWs, i.e.
with wavelengths below 100 nm, the use of (a) microwave strip
lines, 32! (b) magnetic solitons (domain wall(®3! or vortex in a sin-
gle or double ferromagnetic layer!>*3%)), (c) ferromagnetic strips
magnetostatically coupled to the ferromagnetic conduit,**! (d) 2D
grating couplers®” or (f) inhomogeneity of the internal magnetic
field®®] has been proposed. The first approach (a) requires ultra-
narrow metallic strips that limit the transmitted power, and the
latter three (b—d) are used at low frequencies that are limited by
the natural oscillations of the magnetic solitons or ferromagnetic
nanoelements (ferromagnetic resonance frequency). In the latter
case (d), the frequencies of the locally modified internal magnetic
field are usually below or around the ferromagnetic resonance
frequency of the respective bulk material. More recently, in the
out-of-plane magnetized film, the local reduction of the demag-
netization field due to high-angle magnetization oscillations al-
lowed the excitation of SWs with wavelengths down to 200 nm.3!
Although a simple microstrip is used to transmit microwaves to
the SW, the nonlinear effect involved and the proposed conver-
sion are limited to low frequencies, hardly accessible for shorter
SWs, and effective only in the assumed geometry.

By introducing a defect into the ADL, e.g., in the form of a
filled hole (or a few filled holes), we can trap SW energy in this
region whenever a resonant frequency of the cavity falls into
the magnonic bandgap of the MC.[***3] Such a magnonic cavity

© 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 1. a) Schematic of the device — an ADL with a three-hole defect
cavity (L) centered atx = 0 and y = 0. MC is made of a 5 nm thick Py-film
with magnetization saturated by the magnetic field H, directed along the
y-axis, the diameter of the antidots is 80 nm and the lattice constant is
150 nm. A CPW antenna is placed just above the film, centered at x, (in
the plot xy = 0), and consists of a source line of width w and two ground
lines, which are separated from the source line by gaps of width s. b) The
SWs are excited by the x and z components of the microwave frequency
magnetic field h, ¢ of amplitude h,¢ produced by CPW. The calculated field
distribution from CPW with w = 40 nm and s = 20 nm is shown.

allows building-up of SW amplitude,***] similar to electro-
magnetic waves in a photonic crystal cavity,'?l when externally
pumped at the cavity resonant frequency. Finally, at sufficiently
high wave amplitudes, nonlinear processes are initiated. This
effect is widely studied and exploited in photonics cavities, in par-
ticular, to enhance the generation of 2" and 3" harmonics.['3¢]

Recently, multi-frequency generation in magnonics has also
been demonstrated.[*->°] However, the frequency of the gener-
ated SW modes hardly exceeds 10 GHz. In particular, the results
of time-resolved scanning transmission X-ray microscopy mea-
surements demonstrate the generation of SW high harmonics,
up to 7 order, in ADL based on 50 nm thick Py film.I*! The
pumping microwave field frequency is only 0.93 GHz, so the 7%
order harmonic frequency is only 6.51 GHz.

In our work, we further exploit ADL by combining it with
the defects forming magnonic cavities to enhance nonlinear pro-
cesses, in particular high-frequency harmonic generation. To this
end, we introduce into ADL an L, cavity (@ homogeneous re-
gion where three successive antidots are absent). In order to
concentrate and enhance the SW amplitude inside the cavity,
which is required to cross the nonlinearity threshold, we need
to choose an ADL with a full frequency gap in which the funda-
mental mode of the cavity exists. This condition is satisfied for
a Py-based ADL with cylindrical antidots arranged in a square
lattice—see Figure 1. Here, the gap width is 1.9 GHz at 0.5 T
magnetic field and can be further optimized by changing the lat-
tice type, shape, and size of the antidots. The fundamental mode
frequency of the L, cavity corresponds to the ferromagnetic res-
onance (FMR) frequency of the uniform Py layer, and this fre-
quency is within the magnonic bandgap of the ADL. This allows a
wide frequency tunability by the magnetic field: changing it from
200 mT to 1 T results in the 2" and 3" harmonics in the fre-
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quency ranges 28-80 GHz and 42-120 GHz, respectively, while
keeping the SW wavelength below 62 and 40 nm, respectively.
The presented mechanism of high-frequency short-wavelength
SW generation demonstrates its general character and the feasi-
bility of its experimental realization by using a standard coplanar
waveguide (CPW) to pump the fundamental cavity mode.

2. Device Model

The device geometry is shown in Figure 1a. It is an ADL with
a square lattice of antidots in a 5 nm thick Py film, with an an-
tidot diameter of 80 nm and a lattice constant of a = 150 nm.
A three-antidot defect L, (i.e., the area of three unit cells without
the holes) is introduced in this structure. The system is uniformly
magnetized by an in-plane bias magnetic field p,H, > 0.2 T di-
rected along the y-axis (i, is the permeability of the vacuum). The
SWs are excited by a microwave frequency magnetic field (h,)
generated by a CPW consisting of a signal line of width w sepa-
rated by s = 20 nm gaps from two identical ground lines (much
wider than w), and centered at x,,.

Two simulation methods are used. Comsol Multiphysics pack-
age is used to calculate the magnonic band structure and cavity
modes. Here, we use the finite element method (FEM) to solve
the eigenproblem obtained from the linearized Landau-Lifshitz
equation in real space and the frequency domain. The nonlinear
effects are simulated in the real space and time domain (with fi-
nite difference time domain method, FDTD) using the Mumax3
micromagnetic solver,!! which solves the full Landau-Lifshitz-
Gilbert equation. The methods are described in Section 5. We
use typical material parameters for Py, i.e., the saturation mag-
netization M, = 800 kAm'!, the exchange constant A = 13 pJm,
and in FDTD simulations the damping a = 0.01. We assume the
free electron gyromagnetic ratio, y = 176 rad GHzT"'. The mag-
netization dynamics inside the cavity are studied by probing the
magnetization amplitude over 450 X 150 nm area, i.e., three unit
cells along the x-axis and one along the y-axis.

3. Results

3.1. Band Structure and the Resonance Spectra

Magnonic band structure of the ADL (without the defect) is
shown in Figure 2a and is obtained by FEM at 0.5 T. The disper-
sion relation is over the path Y-I'-X-M-Y in the first Brillouin zone
(see the inset). Importantly, we see a well-defined full bandgap,
ranging from 23.05 to 24.95 GHz. The two bands below the
bandgap originate in the edge modes, i.e., the modes with the
amplitude concentrated near the antidot edges, while the bands
above are bulk modes, with the first one a fundamental mode of
the ADL.[?7]

The resonance response of the ADL, ADL with the L, cavity,
and as a reference of the plain Py film are shown in Figure 2b. The
results are obtained with FDTD method by applying a spatially
uniform broadband microwave magnetic field linearly polarized
along the z-axis:

h, ¢ = hygsinc(2zf,, (t - £,))[0,0,1] (1)

where, the amplitude of microwave field poh =1 mT, f, =
40 GHz, and t;, = 8/f_,,. The intensity is calculated by integrating
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Figure 2. a) Dispersion relation of SWs over the Y-I'-X-M-Y path in the first
Brillouin zone (as indicated in the inset) in the 2D ADL calculated with
FEM. The magnonic bandgap is marked in transparent red. b) Spin-wave
spectra obtained using FDTD using broadband excitation (poh,,s = 1 mT)
by a spatially uniform microwave field for a uniform Py film (the blue line),
an ADL (the black line), and an ADL with the L; cavity (the thick green line).
The cyan stars indicate the mode profiles displayed in (c-h). Eigenmodes
inthe ADL are demonstrated in (c—e), while mode profiles for the ADL with
L; cavity are presented in (f-h). The color utilized represents the amplitude
of the out-of-the-plane component of the magnetization in arbitrary units.
The external magnetic field pyHy = 0.5 T is applied along the y-axis.

the square of the normalized z component of the magnetization
vector (m, = M,/Mjs) over the cavity region (i.e., the area of L;)
in a steady state. For presenting intensity, we use a logarithmic
scale: 201log,,(Im,|) in dB units.

For a plain Py film, we have only one distinctive peak at
24.3 GHz, corresponding to its FMR frequency. In the ADL
there are several intense peaks,?’] the most intense are shown in
Figure 2¢,d: c) the symmetric edge mode at 22.5 GHz (1*' band),
d) the fundamental excitation of the ADL at 25.8 GHz, and €) a
higher order SW at 28.5 GHz. This is in full agreement with the
dispersion relation presented in Figure 2a. For the ADL with the
cavity, we obtain the spectrum (green line in Figure 2b), which is
quite similar to the undefected ADL, but with a well-defined peak
at fy = 24.3 GHz, i.e., in the bandgap of the ADL. The peak rep-
resents the fundamental cavity mode (see Figure 2f), which oscil-
lates in phase, and its amplitude is confined inside the cavity. In-
terestingly, the frequency of this mode is the same as the FMR of
a uniform Py film (see green and blue lines in Figure 2b). There
are also high-frequency resonant modes in the cavity with en-
hanced SW amplitude inside the cavity as shown in Figure 2g,h.
However, their frequencies overlap with the continuous bands of
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Figure 3. a) The SW spectra (« mg) in the L3 cavity excited with CPW of
w = 400 nm, located at x, = 0 at frequency 24.3 GHz and amplitude of
microwave field poh,,¢: 1uT (the black-dashed line), 0.1 mT (the red line),
1 mT (the green line), and 4 mT (the orange line). b) Intensity (o m?) of
the fundamental cavity mode (f, = 24.3 GHz), and its second (f, = 2fy =
48.6 GHz), and third (f; = 3f; = 72.9 GHz) harmonics on the microwave
excitation field strength h,, ¢ from CPWs with signal line widths w = 40 nm
and 400 nm represented as open and closed points, respectively. The black
dashed lines represent the fitted dependencies from Equation (2), whereas
the vertical narrow green line represents the field of value 0.1 mT used in
Figure 5. Simulations with FDTD were performed at pgHy = 0.5 T.

the ADL, and for that reason, the SW amplitude of these modes
spread over the entire ADL.

Learned from photonics, the enhancement of the pumping
power on the cavity mode shall result in entering into nonlinear
regime whenever the cavity is a medium possessing some kind
of nonlinearity.[1>#] In magnetism, nonlinearity is its inherent
property.’?] Therefore, in the following part of the manuscript,
we will focus on the fundamental cavity mode pumped by the
microwave magnetic field generated by CPW at 24.3 GHz and at
high amplitudes, unless otherwise noted.

3.2. Nonlinear Dynamics

Frequency spectra of the ADL cavity system are shown in
Figure 3a. The calculations were performed for 0.5 T magnetic
field and the CPW of w = 400 nm wide, located at the center of
the cavity (x, = 0), which generate the fields h =1 uT, 100 uT,
1 mT, and 4 mT. Three peaks, corresponding to the frequencies
fo =243 GHz, f, = 48.6 GHz, and f; = 72.9 GHz, are clearly visi-
ble at higher amplitudes of the microwave field, except the lowest
considered value h,; = 1 uT, where f, and f; are at the base signal
level below —150 dB. These frequencies correspond to the excita-
tion of the fundamental cavity mode (fy) and its second (f, = 2f;)
and third (f; = 3f;) harmonics, respectively. The higher the am-
plitude of the microwave field, the higher the intensities of the
modes. However, there are significant changes in the relative
peak amplitudes between the fundamental cavity mode and its
harmonics. For the fundamental cavity mode, there is an increase
of 70 dB in the peak as we increase the microwave amplitude
from 1 uT to 4 mT, whereas for the second and third harmonics,
there is an increase of approximately 100 and 80 dB, respectively.

To shed more light on the efficiency of the SW excitations we
perform systematic simulations with increased h  from 1 pT
to 0.1 T using the same CPW antenna. The results are shown
in Figure 3b. The intensity of the fundamental cavity mode in-
creases from —80 dB at 103 mT till —10 dB at 10 mT, and satu-
rates with a further increase of h_;. The intensities of the 2"¢ and
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Figure 4. a—c) Spatial distributions of amplitudes of the perpendicular
component of reduced magnetization m, of the SW modes correspond-
ing to the (a) fundamental cavity mode (24.3 GHz), and its (b) second
(48.6 GHz), and (c) third (72.9 GHz) harmonics. FDTD results are ob-
tained with the CPW of w = 400 nm, xy = 0, h,r = 4 mT, and pgHy = 0.5 T.
d-f) Representation of the modes from (a—c) in the reciprocal space. The
size of the Brillouin zone is ca. 42 radum™~". The green lines in (e) and (f)
represent analyticall>#! isofrequency contours for uniform Py film at fre-
quencies 48.6 and 72.9 GHz, respectively.

3@ harmonics start to grow at about 0.01 and 0.1 mT, respec-
tively, grow almost linearly in this double logarithmic scale, and
both reach an intensity only 20 dB less than the f; mode at 40 mT.

This means that the effectiveness of the nonlinear processes
increases according to the square and cubic function of h_, with
different threshold amplitudes of h . This is according to the
theoretical predictions for the plane film and plane waves(>?! in-
dicating that the intensity of the n harmonics:

M (h_mf > ()
Hy

Similar behavior has already been observed experimentally in
the microwave pumping of the elliptical Py nanodot saturated
along the long axis.l’l However, in Ref. [53] the excitation was off-
resonant, i.e., the generation of the 2" and 3 harmonic was only
observed at 2f, ; and 3f_ ,, with the pumping field frequency f, ,
and f, ,, respectively. Here, 2f, ; and 3f, , correspond to the fre-
quency of the antisymmetric (with the nodal line along the long
axis of the ellipse) and symmetric (fundamental) eigenmode of
the nanodot, respectively. This means that for a given frequency
of the microwave field f,, ; or f,, , only the 2" or 3" harmonic can
be observed.

The spatial distributions of the fundamental cavity mode (f;),
mode f, and f; at a microwave excitation field of h = 4.0 mT are
displayed in Figure 4a,b,c. The figures present a neat, undulat-
ing pattern at 48.6 and 72.9 GHz indicating a short wavelength
of excited SWs. Notably, the amplitude of these harmonics ex-
tends from the cavity to the ADL as the magnonic bands in the
ADL at these high frequencies are very dense, and come from the
distant Brillouin zones. A slight amplitude increase occurs along
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Figure 5. a) Dependence of the fundamental cavity mode frequency on ex-
ternal static magnetic field magnitude, Hy. The crosses mark the frequency
of the cavity mode obtained from FEM in the supercell approach, while the
red line represents the FMR frequency of the plain Py film from the Kittel’s
formulae.[>”] The green dotted lines indicate the edges of the bandgap ob-
tained from FEM. b) Intensity of the fundamental cavity mode (f;) and
its second (2fy) and third harmonics (3fy) as a function of H, obtained
by FDTD. The markers indicate the intensities obtained by excitation with
a CPW line w = 400 nm wide, positioned at xy = 0, at poh,¢ = 0.1 mT at
frequencies following the red line in (a).

the y-axis, suggesting that utilizing these modes could be use-
ful for wave propagation. In fact, as seen in Figure 4e,f, the 2
and 3" harmonics possess discrete spectra in reciprocal space
with regularly spaced spots at high wavenumbers. This pattern
is related to the structure’s periodicity and the discrete values of
its reciprocal lattice vectors. The bright spots are located around
the almost circular isofrequency contours of SWs in the plain Py
film at 48.6 and 72.9 GHz. For f, and f;, their radius is 180 and
220 radpm™!, respectively, which corresponds to the SWs at wave-
lengths as short as 35 and 29 nm. The spots have larger intensities
along the direction of H, that indicate the preferred direction of
SW distribution from the cavity in the ADL, consistent with the
observation in Figure 4b,c. In the future, designing isofrequency
contours of the ADL at pertinent frequencies could enable tai-
loring of the propagation direction of nonlinearly excited high-
frequency SWs outside of the ADL. This objective can be accom-
plished through appropriate ADL geometry design and tailored
magnonic band structure.[>>]

According to Equation (2), the effectiveness of the nonlinear
process can also be increased by decreasing H,. However, to
maintain similar conditions for the ADL cavity system at different
values of H,, the frequency of the fundamental cavity mode must
follow the magnonic bandgap as the magnetic field is varied. We
already indicated that the f; coincides with FMR frequency of the
Py film. In Figure 5a, we show that it is also in a wide range
of fields, i.e., from 0.2 to 1 T. Moreover, the frequency of this
mode (increasing from 13.99 to 39.56 GHz, respectively) falls into
the magnonic bandgap, which also depends on H,. Taking the
frequencies of the FMR mode with increasing H,, assuming a
pumped microwave magnetic field amplitude h, = 0.1 mT, we
perform FDTD simulations. The results are shown in Figure 5b.
We see that as the magnetic field decreases from 1 to 0.3 T, the
intensity of the 2" and 3™ harmonics increases by 21.7 and
34.5 dB, respectively. However, there is a downside to decreas-
ing H,, it is that a lower frequency means longer wavelengths.
In particular, at 1 T the 2™ and 3™ harmonics are at 79.12 and
118.68 GHz with wavelengths of 31.1 and 21.6 nm respectively,
while at 0.2 T they are at 27.98 and 41.97 GHz and wavelengths
of 61.4 and 39.8 nm, respectively.
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Figure 6. The dependence of the SW intensities (o mﬁ) atfy = 24.3 GHz,
f» =2%24.3 GHz, and f; = 3 X 24.3 GHz on (a) the position of the CPW
antenna x, with respect of cavity center (w = 400 nm and h,¢ = 0.1 mT),
and (b) the CPW signal line width w (xo = 0 and h,¢ = 0.1 mT). The gray
area in (a) denotes region with xo € [0, 300 nm], whereas in (b) are with
w > 150 nm.

3.3. Getting Ready to Experiment

The type of the ADL considered in this paper has been broadly in-
vestigated in the last few years,[272850:5859] g0 the nonlinear effects
presented above should be feasible for experimental realization
with current technology. To make our idea closer to realization,
we studied the influence of the CPW width and position with re-
spect to the cavity center on the frequency multiplication.

The dependence of the SW intensity at f;, f;, f; on the position
of the CPW (w = 400 nm emitting a microwave magnetic field
h.e=0.1mT) at u,H, = 0.5 T is shown in Figure 6a. Since h, is
below the threshold for f;, the discussion below relates directly to
f, and f;, but similar dependencies were also found at higher val-
ues of h ¢ for f;. As expected, the intensities of the SWs decrease
as the CPW signal line is moved away from the center of the cav-
ity. The rate of decrease accelerates significantly at x, > 425 nm.
This is due to the fact that, from this position, the emission occurs
outside the cavity, and the excitation of the cavity mode is only via
evanescent SW modes in the ADL at the frequency of 24.3 GHz,
which is in the bandgap. The study shows that the x, ~ 0 is the
most appropriate for excitation of SWs inside the cavity for CPW
narrower than the cavity length.

The influence of the width of the CPW signal line on the
intensity of the excited SW modes is shown in Figure 6b. We
place the CPW centrally over the cavity and increase w starting
at w = 40 nm, we keep h, = 0.1 mT. The intensity of f; and f,
mode increases with w, and as expected saturates when the sig-
nal line covers the entire cavity.

We conclude that the optimal conditions for multi-frequency
SW mode generation are when the cavity is completely covered
by the signal line, regardless of its position relative to the cav-
ity center. However, if the signal line is narrower than the cav-
ity, the intensity of the excited SW modes becomes sensitive to
x, and w. Moreover, their values influence also the threshold
field values for the generation of high-frequency harmonics. As
shown in Figure 3b the threshold fields are 0.04 and 0.4 mT for
CPW with w = 40 nm (empty symbols), which are higher than
for w = 400 nm, (solid symbols), 0.01 and 0.1 T, respectively.

The important element for the realization of the demonstrated
effects is a full magnonic bandgap, in particular, its width and the
frequency position of the fundamental cavity mode, which deter-
mine the mode confinement. In the dipole-exchange regime in
the in-plane magnetized ferromagnetic film, the case studied in
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our work, the SW dispersion is strongly anisotropic, resulting in
the complex band structure, hardly suitable for the full magnonic
bandgap.l°-%3] Nevertheless, in ADL, due to the demagnetizing
fields from the antidot edges, the lowest frequency SW bands are
formed by the modes confined to the edges of the antidots. How-
ever, the small separation between the antidots leads to the over-
lapping of the demagnetization field of the neighboring antidots
and the formation of the collective propagating modes, which
coupled with the fundamental ADL mode and finally close the
gap.l?’] On the other hand, a large lattice constant leads to the
low-frequency flat edge mode bands and the decrease of the fre-
quency of the lowest bulk band (a fundamental mode of the ADL)
to the FMR frequency of the film, thus a loss of cavity mode con-
finement. Thus, the SW mode confinement in the ADL requires
a moderate lattice constant, which ensures that the edge mode
bands are well separated from the fundamental bulk mode of the
ADL, and at the same time, the bottom frequency of the bulk
band is above the FMR frequency of the plane film. Nevertheless,
it gives a wide spectrum for the tuning of the magnonic bandgap
in ADL to enhance the SW mode localization by the changes in
the lattice type, lattice constant, filling fraction, antidot shape, or
materials used for ADL preparation.

4, Conclusion

In summary, we describe a method to enhance the SW energy
confined in an MC cavity created in a thin Py-film based ADL to
enter the nonlinear regime. We have shown that the microwave-
pumped fundamental cavity mode, which has the frequency of
the plain film FMR fitting into a complete bandgap, can eas-
ily reach the nonlinearity threshold leading to the generation of
modes at multiple frequencies. Thus, we propose a way to gen-
erate high-frequency SWs in the range of 28 to 79 GHz and 42
to 119 GHz with very short wavelengths of 62 to 31 nm and 40
to 22 nm for the 2" and 3™ harmonics, respectively, by decreas-
ing the external magnetic field from 1 to 0.3 T. The harmonics
follow known dependencies on the amplitude of the pumped mi-
crowave field and the magnitude of the static magnetic field,>?!
allowing the effectiveness of multi-frequency mode generation
to be significantly enhanced. The effects demonstrated in this
paper can be achieved in standard ADLs using a simple CPW
antenna, whose main limitation is the overlap of the signal line
with the cavity surface. This provides an opportunity to investi-
gate magnonics applications at high frequencies, which overlap
with 6G microwave bands and have very short wavelengths, up
to 100,000 times shorter than the wavelength of microwaves at
these frequencies.

Further optimization of the MC structure can even increase the
demonstrated conversion efficiency of FMR oscillations to high-
frequency oscillations. This can be achieved if, instead of using a
cavity to confine only the SW at the input frequency (fundamental
cavity mode), the structure also allows the mode to be confined
at the output frequency(s) (high-frequency harmonics). Learning
from photonics, not only can the power consumption be greatly
reduced, but in principle 100% conversion can be achieved.[®+65]

Such high efficiencies can be particularly useful for hybrid
magnonics, the systems that have attracted much interest for
their potential applications in quantum sensing, communi-
cation, and information.[®®) In particular, hybrid designs that
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combine the spin of nitrogen-vacancy (NV) centers in diamonds
with other materials and physical systems have been shown
to enhance quantum sensing and information applications. By
increasing the local microwave magnetic field by orders of mag-
nitude, surface-limited SWs generated in the cavity of a thin film
MC can greatly enhance the interactions between the SW and
the NV spin, or the spin-spin coupling mediated by SWs.[¢7:68]
In addition, high-amplitude SW oscillations enhance nonlinear
effects that can be exploited to further enhance phtonon-magnon
coupling.[®7% Thus, our simple-geometry device is a promising
hybrid magnon platform suitable for integrating magnons for
quantum and analog information processing.

5. Experimental Section

Micromagnetic Simulations: To achieve precise outcomes for the
ADL'’s dispersion relations and to gain a better understanding of the com-
plexity of the SW modes inside the crystal cavity, FEM and FDTD methods
were utilized to solve the Landau-Lifshitz and Maxwell equations. Within
simulations, every magnetic moment in the predefined unit cells is given
by normalized unit vectors m = M/Ms, where M is the total magnetiza-
tion, and Mg is the saturation magnetization of the ferromagnetic ma-
terial. The approach then focuses on solving the Landau-Lifshitz-Gilbert
(LLG) equation:

dm _ 1
dt y'l+a2

(M X Beg + a(m X (m X Beg))) ©)

where y is the gyromagnetic ratio and a is the dimensionless damping co-
efficient. The effective magnetic flux density field, B g includes externally
applied field, By = poH,, together with the magnetostatic demagnetiza-
tion, By, and the exchange field, Bg,p,:

Beff = Bext + By + Beyen (4)

All micromagnetic simulations are performed at 0 K.

Finite Element Method: In the FEM analysis implemented with Com-
sol Multiphysics, the eigenproblem derived from Equations (3) and (4)
was addressed, neglecting damping, i.e., « = 0, and defining the demag-
netizing field amplitude, Hy (= Bg/py), as the gradient of the magnetic
scalar potential, U,,: Hy = —=VU,,, which inside a magnetic body fulfill
the equation: V2U,,, = V - M. By considering full magnetization saturation
along the direction 7 and utilizing a linear approximation, the magnetiza-
tion vector could be separated into its static and dynamic (dependent on
time t and position r) components as m(r, t) = m,-7+ om(r,t) V (om L 7),
neglecting all nonlinear terms in the dynamic magnetization ém(r, t). Ad-
ditional information on this methodology can be found in Refs. [71, 72].

Using Bloch-Floquet boundary conditions (BC) on the unit cell bound-
aries:

Myg = msrcg*ik‘('dsr'src) (5)

an infinite MC layer is modeled. Here, k is the 2D Bloch wavenumber, m
is the normalized magnetic moment defined both at the target (dst) and
source (src), r are the spatial coordinates of the boundaries where the
BCs are applied, and i is the imaginary unit. By parametrically sweeping
the wavenumber, eigenfrequencies are determined at each interval. The
resulting wavenumber versus frequency plots yield the dispersion curves
for the periodic structure.l”374]

For planes perpendicular to the plane of the MC layer, Dirichlet BCs
were applied to suppress the scalar magnetic potential (U,,) at its out-of-
plane boundaries. To ensure the physical accuracy and convergence of the
simulation, it was crucial to position the conditions sufficiently far from
the specimen. In this simulations, the cell’s height was set to be ten times
the layer’s unit cell width (1.5 pm). The average quality of the tetrahedral
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discretization mesh, as determined by the volume-to-length parameter, is
0.91. This results in a mesh comprising 13630 prisms for the MCs unit
cell, with one element per thickness and excluding the surrounding envi-
ronment. The cavity mode simulations in Comsol Multiphysics (Figure 5)
used the unit supercell approach, which consists of a cavity surrounded by
six (parallel to the long side) and eight (perpendicular) antidotes. This re-
sults in a symmetrical size of the supercell with a side equal to 1.35 um. In
this case, the height of the environment was 20 times this width (27 um),
and the amount of mesh elements of this supercell was 37330 with an
average quality of 0.82 (and with one prism per thickness).

Finite Difference Time Domain Method: The time domain simulations
in the paper had been obtained with the open-source software MuMax3
employing the FTDT method![®" with the RK45 solver (based on Dormand-
Prince method)[”®] to solve Equation (3). The micromagnetic cell size
was taken as 5x5x5 nm? with cell dimensions smaller than the ex-
change length (I, = 5.7 nm for Py). The in-plane periodic boundary con-
dition (PBC) was used, i.e., the supercell of dimension 4.5 um x 3 um had
been multiplied 10 and 50 times along the x and y directions, respectively.
To get the mode profiles, the pointwise FFT over time was calculated for
each magnetization component, and the real part corresponding to a par-
ticular resonance frequency was then visualized, see details in Ref. [76].

The nonlinear response of the system excited by a single frequency mi-
crowave source was analyzed accordingly with the methodology used in
Ref. [77].

The mf current transmitted along the y axis generates a magnetic field
h.¢, which exerts a torque on the magnetization in Py. The dependence of
h¢ with peak amplitude h,,¢ on x coordinate can be approximated by the
equation:[78]

% + % cos ['S—!(lxl - %)]
b () = hins 0 6)
3sign(x) {% + 3 cos [2{(|x| -y %] }

for |x| > w/2 and h¢(x) = [1,0,0]" for |x| < w/2.
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5.3 Three-dimensional architectures

As a natural progression from one- and two-dimensional systems, this section explores the study
of three-dimensional ferromagnetic nanostructures in magnonics. Extending spin-wave studies
to fully 3D nontrivial systems opens up new possibilities for manipulating wave behavior in
ways that are not possible in planar structures. The introduction of additional degrees of freedom
through complex architectures enables sophisticated functionalities, such as unidirectional and/or
guided propagation, dynamic mode localization, and overall better control over spin-wave
confinement and dispersion in all spatial directions.

The growing popularity of 3D nanostructures in magnonics stems from two key advancements:
improved fabrication techniques and enhanced capabilities of numerical simulations. Atomic
layer deposition and self-assembled block copolymer templating enable the creation of intricate,
highly ordered 3D geometries with nanoscale precision. The former allows for the conformal
coating of complex woodpile or scaffold-like structures, while the latter provides scalable routes
to the formation of periodic structures, including gyroids. Concurrently, the development of
numerical methods and computational power has made it feasible to model and simulate these
complex 3D structures with unprecedented detail (a main aspect of my contribution to this field).

During my six-month internship in Strasbourg under the supervision of R. Hertel, I became
familiar with tetmag, a micromagnetic software well-suited for 3D magnetization dynamics. This
experience gave me with a comprehensive understanding of advanced finite-element methods
which, in turn, helped me to develop my own simulation approach in COMSOL. This expertise
expanded my modeling capabilities and provided a solid foundation for investigating complex
3D spin-wave phenomena.

The advanced simulation tools allow us to capture the complex interactions within 3D
nanostructures, including the effects of geometry, boundary conditions, and field dependencies
on spin-wave dynamics. This computational approach also allows us to study spin-wave be-
haviors that are otherwise difficult to measure experimentally, supporting collaborations with
experimental groups.

In this section, I present my research on how the dimensionality and geometry of three-
dimensional ferromagnetic nanostructures can extend the capabilities and potential of magnonic
devices. Through a combination of theoretical modeling, comprehensive numerical simulations,
and close experimental collaboration, we aim to understand the role of 3D architectures in
enabling novel functionalities for spin-wave-based computing and communication systems,
bringing us one step closer to a new generation of magnonic and spintronic technologies.



5.3 Three-dimensional architectures 149

5.3.1 Theoretical and experimental investigation of gyroid networks:
localized spin-wave excitations and crystallography-dependent
ferromagnetic responses (P7)

This paper is the result of a broad international collaboration, involving theoretical research
teams from Poland (us) and France, and experimental teams from Italy, Germany and Japan.
It investigates the dynamic behavior of spin waves in three-dimensional gyroid nanostructures
— a unique periodic chiral architecture with nanoscale triple junctions. Our study combines
micromagnetic simulations with FMR measurements to investigate how the crystallographic
orientation of these gyroid structures in relation to the applied external magnetic fields influences
their magnetic response. The results show that this directional sensitivity enables control over
spin-wave localization and collective excitations within the network, suggesting applications for
gyroids as reconfigurable metamaterial-like microwave antennas. Gyroids, characterized by their
periodic and chiral three-dimensional architecture, act as magnetic metamaterials by exhibiting
an effective magnetization and a tunable magnetic response that is primarily governed by their
geometric filling factor rather than solely by the intrinsic properties of the base material.

This work advances the understanding of 3D magnonics and highlights gyroid nanostructures
as versatile platforms for tunable FMR applications that can contribute to the development of
next-generation adaptive, frequency-selective devices in microwave and spintronic technologies.

Contribution of the Author

In this publication, I conceived and designed detailed computational FEM models of gyroidal
nanostructures and, with the scientific guidance and technical assistance of R. Hertel, performed
both time- and frequency-domain micromagnetic simulations of the cubic gyroidal models using
tetmag. I coordinated an extensive international collaboration, overseeing the organization of
meetings, managing ongoing correspondence, and facilitating research visits to support effective
scientific exchange. I actively participated in the discussion and interpretation of both simulation
and experimental results, post-processed the data, wrote the first draft, submitted the manuscript,
and handled all correspondence with reviewers.

Copyright ©2024 The Authors. ACS Applied Materials & Interfaces published by the American
Chemical Society. The paper was published under the CC-BY 4.0 license.
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a shift from traditionally used planar systems to exploration of
magnetization configurations and the resulting dynamics within 3D
nanostructures. This study deploys micromagnetic simulations
alongside ferromagnetic resonance measurements to scrutinize
magnetic gyroids, periodic chiral configurations composed of chiral
triple junctions with a period in nanoscale. Our findings uncover
distinctive attributes intrinsic to the gyroid network, most notably
the localization of collective SW excitations and the sensitivity of
the gyroid’s ferromagnetic response to the orientation of the static = “** 525 1S gendittn) °
magnetic field, a correlation closely tied to the crystallographic

alignment of the structure. Furthermore, we show that for the ferromagnetic resonance, multidomain gyroid films can be treated as a
magnonic material with effective magnetization scaled by its filling factor. The implications of our research carry the potential for
practical uses such as an effective, metamaterial-like substitute for ferromagnetic parts and lay the groundwork for radio frequency
filters. The growing areas of 3D magnonics and spintronics present exciting opportunities to investigate and utilize gyroid
nanostructures for signal processing purposes.
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1. INTRODUCTION offering new possibilities for SW manipulation.'’™"* A fully
interconnected 3D system opens up a new degree of freedom
for novel phenomena, allowing interactions and collective
effects in all three dimensions.'”~" In recent years, there has
been significant development of fabrication techniques such as
two-photon lithography, focused electron beam deposition,
and block copolymer templating, which now allow the
fabrication and measurement of complex 3D structures on
the nanometer scale.'™"?

This paper analyzes a promising yet hardly explored
structure in magnetism called a gyroid, which was discovered
and first presented in 1970.°° It is defined by chiral triple
junctions and periodicity in all three spatial directions,
classified as I4,32 space group (no. 214).>" In recent years,
many studies have been published describing gyroids in the
field of photonics, where they have been presented as potential

Spin waves (SWs) and their intricate manipulation in magnetic
materials constitute a significant part of the contemporary
research. In ferromagnetic systems, the complex dynamics of
SWs arises from the coexistence of magnetostatic and exchange
interactions. The magnetostatic interactions, being highly
anisotropic in thin structures, induce a profound dependence
of SW properties on the relative orientation of magnetization
and wavevector. This gives them a number of properties that
are conspicuously absent in other types of waves, including
negative group velocity, caustics, readily accessible non-
linearity, and dynamic reconfigurability control.' The potential
applications are myriad, ranging from signal propagation
without Joule—Lenz heat dissipation,” to the tunability of
dispersion and group velocity.” The construction of magnonic
systems, known for their enhanced efficiency, further
emphasizes the unique properties of SWs and provides a
compelling rationale for their extensive exploration.”®” Thus, Received:  February 9, 2024
the focus of current research is to harness and adapt Revised:  April 3, 2024
magnetization dynamics for sophisticated industrial applica- Accepted:  April 5, 2024
tions, a goal underscored by recent advances and roadmaps.”’ Published: April 22, 2024
Nanostructured 3D networks may give rise to topological
and geometrical effects and emergent material properties,
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chiral beamsplitters,”* nonlinear optical metamaterials,””** or
photonic crystals.”™>” It has also inspired many research
groups into the fabrication of artificial systems based on this
geometry.””>***73* The 3D structural unit of magnetic
gyroids is in nanoscale and has both chirality and curvature,
which has been shown to be highly effective in controlling
noncollinear spin textures.”® Recently, numerical and exper-
imental visualization of the magnetic structure in a single and
double Ni,Fe,s gyroid network has also been performed.'®
The effective Dzyaloshinskii-Moriya interaction and the
curvature-related anisotropy are further important research
topics in this context.”™* Curved magnetic wires and films
also exhibit novel physical effects,”” which together with chiral
and topological properties,""*> open new avenues for future
research.

SWs have been extensively researched in 2D structures;
however, there are limited studies on artificial ferromagnetic
systems in full 3D*>** and a lack of experimental research on
the collective dynamics of SW in 3D nanostructures. Gyroids,
due to their unique geometry and dimensions comparable to
the exchange length, bear multidimensional properties of
interactions with SWs through shape anisotropy, an inhomoge-
neous demagnetization field, and chirality. They are an
intriguing candidate for the realization of artificial 3D
magnonic crgstals with highly coupled geometric and magnetic
states.'>*~* Furthermore, gyroids, with a significant number
of energetically equivalent stable states, may have the potential
for artificial spin ice systems and active elements in
unconventional computing architectures.*®

Approaching these structures from a magnonics perspective,
we employ micromagnetic simulations to delve into the
collective SW dynamics. Our investigation scrutinizes the
alignment of the external magnetic field in relation to the
gyroid’s crystallographic axes, offering an insightful perspective
on the impact of their geometry on shaping collective
magnetization dynamics. To complement our simulation-
based findings, we performed experimental broadband
ferromagnetic resonance (BBFMR) measurements on the
nickel (Ni) gyroid structure. This empirical approach enhances
our numerical observations, specifically in terms of the
frequencies and intensities of resonances excited at a given
external magnetic field and the impact of various crystallo-
graphic domains on the half-width of the signals measured in
the sample. Furthermore, the measured magnetic field
dependencies suggest that the gyroid structure exhibits
magnonic metamaterial-like properties. This combination of
simulation and empirical experimentation fosters a compre-
hensive understanding of the multifaceted dynamics within
these unique 3D nanostructures, highlighting their potential
applications and motivating further research.

2. GEOMETRY AND MATERIAL PARAMETERS

The gyroidal surface was given for the first time using
conjugate surface construction,” and in ref 50 its embedding
was subsequently proved. The volume fractions of minimal and
constant mean curvature gyroids have been further investigated
numerically®" with the constant mean curvature variants of the
geometry.

In other fields, the gyroid is referred to as Laves’ graph of
girth ten®” and the K, crystal.>” It consists of cubic unit cells
composed of triple bonds connected by nanorods with
elliptical cross sections for the nonzero volume filling fraction
¢, the range of which is described in ref 24. For ¢ = 0% (see

Figure 1), a gyroid surface divides space into two labyrinths of
paths oriented in opposite directions. The empty, unobstructed

y

X

Figure 1. Representation of the gyroid surface model (¢ = 0%),
highlighting the unit cell structure. The illustration accentuates the
unit cell configuration along the crystallographic [111] direction in
orthographic projection, unveiling the hexagonal organization
inherent in the gyroid’s channels.

channels pass through the gyroid labyrinths in directions [100]
and [111], and the paths emerge at 70.5° angles to any given
channel as it passes through. Circling or gyrating down the
channel in this way gives rise to the term “gyroid”.
Interestingly, gyroids exist in several Schwarz surface families
that preserve different symmetries of triply periodic minimal
surfaces and, like many others, can be approximated by a
trigonometrical equation

sin(27x/L)cos(2my/L) + sin(2zy/L)cos(2nz/L)
+ sin(27z/L)cos(27x/L)
< (1015 — 2¢0)/68.1 (1)

where L is the gyroid’s unit cell length.

The studied gyroid nanostructure was constructed by
solvent vapor annealing, selective dissolution, and electro-
deposition of a block copolymer template, following the
protocol described in ref 16. The gyroidal structure was
fabricated by applying polyisoprene-b-polystyrene-b-poly-
(ethylene oxide) (ISO) triblock terpolymers with block
volume fractions of ¢hp; = 0.30, ¢hpg = 0.53, and pppo = 0.17
to fluorine-doped tin oxide (FTO)-coated glass substrates.
Initial cleaning with Piranha solution at 80 °C for 15 min
prepared the substrates, which were then treated with
octyltrichlorosilane. A 1 ym BCP film was spin-coated from
a 10 wt % anhydrous anisole solution and formed into the
gyroid morphology by solvent vapor annealing under nitrogen
saturated with chloroform vapor at 26 °C. After annealing, the
PI block was removed by UV exposure and immersion in
ethanol to form gyroid polymer templates. Ni electro-
deposition from a commercial solution followed in a three-
electrode cell, filling the voided single-gyroid network with Ni
under a constant potential at —1.05 V while monitoring the
deposition charge. This method efficiently produces gyroid

https://doi.org/10.1021/acsami.4c02366
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Figure 2. Depiction of the gyroid unit cell and geometric modeling for micromagnetic simulations. The focus of our investigation is a cubic gyroid
unit cell measuring L = 50 nm, featuring a volume fraction ¢ = 10% as depicted in (a). For the purpose of micromagnetic simulations, a geometric
model consisting of an aggregate 4 X 4 X 4 unit cells, or equivalently 200 X 200 X 200 [nm], was employed, as displayed in (b). Illustrated
alongside are the three principal high-symmetry directions of the gyroid structure ([111]—yellow triangle, [110]—green rectangle, and [100]—
red square) which are color-coordinated to match the planes intersecting the structure. Each direction reveals the unique distribution and shape of
the gyroid’s channels: the [111] direction displays a hexagonal pattern and round holes, the [110] direction exhibits a square pattern and lenticular
holes, while the [100] direction showcases a square pattern and round holes.

1500
2 |(c) 100 mT
s 300 mT
(o]
:”:0
0.92 093 094 0.95 096 097 0.98 099 1
mx

Figure 3. Images of the postrelaxation static configurations of the reduced magnetization component m,(=M,/M;) parallel to the external magnetic
field, aligned in the crystallographic direction [100]. Panel (a) displays the case when B, = 100 mT. The deviation of the magnetization vector
from the x-direction is notably larger compared to (b) with B, = 300 mT, where the magnetization distribution is nearly uniformly oriented along
the direction of the external magnetic field. (c) Histogram (number of numerically calculated magnetic moments falling within specific ranges of
m,) of the reduced magnetization component distribution m, in the simulated gyroid model for both magnetic field magnitudes. The number of
bins indicates the number of elementary simulation elements (tetrahedrons).

structures with precise Ni insertion. The material parameters
used in the micromagnetic simulations represent those of Ni
utilized in the fabrication of the sample, i.e., saturation
magnetization M; = 480 kA/m, exchange stiffness A, = 8.6
pJ/m, and g-factor equal to 2.14°* In each relaxation
simulation, the Gilbert damping was set to a large value of a
= 0.5 to obtain fast convergence to the equilibrium state. Then,

The geometric parameters of the gyroid unit cell are described
in Figure 2a and are the same for all models analyzed in this
work. In the experimental portion of this investigation, the
gyroid sample comprises 12 unit cells of height, resulting in an
overall thickness of 600 nm. Consequently, individual strut
diameters are on the order of single nanometers, mirroring
intrinsic magnetic length scales, including exchange length,

for all frequency-domain simulations, this parameter was set to
a low value of 0.01.

The unit cell of the investigated gyroid sample measures 50
nm in each direction and has a volume fraction (¢) of
approximately 10%, which here corresponds to a cross-
sectional radius of a single gyroid node of about 4.1 nm
(where it is oval in shape) and an arm length of about 19 nm.

22179

domain wall width, and SW wavelength.

3. MICROMAGNETIC SIMULATIONS

To unravel the magnetic phenomena transpiring within
nanoscale gyroidal struts, we perform comprehensive micro-
magnetic simulations of the system, taking into account dipole

https://doi.org/10.1021/acsami.4c02366
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Figure 4. Resonance frequency spectra of 8 X 8 X 2 gyroid structures obtained from micromagnetic simulation. The graphical representations
showcase the resonance derived from two different orientations of an applied magnetic field: a dashed line represents the signal from a sample
subjected to a 300 mT field, directed out-of-plane (along the z-axis); the solid line, meanwhile, illustrates the response of the sample magnetized in
the in-plane (x-axis) direction. The employed color scale is representative of the imaginary part of magnetic susceptibility.

and exchange interactions. In this endeavor, we harness the
capabilities of our GPU-accelerated open-source finite-element
(FEM) micromagnetic solver tetmag.55 A remarkable feature of
tetmag is its proficiency at resolving magnetostatic open
boundary problems in large-scale micromagnetic simulations
via a hybrid finite-element/boundary-element (FEM-BEM)
formalism.>® Notably, we forego the assumption of periodic
boundary conditions in all of the simulations presented herein.

All of the following micromagnetic simulations are
performed in two steps, where the first step is to calculate
the stable (relaxed) magnetic configuration at a given field
strength (see, e.g, Figure 3ab). After the magnetization
relaxation, we performed simulations of the ferromagnetic
resonance using a dedicated frequency domain algorithm®”
based on a formulation proposed by d’Aquino et al. in ref 58.

The low-amplitude alternating, and homogeneous in space,
magnetic field applied in the frequency domain simulations
generates a response of the magnetic system in the form of
stationary magnetization oscillations with the frequency of the
applied field. The magnetic susceptibility y(w) describes the
frequency-dependent relation between the externally applied
oscillating field H and the dynamic component of magnet-
ization SM. For a more detailed discussion of the dynamic
susceptibility and its definition, see ref 57.

In the linear-response theory, the imaginary component of
the susceptibility is related to dissipative processes in which the
sample absorbs energy from the applied field. These absorption
peaks denote resonances and generally coincide with
frequencies of the maximum oscillation amplitude of the
dynamic magnetization. For the case of a spatially homoge-
neous harmonic magnetic field applied in the simulations, we
can thus analyze the spatial distribution of the magnetization
oscillation amplitude at these absorption peaks to identify the
modes developing at these resonances. The colors in the mode
visualizations (Figures 4—6) refer to the imaginary magnetic
susceptibility component of the gyroid structure, which in this

case is analogous to the modulus of the dynamic components
of the magnetization.

Initially, our simulation work involves the comparative
analysis of the ferromagnetic response within the planar system
geometry for both in-plane and out-of-plane directed fields to
ascertain if a planar gyroid network exhibits macroscopic shape
anisotropy. Our experimental sample, possessing a near-planar
macroscopic geometry, boasts a lateral dimension spanning a
few millimeters and a thickness in the submicron range (see
Figure 7).

Therefore, first we analyze a quasi-planar 8 X 8 X 2 gyroid
model (number of the unit cells along the x, y, and z,
respectively) to verify the influence of external shape
anisotropy on resonant frequencies. The model here is 400
X 400 X 100 nm in size (see Figure 4) and consists of about
366,000 tetrahedral discretization cells (~2860 per unit cell).
We consider two cases where the external magnetic field is
directed out-of-plane and in-plane: [100] and [001],
respectively, which are crystallographically identical. We see
in Figure 4 an apparent anisotropy in the spectrum that
changes in both field directions. The maximum absorption
frequency shifts from about 8.25 GHz in the out-of-plane
scenario to about 9.75 GHz in the in-plane scenario (Af = 1.5
GHz). It can therefore be concluded that when simulating
gyroids in a cubic simulation volume, as shown in Figure 2b,
we can expect resonant frequencies with values lower than
those obtained from experiments due to the significant
influence of macroscopic shape anisotropy. The most accurate
results of micromagnetic simulations could be obtained by
simulating a much larger structure. However, due to limited
computational resources and simulation time, it was necessary
to limit the size of simulated structures.

To study gyroid-based effects at the nanometer scale, the
model with dimensions of 4 X 4 X 4 unit cells (200 X 200 X
200 nm; see Figure 2b) was used in the second stage of
micromagnetic simulations, consisting of about 171,000

https://doi.org/10.1021/acsami.4c02366
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Figure S. Micromagnetic simulation-derived resonance frequency spectra for 4 X 4 X 4 gyroid constructs. The spectra are derived from two
scenarios: (a) in which the applied external magnetic field has a strength of 100 mT and (b) where it measures 300 mT. Within each plot, different
color coding indicates the crystallographic direction in which the field is applied, with the specific points encircled on the graph signifying the
ferromagnetic resonance. Visual illustrations and resonance frequency values, in sequential order of their appearance, are exhibited as insets within
the plots. The coloring scheme used here corresponds directly to the imaginary component of the magnetic susceptibility.
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Figure 6. Spectral examination of high-intensity volume modes within a 6 X 6 X 6 gyroid structure. The lower section of the figure presents a
plotted distribution of the frequency spectra, with the high-intensity volume modes depicted in the upper part distinctly marked by black circles.
For the purpose of comparison, spectra corresponding to more compact structures (illustrated as dotted lines) are superimposed on the graph,
thereby clearly demonstrating a marked decline in the intensity of edge modes (denoted with crosses) commensurate with the enlargement of the
structure dimensions. The color gradation utilized in the visual representation of the modes is proportional to the imaginary component of the
magnetic susceptibility.
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Figure 7. Multidomain gyroid structure employed in BBFMR
measurements, illustrating the complex and varied nature of the
sample. In panels (a) and (b), scanning electron microscope (SEM)
topographical images offer detailed views of two distinct sample
regions, characterized by different crystallographic directions and
varying degrees of amorphousness. Panel (c) showcases a photograph
of the entire sample, annotated with the approximate locations of
several prominent domains. These domains were identified and
characterized through polarized light microscopy.

tetrahedral discretization cells (~2670 per unit cell). The cubic
shape of the structure allows a more accurate analysis of the
dynamic magnetization distribution and insights into the
effects associated with gyroid crystallography.

In this examination, we scrutinize three crystallographic
directions, namely, [100], [110], and [111], as illustrated in
Figure 2b. We further engage with two distinct magnitudes of
the external static magnetic field B,,, set at 100 and 300 mT, as
depicted in Figure S. The considerable computational power
and time demanded by the simulations of such complex
structures necessitate this restricted selection of parameters.

As shown in Figure 5, magnetic resonance simulations of
gyroid structures reveal their pronounced geometric aniso-
tropy. Upon juxtaposition of these plots with those for the
planar structure depicted in Figure 4, Figure S exhibits a
substantially richer spectrum for both external magnetic field
values. This richness originates from the increased prominence
of edge modes within the overall signal, a characteristic feature
of cubic structures. Visual representations of these can be
accessed in the Supporting Information (Figures S2 and S3).
Through the identification and visualization of bulk modes, we
observe that these predominantly emerge within the structure’s
inner part. This observation suggests that their existence can be
primarily attributed to the intrinsic gyroid geometry rather
than edge features or artifacts produced in the cutting region,
underscoring the distinctive and influential role that the gyroid
geometry plays in modulating the magnetic response of these
3D structures. Consequently, our analysis focuses solely on the
resonant modes linked to the volumetric portion of the
structure, disregarding the discernible satellite peaks attribut-
able to the edge modes.

The resonance spectra findings unequivocally assign the
shifting resonance signals observed in the rotating gyroid
sample to the crystallographic anisotropy, as evidenced by the
plots displayed in Figure 5. A comparative assessment of the
plots corresponding to 100 mT in Figure Sa and 300 mT in
Figure Sb, reveals a discernible increase of frequencies.
However, the order and dispersion of the resonance frequency
peaks remain invariant, with the two most distal bulk modes
(1.15 GHz, 4.10 GHz in Figure Sa and 6.90 GHz, 9.45 GHz in
Figure Sb) separated by 2.95 and 2.55 GHz, respectively.
Those separations emphasize the pivotal role played by gyroid

geometry in dictating the system’s magnonic properties,
demonstrating that these features are not merely a con-
sequence of extrinsic variables.

In the final stage of our simulations, we conducted an
analysis of a larger cubic gyroid structure. In the course of
visualizing the modes via micromagnetic simulations (Figure
S), we uncovered a compelling localization of high-amplitude
magnetization precession. In order to enhance the visibility of
these modes vis-a-vis smaller structures and to incrementally
amplify the signal of volume modes in relation to satellite ones,
we proceeded to simulate and scrutinize a gyroid structure
comprising 6 X 6 X 6 unit cells. This extensive structure was
discretized into upward of 638,000 finite elements (~2950 per
unit cell). The resultant magnetization intensity distribution
(Figure 6 top row) distinctly delineates planes orthogonal to
the 300 mT external magnetic field axis, manifest at modes
6.95 GHz for [100], 8.15 GHz for [110], and 9.50 GHz for
[111]. Furthermore, in the case of the field-aligned along [100]
and [110], the modes manifest a periodicity (see the top row
showing the spatial distribution of the imaginary component of
the magnetic susceptibility), a characteristic not previously
discernible in the 4 X 4 X 4 structure. The graph depicted at
the bottom of Figure 6 showcases the FMR spectrum derived
from simulations of the 6 X 6 X 6 model across the three
investigated crystallographic directions. To facilitate compar-
ison with corresponding calculations for a more diminutive
structure (Figure Sb), the outcomes of these simulations were
superimposed on the graph as dashed lines. It becomes evident
that the influence of edge modes (denoted with a cross) in
most cases diminishes in correlation with the model
dimensions’ expansion, yielding a decrease of about 28%
when increasing the layout from 4 X 4 X 4 to 6 X 6 X 6 unit
cells, i.e.,, 3.375-fold. The normalized intensity of the volume
modes (denoted by a circle) remains unchanged for the cases
[100] and [111], but is slightly reduced for [110], most likely
due to its coupling with the edge mode and/or its localization
at the corners of the structure.

4. EXPERIMENT

The main conclusion elucidated from our simulations is the
intrinsic relationship between the ferromagnetic response of
the gyroid network and its orientation to the axis of the static
magnetic field. Figure 7 indicates that the sample embodies
multiple domains, manifested as gyroid patches with varying
crystallographic orientations relative to a consistent reference
point. The varied orientations significantly influence the
material’'s magnetic response, adding complexity to its behavior
in a magnetic field.

In Figure 7b, a distinct transition is observed from top to
bottom, ranging from a well-defined, highly oriented region to
an irregular, less-structured domain. This transition can be
construed as the domain wall within the complex gyroid
structure. As shown in the simulations, each distinct crystallo-
graphic orientation of the gyroid with respect to the externally
applied magnetic field may lead to a nuanced alteration in the
resonance response. Owing to the substantial multiplicity of
domains, the anticipated FMR signal will manifest as an
averaged and diluted amalgamation of contributions from
individual domains.

Through the application of polarized light spectroscopy, the
research facilitated the estimation of the individual domains of
the gyroid structure; that is, the regions exhibiting homoge-
neous crystallographic alignment. As depicted in Figure 7c, the
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Figure 8. BBFMR measurement conducted on the Ni gyroid structure. The sample underwent repositioning with respect to the CPW to elucidate
the effect of an additional homogeneous Ni layer present within the specimen. In two distinct configurations, separate assessments were made of
the energy absorption stemming from the microwave field By, applied perpendicular to the external static magnetic field (a). The resultant plots
of dynamic magnetization amplitude as functions of static magnetic flux density and frequency for selected sample configurations are depicted in
(b,c). These render a conspicuous signal attributed to the gyroid layer when the CPW is in direct alignment below it (b), and an additional, higher-
frequency signal emanating from the uniform Ni layer (c) when the CPW (as delineated by the red dashed line) intersects its projected position
(highlighted in purple on the sample). The dotted lines in the graphs represents the theoretical fit derived from the Kittel formula (see eq 2). For
uniform Ni, parameters from micromagnetic simulations were used, while for gyroid, we implemented the calculated effective parameters, i.e.,
saturation magnetization My = 132 kA/m, and the g-factor of 2.2. Plot (d) shows a summary of the peak intensities calculations of FMR signals
(blue dots for uniform Ni, and orange dots for gyroid) as a function of the external magnetic field strength. Normalized intensity values for 100,
300, and 450 mT fields are indicated. In graph (e), a cross-sectional analysis of the BBFMR signals is depicted for distinct values of the external
magnetic field, where the solid blue line corresponds to B, = 100 mT, the dashed brown line to B,,, = 300 mT, and the dash-dotted green line to
By = 450 mT. Additionally, horizontal dashed green lines mark the full width at half-maximum (FWHM) for each section, providing quantitative
insights into the resonance line widths along with their respective values. The orange crosses signify peak maxima and their corresponding
frequencies, pinpointing the resonant behavior within the explored frequency range. Insets furnish intensity plots from the BBFMR measurements,
with the green vertical lines highlighting the specific locations of the sections for each magnetic field value. Finally, plot (f) shows the magnetic field
FWHM’s as a function of frequency for BBFMR signals of gyroid (purple dots) and uniform Ni (dark red dots). Based on the experimental data
and using eq 3, a linear regression was performed and the values of the determination coefficient r*, AH, (from the abscissa of the lines) and the eq
3-derived damping values a (from the slope of the lines) were estimated. Parameters related to the gyroid structure are marked with a prim (’).

dimensions of the largest domains extend to the millimeter
scale. However, it must be acknowledged that these particular
measurements do not allow for the determination of the
specific crystallography present within each domain. In an
effort to achieve a dynamic magnetic characterization of the Ni
gyroid sample, BBFMR measurements were executed in the
frequency range of 0.1 to 25 GHz, following the methodology
delineated by Heinrich.*” This involved the utilization of a
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two-port vector network analyzer, with connections established
to opposite ends of a coplanar waveguide (CPW) in
accordance with the techniques described by Montoya.”

The gyroid probe was mounted on a CPW with a 80 ym
wide center conductor facing downward to ensure maximum
coupling with the microwave field”' and the static external
magnetic field applied within the sample plane, along the CPW
center conductor (Figure 8a). We tested several orientations of

https://doi.org/10.1021/acsami.4c02366
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the specimen with respect to the CPW line and discovered a
signal from both gyroid-structured Ni and a uniform layer of
this material (Figure 8b,c). Measurement data from more
sample orientations relative to CPW are provided in the
Supporting Information (Figure S1). Indeed, the precise
manipulation of the sample’s position on the CPW elucidated
the presence of a higher frequency signal that is uniquely
associated with the homogeneous Ni layer present at one of
the sample’s edge. This distinct relationship was substantiated
by an excellent agreement between the observed signal and the
theoretical prediction derived from the Kittel formula

=
f_ o Bext(Bext + /’tQMS) (2)

where fis the resonance frequency, 4, is a vacuum permeability
(~47 X 1077 T m/A), and y is the gyromagnetic ratio. For the
comparative calculations, we employed identical magnetic
parameters as in the numerical simulations, specifically, the g-
factor of 2.14 and saturation magnetization M; = 480 kA/m.
Contrarily, the lower frequency signal is consistently identified
with the gyroid-structured region of the sample, a correlation
supported by its sustained presence irrespective of orientation
relative to the CPW.

Using eq 2, we not only fitted the resonance signal derived
from the homogeneous Ni structure but also attempted to fit it
to the experimental signal in the gyroids and estimated the
effective values of the saturation magnetization and the g-
factor.

As a result, a satisfactory fit of the Kittel curve to the gyroidal
resonance signal for different sample orientations relative to
the CPW (see Figure S4 in the Supporting Information) was
obtained using Mg = 0.275M, = 132 kA/m, and g4 = 1.028¢ =
2.2, as shown in Figure 8b,c with a white dotted line. Such
findings suggest that the given 3D structure exhibits
magnonics’ metamaterial-like properties, so far considered
only for the planar structures,”> % capable of modulating
(specifically, decreasing) the effective saturation magnetization
and the dynamical response of the structure in a methodical
and foreseeable manner. The effective magnetization, which is
higher than expected with only a 10% filling fraction, implies
that the gyroid structure may have anisotropy. It can be
indicative of a strong shape anisotropy inherent to the
particular nanoelements of this structure, which ‘anchors’ the
magnetization in place until it is forced to switch due to a
change in the field direction.

To facilitate a qualitative comparison between the results of
the experiment and simulation, we examined the FWHM’s.
Figure 8 reveals that the signal from gyroid exhibits a broader
frequency FWHM than in Nij, e.g,, at 450 mT field it is 3.69
GHz for gyroid and 3.09 GHz for homogeneous Ni. This
phenomenon is likely attributable to the multidomain nature of
the sample. That is, the signal observed from the gyroid is the
average value coming from several different domains located
above the CPW and differing in crystallographic orientation.
We deduce from the BBEMR measurements depicted in Figure
8e an average difference between the FWHM’s of 1.3 GHz
over different values of the external magnetic field. The
micromagnetic simulations for the cube shape (Figure S)
reveal a maximum peak separation of 2.55 and 2.95 GHz for
the field of 300 and 100 mT, respectively (in both cases
between [100] and [111] crystallographic directions). Our
simulations meticulously evaluated the crystallographic direc-
tions that represent the most disparate configurations of the

gyroid lattice relative to the field, most likely resulting in the
largest feasible separation of resonant frequencies.

In field-swept FMR experiments conducted at a fixed
frequency, the absorption line FWHM conforms to u,AH =
4raf/y. This occurs when the magnetization vector is aligned
with the applied magnetic field, either in the plane or
perpendicular to it. Such alignment results in a line width
that scales proportionally with frequency, where the slope of
this scaling is defined by the Gilbert damping parameter %’
Beyond this intrinsic contribution, empirical data also indicate
the presence of a frequency-independent term

AH = AH, + ™%¢

HoY (3)

denoted by AH, that represents the inhomogeneous
contributions, which add to the overall line width observed
in the experiments.

Experimental investigations have enabled a linear regression
analysis of FWHM across a spectrum of Byny frequencies, as
depicted in Figure 8f for the designated orientations of the
sample over CPW. This analytical approach is instrumental in
ascertaining the damping values  and the inhomogeneous line
width contribution AH, for both the homogeneous Ni layer
and the gyroidal structure, respectively, employing eq 3. In the
first case, the derived values are o = 0.0282 + 2.54% and AH,
=0.038 + 1.28% T, with a coeflicient of determination of r* =
0.95153. Comparatively, the gyroidal structure exhibits o’ =
0.0362 + 6.49% and AH) = 0.101 + 1.05% T, with * =
0.81639. The damping constants for Ni align with previously
reported values.”® The 95% confidence interval was used to
calculate the range of estimates for the values. Larger o’ for the
gyroid structure is likely attributable to the scattering of SW
modes within the nanowires, which are much thinner than the
bulk Ni and exhibit complex noncollinear interconnections.
This difference varies with the sample’s orientation relative to
the CPW, as further exemplified in the Supporting Information
(Figure S4). The examples there, however, are subject to
considerable uncertainty due to the nonlinearity of AH(f) for
gyroid structures.

The disparity in the AH, values between the homogeneous
Ni layer and the gyroidal structure is also noteworthy. Such
variations in the material’s magnetic properties, including
anisotropy, manifest as a frequency-independent line width.®
The pronounced AH; in gyroid structures corroborates the
influence of crystallographic orientation on the system’s
resonant frequencies, as confirmed by micromagnetic simu-
lations and indicated in the earlier discussion. It is that,
experimentally, in a multimode sample scenario depicted in
Figure 7, the inhomogeneous contribution to the effective
FWHM is an aggregate effect of the various crystallographic
orientations present, and AH; emerges from the superposition
of all resonant peaks within the spectrum bounded by the
extremities observed in Figures 5 and 6 (the maximum
separation between FMR peaks for the studied crystallog-
raphies in the 100 mT field is 2.95 GHz, while in the 300 mT
field, 2.60 GHz).

The next step is to compare the frequencies. In the
experiment, the maximum intensity at B,, = 300 mT is at
11.53 GHz (Figure 8d), while in the simulations for the gyroid
of cubic shape, it is at 8.25 GHz for the [110] field orientation
(among the orientations analyzed, in accordance with the
above discussion about FWHM, we chose the orientation with
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the medium frequency, Figure Sb), giving a difference of 3.28
GHz. At 100 mT this difference decreases to 2.7 GHz (Figure
Sa). The results in Figure 4 indicate that the macroscopic
shape of the gyroid contributes to the results. In these
simulations, considering a relatively small thin cuboid shape,
the FMR frequency separation between orthogonal field
orientations is Af = 1.5 GHz. However, when considering a
bulk thin film ferromagnet of M.¢ = 132 kA/m, the maximum
influence of shape (i.e, FMR between in-plane and out-of-
plane magnetic field orientations) can reach over 4 GHz.
Therefore, it is reasonable to expect that the resonant
frequencies in simulations will be lower than those obtained
in experiments due to the significant influence of the
macroscopic shape anisotropy.

A noteworthy distinction between the gyroid and homoge-
neous Ni signals also arises with respect to their measured
intensities as a function of the external magnetic field. In the
case of the gyroid structure, it shows an almost linear increase
(Figure 8d), giving an almost 30% increase in intensity
between 100 and 300 mT magnetic fields (and 50% between
100 and 450 mT), while for homogeneous Ni it remains fairly
irregular. This intriguing behavior may reflect the intricate
influence of the complex gyroid geometry on the internal
demagnetization field and magnetization orientation. Such
complexity may counteract the orthogonal orientation of the
dynamic magnetization components with respect to the static
field, thus attenuating their detectability by the microwave
field, Byw. Upon increasing the field, the sample leads to a
parallel orientation of the magnetization vectors, as shown in
Figure 3c, thereby increasing the detectability of the magnet-
ization precession at resonance. From this graph it can be seen
that most of the bins (elementary simulation cells) are almost
completely saturated for a field of 100 mT (for example, at
least 94% saturation has been reached in 89% of the gyroid
volume: 56,463 bins, and at 300 mT the >94% saturation is
already in 100% of the structure: 63,274 bins). However, a
comprehensive understanding of the FMR intensities in
gyroids for larger fields would require further investigation
that falls outside the scope of this paper.

5. DISCUSSION

Owing to the inherently multidomain architecture of the
sample under investigation, the task of identifying a singular
dominant crystallography and quantifying its direct influence
on the resonance spectrum presents a formidable challenge.
Recognizing this complexity, the study has embraced a
numerical approach, rigorously testing the three selected field
directions ([100], [110], and [111]) in the finite-size gyroid,
to elucidate the extent to which the structure’s intrinsic
complexity governs resonance frequency variations. It is
imperative to note that beyond the irregular shape, size, and
interfaces of the domains, which relate to the shape anisotropy,
fabrication of such an intricate structure encompasses
numerous factors that elude accurate prediction and,
consequently, integration within the simulation framework.
Such factors include, but are not limited to, irregularities and
impurities in both the shape and thickness of the nanorods,
compounded by a paucity of definitive information concerning
the sample’s dominant crystallographic orientation in each
experimental configuration. A full experimental validation of
the phenomena predicted by our micromagnetic simulations is
beyond the scope of this work. However, we expect that these
effects will soon be observable in experiments with directed

self-assembly gyroids.”” Our experimental results provide the
basis for this since the signs of the predicted phenomena have
already been detected.

The research presented here highlights several emerging
avenues for the application and practical use of 3D gyroidal
nanostructures. By controlling ¢, one could modulate the
effective saturation magnetization, offering magnonic meta-
material of effective dynamical properties. Traditionally, the
construction of artificial photonic or phononic crystals requires
the use of different materials, each characterized by unique
properties, e.g., dielectric constant or elastic properties.
However, our results suggest that a gyroidal structure with a
tunable filling factor could serve as an effective substitute for
3D magnonic crystals. This paradigm shift in fabrication
methodology heralds a transition from 2D to 3D magnonic
nanostructures with a wide range of novel applications and
functionalities.

Due to the random distribution, shape, and size of the gyroid
domains in the experiment, the sample can be approximated to
a porous structure when examined collectively.”® This
simplification, however, nullifies the interpretation of the
relationship between the field direction and the frequency of
SWs. This may ultimately be shown in future studies e.g. by
using Brillouin light scattering for individual gyroid domains.

Some of the visible SW bulk modes presented in this work
show also an intriguing surface character, localizing on the
sides perpendicular to the direction of the magnetic field—see,
e.g. Figures 4, 6 ([110] and [100]), and in the Supporting
Information Figure S2 (modes no. 7 and 8) and Figure S3
(modes no. 1 and 5). This may be the result of an additional
effect arising from the strong influence of crystallography and
the shape anisotropy on the localization of resonant modes in
different regions and probably on the chirality of the system.
However, the analysis of these effects, although interesting, is
beyond the scope of this work, since it is necessary to perform
micromagnetic simulations with periodic boundary conditions
and to conduct experiments of a different type, where the
sample containing the single-domain gyroidal structure could
be selectively analyzed on a much smaller scale.

In addition, the distinct mode spectrum observed in our
research has direct implications for radio frequency filtering
applications. The presence of a singular bulk mode in both
BBFMR experiments (as an effective response from a
multidomain structure) or simulations (a strong resonance in
a single domain) enables the design of selective filter systems.
They could be tailored to isolate specific FMR frequencies
depending on factors such as crystallographic orientation
relative to the incident signal and filling factor. In addition, the
three-dimensional magnonic structures are expected to exhibit
superior absorption properties compared to their two-dimen-
sional counterparts, as supported by previous studies.**

6. CONCLUSIONS

In the investigation, a comprehensive ferromagnetic resonance
analysis was conducted on three-dimensional gyroidal Ni
nanostructures, delving into the complex interplay between
magnetic properties and structural geometry. Utilizing FEM
micromagnetic simulations in the time domain to determine
the static magnetization structures’® and in the frequency
domain to investigate their oscillatory, magnonic properties,>’
the study embarked on a multifaceted exploration aimed not
merely at interpreting experimental results but also at
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unraveling the intricate magnetization distribution within the
gyroid nanostructure.

A major result that emerges from our simulations is the
importance of the crystallographic orientation of the gyroid,
relative to the magnetic field’s direction, on a frequency and
spatial distribution of the collective magnetization oscillations.
Complementing these simulations, experimental measure-
ments were executed using BBFMR, where a multidomain
gyroid sample was positioned on a CPW line, enabling analysis
of differences and relationships between the solid, uniform Ni
layer and the gyroid-structured portion of the sample.
Although the measurements were not able to study individual
crystallographic domains of the gyroid and thus confirm all
simulation predictions, based on our findings, gyroid films can
be conceptualized as homogeneous materials, i.e.,, magnonic
metamaterials, where the effective saturation magnetization is
reduced by the gyroid filling factor and the FMR signal line
width encapsulates more than the inherent damping properties
of the material; it is also intricately linked to the particular
geometry and crystallographic orientation of the structure.

Collectively, these discoveries show a new frontier in the
realm of 3D magnonics, positing the gyroid structure as a
potential cornerstone in the field. The results not only
augment our theoretical and experimental grasp of the
magnetization dynamics in complex nanostructures but also
open up promising avenues for practical applications, imbuing
the gyroid configuration with the potential to become an
elemental building block in emerging magnetic technologies.
We propose a gyroidal structure with a tunable filling factor as
a magnonic crystal and as the basis for novel 3D radio
frequency filters. The study’s interdisciplinary approach,
bridging numerical simulations with empirical investigation,
marks a significant stride toward the comprehensive under-
standing and manipulation of magnetic resonance in three-
dimensional architectures.
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Figure S1: BBFMR measurement of the gyroid structure. The sample was rotated 180 deg relative to the
CPW in 40 deg steps. For each configuration, a separate measurement of the energy absorption from the
microwave field applied perpendicular to the static external magnetic field was performed as shown in (a).
Plots of the FMR intensity as a function of frequency (for Beyxy = 100 mT and Bexs = 300 mT) for selected
angles are presented in (b) and (c), respectively. They show a clear and cyclic transition of spectral weight
from the lower frequency branch from gyroidal sample’s zone (high intensity at 10 deg) to the higher one
from uniform Ni (high intensity at 90 deg). The separation between the bands (Af) are measured to be
2.64 GHz and 3.89 GHz, respectively, as the field increases. Unlike amplitude, A f is independent of rotation
angle. The assumed values of the angles are conventional and do not refer to the crystallographic axes of
the gyroid.
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Figure S2: Micromagnetic simulation-derived resonance frequency spectra for 4 x 4 x 4 gyroid constructs in
which the applied external magnetic field has a strength of 100 mT. The spectrum used in the main part
of the work has been enlarged, focusing on each individual satellite peaks. Different color coding in the
plot indicates the crystallographic direction in which the field is applied, with the specific points marked
on the plot indicating all significant satellite/edge ferromagnetic modes (diamonds) and volumetric modes
(gray circles). Each satellite mode is numbered according to the visualization of the respective module with
its frequency values above. The color scheme used here corresponds directly to the imaginary part of the
magnetic susceptibility.
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Figure S3: Micromagnetic simulation-derived resonance frequency spectra for 4 x 4 x 4 gyroid constructs in
which the applied external magnetic field has a strength of 300 mT. The spectrum used in the main part
of the work has been enlarged, focusing on each individual satellite peaks. Different color coding in the
plot indicates the crystallographic direction in which the field is applied, with the specific points marked
on the plot indicating all significant satellite/edge ferromagnetic modes (diamonds) and volumetric modes
(gray circles). Each satellite mode is numbered according to the visualization of the respective module with
its frequency values above. The color scheme used here corresponds directly to the imaginary part of the
magnetic susceptibility.
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Figure S4: Plot (a) shows the FWHM values as a function of frequency, comparing BBFMR signals from
gyroidal Ni and uniform Ni (represented by dark red dots). Several signals from gyroids were obtained by
rotating the sample on the CPW, as illustrated in Figure S1, effectively obtaining a signal from various
domains with different crystallography. Based on the experimental results and using Equation 3 from the
main manuscript, linear regressions were performed on each set of data. The estimated values of the deter-
mination coefficient r2, inhomogeneous contributions to the linewidth AHy (measured from the abscissa of
the lines), and the damping values « (derived from the slope of the lines) were estimated. (b) illustrates
BBFMR measurements of dynamic magnetization intensities as functions of static magnetic flux density
and frequency for selected sample configurations. The gyroid signal dominates all of them except for the
90-deg rotation, which is indicated by the red box. The changes in o and AH, as a function of sample
rotation relative to the CPW with corresponding statistical error-bars are presented in (c) and (d). The
curves with the values of the coefficient of determination 12 for the measured configurations are additionally
plotted on the graphs, showing their strongly nonlinear /irregular nature for some of the measurements [the
lowest quality r? values are highlighted in red in (a)]. In the main manuscript, configurations with reliable
linear regression fits were used, marked here with angles of 10 deg (for gyroid signal analysis) and 90 deg
(for homogeneous Ni signal analysis).
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5.3 Three-dimensional architectures 167

5.3.2 Comprehensive overview of state-of-the-art research on magnetic
gyroid structures: from mathematical foundations and fabrication
to experimental characterization and numerical simulations (P8)

This chapter, submitted to the book 2D and 3D Nanostructures: Structure, Properties and
Applications by Jenny Stanford Publishing Pte Ltd (edited by J.-C. S. Lévy), provides a roadmap
and comprehensive review of the magnetic properties of ferromagnetic gyroidal nanostructures,
integrating insights from the recent literature along with my own research. In particular, I review
how static and dynamic magnetization studies have revealed that distinctive features of gyroids —
such as nontrivial shape anisotropy, inherent chirality, and inhomogeneous demagnetizing fields
— can facilitate the formation of low-energy magnetization textures, localized spin-wave modes,
and controllable spin-wave dispersions and propagation paths. Within this broader context, I
place my own contributions and highlight promising research directions that build upon these
insights.

Contribution of the Author

To prepare this chapter, I conducted a comprehensive review of the relevant literature and
state-of-the-art research on gyroidal structures. With the assistance of M. Krawczyk, I systemati-
cally organized, classified, and synthesized these findings to ensure a coherent and structured
presentation within the manuscript. For our original research contributions, I performed the
micromagnetic simulations, discussed the results with M. Krawczyk, and post-processed the
data. I was also responsible for writing the first draft and revising the chapter.

The draft included in this dissertation has undergone minor formatting adjustments, including
changes in margin sizes and alignment of Fig. 1.10, compared to the version published on arXiv
and submitted to 2D and 3D Nanostructures: Structure, Properties and Applications. These
changes were made solely to optimize the document layout and to avoid excessive white space,
thus ensuring a more compact thesis file. Importantly, the content of the manuscript remains
unchanged. Copyright ©2024 The Authors. Published on arXiv under the CC-BY 4.0 license.



output

Chapter 1

Gyroid ferromagnetic nanostructures in 3D
magnonics
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Abstract

This chapter provides a comprehensive analysis of the magnetic properties of ferromagnetic
gyroidal nanostructures, based on both original research and a review of the state-of-the-art
literature in the field of 3D magnonics. Through static and dynamic magnetization studies, we
highlight how unique features such as non-trivial shape anisotropy, chirality, and inhomogeneous
demagnetization fields within gyroidal structures contribute to the formation of low-energy
magnetization textures, spin-wave mode localization, and controllable spin-wave propagation.
In addition, the chapter reviews key studies on the magnetic behavior of individual gyroidal
components, such as unit cells and vertices, further advancing our understanding of the gyroid’s
interactions with external fields and its effective magnetic properties. The combination of original
research with a review of recent advances contributes to the ongoing exploration of complex
gyroidal systems and their potential in 3D magnonics and spintronics.

1.1 Introduction

The exploration of spin waves (SWs) and their interactions within magnetic materials covers the
interdisciplinary fields of magnonics and spintronics [Kruglyak et al. (2010); Chumak (2019); Dieny
et al. (2020)]. This convergence has opened avenues for advanced research, particularly in harnessing
SWs for signal transport avoiding Joule-Lenz heat emission [Serga et al. (2010); Yan and Bauer
(2013); Barker and Bauer (2016)]. The spectrum of SW wavelengths, ranging from micrometers
to tens of nanometers, and corresponding to frequencies from a few to hundreds of GHz [Schneider
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et al. (2008); Maendl et al. (2017)], also promises advances in microwave technologies with a versatile
platform for manipulating their dispersion and group velocities [Garcia-Sanchez et al. (2015); Wagner
et al. (2016); Duerr et al. (2012); Lan et al. (2015); Krawczyk and Grundler (2014)]. This versatility,
combined with high energy efficiency without sacrificing processing speed [Chumak et al. (2015);
Kruglyak et al. (2010); Serga et al. (2010); Lenk et al. (2011); Mahmoud et al. (2020)] positions SWs
as a compelling alternative to traditional electric currents, especially in computing and microwave
systems.

The design of advanced magnonic systems integrates multiple factors, such as geometry, topology,
and material properties. Together with the magnitude and direction of the external magnetic field,
these factors influence key properties of SWs, including supported SW frequencies, their anisotropy,
and ferromagnetic response. This integrated approach enables precise control of magnon dynamics
for targeted applications. Magnonic crystals (MCs) represent an innovative intersection of magnetic
film technology and periodic patterning, serving as a platform for exploring wave dynamics in
both two-dimensional (2D) and three-dimensional (3D) domains [Krawczyk and Grundler (2014);
Chumak et al. (2017)]. In the case of 2D MCs, the characteristic in-plane dimensions usually
span several hundred nanometers, while the magnetic films maintain thicknesses on the order of
tens of nanometers [Rychty et al. (2015); Mamica et al. (2019)]. In these ferromagnetic materials,
the dynamics of SWs are primarily governed by isotropic exchange and anisotropic magnetostatic
interactions [Krawczyk et al. (2013)], making the physics of the system more complex than
that of their photonic (light-based) [Butt et al. (2021)] and phononic (sound or elastic wave-
based) [Vasileiadis et al. (2021)] counterparts. Similar to other periodic composites, MCs allow for
customization of the dispersion relation through structural and material composition adjustments,
allowing for precise control over the velocity, direction, and magnonic gap width of propagating
SWs [Krawczyk and Grundler (2014)]. However, magnetism provides a broad mechanism for
manipulating the dynamics of SWs that is not present in other types of artificial crystals and waves.
A notable aspect of MCs is the way the SWs are affected by the geometry of the system through the
internal magnetic fields. This is called the demagnetization field and can be tuned by the orientation
of an external magnetic field, often resulting in a reduction of symmetry compared to the original
structural design [Neusser et al. (2011); Tacchi et al. (2015); Gross et al. (2021); Ji et al. (2022);
Mamica (2023)]. The other possibility, unique to MC, is the modulation of the SW properties by
the magnetization texture, with or without nanostructuralization. For example, the magnetization
domain structure in the form of periodic stripes can have a periodicity up to 100 nm, forming a
periodic potential for the propagation of SWs, which can be considered as a fully reprogrammable
MC [Banerjee et al. (2017); Gruszecki et al. (2019); Yu et al. (2021); Petti et al. (2022); Szulc et al.
(2022)]. In 1D and 2D, the MC can be also formed by the chain [Ma et al. (2015); Mruczkiewicz
et al. (2016); Szulc et al. (2024)] or the array [Wang et al. (2020); Tang et al. (2023)] of skyrmions,
due to the small skyrmion size, they are also stabilized with the period in deep nanoscale.

The MCs discussed above are predominantly planar structures that are uniform along the
thickness, and due to the small thickness, the magnetization is also largely homogeneous. If the
geometrical inhomogeneity or the magnetization texture becomes inhomogeneous along the thickness,
we can call the system 3D [Beginin et al. (2019); Gubbiotti et al. (2021); Sadovnikov et al. (2022);
Girardi et al. (2024)]. Strictly speaking, however, 3D MCs are characterized by a three-dimensional
periodic distribution of two materials consisting of inclusion and matrix. Enriched by the additional
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dimension, the properties of these systems were the focus of theoretical studies, including the
exploration of magnonic bandgap phenomena [Krawczyk and Puszkarski (2006); Mamica et al.
(2012); Romero Vivas et al. (2012)]. They have demonstrated critical aspects such as the threshold of
magnetic contrast required between the constituent materials to open a band gap and its dependence
on the crystallographic structure of the crystal [Krawczyk et al. (2010)]. In addition, it has been
shown that the selection of an appropriate MC structure and filling fraction can lead to the design
of anisotropic and strongly wavevector-dependent effective damping [Romero Vivas et al. (2012)],
demonstrating the potential of 3D MCs to advance the field of magnonics and spintronics through
nuanced control of wave propagation mechanisms in 3D space [Gubbiotti (2019)].

In addition to propagating waves that create bands in an MC and occupy the whole magnetic
volume, an important aspect of the nanoscale magnonic systems is also the phenomenon of SW
localization inside the 3D nanostructure or at the surfaces [Serha et al. (2022); Liu et al. (2020)].
A well-described type of SW localization already occurs on the surface of thin films in the Damon-
Eshbach (DE) configuration [Damon and Eshbach (1961); Hurben and Patton (1995)], i.e., when
the propagation of SWs is perpendicular to an applied external magnetic field that lies in the
plane of the film and saturate the sample. The interplay between the dynamic stray fields from
the surface and volume magnetic charges formed by oscillating magnetization in the film geometry
leads to an asymmetry in the internal magnetic field distribution, creating a gradient in the effective
magnetic field across the thickness (the non-zero wavenumber k is required for this effect). As a
result, the SWs have a higher intensity near one of the surfaces of the film compared to the inner
part and opposite surface. The intensity of these surface-localized modes decays exponentially from
the surface of the film toward its center, with the decay length depending on the SW wavelength,
i.e., being proportional to k. The side of localization changes with the reversal of the direction of the
wavevector (or magnetic field orientation). This type of SW localization offers several advantages for
magnonic applications, e.g., increasing the efficiency of SW excitation with inherent nonreciprocity
and detection at the film surfaces [Schneider et al. (2008); Jamali et al. (2013)], which is particularly
beneficial for devices that rely on surface-based SW manipulation [Inoue et al. (2011); Bessonov et al.
(2015)]. In addition, confining the SWs to the surfaces reduces volumetric scattering and damping,
potentially leading to lower energy loss and improved propagation characteristics [Yamamoto et al.
(2019)]. Finally, the DE configuration enables the design of devices with directional propagation
properties, i.e., nonreciprocal, which can be exploited in the development of directional magnonic
waveguides and logic elements.

SW localization can also be caused by static demagnetization fields. A notable manifestation of
this is the emergence of edge modes [Jorzick et al. (2002); Park et al. (2002); Bayer et al. (2006);
Bailleul et al. (2003); Kruglyak et al. (2006)], where SWs are confined or propagated [Gruszecki
et al. (2021, 2022)] along the edges of a system, to which static magnetization is perpendicular. The
reduction of the internal magnetic field at the edges of the ferromagnetic element can be modified
by the magnetization orientation and the shape of the edge, allowing to increase or decrease the
localization of low-frequency SWs [Golebiewski et al. (2023)]. This makes the edge SWs sensitive to
the properties at the very edge of ferromagnets, which allows us to use them for sensing the magnetic
properties [Maranville et al. (2006, 2007)].

Another interesting type of localization is the topologically protected propagation of SWs along
customized paths, facilitated by the MC edges or interfaces between two MCs with different
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topologies [Shindou et al. (2013b,a); Li et al. (2018); McClarty (2022); Zhuo et al. (2023)]. These
edges or interfaces act as ideal waveguides, guiding the SWs in one direction and being immune
to backscattering, resulting in high coherence even along sharply curved paths [Wang et al.
(2018); Feilhauer et al. (2023)]. Such topological phases are characterized by so-called topological
invariants [Kane and Mele (2005b,a); Konig et al. (2007)], such as Chern numbers, which describe
the topological connection between bulk and boundary dynamics [Bansil et al. (2016)]. Recently,
an extension to higher-order topological states has become cutting-edge research [Schindler et al.
(2018)], realized especially with the use of the artificial crystal in photonics [El Hassan et al. (2019)] or
acoustics [Ni et al. (2019)], and only initiated in magnonics showing corner SWs in 2D antiskyrmion
crystal [Hirosawa et al. (2020)], and remains completely unexplored in 3D magnonic systems.

The study of 3D MCs holds great promise not only for SW localization phenomena. By tuning
the geometry and lattice periods of their unit cells, these structures introduce an additional
dimension for novel interactions, including various topological and geometric effects, and emergent
material properties [Gubbiotti (2019); Fischer et al. (2020); Makarov et al. (2022); Cheenikundil
et al. (2022); Fernandez-Pacheco et al. (2017)]. Recent advancements in techniques such as X-ray
vector nanotomography [Donnelly et al. (2017)], magnetic laminography [Donnelly et al. (2022)],
two-photon lithography [Hunt et al. (2020); van den Berg et al. (2023)], focused electron beam
deposition [Skoric et al. (2020)], and block copolymer templating [Llandro et al. (2020)] have enabled
the fabrication of complex 3D magnetic systems at the nanoscale, providing the potential for rapid
development of the field. Intriguing effects have already been observed in nanorods arranged in
diamond-bond networks [May et al. (2019); Stenning et al. (2023)], facilitating the analysis of
near-degenerate states and laying the groundwork for reconfigurable magnonic devices. Recently,
gyroids [Luzzati and Spegt (1967); Schoen (1970); Han and Che (2018)], characterized by their
chiral triple junctions and fully interconnected 3D network, have been fabricated from ferromagnetic
metals [Llandro et al. (2020)]. Due to the interplay of geometric, chiral and potential topological
properties in the nanoscale, the ferromagnetic gyroids can be regarded as 3D MCs possessing all the
above-mentioned properties, making them an ideal structure for studying SW dynamics [Gotebiewski
et al. (2024)]. In this chapter, we summarize the current state of research on ferromagnetic gyroids
and present our preliminary results on SW dynamics within these structures.

1.2 Geometric properties of gyroidal networks

Since their discovery in 1970 [Schoen (1970)|, gyroids have been of interest to research in
mathematics, material engineering, and photonics. These structures, belonging to the I4,32 space
group (No. 214) [Lambert et al. (1996)], owe their unique morphology to the cooperative formation
at inorganic-organic interfaces, as evidenced in surfactant-silicate mesostructures [Monnier et al.
(1993)]. This architecture has inspired a variety of studies in photonics, where gyroids have been
employed as chiral beamsplitters, nonlinear optical metamaterials, and photonic crystals [Turner
et al. (2013); Vignolini et al. (2012); Dolan et al. (2015); Michielsen and Stavenga (2008)]. Recent
advancements in fabrication techniques (see Introduction 1.1) have also facilitated the creation of
artificial systems inspired by gyroid geometry [Yan et al. (2012); Yanez et al. (2016); Turner et al.
(2013)].
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Figure 1.1 The gyroid surface model, illustrating the arrangement along the [111]| crystallographic
direction through an orthographic projection (a), revealing the hexagonal patterning inherent to the
interconnected channels of the system. Panel (b) shows the unit cell in a perspective projection, providing
a dynamic view of its geometric configuration.

As detailed in Refs. [Schoen (1970, 2012); Rosi et al. (2020)], the gyroid is characterized as
a unique triple periodic minimal surface (see Fig. 1.1). Its most notable property is its zero mean
curvature, meaning that each point on the surface functions as a saddle point with equal and opposite
principal curvatures [Dacorogna (2014)]. This surface extends periodically along three orthogonal
vectors and exhibits inherent chirality, lacking any symmetry plane or center, yet retaining rotational
symmetry elements [Wohlgemuth et al. (2001)]. Due to its triple periodic nature, the gyroid is
conceptualized as a crystalline structure [Chen et al. (2013)], adhering to the body-centered cubic
(bee) Bravais lattice and associated with the point group O, or described as 4132 in Hermann-
Maugin notation. This cubic group, being purely rotational, emphasizes the chiral nature of the
gyroid, and the prefix I indicates a body-centered arrangement, suggesting a non-primitive, body-
centered conventional unit cell.

Historically, the gyroidal surface was first described using the conjugate surface construction
method [Karcher (1989)], with its embedding later confirmed theoretically in Ref. [Grofe-
Brauckmann and Wohlgemuth (1996)]. Subsequent studies dealt with the volume fractions of
gyroids, especially those with constant mean curvature [Grofe-Brauckmann (1997)]. In a broader
scientific context, the gyroid is recognized as Laves’ graph of girth ten [Sunada (2008)] and the K,
crystal [Hyde et al. (2008); Mizuno et al. (2019)], known for their efficient space-filling properties
and high symmetry. The connection to Laves’ graph comes from the gyroid’s intricate network of
vertices and edges, which mimics the uniformity and connectivity of the graph. Similarly, the local
arrangement of atoms in materials that form gyroid structures may be analogous to the tetrahedral
coordination of the Ky crystal.

Its complex design features cubic unit cells interconnected by elliptical cross-section nanorods, as
detailed in Ref. [Dolan et al. (2015)]. With a volume filling fraction of ¢ = 0%, shown in Fig. 1.1, the
gyroid surface divides space into two distinct labyrinths, intersecting at 70.5 deg. Their mathematical
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representation is given by the trigonometric equation:

sin (2rz/L) cos (2my/ L)+
sin (2my/L) cos (2wz/ L)+ (1.1)
sin (27z/L) cos (2mx/L) < (101.5 — 2¢)/68.1,

where L represents the unit cell dimension of the gyroid. For a more detailed derivation see
e.g. [Tselikas et al. (1996)].

1.2.1 Block copolymer self-assembly and fabrication techniques

Gyroidal ferromagnetic structures can be fabricated through the self-assembly of block copolymers,
which naturally form intricate, periodic morphologies at the nanoscale. Block copolymers are
composed of two or more different polymer segments or blocks, covalently bonded in a linear
sequence, as presented in Fig. 1.2. These blocks are derived from different types of monomers, small
repeating molecular units, allowing for a wide range of chemical compositions within a single polymer
chain [Feng et al. (2017)]. The inherent property of block copolymers is their ability to spontaneously
organize into well-defined nano- to microscale structures when subjected to certain conditions, such
as changes in temperature. This self-assembly results from the incompatibility between the different
blocks, leading to the formation of ordered morphologies such as spheres, cylinders, lamellae and
complex 3D structures within a continuous matrix — Fig. 1.3. The architecture of the block copolymer
(e.g., diblock, triblock, multiblock) and the volume fraction of each block are critical factors that
influence the resulting morphology.

...-W-...- alternating\

0P0PP BB A5C block )

Figure 1.2 Schematic illustration of various polymer types. Block copolymers consist of two or more
homopolymer segments (A) connected by covalent bonds. Diblock copolymers contain two distinct segments
(AB), while triblock copolymers have three (ABC). A block is technically defined as a segment of a
macromolecule, made up of numerous repeating units, with at least one characteristic absent in adjacent
segments.

copolymers
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Due to their customizable chemical compositions and the ability to form a wide array of
structures, block copolymers have found applications across numerous fields. They can be tailored
for use in nanoscale templates for electronic devices, photonic crystals, drug delivery systems, and
materials with specific mechanical, optical, or conductive properties. The versatility and tunability
of block copolymers, due to the variety of monomers from which they can be made and their unique
self-assembly properties, make them a powerful tool in materials science and nanotechnology. For
a comprehensive overview, refer to [Dolan et al. (2015); Hyde et al. (1997¢,b,a); Segalman (2005);
Cheng et al. (2006)].

A simple example of covalently bonded homopolymers are the linear AB diblock copolymers,
representing the essential behavior of more complex systems like linear triblock terpolymers.
The morphology of diblock copolymers in thermodynamic equilibrium is influenced by three key
parameters: N (total degree of polymerization, i.e., the number of monomer units in a polymer chain),
fa or fg (volume fractions of each homopolymer), and x (the Flory-Huggins interaction parameter,
indicating monomer repulsion). In block copolymers, a higher x value signifies greater incompatibility
between the blocks, driving them to segregate and self-assemble into complex structures to minimize
the free energy of the system, e.g., gyroids (Fig. 1.3 — G/G’). The interplay between x, which
promotes phase separation, and N, which influences the entropy and enthalpy of the system, guides

v
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Figure 1.3 Equilibrium morphologies of AB diblock copolymers in a bulk, varying as a function of the
volume fraction fa of the blocks and the interaction parameter x. The morphologies are categorized as follows
S/S’ — body-centered cubic spheres, C/C’ — hexagonally packed cylinders, G/G’ — bicontinuous gyroids, and
L — lamellae.

As the block copolymers self-organize, the gyroid structure emerges as a result of the balance
between the repulsive interactions (dictated by x) and the chain length of the polymers (defined
by N). This balance leads to the formation of continuous, triple periodic minimal surfaces, which
are characteristic of the gyroid structure. This architecture, with interconnected labyrinths of both
materials, is thus a direct consequence of the molecular properties of the block copolymers and their
drive to achieve a thermodynamically favorable configuration. Larger gyroid structures, scaling from
millimeters to sub-millimeters, are typically fabricated using top-down methods [Yan et al. (2012);
Yénez et al. (2016); Turner et al. (2013); Gan et al. (2016)]. Conversely, the creation of nanostructures
with unit cells below 100 nm is predominantly achieved through bottom-up techniques [Armatas and
Kanatzidis (2006); Kresge et al. (1992)]. The process involves microphase separation in copolymers,
resulting in gyroid networks of a minority polymer block within a majority block matrix [Ross et al.
(2014); She et al. (2013)].
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Polyfluorostyrene (PFS)
Polylactic acid (PLA)

Dissolve PLA gyroid Fill PFS template

Figure 1.4 Fabrication and structural characterization of gyroid nanostructures. This scheme shows the
process for creating free-standing metallic gyroid nanostructures, involving the thermal annealing of a block
copolymer template, followed by the selective removal of the minority block and subsequent electrodeposition.
Reprinted (adapted) with permission from Nano Lett. 2020, 20, 5, 3642-3650. Copyright 2024 American
Chemical Society.

The formation of complex structures using block copolymers as templates involves a multi-
step process that exploits the self-assembly properties of block copolymers and the technique of
electrodeposition to introduce ferromagnetic materials, such as permalloy (Py) or nickel (Ni), into the
predetermined patterns. One of the polymer blocks is selectively removed to create a porous template
that retains the architecture. This can be achieved by various methods, including chemical etching or
UV degradation, depending on the nature of the block copolymer. With the porous template in place,
electrodeposition is used to fill the voids with a ferromagnetic material, as illustrated in Fig. 1.4. In
this instance, a diblock copolymer of poly(4-fluorostyrene) (PFS) and 38% poly(lactic acid) (PLA) is
employed, with PF'S and PLA serving as the majority and minority blocks, respectively [Scherer et al.
(2014); Llandro et al. (2020)]. During electrodeposition, the template is immersed in an electrolytic
solution containing ions of the ferromagnetic material. When a voltage is applied, the ions are reduced
and deposited onto the conductive areas of the template, gradually filling the structure. After the
electrodeposition process is complete, the remaining block copolymer template is removed, often by
solvent washing or thermal decomposition, leaving a freestanding structure composed entirely of the
ferromagnetic material. The end product is a 3D structure of ferromagnetic material that replicates
the geometry of the original template.

In Fig. 1.4, the fabrication of magnetic (based on Ni) gyroid nanostructures from Ref. [Llandro
et al. (2020)], featuring unit cell dimensions smaller than 50 nm, is demonstrated. These
nanostructures are realized through electrodeposition into block copolymer templates, yielding
NizsFess gyroids. The self-assembly of 3D nanostructures, especially when integrated with inorganic
components [Simon et al. (2001)], allows unprecedented morphological control at the nanoscale,
opening new avenues for magnetism and magnonics. The SW interactions within gyroids are
complex and involve, among others, shape anisotropy, inhomogeneous demagnetization fields, curved
surfaces, and chirality. Our research aims to show the complexity of these interactions, provide an
understanding of the magnetic behavior in gyroids, and lay the framework for future explorations
and use of 3D ferromagnetic magnonics.
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1.3 Gyroid structures in magnetism

Short SWs, with their nanoscale wavelengths and microwave frequencies, enable high-density, high-
frequency applications of miniaturized magnonic devices [Chumak et al. (2015)]. The concepts of
SWs in connection with the chirality inherent in the magnetization dynamics, as discussed above and
reviewed in Ref. [Kruglyak (2021)], on the one hand, and introduced by the Dzyaloshinskii-Moriya
interaction (DMI) [Tacchi et al. (2023)] or geometric curvature [Otalora et al. (2017); Sheka et al.
(2022)], on the other hand, may play an important role in the further development of information
processing technologies based on magnonics [Chen et al. (2020, 2021)|. Chirality, which refers to
the preference of spin structures to twist in a particular direction, facilitates also directional SW
propagation, opening the door to non-reciprocal devices. DMI, which exists in systems with broken
inversion symmetry [Gan et al. (2016)], stabilizes chiral magnetic textures, improving control over
spin structure and enabling the design of robust, energy-efficient memory devices, the structures
which can also be exploited for magnonics [Garcia-Sanchez et al. (2014)]. Similar properties are
expected to exist in curvilinear ferromagnetic systems, since curvature, when introduced on a
length comparable to the exchange length, introduces the anisotropic exchange in the same form as
DMI [Sheka et al. (2022)]. Therefore, the complex architecture of gyroidal structures, with the 3D
gyroid elementary cell characterized by curvature and chirality (see Figs. 1.1 and 1.6), provides a
unique, three-dimensional platform for exploiting all of these phenomena, making it a good candidate
for further research, and promising applications. Nonetheless, the study of magnetization dynamics
within periodic 3D nanostructures is still in its early stages. While extensive research exists on
SWs in uniform, 1D and 2D structures, investigations into collective SW dynamics in 3D artificial
systems [May et al. (2021); Guo et al. (2023); Gubbiotti (2019); Fernandez-Pacheco et al. (2017)],
particularly gyroids [Golebiewski et al. (2024)], remain limited. We attempt to summarize existing
and explore new research directions on the collective dynamics of SWs in gyroidal nanostructures.

As described above, the inherent chirality and curvature of nanoscale magnetic gyroids offer
a promising pathway for controlling non-collinear spin textures. Recent studies have underscored
this potential [Lich et al. (2023)], and the experimental visualization of magnetic structures in
NizsFeqs gyroid networks has provided further evidence [Llandro et al. (2020)]. However, the DMI and
curvature-induced anisotropy, which add another layer of complexity to research in 3D ferromagnetic
structures [Hertel (2013); Gaididei et al. (2014)], have not yet been explored in gyroidal structures.
Similarly, novel physical effects observed in curved magnetic wires and films [Sheka (2021)], and the
integration of chiral and topological properties [Shindou et al. (2013b); McClarty (2022)], have not
been tested in gyroids. Furthermore, the potential of gyroids extends further, with the numerous
energetically equivalent stable states, suggesting suitability for the realization of artificial spin-
ice systems in 3D. Indeed, gyroidal magnetic nanostructures, particularly those with at least one
dimension in the exchange length scale, have emerged as key to the realization of in-volume system
phenomena such as monopole-type excitations [Wannier (1950); Diep (2013); Lacroix et al. (2011)],
which were previously observed only in two-dimensional (2D) systems [Skjaervg et al. (2020); Nisoli
et al. (2017)].

Taking the magnonic perspective, we use micromagnetic simulations to reveal the collective
dynamics of SWs in gyroids. This approach is consistent with the findings in Ref. [Demidov et al.
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(2010)], where the importance of direct observation and mapping of SWs, especially in nano-
oscillators, is highlighted. An interesting aspect of our investigations is to study the ferromagnetic
resonance and SW dispersion within gyroids. The frequency-wavevector relationship of SWs is
of particular interest in complex 3D geometries, where the multidimensional nature introduces
additional complexities in SW propagation, potentially leading to tunable, magnetic field-directed
band gaps, mode crossings/hybridizations, and unconventional group velocities. By analyzing these
properties, we aim to unveil the potential of gyroids as magnonic metamaterials and efficient SW
carriers.

1.3.1 Static magnetization configuration

The study of static magnetization in 3D gyroidal ferromagnetic nanostructures apart from learning
the specifics of these structures, also can advance our understanding of complex magnetic systems
in general, and open up new technological possibilities, as they have already been recognized
for their intricate, frustrated remanent states [Llandro et al. (2020)]. These states are inherently
ferromagnetic, but do not conform to a unique equilibrium configuration. The detailed imaging
and mapping of gyroids, shown in Fig. 1.5, provide a deeper insight into their magnetic structure,
highlighting the complex interplay between the magnetic fields and the intricate single and
double gyroid architecture. Figure 1.5(b) shows the magnetic induction map of the double-gyroid
nanostructure. The external stray field surrounding the gyroid exhibits dipole-like behavior aligned
with the saturating field (H). Within the structure, multiple flux-closed loops are evident, some of
which enclose only a single unit cell. However, identifying the chirality of these loops is challenging
due to the integration of the magnetic induction map across the thickness of several unit cells and
the entangled nature of the double-gyroid networks.

In the single-gyroid region [Fig. 1.5(d)], the correlation between the structure and the
magnetization of the ferromagnetic gyroid becomes more pronounced. The external stray field
remains dipole-like, but the remanent state of the single gyroid is more complex than a simple
network of flux-closed loops. The contours are generally aligned with the structure, but in some
regions (marked with the arrows) the flux lines cut directly across the struts, implying that the
magnetization is transverse to the strut axis. In other regions, the flux contours encircle specific
vertices, possibly indicating that the magnetization of the three constituent struts converge or diverge
from the vertex center.

In Ref. [Lich et al. (2023)], the authors have presented an insightful analysis through phase-
field simulation studies, focusing on the formation and switching behavior of magnetization textures
within Py gyroid nanostructures with a periodicity of 50 nm. The study uncovers the coexistence
of left-handed (LH) and right-handed (RH) helices in these structures, a feature particularly
pronounced in gyroids with small solid volume fractions. Moreover, it has been demonstrated that
at small ¢, the magnetization textures conform to the ice rule. However, as ¢ increases, this rule is
disrupted, leading to magnetic field texture frustration, a phenomenon that becomes prominent at a
critical volume fraction of about 30%. Furthermore, the findings indicate an increase in the coercive
field as the volume fraction rises from 10 to 50%, followed by a reversal of this trend with further
increases in ¢. This behavior is attributed to the balance between LH and RH magnetic helices, with
global switching events occurring near ¢ = 50%, while local switching is observed in other volume
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Figure 1.5 Magnetographic analysis of Py double and single gyroid structures with unit cell size L =
42 nm: insets illustrate simulated models of double-gyroids and hybrid double/single-gyroid structures, with
each gyroid network marked in red and blue. Panels (a) and (b) display the phase contribution of the mean
inner potential and the map of magnetic induction for a double-gyroids. Bidirectional arrows indicate the
saturation magnetic field (H) direction. Stray magnetic fields around the structure are traced by contour
lines, which within the struts is non-uniform, as indicated by unidirectional arrows representing varied
field directions. The structure’s outline, derived from the phase shift’s mean inner potential contribution, is
shown in (b). In panels (c¢) and (d), the phase contribution of the mean inner potential and the corresponding
magnetic flux contour map are depicted for a sample containing both double-gyroid and single-gyroid regions.
In (d), the gyroid particle is masked in green and superimposed with contour lines to illustrate the relationship
between field lines and gyroid struts. Points where flux contours intersect gyroid struts or loop around vertices
are marked with closed and open unidirectional arrows, respectively. The contour interval for both (b) and
(d) is set at 27w /64 radians. Reprinted (adapted) with permission from Nano Lett. 2020, 20, 5, 3642-3650.
Copyright 2024 American Chemical Society.

fractions. They summarize the relationship between solid volume fraction and static magnetization
distribution in gyroids.

Exploring the realm of static magnetism within complex 3D structures [Hsueh et al. (2011)]
opens up promising avenues of research, particularly in the creation and control of topological spin
textures such as skyrmions, torons [Ji et al. (2022)] and hopfions [Tai and Smalyukh (2018)] and

11
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others [Wu and Smalyukh (2022)]. The curvature and topology inherent in gyroids provide a novel
platform for studying how these structures can stabilize such textures. Additional research focusing
on static magnetization configurations under external fields could deepen our understanding of
domain distribution and orientation. Also, the process of magnetization reversal in gyroids, influenced
by geometry and thermal fluctuations, could provide valuable insights into material optimization
for precise magnetic switching. Broadening the scope to include hybrid structures by integrating
materials such as superconductors or topological insulators with gyroidal ferromagnets opens up
other research opportunities.

Studying the magnetization texture and dynamics at the level of individual nanostructures, unit
cells, vertices and struts, is essential for a comprehensive understanding of their magnetic behavior.
Current research suggests the possibility of multiple equivalent magnetization configurations
within the 3D gyroid network, which is particularly promising for applications such as reservoir
computing [Tanaka et al. (2019)], where systems benefit from high interconnectivity and a variety of
stable states. The ability to access and manipulate these different states could enable new paradigms
in nanoscale computing by exploiting the properties of these complex magnetic 3D structures.

1.3.2 Magnetization dynamics

As already mentioned in the Introduction, the study of SW dynamics in 3D nanostructures is
at a very early stage [Gubbiotti (2019); Cheenikundil et al. (2022); Li et al. (2023)], especially
experimentally [Sahoo et al. (2018); Donnelly et al. (2020); Guo et al. (2023); Girardi et al.
(2024)]. In the following subsections, we will summarize our research on Ni-based gyroids, including
experimental ferromagnetic resonance (FMR) studies and numerical simulations. Here, the gyroid
sample’s unit cell is defined with a dimension of 50 nm and ¢ = 10%, as shown in Fig. 1.6. This
specific dimensionality leads to strut diameters that align with crucial nanoscale measures, e.g., the
exchange length (around 9 nm for Ni). This congruence highlights the profound impact of nanoscale
features on the magnetic dynamics and properties we observe.

1.3.2.1 Gyroidal crystallography vs. ferromagnetic response

Our recent work [Golebiewski et al. (2024)] presents a synergistic approach combining micromagnetic
simulations and FMR measurements, employed to examine the magnetic properties of three-
dimensional gyroidal Ni nanostructures. This investigation reveals several distinctive characteristics
of the gyroid network, particularly the pronounced influence of the static, external magnetic field
orientation on the ferromagnetic response. This relationship is closely linked to the crystallographic
alignment of the gyroid structure, as presented in Fig. 1.7.

We utilize the finite element method (FEM) micromagnetic simulations in tetmag, both in the
time domain for determining static magnetization structures [Hertel (2023)], and, using add-on
algorithm, in the frequency domain for analyzing oscillatory, magnonic properties [d’Aquino and
Hertel (2023)] — see more details in Appendix A.1. The following, Ni material parameters have been
used: the saturation magnetization Mg = 480 kA /m, the exchange stiffness Aex = 13 pJ/m, the
Gilbert damping coefficient o = 0.008, and the g-factor of 2.14 [Coey (2010); Singh et al. (1976)].
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Figure 1.6 Illustration of the cubic gyroid unit cell tailored for micromagnetic simulations, with dimensions
L =50 nm and a volume fraction of ¢ = 10%. An enlarged inset highlights the chiral linkage between two
primary gyroid nodes, emphasizing key geometric features.

We examine the impact of three specific field directions, aligned with the crystallographic axes
[100], [110], and [111], on finite-sized gyroids, see Fig. 1.7. The findings from the resonance spectra
simulations attribute the observed shifts in resonance signals in the rotating gyroid sample to
crystallographic anisotropy. Moreover, several bulk SW modes, as identified in this work, exhibit
a predominantly localization on the different regions across the perpendicular axis of the gyroid
structure, on the facets perpendicular to the [110] and [100] magnetic field directions. This behavior
likely stems from a combined effect of crystallographic influence and shape anisotropy impacting
the localization of resonant modes across various regions, potentially influenced by the system’s
chirality. Furthermore, we identified some SW modes localized on the outer surfaces of the gyroid
structure (see the modes marked with ’x’ in the spectra shown in Fig. 1.7). This also indicates the
important influence of the shape and outer surfaces of the 3D nanostructure on the SW dynamics.
This observation prompts us to investigate the surface effects further. The preliminary results of our
numerical studies of surface-localized SW modes are summarized in the next section.

The tetmag simulations were complemented by meticulous experimental measurements using
broadband FMR, where a multi-domain (multiple, interconnected sub-parts with different
crystallographic orientations) gyroid sample was positioned on a coplanar waveguide (CPW) line.
This setup facilitated the analysis of distinctions and correlations between a solid, uniform Ni
layer and the gyroid-structured segment of the sample. The Ni gyroid nanostructure analyzed was
fabricated through the thermal annealing of a block copolymer template [detailed in Sec. 1.2.1
(Fig. 1.4) and Ref. [Llandro et al. (2020)]], followed by selective dissolution of one of the gyroid-
forming blocks and filling the resultant right-handed gyroid network with Ni by electrodeposition
(L = 50 nm, ¢ = 10%). Performed measurements and provided numerical analysis allow us to
conceptualize gyroid films as homogeneous materials or magnonic metamaterials, where the effective
saturation magnetization is reduced in proportion to the gyroid’s filling factor — see Fig. 1.8. We
can see, that the gyroid signal exhibits a broader frequency full-width at half-maximum (FWHM)
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Figure 1.7 Spectral analysis of SW modes in a 6 X 6 x 6 gyroid structure. The lower part of the figure
shows the frequency spectra with high-intensity volume modes highlighted by black circles. For comparison,
spectra of more compact structures (dotted lines) are superimposed, showing a significant reduction in the
intensity of edge modes (indicated by crosses) with increasing structure size. The color gradient in the
mode visualization corresponds to the imaginary part of the magnetic susceptibility. Reprinted (adapted)
with permission from ACS Appl. Mater. Interfaces 2024, 16, 17, 22177-22188 licensed under CC-BY 4.0.
Copyright 2024 American Chemical Society.

compared to that of homogeneous Ni. For instance, at a magnetic field of 450 mT, the FWHM is
3.69 GHz for the gyroid and 3.09 GHz for Ni. This broader signal is likely due to the multidomain
nature of the sample. Specifically, the observed signal from the gyroid represents an average from
multiple domains with varying crystallographic orientations located above the CPW. From the FMR
measurements shown in Fig. 1.8(e), we deduce an average FWHM difference of 1.3 GHz across
various external magnetic field values. Micromagnetic simulations for a cube-shaped sample (Fig. 1.7)
indicate a maximum peak separation of 2.95 GHz at 300 mT, specifically between the [100] and
[111] crystallographic directions. These simulations evaluated the crystallographic orientations that
represent the most divergent configurations of the gyroid lattice relative to the applied field, resulting
in the largest possible separation of resonant frequencies. In field-swept FMR experiments conducted
at a fixed frequency, the absorption line FWHM conforms to the equation pgAH = 4waf /. This
relationship holds when the magnetization vector is aligned with the applied magnetic field, either
in-plane or perpendicular to it, leading to a linewidth that scales proportionally with frequency. The
slope of this scaling is defined by the Gilbert damping parameter «. In addition to this intrinsic
contribution, empirical data suggest the presence of a frequency-independent term (see Eq. A.7),
which contributes to the overall linewidth observed in the experiments. Experimental investigations
have also enabled a linear regression analysis of FWHM across a spectrum of Byw frequencies,
as depicted in Fig. 1.8(f) for the designated orientations of the sample over CPW. This analytical
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Figure 1.8 A broadband FMR measurement on a Ni gyroid structure. The sample was repositioned
relative to the CPW to study the effect of an additional homogeneous Ni layer. Two configurations were
used to assess energy absorption from the microwave field Baw, applied perpendicular to the static magnetic
field (a). Dynamic magnetization amplitude as a function of static magnetic flux density and frequency for
selected configurations are shown in (b) and (c). A strong signal from the gyroid layer appears when the
CPW aligns directly below it (b), while a higher-frequency signal from the uniform Ni layer is observed when
the CPW intersects its projected position (highlighted in purple) (c). Dotted lines represent theoretical fits
using the Kittel formula (Eq. A.6). For the uniform Ni, parameters from micromagnetic simulations were
used; for the gyroid, calculated effective parameters (Meg = 132 kA/m, g-factor of 2.2) were applied to
the formula. Plot (d) summarizes peak intensities of FMR signals (blue dots for uniform Ni, orange dots
for gyroid) as a function of external magnetic field strength, with normalized values for 100 mT, 300 mT,
and 45 mT. Plot (e) provides a cross-sectional analysis of FMR signals at different external magnetic fields:
solid blue line for Bext = 100 mT, dashed brown line for Bext = 300 mT, and dash-dotted green line
for Bext = 450 mT. Horizontal dashed green lines indicate the FWHM for each section. Orange crosses
mark peak maxima and corresponding frequencies. Insets show intensity plots from FMR measurements
with green vertical lines marking specific section locations. Plot (f) shows the magnetic field FWHMs as
a function of frequency for FMR signals of gyroid (purple dots) and uniform Ni (dark red dots). Linear
regression, based on experimental data and Eq. A.7, estimates determination coefficient 2, AHy (from the
abscissa), and damping values a (from the slope). Parameters for the gyroid are marked with a prime (').
Reprinted (adapted) with permission from ACS Appl. Mater. Interfaces 2024, 16, 17, 22177-22188 licensed
under CC-BY 4.0. Copyright 2024 American Chemical Society.
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approach is instrumental in ascertaining the damping values o and the inhomogeneous linewidth
contribution AHj for both the homogeneous Ni layer and the gyroidal structure, respectively. In the
first case, the derived values are a = 0.0282 £ 2.54% and AHy = 0.038 & 1.28% T. Comparatively,
the gyroidal structure exhibits o/ = 0.0362 + 6.49% and AH| = 0.101 +1.05% T. Larger o’ for the
gyroid structure is likely attributable to the scattering of SW modes within the nanowires, which
are much thinner than the bulk Ni and exhibit complex noncollinear interconnections.

1.3.2.2 Localization properties

Figure 1.9 Visualization of discretization grids for gyroid structures utilized in Comsol micromagnetic
simulations. Arrows indicate the Bloch-Floquet boundary conditions (BCs) along the z and y axes, defining
the structure’s plane. In contrast, along the z-axis, perpendicular and at a significant distance from the
plane, Dirichlet boundary conditions (BCs) are implemented. This setup is exemplified for a single-unit
thick (1 x 1 x 1) gyroid layer in (a), and similarly for other models: 1 x 1 X 3 in (b), and 1 X 1 x 6 in (c).
Note that the relative sizes of the structures are not to scale in this representation.

To study surface effects in gyroids, we simulate the gyroid in a thin film geometry in dependence
on the thickness of the gyroid structure and the orientation of the external magnetic field. To avoid
the influence of the lateral edges effects on the SW spectra we employ Bloch-Floquet boundary
conditions at the unit cell boundaries. The simulations are performed with Comsol Multiphysics
software. In this implementation, we assume full magnetization saturation and solve the Landau-
Lifshitz-Gilbert equations in the linear approximation as an eigenproblem. Further details about
this numerical approach can be found in Refs [Mruczkiewicz et al. (2013); Rychly et al. (2018)]
in 2D implementation, and in the Appendix A.1. With that, we model an infinite gyroidal plane
with varying thicknesses: 1, 3, and 6 unit cells, corresponding to dimensions of 50, 150, and 300 nm,
respectively (Fig. 1.9). Material parameters identical to those in the previous section were used.
Throughout our simulations, the external magnetic field, Beyt, was maintained constant at 500 mT
and oriented in the plane of the gyroidal plane along the crystallographic direction [100]. This
field strength, corroborated by Ref. [Llandro et al. (2020)], supports our assumption of complete
saturation of the structure aligned with the external magnetic field’s direction.

During the analysis of the micromagnetic simulation results, a surprising pattern emerged in the
behavior of the lowest frequency mode, which exhibited the highest intensity, particularly under the
influence of the rotating in-plane magnetic field. It is, an intriguing switch in the area of localization
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Figure 1.10 Distribution of low frequency, the most intensive mode in (a) 1 x 1 x 1, (b) 1 x 1 x 3, and
1 x 1 x 6 gyroids (¢ = 10%) and their localization as a function of magnetic field rotation (Bext = 0.5 T)
with respect to the z-axis. The plots below illustrate the impact of the rotating field’s angle relative to
the structure on the eigenfrequency (d) and the variation between the minimum and maximum dynamic
magnetization components within the unit cell (e).

of SWs from the bottom [at 30 and 60 deg in Fig. 1.10(b) and (c)| to the top of the layer (at 120
and 150 deg). Between these angles, specifically at 0, 90, and 180 degrees, this mode exhibits a
bulk character. This shift in mode amplitude concentration regions suggests a complex interplay
between magnetic field orientation and intrinsic properties of the gyroid structure, involving dipolar
and exchange interactions. The change of the amplitude localization is followed by the change of the
resonance frequency [see Fig. 1.10(d)], the lowest (about 13.6 GHz at the field angle of 45-50 deg
and 125-130 deg) occurs when the mode has a surface character and increases with the transition
into the bulk region.

Preliminary analysis indicates that this localization phenomenon is more pronounced in structures
with increased thickness, i.e., characterized by a higher number of unit cells per thickness, as can
be seen by comprising SW amplitude distribution in Fig. 1.10(a)-(c). This has been quantified by
plotting the difference between the maximum and minimum value of the dynamic magnetization
component in the unit cell in Fig. 1.10(d). The largest value of this difference indicates stronger
amplitude localization. Interestingly, the angle at which maximum localization occurs also shifts
with changes in film thickness. In such cases, the crystallography exerts a greater influence on the
SW amplitude distribution and indicates a possible influence of chirality.

The findings described are intriguing and require further investigation to unravel the complex
interactions that govern these phenomena. Understanding the dynamics controlling the localization
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of SW modes in these structures has the potential to open up new applications in 3D magnonics,
such as sensing or controlling dynamical coupling by rotating the magnetic field.

1.3.2.3 Dispersion relation

The surface character of the SW mode at & = 0 has not been found in homogeneous thin
ferromagnetic films so far. Thus, it is interesting to see how this and other modes in the gyroid
structure evolve with the wavevector. The introduced Bloch-Floquet boundary conditions in Comsol
MultiPhysics are very well suited for the calculation of the dispersion relation, just by parametrize
the solution with the Bloch wavevector, k.

(a) 1x1x1 (b) 1x1%3
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Figure 1.11 The dispersion relations within the 1st Brillouin zone for a gyroid structure along the z-axis
([100] crystallographic direction), characterized by a 10% filling factor and 1 (a), and 3 (b) unit cells per
thickness. The data is color-coded to distinguish between different configurations: the BV configuration is
represented in red, while the DE configuration is depicted in blue. These plots have been generated in the
presence of an in-plane external magnetic field, Bext = 0.5 T, oriented along the z-axis. Wider band gaps
specific to one of the configurations are highlighted using green rectangles.

In reciprocal lattice space, the range —w/L < k < w/L defines the 1st Brillouin zone along the
main direction of the cubic lattice. The primary focus is on the 1st Brillouin zone, as the bands
from the subsequent zones are folded back to the 1st zone, and the whole magnonic band structure
has a periodicity with the period equal to the reciprocal lattice vector 27/L. Our research delves
into the SW dispersion in a thin film based on the gyroid structure, defined in the previous section.
It displays dispersion relations similar to those of traditional magnonic crystals but with specific
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features. As evidenced in Fig. 1.11, the direction of the magnetic field relative to SW propagation
significantly influences the gyroid’s band structure, leading to the opening and closing of band gaps.
This phenomenon is exemplified in our simulations of the 1 x 1 x 1 [Fig. 1.11(a)] and 1 x 1 x
3 [Fig. 1.11(b)| gyroid structures for two relative orientations of the in-plane magnetic field and
wavevector, i.e., DE configuration in which both directions are orthogonal, and backward volume
(BV) configuration in which these vectors are parallel. In the DE configuration, in 1 x 1 x 1 structure,
we observe a wide band gap from 18.1 to 23.6 GHz, limited by the flat band, and another bend gap
just above, from about 23.8 to 27.9 GHz. On the other hand, in BV configuration, there are only
two very narrow gaps at low frequencies and a wide band gap between 37.6 GHz and 51.2 GHz. The
spectra change significantly when we increase the film thickness to 3 unit cells [Fig. 1.11(b)]. In this
case, the band structure is much denser due to the decreasing frequency of the SW modes quantized
along the thickness. The band gaps at low frequencies are now closed for DE, but it is opened
for BV configuration, although it is rather small, only 1.8 GHz wide (around 22 GHz). In higher
frequencies, the band gap in DE configuration opens (38.6-41.9 GHz). Interestingly, in the frequency
range from 23 to 38.6 GHz, the DE bands show a pronounced slope with numerous crossings but
no hybridizations, whereas in the BV configuration, extensive hybridizations result in a wavy band
structure as a function of k, separated by distinct band gaps.

The preliminary analyses reveal the complexities of SW propagation in thin films based on gyroid
structures, such as the emergence of band gaps and the crossing of different modes. The distinctive
dispersion properties of gyroids, as highlighted in our results, hold great promise for further research
aimed at improving the transmission capabilities of magnonic 3D devices.

1.4 Conclusions

To summarize the research described in this chapter, it is evident that ferromagnetic gyroidal
nanostructures exhibit interesting properties with significant implications for the field of 3D
magnonics. The presented studies, both static and dynamic magnetization based, have shown that
factors such as non-trivial shape anisotropy, chirality, and inhomogeneous demagnetization fields
within gyroidal structures are determined by the specific crystallography, and can lead to the creation
of multiple low-energy state magnetization textures, SW mode localization, and controllable SW
propagation. Though preliminary, these investigations have begun to unveil the substantial potential
inherent in these structures.

Further studies of individual nanostructures forming gyroids, such as unit cells, vertices, and
struts, are crucial for a comprehensive understanding of the magnetic behavior of gyroids and their
interactions with external fields. Much like how micro/nano texturing in metamaterials influences
their macroscopic effective properties, these detailed investigations are crucial for elucidating the
intricate relationships between gyroid geometry, chirality, and their effective magnetic properties,
particularly at microwave frequencies. This is evidenced by the study of resonance frequencies
in gyroid samples under rotational field manipulation, demonstrating the significant influence of
geometric anisotropy on the FMR signal strength and the structure’s effective properties. Gyroids,
with their inherently chiral structure, nanoscale unit cell dimensions, and exchange-length bond
sizes, show promise for 3D spin-ice systems, exhibiting intriguing collective SW properties such as
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band gaps and magnon mode hybridizations. However, further experimental studies are essential to
validate these properties and demonstrate their practical applications. Thus, the results presented
in this chapter establish our current understanding of ferromagnetic gyroidal nanostructures and
pave the way for their further investigation. In conclusion, research on ferromagnetic gyroidal
nanostructures reveals intriguing properties and novel phenomena, underscoring their potential to
advance the fields of 3D magnonics and spintronics.
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Appendix

A.1 Micromagnetic Simulations

In Sec. 1.3.2.1, for the numerical investigation, we used tetmag — the GPU-accelerated open-source
FEM micromagnetic solver [Hertel (2023)]. We exploit its ability to solve magnetostatic open
boundary problems in large-scale micromagnetic simulations via a hybrid finite-element /boundary-
element formalism [Hertel et al. (2019)]. In this analysis, however, we do not assume periodic
boundary conditions. All tetmag-based micromagnetic simulations were performed in two steps,
where the first one was to compute the stable magnetic configuration at a given field value. After
the magnetization relaxation, we conducted simulations of the ferromagnetic resonance using a
dedicated frequency domain algorithm [d’Aquino and Hertel (2023)] based on a formulation proposed
by [d’Aquino et al. (2009)].

To investigate the SW modes within the gyroid structure described in Secs. 1.3.2.2 and 1.3.2.3,
we utilized the capabilities of Comsol Multiphysics software. It employs the finite element method
(FEM) to solve complex systems of coupled partial differential equations. This includes both
the Landau-Lifshitz-Gilbert (LLG) equation and the Maxwell equations under the magnetostatic
approximation. In these simulations, each magnetic moment within the unit cells of the gyroid
is represented as a normalized unit vector denoted by m = M /Mg, where M is the magnetization
distribution function in space and time, and Mg is the saturation magnetization of the ferromagnetic
material.

The core of our approach is solving the LLG equation in its explicit form:

dm 1

7:’y1+a2

7 (m X Begr + o (m X (m X Begr))), (A1)

where dm/dt is the time evolution of the reduced magnetization, v is the gyromagnetic ratio, and
« represents the dimensionless damping coefficient. The effective magnetic flux density field, Beg,
integrates the externally applied field, Beyt, with the magnetostatic demagnetizing field, Bg, and




output

22 | Appendix

the Heisenberg exchange field, Bexcn:
Beﬁ - Bext + Bd + Bexch- (AQ)

The demagnetizing field strength, Hq (equivalent to Bq/puo, where g is the vacuum permeability),
is governed by Ampére’s law, and is derived from the magnetic scalar potential gradient, Uy,:

Hy=-VUy, (A.3)
which further evolves within the magnetic body as:
VU, =V -M. (A.4)

In our Comsol implementation, we addressed the eigenproblem derived from Eqgs. A.1-A.4. Assuming
complete magnetization saturation by the magnetic field, we adopted a linear approximation
to decompose the magnetization vector into static and dynamic components m(r,t) = mit +
om(r,t) ¥V (0m L 1), disregarding all nonlinear terms in the dynamic magnetization dm(r,t). This
method aligns with foundational research such as Refs. [Mruczkiewicz et al. (2013); Rychly et al.
(2018)], which provides a comprehensive understanding of the underlying physical principles.

The Bloch-Floquet boundary conditions, applied to parallel surfaces on the opposite sides of the
unit cell, are defined as:

Smyy; = Smyg,.e HF(rast—7see) (A.5)

where k represents the wavenumber, dm is the normalized dynamic component of the magnetization
vector at both sides of the unit cell: the destination (dst) and the source (src), r denotes the
spatial coordinates of the boundaries where the boundary conditions are applied, and i is the
imaginary unit. For a unit cell encompassing periodicity, these boundary conditions are applied to its
corresponding parallel faces (as illustrated in Fig. 1.9). By sweeping the wavenumber parametrically,
eigenfrequencies are calculated at each interval, resulting in wavenumber versus frequency plots that
reveal the dispersion curves for the periodic structure [Hakoda et al. (2018); Collet et al. (2011)].
These curves characteristically show periodicity in relation to the wavenumber, with a repeating
pattern every 2w/ L.

For the distant planes parallel to the axes of the examined gyroid layer, Dirichlet boundary
conditions are implemented to nullify the scalar magnetic potential, Uy,. These first-type boundary
conditions specify the precise value a variable must take at the boundary during the PDE
solution process. Here, we set Up|sre = Umlast = 0. To ensure the simulation’s physical fidelity
and convergence, these conditions are placed sufficiently far from the specimen. In our Comsol
simulations, the cell’s height was configured to be 40 times the thickness of the gyroid layer.

A.2 Broadband FMR experiment

By adjusting the position of the sample on the CPW, as described in Sec. 1.3.2.1, apart from gyroidal
structures, we observed a higher frequency signal specifically associated with the homogeneous Ni
layer at one edge of the sample. It was confirmed by a good match between the detected signal and
the theoretical prediction from the Kittel formula for the resonance frequency:

f = %\/Bext (Bext + MOMS)' (AG)
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Broadband FMR experiment

In field-swept broadband FMR experiments at a fixed microwave field frequency, the FWHM of
the absorption linewidth follows pugAH = 4waf/~. This relationship holds when the magnetization
vector aligns with the applied magnetic field, either in-plane or perpendicular. The linewidth scales
linearly with frequency, with the slope determined by the Gilbert damping parameter «. Besides
this, empirical data show an additional frequency-independent term:

AH = AHo+ 2% (A7)
KoY

where A H( represents inhomogeneous contributions, adding to the overall linewidth observed in the

experiments.
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5.3.3 Theoretical demonstration of a new type of FMR mode localization
in 3D nanostructures (P9)

This work introduces a new type of FMR mode localization in complex three-dimensional
nanostructures. Using micromagnetic simulations, I investigate the FMR behavior in scaffold-
like architectures and gyroid nanostructures, demonstrating how their unique three-dimensional
geometries give rise to surface-localized FMR modes — a phenomenon fundamentally different
from conventional spin-wave localization mechanisms reported in the literature. The results
show that demagnetizing fields and exchange interactions in these structures produce a highly
asymmetric distribution of dynamic magnetization along the vertical axis.

A key discovery is the top-bottom dynamic switching of the surface-mode localization
controlled by the orientation of the external magnetic field, revealing a novel mechanism for
tuning magnetization dynamics by simply adjusting the field direction. This work demonstrates a
new approach to mode localization in 3D nanostructures and lays the foundation for experimental
exploration and practical applications in magnonics where tunable spin-wave behavior can be
exploited.
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nanosystems, especially the strongly asymmetric distribution of the spin-wave mode over the system’s height.
Importantly, the top-bottom dynamic switching of the surface mode localization across the structures in
response to changes in magnetic field orientation provides a new method for controlling magnetization
dynamics. The results demonstrate the critical role of the geometric features in dictating the dynamic magnetic
behavior of three-dimensional nanostructures, paving the way for both experimental exploration and practical
advances in 3D magnonics.

Keywords:
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Magnetic shape anisotropy

1. Introduction possibilities for SW manipulation [6-8]. For example, by tuning their

geometry and lattice period, we obtain control over the magnonic band

Spin waves (SWs), originating from the collective oscillations of
magnetic moments, are marked by their intricate dynamics, depen-
dence on material structure, magnetization texture, and profound ap-
plication potential in IT systems [1]. The properties of SWs are a
consequence of the interplay between long-range magnetostatic and
short-range exchange interactions. This balance is particularly pro-
nounced when the anisotropy of the magnetostatic interactions intro-
duces a unique dependence of the SW propagation on the alignment
between magnetization and SW wavevector. Such dependencies give
rise to a number of distinctive SW properties, including negative group
velocity, caustics, pronounced nonlinearity, and dynamic reconfigura-
bility [2]. Thus, the current focus of the magnonic research is not only
to understand these phenomena, but also to exploit them for digital,
analog, non-conventional, and quantum signal processing at high fre-
quencies, from a few to hundreds of GHz, operating at the nanoscale,
and consuming less power than other alternative systems [3]. This
vision is reflected in recent breakthroughs and strategic roadmaps of
the field [4,5].

Nanostructured 3D networks can significantly advance the poten-
tial of magnonics, giving rise to topological and geometric effects
and emergent material properties that extend existing and offer new

* Corresponding author.
E-mail address: mateusz.golebiewski@amu.edu.pl (M. Gotebiewski).
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structure with tailored SW group velocity and collective response to
external stimuli in all possible directions of SW propagation and polar-
ization of external fields [8-10]. In addition, 3D magnetic structures
provide an opportunity to explore chiral surface, edge, and corner
states, characterized by higher-order topology [11,12]. Furthermore,
a fully interconnected 3D systems [13-15] open up a new degree of
freedom to explore other emerging phenomena in magnetism, such as
frustration and magnetic charge isolation, realized with 3D artificial
spin-ice systems [16,17]. In recent years, the significant development of
new fabrication techniques - such as two-photon lithography, focused-
electron-beam deposition, and block-copolymer templating — makes it
possible to fabricate and measure complex 3D structures and artificial
nanosystems on the nanometer scale [18-23], test them for various ap-
plications [24,25], and also start investigations on SW dynamics [26].
However, the study of magnetization dynamics in nanostructures with
periodicity in 3D is still in its early stages [16,26].

Gyroids are 3D structures with intriguing properties that have been
widely explored in photonics [27-29]. As detailed in Refs. [30-32],
the gyroid emerges as a unique triply-periodic minimal surface. Its
defining feature is a zero mean curvature, which means that every
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Fig. 1. Visualization of gyroidal systems used in micromagnetic simulations. The cubic gyroidal unit cell (UC) with dimensions L = 50 nm and a volume fraction of ¢ = 10% is
shown in (a), with the enlarged inset highlighting the chiral linkage between two primary gyroidal nodes. The arrows indicate the direction of application of the periodic boundary
conditions (PBCs), which are applied along both the x- and y-axes defining the plane of the structure. Along the z-axis — perpendicular and far from the plane - Dirichlet BCs
are assumed [see Methods 6.1]. Panel (b) shows the orthographic projection of the gyroid structure from each side of the analyzed cubic cells (crystallographic normal direction
[100]), demonstrating the characteristic square distribution of gyroid channels, rotated 45 deg to the axes. The analyses were performed using models with 3 and 3.25 UCs per

height (c), highlighting the influence of the surface shape on the observed effects.

point on the surface acts as a saddle point, characterized by equal and
opposite principal curvatures [33]. Its intricate design comprises cubic
unit cells (UCs) linked by nanorods with elliptical cross-section [34].
The inherent chirality and curvature of nanoscale gyroids [35] offer
a promising avenue also for controlling non-collinear spin textures in
magnetism [36]. This potential is further underscored by the visualiza-
tion of magnetic structures in Ni,s;Fe,s gyroid networks [18]. Its chiral
structure, well below 100 nm UCs, and the building struts’ dimensions
close to the exchange length also promise interesting SW dynam-
ics. The effect of Ni gyroid crystallography on resonance frequencies
has recently been demonstrated using micromagnetic simulations and
broadband ferromagnetic resonance measurements [37].

In this paper, we study the magnetization dynamics in a 3D plane
extended and height finite ferromagnetic gyroid nanostructure through
theoretical analysis of ferromagnetic resonance (FMR) modes. Unex-
pectedly, we find that for some specific orientations of the in-plane
bias magnetic field, the lowest frequency signal with the highest FMR
intensity comes from a surface-localized mode. Since the localized
mode has a wavevector of k = 0, it clearly indicates that the localization
is not associated with any propagating modes, including the Damon-
Eshbach type [38]. It is also not a Shockley [39] or topologically
protected type of surface state [40], which requires a Bragg bandgap
in the SW spectrum. To explain this unusual type of localization, we
use a simpler structure with vertically layered, orthogonally alternating
cylindrical ferromagnetic nanorods. On this basis, we also reject the
hypothesis that this localization is just due to the non-uniformity of
the demagnetizing field at the surface of the structure (i.e., edge
modes [41]), but we show that the demagnetizing field plays an im-
portant role by creating potential barriers for SWs, whose localization
is determined by the exchange interaction. Thus, these results provide a
new type of SW surface localization with a high absorption intensity of
a homogeneous microwave field. Importantly, the localization can be
controlled by rotation of the in-plane bias magnetic field as well as by
shape manipulation, especially of the surface region of the structures.
It allows the SW intensity to be transferred from the bottom surface,
through the bulk, to the top surface by simply rotating the sample or
the magnetic-field direction [42-44].

2. Gyroid structure and numerical simulations

The gyroidal surface divides space into two contrasting labyrinths
that intersect at angles of 70.5 deg [Fig. 1(a)], creating a captivating

geometric pattern. Its representation can be expressed by the trigono-
metric equation:

sin 2zx/L)cos 2zy/L)+
sin (2zy/L)cos 2zz/ L)+ (@]
sin(2zz/L)cos 2zxx/L) < (101.5 — 2¢)/68.1,

where L signifies the gyroid UC length and ¢ is a filling factor. In
our research, the UC of the nickel-made gyroid measures 50 nm, as
shown in Fig. 1(a), which results in a single strut diameter of 8 nm,
thus comparable to the exchange length [18]. It relates to the volume
fraction of ¢ = 10%. In this work, we study gyroids in the form of a
thin films with the [100]-direction normal to the plane [Fig. 1(b)] and
with two different heights: 3 UCs (150 nm) and 3.25 UCs (162.5 nm)
[Fig. 1(c)].

To study the SW dynamics, we numerically solve an eigenproblem
obtained from the Landau-Lifshitz (LL) equation in linear approxima-
tion. Using periodic boundary conditions (PBCs) on the UC boundaries
along the x- and y-axes, we model infinite gyroidal films (see Fig. 1).
Details on the technical and theoretical aspects of the simulations can
be found in the Methods, Section 6.1. For each of our simulations, we
adopt material parameters typical of nickel (Ni) films: the saturation
magnetization Mg = 480 kA/m, the exchange stiffness A., = 13 pJ/m,
and the gyromagnetic ratio y = 176 rad/s/T [45,46]. The external
magnetic field, yyH.y,, remains constant at 500 mT. This magnitude, as
supported by Ref. [18], validates our assumption of complete saturation
of magnetization in the gyroid structure.

3. Results
3.1. Surface modes in gyroid

We examine the FMR response of the gyroid structure as a function
of the external magnetic field (500 mT) direction within its xy-plane.
As mentioned above, we consider films with two heights, 150 nm (3
UCs) and 162.5 nm (3.25 UCs), which form angled and parallel patterns
on the top and bottom surfaces of the gyroid film, respectively (see
the top panels in Fig. 3 showing the struts at the top and bottom
of the film as viewed from above). As shown in Fig. 2, the FMR
spectra [for 3 UCs (a) and 3.25 UCs (b)] for 0 deg angle of static field
orientation consist of only a single peak of high intensity [all spectra
intensities were calculated using Eq. (6) based on the response to the
homogeneous microwave magnetic field excitation Agy, — see Methods,
Section 6.1]. In addition to the frequency decrease, when the field is
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Fig. 2. Normalized FMR spectra of the gyroid structures with 3 UCs (a) and 3.25 UCs (b) per height. The colors indicate various angles of the external magnetic field relative to
the x-axis. The values of the corresponding frequencies are given for the high-intensity peaks.

rotated by 45 deg, the spectra in Fig. 2 also clearly show the emergence
of a secondary peak of lower intensity. The lowest-frequency, high-
intensity peaks are attributed to the modes with in-phase magnetization
oscillations over the height, while the secondary peaks are attributed
to an asymmetric quantized SW mode [see Fig. S1(a) and (b) in the
Supplementary Information]. In the following, we will focus only on
the resonant frequency mode, which has the most intense response to
the homogeneous microwave magnetic field and is the lowest frequency
mode in a given configuration.

Unexpectedly, the rotation of the magnetic field along with the ori-
entation of the outer parts of the gyroid affects not only the frequency
but also the amplitude distribution of this SW mode, as shown in
Fig. 3. Specifically, when the field aligns with the x-axis for 3 UCs case
[Fig. 3(a)], magnetization distribution appears nearly uniform across
the layer’s entire height, exhibiting a bulk concentration preference,
henceforth referred to as a bulk mode (frequency 14.63 GHz). However,
for a 3.25 UCs, i.e., where the top and bottom of the structure are
oriented the same, we can see the distribution of the magnetization
tendency towards localization in the upper level (14.45 GHz). A sig-
nificant change in amplitude distribution occurs when the field is
rotated by 45 deg — the FMR mode is predominantly concentrated
in one or both of the surface regions of gyroids for the 3 UCs and
3.25 UCs cases (13.58 and 13.53 GHz), respectively, which we refer
to as surface modes. A subsequent rotation by another 45 deg aligns
the field along the y-axis [Fig. 3(c)], transitioning the mode back to
an almost uniform state for 3 UCs structure (14.43 GHz), albeit with a
distinct bias towards both surfaces. For the 3.25 UCs case (14.48 GHz),
we again see the tendency of the magnetization to localize, but this time
on the bottom of the layer. At 135 deg rotation [Fig. 3(d)], the pattern
of strong localization reemerges for 3 UCs structure (13.57 GHz), yet
on the opposite surface compared with 45 deg, showcasing a dynamic
shift in vertical localization of the FMR mode depending on the field’s
rotation. At the same time, for a 3.25 UCs structure (13.90 GHz), the
field directed at an angle of 135 deg from the x-axis in the plane,
causes the magnetization to be concentrated in the inner, bulk part of
the structure. Completing the cycle, a 180 deg rotation reinstates the
magnetization distribution to its original states observed at 0 deg in
both cases.

Gyroidal systems, due to their complexity, significantly complicate
the interpretation of the obtained results, therefore to gain a deeper
insight into the mode localization phenomena, we propose a model
of a simple three-dimensional structure with reduced complexity. As a
result of the systematic study (see Supplementary Information, Fig. S6),
a woodpile-like scaffold structure, in which the horizontal piles are
separated and connected with vertical bars, emerged as an optimal
candidate that meets the criteria, notably:

« material continuity essential for facilitating exchange interac-
tions,

« alternating and perpendicular configuration of nanorods designed
to influence the modulation of demagnetizing field distribution,

+ a size and spacing between nanorods aligning with the order of
magnitude of the exchange length /,, = 1/24,,/(4yM?) (~ 9.5 nm

for the Ni parameters).

As we will show, it captures the essential geometric attributes necessary
to replicate the magnetic field angle-dependent localization effects
observed in gyroids.

3.2. Woodpile-like scaffolds

The proposed woodpile-like scaffold structure is a stack of verti-
cally and orthogonally distributed cylindrical nanorods, as shown in
Fig. 4(a,b), with the vertical distance between them defined as d.
In the micromagnetic simulations, the radius of cylinders was kept
constant at r = 3 nm and the width of the UC (nanorod length) at
R = 50 nm, with PBC in the xy-plane, as in the case of gyroids. The
selection of this structural type is driven by the analogies observed in
the distribution of critical struts. As depicted in Fig. 4(c), the hard-axis
and easy-axis struts are arranged quasi-perpendicularly, functioning as
energy barriers under the influence of an external magnetic field in
both systems. In addition, the scaffold nanostructures allow fast and
efficient analysis of the FMR mode distribution, taking into account an
even number of orthogonal rods (asymmetry through height — surface
top/bottom bars are perpendicular to each other as in the 3-UCs gyroid
structure) and an odd number of them (symmetry through height —
surface top/bottom bars are parallel to each other, as in the 3.25-
UCs gyroid structure), as shown in Fig. 4(b). Thus, according to the
framework established in Section 3.1, the scaffold structure has been
categorized into two configurations: symmetric, with an odd number
of scaffold levels, and asymmetric, with an even number of levels. In
our work, the symmetric configuration is represented by the 156 nm-
high structure consisting of 7 levels of nanorods, while the asymmetric
configuration measures 184 nm in height with 8 levels of nanorods.
Unlike gyroids, the entire structure, not just the surface reconstructions,
has inversion symmetry.

The scaffold structure is subjected to micromagnetic simulations
similar to those performed on gyroids. We examine the FMR response
of the structure as a function of the 500 mT external magnetic field
direction within its xy-plane. Representative FMR spectra for the two
analyzed scaffold structures in the field at 0 and 45 deg (from x-
axis, in-plane) are shown in Fig. 5(a) and (b), respectively. They were
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Fig. 3. Distribution of the dynamic component of the magnetization m, in a gyroid structure with a ¢ = 10% and height of 150 nm (3 UCs — angled surface struts on the top
and bottom surface, left side) and 162.5 nm (3.25 UCs, parallel surface struts, right side). Above are the orientations of the outer struts for the two configurations studied (top
view). Different configurations of the direction of the external magnetic field in the plane of the layer are shown, demonstrating the differences in the localization of individual

FMR modes. For better visibility, the gyroidal arrays consist of 4 x 4 columns of the UC.

determined using the same technique as described above for the gyroids
(Fig. 2) and explained in detail in Methods, Section 6.1. Again, the
most intense mode has the lowest frequency and oscillates in phase
throughout the volume. There is also the second, slightly weaker peak
clearly visible in Fig. 5(a) for a static field angle of 0 deg (blue line,
9.80 GHz), which represents the first, asymmetric SW mode quantized
along the z-direction [see Fig. S1(c) and (d) in the Supplementary
Information].

Initiating with the field oriented along the x-axis [Fig. 6(a)], the
symmetric configuration exhibits bulk localization (frequency
9.79 GHz), namely in nanorods oriented perpendicular to the external
field (these include y-axis aligned rods and connecting vertical bars)
with almost no intensity in the nanorods aligned with the magnetic
field. Conversely, the asymmetric configuration demonstrates energy
localization within the upper plane of the film, resulting in a surface
mode (9.59 GHz). A 45 deg rotation of the field, [Fig. 6(b)], yields a
configuration where the nanorod junctions became focal points for SW
amplitude concentration, favoring the bulk section. The orientation of
the field along the y-axis [Fig. 6(c), 90 deg] brought forth a critical
scenario in this simulation segment. For the symmetric structure, where

the nanorods aligned with the x-axis are present, localization at both
surfaces is observed (at 9.58 GHz). In contrast, in the asymmetric struc-
ture, the localization is manifested on the bottom surface, i.e., opposite
to the x-axis saturation case at 9.59 GHz. Further on, a 135 deg rotation
[Fig. 6(d)] repeats the results obtained for 45 deg rotation. The rotation
of 180 deg brings back the original structure, completing the cycle.

3.3. SW localization — quantitative analysis

To accurately quantify SW localization, the inverse participation
ratio (IPR) serves as a valuable parameter. Traditionally employed in
quantum mechanics to assess the localization of wave function [47-50]
the IPR is defined as IPR = Y, |y, |*/(Z; lw;|*)?, where ; symbolizes the
wave function at the ith site or lattice point. This parameter effectively
measures how concentrated the wave function is within a given discrete
space, providing a scalar value that differentiates localized states from
extended ones. In continuous ferromagnetic systems, as in our case,
the IPR needs the transition to the continuous form, which requires
an integral form [51] and the use of a SW amplitude instead of the
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Fig. 4. Visualization of the scaffold models used in the micromagnetic simulations.
The enlarged representative cutout in (a) illustrates the main geometric features of
the nanorods, including their UC length of R = 50 nm, vertical distance d = 25 nm,
and circular cross-section radius r = 3 nm. The arrows indicate the direction of the
applied boundary conditions, in the same way as for gyroids (see Fig. 1). The red
color marks an additional level used to manipulate the vertical symmetry of the whole
structure. Model (b) shows a full-height column used to perform calculations with a
symmetric arrangement (with 7 horizontal nanorods) and an asymmetric arrangement
(with 8 nanorods), where the bottom one is rotated 90 deg with respect to the top one.
In (c), the critical gyroid rods for analysis are highlighted, schematically illustrating
the structural similarities between the two systems studied. Blue ellipses indicate the
hard-axis struts, while red ellipses mark the easy-axis struts, which act as energy
“barriers” under the influence of an external magnetic field oriented parallel to them.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

wave function. Finally, the formula for IPR in magnonic systems can
be expressed as:

_ _Jylmwrtav
(Jy Im@)2d V)2

where |m(r)| = (mx(r)mj‘c(r)+my(r)m;(r)+mz(r)m;(r))'/2 is the position-
dependent absolute value of the complex SW amplitude, and the in-
tegration is over the volume V of the single UC. An asterisk sign (*)
indicates a complex conjugate. For a completely delocalized magnetic
excitation, where the amplitude of the SW mode is uniform across
the entire volume of the ferromagnet, the IPR yields the value of 1.
Conversely, in the case of extreme localization, where the SW mode
is concentrated at a single point within the volume, resembling the
behavior of a Dirac delta function, the IPR approaches infinity.

Fig. 7(a) provides a quantitative validation of the SW mode lo-
calization behavior inferred from the results depicted in Figs. 3 and
6. The IPRs of the scaffold structures (dashed lines) show that the
localization of SWs occurs at field angles of 0, 90, and 180 deg. From

IPR 2)
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Fig. 6, we can see that this corresponds to the top-bottom-top cycle of
surface localization in asymmetric scaffolds, and the center-surfaces-
center magnetization distribution in symmetric scaffolds, respectively.
The lower IPR values for the symmetric structure (red dashed line) are
due to the fact that the SW modes are generally distributed over a larger
volume than in the asymmetric case (green dashed line). This result
further underscores the conclusions of Section 3.2, i.e., the crucial
influence of structural symmetry on the magnetization switching within
the scaffolds, making the localization on opposite surfaces energetically
preferential for the asymmetric structure after a 90-deg field rotation.

The angular dependence of IPR for 3-UCs gyroids [blue solid line
in Fig. 7(a)] qualitatively mirrors (with a 45 deg shift) the behavior
seen in the asymmetric scaffold structure. However, an IPR maximum is
observed at field rotation angles around 55 deg and, due to symmetry,
around 125 deg. Conversely, the IPR values decrease at angles of 0,
90, and 180 deg. In the case of 3.25-UCs gyroids (orange solid line), the
situation changes significantly — here we have a clear weakening of the
IPR (due to both side localization) and a shift of the IPR peaks to the
first quarter of the bias field angle, and a flattening of the IPR to a low
value between 90 and 180 deg of the bias field orientation. Thus, the
two gyroidal structures, which differ in height by only 0.25 UC, show
significant differences in these dependencies. This indicates the effect
of the surface cut and the breaking of the 90-deg symmetry, suggesting
the influence of structural chirality.

The strong influence of the surface cut on the localization phe-
nomenon can be understood by looking carefully at the cuts in Fig. 3 -
the top and bottom surface struts have their specific effective directions
relative to the external magnetic field. However, the part primarily
responsible for the localization is not the outermost surface, but its
inner junction towards the center [can be seen well in the upper
left corner image in Fig. 3, and the first illustration in Fig. 4(c)], as
indicated by the slightly higher SW amplitude. This is due to a larger
demagnetizing field as will be discussed later in this paper. Thus, in a
system composed of 3 UCs, the line effectively normal to this part of
the structure is directed about 125 deg from the x-axis in the upper
layer and about 55 deg in the lower layer. For a 3.25 UC high gyroid,
the normal to the SW localization inducing part is rotated about 35 and
55 deg from the x-axis for the top and bottom layers, respectively. As
can be seen from the plots in Fig. 7(a), this coincides well with the IPR
peaks. We can therefore correlate the localization dependence with the
demagnetizing field and chirality of the gyroidal structure. It is also
worth noting that the effect of SW localization is always present in
gyroids — it is only its dependence on the direction of the bias magnetic
field that changes (more examples in the Supplementary Information,
Sec. II, Figs. S4 and S5).

In Fig. 7(b) we see the resonant frequency of SW cyclically decreas-
ing and increasing with the field rotation, which is clearly associated
with the localization peaks in all cases. The maximum frequency varia-
tion is approximately 3.5 GHz for scaffolds and 1 GHz for gyroids. There
is a one-to-one correspondence between the maximum (minimum) of
the IPR and the minimum (maximum) of the FMR frequency for the
scaffold structure. Consequently, the frequency dependence is a smooth
sine-like function characteristic of the two-axis easy anisotropy system.
However, a slight asymmetry is observed for the gyroid (solid orange
line) between the orthogonal directions of the magnetic field, again
indicating that the chirality of the structure may play a role. Thus, the
fourfold symmetry seen in the FMR spectra is also present in the IPR
dependence on field orientation for the scaffold structures, but it is lost
in gyroids. The drop in the mode frequency with increasing IPR can be
understood as an influence of the static demagnetizing field resulting
in the accumulation of dynamic magnetization in smaller regions.

3.4. Demagnetizing field effect

Common to woodpile-like systems is that the lowest frequency
mode is always localized in the nanorods oriented perpendicular to the
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external magnetic field. This is a result of the static demagnetizing field.
To better understand this effect, we take the smallest building block of
the scaffold structure, which is a single infinitely long nanorod [52].
When the field is parallel to it, the demagnetizing field is not generated,
resulting in a high FMR frequency of 22.41 GHz [53]. On the other
hand, the external field perpendicular to the rod produces a strong
demagnetizing field, resulting in a reduction of the effective magnetic
field and lowering the FMR frequency of a single rod to 8.94 GHz. The
field rotated by 45 deg to the rod produces a moderate demagnetizing
field so that the FMR frequency reaches 16.00 GHz. This behavior
is effectively transferred to the scaffold structure, shown in Fig. 6.
For 0 and 90 deg, the FMR mode is localized in the levels with rods
perpendicular to the external field (9.79 and 9.58 GHz). For 45 and
135 deg configurations (13.35 GHz), only the vertical bars remain
perpendicular to the field, and therefore they are the parts with the
strongest amplitude of the FMR mode.

As shown in Fig. 4(c), both gyroids and scaffold structures are
built from a vertically alternating distribution of bonds. This leads
to an analogous dependence of the static demagnetizing field on the
external field rotation as for the single nanorod described above. If the
field is effectively parallel to the gyroid struts (and at the same time
perpendicular for adjacent ones), the local demagnetizing field will be
alternately weaker and stronger, creating the potential wells in which
the FMR modes are localized. Although perfect alignment is impossible
in gyroids due to the lack of straight rods (see Fig. 1), we observe
analogous properties of the magnetization distribution as in the scaffold
nanostructures.

When discussing the demagnetizing field, we cannot overlook the
stray field generated by the nanorods. As an example, let us take the
symmetric scaffold structure for the field applied along the x-axis, as
depicted in Fig. 6(a). In this case, the rods aligned with the y-axis (with
the largest mode amplitude) produce a stray field in the neighboring
levels of parallel nanorods, in the direction opposite to the external
field. Levels in the center of the structure have two close parallel
neighbors compared to one for the surface level, so the stray field is
stronger in the center. Since the stray field enhances the effect of the
demagnetizing field, the effective field in the center is the smallest,
resulting in the lower local FMR frequency and, hence, the largest
amplitude. The same reasoning can be applied to the 45 and 135 deg
cases. However, the stray field cannot explain the strong surface local-
ization that is present for the 0O-deg field in the asymmetric structure
and for the 90-deg field in both structures. This is further confirmed

in Fig. 8(c), which shows the UC-averaged internal magnetostatic field
Hg (including the demagnetization as well as a stray field) along the
z-axis for the asymmetric scaffold structure for 0, 45, and 90 deg field
orientation. It is clear that the depths in the magnetostatic field are
located at the nanorods, which are perpendicular to the bias field at
0 and 90 deg, but their depth is almost the same. Qualitatively similar
dependencies of the average magnetostatic field are found in the gyroid
[Fig. 8(a,b)]. However, here the field variations are smooth due to
the complex geometry and different orientations of the struts. Thus,
the inhomogeneity of the internal magnetostatic field determines the
type of struts of the FMR mode localization, but does not justify the
surface or bulk localization of the SW mode in dependence on the bias
field orientation. For more information on the effect of the gyroidal
filling factor and its height on localization, see the Supplementary
Information, Sec. II.

The results for both scaffold and gyroid structures not only under-
score the intricate interplay between geometry, magnetic field orien-
tation, and magnetostatic fields in these advanced magnonic materials
but also point to the important role of other interactions in enabling
the tunable localization of SW modes. The mode analysis during the
design of a woodpile-like structure suitable to reproduce this effect
(Supplementary Information, Fig. S6) showed the necessity of its verti-
cal continuity, which led us to conclude that the surface localization
in 3D nanostructures is not related to the dynamic stray field, but
rather to the exchange interaction. The following section and simula-
tions confirm that exchange-related effects are critical in driving this
behavior.

3.5. Exchange interaction and vertical period impact in scaffold structure

Micromagnetic simulations investigating the variation of the verti-
cal distance between neighboring nanorods, d, in asymmetric scaffold
structures, as shown in Fig. 9, support our interpretation of the influ-
ence of exchange interactions on the observed effects. This analysis
focuses on the amplitude distribution of FMR mode and corresponding
IPR values as a function of the separation between adjacent perpen-
dicular nanorods. Fig. 9(a) shows a pronounced IPR value for 0 deg
(blue line) within the 5-45 nm range of d, with the maximum IPR »~
6 at 23 nm, signifying the FMR mode localization on the surface
nanorod (see the modes (1) and (2)). Beyond this optimal distance, the
magnetization shifts from a surface localized state to the bulk (mode
(3)), saturating IPR value at about 2.5. The bulk mode concentration
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(a) 1e5 “4(xHe)=—0deg —-45deg =90 deg ---135deg

Fig. 8. Plots of the internal magnetostatic field Hg (including demagnetizing and stray fields, see Methods 6.1) parallel to the bias field H,,, averaged over the UC and projected
here on the z-axis (along its height, Hg(z) =1/S [¢Hy(x, y, z)dxdy). The different colors correspond to the average distribution of Hg for different directions of the static magnetic
field H,, relative to the x-axis. Panel (a) shows the demagnetizing field in the 3-UCs gyroid for the H,,, field directed at 0 and 90 deg (the corresponding projection of the
structure can be seen in the background). In (b) we see the analogous results for angles of 45 and 135 deg, along with the corresponding projection of the gyroid. (c) The Hg of
the asymmetric scaffold structure, for an external magnetic field directed at angles of 0, 45 and 90 deg (background structure projection for normal along the x-axis).
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Fig. 9. The ferromagnetic response of the scaffold nanosystem as a function of the distance (d) between adjacent nanorods. Panel (a) presents the IPR against d under two
conditions: with the magnetic field aligned along the x-axis (depicted in blue) and with the field rotated by 45 deg within the plane (shown in magenta). The critical points
highlighted on this curve correspond to specific distributions of the dynamic magnetization component m_ of the FMR modes within the analyzed nanostructures. These key spots
are marked by numbers, with visualizations of the modes for the 45-deg field configuration provided in (b). Panel (c) illustrates how the FMR frequency varies with d for both
symmetric and asymmetric one-unit cell high scaffolds, for H,,, parallel to the x-axis. It includes depictions of the modes at a significant juncture — where the frequencies of both
configurations converge at d =41 nm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

remains in nanorods, which are perpendicular to the field, reflecting field oriented 45 deg from the x-axis [indicated by the magenta curve in
the inherent inability of the structure to adopt a fully delocalized Fig. 9(a)], the response is monotonic, increasing IPR from 1 at d = 5 nm
configuration across its volume (mode (4)). For simulations with the up to 2.1 at d = 80 nm. This change in IPR is associated with the change
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Fig. 10. Plot of IPR variation within the range indicative of surface localization
in scaffold structures (asymmetric, H,, along x-axis), as a function of the nanorod
separation d, for different values of the exchange constant A,,.

in the SW amplitude distribution from uniform at d = 5 nm (mode (5))
to the bulk with amplitude in the nanorod oriented along the z-axis
(mode (8)).

In both cases, 0 and 45 deg, the amplitude distribution at d > 45 nm
corresponds to the HL'I profiles [see Fig. 8(c)], i.e., the maximum of
the SW amplitude is concentrated in the regions with the largest Hg.
The proximity between xy-plane-oriented nanorods at d < 45 nm
narrows these potential wells for SW confinement, increasing their
frequency and the leakage of the amplitude into neighboring regions,
especially in the case of shallow wells of Hg, i.e., at 45 deg where
well depth is less than 50 kA/m [Fig. 8(c)]. In the case of O deg,
the potential wells are deep (above 250 kA/m), and the increase in
frequency is associated with the transfer of the SW amplitude to the
surface, which has a nanorod perpendicular to Hg,, since it provides
more suitable conditions for the FMR mode than the bulk cells. This is
because in a bulk part, each field-orthogonal rod is flanked by two field-
parallel “pinning” neighbors, whereas surface nanorods are influenced
by only one such neighbor. Thus, this phenomenon can be attributed
to the exchange interactions that make the frequency of SWs and their
localization dependent on the magnetization pinning at the boundaries:
the demagnetizing field wells or surfaces. Consequently, at 0 deg and
d < 45 nm the only one-sided pinning of the SW amplitude in the
surface field-orthogonal nanorod provides the suitable conditions for
lowering the frequency of the surface-localized SW [modes (1) and
(2) in Fig. 9(a)]. This effect is similar to SW surface localization and
SW quantization in thin ferromagnetic films presented in Refs. [54-
56]. However, in these works the pinning/unpinning is introduced by
surface anisotropy at the surface of the atomic lattice of spins, resulting
in bulk/surface SW formation.

Fig. 9(c) illustrates how increasing d influences FMR mode fre-
quencies in both symmetric and asymmetric, 3 and 2 level scaffolds
for a bias magnetic field parallel to the x-axis (0 deg). The analy-
sis of a single field-perpendicular rod with one magnetization-fixing
rod oriented parallel to the field for the asymmetric case, and two
for the symmetric case, excludes the influence of stray magnetostatic
field interactions from neighboring field-perpendicular nanorods. This
allows an isolated analysis of the effect of the proximity of the adjacent
rods. In both configurations, the FMR mode is primarily concentrated
in the nanorod oriented perpendicular to the field. In the symmetric
structure, it occurs in the bulk, while in the asymmetric structure, it is
localized at the surface. Notably, the frequencies of the FMR in both
configurations converge at d = 41 nm, with the lowest frequency for
surface localization at d < 41 nm and bulk at d > 41 nm. This suggests
that the spatial separation along the z-axis between rods reaches a
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threshold at ¢ = 41 nm, beyond which exchange energy no longer
dominates the dynamic magnetization distribution. This observation
aligns with Fig. 9(a) for O deg field orientation, where the scaffold
structure’s localization similarly diminishes around 45 nm, marking the
shift of localization from surface to bulk rods, with minor discrepancy
in d value.

To further confirm that the surface localization in scaffolds within
a small d range is an effect of exchange interaction, we conducted
additional simulations varying the exchange constant (A.,), and plot-
ting IPR(d). The results for asymmetric scaffold structure at 0 deg are
depicted in Fig. 10. There is a pronounced variation in the IPR values,
illustrating ultimately the significant impact of exchange interactions
on the localization phenomena. Specifically, at A, = 4 pJ/m, the
IPR profile appears weaker and irregular, indicating subdued surface
localization effects. In contrast, at A, = 10 pJ/m, there emerges a
distinct range (¢ < 35 nm), where surface localization is enhanced
[max(IPR) ~ 6], demonstrating a clear and strong SW localization
effect. The exchange dominance effects on the surface localization of
the FMR mode shown above for the scaffold structure can be related to
the gyroid structure and the surface localization observed in Fig. 3, but
due to different structures and smooth demagnetizing field variation, it
needs additional analysis.

3.6. Effect of exchange interaction on surface localization in gyroids

In scaffolds, we can directly manipulate the structural parameter
(d), and its relation to A.,. In gyroids, we can use the filling factor ¢
(see the Supplementary Information, Sec. II.A), but by changing it we
collectively affect the entire geometry and the nature of all interactions
in it, including magnetostatics, shape anisotropy, and the ratio of the
gyroid linear dimensions to the exchange length. In particular, the
flattening of the demagnetizing field with increasing ¢ correlates with
decreasing IPR and decreasing modulation of the FMR frequency (see
Fig. S2 in the Supplementary Information). Thus, in this section, we
analyze the gyroid structure with 3 UCs and keep the filling factor at
¢ = 10% (parameters as in Section 3.1).

In Fig. 11, the localization effect is shown in the form of one-
dimensional projections of the z-component of the dynamic magnetiza-
tion along the z-axis, averaged over the UC in the xy-plane. The results
of the gyroid [Fig. 11(a)] are juxtaposed with those of the scaffold
[Fig. 11(b)] to highlight the differences and similarities of the exchange
contribution to the localization effect of the studied SW modes.

In Fig. 11(b) we see the magnetization curves (m,) for an asymmet-
ric scaffold structure with neighboring rods at d = 25 nm. There is a
strong dependence of the surface localization on the exchange constant
— the transition from the bulk mode for small A, (< 5 pJ/m) to
the surface mode for A., > 8 pJ/m. We see a similar, though smaller
effect of A, on the surface localization of the FMR mode in the gyroid.
For A, = 2 pJ/m the SW amplitude is almost equal in the first two
perpendicular rods, i.e., a clear shift of the dynamic magnetization
towards the center of the layer can be observed [blue line in Fig. 11(a)].
For larger values of the exchange constant, the surface localization is
preserved, and the smoothing of the (m,) curves along the z-direction
with increasing A., is observed. A larger exchange ensures that the
dynamic magnetization is not only concentrated in bars perpendicular
to the field (where the demagnetization is largest), but spreads more
homogeneously to neighboring struts, analogously to scaffold structures
(for sufficiently small d and large exchange length). A more pronounced
effect of the transition from the bulk to the surface state as a function
of the exchange constant occurs for a gyroid with a filling of ¢ =
20%, for which results can be found in Fig. S3 in the Supplementary
Information. In addition, we performed an analysis of the effect of the
height of the gyroidal layers (independent of the cut point) on SW
localization, which further confirms the influence of exchange energy
on the presence of surface localization. The results are shown in the
Supplementary Information, Figs. S4 and S5.
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Fig. 11. Plots of the distribution of the dynamic magnetization component m_, averaged and projected on the z-axis, for the gyroid structure with 3 UCs (a) and the asymmetric
scaffold structure (b). For comparison, the case with the field at an angle of 45 deg from the x-axis was used for the gyroid, and for scaffold along the x-axis (0 deg) — both cases
show clear surface localization at large A., (see Figs. 3 and 6). The colors represent different values of the exchange constant A, whose legend is common to both plots.

Based on the analysis of the localization of SWs as a function
of the exchange constant in the studied gyroid structures and their
comparison with the scaffolds along the z-direction, we can conclude
that it has a different, though fundamental, influence in both cases. In
gyroids, the transition from the bulk to the surface state is determined
only for very small values of A., (a relationship strongly related to
the filling factor). A stronger exchange determines the uniformity of
magnetization within neighboring nanowires. Woodpile-like scaffolds
show a more “stepped” and monotonic A, -related transition from bulk
to surface localization of SWs.

4. Discussion

In this study, we explored surface localization of the FMR mode
phenomena within thin films made of gyroid and woodpile-like scaffold
three-dimensional ferromagnetic nanostructures, focusing on the effects
of the in-plane external magnetic field rotation. Using micromagnetic
simulations, we have demonstrated a novel surface localization of
SWs that differs from other known wave localization phenomena.
Unlike Damon-Eshbach localization, which requires SW propagation,
or Shockley and Tamm surface states and topologically protected edge
modes, which rely on a Bragg bandgap, this newly observed surface
localization does not satisfy these requirements. It also differs from
edge-localized magnetostatic modes that occur in the demagnetization
wells oriented perpendicular to the surface. Instead, we found that
the surface localization in considered 3D structures is a cooperative
effect of the magnetostatic (demagnetizing and stray) in-plane field
and exchange interactions. The former creates potential wells in the
nanorods (gyroid struts) perpendicular to the bias magnetic field, the
latter determines the frequency in the well when its width is compara-
ble to the exchange length. As a result, for some bias field orientations
and surface cuts the SW localized at the surface UC has only one-
sided pinning, which lowers its energy, making it a low-frequency
surface-localized FMR mode. Thus, this research highlighted the critical
influence of the static demagnetizing fields and the exchange energy in
shaping the SW amplitude distribution in the ferromagnetic response
of such nanostructures, thereby contributing to our understanding of
the magnonic behavior in 3D structures. Furthermore, the intricate
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relationship between the magnetic field orientation and the geometry
of the structures was revealed, i.e., the surface configuration seemed to
strongly influence the SW amplitude concentration along the height of
the thin film. Nevertheless, the localization for a given field direction
persists over different surface states, demonstrating its universal nature.
Such selective localization of the FMR mode introduces a novel
mechanism enabling reconfigurable functionalities. This reveals the
potential for enhancing experimental measurements of SWs in three-
dimensional structures through localized FMR modes, among others,
in the established optical techniques like Brillouin light scattering
(BLS) [57] or magneto-optical Kerr effect (MOKE) microscopy [58].

5. Summary

In summary, this research presents a comprehensive investigation
of SW dynamics in 3D ferromagnetic nanostructures, shifting the focus
from planar systems to complex gyroidal and scaffold-like designs. We
demonstrate and analyze a novel type of SW localization using exten-
sive micromagnetic simulations and show how external factors, such
as magnetic field orientation, can control the intensity, frequency, and
amplitude distribution of localized FMR modes. The universal nature of
this surface localization across different structures and configurations,
offers significant potential for advancing 3D magnonics, e.g., through
improved sensitivity in probing SW dynamics and controllable vertical
energy transfer, providing deeper insight into the magnetic properties
of complex structures. The knowledge gained from this work may also
open new avenues for device design that exploit the properties of gy-
roids, woodpile-like scaffolds, or other 3D nanoarchitectures to advance
the development of next-generation 3D magnonic technologies.

6. Methods
6.1. Micromagnetic simulations
To calculate SW modes within the 3D nanostructures, we employed

the COMSOL Multiphysics software. It harnesses the finite-element
method (FEM) to provide solutions to complex coupled systems of
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partial differential equations. The SW dynamic is framed with the LL

equation:
oM
7 —y oM X Hege 3)

where M is the magnetization vector, y denotes the gyromagnetic
ratio, y is the vacuum permeability, and H is the effective magnetic
field. The nonuniformity in material properties (e.g., variations in M,
magnetic anisotropy, or exchange stiffness) is one of the ways that in-
troduces a spatially dependent H that, in turn, affects the localization
and dispersion properties of SWs. Here, it merges the externally applied
field, H,,, with the magnetostatic demagnetizing field, Hy, and the
Heisenberg exchange field, H,,:

Hegr = Heye + Hg + Hegen- 4

The demagnetizing field is critical for SW dynamics in ferromagnetic
materials, especially when it is patterned. Governed by Ampeére’s law,
this field is derived from the gradient of the magnetic scalar potential,

H; = -VU,. Within the magnetic body, this relationship further
evolves in:
ViU, =V M, (5)

while outside it, V2U,, = 0. In performed COMSOL implementation,
we tackled the eigenproblem derived from Egs. (3), (4), and (5). By
presuming full magnetization saturation via the bias magnetic field and
adopting a linear approximation, we could dissect the magnetization
vector into its static and dynamic (time ¢ and position r dependent)
components M(r, 1) = M i+8M(r,) ¥ (6M L i), neglecting all nonlinear
terms in the dynamic magnetization sM(r,?). Here, we assume that
the static component of the magnetization is equal to the saturation
magnetization, M. This methodology is further explained in Refs. [59,
60].

Using PBCs on the UC boundaries along the x- and y-axes, we model
in COMSOL an infinite in-plane gyroidal and scaffold-structured films
(see Figs. 1 and 4). The PBCs are defined on both faces to maintain
the same values for the magnetization components and magnetic scalar
potential. For planes parallel to the surfaces of the films, we imple-
mented Dirichlet boundary conditions aiming to suppress the scalar
magnetic potential, U, = 0, at the boundaries of the computational
cell. To ensure the simulation’s physical accuracy and convergence, it is
essential to position these conditions sufficiently far from the specimen.
In our simulations, the computational cell’s height was set to be 40
times the gyroid/scaffold layer’s height.

Throughout the simulations, consistent mesh quality was main-
tained across the different gyroid and scaffold models. The quality of
the tetrahedral discretization mesh, characterized by the volume-to-
length parameter, remained stable at an average value of about 0.7. It
is based on a ratio of element edge lengths to element volume. This
resulted in a scalable mesh of about 55,000 elements for the single
cubic ¢ = 10%-gyroid model [as in Fig. 1(a)], and about 85,000 for
a 3-level scaffold structure [Fig. 4(a)].

Calculations of the FMR spectra (Figs. 2 and 5) of the studied struc-
tures were obtained by simulations in the frequency domain, sweeping
the spatially uniform, dynamic microwave field in a given range with a
step of 50 MHz. Its magnitude was set to pyhqy, = 0.005ugHy = 2.5 mT
and was polarized along the y-axis. To determine the macroscopic
measure of the global magnetization intensity, the complex dynamic
component m, (perpendicular to both the static and dynamic fields) was
multiplied by its conjugated value m}, and integrated over the entire
volume of the ferromagnet:

I=/mzm’z‘dV.
14

The plots for each structure have been normalized to the maximum
of one of the two spectra (the one with higher maximum intensity),
preserving their relative ratio.

(6)

11

Acta Materialia 283 (2025) 120499
CRediT authorship contribution statement

Mateusz Golebiewski: Writing — original draft, Visualization, Soft-
ware, Methodology, Investigation, Funding acquisition, Formal analy-
sis, Data curation, Conceptualization. Krzysztof Szulc: Writing — re-
view & editing, Validation, Methodology, Investigation, Formal analy-
sis. Maciej Krawczyk: Writing — review & editing, Validation, Super-
vision, Resources, Project administration, Funding acquisition, Concep-
tualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research leading to these results was funded by the National
Science Centre of Poland, Projects No. UMO-2020/39/1/ST3/02413
and No. UMO-2023/49/N/ST3/03032.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.actamat.2024.120499.

Data availability

The data underlying this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.13141840.

References

[1] B. Dieny, LL. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff,
W. Raberg, U. Ebels, S.0. Demokritov, J. Akerman, A. Deac, P. Pirro, C.
Adelmann, A. Anane, A.V. Chumak, A. Hirohata, S. Mangin, S.O. Valenzuela,
M.C. Onbasli, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell,
O. Chubykalo-Fesenko, P. Bortolotti, Opportunities and challenges for spintronics
in the microelectronics industry, Nat. Electron. 3 (8) (2020) 446-459.

P. Pirro, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Advances in coherent
magnonics, Nat. Rev. Mater. 6 (12) (2021) 1114-1135.

A.V. Chumak, Magnon spintronics: Fundamentals of magnon-based computing,
in: Spintronics Handbook, Second Edition: Spin Transport and Magnetism, second
ed., CRC Press, 2019, p. 56.

A. Barman, G. Gubbiotti, S. Ladak, A.O. Adeyeye, M. Krawczyk, J. Grife, C.
Adelmann, S. Cotofana, A. Naeemi, V.I. Vasyuchka, B. Hillebrands, S.A. Nikitov,
H. Yu, D. Grundler, A.V. Sadovnikov, A.A. Grachev, S.E. Sheshukova, J.-Y.
Duquesne, M. Marangolo, G. Csaba, W. Porod, V.E. Demidov, S. Urazhdin, S.O.
Demokritov, E. Albisetti, D. Petti, R. Bertacco, H. Schultheiss, V.V. Kruglyak,
V.D. Poimanov, S. Sahoo, J. Sinha, H. Yang, M. Miinzenberg, T. Moriyama, S.
Mizukami, P. Landeros, R.A. Gallardo, G. Carlotti, J.-V. Kim, R.L. Stamps, R.E.
Camley, B. Rana, Y. Otani, W. Yu, T. Yu, G.E.W. Bauer, C. Back, G.S. Uhrig,
0.V. Dobrovolskiy, B. Budinska, H. Qin, S. van Dijken, A.V. Chumak, A. Khitun,
D.E. Nikonov, I.A. Young, B.W. Zingsem, M. Winklhofer, The 2021 magnonics
roadmap, J. Phys.: Condens. Matter. 33 (41) (2021) 413001.

A.V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A.O. Adeyeye, J.
Akcrman, F.G. Aliev, A. Anane, A. Awad, C.H. Back, A. Barman, G.E.W. Bauer,
M. Becherer, E.N. Beginin, V.A.S.V. Bittencourt, Y.M. Blanter, P. Bortolotti, I.
Boventer, D.A. Bozhko, S.A. Bunyaev, J.J. Carmiggelt, R.R. Cheenikundil, F.
Ciubotaru, S. Cotofana, G. Csaba, O.V. Dobrovolskiy, C. Dubs, M. Elyasi, K.G.
Fripp, H. Fulara, I.A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D.
Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R.
Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E.
Tacocca, M.B. Jungfleisch, G.N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M.
Klaui, O. Klein, J.W. Klos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk,
LN. Krivorotov, V.V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y.
Li, M. Lindner, R. Macédo, S. Mayr, G.A. Melkov, S. Mieszczak, Y. Nakamura,
H.T. Nembach, A.A. Nikitin, S.A. Nikitov, V. Novosad, J.A. Otélora, Y. Otani, A.
Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann,
F. Riente, O. Romero-Isart, A. Ross, A.V. Sadovnikov, A.R. Safin, E. Saitoh, G.
Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J.M. Shaw, D.

[2]

[3]

[4]

[5]



M. Golebiewski et al.

[6]

71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbanek, K. Usami, A.B. Ustinov,
T. van der Sar, S. van Dijken, V.I. Vasyuchka, R. Verba, S.V. Kusminskiy, Q.
Wang, M. Weides, M. Weiler, S. Wintz, S.P. Wolski, X. Zhang, Advances in
magnetics roadmap on spin-wave computing, IEEE Trans. Magn. 58 (6) (2022)
1-72.

G. Gubbiotti, Three-Dimensional Magnonics, first ed., Jenny Stanford Publishing,
New York, 2019.

R. Hertel, R. Cheenikundil, Defect-sensitive High-frequency Modes in a Three-
Dimensional Artificial Magnetic Crystal, 2022, PREPRINT (Version 1) available
at Research Square https://doi.org/10.21203/rs.3.rs-846190/v1.

M. Krawczyk, D. Grundler, Review and prospects of magnonic crystals and
devices with reprogrammable band structure, J. Phys.: Condens. Matter. 26 (12)
(2014) 123202.

M. Krawczyk, H. Puszkarski, Plane-wave theory of three-dimensional magnonic
crystals, Phys. Rev. B 77 (2008) 054437.

M. Okuda, T. Schwarze, J.-C. Eloi, S.E.W. Jones, P.J. Heard, A. Sarua, E.
Ahmad, V.V. Kruglyak, D. Grundler, W. Schwarzacher, Top-down design of
magnonic crystals from bottom-up magnetic nanoparticles through protein
arrays, Nanotechnology 28 (15) (2017) 155301.

H. Kondo, Y. Akagi, H. Katsura, Three-dimensional topological magnon systems,
Phys. Rev. B 100 (2019) 144401.

C.-B. Hua, F. Xiao, Z.-R. Liu, J.-H. Sun, J.-H. Gao, C.-Z. Chen, Q. Tong, B. Zhou,
D.-H. Xu, Magnon corner states in twisted bilayer honeycomb magnets, Phys.
Rev. B 107 (2023) L020404.

P. Fischer, D. Sanz-Hernandez, R. Streubel, A. Fernidndez-Pacheco, Launching
a new dimension with 3D magnetic nanostructures, APL Mater. 8 (1) (2020)
010701.

D. Makarov, O.M. Volkov, A. Kikay, O.V. Pylypovskyi, B. Budinskd, O.V.
Dobrovolskiy, New dimension in magnetism and superconductivity: 3D and
curvilinear nanoarchitectures, Adv. Mater. 34 (3) (2022) 2101758.

R. Cheenikundil, J. Bauer, M. Goharyan, M. D’Aquino, R. Hertel, High-frequency
modes in a magnetic buckyball nanoarchitecture, APL Mater. 10 (8) (2022)
81106.

A. May, M. Saccone, A. van den Berg, J. Askey, M. Hunt, S. Ladak, Magnetic
charge propagation upon a 3D artificial spin-ice, Nature Commun. 12 (1) (2021)
3217.

M. Saccone, A. Van den Berg, E. Harding, S. Singh, S.R. Giblin, F. Flicker, S.
Ladak, Exploring the phase diagram of 3D artificial spin-ice, Commun. Phys. 6
(1) (2023) 217.

J. Llandro, D.M. Love, A. Kovacs, J. Caron, K.N. Vyas, A. Kdkay, R. Salikhov,
K. Lenz, J. Fassbender, M.R.J. Scherer, C. Cimorra, U. Steiner, C.H.W. Barnes,
R.E. Dunin-Borkowski, S. Fukami, H. Ohno, Visualizing magnetic structure in 3D
nanoscale Ni-Fe gyroid networks, Nano Lett. 20 (5) (2020) 3642-3650.

A. Fernandez-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, R.P.
Cowburn, Three-dimensional nanomagnetism, Nature Commun. 8 (1) (2017)
136-142.

C. Donnelly, A. Hierro-Rodriguez, C. Abert, K. Witte, L. Skoric, D. Sanz-
Hernandez, S. Finizio, F. Meng, S. McVitie, J. Raabe, D. Suess, R. Cowburn,
A. Fernandez-Pacheco, Complex free-space magnetic field textures induced by
three-dimensional magnetic nanostructures, Nat. Nanotechnol. 17 (2) (2022)
136-142.

M. Hunt, M. Taverne, J. Askey, A. May, A. Van Den Berg, Y.L.D. Ho, J. Rarity,
S. Ladak, Harnessing multi-photon absorption to produce three-dimensional
magnetic structures at the nanoscale, Materials 13 (3) (2020) 761.

A. van den Berg, M. Caruel, M. Hunt, S. Ladak, Combining two-photon lithog-
raphy with laser ablation of sacrificial layers: A route to isolated 3D magnetic
nanostructures, Nano Res. 16 (1) (2023) 1441-1447.

C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures
manufactured using selective laser melting, Int. J. Mach. Tools Manuf. 62 (2012)
32-38.

A. Yéanez, A. Herrera, O. Martel, D. Monopoli, H. Afonso, Compressive behaviour
of gyroid lattice structures for human cancellous bone implant applications,
Mater. Sci. Eng. C 68 (2016) 445-448.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schroder-Turk, M. Gu,
Miniature chiral beamsplitter based on gyroid photonic crystals, Nat. Photon. 7
(10) (2013) 801-805.

H. Guo, A.J.M. Deenen, M. Xu, M. Hamdi, D. Grundler, Realization and control of
bulk and surface modes in 3D nanomagnonic networks by additive manufacturing
of ferromagnets, Adv. Mater. 35 (39) (2023) 2303292.

M. Saba, M. Thiel, M.D. Turner, S.T. Hyde, M. Gu, K. Grosse-Brauckmann, D.N.
Neshev, K. Mecke, G.E. Schroder-Turk, Circular dichroism in biological photonic
crystals and cubic chiral nets, Phys. Rev. Lett. 106 (2011) 103902.

W. Flavell, A. Neophytou, A. Demetriadou, T. Albrecht, D. Chakrabarti, Pro-
grammed self-assembly of single colloidal gyroids for chiral photonic crystals,
Adv. Mater. 35 (23) (2023) 2211197.

S. Peng, R. Zhang, V.H. Chen, E.T. Khabiboulline, P. Braun, H.A. Atwater, Three-
dimensional single gyroid photonic crystals with a mid-infrared bandgap, ACS
Photon. 3 (6) (2016) 1131-1137.

12

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Acta Materialia 283 (2025) 120499

A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections, Tech.
rep., NASA Electronics Research Center, Cambridge, 1970.

A.H. Schoen, Reflections concerning triply-periodic minimal surfaces, Interface
Focus 2 (5) (2012) 658-668.

G. Rosi, N. Auffray, C. Combescure, On the failure of classic elasticity in
predicting elastic wave propagation in gyroid lattices for very long wavelengths,
Symmetry (2020).

Dacorogna B., Introduction to the Calculus of Variations, third ed., Imperial
College Press, 2014.

J.A. Dolan, B.D. Wilts, S. Vignolini, J.J. Baumberg, U. Steiner, T.D. Wilkinson,
Optical properties of gyroid structured materials: From photonic crystals to
metamaterials, Adv. Opt. Mater. 3 (1) (2015) 12-32.

M. Wohlgemuth, N. Yufa, J. Hoffman, E.L. Thomas, Triply periodic bicontinuous
cubic microdomain morphologies by symmetries, Macromolecules 34 (17) (2001)
6083-6089.

L.V. Lich, D.T.H. Hue, D.T.H. Giang, N.H. Duc, T. Shimada, T. Kitamura,
V.H. Dinh, Formation and switching of chiral magnetic field textures in
three-dimensional gyroid nanostructures, Acta Mater. 249 (2023) 118802.

M. Golebiewski, R. Hertel, M. d’Aquino, V. Vasyuchka, M. Weiler, P. Pirro, M.
Krawczyk, S. Fukami, H. Ohno, J. Llandro, Collective spin-wave dynamics in
gyroid ferromagnetic nanostructures, ACS Appl. Mater. Interfaces 16 (17) (2024)
22177-22188.

R. Damon, J. Eshbach, Magnetostatic modes of a ferromagnet slab, J. Phys.
Chem. Solids 19 (3) (1961) 308-320.

J. Rychly, J.W. Klos, Spin wave surface states in 1D planar magnonic crystals,
J. Phys. D: Appl. Phys. 50 (16) (2017) 164004.

P.A. McClarty, Topological magnons: A review, Annu. Rev. Condens. Matter Phys.
13 (2022) 171-190.

F. Guo, L.M. Belova, R.D. McMichael, Spectroscopy and imaging of edge modes
in permalloy nanodisks, Phys. Rev. Lett. 110 (2013) 017601.

E. Beginin, A. Sadovnikov, V. Sakharov, A. Stognij, Y. Khivintsev, S. Nikitov,
Collective and localized modes in 3D magnonic crystals, J. Magn. Magn. Mater.
492 (2019) 165647.

K. Szulc, P. Graczyk, M. Mruczkiewicz, G. Gubbiotti, M. Krawczyk, Spin-wave
diode and circulator based on unidirectional coupling, Phys. Rev. Appl. 14 (2020)
034063.

A.A. Martyshkin, E.N. Beginin, A.V. Sadovnikov, Spin waves transport in 3D
magnonic waveguides, AIP Adv. 11 (3) (2021) 035024.

J.M. Coey, Magnetism and Magnetic Materials, Cambridge University Press,
2010.

M. Singh, J. Callaway, C.S. Wang, Calculation of g and g’ for iron and nickel,
Phys. Rev. B 14 (1976) 1214-1220.

M. Calixto, E. Romera, Inverse participation ratio and localization in topological
insulator phase transitions, J. Stat. Mech. Theory Exp. 2015 (6) (2015) P06029.
Y. He, S. Xia, D.G. Angelakis, D. Song, Z. Chen, D. Leykam, Persistent homology
analysis of a generalized Aubry-André-Harper model, Phys. Rev. B 106 (2022)
054210.

M. Berciu, R.N. Bhatt, Spin waves in disordered III-V diluted magnetic
semiconductors by a modified RPA approach, Phys. Rev. B 66 (2002) 085207.
A. Szallas, A. Jagannathan, Spin waves and local magnetizations on the Penrose
tiling, Phys. Rev. B 77 (2008) 104427.

S. Imagawa, K. Edagawa, K. Morita, T. Niino, Y. Kagawa, M. Notomi, Photonic
band-gap formation, light diffusion, and localization in photonic amorphous
diamond structures, Phys. Rev. B 82 (2010) 115116.

D.-X. Chen, J. Brug, R. Goldfarb, Demagnetizing factors for cylinders, IEEE Trans.
Magn. 27 (4) (1991) 3601-3619.

C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73
(1948) 155-161.

J.T. Yu, R.A. Turk, P.E. Wigen, Exchange-dominated surface spin waves in thin
yttrium-iron-garent films, Phys. Rev. B 11 (1975) 420-434.

H. Puszkarski, Theory of surface states in spin wave resonance, Prog. Surf. Sci.
9 (5) (1979) 191-247.

J. Levy, Surface and interface magnons: Magnetic structures near the surface,
Surf. Sci. Rep. 1 (2) (1981) 39-119.

T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, H. Schultheiss, Micro-
focused Brillouin light scattering: imaging spin waves at the nanoscale, Front.
Phys. 3 (2015).

K. Perzlmaier, G. Woltersdorf, C.H. Back, Observation of the propagation and
interference of spin waves in ferromagnetic thin films, Phys. Rev. B 77 (2008)
054425.

M. Mruczkiewicz, M. Krawczyk, V.K. Sakharov, Y.V. Khivintsev, Y.A. Filimonov,
S.A. Nikitov, Standing spin waves in magnonic crystals, J. Appl. Phys. 113 (9)
(2013) 093908.

J. Rychty, V.S. Tkachenko, J.W. Klos, A. Kuchko, M. Krawczyk, Spin wave modes
in a cylindrical nanowire in crossover dipolar-exchange regime, J. Phys. D: Appl.
Phys. 52 (7) (2018) 075003.



SUPPLEMENTARY MATERIAL
Magnetic field controlled surface localization
of ferromagnetic resonance modes in 3D nanostructures

Mateusz Golgbiewski,! Krzysztof Szulc,"»? and Maciej Krawczyk!

! Institute of Spintronics and Quantum Information,
Faculty of Physics and Astronomy, Adam Mickiewicz University,
Uniwersytetu Poznarskiego 2, 61-614 Poznarn, Poland
2 Institute of Molecular Physics, Polish Academy of Sciences,
M. Smoluchowskiego 17, 60-179 Poznar, Poland

I. SPECTRAL ANALYSIS OF THE SPIN-WAVE MODES IN GYROID AND SCAFFOLD STRUCTURES
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Figure S1. Visualization of higher intensity spin-wave (SW) modes in the investigated structures of gyroids [(a) — 3 unit cells
(UCs), (b) — 3.25 UCs| and scaffolds [(¢) — asymmetric, (d) — symmetric|]. Plots of mode excitation in the structures under
magnetic field applied along the z-axis (blue line) and at 45 deg to it in the zy-plane (orange line) are shown on each panel.

II. IMPACT OF OTHER MATERIAL PARAMETERS ON LOCALIZATION IN GYROIDS
A. Filling factor

As the filling factor increases, transitioning the structure towards a more homogeneous nickel layer, the effects
of localization and frequency modulation begin to decrease, as shown in Fig. S2. Consequently, the rotation of the
external magnetic field will no longer function as a significant modulator of mode localization in the denser structures.
This trend highlights the intricate interplay between structural geometry and magnetic properties, where the shape
of gyroids appears to favor the modulation of magnetic responses by field orientation adjustments.
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Figure S2. Variation in inverse participation ratio (IPR) (b) and ferromagnetic resonance (FMR) frequency (c) as a function of
the rotational angle of the external magnetic field within the planes of gyroid structures, composed of 6 UCs across the height.
The colors correspond to different filling factors ¢ of the structures, whose UCs are shown in (a).
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Figure S3. Distribution of the dynamic magnetization component m., averaged and projected on the z-axis, for the gyroid
structure with 3 UCs and ¢ = 20%. The case with the field at an angle of 45 deg from the z-axis was used to show a clear
surface localization. The colors represent different values of the exchange constant Acx.

B. Height

Another quantity that could have a significant impact on SW localization is the height of the nanostructures studied.
In this paper, we assumed a gyroid height of 3 and 3.25 UCs (150 and 162.5 nm, respectively); however, we also ran
simulations for other values — both smaller, to test the potential effect of surface modes interacting with each other,
and larger, where the modes are more isolated. The results of these additional simulations are shown for gyroids with
perpendicularly oriented surface struts — Fig. S4, and with their parallel orientation — Fig. S5.
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Figure S4. Analysis of the FMR mode localization of SWs for gyroid structures with perpendicular struts on the top and
bottom surfaces (a) and for different heights of the structures (b). The results in the form of IPR plots as a function of the
angle of rotation of the external magnetic field in the plane of the layers are presented in (c), and selected configurations of
the z-component of the magnetization distribution in the 2.5 UCs gyroids are shown in panel (d). The last plot in (e) shows
the changes in FMR mode frequencies, analogously as a function of Hext rotation for gyroids of different heights [blue line —
1.5 UCs (75 nm), orange line — 2.5 UCs (125 nm), green line — 6.5 UCs (325 nm)].
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Figure S5. Analysis of the FMR mode localization of SWs for gyroid structures with parallel struts on the top and bottom
surfaces (a) and for different heights of the structures (b). The results in the form of IPR plots as a function of the angle
of rotation of the external magnetic field (Hext) in the plane of the layers are presented in (c), and selected configurations of
the z-component of the magnetization distribution in the 3.25 UCs gyroids are shown in panel (d). The last plot in (e) shows
the changes in FMR mode frequencies, analogously as a function of Hext rotation for gyroids of different heights [blue line —
1.25 UCs (62.5 nm), orange line — 3.25 UCs (162.5 nm), green line — 6.25 UCs (312.5 nm)|
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Figure S6. Analysis of the FMR modes for different angles of the external magnetic field oriented in the plane of the layers
(0, 45 and 90 deg from the z-axis). Row (a) depicts the dynamic magnetization distribution in unconnected nanorods aligned
parallel to each other, showing no surface localization. In (b), unconnected nanorods are arranged perpendicular to adjacent
ones, also showing no surface localization. Row (c) presents a scaffold structure used in this study, in which perpendicular
nanorods are connected by an out-of-plane rod, revealing the presence of surface localization.
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Scientific perspectives

Building on the progress made during my Ph.D. research, I intend to continue to pursue innovative
projects in the field of magnonics. My previous work, including studies on the Talbot effect for
spin waves and the exploration of complex three-dimensional ferromagnetic nanostructures, has
provided a solid foundation for further investigations. Equipped with the necessary expertise and
in close collaboration with leading international research teams, I plan to carry out the research
projects outlined below.

Investigations of three-dimensional magnonic nanostructures

Gyroids. One of the most promising directions is the further exploration of gyroidal structures.
These intricate three-dimensional nanostructures are expected to exhibit unique spin-wave disper-
sion relations and remarkable anisotropic magnetoresistance effects. Such properties may enable
precise control of spin-wave propagation in three dimensions, opening the way to more advanced,
energy-efficient spintronic and beyond-CMOS logic devices. In the context of magnonic crystals,
gyroids could serve as the backbone for fully three-dimensional systems, where the geometry
inherently allows for versatile band structure engineering. Similar principles have been explored
in photonic crystals [176], highlighting how 3D periodic media can yield remarkable wave
manipulation capabilities. Translating these concepts to the spin-wave regime holds promise for
magnetic metamaterials with tunable microwave and communication functionalities.

Woodpiles. In addition to gyroids, I have initiated a col-
laboration with Prof. Dirk Grundler’s group from the Swiss
Federal Institute of Technology (EPFL) in Switzerland and
Dr. Kilian Lenz from the Helmholtz—Zentrum Dresden—
Rossendorf (HZDR) in Germany to study woodpile-like
nanostructures. These architectures — resembling stacks of
wooden logs (see Fig. 5.1) — are an exciting avenue for three-

dimensional magnonics, as recently highlighted in Advanced
Materials [177]. In these networks, submicron nanotubes

Figure 5.1 Schematic model of the
woodpile structure.

of ferromagnetic material are arranged in a periodic ‘wood-
pile’ fashion, allowing excitation of both bulk and surface
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spin-wave modes. To strengthen our collaboration, I completed a two-week internship at EPFL,
working closely with Prof. Grundler’s team.

Building on the initial demonstration in Ref. [177], we are currently investigating the resonant
response of these systems using a vector network analyzer (VNA-FMR) within a ring-shaped
microresonator while systematically varying the orientation of the static magnetic field. My goal
is to accurately reproduce these experimental conditions in micromagnetic simulations, allowing
a deeper understanding of the underlying spin-wave dynamics and resonance behavior. Despite
the complexity of the geometry and the associated computational challenges, preliminary results
indicate a strong agreement between the experimental data and my COMSOL simulations. This
research effort, which includes both experimental measurements and numerical computations,
aims to understand the collective magnetization dynamics in these systems and to uncover
innovative physical effects such as mode hybridization and field-tunable spin-wave confinement.

Buckyballs. To further extend my research into three-
dimensional magnonic networks, I have begun simulations of
so-called buckyball structures in collaboration with Dr. Sebas-
tian Gliga from the Paul Scherrer Institute (PSI) in Switzer-
land and Dr. Lenz. These nanostructures, analogous in shape
to the carbon Cg fullerene, consist of a spherical shell with
a network of ferromagnetic tubes forming pentagonal and
hexagonal facets (see Fig. 5.2). In the magnetic analog,
nanofabrication techniques recreate similarly curved archi-
tectures, enabling a closed 3D spin-wave network. My main

task in this project is to match the field-angle-dependent
FMR experimental measurements with micromagnetic sim- Figure 5.2 Schematic model of the
ulations. By clarifying how the measured resonances vary buckyball structure.

with field orientation, the goal is to unravel how the curvature

and topology within these spherical lattices can be exploited to engineer custom spin-wave modes
and resonant properties.

Research on antidot lattices

In parallel, I plan to extend my studies of ADLs, that I started in P5. As explained in Sec. 5.2.2,
these periodic arrays of nanoscale holes or ‘antidots’ within a magnetic film are known to
localize spin waves at their edges, serving as a compelling pathway for the generation of
higher-order harmonic emissions. By exploring geometric parameters, lattice periodicity, and
applied magnetic fields, I intend to tailor the band structure of spin waves to control nonlinear
phenomena. Such investigations may pave the way for fast and nanoscale spin-wave devices
capable of high-density information encoding.
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Crescent-shaped waveguides and diamond-like networks

I plan to further develop crescent-shaped waveguides, a topic
initiated in my Physical Review Applied publication P4. Ini-
tial results showed that the curved geometry of ferromag-
netic nanorods significantly affects mode localization and
magnetization dynamics. My next step is to construct and
study diamond-like networks formed by interconnecting the
crescent-shaped waveguides (see Fig. 5.3), as already proto-
typed at Cardiff University by Prof. Sam Ladak’s group [34].
These 3D diamond networks can exhibit coupling and frus-
tration at the vertices, potentially allowing reprogrammable

spin-wave spectra and band gap formation under different
field configurations [178]. By exploiting curvature-induced

anisotropies and frustration effects, I aim to explore reli- Figure 5.3 Schematic model of
the diamond-like lattice constructed

able spin-wave guiding pathways that could contribute to the )
from crescent-shaped wires.

development of next-generation magnonic circuits.

Magnonic neural networks based on self-
imaging (Talbot effect)

Finally, I intend to build on the concept of the spin-wave Talbot effect, introduced in my paper
(P3) in Advanced Electronic Materials to develop magnonic neural networks. The self-imaging
phenomenon of spin waves, in which periodic wavefronts re-emerge at specific propagation
distances, provides a way to generate repeatable interference patterns. This effect suggests
the possibility of an entirely new class of neural network architectures based on collective
interference states rather than on conventional transistor-based logic. A key aspect of such
architectures involves nonlinear activation functions, which are essential for modeling complex
relationships in high-dimensional data. The integration of spin-wave nonlinearities into these
systems could lead to enhanced computational capabilities and potentially to novel machine-
learning algorithms that exploit wave interference [179]. A strong indication of the potential of
this approach is the MANNGA project, funded by the Horizon Europe PathFinder Challenge, to
which I am contributing under the supervision of Prof. Pawet Gruszecki in collaboration with the
University of Exeter and Aalto University.






Summary

The collection of scientific studies presented in this thesis encapsulates the trajectory of my Ph.D.
research, showing a transition from relatively simple one-dimensional systems to increasingly
complex three-dimensional nanostructures. This journey reflects not only the evolution of my
own expertise, but also parallels the broader development of the field of magnonics, which is
increasingly focused on exploiting multidimensional structuring to achieve precise control over
spin-wave dynamics.

My work spans a range of structural dimensionalities, from periodic one-dimensional systems
(P1-P3, P6) to complex three-dimensional nanostructures (P7—-P9), illustrating how geometry
can be used to influence magnetization dynamics. While higher dimensionality offers more
design possibilities and opens up new physical phenomena, especially in the context of 3D
nanoarchitectures, it does not necessarily guarantee more promising or applicable outcomes.
In fact, the relatively simple 1D systems studied in P1-P3, P6 yielded particularly compelling
results. Their foundation in fundamental wave physics, combined with computational efficiency
and predictability, makes them highly relevant for practical implementation. This highlights
an important insight: both low- and high-dimensional systems have distinct advantages, and
progress in magnonics depends on exploiting the strengths of each.

Significant progress is also being made in P5, where research is moving from one-dimensional
arrays to fully two-dimensional antidot lattices. These more complex geometries introduce
additional degrees of freedom and enable new functionalities — most notably the generation
of short spin waves through nonlinear effects, including higher harmonic excitation. Such
capabilities position antidot lattices as a promising platform for the realization of magnonic
neural networks, offering an exciting avenue for future developments in wave-based information
processing and unconventional computing.

The crescent-shaped waveguide studied in P4 also serves as a bridge between two-dimensional
and fully three-dimensional magnonic systems. Although the geometry may seem unconven-
tional, its relevance is well established in experimental practice. Techniques such as two-photon
lithography combined with sputter deposition allow the fabrication of magnetic layers that
conform to curved scaffolds, naturally producing crescent-shaped cross sections — much like
snow accumulating along a curved railing. Beyond their experimental feasibility, these nontrivial
geometries introduce novel physical effects in magnonics, as demonstrated in P4, and provide
compelling motivation for further exploration in both theoretical and applied contexts.
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P6 provides experimental verification of the Talbot effect for spin waves, previously explored
in the theoretical studies of P1-P3. This validation not only reinforces the credibility of the
earlier simulations, but also underscores the practical applicability of the effect in real magnonic
systems, highlighting its potential for implementation in future wave-based technologies.

Finally, the studies of three-dimensional nanostructures presented in P7-P9 represent the
most complex and ambitious investigations within this thesis. These works demonstrate the
unique potential of 3D magnonic systems, revealing phenomena such as dynamic spin-wave
localization and crystallography-dependent tunable magnetization dynamics. Beyond these core
findings, the research also points to several promising directions for future exploration, including
magnetoresistance effects.

As emphasized throughout this dissertation, 3D magnonics remains a relatively young field
— but one with extraordinary potential. Its rapid development is being driven by advances
in fabrication techniques such as atomic layer deposition, two-photon lithography, and self-
assembled block copolymer templating, as well as increasingly powerful computational tools
for modeling geometrically and magnetically complex systems. This research contributes to
the growth of the field by addressing critical challenges related to dimensionality, structural
complexity, and their influence on spin-wave behavior, helping to lay the groundwork for future
innovations in magnonic technology.

Bringing together a wide range of topics within the field of magnonics, this thesis provides
a comprehensive investigation into the control of spin waves in nanostructured ferromagnetic
materials. Spanning the theoretical foundations of magnetism, advanced numerical modeling,
and experimental validation (enabled by international collaborations), the work demonstrates
how spin waves — known for their energy efficiency and wave-based nature — can be harnessed in
multidimensional systems to realize novel functionalities and device concepts.

The research underscores the growing importance of magnons in modern science and tech-
nology, particularly in light of the increasing demand for low-power alternatives to conventional
electronics. In this context, the work contributes to the broader vision of wave-based computing
by systematically investigating how structured magnetic media — from simple one-dimensional
periodic systems to complex three-dimensional nanoarchitectures — can be designed to tailor
spin-wave dynamics.

One of the central approaches in this thesis is the use of advanced numerical methods, which
have become a key tool in modern research on magnetism and magnonics — especially where
the complexity of real systems makes analytical solutions impractical. Much attention has been
paid to the theoretical foundations and practical implementation of the computational techniques,
in particular the finite difference and finite element methods, which form the backbone of my
micromagnetic simulations. The finite difference method, as used in MuMax3, is particularly
suitable for systems with simple geometries and uniform meshing. Its computational efficiency
and numerical stability make it ideal for solving the Landau-Lifshitz—Gilbert equation in large-
scale simulations. This method proved particularly effective in my studies of one-dimensional
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periodic structures in thin films, where the simplicity of the physical geometry matched the
strengths of the finite difference method.

In contrast, finite element method, implemented in COMSOL Multiphysics and tetmag,
offers the versatility required to model complex geometries and nontrivial boundary conditions.
Its capacity for adaptive meshing and localized refinement enables accurate representation
of structures where subtle features strongly influence magnetization dynamics and spin-wave
behavior. Thus, the finite element method was essential for modeling the crescent-shaped
nanorods and fully three-dimensional magnonic networks studied in this thesis. By using both
methods strategically, this work demonstrates how appropriate numerical approaches can be
matched to specific system geometries to perform efficient and accurate simulations.

This thesis not only applies these numerical methods, but also provides a thorough analysis of
their implementation and adaptation to the specific challenges posed by structured ferromagnetic
materials. For example, I discuss the role of specific boundary conditions in ensuring physical
validity. I also explore the use of special time-stepping algorithms to deal with the stiffness and
nonlinearity inherent in magnetic systems. Modeling gyroids and scaffold-like networks required
not only computational efficiency but also a deep understanding of how to design and discretize
complex geometries to accurately capture their interactions with external magnetic fields. Using
the finite element method in COMSOL and tetmag, I explored both the role of demagnetizing
fields and exchange interactions in shaping spin-wave behavior.

By placing a strong emphasis on numerical methods, this thesis provides added value
compared to more conventional approaches in the field. First, it helps bridge the gap between
theory and experiment by allowing the study of systems that are beyond the scope of analytical
models. Second, it aims to underscore the important role of numerical simulations in advancing
the frontiers of magnetism research and unlocking the potential of complex, multidimensional
structures for future spin-wave technologies.

The significance of this research as a Ph.D. thesis lies in its distinctive balance of breadth
and depth. It addresses fundamental aspects of magnetization dynamics while also engaging
with practical challenges in modeling and experimental validation. By integrating numerical
simulations, theoretical analysis, and collaborative experimental efforts, the work establishes a
solid foundation that bridges basic scientific inquiry with technological relevance. More broadly,
this dissertation contributes to the evolving field of magnonics by providing a comprehensive
framework for understanding and controlling spin waves in structured, multidimensional mag-
netic environments. Through its results, methods, and conceptual insights, this work aims to
support future research at the intersection of magnetic media geometry design, magnetization
dynamics, numerical methods, and wave-based information processing. It is my hope that
these findings will foster continued innovation in functional magnonic systems and advance the
development of next-generation technologies.






Bibliography

[1]

(2]

(3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. A. Serga, A. V. Chumak, and B. Hillebrands, “YIG magnonics”, Journal of Physics D: Applied
Physics 43, 264002 (2010).

P. Yan and G. E. W. Bauer, “Magnonic domain wall heat conductance in ferromagnetic wires”,
Physical Review Letters 109, 087202 (2012).

J. Barker and G. E. Bauer, “Thermal spin dynamics of yttrium iron garnet”, Physical Review
Letters 117, 217201 (2016).

A. Khitun, M. Bao, and K. L. Wang, “Magnetic cellular nonlinear network with spin wave bus”,
in 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)
(2010), pp. 1-5.

A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, “Magnon spintronics”, Nature
Physics 11, 453-461 (2015).

V. V. Kruglyak, S. O. Demokritov, and D. Grundler, “Magnonics”, Journal of Physics D: Applied
Physics 43, 260301 (2010).

B. Lenk, H. Ulrichs, F. Garbs, and M. Miinzenberg, “The building blocks of magnonics”, Physics
Reports 507, 107-136 (2011).

T. Schneider, A. A. Serga, B. Leven, et al., “Realization of spin-wave logic gates”, Applied Physics
Letters 92, 022505 (2008).

Y. Kajiwara, K. Harii, S. Takahashi, et al., “Transmission of electrical signals by spin-wave
interconversion in a magnetic insulator”, Nature 464, 262-266 (2010).

S. Maendl, I. Stasinopoulos, and D. Grundler, “Spin waves with large decay length and few 100
nm wavelengths in thin yttrium iron garnet grown at the wafer scale”, Applied Physics Letters
111, 012403 (2017).

F. Garcia-Sanchez, P. Borys, R. Soucaille, et al., “Narrow magnonic waveguides based on domain
walls”, Physical Review Letters 114, 247206 (2015).

K. Wagner, A. Kdkay, K. Schultheiss, et al., “Magnetic domain walls as reconfigurable spin-wave
nanochannels”, Nature Nanotechnology 11, 432-436 (2016).

G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler, “Enhanced transmission through
squeezed modes in a self-cladding magnonic waveguide”, Physical Review Letters 108, 227202
(2012).

J. Lan, W. Yu, R. Wu, and J. Xiao, “Spin-wave diode”, Physical Review X §, 041049 (2015).

G. Talmelli, T. Devolder, N. Tréger, et al., “Reconfigurable submicrometer spin-wave majority
gate with electrical transducers”, Science Advances 6, eabb4042 (2020).

J. Chen, J. Hu, and H. Yu, “Chiral emission of exchange spin waves by magnetic skyrmions”,
ACS Nano 185, 4372-4379 (2021).

Y. Liu, Y. Zhang, and S. Zhang, “Current-controlled propagation of spin waves in antiparallel,
coupled domains”, Nature Nanotechnology 14, 691-697 (2019).

J. Jorzick, S. O. Demokritov, B. Hillebrands, et al., “Spin wave wells in nonellipsoidal micrometer
size magnetic elements”, Physical Review Letters 88, 047204 (2002).



254

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, “Spatially resolved
dynamics of localized spin-wave modes in ferromagnetic wires”, Physical Review Letters 89,
277201 (2002).

C. Bayer, S. O. Demokritov, B. Hillebrands, and A. N. Slavin, “Spin-wave wells with multiple
states created in small magnetic elements”, Applied Physics Letters 82, 607609 (2003).

M. Bailleul, D. Olligs, and C. Fermon, “Micromagnetic phase transitions and spin wave excitations
in a ferromagnetic stripe”, Physical Review Letters 91, 137204 (2003).

R. D. McMichael and B. B. Maranville, “Edge saturation fields and dynamic edge modes in ideal
and nonideal magnetic film edges”, Physical Review B 74, 024424 (2006).

V. V. Kruglyak, P. S. Keatley, R. J. Hicken, J. R. Childress, and J. A. Katine, “Time resolved
studies of edge modes in magnetic nanoelements”, Journal of Applied Physics 99, 08F306 (2006).

V. E. Demidov, M. Buchmeier, K. Rott, et al., “Nonlinear hybridization of the fundamental
eigenmodes of microscopic ferromagnetic ellipses”, Physical Review Letters 104, 217203 (2010).

B. B. Maranville, R. D. McMichael, and D. W. Abraham, “Variation of thin film edge magnetic
properties with patterning process conditions in Ni80Fe20 stripes”, Applied Physics Letters 90,
232504 (2007).

M. Zhu and R. D. McMichael, “Modification of edge mode dynamics of oxidized Ni8OFe20 thin
film edges”, Journal of Applied Physics 107, 103908 (2010).

J. M. Shaw, T. J. Silva, M. L. Schneider, and R. D. McMichael, “Spin dynamics and mode structure
in nanomagnet arrays: effects of size and thickness on linewidth and damping”, Physical Review
B 79, 184404 (2009).

H. T. Nembach, J. M. Shaw, T. J. Silva, et al., “Effects of shape distortions and imperfections
on mode frequencies and collective linewidths in nanomagnets”, Physical Review B 83, 094427
(2011).

V. V. Kruglyak, A. Barman, R. J. Hicken, J. R. Childress, and J. A. Katine, “Picosecond magneti-
zation dynamics in nanomagnets: crossover to nonuniform precession”, Physical Review B 71,
220409 (2005).

R. D. McMichael, C. A. Ross, and V. P. Chuang, “Thickness dependence of magnetic film edge
properties in Ni80Fe20 stripes”, Journal of Applied Physics 103, 07C505 (2008).

B. B. Maranville, R. D. McMichael, S. A. Kim, et al., “Characterization of magnetic properties at
edges by edge-mode dynamics”, Journal of Applied Physics 99, 08C703 (2006).

Z. Zhang, M. Vogel, M. B. Jungfleisch, et al., “Tuning edge-localized spin waves in magnetic
microstripes by proximate magnetic structures”, Physical Review B 100, 174434 (2019).

F. Grof3, M. Weigand, A. Gangwar, et al., “Imaging magnonic frequency multiplication in nanos-
tructured antidot lattices”, Physical Review B 106, 014426 (2022).

A. May, M. Hunt, A. van den Berg, A. Hejazi, and S. Ladak, “Realisation of a frustrated 3D
magnetic nanowire lattice”, Communications Physics 2, 13 (2019).

J. Gartside, S. Jung, S. Yoo, et al., “Current-controlled nanomagnetic writing for reconfigurable
magnonic crystals”’, Communications Physics 3, 219 (2020).

V. Luzzati and P. A. Spegt, “Polymorphism of lipids”, Nature 215, 701-704 (1967).

A. H. Schoen, Infinite periodic minimal surfaces without self-intersections, tech. rep. (NASA
Electronics Research Center, Cambridge, 1970).

L. Han and S. Che, “An overview of materials with triply periodic minimal surfaces and related
geometry: From biological structures to self-assembled systems”, Advanced Materials 30, 1705708
(2018).

J. Llandro, D. M. Love, A. Kovdcs, et al., “Visualizing magnetic structure in 3D nanoscale Ni-Fe
gyroid networks”, Nano Letters 20, 3642-3650 (2020).



Bibliography 255

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]
[51]

[52]

[53]
[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

S. H. Skjervg, C. H. Marrows, R. L. Stamps, and L. J. Heyderman, “Advances in artificial spin
ice”, Nature Reviews Physics 2, 2522-5820 (2020).

C. Nisoli, V. Kapaklis, and P. Schiffer, “Deliberate exotic magnetism via frustration and topology”,
Nature Physics 13, 200-203 (2017).

R. Streubel, P. Fischer, F. Kronast, et al., “Magnetism in curved geometries”, Journal of Physics
D: Applied Physics 49, 363001 (2016).

A. Fernandez-Pacheco, R. Streubel, O. Fruchart, et al., “Three-dimensional nanomagnetism”,
Nature Communications 8, 15756 (2017).

D. Sander, S. O. Valenzuela, D. Makarov, et al., “The 2017 magnetism roadmap”, Journal of
Physics D: Applied Physics 50, 363001 (2017).

B. D. Cullity and C. D. Graham, Introduction to magnetic materials, 2nd ed. (John Wiley & Sons
Inc, 2008).

J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999).

G. Gilbert, De magnete, magneticisque corporibus, et de magno magnete tellure; physiologia
nova, plurimis & argumentis, & experimentis demonstrata (Petrus Short, 1600).

H. C. Orsted, “Experiments on the effect of a current of electricity on the magnetic needle”, Royal
Danish Academy of Sciences (1820).

M. Faraday, “Experimental researches in electricity”’, Philosophical Transactions of the Royal
Society of London 122, 125-162 (1832).

J. C. Maxwell, A treatise on electricity and magnetism, Vol. 1 (Oxford: Clarendon Press, 1873).

G. E. Uhlenbeck and S. Goudsmit, “Spinning electrons and the structure of spectra”, Nature 117,
264-265 (1926).

W. Pauli, “Zur Quantenmechanik des magnetischen Elektrons”, Zeitschrift fiir Physik 43, 601-623
(1927).

W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Zeitschrift fiir Physik 49, 619-636 (1928).

L. Néel, “Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme”, Annales
De Physique 12, 137-198 (1948).

E. Ising, “Beitrag zur Theorie des Ferromagnetismus”, Zeitschrift fiir Physik 31, 253-258 (1925).

F. Bloch, “Uber die Quantenmechanik der Elektronen in Kristallgittern”, Zeitschrift fiir Physik 52,
555-600 (1929).

J. C. Slater, “The theory of ferromagnetism: Lowest energy levels”, Physical Review 52, 198-214
(1937).

J. Hubbard and B. H. Flowers, “Electron correlations in narrow energy bands”, Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences 276, 238-257 (1963).

A. Okamoto and S. Nakagawa, “Development of ferrite materials and their applications”, in IEEE
HISTory of ELectrotechnolgy CONference (HISTELCON) (2017), pp. 7-12.

J. M. D. Coey, Rare-earth iron permanent magnets, Monographs on the physics and chemistry of
materials (Clarendon Press, 1996).

L. Néel, “Magnetism and the local molecular field”, Science 174, 985-992 (1971).

L. D. Landau and E. M. Lifshitz, “On the theory of the dispersion of magnetic permeability in
ferromagnetic bodies”, Physikalische Zeitschrift der Sowjetunion 8, 153—-169 (1935).

T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans-
actions on Magnetics 40, 3443-3449 (2004).

M. N. Baibich, J. M. Broto, A. Fert, et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic
superlattices”, Physical Review Letters 61, 2472-2475 (1988).



256

Bibliography

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]
[73]
[74]

[75]
[76]

[77]
[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered
magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B 39, 4828—
4830 (1989).

M. Julliere, “Tunneling between ferromagnetic films”, Physics Letters A 54, 225-226 (1975).

T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al203/Fe junction”, Journal
of Magnetism and Magnetic Materials 139, L.231-1L.234 (1995).

F. Bloch, “Zur Theorie des Ferromagnetismus”, Zeitschrift fiir Physik 61, 206-219 (1930).

J. Slonczewski, “Current-driven excitation of magnetic multilayers”, Journal of Magnetism and
Magnetic Materials 159, L1-L7 (1996).

L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current”, Physical
Review B 54, 9353-9358 (1996).

Y. Tokura and N. Nagaosa, “Nonreciprocal responses from non-centrosymmetric quantum materi-
als”, Nature Communications 9, 3740 (2018).

S. Blundell, Magnetism in condensed matter (Oxford University Press, 2001).
J. M. D. Coey, Magnetism and magnetic materials (Cambridge University Press, 2010).

N. W. Ashcroft and N. D. Mermin, Solid state physics, HRW international editions (Holt, Rinehart
and Winston, 1976).

D. J. Griffiths, Introduction to electrodynamics, 4th ed. (Cambridge University Press, 2017).

W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfihigkeit™, Naturwis-
senschaften 21, 787-788 (1933).

M. Tinkham, Introduction to superconductivity, 2nd ed. (Dover Publications, 2004).
C. Kittel, Introduction to solid state physics, 8th ed. (Wiley, 2004).

L. Smejkal, J. Sinova, and T. Jungwirth, “Emerging research landscape of altermagnetism”,
Physical Review X 12, 040501 (2022).

L. Smejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald, “Topological antiferromagnetic
spintronics”, Nature Physics 14, 242-251 (2018).

O. J. Amin, A. Dal Din, E. Golias, et al., “Nanoscale imaging and control of altermagnetism in
MnTe”, Nature 636, 348-353 (2024).

A. Smolyanyuk, I. I. Mazin, L. Garcia-Gassull, and R. Valenti, “Fragility of the magnetic order in
the prototypical altermagnet RuO,”, Physical Review B 109, 134424 (2024).

O. Fedchenko, J. Mindr, A. Akashdeep, et al., “Observation of time-reversal symmetry breaking
in the band structure of altermagnetic RuO,”, Science Advances 10, eadj4883 (2024).

R. M. Bozorth, Ferromagnetism, The Bell Telephone Laboratories series (D. Van Nostrand
Company, Inc., 1951).

S. Chikazumi and C. Graham, Physics of ferromagnetism, International Series of Monographs on
Physics (Clarendon Press, 1997).

D. Wei, T. Chin, K. You, et al., “Enhancement of L10 ordered FePt by Pt buffer layer”, Journal of
Magnetism and Magnetic Materials 303, The 6th International Symposium on Physics of Magnetic
Materials, €265-e269 (2006).

A. Hubert and R. Schifer, Magnetic domains: the analysis of magnetic microstructures, 1st ed.
(Springer, 1998).

W. Brown, Micromagnetics, Interscience tracts on physics and astronomy (Interscience Publishers,
1963).

J. Oitmaa and W. H. Zheng, “Curie and Néel temperatures of quantum magnets”, Journal of
Physics: Condensed Matter 16, 8653-8660 (2004).



Bibliography 257

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]
[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

R. M. White, Quantum theory of magnetism: magnetic properties of materials, 3rd ed., Springer
Series in Solid-State Sciences (Springer, 2007).

E. C. Stoner, “Collective electron ferromagnetism”, Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences 165, 372414 (1938).

R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems, Springer
Tracts in Modern Physics (Springer Berlin Heidelberg, 2003).

T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a
ferromagnet”, Physical Review 58, 1098-1113 (1940).

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory”, Science
320, 190-194 (2008).

A. Aharoni, Introduction to the theory of ferromagnetism, International Series of Monographs on
Physics (Clarendon Press, 2000).

J. A. Osborn, “Demagnetizing factors of the general ellipsoid”, Physical Review 67, 351-357
(1945).

P. Vavassori, V. Bonanni, A. Busato, et al., “Magnetostatic and exchange coupling in the mag-
netization reversal of trilayer nanodots”, Journal of Physics D: Applied Physics 41, 134014
(2008).

M. Fiéhnle, D. Steiauf, and J. Seib, “The Gilbert equation revisited: anisotropic and nonlocal
damping of magnetization dynamics”, Journal of Physics D: Applied Physics 41, 164014 (2008).

P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance”, Nature 55,
347-347 (1897).

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track”, Nature Nanotechnology 8, 152-156
(2013).

M. Bode, M. Heide, K. von Bergmann, et al., “Chiral magnetic order at surfaces driven by inversion
asymmetry”, Nature 447, 190-193 (2007).

A. Gurevich and G. Melkov, Magnetization oscillations and waves (CRC Press, 1996).

W. M. Lij, S. Saha, X. R. Wang, et al., “Long-range magnetic coupling across a polar insulating
layer”, Nature Communications 7, 11015 (2016).

A. M. Black-Schaffer, “RKKY coupling in graphene”, Physical Review B 81, 205416 (2010).

D. Polishchuk, Y. Tykhonenko-Polishchuk, V. Borynskyi, et al., “Magnetic hysteresis in nanos-
tructures with thermally controlled RKKY coupling”, Nanoscale Research Letters 13, 245 (2018).

A. U. Canbolat, H. Sevin ¢li, and O. Cak 1r, “Indirect exchange interaction in two-dimensional
materials with quartic dispersion”, Physical Review B 106, 104409 (2022).

M. M. Asmar and W.-K. Tse, “Interlayer RKKY coupling in bulk Rashba semiconductors under
topological phase transition”, Physical Review B 100, 014410 (2019).

M. Sherafati and S. Satpathy, “On the Ruderman-Kittel-Kasuya-Yosida interaction in graphene”,
AIP Conference Proceedings 1461, 24-33 (2012).

S. O. Demokritov and A. N. Slavin, Magnonics: From fundamentals to applications (Springer,
2017).

J. Larmor, “A dynamical theory of the electric and luminiferous medium. Part III. Relations with
material media”, Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character 190, 205-300 (1897).

X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, “Measurement of the electron magnetic
moment”, Physical Review Letters 130, 071801 (2023).

B. Heinrich and J. Cochran, “Ultrathin metallic magnetic films: magnetic anisotropies and ex-
change interactions”, Advances in Physics 42, 523-639 (1993).



258

Bibliography

[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

D. D. Stancil and A. Prabhakar, Spin waves: Theory and applications (Springer, 2009).

C. Kittel, “On the theory of ferromagnetic resonance absorption”, Physical Review 73, 155-161
(1948).

R. Damon and J. Eshbach, “Magnetostatic modes of a ferromagnet slab”, Journal of Physics and
Chemistry of Solids 19, 308-320 (1961).

K. Schultheiss, N. Sato, P. Matthies, et al., “Time refraction of spin waves”, Physical Review
Letters 126, 137201 (2021).

V. Sluka, T. Schneider, R. A. Gallardo, et al., “Emission and propagation of 1D and 2D spin waves
with nanoscale wavelengths in anisotropic spin textures”, Nature Nanotechnology 14, 328-333
(2019).

I. Bertelli, J. J. Carmiggelt, T. Yu, et al., “Magnetic resonance imaging of spin-wave transport and
interference in a magnetic insulator”, Science Advances 6, eabd3556 (2020).

I. Lisenkov, A. Jander, and P. Dhagat, “Magnetoelastic parametric instabilities of localized spin
waves induced by traveling elastic waves”, Physical Review B 99, 184433 (2019).

Q. Wang, R. Verba, B. Heinz, et al., “Deeply nonlinear excitation of self-normalized short spin
waves”, Science Advances 9, eadg4609 (2023).

S. Iihama, Y. Sasaki, A. Sugihara, et al., “Quantification of a propagating spin-wave packet created
by an ultrashort laser pulse in a thin film of a magnetic metal”, Physical Review B 94, 020401
(2016).

O. V. Dobrovolskiy, R. Sachser, T. Bricher, et al., “Magnon—fluxon interaction in a ferromag-
net/superconductor heterostructure”, Nature Physics 15, 477-482 (2019).

B. A. Kalinikos and A. N. Slavin, “Theory of dipole-exchange spin wave spectrum for ferromag-
netic films with mixed exchange boundary conditions”, Journal of Physics C: Solid State Physics
19, 7013-7033 (1986).

T. M. Apostol, Mathematical analysis, 2nd (Addison-Wesley, 1974).

K. Szulc, P. Graczyk, M. Mruczkiewicz, G. Gubbiotti, and M. Krawczyk, “Spin-wave diode and
circulator based on unidirectional coupling”, Physical Review Applied 14, 034063 (2020).

D. Sanz-Herndndez, A. Hierro-Rodriguez, C. Donnelly, et al., “Artificial double-helix for geomet-
rical control of magnetic chirality”, ACS Nano 14, 8084-8092 (2020).

J. Lucassen, M. J. Meijer, M. C. H. de Jong, et al., “Stabilizing chiral spin structures via an
alternating Dzyaloshinskii-Moriya interaction”, Physical Review B 102, 014451 (2020).

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions”, Nature
Nanotechnology 8, 899-911 (2013).

L. Zhang, J. Ren, J. S. Wang, and B. Li, “Topological magnon insulator in insulating ferromagnet”,
Physical Review B 87, 144101 (2013).

S. A. Diaz, T. Hirosawa, J. Klinovaja, and D. Loss, “Chiral magnonic edge states in ferromagnetic
skyrmion crystals controlled by magnetic fields”, Physical Review Research 2, 013231 (2020).

E. Wigner and F. Seitz, “On the constitution of metallic sodium”, Physical Review 43, 804-810
(1933).

H. Yu, J. Xiao, and H. Schultheiss, “Magnetic texture based magnonics”, Physics Reports 905,
1-59 (2021).

D. Petti, S. Tacchi, and E. Albisetti, “Review on magnonics with engineered spin textures”, Journal
of Physics D: Applied Physics 55, 293003 (2022).

F. Ma, Y. Zhou, H. B. Braun, and W. S. Lew, “Skyrmion-based dynamic magnonic crystal”’, Nano
Letters 15, 4029-4036 (2015).



Bibliography 259

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]
[148]
[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, “Collective spin-wave excitations in a
two-dimensional array of coupled magnetic nanodots”, Physical Review B 85, 014427 (2012).

G. Gubbiotti, S. Tacchi, M. Madami, et al., “Brillouin light scattering studies of planar metallic
magnonic crystals”, Journal of Physics D: Applied Physics 43, 264003 (2010).

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, “Colloquium: Many-body localization,
thermalization, and entanglement”, Reviews of Modern Physics 91, 021001 (2019).

M. Evers, C. A. Miiller, and U. Nowak, “Weak localization of magnons in chiral magnets”,
Physical Review B 97, 184423 (2018).

M. F. Jakobsen, A. Qaiumzadeh, and A. Brataas, “Scattering theory of transport through disordered
magnets”, Physical Review B 100, 134431 (2019).

A. V. Chumak, V. S. Tiberkevich, A. D. Karenowska, et al., “All-linear time reversal by a dynamic
artificial crystal”, Nature Communications 1, 1142 (2010).

K. Vogt, F. Fradin, J. Pearson, et al., “Realization of a spin-wave multiplexer”, Nature Communi-
cations 5, 3727 (2014).

Z. Duan, A. Smith, L. Yang, et al., “Nanowire spin torque oscillator driven by spin orbit torques”,
Nature Communications 5, 5616 (2014).

K. A. Rivkin, Spin wave optics, arXiv.2404.13882, 2024.

D. R. Birt, B. O’Gorman, M. Tsoi, et al., “Diffraction of spin waves from a submicrometer-size
defect in a microwaveguide”, Applied Physics Letters 95, 122510 (2009).

D. Sanz-Herndndez, R. F. Hamans, J. Osterrieth, et al., “Fabrication of scaffold-based 3D magnetic
nanowires for domain wall applications”, Nanomaterials 8, 483 (2018).

A. Vansteenkiste, J. Leliaert, M. Dvornik, et al., “The design and verification of MuMax3”, AIP
Advances 4, 107133 (2014).

COMSOL Multiphysics® v. 6.1, Computer Software, COMSOL AB, Stockholm, Sweden (2024).
R. Hertel, tetmag, https://github.com/R-Hertel/tetmag, 2023.

A. K. Sethi, “Computers and computing”, in The business of electronics: a concise history
(Palgrave Macmillan US, New York, 2013), pp. 61-86.

C. Brebbia, “The boundary element method in engineering practice”, Engineering Analysis 1,
3-12 (1984).

M. Bonnet, “Boundary integral equation methods for solids and fluids”, Meccanica 34, 301-302
(1999).

R. Kress, Linear integral equations, 3rd ed., Applied Mathematical Sciences (Springer, 2013),
p. 412.

E. Abbena, S. Salamon, and A. Gray, Modern differential geometry of curves and surfaces with
mathematica, 3rd ed., Textbooks in Mathematics (Taylor & Francis, 2006).

J. D. Hoffman and S. Frankel, Numerical methods for engineers and scientists, 2nd ed. (Taylor &
Francis, 2001).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes: The art of
scientific computing, 3rd ed. (Cambridge University Press, 2007).

M. d’ Aquino, C. Serpico, G. Miano, and C. Forestiere, “A novel formulation for the numerical com-
putation of magnetization modes in complex micromagnetic systems”, Journal of Computational
Physics 228, 6130-6149 (2009).

M. d’Aquino, C. Serpico, and G. Miano, “Geometrical integration of Landau—Lifshitz—Gilbert
equation based on the mid-point rule”, Journal of Computational Physics 209, 730-753 (2005).

E. Hairer, S. Ngrsett, and G. Wanner, Solving ordinary differential equations II: Stiff and
differential-algebraic problems (Springer, 1993).


https://github.com/R-Hertel/tetmag

260 Bibliography

[159] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae”, Journal of
Computational and Applied Mathematics 6, 19-26 (1980).

[160] E. Fehlberg, Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize
control, tech. rep. R-287 (NASA Technical Report, 1968).

[161] U. Ascher and L. Petzold, Computer methods for ordinary differential equations and differential-
algebraic equations (Society for Industrial and Applied Mathematics, 1998).

[162] K.E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in
differential-algebraic equations (Society for Industrial and Applied Mathematics, 1995).

[163] J. Chung and G. M. Hulbert, “A time integration algorithm for structural dynamics with improved
numerical dissipation: The generalized-o method”, Journal of Applied Mechanics 60, 371-375
(1993).

[164] J.Chung andJ. M. Lee, “A new family of explicit time integration methods for linear and non-
linear structural dynamics”, International Journal for Numerical Methods in Engineering 37,
3961-3976 (1994).

[165] P. Heistracher, C. Abert, F. Bruckner, T. Schrefl, and D. Suess, ‘“Proposal for a micromagnetic
standard problem: Domain wall pinning at phase boundaries”, Journal of Magnetism and Magnetic
Materials 548, 168875 (2022).

[166] C. Shannon, “Communication in the presence of noise”, Proceedings of the IRE 37, 10-21 (1949).

[167] R. Courant, K. Friedrichs, and H. Lewy, “Uber die partiellen Differenzengleichungen der mathe-
matischen Physik”, Mathematische Annalen 100, 32-74 (1928).

[168] R. Hertel, S. Christophersen, and S. Borm, “Large-scale magnetostatic field calculation in finite
element micromagnetics with H2-matrices”, Journal of Magnetism and Magnetic Materials 477,
118-123 (2019).

[169] M. d’Aquino and R. Hertel, “Micromagnetic frequency-domain simulation methods for magnonic
systems”, Journal of Applied Physics 133, 033902 (2023).

[170] SUNDIALS: SUite of Nonlinear and Dlfferential/ALgebraic Equation Solvers, https://computing.
11nl.gov/projects/sundials, Lawrence Livermore National Laboratory (2024).

[171] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: Solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods, Software, Environments, and Tools
(Society for Industrial and Applied Mathematics, 1998).

[172] Y. Saad, Numerical methods for large eigenvalue problems (Society for Industrial and Applied
Mathematics, 2011).

[173] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. (Society for Industrial and Applied
Mathematics, 2003).

[174] R. Barrett, M. Berry, T. F. Chan, et al., Templates for the solution of linear systems: Building
blocks for iterative methods (Society for Industrial and Applied Mathematics, 1994).

[175] C. T. Kelley, Iterative methods for linear and nonlinear equations (Society for Industrial and
Applied Mathematics, 1995).

[176] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical
Review Letters 58, 24862489 (1987).

[177] H. Guo, A.J. M. Deenen, M. Xu, M. Hamdi, and D. Grundler, “Realization and control of bulk
and surface modes in 3D nanomagnonic networks by additive manufacturing of ferromagnets”,
Advanced Materials 35, 2303292 (2023).

[178] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, “Direct observation of
magnetic monopole defects in an artificial spin-ice system”, Nature Physics 6, 359-363 (2010).

[179] A.V.Chumak, P. Kabos, M. Wu, et al., “Advances in magnetics roadmap on spin-wave computing”,
IEEE Transactions on Magnetics 58, 1-72 (2022).


https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials

About the Author

During my Bachelor’s, Master’s, and Ph.D. studies in the Department of Physics of Nanos-
tructures at Adam Mickiewicz University in Poznan (Faculty of Physics and Astronomy), I had
the privilege of working in an environment that fostered both rigorous scientific inquiry and a
passion for innovation.

My research centers on magnetism — particularly magnonics — where I investigate spin-wave-
based phenomena as a promising path toward next-generation technologies. A key component of
my work involves developing and applying a broad range of numerical methods to model complex
geometries in magnetic nanostructures. Throughout my Ph.D. study, I have worked extensively
with tools such as COMSOL Multiphysics, tetmag, MuMax3, and various Python libraries.
This emphasis on computational techniques not only enables me to explore the fundamental
physics of spin-wave dynamics but also serves to bridge theoretical predictions with experimental
observations. The challenge of simulating intricate architectures has been both demanding and
deeply rewarding, sharpening my computational expertise and reinforcing my commitment to
advancing numerical approaches.

I firmly believe that collaboration is fundamental to modern research, which is why I have
invested significant effort in attending conferences, and undertaking internships to learn from
leading scientists. My internships at IPCMS in Strasbourg, France, and IMEC in Leuven,
Belgium were particularly formative, introducing me to advanced computational techniques such
as computer-aided design and finite element method simulations. In addition, managing my own
PRELUDIUM research grant from the National Science Centre of Poland broadened my skill set
by providing hands-on experience in project management and budgeting. Presenting my findings
at international conferences and contributing to peer-reviewed journals has also challenged and
enriched me, enabling deeper engagement with the global scientific community. These endeavors
have underscored the inherently collaborative and interdisciplinary nature of scientific research,
where curiosity and open-mindedness drive meaningful progress.

Looking ahead, I aspire to continue refining and expanding these simulation methods to
deepen our understanding of spin-based systems. By forging a tighter connection between theory
and experiment, I hope to contribute to the broader effort in magnonics — ultimately helping
to drive the shift toward spin-based computing and fostering further innovation in the field of
nanotechnology.



262

About the Author

Career timeline

10.2020 - 09.2025

07.2020

10.2018 - 07.2020

07.2018

10.2015 - 06.2018

Publications

Studies at the Doctoral School

Adam Mickiewicz University in Poznan, Poland
Domain: Exact Sciences

Discipline: Physical Sciences

Supervisor: prof. dr hab. Maciej Krawczyk

MSc degree in Physics

Adam Mickiewicz University in Poznan, Poland

Thesis title: “Spin-wave Talbot effect in thin ferromagnetic film”
Supervisor: prof. dr hab. Maciej Krawczyk

Master studies at the Faculty of Physics

Adam Mickiewicz University in Poznan, Poland

Field of study: Physics

Specialization: Physics of Advanced Materials for Energy Processing
Conducted solely in the English language

Completed with the result: very good

BSc degree in Physics

Adam Mickiewicz University in Poznan, Poland

Thesis title: “The Talbot effect for electromagnetic waves”
Supervisor: prof. dr hab. Maciej Krawczyk

Bachelor studies at the Faculty of Physics
Adam Mickiewicz University in Poznan, Poland
Field of study: Physics

Specialization: Nanotechnology

Completed with the result: very good

1. Gotgbiewski, M.; Gruszecki, P.; Krawczyk, M.; Serebryannikov, A. E. Spin-wave Talbot

effect in a thin ferromagnetic film, Phys. Rev. B 102, 13, 134402 (2020).

2. Gotgbiewski, M.; Gruszecki, P.; Krawczyk, M. Self-imaging of spin waves in thin, multi-

mode ferromagnetic waveguides, IEEE Trans. Magn. 58, 8, 1-5 (2022).

3. Golgbiewski, M.; Gruszecki, P.; Krawczyk, M. Self-imaging based programmable spin-

wave lookup tables, Adv. Electron. Mater. 8, 10, 2200373 (2022).



263

4. Gotgbiewski, M.; Reshetniak, H.; Makartsou, U.; Krawczyk, M.; van den Berg, A.; Ladak,
S.; Barman, A. Spin-Wave Spectral Analysis in Crescent-Shaped Ferromagnetic Nanorods,
Phys. Rev. Appl. 19, 6, 2200373 (2023).

5. Kumar, N.; Gruszecki, P.; Gotgbiewski, M.; Ktos, J. W.; Krawczyk, M. Exciting High-
Frequency Short-Wavelength Spin Waves using High Harmonics of a Magnonic Cavity
Mode, Adv. Quantum Technol. 2400015 (2024).

6. Makartsou, U.; Gotgbiewski, M.; Guzowska, U.; Stognij, A.; Gieniusz, R.; Krawczyk,

M. Spin-Wave Self-Imaging: Experimental and Numerical Demonstration of Caustic and
Talbot-like Diffraction Patterns, Applied Physics Letters 124, 19, 192406 (2024).

7. Gotgbiewski, M.; Hertel, R.; d’ Aquino, M.; Vasyuchka, V.; Weiler, M.; Pirro, P.; Krawczyk,
M.; Fukami, S.; Ohno, H.; Llandro, J. Collective Spin-Wave Dynamics in Gyroid Ferro-
magnetic Nanostructures, ACS Appl. Mater. Interfaces 16, 17, 22177-22188 (2024).

8. Golebiewski, M.; Krawczyk, M. Gyroid ferromagnetic nanostructures in 3D magnonics,
arXiv preprint arXiv:2407.05851 (2024).

9. Memarzadeh, S.; Gotgbiewski, M.; Krawczyk, M.; Ktos J. W. Nucleation and Arrangement

of Abrikosov Vortices in Hybrid Superconductor-Ferromagnetic Nanostructure, arXiv
preprint arXiv:2411.12486 (2024).

10. Goflebiewski, M.; Szulc, K.; Krawczyk, M. Magnetic field controlled surface localization

of ferromagnetic resonance modes in 3D nanostructures, Acta Materialia 283, 120499
(2025).

Reviews

1. Advanced Electronic Materials — 1 review
2. AIP Advances — 1 co-review
3. IEEE Transactions on Magnetics — 1 co-review

4. Physical Review Letters — 1 co-review



264 About the Author

Conference presentations

11.2019 Scientific symposium QuTecNOMM 2019, Poznan, Poland
Oral presentation: “Spin-wave Talbot effect in thin ferromagnetic film”

12.2020 Joint European Magnetic Symposia (JEMS 2020, on-line)
Poster: “Spin-wave Talbot effect in a thin ferromagnetic film”

01.2021 WE Heraeus Seminar (on-line)
Poster: “Demonstration and potential application of the spin-wave
Talbot effect”

06-07.2021 Physics of Magnetism 2021 (PM’21, on-line)
Poster: “Self-imaging of spin waves in thin, multimode ferromagnetic

waveguides”

09.2021 Trends in MAGnetism 2020 (TMAG2020), Cefald, Italy
Oral presentation: “Control and manipulation of self-images using phase/
amplitude change of input wave fronts and potential application in magnonics”

01.2022 MMM-Intermag 2022, New Orleans, United States of America
Oral presentation: “Self-imaging based programmable Spin-wave Logic Gates”

06.2022 Sol-SkyMag 2022, San Sebastian, Spain
Oral presentation: “Spin-wave lookup tables”

08.2022 CMD?29, Manchester, United Kingdom
Oral presentation: “Self-imaging based logic operations”

05.2023 iSIM 2023, Sendai, Japan
Poster: “Logic operations based on self-imaging and interference of spin waves”

05.2023 Intermag 2023, Sendai, Japan
Oral presentation: “Spin-Wave Dynamics in Ferromagnetic Gyroid Nanostructures”

06.2023 Physics of Magnetism 2023 (PM’23), Poznan, Poland
Oral presentation: “Gyroid Nanostructures in Magnonics”

07.2023 MagIC 2023, Bedlewo, Poland
Poster: “Spin-wave interference control for self-imaging based logic operations”

08.2023 Joint European Magnetic Symposia (JEMS 2023), Madrid, Spain
Oral presentation: “Ferromagnetic Resonance in Gyroidal Networks”

09.2023 Trends in MAGnetism 2023 (TMAG2023), Rome, Italy
Poster: “Magnonic properties of 3D Nickel Gyroid Networks”

12.2023 I Doctoral Symposium in Exact Science, Dgbina, Poland

Oral presentation: “Magnonic properties of three-dimensional gyroidal nanostructures”



265

01.2024

01.2024

04-05.2024

06.2024

06.2024

06-07.2024

04-05.2025

WE Heraeus Seminar, Bad Honnef, Germany
Poster: “Collective Spin-Wave Dynamics in Gyroidal Nanostructures”

Symposium on Spintronics and Quantum Information 2024, Bedlewo, Poland
Poster: “Magnonic Properties of Gyroidal Ferromagnetic Networks”

SPICE-Workshop Nanomagnetism in 3D, Ingelheim, Germany
Poster: “Spin-wave FMR Modes Localization and Propagation Properties
in Gyroidal Ferromagnetic Networks”

Transnational Round Table on Magnonics, High-Frequency Spintronics,
and Ultrafast Magnetism (TRTM2024), Exeter, United Kingdom
Poster: “Spin-Wave Propagation Properties in Gyroid Nanostructures”

Sol-SkyMag 2024, San Sebastian, Spain
Oral presentation: “Magnetic Field’s Angle-Dependent Localization
of FMR Spin Wave Modes in 3D Nanoarchitectures”

International Conference on Magnetism (ICM2024), Bologna, Italy
Poster: “Localization and Propagation of Spin Waves in Gyroidal Nanostructures”

International Conference on Superconductivity and Magnetism (ICSM2025)
Fethiye—Oludeniz, Turkey

Invited talk: “New surface localization mechanism of FMR modes in 3D
nanostructures”

Awards, grants, and scholarships

10.2019 - 06.2020

10.2019 - 06.2020

07.2022 - 12.2022

01.2024 - 01.2026

10.2024 - 07.2025

AMU Rector’s Scholarship for the best students
Jan Kulczyk Scholarship for the best students
Abroad internship grant STER NAWA

NCN PRELUDIUM-22 (2023/49/N/ST3/03032)
project title: “Three-dimensional complex-geometry ferromagnetic
nanostructures in magnonics and spintronics”

AMU Foundation Scholarship for Ph.D. students

Student co-supervision

* Ph.D. student, mgr Hanna Reshetniak



266 About the Author

Scientific visits and internships

03.2024 | Ecole Polytechnique Fédérale de Lausanne (EPFL)
Laboratory of Nanoscale Magnetic Materials and Magnonics
Lausanne, Switzerland

Prof. Dirk Grundler’s group

2-week research visit

02.2023 | S. N. Bose National Centre for Basic Sciences (SNBNCBS)
Department of Condensed Matter and Materials Physics
Kolkata, India

Prof. Anjan Barman’s group

2-week research visit

10.2022 | Rheinland-Pfilzische Technische Universitidt Kaiserslautern—Landau
Kaiserslautern, Germany

Prof. Philipp Pirro’s group

1-week research visit

07.2022 — 12.2022 | Centre national de la recherche scientifique / Université de Strasbourg
Institut de physique et chimie des Matériaux de Strasbourg (IPCMS)
Strasbourg, France

Group: Magnetic Objects on the NanoScale

Local supervisor: Prof. Riccardo Hertel

6-month internship

Advanced research on gyroid structures for magnonics applications, includ-
ing preparing and implementing 3D models to numerically solve coupled

systems of partial differential equations using the finite element method.

02.2020 — 07.2020 | Interuniversitair Micro-Electronica Centrum vzw (IMEC)
Leuven, Belgium

Sector: Computing and Memory Technologies

Local supervisor: Dr. Florin Ciubotaru

S5-month internship

Insight into the fabrication of magnonic and spintronic devices in clean
room laboratories. Participation in scientific research involving numerical
simulation of various magnetoelastic systems using COMSOL Multiphysics
software.




	Abstract ENG
	Abstract PL (Streszczenie)
	Contents
	Acknowledgments
	Preface
	List of publications included in the Thesis
	1 Introduction
	1.1 Shape related effects on spin waves
	1.2 From patterned thin films to intricate 3D ferromagnetic nanostructures

	2 Fundamentals of magnetism
	2.1 Historical overview
	2.2 Magnetic moments and magnetic fields
	2.3 Types of magnetism
	2.4 Magnetic materials: properties and hysteresis behavior
	2.5 The quantum theory of magnetism
	2.6 Magnetic domains and domain walls
	2.7 Magnetic anisotropy
	2.8 Magnetostatics and demagnetizing fields

	3 Micromagnetism
	3.1 Gibbs free energy
	3.1.1 Exchange interactions
	3.1.2 Dipolar interactions
	3.1.3 Anisotropic contributions
	3.1.4 Zeeman energy
	3.1.5 Dzyaloshinskii–Moriya interactions
	3.1.6 Effective field

	3.2 Magnetization dynamics and spin waves
	3.2.1 Gyromagnetic (Larmor) precession
	3.2.2 Landau–Lifshitz–Gilbert equation
	3.2.2.1 Normalization
	3.2.2.2 Equilibrium state and linearization

	3.2.3 Ferromagnetic resonance and the Kittel formula
	3.2.4 Spin-wave spectra
	3.2.4.1 Kalinikos–Slavin theory of spin waves in thin films


	3.3 Chirality effects
	3.4 Magnonic crystals
	3.5 Localization of spin waves
	3.6 Spin-wave optics

	4 Numerical methods and micromagnetic simulations
	4.1 Spatial and temporal discretization methods
	4.1.1 Finite difference method
	4.1.2 Finite element method
	4.1.2.1 Weak formulation and variational principle

	4.1.3 Boundary element method

	4.2 Time-stepping approaches
	4.2.1 Runge–Kutta methods
	4.2.2 Adams–Bashforth method
	4.2.3 Euler methods
	4.2.4 Backward differentiation formulas
	4.2.5 Generalized-alpha method

	4.3 Boundary conditions
	4.4 Overview of software tools for micromagnetic simulations
	4.4.1 MuMax3 (used in P1, P2, P3, P6)
	4.4.2 Tetmag (used in P7)
	4.4.2.1 Hierarchical –matrices algorithm.

	4.4.3 COMSOL Multiphysics (used in P4, P5, P8, P9)
	4.4.3.1 Coefficient Form PDE
	4.4.3.2 Implementation of boundary conditions in COMSOL
	4.4.3.3 Time-domain solver
	4.4.3.4 Frequency-domain solver
	4.4.3.5 Eigenfrequency solver
	4.4.3.6 Linear and nonlinear methods
	4.4.3.7 Termination criteria

	4.4.4 Concluding comparison


	5 Research
	5.1 One-dimensional nanostructures
	5.1.1 Demonstration of spin-wave self-imaging effect (P1)
	5.1.2 Spin-wave Talbot effect in various multimode waveguides (P2)
	5.1.3 Concept of a magnonic logic device based on the self-imaging phenomenon (P3)
	5.1.4 Experimental demonstration of spin-wave self-imaging (P6)

	5.2 Two-dimensional systems
	5.2.1 Spin-wave localization and dynamics in crescent cross-section nanorods under geometric and field manipulations (P4)
	5.2.2 Thin-film magnonic crystals for high-frequency spin-wave generation (P5)

	5.3 Three-dimensional architectures
	5.3.1 Theoretical and experimental investigation of gyroid networks: localized spin-wave excitations and crystallography-dependent ferromagnetic responses (P7)
	5.3.2 Comprehensive overview of state-of-the-art research on magnetic gyroid structures: from mathematical foundations and fabrication to experimental characterization and numerical simulations (P8)
	5.3.3 Theoretical demonstration of a new type of FMR mode localization in 3D nanostructures (P9)

	5.4 Co-authorship statements

	Scientific perspectives
	Summary
	Bibliography
	About the Author

