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1 Dyplomy i stopnie naukowe

Doktor nauk matematycznych , 19 czerwca 2015 r.
Wydziaª Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

� Tytuª rozprawy: Composition operators on the space of smooth functions

� Promotor: prof. dr hab. Paweª Doma«ski

Magister matematyki , 30 czerwca 2011 r.
Wydziaª Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

� Tytuª pracy: Przestrzenie funkcji ci¡gªych o warto±ciach w LB-przestrzeniach

� Promotor: prof. dr hab. Paweª Doma«ski

2 Zatrudnienie w jednostkach naukowych

Od 1 pa¹dziernika 2015 roku zatrudniony jako adiunkt na Wydziale Matematyki i In-
formatyki Uniwersytetu im. Adama Mickiewicza w Poznaniu.

3 Osi¡gni¦cie naukowe i jego omówienie

Cykl powi¡zanych tematycznie artykuªów naukowych1 pt.:

Dynamiczne wªasno±ci operatorów dziaªaj¡cych na przestrzeniach

funkcji gªadkich i holomor�cznych.

[A] A. Przestacki. Dynamical properties of weighted composition operators on the space
of smooth functions. J. Math. Anal. Appl., 445(1):1097-1113, 2017

[B] M. Goli«ski and A. Przestacki. The invariant subspace problem for the space of
smooth functions on the real line. J. Math. Anal. Appl., 482(2):123565, 21, 2020

[C] M. Goli«ski and A. Przestacki. Dynamical properties of weighted translation ope-
rators on the Schwartz space S(R). Rev. Mat. Complut., 33(1):103-124, 2020

[D] K. Piszczek and A. Przestacki. Frequent hypercyclicity of weighted composition
operators on the space of smooth functions. Rev. R. Acad. Cienc. Exactas Fís. Nat.
Ser. A Mat. RACSAM, 115(2):Paper No. 51, 11, 2021

[E] M. Goli«ski and A. Przestacki. Characterization of hypercyclic weighted composi-
tion operators on the space of holomorphic functions. Ann. Polon. Math., 127(3):211-
231, 2021

[F] T. Kalmes and A. Przestacki. Hypercyclic and mixing composition operators on
OM(R). Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118(4):Pa-
per No. 149, 2024

1zgodnie z art. 219 ust. 1. pkt 2b Ustawy
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Omówienie osi¡gni¦cia naukowego

3.1 Wst¦p

Dynamika liniowa jest stosunkowo now¡ gaª¦zi¡ analizy funkcjonalnej zajmuj¡c¡ si¦ ba-
daniem dynamicznych wªasno±ci operatorów (odwzorowa« liniowych i ci¡gªych) dziaªaj¡-
cych na przestrzeniach liniowo-topologicznych, w szczególno±ci na przestrzeniach Bana-
cha i przestrzeniach Frécheta (to jest metryzowalnych i zupeªnych przestrzeniach lokalnie
wypukªych). Do gªównego obiektu bada« dynamiki liniowej nale»y ci¡g (T n)n∈N iteracji
danego operatora T : X → X, gdzie dla ka»dego n ≥ 1

T n = T ◦ · · · ◦ T︸ ︷︷ ︸
n-razy

.

Jednym z najwa»niejszych poj¦¢ badanych w tej dziedzinie jest poj¦cie operatora hiper-
cyklicznego.

De�nicja 1. Operator T : X → X okre±lony na przestrzeni liniowo-topologicznej X nazy-
wamy operatorem hipercyklicznym, gdy posiada wektor hipercykliczny, to jest taki wektor
x ∈ X dla którego zbiór

orb(x, T ) = {T nx : n ≥ 1}

jest g¦sty w X. Zbiór wszystkich wektorów hipercyklicznych dla operatora T oznaczamy
symbolem HC(T ).

Z samej de�nicji wynika, »e operator T : X → X mo»e by¢ hipercykliczny tylko wtedy,
gdy przestrze« X jest przestrzeni¡ o±rodkow¡.

Poj¦cie wektora hipercyklicznego jest zwi¡zane ze znanym z teorii operatorów poj¦-
ciem wektora cyklicznego. Przypomnijmy, »e wektor x nazywamy cyklicznym dla opera-
tora T : X → X je±li powªoka liniowa zbioru orb(x, T ) stanowi g¦st¡ podprzestrze« X.
O doniosªo±ci tego poj¦cia mówi nast¦puj¡cy znany fakt, który tªumaczy zwi¡zek wekto-
rów cyklicznych ze sªynnym problemem podprzestrzeni niezmienniczej (wi¦cej informacji
na ten temat czytelnik znajdzie w dalszej cz¦±ci tego autoreferatu).

Fakt 1. Operator T okre±lony na przestrzeni liniowo-topologicznej X nie ma nietrywial-
nej i domkni¦tej podprzestrzeni niezmienniczej wtedy i tylko wtedy, gdy ka»dy niezerowy
wektor x ∈ X jest wektorem cyklicznym dla T .

Na pierwszy rzut oka wcale nie jest jasne, »e operatory hipercykliczne w ogóle istniej¡.
Okazuje si¦, »e:

� gdy X jest przestrzeni¡ sko«czenie wymiarow¡, to na X nie dziaªa »aden operator
hipercykliczny: patrz [28, Prop. 2.57];

� gdy X jest niesko«czenie wymiarow¡ o±rodkow¡ przestrzeni¡ Frécheta, to na X
dziaªa pewien operator hipercykliczny: dla przestrzeni Banacha udowodnili to nie-
zale»nie Ansari i Bernal, dla przestrzeni Frécheta dowód pochodzi od Boneta i
Perisa, szczegóªy mo»na znale¹¢ w ósmym rozdziale [28].

Pierwsze i klasyczne ju» przykªady operatorów hipercyklicznych pochodz¡ od Bir-
kho�a, Maclane'a i Rolewicza. Przez H(C) oznaczamy przestrze« Frécheta funkcji caªko-
witych z topologi¡ zbie»no±ci jednostajnej na zwartych podzbiorach zbioru C.
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Twierdzenie 1. (Birkho�, 1929) Operator translacji T : H(C) → H(C) okre±lony wzo-
rem (Tf)(z) = f(z + 1) jest hipercykliczny.

Twierdzenie 2. (Maclane, 1952) Operator ró»niczkowania D : H(C) → H(C) okre±lony
wzorem Df = f ′ jest hipercykliczny.

Twierdzenie 3. (Rolewicz, 1969) Operator T : ℓ2 → ℓ2 okre±lony wzorem

T (x1, x2, x3, . . .) = 2(x2, x3, x4, . . .)

jest hipercykliczny.

Operatory wymienione w twierdzeniach powy»ej stanowi¡ przykªady kolejno: opera-
torów kompozycji, operatorów ró»niczkowych i wagowych operatorów przesuni¦cia (na
przestrzeni ci¡gowej). Wymienione klasy operatorów stanowi¡ baz¦ testow¡ dla dynamiki
liniowej: ka»de nowo wprowadzane poj¦cie jest najpierw badane dla tych operatorów.

Wspomnijmy krótko, »e przykªady podane przez Birkho�a i Maclane'a doczekaªy si¦
znacz¡cego uogólnienia.

Twierdzenie 4. (Godefroy i Shapiro, 1991)
Ka»dy operator T okre±lony na H(C), który nie jest wielokrotno±ci¡ identyczno±ci i jest
przemienny z operatorem ró»niczkowania D, jest hipercykliczny.

Przykªad Rolewicza równie» zostaª istotnie uogólniony. Obecnie wiemy caªkiem du»o
o dynamicznych wªasno±ciach wagowych operatorów przesuni¦cia okre±lonych na ró»nych
przestrzeniach ci¡gowych: szczegóªy znajdzie czytelnik w czwartym rozdziale [28].

Sprawdzenie czy dany operator jest hipercykliczny nie jest prostym wyzwaniem. Mo»na
oczywi±cie stara¢ si¦ skonstruowa¢ wektor hipercykliczny dla danego operatora co jest
zazwyczaj bardzo techniczn¡ metod¡, mo»na równie» skorzysta¢ z nast¦puj¡cego funda-
mentalnego twierdzenia, którego dowód opiera si¦ zastosowaniu twierdzeniu Baire'a o
kategoriach. Operator T : X → X nazywamy topologicznie tranzytywnym, gdy dla do-
wolnych niepustych i otwartych zbiorów U, V ⊂ X istnieje liczba naturalna n taka, »e
T n(U) ∩ V ̸= ∅.

Twierdzenie 5. (Birkho�a o topologicznej tranzytywno±ci)
Operator T okre±lony na o±rodkowej przestrzeni Frécheta X jest hipercykliczny wtedy
i tylko wtedy, gdy jest topologicznie tranzytywny.

Ponadto je±li T jest hipercykliczny, to zbiór HC(T ) jego wektorów hipercyklicznych
jest g¦stym podzbiorem X typu Gδ.

Warto podkre±li¢, »e je±li X jest tylko o±rodkow¡ przestrzeni¡ liniowo-topologiczn¡,
to hipercykliczno±¢ operatora nadal poci¡ga za sob¡ jego topologiczn¡ tranzytywno±¢.
Implikacja przeciwna nie musi by¢ jednak prawdziwa: patrz [28, Example 12.7].

Na przestrzeni lat powstaªo wiele kryteriów uªatwiaj¡cych sprawdzenie czy dany ope-
rator posiada jakie± dynamiczne wªasno±ci. Do najwa»niejszych nale»¡:

� Kryterium hipercykliczno±ci (Hypercyclicity Criterion): patrz [28, Thm. 3.12];

� Kryterium Godefroya-Shapiro: patrz [28, Thm. 3.1].

Oprócz hipercykliczno±ci dynamika liniowa bada równie» inne dynamiczne wªasno±ci
operatorów (wªasno±ci te s¡ cz¦sto zaczerpni¦te z klasycznej dynamiki topologicznej).
Jednymi z mo»liwych wzmocnie« poj¦cia topologicznej tranzytywno±ci s¡ poj¦cia sªabego
mieszania i mieszania.
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De�nicja 2. Operator T : X → X okre±lony na przestrzeni liniowo-topologicznej X na-
zywamy operatorem:

� sªabo mieszaj¡cym (weak-mixing), gdy operator T × T : X × X → X × X jest
topologicznie tranzytywny;

� mieszaj¡cym (mixing), gdy dla dowolnych niepustych i otwartych podzbiorów U, V ⊂
X istnieje takie N ∈ N, »e dla n ≥ N mamy T n(U) ∩ V ̸= ∅.

Oczywi±cie ka»dy operator mieszaj¡cy jest operatorem sªabo mieszaj¡cym oraz ka»dy
operator sªabo mieszaj¡cy jest topologicznie tranzytywny. Przykªad operatora sªabo mie-
szaj¡cego ale nie mieszaj¡cego mo»na ªatwo znale¹¢ po±ród wagowych operatorów prze-
suni¦cia. To czy istniej¡ operatory, które s¡ topologicznie tranzytywne ale nie sªabo mie-
szaj¡ce okazaªo si¦ by¢ bardzo trudnym problemem (postawionym wprost przez Herrero).
Pytanie to doprowadziªo do znacz¡cego rozwoju dynamiki liniowej, a odpowiedzi na nie
udzielili w 2009 De la Rosa i Read w [18]. Wskazali oni przykªad operatora T , który jest
hipercykliczny ale T × T hipercykliczny nie jest.

Innym wzmocnieniem poj¦cia hipercykliczno±ci jest poj¦cie silnej hipercykliczno±ci
(frequent hypercyclicity). Je±li wektor x jest wektorem hipercyklicznym dla operatora
T , to dla ka»dego zbioru otwartego ∅ ̸= U ⊂ X istnieje takie n ∈ N, »e T nx ∈ U .
Przypomnijmy, »e doln¡ g¦sto±ci¡ zbioru A ⊂ N nazywamy liczb¦

dens(A) = lim inf
N→∞

card{1 ≤ n ≤ N : n ∈ A}
N

.

De�nicja 3. Operator T : X → X okre±lony na przestrzeni liniowo-topologicznej X na-
zywamy operatorem silnie hipercyklicznym, gdy istnieje x ∈ X, »e dla ka»dego zbioru
otwartego ∅ ≠ U ⊂ X mamy

dens({n ≥ 1: T nx ∈ U}) > 0.

Informacje o zwi¡zkach poj¦cia silnej hipercykliczno±ci z innymi poj¦ciami dynamiki
liniowej mo»na znale¹¢ w dziewi¡tym rozdziale [28]. Wspomnijmy tylko, »e trzy klasyczne
operatory podane na pocz¡tku tego omówienia s¡ silnie hipercykliczne, a gªównym na-
rz¦dziem do pokazywania silnej hipercykliczno±ci jest tak zwane Frequent Hypercyclicity
Criterion.

Kolejn¡ wa»n¡ klas¦ operatorów stanowi¡ operatory chaotyczne. Przypomnijmy, »e
wektor x jest punktem okresowym dla operatora T , gdy dla pewnego k ∈ N mamy
T kx = x.

De�nicja 4. Operator T : X → X okre±lony na przestrzeni liniowo-topologicznej X na-
zywamy chaotycznym, gdy jest topologicznie tranzytywny i posiada g¦sty zbiór punktów
okresowych.

Operatory hipercykliczne wskazane przez Birkho�a, Maclane'a i Rolewicza s¡ podsta-
wowymi przykªadami operatorów chaotycznych, szczegóªy znajdzie czytelnik w drugim
rozdziale [28].
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Dynamika liniowa rozwija si¦ obecnie w kilku kierunkach, wymienimy najwa»niejsze
z nich.

� Badanie poszczególnych klas operatorów i charakteryzowanie w±ród nich tych, które
posiadaj¡ jakie± dynamiczne wªasno±ci. W szczególno±ci bada si¦: operatory kom-
pozycji i wagowe operatory kompozycji na rozmaitych przestrzeniach ci¡gowych
i funkcyjnych, operatory ró»niczkowe, operatory sprz¦»one do operatorów mno»e-
nia, operatory Toeplitza.

� Badanie rozmaitych dynamicznych wªasno±ci operatorów, poza wymienionymi po-
wy»ej nale»¡ do nich mi¦dzy innymi: wªasno±¢ powracania (recurrence), ergodycz-
no±¢ (ergodicity), ograniczono±¢ orbit (power boundedness).

� Badanie wªasno±ci zbioru wektorów hipercyklicznych (lub wektorów silnie hipercy-
klicznych): jak du»y to musi/mo»e by¢ zbiór, czy ma on jak¡± struktur¦ (na przy-
kªad czy znajdziemy podprzestrze« liniow¡/podalgebr¦ zawieraj¡c¡ tylko wektory
hipercykliczne).

� Badanie problemu podprzestrzeni niezmienniczej.

Wi¦cej informacji na temat dynamiki liniowej mo»na znale¹¢ w dwóch znakomitych
monogra�ach [6, 28].

Cykl prac przedstawionych w tym autoreferacie jako osi¡gni¦cie naukowe koncentruje
si¦ wokóª dynamicznych wªasno±ci operatorów dziaªaj¡cych na rozmaitych przestrzeniach
funkcji gªadkich i holomor�cznych. Z jednej strony badane jest zachowanie wagowych ope-
ratorów kompozycji na takich przestrzeniach, z drugiej strony w ich kontek±cie rozwa»a si¦
problem podprzestrzeni niezmienniczej. Szczegóªy znajduj¡ si¦ w kolejnych podrozdziaªach.

3.2 Dynamiczne wªasno±ci wagowych operatorów kompozycji

Niech Ω b¦dzie niepustym zbiorem i niech F b¦dzie przestrzeni¡ liniowo-topologiczn¡,
której elementami s¡ funkcje okre±lone na Ω i o warto±ciach w ciele K liczb rzeczywistych
lub zespolonych. Je»eli dla pewnych funkcji

w : Ω → K oraz ψ : Ω → Ω

mamy, »e
w · (f ◦ ψ) ∈ F dla ka»dej f ∈ F ,

to operator
Cw,ψ : F → F , f 7→ w · (f ◦ ψ)

jest poprawie okre±lony. Nazywamy go wagowym operatorem kompozycji, a w przypadku
gdy funkcja w jest to»samo±ciowo równa 1 operatorem kompozycji i piszemy Cψ. Opera-
tory kompozycji i wagowe operatory kompozycji stanowi¡ wa»n¡ klas¦ operatorów rozwa-
»anych w analizie funkcjonalnej. W zwi¡zku z tym pojawiaj¡ si¦ dwa naturalne problemy.

� Dla danej przestrzeni F scharakteryzowa¢ te funkcje w oraz ψ dla których operator
Cw,ψ jest poprawnie okre±lony.
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� Dla ró»nych przestrzeni F scharakteryzowa¢ wªasno±ci operatora Cw,ψ w terminach
wªasno±ci funkcji w oraz ψ.

Zajmiemy si¦ teraz dokªadniej tym drugim problemem, siª¡ rzeczy wspomina¢ te» b¦-
dziemy wyniki zwi¡zane z tym pierwszym.

Badanie rozmaitych wªasno±ci wagowych operatorów kompozycji ma dªug¡ histori¦.
Interesuj¡cym problemem s¡ pytania kiedy s¡ one zwarte; jakie maj¡ warto±ci wªasne;
kiedy s¡ odwracalne itd. Z punktu widzenia dynamiki liniowej, operatorami kompozycji
zajmowaªo si¦ wielu znanych specjalistów.

� Na przestrzeniach Banacha i Frécheta funkcji holomor�cznych dynamik¦ operatorów
kompozycji badali mi¦dzy innymi Birkho�, Shapiro, Grosse-Erdmann, Morini, Bés,
Youse�, Rezaei, Zaj¡c.

� Na przestrzeni funkcji analitycznych zmiennej rzeczywistej dynamik¦ operatorów
kompozycji badali Bonet i Doma«ski.

� Na przestrzeniach typu Lp dynamik¦ operatorów kompozycji badaª Kalmes.

� Na przestrzeniach b¦d¡cych j¡drami pewnych operatorów ró»niczkowych (dla przy-
kªadu na przestrzeni funkcji harmonicznych) dynamik¦ operatorów kompozycji ba-
dali Kalmes i Niess.

� Na przestrzeni Schwartza funkcji szybko malej¡cych dynamik¦ operatorów badali
mi¦dzy innymi Galbis, Jordá, Fernández.

Lista ta oczywi±cie nie jest kompletna, dªu»sz¡ i dokªadniejsz¡ list¦ referencji znajdzie czy-
telnik w pracach wymienionych w tym autoreferacie jako osi¡gni¦cie naukowe. Niektórym
z wyników wymienionych powy»ej przyjrzymy si¦ dokªadniej w pó¹niejszych rozdziaªach.

Gªównym celem Przestackiego i jego wspóªpracowników byªo dokªadne opisanie dy-
namicznych wªasno±ci wagowych operatorów kompozycji na rozmaitych przestrzeniach
funkcji gªadkich i holomor�cznych. Przestrzenie te mo»na podzieli¢ na dwie kategorie.

� Przestrzenie funkcji de�niowanych przez wªasno±ci lokalne takie jak gªadko±¢ lub
holomor�czno±¢: przykªadami s¡ przestrze« funkcji gªadkich C∞(Ω) i przestrze«
funkcji holomor�cznych H(Ω).

� Przestrzenie funkcji de�niowanych przez wªasno±ci lokalne i globalne takie jak tempo
wzrostu: przykªadami s¡ przestrze« funkcji szybko malej¡cych S(R) i przestrze«
funkcji o ograniczonym wzro±cie OM(R).

Nie powinno by¢ niespodziank¡, »e wyniki dotycz¡ce dynamicznych wªasno±ci wagowych
operatorów kompozycji ró»ni¡ si¦ w zale»no±ci od tego na jakiej przestrzeni okre±lony
jest operator. Dokªadniejsze omówienie sytuacji w ka»dej z tych przestrzeni znajduje si¦
w kolejnych podrozdziaªach. Dodajmy tylko, »e w ka»dej z rozwa»anych przestrzeni jest
wspólny zestaw dobrze znanych warunków koniecznych dla hipercykliczno±ci wagowego
operatora kompozycji Cw,ψ: funkcja w nie mo»e mie¢ miejsc zerowych a funkcja ψ musi
by¢ iniekcj¡ bez punktów staªych.
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3.2.1 Przestrze« funkcji gªadkich C∞(Ω,K) - prace [A,D]

Niech Ω ⊂ Rd b¦dzie otwarty i niech K b¦dzie ciaªem liczb rzeczywistych lub zespolonych.
Przestrze« funkcji gªadkich C∞(Ω,K) skªada si¦ z tych K-warto±ciowych funkcji na Ω,
które s¡ niesko«czenie wiele razy ró»niczkowalne. Wraz z naturaln¡ topologi¡ zbie»no±ci
jednostajnej funkcji i wszystkich pochodnych na zwartych podzbiorach Ω, przestrze« ta
jest o±rodkow¡ przestrzeni¡ Frécheta, wa»n¡ z punktu widzenia analizy matematycznej,
np. w teori równa« ró»niczkowych oraz teorii dystrybucji.

Praca [A] jest pierwsz¡ prac¡ w której przeanalizowano dynamiczne wªasno±ci wa-
gowych operatorów kompozycji dziaªaj¡cych na przestrzeni funkcji gªadkich. Motywacj¡
do podj¦cia bada« byª wynik Grosse-Erdmanna i Mortiniego (cytujemy go w kolejnym
podrozdziale), w którym podali oni peªn¡ charakteryzacj¦ hipercykliczno±ci operatorów
kompozycji okre±lonych na przestrzeni funkcji holomor�cznych. Z analizy dowodu tego
twierdzenia wynikaªo, »e dla dynamicznych wªasno±ci wagowego operatora kompozycji
Cw,ψ bardzo istotna jest wªasno±¢ uciekania (run-away property) funkcji ψ. Dla funkcji
ψ : Ω → Ω przez ψn oznaczamy n-krotne zªo»enie funkcji ψ z sam¡ sob¡.

De�nicja 5. Niech Ω ⊂ Rd b¦dzie otwarty i niech ψ : Ω → Ω.

� Mówimy, »e ψ ma wªasno±¢ uciekania, gdy dla ka»dego zbioru zwartego K ⊂ Ω
istnieje n ∈ N takie, »e ψn(K) ∩K = ∅.

� Mówimy, »e ψ ma wªasno±¢ silnego uciekania (strong run-away property), gdy dla
ka»dego zbioru zwartego K ⊂ Ω istnieje N ∈ N takie, »e ψn(K)∩K = ∅ dla n ≥ N .

Przykªadem funkcji posiadaj¡cej wªasno±¢ uciekania (a nawet silnego uciekania) jest
ψ : R → R okre±lona wzorem ψ(x) = x + 1. Nie jest trudno sprawdzi¢, »e dla funkcji
inie�ktywnych ψ : R → R wªasno±¢ uciekania to dokªadnie to samo co brak punktów
staªych, patrz [Lemma 4.1, A]. Dodajmy równie», »e do tej pory nie udaªo si¦ rozstrzygn¡¢
czy wªasno±¢ uciekania jest równowa»na wªasno±ci silnego uciekania.

Charakteryzacja hipercyklicznych wagowych operatorów kompozycji okre±lonych na
C∞(Ω,K) jest nast¦puj¡ca.

Twierdzenie 6. (Przestacki, [A])
Niech Ω ⊂ Rd b¦dzie otwarty a funkcje ψ : Ω → Ω oraz w : Ω → K b¦d¡ gªadkie.
Nast¦puj¡ce warunki s¡ równowa»ne.

1. Operator Cw,ψ : C∞(Ω,K) → C∞(Ω,K) jest hipercykliczny.

2. Operator Cw,ψ : C∞(Ω,K) → C∞(Ω,K) jest sªabo mieszaj¡cy.

3. Speªnione s¡ warunki:

(a) Dla x ∈ Ω mamy w(x) ̸= 0.

(b) Funkcja ψ jest iniekcj¡ i dla x ∈ Ω mamy det[ψ′(x)] ̸= 0.

(c) Funkcja ψ ma wªasno±¢ uciekania.

Najtrudniejsz¡ cz¦±ci¡ dowodu powy»szego twierdzenia byªo pokazanie, »e wªasno±¢
uciekania jest warunkiem koniecznym dla hipercykliczno±ci.
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Wspomnijmy tylko, »e charakteryzacja wªasno±ci mieszania wygl¡da bardzo podob-
nie: by j¡ uzyska¢ w punkcie trzecim powy»szego twierdzenia zamieni¢ trzeba wªasno±¢
uciekania na wªasno±¢ silnego uciekania, jest to twierdzenie 3.6 w [A].

Jak ju» wy»ej wspomniano, dla iniektywnych funkcji ψ : R → R wªasno±¢ uciekania
(a tak»e wªasno±¢ silnego uciekania) to dokªadnie to samo co brak punktów staªych.
Zatem w tym przypadku hipercykliczno±¢ jest równowa»na wªasno±ci sªabego mieszania i
mieszania oraz chaotyczno±ci: patrz twierdzenie 4.2 w [A]. Mo»na oczywi±cie zapyta¢ czy
do tej listy równowa»nych wªasno±ci mo»na dopisa¢ siln¡ hipercykliczno±¢. Pozytywna
odpowied¹ na to pytanie jest zasadniczym celem pracy Piszczka i Przestackiego [D].

Poj¦cie silnej hipercykliczno±ci zostaªo wprowadzone przez Bayarda i Grivaux w [5].
W pracy tej pokazali oni, »e operator kompozycji T : H(C) → H(C) okre±lony wzorem
(Tf)(z) = f(z + 1) jest silnie hipercykliczny. Wynik ten zostaª nast¦pnie uogólniony
przez Bonill¦ i Grosse-Erdmanna w [16]. Pokazali oni, »e ka»dy operator na H(C), który
nie jest wielokrotno±ci¡ identyczno±ci i jest przemienny z operatorem ró»niczkowania D,
jest silnie hipercykliczny. Wªasno±¢ silnej hipercykliczno±ci byªa badana dla wagowych
operatorów kompozycji przez Bésa w [8, 9].

Z wyników uzyskanych przez Bonill¦ i Grosse-Erdmanna, którzy pokazali, »e ka»dy
operator tranzytywny w sensie Rungego (Runge transitive) jest silnie hipercykliczny,
mo»na w relatywnie prosty sposób uzyska¢, »e dla dowolnej gªadkiej wagi bez zer w : R →
K i dla funkcji ψ : R → R okreslonej wzorem ψ(x) = x+ 1 wagowy operator kompozycji
Cw,ψ jest silnie hipercykliczny na C∞(R,K): patrz Twierdzenie 7 w [D]. Aby uogólni¢ ten
wynik na wszystkie wagowe operatory kompozycji autorzy pokazali, »e ka»dy hipercy-
kliczny wagowy operator kompozycji ma w pewnym ±ci±le okre±lonym sensie takie same
dynamiczne wªasno±ci jak wagowy operator Cw,ψ, gdzie ψ(x) = x+ 1.

Twierdzenie 7. (Piszczek, Przestacki, [D])
Niech ψ : R → R b¦dzie gªadk¡ bijekcj¡ tak¡, »e ψ′(x) ̸= 0 oraz ψ(x) ̸= x dla
ka»dego x ∈ R. Istniej gªadka bijekcja H : R → R taka, »e

H(ψ(x)) = H(x) + 1 oraz H ′(x) ̸= 0 dla x ∈ R.

Z twierdzenia tego wynika, »e je±li operator Cw,ψ jest hipercykliczny na C∞(R,K) dla
bijektywnej funkcji ψ, to mo»na znale¹¢ tak¡ gªadk¡ funkcj¦ bijektywn¡ H o nieznikaj¡cej
pochodnej dla której diagram

C∞(R,K)
Cw◦H−1,x+1−−−−−−−→ C∞(R, ,K)

CH

y CH

y
C∞(R, ,K)

Cw,ψ−−−→ C∞(R, ,K)

jest przemienny. To w prosty sposób daje, »e Cw,ψ jest silnie hipercykliczny.
Dla ustalonej funkcji ψ równanie

H(ψ(x)) = H(x) + 1

pojawiaj¡ce si¦ w powy»szym twierdzeniu jest znane jako równanie Abela. Peªni ono
wa»n¡ rol¦ w analizie warto±ci wªasnych operatorów kompozycji. O jego rozwi¡zywalno-
±ci wiadomo caªkiem sporo (patrz prace [7, 14]): dla przykªadu wiemy, »e równanie to ma
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rozwi¡zanie gªadkie gdy funkcja ψ jest gªadka i nie ma punktów staªych. Podkre±lmy jed-
nak, »e w pracy [D] autorzy potrzebowali bardzo szczególnego rozwi¡zania tego równania
i nie mogli si¦ oprze¢ na znanych ju» wynikach.

3.2.2 Przestrze« funkcji holomor�cznych H(Ω) - praca [E]

Dla obszaru Ω (to jest otwartego i spójnego podzbioru zbioru C) przez H(Ω) oznaczamy
przestrze« Frécheta wszystkich funkcji holomor�cznych na Ω wyposa»on¡ w topologi¦
zbie»no±ci jednostajnej na zwartych podzbiorach Ω. Jak ju» wspomniano wcze±niej dyna-
miczne wªasno±ci operatorów kompozycji okre±lonych na tej przestrzeni zostaªy bardzo
dokªadnie zbadane przez Grosse-Erdmanna i Mortiniego w [27]. Okazuje si¦, w kontra±cie
do przypadku przestrzeni funkcji gªadkich C∞(Ω,K), »e tym razem dynamiczne wªasno-
±ci w sposób istotny zale»¡ od topologicznych wªasno±ci obszaru Ω. Przypomnijmy, »e
obszar Ω nazywamy

� jednospójnym, gdy zbiór C \ Ω nie posiada ograniczonej skªadowej spójno±ci;

� sko«czenie spójnym, gdy zbiór C\Ω posiada sko«czon¡ liczb¦ skªadowych spójno±ci;

� niesko«czeniespójnym, gdy zbiór C \ Ω posiada niesko«czenie wiele skªadowych
spójno±ci.

Ponadto zwarty podzbiór K ⊂ Ω nazywamy Ω-wypukªym, gdy ka»da ograniczona skªa-
dowa spójno±ci zbioru C \K zawiera punkt spoza Ω.

Twierdzenie 8. (Grosse-Erdmann i Mortini, [27])
Niech Ω ⊂ C b¦dzie obszarem i niech ψ : Ω → Ω b¦dzie holomor�czna.

1. Je±li Ω jest jednospójny, to operator Cψ jest hipercykliczny na H(Ω) wtedy i tylko
wtedy, gdy ψ jest iniekcj¡ i ma wªasno±¢ uciekania.

2. Je±li Ω jest sko«czenie spójny ale nie jest jednospójny, to operator Cψ nie jest hi-
percykliczny na H(Ω).

3. Je±li Ω jest niesko«czeniespójny, to operator Cψ jest hipercykliczny na H(Ω) wtedy i
tylko wtedy, gdy ψ jest iniekcj¡ i dla ka»dego Ω-spójnego, zwartego podzbioru K ⊂ Ω
i ka»dego N ∈ N istnieje n ≥ N takie, »e ψn(K) ∩ K = ∅ i zbiór ψn(K) jest Ω-
wypukªy.

Gªówn¡ motywacj¡ do podj¦cia bada« nad dynamicznymi wªasno±ciami wagowych
operatorów kompozycji dziaªaj¡cych na H(Ω) byªy dla Goli«skiego i Przestackiego wyniki
uzyskane przez Bèsa w [9]. W pracy tej zajmowaª si¦ on dynamicznymi wªasno±ciami
wagowych operatorów kompozycji dziaªaj¡cych na H(Ω), gdzie Ω jest jednospójny.

Twierdzenie 9. (Bés, [9]) Niech obszar Ω ⊂ C b¦dzie jednospójny a funkcje w : Ω → C
i ψ : Ω → Ω b¦d¡ holomor�czne. Operator Cw,ψ jest mieszaj¡cy na H(Ω) wtedy i tylko
wtedy, gdy jest hipercykliczny, wtedy i tylko wtedy, gdy funkcja w nie ma miejsc zerowych
a funkcja ψ jest iniekcj¡ bez punktów staªych.

W prace tej Bès zadaª równie» nast¦puj¡ce, niezwykle intryguj¡ce, pytanie.

Dla których obszarów Ω istnieje hipercykliczny wagowy operator kompozycji dziaªaj¡cy
na przestrzeni H(Ω)? W szczególno±ci, czy taki operator istnieje na H (C \ {0})?

10



Zauwa»my, »e wynik Grosse-Erdmanna i Mortiniego mówi, »e na H (C \ {0}) nie istnieje
hipercykliczny operator kompozycji. Zatem pytanie Bésa jest pytaniem o to czy dodanie
wagi do operatora kompozycji mo»e uczyni¢ go operatorem hipercyklicznym. Praca [E]
jest w caªo±ci po±wi¦cona odpowiedzi na to pytanie. Goli«skiemu i Przestackiemu udaªo
si¦ nie tylko poda¢ opis tych obszarów Ω dla których na H(Ω) istnieje hipercykliczny
wagowy operator kompozycji, ale udaªo si¦ równie» poda¢ kompletn¡ charakteryzacj¦
hipercykliczno±ci. Ze wzgl¦du na to, »e opis ten zale»y od topologicznych wªasno±ci zbioru
Ω, to poni»sze rozwa»ania s¡ podzielone na cztery cz¦±ci.

Obszary jednospójne

Wprzypadku jednospójnym charakteryzacj¦ hipercykliczno±ci wagowych operatorów kom-
pozycji podaª ju» Bés w [9] (patrz Twierdzenie 9). Do listy równowa»nych warunków przez
niego podanych Goli«ski i Przestacki dodali wªasno±¢ silnej hipercykliczno±ci operatora.

Twierdzenie 10. (Goli«ski, Przestacki, [E])
Niech obszar Ω ⊂ C b¦dzie jednospójny a funkcje w : Ω → C oraz ψ : Ω → Ω
b¦d¡ holomor�czne. Operator Cw,ψ jest silnie hipercykliczny na H(Ω) wtedy i tylko
wtedy, gdy funkcja w nie ma miejsc zerowych a funkcja ψ jest iniekcj¡ bez punktów
staªych.

Dowód powy»szego twierdzenia jest bardzo techniczny i jest mody�kacj¡ dowodu ana-
logicznego twierdzenia dla operatorów kompozycji: patrz [28, Example 9.6]. Za pomoc¡
twierdzenia Rungego i pewnego kombinatorycznego lematu konstruuje si¦ wektor silnie
hipercykliczny.

Nakªute obszary jednospójne

Nakªutym obszarem jednospójnym nazywamy taki obszar w C, który jest konforemnie
równowa»ny albo z C⋆ = C \ {0} albo z D⋆ = {z ∈ C : 0 < |z| < 1} (z kursu analizy ze-
spolonej wiadomo, »e obszary te nie s¡ konforermnie równowa»ne ze sob¡). Z cytowanego
wy»ej Twierdzenia 8 wynika, »e zarówno na H(C⋆) jak i na H(D⋆) nie istnieje hipercy-
kliczny operator kompozycji. Okazuje si¦, do±¢ niespodziewanie w kontek±cie tego co ju»
wiemy o dynamice na C∞(Ω,K), »e dodanie wagi mo»e zmieni¢ wªasno±ci operatora.

W przypadku Ω = C⋆ peªna charakteryzacja hipercyklicznych wagowych operatorów
kompozycji jest nast¦puj¡ca.

Twierdzenie 11. (Goli«ski, Przestacki, [E])
Niech w : C⋆ → C i ψ : C⋆ → C⋆ b¦d¡ funkcjami holomor�cznymi. Nast¦puj¡ce
warunki s¡ równowa»ne.

1. Operator Cw,ψ jest hipercykliczny na H(C∗).

2. Istniej¡ funkcja W ∈ H(C⋆), dodatnia liczba naturalna k oraz a ∈ C takie, »e
zachodzi jeden z warunków:

(a) Mamy ψ(z) = az, gdzie 0 < |a| < 1 i w(z) = zk exp (W (z)).

(b) Mamy ψ(z) = az, gdzie |a| > 1 i w(z) = z−k exp (W (z)).
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Przykªad.

� Dla ψ(z) = 1
2
z i w(z) = z operator Cw,ψ jest hipercykliczny na H(C∗).

� Dla ψ(z) = 2z i w(z) = 1/z operator Cw,ψ jest hipercykliczny na H(C∗).

W przypadku, gdy obszar Ω jest konforemnie równowa»ny z D⋆ charakteryzacja hi-
percyklicznych wagowych operatorów kompozycji prezentuje si¦ nast¦puj¡co.

Twierdzenie 12. (Goli«ski, Przestacki, [E])
Niech Ω ̸= C b¦dzie obszarem jednospójnym zawieraj¡cym zero, niech Ω∗ = Ω\{0},
i niech funkcje w : Ω⋆ → C oraz ψ : Ω⋆ → Ω⋆ b¦d¡ holomor�czne. Nast¦puj¡ce
warunki s¡ równowa»ne.

1. Operator Cw,ψ jest hipercykliczny na H(Ω∗).

2. Istniej¡ W ∈ H(Ω⋆) i dodatnia liczba k takie, »e w(z) = zk exp (W (z)),
a funkcja ψ jest funkcj¡ holomor�czn¡ na Ω, która jest iniekcj¡, nie jest
surjekcj¡ i speªnia warunek ψ(0) = 0.

Przykªad. Dla ψ(z) = 1
2
z i w(z) = z operator Cw,ψ jest hipercykliczny na H(D∗).

Inne obszary sko«czenie spójne

W przypadku, gdy obszar Ω jest sko«czenie spójny ale nie jest konforemnie równowa»ny
ani z C, ani z D, ani z C⋆, ani z D⋆, to identycznie jak w przypadku operatorów kompozcyji,
na H(Ω) nie ma hipercyklicznych wagowych operatorów kompozycji. Powód tego jest
nast¦puj¡cy: grupa automor�zmów obszaru Ω jest �za maªa�.

Twierdzenie 13. (Goli«ski, Przestacki, [E]) Niech Ω ⊂ C b¦dzie obszarem sko«-
czenie spójnym, który nie jest konforemnie równowa»ny ani z C, ani z D, ani z
C⋆, ani z D⋆. Dla dowolnych funkcji holomor�cznych w : Ω → C oraz ψ : Ω → Ω
operator Cw,ψ nie jest hipercykliczny na H(Ω).

Obszary niesko«czeniespójne

W przypadku obszarów niesko«czeniespójnych charakteryzacja hipercykliczncyh wago-
wych operatorów kompozycji jest bardzo zbli»ona do charakteryzacji w przypadku ope-
ratora bez wagi.

Twierdzenie 14. (Goli«ski, Przestacki, [E]) Niech Ω ⊂ C b¦dzie obszarem nie-
sko«czeniespójnym a funkcje w : Ω → C i ψ : Ω → Ω b¦d¡ holomor�czne. Operator
Cw,ψ jest hipercykliczny na H(Ω) wtedy i tylko wtedy, gdy funkcja w nie ma zer
a funkcja ψ jest iniekcj¡ oraz dla ka»dego Ω-spójnego, zwartego podzbioru K ⊂ Ω
i ka»dego N ∈ N istnieje n ≥ N takie, »e ψn(K) ∩ K = ∅ i zbiór ψn(K) jest
Ω-wypukªy.
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3.2.3 Przestrze« Schwartza S(R) -praca [C]

Jedn¡ z najwa»niejszych przestrzeni Frécheta jest przestrze« Schwartza S(R) funkcji
szybko malej¡cych do zera. Skªada si¦ ona z tych funkcji gªadkich f : R → C, które
dla ka»dego N ∈ N speªniaj¡ warunek

∥f∥N := max
0≤i≤N

sup
x∈R

(
1 + x2

)N ∣∣f (i)(x)
∣∣ <∞.

Topologi¦ tej przestrzeni wprowadza si¦ poprzez ci¡g norm (∥ · ∥N)N∈N zde�niowanych
powy»ej.

Zainteresowanie operatorami kompozycji i wagowymi operatorami kompozycji na S(R)
pojawiªo si¦ w 2018 roku, gdy Galbis i Jordá podali w [23] kompletn¡ charakteryzacj¦
tych funkcji gªadkich ψ : R → R dla których operator kompozycji Cψ jest dobrze okre-
±lony na S(R) (a zatem ci¡gªy na mocy prostego zastosowania twierdzenia o domkni¦tym
wykresie). Opis dobrze okre±lonych wagowych operatorów kompozycji na S(R) zostaª
uzyskany niedawno przez Asensio, Jord¦ i Kalmesa w [3]. Wraz z opisem dobrze okre±lo-
nych operatorów kompozycji pojawiªy si¦ prace omawiaj¡ce ich dynamiczne wªasno±ci,
dla przykªadu w pracach [21, 22] bada si¦ dynamiczne wªasno±ci tych operatorów takie
jak ograniczono±¢ orbit czy ergodyczno±¢ albo ±rednia ergodyczno±¢.

Gªównym celem bada« prowadzonych przez Goli«skiego i Przestackiego byªo znalezie-
nie naturalnych przykªadów operatorów hipercyklicznych okre±lonych na S(R). Poniewa»
w±ród operatorów ró»niczkowych i operatorów kompozycji operatorów hipercyklicznych
nie ma (jest to wyja±nione w [C, Fact 1 i Fact 2]), to naturaln¡ klas¡ wybran¡ do pro-
wadzenia poszukiwa« zostaªa klasa wagowych operatorów translacji, to jest operatorów
postaci

Tw : S(R) → S(R), f(·) 7→ w(·)f(·+ 1),

gdzie funkcja w : R → C jest gªadka. Nie jest trudno sprawdzi¢, »e operator Tw jest dobrze
okre±lony i ci¡gªy wtedy i tylko wtedy, gdy funkcja w nale»y do przestrzeni OM(R) funkcji
gªadkich o ograniczonym wzro±cie, zªo»onej z tych funkcji gªadkich f : R → C takich, »e
dla ka»dego k ≥ 0 istnieje l ∈ N, »e

∣∣w(k)(x)
∣∣ < l (1 + x2)

l dla ka»dego x ∈ R. O
przestrzeni OM(R) piszemy wi¦cej w dalszych cz¦±ciach tego autoreferatu. Oczywi±cie
wagowe operatory translacji tworz¡ podklas¦ klasy wagowych operatorów kompozycji.

Wyniki uzyskane w pracy [C] w swoim duchu s¡ podobne do wyników uzyskanych
przez Salasa, który w [39] badaª dynamiczne wªasno±ci wagowego operatora przesuni¦cia
na przestrzeni ℓ2(Z). Struktura przestrzeni S(R), a w szczególno±ci to, »e aby bada¢ w niej
zbie»no±¢ trzeba kontrolowa¢ pochodne wszystkich rz¦dów, powoduje jednak, »e wyniki i
ich dowody s¡ du»o bardziej techniczne i skomplikowane.

Do gªównych wyników zawartych w [C] nale»¡ poni»sze charakteryzacje klasy hiper-
cyklicznych i klasy chaotycznych wagowych operatorów translacji. Okazaªo si¦, »e dla wa-
gowych operatorów translacji hipercykliczno±¢ to dokªadnie to samo co wªasno±¢ sªabego
mieszania, a wªasno±¢ mieszania to dokªadnie to samo co chaotyczno±¢. W charakteryza-
cji chaotyczno±ci zaskakuj¡ce jest to, »e dla wagowych operatorów translacji posiadanie
g¦stego zbioru punktów okresowych od razu implikuje chaotyczno±¢.
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Twierdzenie 15. (Goli«ski, Przestacki, [C])
Niech w ∈ OM(R). Nast¦puj¡ce warunki s¡ równowa»ne.

(i) Operator Tw : S(R) → S(R) jest hipercykliczny.

(ii) Dla ka»dego x ∈ R mamy w(x) ̸= 0, a dla ka»dego zbioru zwartego K ⊂ R
istnieje rosn¡cy ci¡g liczb naturalnych (nk)k∈N taki, »e dla ka»dych j, l ≥ 0

sup
x∈K−nk

(
1 + x2

)j ∣∣∣∣∣∣
(
nk−1∏
n=0

w(x+ n)

)(l)
∣∣∣∣∣∣ k→∞−−−→ 0

oraz

sup
x∈K+nk

(
1 + x2

)j ∣∣∣∣∣
(

1∏nk
n=1w(x− n)

)(l)
∣∣∣∣∣ k→∞−−−→ 0.

Twierdzenie 16. (Goli«ski, Przestacki, [C])
Niech w ∈ OM(R). Nast¦puj¡ce warunki s¡ równowa»ne.

(i) Operator Tw : S(R) → S(R) jest chaotyczny.

(ii) Operator Tw : S(R) → S(R) ma g¦sty zbiór punktów okresowych.

(iii) Dla ka»dego x ∈ R mamy w(x) ̸= 0, a dla ka»dego zbioru zwartego K ⊂ R
istnieje d ∈ N takie, »e da ka»dych j, l ≥ 0

sup
x∈K−kd

(
1 + x2

)j ∣∣∣∣∣∣
(
kd−1∏
n=0

w(x+ n)

)(l)
∣∣∣∣∣∣ k→∞−−−→ 0

oraz

sup
x∈K+kd

(
1 + x2

)j ∣∣∣∣∣∣
(

1∏kd
n=1w(x− n)

)(l)
∣∣∣∣∣∣ k→∞−−−→ 0.

Widz¡c tak techniczne charakteryzacje od razu nasuwaj¡ si¦ pytania czy potra�my
wskaza¢ przykªady operatorów speªniaj¡cych opisane w nich warunki i czy potra�my roz-
ró»ni¢ klas¦ hipercyklicznych i chaotycznych wagowych operatorów translacji. Odpowied¹
na obydwa te pytania jest twierdz¡ca: patrz trzeci rozdziaª w [C].

3.2.4 Przestrze« funkcji o ograniczonym wzro±cie OM(R) - praca [F]

Przestrze« OM(R) funkcji o ograniczonym wzro±cie, istotna w kontek±cie teorii dystrybu-
cji, pojawiªa si¦ ju» w rozdziale dotycz¡cym operatorów translacji okre±lonych na prze-
strzeni funkcji szybko malej¡cych S(R). Skªada si¦ ona z mno»ników dla przestrzeni S(R),
to znaczy takich funkcji f : R → R dla których f · v ∈ S(R) dla ka»dej v ∈ S(R) (dla
przykªadu wszystkie wielomiany nale»¡ do OM(R)). Mo»na pokaza¢, »e

OM(R) = ∩∞
m=1 ∪∞

n=1 Om
n (R),
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gdzie dla ka»dego m,n ∈ N

Om
n (R) :=

{
f ∈ Cm(R) : |f |m,n := sup

x∈R,0≤j≤m
(1 + |x|2)−n|f (j)(x)| <∞

}
.

Z opisu tego wynika, »e naturaln¡ topologi¡ tej przestrzeni jest topologia granicy pro-
jektywnej granic induktywnych przestrzeni Banacha. Z t¡ topologi¡ przestrze« OM(R)
jest zupeªn¡ przestrzeni¡ ultrabornologiczn¡ niemetryzowaln¡: patrz [31]. Najwa»niej-
sz¡ informacj¡ w kontek±cie dynamiki liniowej jest to, »e OM(R) nie jest przestrzeni¡
Frécheta, nie mo»emy zatem u»ywa¢ twierdzenia Birkho�a o topologicznej tranzytyw-
no±ci i formalnie mo»e si¦ zdarzy¢, »e na OM(R) s¡ operatory, które s¡ topologicznie
tranzytywne i nie s¡ hipercykliczne (dynamik¦ liniow¡ w kontek±cie ogólnych przestrzeni
liniowo-topologicznych badano w kilku pracach, dla przykªadu w [13, 35, 15], warto rów-
nie» zajrze¢ do dwunastego rozdziaªu w [28]).

Przypomnijmy, »e badania dynamicznych wªasno±ci operatorów kompozycji okre±lo-
nych na OM(R) zostaªy zapocz¡tkowane w 2022 roku przez Albanese, Jord¦ i Mele w
[1]. W pracy tej pokazali oni mi¦dzy innymi, »e operator kompozycji Cψ : OM(R) →
OM(R), f 7→ f ◦ ψ jest dobrze okre±lony i ci¡gly na OM(R) wtedy i tylko wtedy, gdy
ψ ∈ OM(R). Ponadto badali ograniczono±¢ orbit i ergodyczno±¢ tych operatorów i, co
najistotniejsze, pokazali, »e dla ψ(x) = x+ 1 operator kompozycji Cψ jest mieszaj¡cy na
OM(R).

W kontek±cie tych wyników gªównym celem bada« prowadzonych przez Kalmesa
i Przestackiego byªa odpowied¹ na nast¦puj¡ce trzy pytania.

� Czy dla ψ(x) = x+ 1 operator Cψ jest hipercykliczny na OM(R)?

� Jaka jest charakteryzacja mieszaj¡cych operatorów kompozycji dziaªaj¡cych na
OM(R)?

� Czy ka»dy mieszaj¡cy operator kompozycji okre±lony naOM(R) jest hipercykliczny?

Na pierwsze dwa pytania kompletna odpowied¹ znajduje si¦ w [F], trzecie pytanie
okazaªo si¦ trudniejsze od pozostaªych, w [F] odpowiadamy na nie tylko cz¦±ciowo. Poni»ej
przybli»ymy wi¦cej szczegóªów, dla zwi¦zªo±ci ograniczymy si¦ jednak do tych funkcji
ψ : R → R, które s¡ bijekcjami. Przypomnijmy, »e dla n ∈ N funkcja ψn to zlo»enie
funkcji ψ z sam¡ sob¡ n-razy. Przez ψ−n oznaczamy funkcj¦ odwrotn¡ do ψn.

Warunek dostateczny dla hipercykliczno±ci operatorów kompozycji okre±lonych na
OM(R) prezentuje si¦ nast¦puj¡co.

Twierdzenie 17. (Kalmes, Przestacki, [F])
Niech ψ ∈ OM(R) b¦dzie bijekcj¡ tak¡, »e ψ(x) > x oraz ψ′(x) > 0 dla x ∈ R.
Zaªo»my ponadto, »e istniej¡ α, β ∈ R takie, »e

∀ j ∈ N∃Cj > 0, tj ∈ N∀x ∈ (β,∞), n ∈ N : |(ψ−n)
(j)(x)| ≤ Cj(1 + |x|2)tj

oraz

∀ j ∈ N∃Cj > 0, tj ∈ N ∀x ∈ (−∞, α), n ∈ N : |(ψn)(j)(x)| ≤ Cj(1 + |x|2)tj .

Wtedy operator Cψ : OM(R) → OM(R) jest hipercykliczny.
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Natychmiastowym wnioskiem z powy»szego twierdzenia jest odpowied¹ na pierwsze
z postawionych powy»ej pyta«: dla ψ(x) = x + 1 operator Cψ jest hipercykliczny na
OM(R). Jak ju» wspomnieli±my dla przestrzeni OM(R) nie mo»na stosowa¢ twierdzenia
Birkho�a o topologicznej tranzytywno±ci. Dowód powy»szego twierdzenia wykorzystuje
jedyny dost¦pny pomysª: konstruujemy wektor hipercykliczny dla operatora kompozycji.

Charakteryzacja mieszaj¡cych operatorów kompozycji okre±lonych na OM(R) prezen-
tuje si¦ nast¦puj¡co.

Twierdzenie 18. (Kalmes, Przestacki, [F])
Niech ψ ∈ OM(R) b¦dzie surjekcj¡. Nast¦puj¡ce warunki s¡ równowa»ne.

(i) Operator Cψ : OM(R) → OM(R) jest mieszaj¡cy.

(ii) Funkcja ψ jest iniekcj¡ bez punktów staªych i o pochodnej bez miejsc zerowych,
a dla ka»dych k ∈ N, a ≤ b i v ∈ S(R) mamy

lim
n→∞

sup
x∈[ψ−n(a),ψ−n(b)]

∣∣v(x)(ψn)(k)(x)∣∣ = 0

oraz
lim
n→∞

sup
x∈[ψn(a),ψn(b)]

∣∣v(x)(ψ−n)
(k)(x)

∣∣ = 0.

W pracy [F] znajduj¡ si¦ liczne przykªady funkcji ψ dla których mo»liwe jest spraw-
dzenie czy operator Cψ jest mieszaj¡cy lub nim nie jest. Interesuj¡ce jest to, »e mo»na
znale¹¢ gªadk¡ funkcj¦ ψ tak¡, »e Cψ nie jest mieszaj¡cy na OM(R), ale na C∞(R) ju»
jest mieszaj¡cy: jest to przykªad 9 w [F].

Na koniec dodajmy, »e wªasno±¢ mieszania dla operatorów na OM(R) okazaªa si¦ by¢
bardzo mocno zwi¡zana z mo»liwo±ci¡ rozwi¡zywania w tej przestrzeni równania Abela
o którym pisali±my ju» wcze±niej. Prawdziwe jest bowiem nast¦puj¡ce twierdzenie.

Twierdzenie 19. (Kalmes, Przestacki, [F])
Niech ψ ∈ OM(R) b¦dzie bijekcj¡ tak¡, »e dla ka»dej funkcji v ∈ S(R)

lim
n→∞

v(ψn(0)) · n = 0 oraz lim
n→∞

v(ψ−n(0)) · n = 0.

Nast¦puj¡ce warunki s¡ równowa»ne.

(i) Operator Cψ : OM(R) → OM(R), f 7→ f ◦ ψ jest mieszaj¡cy.

(ii) Istnieje H ∈ OM(R) o pochodnej bez zer, która speªnia równanie

H(ψ(x)) = H(x) + 1 dla ka»dego x ∈ R.

Gdyby okazaªo si¦, »e wªasno±¢ mieszania operatora Cψ implikuje, »e dla ka»dej funkcji
v ∈ S(R) mamy

lim
n→∞

v(ψn(0)) · n = 0 oraz lim
n→∞

v(ψ−n(0)) · n = 0,

to z powy»szego twierdzenia wynikaªoby, »e ka»dy mieszaj¡cy operator Cψ na OM(R) jest
równie» hipercykliczny. Przykªady wskazane w pracy i twierdzenie poni»ej sugeruj¡, »e

16



tak jest.

Twierdzenie 20. (Kalmes, Przestacki, [F])
Niech f ∈ S(R) i niech ψ(x) = x+ f(x). Operator Cψ : OM(R) → OM(R) nie jest
topologicznie tranzytywny.

3.3 Problem podprzestrzeni niezmienniczej - praca [B]

Problem podprzestrzeni niezmienniczej jest jednym z najbardziej znanych otwartych pro-
blemów analizy funkcjonalnej. Pytamy w nim czy ka»dy operator T : X → X dziaªaj¡cy
na przestrzeni liniowo-topologicznej X posiada nietrywialn¡ podprzestrze« niezmiennicz¡,
to jest tak¡ domkni¦t¡ podprzestrze« 0 ⊊ Y ⊊ X dla której zachodzi T (Y ) ⊂ Y . Problem
ten zostaª postawiony przez J. von Neumanna w latach trzydziestych ubiegªego wieku dla
operatorów okre±lonych na o±rodkowej przestrzeni Hilberta: von Neumann pokazaª wtedy,
»e ka»dy operator zwarty dziaªaj¡cy na o±rodkowej przestrzeni Hilberta ma nietrywialn¡
podprzestrze« niezmiennicz¡. Wynik ten mobilizowaª szereg znakomitych specjalistów do
dalszych bada« w tym kierunku, a próby jego rozwi¡zania doprowadziªy do powstania
wielu ciekawych wyników i u»ytecznych narz¦dzi w analizie funkcjonalnej.

Jednym z pierwszych i najwa»niejszych twierdze« wskazuj¡cych na to, »e problem
podprzestrzeni niezmienniczej mo»e mie¢ pozytywne rozwi¡zanie byª wynik �omonosowa,
który pokazaª w [32], »e ka»dy operator T dziaªaj¡cy na przestrzeni Banacha który jest
przemienny przynajmniej z jednym operatorem zwartym, ma nietrywialn¡ podprzestrze«
niezmiennicz¡. W zwi¡zku z tym wynikiem, niemaªym zaskoczeniem byªo pojawienie si¦
w latach osiemdziesi¡tych ubiegªego wieku konstrukcji operatorów okre±lonych na pew-
nych przestrzeniach Banacha, które nie posiadaj¡ nietrywialnej podprzestrzeni niezmien-
niczej. Pierwszy taki przykªad zostaª podany przez En�o [19, 20], który skonstruowaª
specjaln¡ przestrze« Banacha X i operator na niej okre±lony, który nie ma nietrywialnej
podprzestrzeni niezmienniczej. Niedªugo po wynikach En�o, Read w [37] pokazaª, »e taka
konstrukcja jest wykonalna na klasycznej przestrzeni Banacha ℓ1. Warto wspomnie¢, »e
Read byª w stanie nawet pokaza¢ w [38], »e na ℓ1 istnieje operator który nie ma »adnego
nietrywialnego podzbioru niezmienniczego, to jest operator dla którego ka»dy niezerowy
wektor jest hipercykliczny.

W kontek±cie przestrzeni Frécheta pierwsze wyniki zwi¡zane z omawianym proble-
mem pochodz¡ od Körbera [30] i Schieldsa [40]. Pokazali oni niezale»nie, »e na przestrzeni
ω = RN ka»dy operator posiada nietrywialn¡ podprzestrze« niezmiennicz¡. Pierwszy ne-
gatywny wynik pochodzi od Atzmona, który w [4] skonstruowaª operator bez nietrywialnej
podprzestrzeni niezmienniczej na pewnej nuklearnej przestrzeni Frécheta.

Przypomnijmy, »e topologia przestrzeni Frécheta jest generowana przez pewien ro-
sn¡cy ci¡g póªnorm. Rodzina przestrzeni Frécheta rozpada si¦ na dwie bardzo naturalne
kategorie: na te przestrzenie na których mo»na okre±li¢ ci¡gª¡ norm¦ i na te dla których
jest to niemo»liwe. Do pierwszej kategorii nale»¡ na przykªad przestrze« funkcji caªkowi-
tych H(C) z topologi¡ zbie»no±ci jednostajnej na zbiorach zwartych i przestrze« s ci¡gów
szybko malej¡cych do zera. Dzi¦ki wynikom Goli«skiego [25, 26] i Meneta [34] wiemy, »e
na wielu takich przestrzeniach istniej¡ operatory bez nietrywialnej podprzestrzeni nie-
zmienniczej a nawet bez nietrywialnego podzbioru niezmienniczego.

Je±li przestrze« Frécheta X nie dopuszcza ci¡gªej normy, to mamy dwa wykluczaj¡ce
si¦ warunki:
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� istnieje rosn¡cy ci¡g póªnorm (pn)n∈N generuj¡cy topologi¦ przestrzeni X taki, »e
ker(pn+1) jest sko«czonego kowymiaru w ker(pn) dla ka»dego n ∈ N,

� nie istnieje rosn¡cy ci¡g póªnorm (pn)n∈N generuj¡cy topologi¦ przestrzeni X taki,
»e ker(pn+1) jest sko«czonego kowymiaru w ker(pn) dla ka»dego n ∈ N,

gdzie ker(p) = {x ∈ X : p(x) = 0}. W [33] Menet pokazaª, »e je±li przestrze« Frécheta
podpada pod pierwszy z powy»szych przypadków (przestrze« ω jest tutaj naturalnym
przykªadem), to na takiej przestrzeni ka»dy operator posiada nietrywialn¡ podprzestrze«
niezmiennicz¡. Drugi z opisywanych powy»ej przypadków zostaª pozostawiony w omawia-
nej pracy Meneta jako problem otwarty. Najbardziej naturalnym przykªadem przestrzeni
Frécheta podpadaj¡cym pod ten przypadek jest znana i wa»na dla analizy przestrze«
C∞(R) zªo»ona ze wszystkich funkcji gªadkich na R wyposa»ona w topologi¦ zbie»no±ci
jednostajnej funkcji i wszystkich pochodnych na zbiorach zwartych. Przestrze« ta nie po-
siada ci¡gªej normy i jest izomor�czna z przestrzeni¡ sN czyli przeliczalnym produktem
przestrzeni s ci¡gów szybko malej¡cych do zera.

Gªównym osi¡gni¦ciem wspólnej pracy Goli«skiego i Przestackiego [B] jest udowod-
nienie nast¦puj¡cego twierdzenia.

Twierdzenie 21. (Goli«ski, Przestacki, [B]) Na przestrzeni Frécheta C∞(R) ist-
nieje operator bez nietrywialnej podprzestrzeni niezmienniczej.

Dowód powy»szego twierdzenia opiera si¦ na bardzo technicznej konstrukcji pocho-
dz¡cej od Reada, która w pó¹niejszych latach zostaªa zastosowana przez Goli«skiego do
bada« w kontek±cie przestrzeni Frécheta. Szczegóªowy opis strategii dowodu i idei za nim
stoj¡cych znajduje si¦ w trzecim rozdziale pracy [B]. Podkre±lmy tutaj, »e konstrukcja
Reada i jej pó¹niejsze mody�kacje wymy±lone przez Goli«skiego musiaªy by¢ w istotny
sposób zmienione aby konstrukcja mogªa zosta¢ przeprowadzona na C∞(R). W szczegól-
no±ci autorzy musieli zmierzy¢ si¦ z problemem braku ci¡gªej normy na tej przestrzeni
(fakt ten byª istotnie wykorzystywany w poprzednich konstrukcjach), musieli te» znale¹¢
sposób na �wªa±ciwy� sposób uporz¡dkowania bazy Schaudera dla przestrzeni C∞(R):
konstruowany operator bez nietrywialnej podprzestrzeni niezmienniczej jest �nieznacz-
nie� zaburzonym operatorem przesuni¦cia w przód, st¡d potrzeba uporz¡dkowania bazy
Schaudera.

Praca [B] zostaªa dostrze»ona przez ±rodowisko matematyczne a jej autorzy otrzymali
w 2021 roku JMAA Ames Award przyznawan¡ za najlepszy artykuª opublikowany w
2020 roku w Journal of Mathematical Analysis and Applications. Narz¦dzia i pomysªy
wypracowane w tej pracy zostaªy równie» u»yte przez Meneta, który w 2021 udowodniª
nast¦puj¡ce twierdzenie.

Twierdzenie 22. (Menet, [34]) Niech X b¦dzie przestrzeni¡ Frécheta bez ci¡gªej normy i
z baz¡ Schaudera i niech rosn¡cy ci¡g póªnorm (pn)n∈N de�niuje topologi¦ tej przestrzeni.
Istnieje operator T : X → X bez nietrywialnej podprzestrzeni niezmienniczej wtedy i tylko
wtedy, gdy dla ka»dego j0 ∈ N istnieje j ≥ j0 takie, »e kowymiar podprzestrzeni ker(pj+1)
w przestrzeni ker(pj) jest niesko«czony.

Podsumowuj¡c mo»na stwierdzi¢, »e o problemie podprzestrzeni niezmienniczej w
kontek±cie przestrzeni Frécheta wiemy ju» prawie wszystko, cho¢ nie jest jednak jasne
czy na C∞(R) istnieje operator dla którego ka»dy niezerowy wektor jest hipercykliczny.
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Oczywi±cie problem nadal jest otwarty w kontek±cie przestrzeni Hilberta. Na zako«cze-
nie trzeba wspomnie¢, »e w 2024 roku En�o opublikowaª preprint (jego drug¡ wersj¦) w
której twierdzi, »e na przestrzeni o±rodkowej przestrzeni Hilberta ka»dy operator posiada
podprzestrze« niezmiennicz¡.

3.4 Opis wkªadu kandydata w osi¡gniecie naukowe

[A] Praca samodzielna.

[B] Goli«ski i Przestacki w równym stopniu przyczynili si¦ do powstania pracy [B]. Po-
mysª na badanie problemu podprzestrzeni niezmienniczej w kontek±cie przestrzeni
C∞(R) narodziª si¦ podczas wspólnych rozmów i byª inspirowany wynikami Meneta.
Wkªadem Goli«skiego do pracy byªa znajomo±¢ konstrukcji Reada i umiej¦tno±¢ jej
mody�kacji do kontekstu przestrzeni Frécheta z ci¡gª¡ norm¡, wkªadem Przestac-
kiego byªo znalezienie sposobu na przeniesienie konstrukcji do przestrzeni Frécheta
bez ci¡gªej normy, w szczególno±ci jego autorstwa s¡ kluczowe w tej pracy: roz-
dziaª 4 (de�nicja porz¡dku na sN), de�nicja zbioru Kn w rozdziale 6, Corollary 6.2,
Proposition 10.1.

[C] Inicjatorem bada« nad dynamicznymi wªasno±ciami wagowych operatorów transla-
cji na przestrzeni Schwartza byª Przestacki. Charakteryzacje hipercykliczno±ci, mie-
szania i chaotyczno±ci autorzy uzyskali wspólnie (rozdziaª 2 pracy [C]), twierdzenie o
równowa»no±ci chaosu i mieszania oraz wyniki rozdziaªu 3 nale»¡ do Przestackiego.

[D] Inicjatorem bada« nad wªasno±ci¡ silnej hipercykliczno±ci wagowych operatorów
kompozycji na C∞(R) byª Przestacki. Jego pomysªem byªo wykorzystanie w tym
celu równania Abela. Wspólnym wynikiem Piszczka i Przestackiego w [D] jest Twier-
dzenie 8 i Lemat 9. Pozostaªe wyniki i pomysªy nale»¡ do Przestackiego.

[E] Inicjatorem bada« nad dynamicznymi wªasno±ciami wagowych operatorów kompo-
zycji na przestrzeni funkcji holomor�cznych byª Przestacki. Efektem jego dyskusji
z Goli«skim byªo wspólne znalezienie przykªadów hipercyklicznych wagowych ope-
ratorów kompozycji okre±lonych na H(C⋆): odpowiadaªo to cz¦±ciowo na pytanie
Bésa. Sformuªowania i dowody wi¦kszo±ci wyników w [D] nale»¡ do Przestackiego.

[F] Wspóªpraca naukowa Kalmesa i Przestackiego rozpocz¦ªa si¦ podczas wizyty Kal-
mesa w Poznaniu (na zaproszenie Przestackiego). Pomysª na badanie dynamicznych
wªasno±ci operatorów kompozycji na OM(R) pochodzi od Przestackiego. Wyniki za-
warte w pracy s¡ efektem wspólnego wysiªku obydwu autorów. Najwa»niejszy po-
mysª w pracy: powi¡zanie wªano±ci mieszania z rozwi¡zywalno±ci¡ równania Abela
pochodzi od Przestackiego.

4 Omówienie prac niewchodz¡cych w skªad osi¡gni¦cia

naukowego

Wykaz prac

[G] A. Przestacki. Composition operators with closed range for one-dimensional smooth
symbols. J. Math. Anal. Appl., 399(1):225-228, 2013
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[H] A. Przestacki. Characterization of composition operators with closed range for one-
dimensional smooth symbols. J. Funct. Anal., 266(9):5847-5857, 2014

[I] A. Przestacki. Corrigendum to "Characterization of composition operators with
closed range for one-dimensional smooth symbols"[J. Funct. Anal. 266 (9) (2014)
5847-5857][MR3182962]. J. Funct. Anal., 269(8):2665-2667, 2015

[J] A. Przestacki. Closed range composition operators for non-injective smooth symbols
R � Rd . Bull. Belg. Math. Soc. Simon Stevin, 25(2):161-170, 2018

[K] K. Piszczek and A. Przestacki. There are no topologically transitive operators in
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4.1 Operatory kompozycji o domkni¦tym obrazie - prace [G,H,I,J]

Prace [G, H, I, J] s¡ wynikiem bada« Przestackiego prowadzonych przed i krótko po
doktoracie. Przedmiotem tych bada« byªo pytanie o charakteryzacj¦ tych gªadkich funkcji
ψ : R → Rd dla których operator kompozycyji

Cψ : C∞(Rd) → C∞(R), F 7→ F ◦ ψ,

ma domkni¦ty obraz. Inspiracj¡ do prowadzenia bada« byªy:

� Wynik Kenneseya i Wengenrotha, którzy w 2011 roku podali tak¡ charakteryzacj¦
w przypadku, gdy funkcja ψ jest iniekcj¡: patrz [29].

� Wyniki Allana, Kakiko, Graysona, O'Farrella i Watsona, którzy podali opis do-
mkni¦cia obrazu operatora kompozycji: patrz [2].

Problem domkni¦to±ci obrazu kompozycji ma dªug¡ histori¦ w przypadku gdy funkcja
ψ jest funkcj¡ analityczn¡ zmiennej rzeczywistej (prace Whitneya [42], Tougerona [41],
Glaesera [24], Bierstona i Milmana [10, 11], Bierstona, Milmana i Pawªuckiego [12]) a
badania z nim zwi¡zane doprowadziªy do bardzo gª¦bokich wyników, w tym do rozwoju
teorii zbiorów analitycznych i subanalitycznych.

Gªównym osi¡gni¦ciem Przestackiego byªo podanie do±¢ ogólnego warunku dostatecz-
nego dla domkni¦to±ci obrazu operatora kompozycji Cψ odpowiadaj¡cego gªadkiej funkcji
ψ : R → Rd.

4.2 W L(s′, s) nie ma operatorów topologicznie tranzytywnych -
praca [K]

Niech s b¦dzie przestrzeni¡ Frécheta ci¡gów szybko d¡»¡cych do zera, a s′ przestrzeni¡ do
niej dualn¡ z naturaln¡ topologi¡ przestrzeni dualnej do przestrzeni Frécheta. W ostatnich
latach sporo uwagi po±wi¦cono badaniom wªasno±ci tak zwanej nieprzemiennej przestrzeni
Schwartza L(s′, s), któr¡ tworz¡ operatory ci¡gªe z s′ do s: patrz [17, 36]. Okazuje si¦,
»e przestrze« ta w naturalny sposób staje si¦ algebr¡, mo»na zatem pyta¢ o dynamiczne
wªasno±ci operatorów do niej nale»¡cych. Celem pracy Piszczka i Przestackiego [K] byªo
pokazanie, »e do tej algebry nie nale»y »aden operator topologicznie tranzytywny.
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5 Aktywno±¢ naukowa

5.1 Wyst¡pienia na krajowych lub mi¦dzynarodowych konferen-
cjach naukowych

Odczyty naukowe na zaproszenie

� Seminarium: Séminaire d' Analyse Liège Trèves, Seminar Analysis Lüttich
Trier, Trewir (NIEMCY), 2013
Odczyt: Characterization of composition operators with closed range for one-dimensional
smooth symbols

� Konferencja: FNRS Group Functional Analysis, Esneux (BELGIA), 2014
Odczyt: Closed range composition operators on the space of smooth functions

Inne odczyty z okresu po uzyskaniu stopnia doktora

� Konferencja: XV Encuentros de Análisis Funcional Murcia-Valencia, Alcoi
(HISZPANIA), 2016
Odczyt: Dynamical properties of weighted composition operators on the space of
smooth functions

� Konferencja: Workshop on functional analysis and operator theory, Walen-
cja (HISZPANIA), 2017
Odczyt: Dynamical properties of weighted composition operators

� Konferencja: DMV Annual Meeting, Locally convex methods in analysis,
konferencja online, 2020
Odczyt: Dynamical properties of weighted composition operators on the space of
holomorphic functions

� Konferencja: DMV Annual Meeting 2022, Berlin (NIEMCY), 2022
Odczyt: The invariant subspace problem for the space of smooth functions on the
real line

� Konferencja: 38th Summer Conference on Topology and its Aplications,
Coimbra (PORTUGALIA), 2024
Odczyt: Hypercyclic and mixing composition operators on OM(R)

Odczyty z okresu przed uzyskaniem stopnia doktora

� Konferencja: Function Spaces X, Pozna« (POLSKA), 2012
Odczyt: Composition operators with closed range for smooth symbols

� Konferencja: Doc Course �Complex Analysis and Related Areas� , Málaga
(HISZPANIA), 2013
Odczyt: Composition operators with closed range for one-dimensional smooth sym-
bols

� Konferencja: Kangro-100, Methods of Analysis and Algebra, Tartu (ESTO-
NIA), 2013
Odczyt: Composition operators with closed range for one-dimensional smooth sym-
bols
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� Konferencja:Workshop on Functional Analysis, Walencja (HISZPANIA), 2013
Odczyt: Closed range composition operators for one-dimensional smooth symbols

� Konferencja:The Seventh Conference on Function Spaces, Edwardsville (USA),
2014
Odczyt: Closed range composition operators on the space of smooth functions

5.2 Pobyty w innych instytucjach naukowych

Z okresu po uzyskaniu stopnia doktora

� 6.09.2015-12.09.2015, pobyt na Wydziale Matematyki Uniwersytetu w Trewirze
(Niemcy), wspóªpraca naukowa z Leonhardem Frerickiem i Jochenem Wengenro-
them, tematyka: dynamika operatorów kompozycji

� 10.07.2016-17.07.2016, pobyt na Politechnice wWalencji (HISZPANIA), wspóªpraca
naukowa z Jose Bonetem i jego grup¡, tematyka: dynamika liniowa

� 3.09.2024-7.09.2024, pobyt na Politechnice w Walencji (HISZPANIA), wspóªpraca
naukowa z Enrique Jord¡ i Thomasem Kalmesem, tematyka: wªasno±¢ powracania
dla operatorów liniowych

Z okresu przed uzyskaniem stopnia doktora

� 14.10.2013-31.10.2013, pobyt na Wydziale Matematyki Uniwersytetu w Trewirze
(Niemcy), wspóªpraca naukowa z Leonhardem Frerickiem i Jochenem Wengenro-
them, tematyka: operatory kompozycji o domkni¦tym obrazie

� 4.02.2013-15.03.2013, Sewilla i Malaga (Hiszpania), Udziaª w kursie dla doktorantów
Doc Course �Complex Analysis and Related Areas� organizowanym przez
Uniwersytet w Sewilli, kurs zako«czyª si¦ tygodniow¡ minikonferencj¡ w Maladze na
której ka»dy uczestnik wygªosiª odczyt, odczyt: Composition operators with closed
range for one-dimensional smooth symbols

5.3 Prace zespoªów badawczych realizuj¡cych projekty �nanso-
wane w drodze konkursów krajowych lub zagranicznych

Granty z okresu po uzyskaniu stopnia doktora

� grant NCN w programie Maestro 5, Funkcje analityczne zmiennej rzeczy-
wistej i operatory ró»niczkowe, 2013/10/A/ST1/00091, wykonawca projektu,
14.05.2014-13.12.2021

Granty z okresu przed uzyskaniem stopnia doktora

� grant NCN w programie Preludium 4, Operatory kompozycji na przestrzeni
funkcji gªadkich, 2012/07/N/ST1/03540, kierownik projektu, 07.08.2013-06.08.2016
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5.4 Udziaª w komitetach organizacyjnych i naukowych konferen-
cji krajowych lub mi¦dzynarodowych

� Konferencja: Functional Analysis: Applications to Complex Analysis and
PDE - A conference in honor of Dietmar Vogt's 70th birthday, B¦dlewo
(POLSKA), 2012
czªonek komitetu organizacyjnego, odpowiedzialny za korespondencj¦ z uczestnikami
konferencji oraz ich transport na miejsce konferencji

� Konferencja: DMV-PTM, Pozna« (POLSKA), 2014
czªonek komitetu organizacyjnego, odpowiedzialny za zakwaterowanie uczestników
konferencji (w konferencji wzi¦ªo udziaª 711 uczestników)

� Konferencja: Paweª Doma«ski Memorial Conference, B¦dlewo (POLSKA),
2018
czªonek komitetu organizacyjnego, odpowiedzialny za wszelkie sprawy organizacyjne,
w tym pozyskanie do�nansowania do konferencji z Centrum Banacha

5.5 Nagrody i wyró»nienia

� JMAA Ames Award, 2021, nagroda przyznana przez redakcj¦ czaasopisma Jour-
nal of Mathematical Analysis and Applications za artykuª "The invariant subspace
problem for the space of smooth functions on the real line"

6 Osi¡gni¦cia dydaktyczne i organizacyjne

6.1 Funkcje peªnione naWydziale Matematyki i Informatyki UAM

� Peªnomocnik Dziekana ds. studenckich praktyk zawodowych na kierunku matema-
tyka, funkcja peªniona od roku akademickiego 2020/2021 do teraz, zakres obowi¡z-
ków: opieka merytoryczna i organizacyjna nad przebiegiem praktyk studenckich na
studiach dziennych i zaocznych

� Peªnomocnik Dziekana ds. mi¦dzynarodowej wymiany studentów, funkcja peªniona
od roku akademickiego 2024/2025, zakres obowi¡zków: nadzór merytoryczny nad
mi¦dzynarodow¡ wymian¡ studentów w ramach programu Erasmus+

� Czªonek Rady Programowej kierunku Matematyka, funkcja peªniona od roku aka-
demickiego 2024/2025

� Czªonek komisji ds. prac dyplomowych na kierunku matematyka, funkcja peªniona
od roku akademickiego 2024/2025

6.2 Osi¡gni¦cia dydaktyczne

� Od roku akademickiego 2021/2022 rokroczna nominacja do nagrody Praeceptor Lau-
reatus dla najlepszego dydaktyka Wydziaªu Matematyki i Informatyki
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� Grant OWKO (O±rodek Wsparcia Ksztaªcenia na odlegªo±¢ UAM) na przygotowa-
nie cyfrowych materiaªów do przedmiotu Repetytorium z Matematyki Elementar-
nej, rok akademicki 2022/2023, peªniona funkcja: wykonawca projektu

� Grant OWKO na przygotowanie cyfrowych materiaªów do przedmiotu Wst¦p do
Matematyki (dla kierunku Informatyka), rok akademicki 2023/2024, peªniona funk-
cja: wykonawca projektu

� Grant OWKO na przygotowanie cyfrowych materiaªów do przedmiotu Analiza
matematyczna z Zastosowaniami 1 (dla kierunku Informatyka), rok akademicki
2023/2024, peªniona funkcja: wnioskodawca i wykonawca projektu

� Grant OWKO na przygotowanie cyfrowych materiaªów do przedmiotu Analiza
matematyczna z Zastosowaniami 2 (dla kierunku Informatyka), rok akademicki
2024/2025, peªniona funkcja: wnioskodawca i wykonawca projektu

6.3 Opieka nad pracami dyplomowymi

� Przemysªaw Piechowski, Chaotyczno±¢ operatorów ró»niczkowych dziaªaj¡cych na
przestrzeni funkcji caªkowitych, praca licencjacka

� Michaª Szajer, Operatory hipercykliczne, praca licencjacka

� Kamil Gi»y«ski, Liczba e jest przest¦pna, praca licencjacka

� Ewa Kru»y«ska, Wªasno±ci zbioru miejsc zerowych wielomianu, praca licencjacka

6.4 Prowadzone zaj¦cia

� Kurs Matematyka dla studentów Wydziaªu Chemii UAM, prowadzenie wykªadu i
¢wicze«, nadzór nad wszystkimi grupami ¢wiczeniowymi

� Kursy Calculus II oraz Calculus III prowadzone dla studentów z North Carolina
State University b¦d¡cych na UAM w ramach wymiany studenckiej

� Analiza Matematyczna 1,2,3: ¢wiczenia i wykªady (wykªady na studiach zaocznych)

� �wiczenia w j¦zyku angielskim: Spectral Theory, Banach Algebras, Theory of me-
asure and integration, Operator Theory

� �wiczenia do przedmiotów na kierunku matematyka: Repetytorium z Matematyki
Elementarnej, Analiza Funkcjonalna, Topologia, Wst¦p do Matematyki

� �wiczenia do przedmiotów na kierunku informatyka: Analiza matematyczna 1, Ana-
liza matematyczna 2, Matematyczne podstawy sztucznej inteligencji i cyberbezpie-
cze«stwa
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6.5 Doskonalenie zawodowe

� Uko«czony kurs tutoringu akademickiego, kurs prowadzony przez COLLEGIUM
WRATISLAVIENSE

� Uko«czony kurs Cyfrowy warsztat narz¦dziowy nauczyciela akademickiego realizo-
wany w ramach projektu Warsztaty Dydaktyczne UAM
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