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“... keep the Fregean axiom hidden in your pocket when entering the gate of NFL
and be ready to use it at once, when you feel a confusing headache. Formally,
you will be collapsing NFL into FL. Informally, you will be expelling yourself
from a logical paradise into the rough, necessary world. ”

Roman Suszko
Abolition of Fregean Axiom
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1

Introduction

The aim of the work is to present three sequent calculi for three axiomatic
extensions of non-Fregean logic called Sentential Calculus with Identity (SCI).
Non-Fregean logics have been introduced and formalized by Polish logician,
Roman Suszko, in the 60s and 70s of the XXth century. We will go through
the historical steps that lead to their development in the next chapter, but
it is worth mentioning that elements from Suszko’s work appeared in other
formalizations before; we will list some of them in the dissertation. Non-Fregean
logics are studied mostly with regard to their semantic content, which can be
presented both on the grounds of algebra or Kripke approach, but since their
introduction and particularly now we notice the increase of work concerned with
proof theory, too. The landscape of proof systems for non-Fregean logics of
Suszko consists mostly of systems for Suszko’s weakest1 non-Fregean logic SCI:
sequent-calculus style proof systems [4; 28; 35; 45; 46; 66] as well as tableaux
systems [14; 16; 19; 42]. We can also find proof systems for intuitionistic variants
of SCI, ISCI, in the form of sequent calculus [6; 11; 60], and natural deduction [5].
In this work we join this ongoing trend of developing structural proof systems
for non-Fregean theories, thus paying special matter to non-Fregean theories
stronger than SCI.

Structure of the thesis:

• Chapter 1: we sketch philosophical motivations that lead to the
development of non-Fregean logics;

• Chapter 2: formal foundations for the susbsequent chapters; we introduce
all notational conventions, a plethora of standard definitions rooted in
algebra, as well as Classical Propositional Calculus and accompanying it
sequent calculus G3cp;

• Chapter 3: a general information regarding our basic non-Fregean system
Sentential Calculus with Identity and sequent calculus which will provide
a base for further modifications for three extensions;

• Chapters 4 to 6: have similar structure, we will consecutively examine
extensions called WB, WT and WH. We shall start with their syntactic
and semantic description and follow up with sequent calculi, for which we
will discuss their structural characteristics, along with certain resulting
challenges;

• Chapter 7: we discuss certain limitations regarding structural approach
to proving cut elimination. It appears that even though cut elimination

1The notion of weak/strong logic will be discussed in subsequent chapters.
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has been proven for sequent calculus G3SCI, which serves as the base for
three calculi for axiomatic extensions examined in the thesis, the three
mentioned systems do not posses the same characteristic—the cut rule
can be eliminated but not without any cost. We discuss ways in which the
original proof strategy fails and then discuss several problematic formulae.
We also propose ways to overcome this issue;

• Chapter 8: conclusions and ideas for future work. Proof theory for
non-Fregean theories is still not that well developed. There is, as a result,
a plethora of ways of proceeding with research in different, non-classical
context of non-Fregean logics.
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Chapter 1

Philosophical background

The notion of identity has a rich background of philosophical and formal
analysis, particularly (but not exclusively) developed in the second half of the
20th century, which constitutes the period of interests to us.1 Kaczmarek [31,
p. 107] states that, in general, we can approach identity in one of two ways:

(a) We start with sentences that are syntactically the same, and then show
that some sentences differ in shape but express the same judgment, and
therefore describe the same situation.

(b) We start with equivalence of judgments and then show that there are some
equivalent judgments that do not refer to the same situation.

The first strategy has been adopted by i.a. Carnap or Church. Carnap stated
that in order to speak of two sentences as identical, we ought to make sure
their intensions remain the same [3]. Intensions are identified with judgments
and, overall, the way to study them is through truth-functions. Carnap then
expanded his initial idea through the notion of intensional isomorphism, in
which we can (to put it very simply) obtain two isomorphic sentences by way
of replacing certain components with ones having the same intension. Church
modified this theory, and instead of the sameness of intensions, proposed to
utilize the notion of synonymity, thus developing synonymous isomorphism [7].

The second way of approaching identity has in turn been adopted by,
for example, Vanderveken, who proposed a stronger version of implication:
φ strongly implies χ provided the set of atomic judgments expressed in χ is
contained in the set of atomic judgments expressed in φ. Strong implication
in both directions entails both that φ materially implies χ and is also a better
depiction of the natural use of language [63; 64].

Following the second approach, in this section we shall examine the course
of philosophical events that led to the formulation of non-Fregean systems.
These formulations concentrate on different treatment of the identity connective
(we will be referring to the mentioned connective as identity, although it will
mostly demonstrate different ways we can formalize similarity and resemblance).
Ways of interpreting identity are a mixture of two approaches mentioned by
Kaczmarek [31]. Naturally, we will begin with Frege’s theory of meaning,
based on which Suszko formulated the so-called Fregean Axiom. Frege’s
theory can be mostly attributed to approach (b). Logical equivalence provides

1It is worth mentioning that we will not focus in detail on formalizations, which are
fundamentally not non-Fregean. We refer to the sources for more context.
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a benchmark for the notion of identity. Then we will introduce the ontology
of situations introduced in Wittgenstein’s Tractatus Logico-Philosophicus and
conclude with Suszko’s formalization of this particular ontology. These two
approaches present more of a marriage of (a) and (b). Suszko, in particular,
builds axiomatic extensions of SCI through the gradual addition of equations
of formulae non-identical in shape while still rooting its theory in the notion of
sameness of situations denoted by sentences.

1.1 Frege’s Philosophy of Language
In this section we will introduce and discuss Frege’s approach to the notion of
identity. We shall focus on works from throughout Frege’s life, with the main
emphasis on Sense and Reference.

Equality gives rise to challenging questions which are not altogether
easy to answer. Is it a relation? A relation between objects, or
between names or signs of objects? [10, p. 56]

In Sense and Reference Frege investigates the conditions under which we would
be able to assert whether two names/sentences are identical or not. If we were
to compare two sentences—a = a and a = b—with no controversy, then we
are able to accept the validity of the former. However, if we additionally knew
that the “a” and “b” refer to the same thing, ergo a = b holds as well, then
we would notice the difference in the cognitive value of the two sentences we
compared. The validity of a = a can be easily asserted, whereas the same for
a = b requires us to seek supplementary data. The question that arises is: what
makes the latter statement hold? It does appear that both a and b, although
syntactically different, denote the same object or process, but we ought to know
how exactly (syntactically, semantically, etc.) we should compare a to b in order
to decide the validity of a = b. Frege distinguishes between the sense and the
reference (which we will also refer to as a semantic correlate) of the names/signs.
The sense of the name is intertwined with the way we perceive, that is, with
the objective result of our cognition’s activity. Sense is understood by users
of a given language who are familiar with its inner structure and symbolism.
Take the names “Evening Star” and “Morning Star”. Both of these may refer
to the same object, the planet Venus, but their senses differ from each other.
After all, our understanding of both these names is based upon the context in
which they function. Every name (sign) is linked with a certain sense. What
has to be underlined is the fact that sense, although linked with our cognitive
processes, is objective. Frege does, however, highlight separate property—an
associated idea—a mental representation built upon our experiences, emotions
and cognitive functions. Its clarity (and clarity of its components) may differ for
different people. But, as Frege is interested in the general definition of objective
properties of names and sentences, an associated idea does not play a vital role
in his considerations.

Sense, as we have mentioned, is a universal property. On the other hand,
we can easily provide an example of a name that has a sense, but does not
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designate any object. Take, for instance, “the least rapidly convergent series”. It
expresses a sense, however there is no series satisfying the expressed conditions.
Frege underlines that what matters is what a given name/sentence denotes.
Therefore, following Frege’s theory, the sense of the proper name is the certain
thought associated with the said name, whereas the reference of the proper
name is the designated object. Nonetheless, if we were to identify the reference
of a sentence, it would not be a set of objects designated by names contained in
it. Frege stresses that the existence of names’ references allows us to determine
the reference of sentences, which are truth values. Such “truth values” refer to
two objects: the Truth and Falsity of a sentence. As a result, a sentence becomes
a proper name for one of two truth values. Moreover, as we are comparing two
sentences with regard to their semantic correlates, we can substitute any true
sentence for any other of the same truth value, as all of those serve as proper
names for Truth. This particular property, extensionality as salva veritate
exchangeability, holds for any sentence that has one of two references.

However, it does not hold if we were to consider the components of any
sentence. Frege provides a simple example of anomalies that such generalization
would lead to—the case of subordinate sentences. If we were to analyze the
following three sentences:

(a) Copernicus believed that the planetary orbits were circles.

(b) Copernicus believed that the apparent motion of the Sun was produced
by the real motion of the Earth.

(c) Copernicus believed that orbits were elliptical.

we have to consider two truth values—that of the main sentence, and that of
the subordinate sentences. If we were to substitute the subordinate sentence
of (a) with the subordinate sentence of (b), the truth value of either main
or subordinate clause would not change. However, if we were to perform the
same procedure on sentences (a) and (c), we would change the truth value of
the main sentence. One ought to take into consideration the reference of the
two subordinate clauses ahead of substituting one for another. In the case of
subordinate sentences beginning with verbs like “to believe” or “to think”, Frege
adopts sense (a thought) as the reference of the subordinate sentence.

In Function and Concept, Frege explores the differences between a general
definition of a function and a function applied to a specific argument. Once
more we notice that different names can denote the same object—take, for
instance, “7” and “5+ 2”. Both of those names denote the same object, namely
the number 7. However, the first is not a function whereas we can recognize an
applied function in the latter. How do we differentiate a function from a simple
name of the object? Frege provides a simple way to distinguish the two: an
object is anything that is not a function, so that an expression for it does not
contain any empty place [10, p. 32]. Going back to our two names of the object
7—as an alternative to the Arabic numbers, we could have used Greek numbers,
but the denoted object will not change. Frege notes that differences between
names do not entail difference in the denoted objects. We can use this fact in
analysis of the notion of function. Arguments of functions are nothing more than
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the proper names of certain objects. An argument is, as Frege notes, a whole
complete in itself, whereas a function requires an argument to be complete.
Then we can state that two given functions are equal, that is

(x2 − 4x) = x(x− 4)

by means of their values for the same arguments.2 The symbol “=” is used for
the further analysis of functional expressions, as well as “>” and “<”. Now,
Frege underlines that the logical value of a sentence is its truth function. As it
is the case that 22 = 4 and 2 > 1 are both True, hence

(22 = 4) = (2 > 1)

is True as well. Of course, one could argue whether the use of “=” could be
appropriate to both comparison of the result of the function application (which
could be viewed as names) and comparison of the two equations (similarly,
sentences).

Frege’s theory can be depicted in the diagram below where sentences are
denoted by ψ, referents (denotations) of ψ by r(ψ), senses of ψ by s(ψ) and
the logical value by t(ψ).3

s(ψ) ψ t(ψ)

r(ψ)

1.2 Wittgenstein’s ontology
6.13 Logic is not a theory but a reflexion of the world.

If we were to utilize Wittgenstein’s conceptual framework, we would say
that Frege’s logical space consisted of two elements: Truth and Falsity.
Wittgenstein disagreed with this statement, and defined a world as a logical
space filled with facts, also referred to as a certain states of affairs. In
Tractatus, Wittgenstein analyzes the relationship between language and the
said world. And, although we may find theses in which Wittgenstein describes
such a relation as a reflection, Wolniewicz [72] underlines that it is not
an isomorphism (which could be deduced from the mirror analogy), but
a homomorphism. A homomorphism would be more like a shadow—we may
recognize the overall picture, but specific details are still obscured to our eyes.
Therefore we can say that language’s shadow is visible on the world and vice
versa.

4.014 The gramophone record, the musical thought, the score, the
waves of sound, all stand to one another in that pictorial internal

2The same goes for the curve we get from both of these functions.
3Additional comments (and the diagram itself) on relations shown on the scheme can be

found in [51].
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relation, which holds between language and the world. To all of
them the logical structure is common.

Wittgenstein presents the ontology of situations: a theory that stands
in opposition to Frege’s understanding of semantic correlates of sentences
containing non-empty names. We cannot say that a given sentence φ denotes
truth values. Wittgenstein, by focusing on facts as certain kinds of building
blocks of the world, provides a better reference point as to what the sentences
relate to. And what do true sentences refer to? This would be answered years
later by Suszko through his interpretation of Wittgenstein’s ontology.

4.022 A proposition shows its sense. A proposition shows how things
stand if it is true. And it says that they do so stand.

4.03 A proposition must use old expressions to communicate a new
sense. A proposition communicates a situation to us, and so it must
be essentially connected with the situation. And the connection is
precisely that it is its logical picture. A proposition states something
only in so far as it is a picture.

Of course, we can not ignore Wittgenstein’s attitude towards the identity
sign, which was far from welcoming. Wittgenstein did not see a need to utilize
the identity sign at all but, at the same time, did not reject the overall notion
of identity.

5.53 Identity of the object I express by identity of the sign and not
by means of a sign of identity. Difference of the objects by difference
of the signs.

Identity of objects/situations can be expressed by way of using the same
sign and not through the use of the sign of identity. This way we can formulate
certain facts in a different manner, for example F (a, b)∧ a = b can be replaced
by F (a, a) and F (a, b)∧a 6= b is replaced by F (a, b)4. This particular procedure
also requires us to adapt the exclusive reading of variables. Hintikka showed
that First Order Logic without the equality sign would still be just as expressive,
however he did not see many benefits in Wittgenstein’s approach over a more
inclusive reading of variables (which, in turn, would require a presence of
equality sign) [22].

1.3 Suszko’s abolition of the Fregean Axiom
A (simplified) version of Frege’s denotational theory can be portrayed by the
following statement:

(φ↔ χ)↔ (φ ≡ χ) (FA)
4If we were to move to First Order Logic, we could e.g. replace ∃x∃y(F (x, y) ∧ x = y)

with ∃xF (x, x) and replace ∃x∃y(F (x, y) ∧ x 6= y) with ∃x∃yF (x, y).
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which signifies that the sameness of the truth values of two given statements
shall also entail identity of their denotations. Suszko, spurred by Wittgenstein’s
ontology, unequivocally rejected it. He called it the “Fregean axiom” (FA) and
decided to construct a formalization of Tractatus which would include a notion
of situation (as a denotation of a given sentence), thus introducing a new
system—non-Fregean logic (NFL). Suszko became acquainted and infatuated
with Wittgenstein’s ontology through Bogusław Wolniewicz and his work. He
reviewed a work by Wolniewicz, entitled Study of Wittgenstein’s Philosophy
[55]; his review was untypically lengthy, and established a new subject matter
to which Suszko would remain faithful until his death. Suszko, in his goal to
formalize Tractatus, could not accept well formed formulae as names for the
truth values. Following Wittgenstein he proposed a number of NFLs by adding
a predicate and binary connective expressing the identity of two situations,
namely “≡”5. Although the new systems were called “non-Fregean”, Suszko
did not reject Frege’s accomplishments; he kept the two-valuedness, although
in Suszko’s case two-valuedness is not a conceptualization of its ontological
interpretation. Suszko proposed a more general approach in defining NFLs—the
set of situations has to consist of at least two elements, which is depicted by
the law:

¬(φ ≡ ¬φ). (#)

Moreover, Suszko distinguished two different categories of variables: one,
already mentioned, consisting of sentential variables running through the set of
different situations, and the second of nominal variables, running through the
universe of objects. Furthermore, Suszko claimed that the so-called “Fregean
Logic” (FL) is merely an instance of an NFL with the set of situations consisting
of two objects. To illustrate this, we can say that any non-Fregean theory in
which all of the below theorems hold:

(1.1) (φ ≡ χ) ∨ (φ ≡ ψ) ∨ (χ ≡ ψ);

(1.2) (φ↔ χ)↔ (φ ≡ χ);

(1.3) (φ ≡ χ) ≡ (φ↔ χ)

is called a Fregean theory within NFL.
Suszko proposed a number of NFLs. We will later on focus on three

extensions of the logic SCI (Sentential Calculus with Identity), however it has
to be noted that there are uncountably many different extensions of the basic
NFL theory (which are independent of each other) [13; 18]. The base of the
said systems is SCI, which has been obtained from the Classical Propositional
Calculus by the introduction of identity and the axioms characterizing it:

(≡1) φ ≡ φ

(≡2) (φ ≡ χ)→ (¬φ ≡ ¬χ)
5Suszko used the same symbol for both the predicate and binary connective; the context

of the sentence predetermines which of the two logical constants is being used [38].
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(≡3) (φ ≡ χ)→ (φ↔ χ)

(≡4) ((φ ≡ ψ) ∧ (χ ≡ ω))→ ((φ⊗ χ) ≡ (ψ⊗ ω))

where ⊗ ∈ {∧,∨,→,↔,≡} with the following interpretation of the above
axioms:

(≡1): The denotation of every formula is identical with itself.

(≡2): If the denotations of formulae φ and χ are identical, then so too are the
denotations of their negations.

(≡3): The identity connective is stronger than equivalence.

(≡4): Identity of denotations of arguments of a binary connective entails identity
of denotations of the complex formula.

From the above interpretations it is clear that identity is a congruence with
regard to unary and binary connectives.

The first axiom is the only one with the identity as the main connective. It
illustrates the strength of the theory: the identity is strictly syntactical (in the
sense of proposition 5.53 from Wittgenstein’s Tractatus).

Woleński questions in [71] the notion of (FA). He argues that Frege himself
was quite vague on the matter. If we were to investigate the conditions
under which two proper names would be said to be identical/equal, those
conditions would require far stronger foundations than equivalence of two names
functioning as names for the truth values. Woleński recalls examples Frege
provides in Function and Concept to illustrate the different meaning of the sign
“=”. In the example we mentioned above

(22 = 4) = (2 > 1) (])

(22 = 4) and (2 > 1) express different thoughts, but the same meaning, which
is their logical value. The equality sign is used to compare both kinds of entities:
numbers and logical values. However, it does seem that the two names require
stronger equality, although Woleński states that Frege would not say that those
two names (from equation ]) are identical, since identity is a relation between
objects and not names.

We also have to underline the role of non-Fregean logic in the context of
linguistics. In [39] Omyła examines the relation between natural language and
non-Fregean logics. Naturally, the introduction of the identity connective and
formalization of Wittgenstein’s ontology allows us to better depict the actual
use of language. Not all sentences of the same logical value describe the same
situation. Therefore the core philosophical foundation of NFL is a better fit for
intuitive use of natural language. Moreover, through addition of the identity
connective we obtain more expressive language. There are issues, though. In
natural language there are certain intensional phrases that cannot be formalized
in NFL. The same situation may be described by two different sentences φ and
χ and someone may believe φ but at the same time not believe χ. Moreover,
certain NFLs correspond to certain modal systems, but the above observation



10 Chapter 1. Philosophical background

regarding natural language may provide a starting point in the research of
merging two approaches to better encapsulate formalization of natural language
use. We may also take into consideration the framing effect6 [62], which also
circles around the notion of our perception of identity of situation (e.g. a glass
can be either half full or half empty, but the situation remains the same).
Nevertheless, the two approaches to the notion of identity we listed at the
beginning of the chapter can both be utilized within this process of more
accurate formalization of the notion of identity. In three extensions we will
examine in consecutive chapters we will show how the two methods are jointly
used to gradually introduce more valid equations.

6Framing effect relates to one of the cognitive biases when people tend to differently
interpret the same situation depending on the way it was presented to them.
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Chapter 2

Logical preliminaries and
notation

In this section we will introduce the notation and general definitions and theories
that will be referred to throughout the thesis. Suszko proposed an algebraic
approach to the semantics of non-Fregean logics, and we will follow in his
footsteps. We start with the below list encompassing notation used in the
thesis:

• lowercase Latin alphabet letters p, q, ... will denote propositional variables;

• lowercase Greek alphabet letters φ,χ, ... will denote formulae;

• uppercase Greek alphabet letters such as Φ, Ψ will denote sets of formulae;

• uppercase Greek alphabet letters such as Γ, ∆, ... will denote multisets of
formulae;

• uppercase Latin alphabet letters A,B, ...,L, ... will denote algebraic
structures;

• uppercase Latin alphabet letters A,B, ...,L, ... will denote universes in
algebraic structures A,B, ...,L, ..., whereas lowercase a, b, ... will denote
elements of the mentioned universes;

• the following symbols ∧,∨,→,↔,≡ refer to binary syntactical operations
on formulae, respectively: conjunction, disjunction, implication,
equivalence, identity; ¬ is the only unary operation on formulae considered
in this work and two constants utilized in the work are: >,⊥;

• the symbols ∩̇, ∪̇, →̇, ↔̇, ≡̇ refer to semantic equivalents of the above
symbols, whereas ¬̇ corresponds to ¬;

• by “A ⊆ B” we will mean that A is a subset of B and by “A ⊂ B” we will
mean A is a proper subset of B, whereas power set of B will be denoted
by “2B”;

• the sign “=” of identity will be used throughout the thesis in numerous
contexts (both syntactic and semantic), e.g. to compare two numerical
expressions, two elements of a given algebra, as definitional equivalence
(=df ) and so on. We will additionally underline the desired use of this
sign if it is not clear from the context;
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• for a given functions f and g, their inverse functions will be written as
f−1 and g−1 and the composition of f and g will be written as f ◦ g;
restriction of function f to set Ψ will be written as f |Ψ.

2.1 Algebra
We will stay faithful to the algebraic approach Suszko adopted for describing
his non-Fregean systems. We shall begin with basic algebraic constructions,
some of which will later be adapted to a given non-Fregean theory. Most of the
definitions and theorems shown below can be originally found in [38] and [43].
We will omit the detailed proofs of some of the following theorems and lemmas,
as they can be found in the source material, however some of the proofs will be
fully included.

Definition 1 (Abstract algebra [43, p. 22]). A pair 〈A, {oi}i∈X〉 where A is
a non-empty set and for every i, oi is an operation in A, is called an abstract
algebra (or: algebra).

The cardinality of the set X can be arbitrary, finite or infinite, but later in the
work we will consider finite sets of operations. Consequently, we will refer to a
given algebra as an ordered tuple and write it as 〈A, o1, ..., on〉 to simplify the
notation.

Definition 2 (Similar algebras [43, p. 23]). Two algebras

A = 〈A, o1, o2, ..., on〉 and B = 〈B, o∗1, o∗2, ..., o∗m〉

are called similar iff n = m and for any j = 1, 2, ...,n operations oj and o∗j have
the same arity, which is denoted by vj. Then 〈v1, ..., vn〉 is called similarity type
of the algebras.

Definition 3 (Homomorphism [38, p. 12]). Let A = 〈A, o1, o2, ..., on〉 and B =
〈B, o∗1, o∗2, ..., o∗n〉 be similar algebras. Homomorphism from A to B is a function
from A to B, such that for all i = 1, 2, ...,n and for any sequence of elements:
a1, a2, ..., avi ∈ A the following condition is met:

h(oi(a1, a2, ..., avi)) = o∗i (h(a1),h(a2), ...,h(avi)).

Homomorphisms are also called structure-preserving functions. By Hom(A,B)
we mean the set of homomorphisms from A to B. Elements of Hom(A,A) are
called endomorphisms of A.

Definition 4 (Equivalence relation [43, p. 20] ). Let ∼ stand for a binary
relation in a non-empty set A. ∼ is an equivalence relation in A if it is reflexive,
symmetric and transitive in A, i.e., for arbitrary elements a, b, c ∈ A:

• a ∼ a,

• if a ∼ b, then b ∼ a,

• if a ∼ b and b ∼ c, then a ∼ c.
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If ∼ is an equivalence relation in A, then by |a| = {b : a ∼ b} we will mean the
equivalence class of a. By A/∼ = {|a| : a ∈ A} we understand the set of all
equivalence classes of elements of A.

Definition 5 (Congruence relation [43, p. 25]). Let A = 〈A, o1, ..., on〉 be an
algebra and let ∼ be an equivalence relation in A. ∼ is said to be a congruence
relation in A if conditions a1 ∼ a′1, ..., avi ∼ a′vi

imply oi(a1, ..., avi) ∼
oi(a′1, ..., a′vi

) for each oi, 1 ≤ i ≤ n.

Definition 6 (Quotient algebra [43, p. 26]). Let A = 〈A, o1, ..., on〉 be an
algebra and ∼ be a congruence relation in A. The quotient algebra of A by
∼, symbolically A/∼ = 〈A/∼, o∗1, ..., o∗n〉, is the algebra whose universe is the
set A/∼ of all equivalence classes |a| (a ∈ A) and whose all operations o∗i are
defined by

o∗i (|a1|, ..., |avi|) = |(oi(a1, . . . , avi))|.

Definition 7 (Ordering [43, p. 32]). A binary relation ≤ in a set A is said to
be an ordering in A if it is reflexive, antisymmetric and transitive in A, i.e., if
for arbitrary a, b, c ∈ A

1. a ≤ a,

2. if a ≤ b and b ≤ a, then a = b,

3. if a ≤ b and b ≤ c, then a ≤ c.

If a ≤ b, then we say that a is included in b. Instead of writing a ≤ b, we will
sometimes write b ≥ a.

Definition 8 (Ordered set [43, p. 32]). If A is a non-empty set and ≤ a fixed
ordering in A, then A = 〈A,≤〉 is called an ordered set.

Definition 9 (Linear ordering [43, p. 33]). An ordering ≤ defined in a set
A is said to be a linear ordering in A provided it also satisfies the additional
condition: for arbitrary a, b ∈ A, either a ≤ b or b ≤ a.

Definition 10 (Chain [43, p. 33]). An ordered set A = 〈A,≤〉 is called a chain
provided ≤ is a linear ordering relation in A.

Definition 11 (Upper bound, lower bound [43, p. 34]). Let A = 〈A,≤〉 be an
ordered set and let S be a non-empty subset of A. An element a0 ∈ A is said to
be an upper (lower) bound of S in A provided a ≤ a0 (a ≥ a0) for all a ∈ S. If
the set of all upper (lower) bounds of S contains the least (greatest) element, it
is called the least upper bound (the greatest lower bound) of S in A and denoted
by l.u.b.S (g.l.b.S).

Definition 12 (Lattice [43, p. 34]). An ordering ≤ in a set A = 〈A,≤〉 is said to
be a lattice ordering if, for each a, b ∈ A, the elements l.u.b.(a, b) and g.l.b.(a, b)
exist. Then the ordered set A is said to be a lattice; the least upper bound of
a, b ∈ A will be denoted by a ∪̇ b and called the join of elements a, b, and the
greatest lower bound of a, b ∈ A will be denoted by a ∩̇ b and called the meet
of a, b.
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Definition 13 (The unit element, the zero element [43, p. 37]). The greatest
(least) element of a lattice A, if it exists, will be called the unit element (the
zero element) of A and will be denoted by 1 (by 0).

If A = 〈A,≤〉 is a lattice with 0, 1 ∈ A, then for every a ∈ A:

1. a ≤ 1, a ≥ 0,

2. a ∪̇ 1 = 1, a ∩̇ 1 = a,

3. a ∪̇ 0 = a, a ∩̇ 0 = 0.

Definition 14 (Filter [43, p. 44]). A non-empty set F of elements of a lattice
A = 〈A,≤〉 is said to be a filter in A provided for any elements a, b ∈ A:
a ∩̇ b ∈ F iff a ∈ F and b ∈ F .

A filter F in A = 〈A,≤〉 is said to be:

1. proper if it is a proper subset of A;

2. maximal in A provided it is proper and it is a maximal element in the
ordered set of all proper filters in A; F is then called an ultrafilter of A;

3. prime iff for any a, b ∈ F : if a ∪̇ b ∈ F then a ∈ F or b ∈ F .

Definition 15 (Distributive lattice [43, p. 48]). A lattice A = 〈A,≤〉 is said
to be distributive if, for all a, b, c ∈ A,

a ∩̇ (b ∪̇ c) = (a ∩̇ b) ∪̇ (a ∩̇ c) and a ∪̇ (b ∩̇ c) = (a ∪̇ b) ∩̇ (a ∪̇ c).

For the following several theorems we will point to their sources, where the
reader can find proofs. For the selected theorems that play a more crucial role
in the main topic of the thesis, we will provide proofs (which, in some cases,
were originally written in Polish).

For every fixed element a0 ∈ A (where A is a distributive lattice), the set
of all elements a ≥ a0 is a filter called the principal filter generated by a0 [43,
p. 46].

Theorem 1. Let A = 〈A,≤〉 be a lattice. For any fixed element a0 ∈ A and
a filter F in A, the class of all elements a such that

a ≥ a0 ∩̇ c for an element c ∈ F

is the least filter in A containing a0 and F .

The least filter containing a0 and F , as described in the above theorem, will be
called filter generated by the set (a0) ∪ F .1

Theorem 2. The union of any chain of filters in a lattice A is a filter in A.
The union of any chain of proper filters in a lattice A having the zero element
is a proper filter.2

1Theorem and comments can be found in [43, p. 46].
2As above, [43, p. 46].
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Now we will provide two different, yet equivalent definitions for Boolean
algebra. Later in the thesis we will utilize both approaches, one defining Boolean
algebras as distributive lattices, and the other through several conditions to be
met by its elements.

Definition 16 (Boolean algebra, [43, p. 68]). A Boolean algebra is a distributive
lattice A = 〈A,≤〉 in which with every a ∈ A there is associated an element ¬̇a
such that

(a ∩̇ ¬̇a) ∪̇ b = b and (a ∪̇ ¬̇a) ∩̇ b = b.

Definition 17 (Boolean algebra [38, p. 42]). An algebra

A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇〉

of similarity type 〈1, 2, 2, 2, 2〉 is called a Boolean algebra iff A is an arbitrary
but at least two-element set and operations satisfy the following conditions:

(1) ((a ∩̇ b) ∪̇ c) = ((b ∪̇ c) ∩̇ (a ∪̇ c)),

(2) ((a ∪̇ b) ∩̇ c) = ((b ∩̇ c) ∪̇ (a ∩̇ c)),

(3) (a ∪̇ (b ∩̇ ¬̇b)) = a,

(4) (a ∩̇ (b ∪̇ ¬̇b)) = a,

(5) (a →̇ b) = (¬̇a ∪̇ b),

(6) (a ↔̇ b) = ((a →̇ b) ∩̇ (b →̇ a)).

Definition 18 (Congruence relation determined by filter [43, p. 63]). Let A be
a lattice and F a filter in A. Let ∼ be a binary operation on elements of algebra
A. ∼ is a congruence relation determined by filter F in A provided we have the
following condition satisfied:

a ∼ b iff (a ∈ F iff b ∈ F ).

If ∼ is a congruence relation determined by filter F in A, then by A/F we will
mean a quotient algebra A/∼.

Every pseudo-Boolean algebra is also a Boolean algebra. As a result, we
apply the following theorem to Boolean algebras (even though in [43, p. 49] it
relates to the former).

Theorem 3 ([43, p. 66]). The following conditions are equivalent for every
filter F of a Boolean algebra A:

(a) the filter F is maximal;

(b) the filter F is prime;

(c) the filter F is proper and, for every a ∈ A, either a or ¬̇a belongs to F ;
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(d) for every a ∈ A, exactly one of the elements a, ¬̇a belongs to F ;

(e) the quotient algebra A/F is a two-element Boolean algebra.

For the Theorem 4 we will refer to the Kuratowski-Zorn Lemma, which is
the following:

Lemma 1 (Kuratowski–Zorn Lemma). For a given ordered set A: if every
chain of elements of A has an upper bound in A, then A contains a maximal
element (or: for any a0 ∈ A there exists a maximal element a ≥ a0).

Theorem 4. For arbitrary elements a, b of a distributive lattice A, if the
relation b ≤ a does not hold, then there exists a prime filter F such that

a /∈ F and b ∈ F . (*)

Proof. The proof that follows can be found in [43, p. 49-50]. Let A = 〈A,≤〉
be a distributive lattice, and a, b, c, d, ... ∈ A as well as b 6≤ a. Let A∗ = 〈A∗,⊆〉
be an ordered (by inclusion) set of all filters in distributive lattice A such that
(*) holds. A∗ is not empty as it contains the principal filter generated by b.
From Theorem 2 we have that any chain of A∗ has an upper bound in A∗, so
by Lemma 1 there exists maximal element of A∗, F which satisfies (*).

We show that F is prime. Suppose it is not the case. Therefore there are
two elements c, d such that c ∪̇ d ∈ F , but at the same time c /∈ F and d /∈ F .
Let Fc be a filter generated by (c) ∪ F (respectively let Fd be generated by
(d) ∪ F ). We show that one of Fc and Fd does not contain a. From Theorem
1 we have: if

a ∈ Fc and a ∈ Fd, (**)

then there are e, f ∈ F such that a ≥ c ∩̇ e and a ≥ d ∩̇ f . Let g = e ∩̇ f . We
have g ∈ F , and a ≥ c ∩̇ g and a ≥ d ∩̇ g, and from that a ≥ (c ∩̇ g) ∪̇ (d ∩̇ g) =
(c ∪̇ d) ∩̇ g ∈ F . Therefore a ∈ F , which contradicts the fact that F satisfies
(*). Hence (**) does not hold. It follows that if F is not prime, than one of Fc,
Fd does not contain a, and hence it satisfies (*). But since c 6∈ F and d 6∈ F , F
is not maximal. A contradiction. Thus F is prime.

Naturally, as the above theorem refers to lattices, it also refers to Boolean
algebras as every Boolean algebra is a lattice.

2.2 Classical Propositional Calculus
In the following section we will present sequent calculus (SC, for short) for
Classical Propositional Calculus (CPC, for short)—G3cp3, which will be used as
a base for sequent calculi introduced in the following chapters. We start with
introducing the language(s).4 We will begin with the triple 〈Var,F , v〉 which

3G3cp constitutes a multi-conclusion (that is, such that more than one formula is allowed
to occur in the succedent of a sequent) sequent calculus examined i.a. by Negri and von Plato
in [36]. See section 2.3.1.

4This particular approach can be found in [38, pp. 14–15].
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will be called an alphabet. An alphabet provides the base for our language.
Let Var = {p1, p2, ...} be a countably infinite set of propositional variables, let
F = {F1,F2, ...,Fn} be a set of connectives and v be a function assigning to
every connective its arity. Set L∗ of formulae in alphabet 〈Var,F , v〉 is defined
inductively as the smallest set such that:

1. Var ⊆ L∗,

2. if φ1,φ2, ...,φvj ∈ L∗, then finite sequence Fjφ1φ2...φvj belongs to L∗ for
any j = 1, 2, ...,n.

Following that we obtain algebra where connectives are treated as operations
in L∗:

L∗ = 〈L∗,F1,F2, ...,Fn〉.

All languages introduced in this thesis will be defined according to the above
scheme. We now define the language utilized in the subsequent sections.
Definition 19 (Language LCPC [38, p. 14–15]). Language LCPC is the following
algebra of similar type 〈1, 2, 2, 2, 2〉

LCPC = 〈LCPC,¬,∧,∨,→,↔〉.

In the subsequent theories considered in this thesis we will add other
connectives, such as > and ≡.

For the reader’s convenience and contrary to the above definitions we will
use binary connectives in an infix manner. We assume ¬ binds stronger than
any binary connective ⊗. ∧ and ∨ bind stronger than→ and↔. We will utilize
parentheses whenever there is a risk of confusion. We will also omit the most
external parentheses of expressions.

We consider the Hilbert system for CPC consisting of Truth-Functional
Axioms (TFA). We consider the following schemes:

1. φ→ (χ→ φ),
2. (φ→ (χ→ ψ))→ ((φ→ χ)→ (φ→ ψ)),
3. ¬φ→ (φ→ χ),
4. (φ→ χ)→ ((¬φ→ χ)→ χ),
5. (φ↔ χ)→ (φ→ χ),
6. (φ↔ χ)→ (χ→ φ),
7. (φ→ χ)→ ((χ→ φ)→ (φ↔ χ)),
8. (φ∧ χ)↔ (¬(φ→ ¬χ)),
9. (φ∨ χ)↔ (¬φ→ χ).

Additionally, we consider a singular inference rule, modus ponens

φ
φ→ χ
χ
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Definition 20 (Derivation, proof). Let Φ stand for a set of formulae of LCPC.
A finite sequence φ1, ...,φn of formulae of LCPC is a derivation of φ from Φ
provided φn = φ and each formula φi, i ≤ n, either belongs to Φ or has been
derived from some φi1 ,φi2 , (i1, i2 < i) through an application of modus ponens.
If Φ = TFA, then derivation φ1, ...,φn is a proof of φ in the axiomatic system
for CPC.

If φ1, ...,φn is a proof of φ in the axiomatic system for CPC, then the length
of this proof is n.

There are two central features of logical consequence, as introduced by Tarski
[57; 58]: truth preservation and formality. In regard to the first feature, it
expresses the fact that it cannot be the case that at the same time both φ follows
from a set of formulae Φ and φ is simultaneously false with formulae from Φ
being true. Formality in turn refers to the fact that a consequence relation
cannot depend on or in any way be influenced by empirical knowledge; it is
strictly interconnected with the form of the sentences. A consequence relation
is also not affected by the process of replacing names with other ones, provided
they refer to the same object (cf. [29]). We now present a general definition of
a consequence operation.

Definition 21. Let L be a sentential language with L being the set of its
formulae. Function Cn : 2L 7→ 2L is a consequence operation on L provided it
satisfies the following conditions:

(C1) Φ ⊆ Cn(Φ), for all Φ ⊆ L;

(C2) If Φ ⊆ Ψ, then Cn(Φ) ⊆ Cn(Ψ); for all Φ, Ψ ⊆ L;

(C3) Cn(Cn(Φ)) = Cn(Φ), for all Φ ⊆ L.

As we can see, we utilize the notion of “consequence operation” in Tarski’s
sense. A consequence operation as defined in Definition 21 satisfies Tarski’s
conditions, that is reflexivity (C1), monotonicity theorem of operation Cn (C2)
and closure condition (C3).

By a substitution e in L we will understand endomorphism e ∈ Hom(L,L).

Definition 22 (Structural consequence operation). Consequence operation Cn
in a given language L is called a structural consequence operation in L if for
any substitution e in language L and for any φ ∈ L and Φ ⊆ L the following
condition holds:

if φ ∈ Cn(Φ), then eφ ∈ Cn(eΦ).

We will not focus on the consequence operation with regard to the CPC, as
it is not the main topic of the thesis, we will however define it with regard to
non-Fregean systems in the subsequent chapters.

As a deductive system we will, following Suszko, understand a pair 〈L,Cn〉,
where L is a language algebra and Cn is a structural consequence operation
defined on L.

As for the semantics, we will briefly introduce the few definitions using
Boolean algebra structures introduced in the previous section.
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Definition 23 (CPC-model of language LCPC). A structure of the form 〈A,F 〉
is called a CPC-model of language LCPC if and only if A is an algebra similar to
the language and F is any subset of A such that for any a, b ∈ A the following
conditions are met:

1. a ∈ F ⇔ ¬̇a /∈ F ,

2. a ∩̇ b ∈ F ⇔ a ∈ F and b ∈ F ,

3. a ∪̇ b ∈ F ⇔ a ∈ F or b ∈ F ,

4. a →̇ b ∈ F ⇔ a 6∈ F or b ∈ F ,

5. a ↔̇ b ∈ F ⇔ a, b ∈ F or a, b 6∈ F .

Later on we will refer to this structure simply as the “CPC-model”.

Definition 24 (Valuation). Let A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇〉 be an algebra similar
to LCPC. Valuation of language LCPC into A is a homomorphism h from LCPC
to A, that is, a function from LCPC to A fulfilling the following conditions:

1. h(¬φ) = ¬̇h(φ),

2. h(φ∨ χ) = h(φ) ∪̇ v(χ),

3. h(φ∧ χ) = h(φ) ∩̇ v(χ),

4. h(φ→ χ) = h(φ) →̇ h(χ),

5. h(φ↔ χ) = h(φ) ↔̇ h(χ).

Now we turn to the notions of the satisfiability, truth and validity of a given
formula φ of LCPC.

Definition 25. Let M = 〈A,F 〉 be an arbitrary CPC-model and let h ∈
Hom(LCPC,A). For an arbitrary formula φ: h satisfies φ inM iff h(φ) ∈ F .

Definition 26. LetM = 〈A,F 〉 be an arbitrary CPC-model. Formula φ is true
in model M if and only if for every valuation h ∈ Hom(LCPC,A), h satisfies
φ.

Definition 27. Formula φ of LCPC is valid in CPC provided it is true in all
CPC-models.

In defining validity of formulae of language LCPC it is sufficient to consider
exactly one model 〈A,F 〉, where A is the two-element Boolean algebra whose
elements are denoted {0, 1}, and F = {1}.
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2.3 Structural Proof Theory
The introduction of sequent calculus and natural deduction systems by Gentzen
followed Gödel’s and Gentzen’s simultaneous independent research focusing on
the translation of Peano arithmetic into Heyting arithmetic [12; 26; 27; 65]. This
particular result, paired with a proof of consistency of Heyting arithmetic would
entail consistency of classical arithmetic. The former was achieved by Gentzen
in his doctoral dissertation, in which he presented two proof systems—natural
deduction and sequent calculus. His goal was to formalize the actual practise
of mathematicians while constructing a proof. He noted that contrary to other
systems, such as axiomatic theories, it is the practise of employing a number of
different assumptions that is preferred by mathematicians.

At the same time Jaśkowski was independently developing a system
originating from similar motivations [30]. Jaśkowski’s system predated
those proposed by Gentzen; in 1926 Łukasiewicz discussed the possibility
of formalizing mathematicians’ actual practise, and one year later Jaśkowski
showed his initial results at the First Congress of Mathematics in Lviv [1], see
[26]. The biggest difference between the systems of Jaśkowski and Gentzen lies
in the way the proofs are represented. In the natural deduction developed
by Gentzen proofs are presented as trees, whereas in Jaśkowski’s natural
deduction system proofs are written down as series of formulae. In Jaśkowski’s
linear5 natural deduction, inferences are based on formulae themselves and not
their occurrences (contrary to Gentzen’s system). This means that additional
mechanisms should be utilized to exclude parts of a proof closed through
the employment of specific formulae as assumptions, be it through graphical
representation or utilization of prefixes [26].

Sequent calculus, today often studied independently from natural deduction,
was originally introduced as a practical tool to analyze the derivability relation
in natural deduction. The main result of Gentzen’s research, Hauptsatz—the
cut elimination theorem—shows us that any formula with a proof containing
the use of the cut rule can be proved without cut. We will elaborate on this
particular theorem and the rule itself later in the chapter.

2.3.1 System G3cp
In this section we introduce a version of G3cp, originally presented in [36]. For
simplicity we will utilize the same name. The differences lie in the set of rules:
in the original system there are rules for conjunction, disjunction, implication
and constant falsum. In the system proposed below we shall omit falsum (as it is
not a part of the language) and add rules for classical negation and equivalence.
Moreover, in the examined system we include a slight difference in the definition
of axioms. G3cp introduced in this section consists of logical rules only. We
can additionally show that in G3cp structural rules are admissible.

Definition 28 (Multiset). Multiset is a generalized type of set in which multiple
occurrences of an element are permitted.

5Jaśkowski’s system is often referred to as linear deduction, but it would be more precise
to underline its more hierarchical than linear structure [26].



2.3. Structural Proof Theory 21

A sequent is the following structure

Γ⇒ ∆

where Γ (an antecedent of a sequent), ∆ (a succedent of a sequent) are finite,
possibly empty (but not both at the same time) multisets of formulae6 whereas
“⇒” expresses a relation between two multisets. We can consider different
interpretations of a sequent, depending on our predetermined concept of the
sequent being true or false in some context. For the former one (i.e., the truth of
a sequent), we can talk about two interpretations. Operational interpretation of
sequent refers to single succedent sequents (i.e. succedents consist of one formula
only) Γ ⇒ φ and states that conclusion φ can be derived from assumptions
in Γ. Natural deduction best embodies this interpretation [36]. Denotational
interpretation can be referred to multi-succedent sequent Γ ⇒ ∆; in light of
this interpretation we will say that the conjunction of formulae in Γ implies the
disjunction of formulae in ∆. In this way we can also state that a comma
in a sequent works conjunctively in its antecedent and disjunctively in its
succedent. On the other hand, if we were to consider a sequent being false
in some semantic context, we can look at Γ as a multiset of formulae true
under some valuation and at ∆ as a multiset of formulae false under the same
valuation.

Expression of the form Γ,φ, Γ′ ⇒ ∆,χ, ∆′ will be understood as Γ ∪ {φ} ∪
Γ′ ⇒ ∆ ∪ {χ} ∪ ∆′, where ∪ is the sum defined with regard to the multisets.

Usually a set of axioms of G3cp is determined by two elements, consecutively
one axiom schema and an axiom, that is:

pi ⇒ pi ⊥ ⇒

However, these two axioms require the use of structural rules, for instance
weakening. Instead, to minimize our dependence on structural rules, we will
utilize the general version of axiom schemata, which can be seen below where
φ is an arbitrary formula of LCPC:

Γ,φ⇒ φ, ∆

In subsequent sections we will also consider the following two axiom
schemata:

Γ⇒ ∆,> ⊥, Γ⇒ ∆

In this and subsequent sequent systems by classical rules we mean logical
rules for truth-functional connectives. The classical rules (Table 2.1 and 2.2) are
divided into left- (L-) and right- (R-) rules. For a logical operator⊗, for instance
⊗ standing for→, the symbols L→, R→ indicate the rules where a formula with

6We could, however, additionally consider other possibilities. Sequents may be built with
their elements being sequences or sets of formulae as well as lists of fixed length, i.e., through
restricting the number of formulae within it. The most notable examples of the latter are
single-conclusion sequents in sequent calculus for intuitionistic propositional logic [25; 36; 61].
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→ as the main operator is introduced in the antecedent and in the succedent
respectively.

Classical rules allow us to synthesize more complex formulae out of their
components (looking top-down) or decompose complex formulae (looking
bottom-up). Γ and ∆ in the rules are referred to as contexts, formulae of the
form φ⊗χ (as well as ¬χ, in the case of the rules for negation) in the conclusion
of a given logical rule are called principal (or main) formulae of the rule, and
φ and χ (or only χ) in the premisses are called active formulae of the rule.

Further on we will bring up several theorems regarding structural rules’
admissibility; we therefore can now define G3cp as the set of the following rules:
{L∧,R∧,L∨,R∨,L→,R→,L↔,R↔,L¬,R¬} (Table 2.1). Derivations in SC are
trees, the following definition comes from [61, p. 61].

Definition 29 (Derivation of sequent Γ ⇒ ∆ in G3cp). Derivation of sequent
Γ⇒ ∆ in G3cp is a finite labelled tree with a single root carrying Γ ⇒ ∆ and
each node-label connected with the labels of the (immediate) successor nodes (if
any) according to one of the rules {L∧,R∧,L∨,R∨,L→,R→,L↔,R↔,L¬,R¬}.

Definition 30 (Proof in G3cp). Proof of sequent Γ⇒ ∆ in G3cp is a derivation
of Γ⇒ ∆ in G3cp with axioms labelling all of the top nodes.

Definition 29 states that nodes of the tree are labelled with sequents. In
subsequent sections we will introduce SC with additional, separate labels of
sequents, however we will not introduce a separate terminology for the two kinds
of labelling, and our intended use of “labels” will be clear from the context.

Table 2.1: Rules of G3cp: classical rules

Γ⇒ χ, ∆
¬χ, Γ⇒ ∆ L¬

χ, Γ⇒ ∆
Γ⇒ ∆,¬χ R¬

φ,χ, Γ⇒ ∆
φ∧ χ, Γ⇒ ∆ L∧

Γ⇒ ∆,φ Γ⇒ ∆,χ
Γ⇒ ∆,φ∧ χ R∧

φ, Γ⇒ ∆ χ, Γ⇒ ∆
φ∨ χ, Γ⇒ ∆ L∨

Γ⇒ ∆,φ,χ
Γ⇒ ∆,φ∨ χ R∨

Γ⇒ ∆,φ χ, Γ⇒ ∆
φ→ χ, Γ⇒ ∆ L→

φ, Γ⇒ ∆,χ
Γ⇒ ∆,φ→ χ

R→

φ,χ, Γ⇒ ∆ Γ⇒ ∆,φ,χ
φ↔ χ, Γ⇒ ∆ L↔

φ, Γ⇒ χ, ∆ χ, Γ⇒ φ, ∆
Γ⇒ ∆,φ↔ χ

R↔

Through examination of the rules in Table 2.1 we notice that, if we were to
look at the derivations bottom-up, through the use of logical rules we ensure



2.3. Structural Proof Theory 23

that the subformula property is satisfied (provided no other rules are added to
G3cp).

Definition 31. Let φ be a formula of LCPC. sub(φ) is the smallest set of
formulae closed under the rules:

1. φ ∈ sub(φ);

2. if ¬ψ ∈ sub(φ), then ψ ∈ sub(φ);

3. if ψ⊗ χ ∈ sub(φ) (where ⊗ ∈ {∧,∨,→,↔}), then ψ,χ ∈ sub(φ).

Each element of sub(φ) is called a subformula of φ.

It has been shown that G3cp satisfies the subformula property, for example
in [36, p. 57]. The changes included in the examined system do not interfere
with this property.

Lemma 2 (Subformula property). All formulae in the proof of ⇒ φ in G3cp
are elements of set sub(φ).

The structural rules presented in Table 2.2 allow us to modify the content
of a sequent, without modifying the internal structure of formulae.

Table 2.2: Rules of G3cp: structural rules

Γ⇒ ∆
χ, Γ⇒ ∆

Lwk
χ,χ, Γ⇒ ∆
χ, Γ⇒ ∆ Lctr

Γ⇒ ∆
Γ⇒ ∆,χ Rwk

Γ⇒ ∆,χ,χ
Γ⇒ ∆,χ Rctr

Γ⇒ ∆,φ φ, Θ⇒ Π
Γ, Θ⇒ ∆, Π cut

We will refer to formula φ in the cut rule as the cut-formula of application of
the rule. The cut rule, with no disregard to its importance, introduces certain
issues with regard to the process of building derivations. We can interpret it
as a rule transcribing the property of transitivity of derivability, moreover, we
can consider certain cases of cut that express modus ponens or hypothetical
syllogism, see [25]. Nonetheless, in contrast to classical rules, we cannot ensure
that a cut-formula we introduce to the derivation is a subformula of our initial
problem.

The cut rule presented above is an example of a rule with independent
contexts, in contrast to two-premiss logical rules with shared contexts. This
particular feature will have its consequences in non-Fregean extensions in
subsequent sections.
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We will also make several comments regarding G3cp semantics, which will
provide a base for other considerations in subsequent chapters. It has to
be noted that we will omit the proofs of several theorems (e.g. invertibility
or correctness of rules), as they can be found in [36], where their authors
utilize different semantics based on valuations, but this particular approach
is equivalent to Boolean algebra semantics utilized in this thesis.

Definition 32 (Satisfiability of a sequent). Let M = 〈A,F 〉 be an arbitrary
but fixed CPC-model and let h ∈ Hom(L,A). Sequent Γ ⇒ ∆ is satisfied in
M under h provided if all formulae from Γ are satisfied inM under h, then at
least one formula from ∆ is satisfied inM under h.

Definition 33 (Truth of a sequent). Let M = 〈A,F 〉 be an arbitrary
CPC-model. Sequent Γ ⇒ ∆ is true in M provided Γ ⇒ ∆ is satisfied in
M under every h ∈ Hom(L,A).

Definition 34 (Validity of a sequent). Sequent Γ⇒ ∆ is valid in CPC, if it is
true in each CPC-model.

Theorem 5. Sequent Γ⇒ ∆ has a proof in G3cp iff Γ⇒ ∆ is valid in CPC.

Proof. As noted above, proof of completeness of G3cp can be found in [36].

This particular proof is expressed for valuation semantics (i.e., an assignment
of truth values to formulae, based on the true values of their propositional
variables), but, as it is known, a given formula φ is a tautology in valuation
semantics iff it is a tautology in Boolean algebra semantics.

2.3.2 Structural rules’ admissibility
We often interchangeably use the notions of admissibility and elimination of a
given rule(s) R, however it has to be underlined that the two terms refer to
different properties of sequent systems: the former applies to a rule set without
R, while the latter applies to a rule set with R.

By `SC Γ⇒ ∆ we mean that sequent Γ⇒ ∆ is derivable in a given SC.

Definition 35 (Admissibility of a rule in a system). Let SC be a sequent calculus
without R in its rule set and let R be a rule acting on sequents, with S1 . . . ,Sn

as premises schemata, and S—conclusion scheme. We say that R is admissible
in SC iff: if instances of S1 . . . ,Sn are derivable in SC, then a relevant instance
of S is derivable in SC.

Definition 36 (Eliminability of a rule in a system). Let S denote an arbitrary
sequent. Rule R is eliminable in SC∪ {R} iff: if `SC∪{R} S, then `SC S.

In conclusion, elimination is a converse of admissibility. For example, if we
were to consider the cut rule, if SC∪ {cut} is a system with a given cut rule in
the rule set and SC is the same system but without the cut, the cut rule can be
eliminated in SC∪ {cut} iff cut is admissible in SC [25, p. 90].

The proof for the following theorem about the admissibility of weakening
can be found in Chapter 7.
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Theorem 6 (Admissibility of weakening wk). If `G3cp Γ ⇒ ∆, then `G3cp
φ, Γ⇒ ∆ and `G3cp Γ⇒ ∆,φ.

The proof of admissibility of weakening is standard. However, the proof
for the admissibility of height-preserving contraction differs from the standard
approach due to the general form of the axioms. In this situation the rules are
not height-preserving invertible. Nonetheless, contraction is still admissible,
which will be shown in Chapter 7.

Theorem 7 (Admissibility of contraction ctr). If `G3cp φ,φ, Γ ⇒ ∆, then
`G3cp φ, Γ⇒ ∆ and if `G3cp Γ⇒ ∆,φ,φ, then `G3cp Γ⇒ ∆,φ.

In the standard proof we refer to the induction on the height of the
derivation. The proof can be found in [36].

Theorem 8 (Admissibility of cut). If `G3cp Γ ⇒ ∆,φ and `G3cp φ, Θ ⇒ Π,
then `G3cp Γ, Θ⇒ ∆, Π.

The full proof can be found in [36], although we will also present the proof
in Chapter 7.
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Chapter 3

Sentential Calculus with Identity

Sentential Calculus with Identity (SCI) is the weakest non-Fregean logic
proposed by Roman Suszko.1 It is obtained from classical logic by means of
adding a binary identity connective ≡. Then, the expression “φ ≡ χ” (which
we will refer to as an equation) expresses the identity of situations denoted by
formulae φ and χ. We introduce SCI as the foundation for the three axiomatic
extensions we investigate in the subsequent sections. Regarding semantics, we
will stay faithful to the algebraic approach proposed by Suszko, as it provides
the best formalization of Wittgenstein’s ideas examined in Tractatus.

3.1 The Hilbert system for SCI
We will supplement CPC language with an introduction of the identity
connective, thereby obtaining SCI-language. We consider the following
structure:

Definition 37. Language LSCI of theory SCI is the following algebra of
similarity type 〈1, 2, 2, 2, 2, 2〉

LSCI = 〈LSCI,¬,∧,∨,→,↔,≡〉.

In LSCI we are unable to define constants > or ⊥ (similarly we are unable to
define ¬φ =df φ→ ⊥), as it would lead us to a different, stronger non-Fregean
logic. By logic H1 being stronger than logic H2 we mean that H1’s set of
theorems contains more elements than that of logic H2.2

We distinguish two separate sets of formulae: Truth-Functional Axioms
(TFA) and the set of formulae falling under axioms schemata characterizing
the identity connective ≡ (IDA) [51, p. 185] in LSCI:

(≡1) φ ≡ φ

(≡2) (φ ≡ χ)→ (¬φ ≡ ¬χ)

(≡3) (φ ≡ χ)→ (φ↔ χ)

(≡4) ((φ ≡ ψ) ∧ (χ ≡ ω))→ ((φ⊗ χ) ≡ (ψ⊗ ω)),
1There are non-Fregean logics weaker than SCI proposed by other logicians, e.g.,

Grzegorczyk’s Minimal Non-Fregean Logic. [15; 17; 21]
2Suszko underlined that “genuine logic should be as weak as possible” [51, p.192], however

it is reasonable to aim for a stronger entailment relation.
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where ⊗ can be any one of the available binary connectives.
The first axiom schema, (≡1), expresses the reflexivity of the identity

connective. Moreover, it is the only validity of SCI with the identity as the
main connective (see [2]). Additionally, axiom schemata (≡2), (≡4) are referred
to as invariance axioms with regard to the identity connective. In [4] (≡2) is
written as (φ ≡ χ) → ((φ → ⊥) ≡ (χ → ⊥)), but, as we mentioned above,
we cannot utilize definitional equations in SCI without causing any harm to the
theory: ¬φ ≡ (φ → ⊥) is not a theorem of SCI. In [2, p. 293] Suszko writes
that The completeness theorem may be used to show that if ∨ (disjunction) is
included in the set of primitive connectives then e.g. ¬(p ∨ q) ≡ (¬p → q) is
consistent. Hence to construe p ∨ q as an abbreviation of ¬p → q is, in effect,
to adopt p ∨ q ≡ ¬p → q as an axiom. Similar remarks may be made about
any abbreviation. We should be somewhat cautious when translating between
two languages, as we could inadvertently create a stronger logic. The axiom
schema (≡3) is called a special axiom for the identity connective [38, p. 86]: it
expresses the fact that the equation entails equivalence, and not the other way
around (which is expressed by the rejection of the Fregean Axiom).

Definition 38 (Derivation, proof). Let Φ stand for a set of formulae of LSCI.
A finite sequence φ1, ...,φn of formulae of LSCI is a derivation of φ from Φ
provided φn = φ and each formula φi, i ≤ n, either belongs to Φ or has been
derived from some φi1 ,φi2 , (i1, i2 < i) through an application of modus ponens.
If Φ = TFA ∪ IDA, then derivation φ1, ...,φn is a proof of φ in the axiomatic
system for SCI.

If φ1, ...,φn is a proof of φ in the axiomatic system for SCI, then the length
of this proof is n.

We distinguish two types of consequence operation: syntactical (C) and
semantical (CM ) [2]. We will focus on the former, understood as we defined it
in the previous chapter.

Consequence operation C is defined by the set TFA ∪ IDA of axioms and
a singular inference rule, modus ponens as follows: φ ∈ C(Φ) iff there is a
derivation of φ from Φ, as defined in Definition 38. If Φ = TFA∪ IDA, then we
shall say that φ is a logical theorem of SCI.

Theorem 9. C has the following properties [2, p. 290–291]3:

(C1) Φ ⊆ C(Φ), for all Φ ⊆ LSCI,

(C2) If Φ ⊆ Ψ, then C(Φ) ⊆ C(Ψ); for all Φ, Ψ ⊆ LSCI,

(C3) C(C(Φ)) = C(Φ), for all Φ ⊆ LSCI,

(C4) φ ∈ C(Φ ∪ {ψ}) iff ψ → φ ∈ C(Φ),

(C5) φ ∈ C(Φ) iff φ ∈ C(Ψ), where Ψ is some finite subset of Φ.
3In the original paper the authors examined language with negation, implication and

identity connective only.
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(C1)–(C3) are the basic properties we listed for the consequence operation
on CPC and are extended by (C4) and (C4) (also applicable for CPC).
Condition (C5) states that consequence operation C is finitary, whereas
condition (C4) states that it is closed under the deduction theorem.

Definition 39 (Consistent set [38, p. 21]). Let L be a language and let C∗ be
a consequence operation in this language. Set Φ of formulae of L is consistent
with regard to consequence operation C∗ if and only if

C∗(Φ) 6= L.

Definition 40 (Complete theory [38, p. 21–22]). Let L be a language and let
C∗ be a consequence operation in this language. A set Φ of formulae of L is
called a C∗-theory iff

C∗(Φ) = Φ.

If in language L there exist maximal consistent sets of formulae with regard to
consequence operation C∗, we shall call them complete C∗-theories.

Definition 41 (Compact consequence operation [38, p. 22]). Consequence
operation C∗ defined with regard to language L is called logically compact
provided every inconsistent set X of formulae of language L contains a finite
inconsistent subset.

Definition 42 (Regular consequence operation [38, p. 24]). Consequence
operation C∗ defined with regard to language L is called regular if and only if
every C∗-theory T is the product of all complete C∗-theories containing theory
T .

We will also say with regard to consequence operation C the following: for an
arbitrary substitution function e for propositional variables in LSCI the following
conditions hold:

• e(TFA∪ IDA) ⊆ (TFA∪ IDA)

• eβ ∈ C({eα, e(α→ β)}),

hence we know that C is a structural consequence operation. Moreover, C is
regular, logically compact and finitary [38, p. 87].

Definition 43 (SCI-theory). Any set Φ of formulae of language LSCI such that
C(Φ) = Φ is called an SCI-theory. SCI-theory is invariant provided it is closed
under the substitution rule.

Definition 44. φ ∈ TFT iff φ ∈ C(TFA) (where TFT stands for Truth
Functional Tautologies).

Finally, it is worth mentioning that for Suszko a logic, or a deductive system,
is a pair composed of a language algebra and a structural consequence operation
defined on it. Hence, in keeping with Suszko, we define a deductive system for
SCI:
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Definition 45. Pair HSCI = 〈LSCI,C〉 is called Sentential Calculus with
Identity, SCI for short.

Suszko distinguished two different ways of extending a given logic: either
by an addition of axioms (such extension is called elementary) or by different
inference rules (non-elementary extensions) [23]. In this work we will focus on
three elementary extensions of SCI: WB, WT and WH. These three theories
are formalized as an interpretation of different theses from Tractus and can be
semantically interpreted by means of different algebras: respectively, Boolean
algebra, topological Boolean algebra and Henle algebra. In addition, let WF be
a maximal consistent Fregean theory.

Definition 46 (Fregean theory). A given theory T is called a Fregean theory
in language LSCI, if among theorems of T there are all formulae of LSCI that
are represented by the following formula schema: (φ ≡ χ) ≡ (φ↔ χ).

We can organize the aforementioned theories in the following order (as was
done in [13]):

SCI ⊂ WB ⊂ WT ⊂ WH ⊂ WF.

Consequently, the following order of consequence operations describes their
dependence with one another:

CSCI ≺ CWB ≺ CWT ≺ CWH ≺ CWF,

where ≺, which points to the relation of being a proper sublogic, is defined as
follows [13, p. 27]4.

Definition 47 (Subtheory, sublogic, proper sublogic). Let L be a universe of
any SCI language L and let A and B be SCI-theories:

• A is a subtheory of B provided A ⊆ B;

• We will say CA is a sublogic of CB provided for any X ⊂ L the following
holds:

CA(X) ⊆ CB(X).

If CA is a sublogic of CB, then we write CA � CB;

• We will say that CA is a proper sublogic of CB provided for all X ⊂ L
the following holds:

CA(X) ⊆ CB(X)

and for some Y ⊂ L the following holds:

CB(Y ) 6⊆ CA(Y ).

If CA is a proper sublogic of CB, we will write CA ≺ CB.
4Fragment self-translated.
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In [13] it is shown that the class of all extensions of SCI is partially ordered
by �, where a minimal element is SCI and the maximal one is a Fregean-theory
WF. In [13] it is also proved that between SCI and WF there are uncountably
many different extensions of SCI, see also [18].

3.2 Semantics of SCI
Certain constructions defined below will be used in the subsequent sections (for
axiomatic extensions of SCI) whilst some will undergo specific modifications
with the purpose of underlining the differences between the presented theories.

The following object, an SCI-algebra, allows us to depict an internal relation
that holds between language and the universe of situations (or: the world);
a relation that appears in Tractatus between language and certain elements of
the world (e.g. one between the score and the musical thought).

Definition 48. Any algebra of the form A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉 similar to
LSCI, will be called an SCI-algebra.

The decision to introduce “≡̇” in place of symbol “◦” (which is prevailing in
literature) is due to the fact we use “◦” to show function composition.

If A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉 is an SCI-algebra, then set A is called a universe
of situations while the other elements of the SCI-algebra are various operations
we can apply to elements of the set A. The following definitions are based on
ones from [38, p. 90]:

Definition 49 (SCI-model). A structure of the form 〈A,F 〉 (where A =
〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉) is called an SCI-model if and only if A is an SCI-algebra,
and F is any subset of A such that for any a, b ∈ A the following conditions are
met:

1. a ∈ F ⇔ ¬̇a /∈ F ,

2. a ∩̇ b ∈ F ⇔ a ∈ F and b ∈ F ,

3. a ∪̇ b ∈ F ⇔ a ∈ F or b ∈ F ,

4. a →̇ b ∈ F ⇔ a 6∈ F or b ∈ F ,

5. a ↔̇ b ∈ F ⇔ a, b ∈ F or a, b 6∈ F ,

6. a ≡̇ b ∈ F ⇔ a = b.

If 〈A,F 〉 is an SCI-model, then F is called a normal ultrafilter of algebra A.

Of course, an ultrafilter can be also defined separately from the structure of
the SCI-model [38, p. 47]. This particular definition appears in Chapter 4 as
well.

Definition 50. Let A be an SCI-algebra. Ultrafilter F of A is called a normal
ultrafilter, provided for any a, b ∈ A:

a ≡̇ b ∈ F iff a = b.
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The following definition is a formalization of the shadow metaphor, proposed
by Wolniewicz in [72]. Wolniewicz refers to the mirror metaphor proposed by
Wittgenstein and proposes shadow as a better metaphor for homomorphism;
the mirror metaphor is better suited for an isomorphism. Homomorphism
allows situations in which some of the language’s details are disguised by
codenotations. Elements of algebra could thereby be understood as the shadow
of a language, and not its actual reflection.

Definition 51 (Valuation). Valuation of language LSCI into its similar algebra
A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉 is a homomorphism h from LSCI to A, hence it fulfills
the following conditions:

1. h(¬φ) = ¬̇h(φ),

2. h(φ∨ χ) = h(φ) ∪̇ h(χ),

3. h(φ∧ χ) = h(φ) ∩̇ h(χ),

4. h(φ→ χ) = h(φ) →̇ h(χ),

5. h(φ↔ χ) = h(φ) ↔̇ h(χ),

6. h(φ ≡ χ) = h(φ) ≡̇ h(χ).

Definition 52. Let M = 〈A,F 〉 be an arbitrary SCI-model and let h ∈
Hom(LSCI,A). For an arbitrary formula φ: h satisfies φ inM iff h(φ) ∈ F .

Definition 53. LetM = 〈A,F 〉 be an arbitrary SCI-model. Formula φ is true
in model M if and only if for every valuation h ∈ Hom(LSCI,A) h satisfies
formula φ in modelM.

Definition 54. Formula φ is valid in SCI provided it is true in all SCI-models.

We define the semantic consequence operation CM by means of the
SCI-models. It follows Tarski’s observation that a given formula φ follows from
the set of formulae Φ provided every model of Φ is also a model of φ.

Definition 55. Let A be a universe of algebra A and let D be a subset of A.
φ ∈ CM (Φ) iff for all valuations h ∈ Hom(L,A) if h(Φ) ⊆ D, then h(φ) ∈ D.

Moreover, analogously to C, CM satisfies the following conditions:

(CM 1) Φ ⊆ CM (Φ), for all Φ ⊆ L;

(CM 2) If Φ ⊆ Ψ, then CM (Φ) ⊆ CM (Ψ); for all Φ, Ψ ⊆ L.

(CM 3) CM (CM (Φ)) = CM (Φ), for all Φ ⊆ L;

We define standard semantic notions with regard to sequents in G3SCI:

Definition 56 (Satisfiability of a sequent). Let M = 〈A,F 〉 be an arbitrary
but fixed SCI-model and let h ∈ Hom(LSCI,A). Sequent Γ ⇒ ∆ is satisfied in
M under h provided that, if all formulae from Γ are satisfied in M under h,
that is h(χ) ∈ F (for all χ ∈ Γ), then at least one formula in ∆ is satisfied in
M under h as well.
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Definition 57 (Truth of a sequent). Let M = 〈A,F 〉 be an arbitrary
SCI-model. Sequent Γ ⇒ ∆ is true in M provided that for each h ∈
Hom(LSCI,A), sequent Γ⇒ ∆ is satisfied inM under h.

Definition 58 (Validity of a sequent). Sequent Γ ⇒ ∆ is valid in SCI, if it is
true in each SCI-model.

Theorem 10. SCI is the set of all and only formulae true in every SCI-model.

Proof can be found in [38].

3.3 Sequent Calculi `G3SCI and G3SCI

Indrzejczak in [28] notes that the introduction of identity in sequent
calculus rules can be thought of as local (in a situation where we work on
selected formulae within some identity-dedicated rules) or global (applying
identity-dedicated rules results in some changes to the whole sequent).
Following that, we can state that the introduction of identity in the sequent
calculus we present in this section is local.

Sequent Calculus `G3SCI has been obtained through employment of a
strategy proposed by Negri in [36], which allows us to turn axioms into rules.
It depends on the fact that if we can transform a given axiom into a formula of
the following shape:

p1 ∧ ...∧ pm → q1 ∨ ...∨ qn

we can obtain the rules of the following structure, both left-sided and
right-sided:

q1, p1, ..., pm, Γ⇒ ∆ ... qn, p1, ..., pm, Γ⇒ ∆
p1, ..., pm, Γ⇒ ∆ L

or

Γ⇒ ∆, q1, ..., qn, p1 ... Γ⇒ ∆, q1, ..., qn, pm

Γ⇒ ∆, q1, ..., qn
R

In [4] the author underlines the fact that the original strategy was defined for
CPC and depended on the fact that we can work with propositional variables
only. In the case of SCI we are unable to transform a given axiom into the above
sequent structure, as we are unable to decompose equations, therefore the final
product of two sequent calculi for SCI provided in [4] did not possess all of the
desired properties, such as cut elimination (in the case of rG3SCI), subformula
property (in both calculi) and so on.

For these reasons, in [4], to proceed with the strategy, the author additionally
has to ensure that the closure condition is satisfied, where the closure condition
is understood as follows.

Definition 59 (Closure condition [36, p. 130]). If a system with non-logical
rules has a rule, where a substitution instance in the atoms produces a rule of
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the form:

q1, p1, ..., qm−2, p, p, Γ⇒ ∆ ... qn, p1, ..., pm−2, p, p, Γ⇒ ∆
p1, ..., pm−2, p, p, Γ⇒ ∆

then it also has to contain the rule:

q1, p1, ..., qm−2, p, Γ⇒ ∆ ... qn, p1, ..., pm−2, p, Γ⇒ ∆
p1, ..., pm−2, p, Γ⇒ ∆

Applying this condition results in the rule set in which contraction is
admissible, which, paired with the fact that the overall strategy is built to ensure
the admissibility of other structural rules, means that as a result `G3SCI can be
defined as the set of the following rules: {L∧, R∧, L∨, R∨, L→, R→, L1

≡, L2
≡, L3

≡,
L3∗
≡ } (Tables 3.1 and 3.2). In [4] besides `G3SCI the author proposed right-sided

calculus rG3SCI (right- or left-sidedness relates to the identity-dedicated rules),
however for the rG3SCI there is no proof of cut elimination.

Table 3.1: `G3SCI: classical rules

φ⇒ φ (ax) ⊥, Γ⇒ ∆

φ,χ, Γ⇒ ∆
φ∧ χ, Γ⇒ ∆ L∧

Γ⇒ ∆,φ Γ⇒ ∆,χ
Γ⇒ ∆,φ∧ χ R∧

φ, Γ⇒ ∆ χ, Γ⇒ ∆
φ∨ χ, Γ⇒ ∆ L∨

Γ⇒ ∆,φ,χ
Γ⇒ ∆,φ∨ χ R∨

Γ⇒ ∆,φ χ, Γ⇒ ∆
φ→ χ, Γ⇒ ∆ L→

φ, Γ⇒ ∆,χ
Γ⇒ ∆,φ→ χ

R→

Here we present a slightly modified version of the left-sided calculus, G3SCI,
in which we utilize classical negation, equivalence, and we omit constant ⊥
(Tables 3.3, 3.5, 3.4).

Let us observe that rule L1
≡ of G3SCI (Table 3.5) has no principal formula

and rule L4
≡ of G3SCI (Table 3.5) has two principal formulae: φ ≡ ψ and χ ≡ ω.

G3SCI is defined as the following set of rules: {L¬,R¬,L∧, R∧, L∨, R∨, L→,
R→,L↔,R↔, L1

≡, L2
≡, L3

≡, L4
≡, cut} Rules L1

≡, L3
≡, L4

≡ come from the original
system (with two numerical changes within the names), however rule L2

≡ has
been added in order to correspond to the axiom (≡2).

Definition 60 (Derivation of sequent Γ ⇒ ∆ in G3SCI). Derivation of sequent
Γ⇒ ∆ in G3SCI is a finite tree with a single root labelled with sequent Γ ⇒ ∆
and each node-label connected with the labels of the (immediate) successor nodes
(if any) according to one of the rules of G3SCI.
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Table 3.2: `G3SCI: identity-based rules

φ ≡ φ, Γ⇒ ∆
Γ⇒ ∆ L1

≡
φ ≡ χ, Γ⇒ ∆,χ φ ≡ χ,φ, Γ⇒ ∆

φ ≡ χ, Γ⇒ ∆ L2
≡

(φ⊗ ψ) ≡ (χ⊗ ω),φ ≡ χ,ψ ≡ ω, Γ⇒ ∆
φ ≡ χ,ψ ≡ ω, Γ⇒ ∆ L3

≡

(φ⊗ φ) ≡ (χ⊗ χ),φ ≡ χ, Γ⇒ ∆
φ ≡ χ, Γ⇒ ∆ L3∗

≡

Definition 61 (Proof in G3SCI). Proof of a sequent Γ⇒ ∆ in G3SCI is
a derivation of sequent Γ⇒ ∆ in G3SCI with axioms at all of the top nodes.

In the original system this particular axiom was written with the definition
¬φ =df φ → ⊥, which we reject, as it generates different logic, stronger than
SCI, on which we commented earlier in the chapter. Also, rule L3

≡ has been
modified from a two-premiss to one-premiss rule. Moreover, in the original
system rule L3∗

≡ had been added to satisfy the closure condition. Its main
goal was to show that contraction is admissible. This particular problem was
illustrated by the formula (φ ≡ ψ) → ((φ⊗ φ) ≡ (ψ ⊗ ψ)). L3∗

≡ allows us
to construct the following proof, in which we do not need two occurrences of
φ ≡ ψ in the premiss. Apparently, rule L3

≡ is not sufficient to prove the sequent,
as it requires two occurrences of φ ≡ ψ in the premise. But with the second
occurrence we can only prove sequent φ ≡ ψ ⇒ (φ ≡ ψ) → ((φ ⊗ φ) ≡
(ψ⊗ ψ)).

(φ⊗ φ) ≡ (ψ⊗ ψ),φ ≡ ψ ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ)
(φ ≡ ψ)⇒ ((φ⊗ φ) ≡ (ψ⊗ ψ)) L3

≡∗

⇒ (φ ≡ ψ)→ ((φ⊗ φ) ≡ (ψ⊗ ψ)) R→

But, it turns out, we can remove occurrences of φ ≡ ψ by means of other
identity-dedicated rules:

D.... φ ≡ ψ, Γ∗ ⇒ φ ≡ ψ, ∆
(φ ≡ ψ)↔ (φ ≡ ψ),φ ≡ φ,ψ ≡ ψ, δ,φ ≡ ψ ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ) L↔

δ,φ ≡ φ,ψ ≡ ψ,φ ≡ ψ ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ) L3
≡

φ ≡ φ,ψ ≡ ψ,φ ≡ ψ ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ)) L4
≡

⇒ (φ ≡ ψ)→ ((φ⊗ φ) ≡ (ψ⊗ ψ)) L1
≡(×2),R→(×1)
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Table 3.3: G3SCI: classical rules

φ, Γ⇒ ∆,φ (ax)

φ, Γ⇒ ∆
Γ⇒ ∆,¬φ L¬

Γ⇒ ∆,φ
¬φ, Γ⇒ ∆ R¬

φ,χ, Γ⇒ ∆
φ∧ χ, Γ⇒ ∆ L∧

Γ⇒ ∆,φ Γ⇒ ∆,χ
Γ⇒ ∆,φ∧ χ R∧

φ, Γ⇒ ∆ χ, Γ⇒ ∆
φ∨ χ, Γ⇒ ∆ L∨

Γ⇒ ∆,φ,χ
Γ⇒ ∆,φ∨ χ R∨

Γ⇒ ∆,φ χ, Γ⇒ ∆
φ→ χ, Γ⇒ ∆ L→

φ, Γ⇒ ∆,χ
Γ⇒ ∆,φ→ χ

R→

φ,χ, Γ⇒ ∆ Γ⇒ ∆,φ,χ
φ↔ χ, Γ⇒ ∆ L↔

φ, Γ⇒ χ, ∆ χ, Γ⇒ φ, ∆
Γ⇒ ∆,φ↔ χ

R↔

where D is the following derivation:

(φ⊗ φ) ≡ (ψ⊗ ψ), Γ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ)
Γ⇒ (φ⊗ φ) ≡ (ψ⊗ ψ) L4

≡

and δ = (φ ≡ ψ) ≡ (φ ≡ ψ), Γ = {φ ≡ ψ × 3,φ ≡ φ,ψ ≡ ψ, δ}, Γ∗ = {δ,φ ≡
φ,ψ ≡ ψ}, ∆ = {φ ≡ ψ, (φ⊗ φ) ≡ (ψ⊗ ψ)}

3.3.1 Completeness of G3SCI

We now present completeness through interpretation of HSCI in G3SCI.

Theorem 11 (Interpretation of HSCI within G3SCI). If formula φ is provable in
axiomatic system HSCI, then sequent ⇒ φ is provable in G3SCI.

Proof. We show completeness as follows:

1. We show that for every axiom ψ, sequent ⇒ ψ has a proof in G3SCI.

2. Based on the proof of a given formula φ in HSCI, we show that sequent
⇒ φ has a proof in G3SCI through simulation of modus ponens in sequent
calculus.

We use induction with respect to the length of the proof of a given formula
φ in deductive system HSCI:

Base: If φ is a formula with a proof in HSCI of length equal to 1, sequent
⇒ φ has a proof in G3SCI.
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Table 3.4: `G3SCI, G3SCI: structural rules

Γ⇒ ∆,φ φ, Π⇒ Θ
Γ, Π⇒ ∆, Θ cut

φ,φ, Γ⇒ ∆
φ, Γ⇒ ∆ Lctr

Γ⇒ ∆,φ,φ
Γ⇒ ∆,φ Rctr

Γ⇒ ∆
φ, Γ⇒ ∆

Lwk
Γ⇒ ∆

Γ⇒ ∆,φ Rwk

Table 3.5: G3SCI: identity-based rules

φ ≡ φ, Γ⇒ ∆
Γ⇒ ∆ L1

≡
¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆

φ ≡ χ, Γ⇒ ∆ L2
≡

φ↔ χ,φ ≡ χ, Γ⇒ ∆
φ ≡ χ, Γ⇒ ∆ L3

≡

(φ⊗ χ) ≡ (ψ⊗ ω),φ ≡ ψ,χ ≡ ω, Γ⇒ ∆
φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ L4

≡

Here we present proofs of axioms of SCI:
(≡1):

φ ≡ φ⇒ φ ≡ φ

⇒ φ ≡ φ
L1
≡

(≡2):

¬φ ≡ ¬ψ,φ ≡ ψ ⇒ ¬φ ≡ ¬ψ
φ ≡ ψ ⇒ ¬φ ≡ ¬ψ L2

≡

⇒ (φ ≡ ψ)→ (¬φ ≡ ¬ψ) R→

(≡3):

φ↔ ψ,φ ≡ ψ ⇒ φ↔ ψ

φ ≡ ψ ⇒ φ↔ ψ
L3
≡

⇒ (φ ≡ ψ)→ (φ↔ ψ)
R→
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(≡4):

(φ⊗ χ) ≡ (ψ⊗ ω),φ ≡ ψ,χ ≡ ω ⇒ (φ⊗ χ) ≡ (ψ⊗ ω)
φ ≡ ψ,χ ≡ ω ⇒ (φ⊗ χ) ≡ (ψ⊗ ω) L4

≡

(φ ≡ ψ) ∧ (χ ≡ ω)⇒ (φ⊗ χ) ≡ (ψ⊗ ω) L∧

⇒ ((φ ≡ ψ) ∧ (χ ≡ ω))→ ((φ⊗ χ) ≡ (ψ⊗ ω)) R→

Induction hypothesis: sequent⇒ ψ is provable in G3SCI, if a given formula
ψ has a proof in HSCI of length at most n.

Suppose formula φ has a proof in HSCI of length (n+ 1). We then have the
following: either (1) φ is an axiom of HSCI or (2) φ is a conclusion of modus
ponens. In the case of (1) we know sequent⇒ φ has a proof, as shown above. In
the case of (2) we build a derivation as shown on the derivation schema below
(which shows that modus ponens is obtainable in G3SCI):

D1....⇒ χ

D2....
⇒ χ→ φ

χ⇒ χ φ⇒ φ

χ,χ→ φ⇒ φ
L→

χ⇒ φ
cut

⇒ φ
cut

χ and χ→ φ appear in a derivation of φ in HSCI. Therefore their proofs in HSCI
are shorter than proofs of sequents ⇒ χ and ⇒ χ→ φ in G3SCI (where D1 and
D2 are proofs of the said sequents). As a result the above schema is a proof of
sequent ⇒ φ.

Theorem 12 (Completeness). If a sequent ⇒ φ is valid in SCI, it is provable
in G3SCI.

Proof. From Theorem 10 we know that SCI is complete with regard to the
algebraic semantics. This, paired with the Theorem 11 shows that for all
formulae φ valid in SCI, sequent ⇒ φ is provable in G3SCI.

3.3.2 Soundness of G3SCI

In this section we examine G3SCI with regard to algebraic semantics. Even
though utilization of algebraic semantics is a standard way of analyzing
non-Fregean theories, the sequent calculi presented so far have not been the
subject of this particular analysis.

We consider two properties of rules of G3SCI: preservability of satisfiability
of sequents from premiss to conclusion (correctness) and from conclusion to
premiss (invertibility; particularly useful in proof-search from the root up). The
logical rule R¬,L¬,R∨,L∨,R∧,L∧,R→,L→,R↔, and L↔ have both properties.
Applying these rules to the premisses satisfied in a given SCI-model A under
h ∈ Hom(LSCI,A) will result in a conclusion satisfied in A under h and the
other way around. Their behavior is classical, therefore as the proofs are
self-explanatory we will omit them in this section. We shall now focus on the
correctness and invertibility of the four identity rules.
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Definition 62 (Correctness of a rule). Rule R is correct in SCI provided that
for each SCI-model M and for every valuation h in M, if the premiss(-es) of
R is (are) satisfied inM under h, then so is the conclusion.

Definition 63 (Invertibility of a rule). Rule R is invertible in SCI provided that
for each SCI-model M and for every valuation h in M, if the conclusion of R
is satisfied inM under h, then so is (are) its premiss(-es).

For the following lemmas, A denotes an SCI-algebra, M = 〈A,F 〉 is an
arbitrary but fixed SCI-model and h is an arbitrary homomorphism from LSCI
into A.

Lemma 3. L1
≡ is correct in SCI.

Proof. Suppose that (1) Γ⇒ ∆ is not satisfied inM under h and (2) φ ≡ φ, Γ⇒
∆ is satisfied inM under h. From (1) we know that all of the formulae in the
antecedent of the conclusion are satisfied and all formulae within the succedent
are not satisfied in M under h. φ ≡ φ is satisfied in M under h, because F
is a normal ultrafilter. By assumption (2) there has to be at least one formula
satisfied in ∆ which stands in opposition to (1).

Lemma 4. L2
≡ is correct in SCI.

Proof. Suppose that (1) χ ≡ φ, Γ ⇒ ∆ is not satisfied in M under h, and (2)
¬χ ≡ ¬φ,χ ≡ φ, Γ ⇒ ∆ is satisfied in M under h. From (1) we have that
χ ≡ φ and all formulae from Γ are satisfied inM under h and no formula in ∆
is satisifed in M under h. Therefore h(χ ≡ φ) = h(χ)≡̇h(φ) ∈ F , and from
that we have h(χ) = h(φ). From (2) we know that if all formulae from the
antecedent are satisfied inM, then so is at least one formula from its succedent.
Paired with (1) we know that ¬χ ≡ ¬φ cannot be satisfied inM. Then we have
h(¬χ ≡ ¬φ) = h(¬χ) ≡̇ h(¬φ), therefore ¬̇h(χ) 6= ¬̇h(φ). But we know that
h(χ) = h(φ) from which it follows that ¬̇h(χ) = ¬̇h(φ)—a contradiction.

Lemma 5. L3
≡ is correct in SCI.

Proof. Suppose that (1) χ ≡ φ, Γ ⇒ ∆ is not satisfied in M under h, and (2)
χ↔ φ,χ ≡ φ, Γ⇒ ∆ is satisfied inM under h. From (1) we know that χ ≡ φ
and formulae within Γ are satisfied inM and formulae from ∆ are not. χ ≡ φ
being satisfied inM means that h(χ ≡ φ) = h(χ)≡̇h(φ) ∈ F and from that it
follows that h(χ) = h(φ). Hence it follows that χ↔ φ is satisfied inM under
h, as there cannot be that simultaneously h(φ) ∈ F and h(χ) 6∈ F . Therefore
as the formulae in the antecedent of the premiss are satisfied inM under h then
at least one formula in ∆ is satisfied as well, which contradicts (1).

Lemma 6. L4
≡ is correct in SCI.

Proof. Suppose that (1) φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ is not satisfied inM under h and
(2) (φ⊗χ) ≡ (ψ⊗ω),φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ is satisfied inM under h. From (1)
we know that both h(φ)≡̇h(ψ) ∈ F and h(χ)≡̇h(ω) ∈ F , and, consequently,
h(φ) = h(ψ),h(χ) = h(ω). ⊗ ∈ {∧,∨,→ ,↔,≡}, but in the case of classical
connectives the reasoning is analogous, so we will focus on conjunction and
identity connective:
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1. (⊗ = ∧) We will show that with the above information it cannot be that
(φ∧χ) ≡ (ψ∧ω) is not satisfied inM. For now let us assume that it is not
satisfied in M under h. This would mean that h(φ ∧ χ)≡̇h(ψ ∧ ω) 6∈ F
and, accordingly, h(φ ∧ χ) 6= h(ψ ∧ ω). But from (1) we know that
h(φ) = h(ψ) and h(χ) = h(ω), therefore h(φ ∧ χ) = h(ψ ∧ ω), and
then h(φ ∧ χ)≡̇h(ψ ∧ ω) ∈ F , which shows us that (φ ∧ χ) ≡ (ψ ∧ ω)
is satisfied in M under h. As all the formulae from the antecedent are
satisfied in M under h, then there has to be at least one formula in ∆
which is satisfied as well. We arrived at the contradiction with (1).

2. (⊗ = ≡) From (1) we have that (φ ≡ χ) and (ψ ≡ ω) are satisfied in
M under h. As above, let us assume the formula (φ ≡ χ) ≡ (ψ ≡ ω)
is not satisfied in M. It follows that h(φ ≡ χ)≡̇h(ψ ≡ ω) 6∈ F , which
means that h(φ ≡ χ) 6= h(ψ ≡ ω). But from (1) we have h(φ) = h(ψ)
and h(χ) = h(ω). Therefore it cannot be the case that (h(φ)≡̇h(χ)) 6=
(h(ψ)≡̇h(ω)). As a result we have h((φ ≡ χ) ≡ (ψ ≡ ω)) ∈ F , which
contradicts (1).

The rule L4
≡ is correct for all ⊗ ∈ {∧,∨,→,↔,≡}.

We now move to invertibility of identity-dedicated rules.

Lemma 7. L1
≡ is invertible in SCI.

Proof. Suppose that φ ≡ φ, Γ ⇒ ∆ is not satisfied inM under h. That means
that all formulae from Γ in conclusion of the rule are satisfied inM under h and
no formula in ∆ is satisfied inM under h, thus the conclusion is not satisfied
inM under h.

Lemma 8. L2
≡ is invertible in SCI.

Proof. Suppose that ¬χ ≡ ¬φ,χ ≡ φ, Γ ⇒ ∆ is not satisfied in M under h.
We then have that a conclusion χ ≡ φ, Γ ⇒ ∆ of L2

≡ is also not satisfied inM
under h.

Lemma 9. L3
≡ is invertible in SCI.

Proof. Suppose that χ ↔ φ,χ ≡ φ, Γ ⇒ ∆ is not satisfied in M under h. We
therefore know that χ ≡ φ, Γ⇒ ∆ is also not satisfied inM under h.

Lemma 10. L4
≡ is invertible in SCI.

Proof. Suppose that (φ⊗χ) ≡ (ψ⊗ω),φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ is not satisfied in
M under h. Similarly as above, we can see that sequent φ ≡ ψ,χ ≡ ω, Γ ⇒ ∆
is not satisfied inM under h.

Through the above lemmas 7–10 we notice the semantic monotonicity. The
addition of formulae to a given sequent satisfied in M under h will not alter
the said property.

Theorem 13 (Soundness). If a sequent is provable in G3SCI, it is valid in SCI.
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Proof. We show that all G3SCI axioms of the form φ, Γ ⇒ ∆,φ are valid in
SCI. Let M = 〈A,F 〉 be an arbitrary SCI-model. Then we have that for all
h ∈ Hom(LSCI,A) if h satisfies φ, Γ in M, then at least one formula in ∆,φ
is also satisfied in M under h. We then examine an arbitrary branch of the
proof tree and nth and n+ 1st sequent (counting from the axiom). nth sequent
is then valid in SCI per induction hypothesis, n+ 1st sequent through Lemmas
3–6 and correctness of rules for classical connectives.

Then from Theorems 12 and 13 we have the following:

Theorem 14 (Adequacy). Sequent ⇒ φ is provable in G3SCI iff ⇒ φ is valid
in SCI.

System `G3SCI has been shown in [4] to have all structural rules admissible;
in Chapter 7 we will also show that making small changes to the language and,
as a result, the rule set, does not affect this structural characteristic. We will
then present the structure of the cut elimination proof for G3SCI, which follows
the steps of the one presented in [4].

In the following section we will exploit the relation between G3cp and G3SCI
which will be utilized in subsequent chapters of the dissertation.

Theorem 15. If sequent ⇒ φ has a proof in G3cp, then it also has a proof in
G3SCI.

Proof. Language LSCI is an extension of LCPC, therefore in derivation of ⇒ φ
we can solely depend on rules from G3cp (which appear within the set of rules
in G3SCI).

Now we will look at the following relations, which will be applicable in the
subsequent chapters. We begin with a definition of function translating formulae
between languages of CPC and SCI. By Eq we will mean the following set of
formulae: Eq = {φ1 ≡ φ2 : φ1,φ2 ∈ LSCI}.

A homomorphism h ∈ Hom(LSCI,LSCI) will be called atomic if for each
variable pi ∈ VAR the following holds: h(pi) = pi or h(pi) ∈ Eq.

Let us recall that for a function f defined on a set Φ, by f |Ψ, where Ψ ⊆ Φ,
we mean the restriction of function f to set Ψ.

Definition 64 (Translation from LCPC to LSCI). Let h ∈ Hom(LSCI,LSCI)
be an atomic homomorphism. The restriction h|LCPC of function
h to the set LCPC of formulae of language LCPC will be called
a translation from LCPC to LSCI indicated by atomic homomorphism h or
simply a translation from LCPC to LSCI.

Letter µ will be used to denote translations from LCPC to LSCI.
Let us observe that from Definition 67 the following corollary follows.

Corollary 1. If µ is a translation from LCPC to LSCI indicated by h, then

1. for each pi ∈ VAR, µ(pi) = pi or µ(pi) ∈ Eq,

2. for each φ ∈ LCPC, µ(¬φ) = h(¬φ) = ¬h(φ) = ¬µ(φ),
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3. for each φ,ψ ∈ LCPC, µ(φ⊗ ψ) = h(φ⊗ ψ) = h(φ) ⊗ h(ψ) = µ(φ) ⊗
µ(ψ).

Suppose φ is a formula of LCPC such that sequent ⇒ φ has a proof in G3cp.
Let us consider a translation µ from language LCPC into language LSCI. The
next theorem is a generalization of Theorem 15. It states that sequent ⇒ µ(φ)
has a proof in G3SCI, where the only rules utilized are classical rules.

Theorem 16. If sequent ⇒ φ has a proof in G3cp, then for every translation
µ from LCPC to LSCI sequent ⇒ µ(φ) has a proof in G3SCI, where the only rules
utilized are classical rules.

Proof. Let D be a proof of a sequent ⇒ φ in G3cp. We consider all cases, that
is D being an axiom or consisting of application of the classical rules. We show
that in each case we obtain derivations “homomorphic” to the original ones;
i.e., rules are applied to applications of function µ. Following that, by µ(Γ) we
mean multiset obtained through application of function µ to all formulae in Γ.

(1) Γ,ψ ⇒ ψ, ∆  µ(Γ),µ(ψ)⇒ µ(ψ),µ(∆)

(2)
Γ⇒ ∆,χ
¬χ, Γ⇒ ∆ L¬  

µ(Γ)⇒ µ(∆),µ(χ)
¬µ(χ),µ(Γ)⇒ µ(∆)

L¬

(3)
χ,ψ, Γ⇒ ∆
χ∧ ψ, Γ⇒ ∆ L∧  

µ(χ),µ(ψ),µ(Γ)⇒ µ(∆)
µ(χ) ∧ µ(ψ),µ(Γ)⇒ µ(∆)

L∧

(4)
χ, Γ⇒ ∆ ψ, Γ⇒ ∆

χ∨ ψ, Γ⇒ ∆ L∨

 

µ(χ),µ(Γ)⇒ µ(∆) µ(ψ),µ(Γ)⇒ µ(∆)
µ(χ) ∨ µ(ψ),µ(Γ)⇒ µ(∆)

L∨

(5)
Γ⇒ ∆,χ ψ, Γ⇒ ∆

χ→ ψ, Γ⇒ ∆ L→

 

µ(Γ)⇒ µ(∆),µ(χ) µ(ψ),µ(Γ)⇒ µ(∆)
µ(χ)→ µ(ψ),µ(Γ)⇒ µ(∆)

L→

(6)
χ,ψ, Γ⇒ ∆ Γ⇒ ∆,χ,ψ

χ↔ ψ, Γ⇒ ∆ L↔

 

µ(χ),µ(ψ),µ(Γ)⇒ µ(∆) µ(Γ)⇒ µ(∆),µ(χ),µ(ψ)
µ(χ)↔ µ(ψ),µ(Γ)⇒ µ(∆)

L↔
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The following theorem examines reverse transformation, that is from the
proof in G3SCI to the proof in G3cp.

Theorem 17. Let ⇒ φ be a sequent which has a proof in G3SCI such that in
the proof we have applications of classical and structural rules only. Then there
exists a formula χ of LCPC which is valid in CPC-models and a translation µ
from LCPC to LSCI such that µ(χ) = φ.

Proof. Let us consider proof D of a sequent ⇒ φ in G3SCI. We will substitute
any occurrences of equations within D with variables in such a way that we
will obtain a proof of a sequent ⇒ χ in G3cp (i.e. µ(χ) = φ, where χ will be
a formula resulting from φ by this elimination of equations).

Let VAR(D) be the set of all variables occurring in D and let Eq(D) be the
set of all equations occurring in D. All elements ψ1, ...,ψj of Eq(D) will be
assigned to variables pi1 , ..., pij which are not elements of VAR(D). If a given
equation appears more than once, all its occurrences will be substituted with
the same variable; otherwise different equations are substituted with different
variables. The outlined procedure indicates the definition of translation µ from
LCPC to LSCI. First we define µ∗ : VAR −→ VAR∪ Eq

• µ∗(pi) = pi: for pi ∈ VAR(D);

• µ∗(pik
) = ψk: for variables pik

6∈ V AR(D), for each ik , 1 ≤ k ≤ j (if
Eq(D) consists of j equations);

• µ∗(pi) = pi: for other variables.

Function µ∗ can be extended to a homomorphism h ∈ Hom(LSCI,LSCI) in
a unique way. We can see that h is atomic, hence µ : LCPC −→ LSCI defined as
a restriction of h to LCPC is a translation from LCPC to LSCI. Moreover, it is
easy to see that µ is an injective function, therefore the inverse function µ−1 is
well-defined. Let χ stand for µ−1(φ).

Now we consider proof D and tree D′. Let D′ be a derivation tree obtained
through employment of the above procedure. We want to show that D′ is
a proof of ⇒ χ in G3cp.

Any axiom Γ,ψ ⇒ ∆,ψ of G3SCI in D corresponds to axiom
µ−1(Γ),µ−1(ψ) ⇒ µ−1(∆),µ−1(ψ) in G3cp. The same goes for any classical
rule application, for instance R∧ of G3SCI

Γ⇒ ∆,ψ1 Γ⇒ ∆,ψ2
Γ⇒ ∆,ψ1 ∧ ψ2

R∧

corresponds to the application of R∧ in G3cp:

µ−1(Γ)⇒ µ−1(∆),µ−1(ψ1) µ−1(Γ)⇒ µ−1(∆),µ−1(ψ2)

µ−1(Γ)⇒ µ−1(∆),µ−1(ψ1) ∧ µ−1(ψ2)
R∧

where (µ−1(ψ1)∧ µ−1(ψ2)) = µ−1(ψ1 ∧ψ2), i.e. we do not change the internal
logical structure of the initial formula.
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The application of the remaining rules in both calculi can be analyzed
analogously. As a result we showed that ⇒ µ−1(φ) has a proof in G3cp and
since µ−1(φ) = χ, from Theorem 5 we have that χ is valid in CPC.
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Chapter 4

WB logic and sequent calculus
G3WB

WB is the first of three main axiomatic extensions of SCI we examine in the
context of structural proof theory. It constitutes a set of formulae that are
true in Boolean algebras, and is obtained through extending interpretation of
the identity connective through Boolean algebra axioms. In this section we
will begin by introducing the axiomatic system and semantics. We will show
how identity is still stronger than equivalence. Then we will move to sequent
calculus G3WB accompanied by analysis of its major characteristics.

4.1 Hilbert system for WB
For the Boolean extension of SCI, for the sake of simplicity we shall use the
same language as in the case of SCI, in which we had both ¬ and ↔: from
now on we will denote the language algebra as L, which will also apply for the
subsequent chapters/extensions of SCI.

Definition 65. The language of WB is an algebra of similarity type
〈1, 2, 2, 2, 2, 2〉

L = 〈L,¬,∧,∨,→,↔,≡〉.

However, in contrast to SCI-language LSCI, we can now also define two
constants, falsum ⊥ =df p1 ∧ ¬p1 and constant verum > =df ¬⊥. In SCI
these definitions could not be added, as we would obtain a stronger logic, where
¬> ≡ ⊥ would be a theorem, which is not a theorem of SCI. It is, however,
a theorem in WB. Moreover, an equation of > and any given axiom of WB φ
will not hold in WB, but > ↔ φ will.

WB is the smallest Boolean non-Fregean theory. We obtain it through an
addition of the set of axioms WBA to TFA ∪ IDA, represented by the following
axiom schemata [38, p. 103]:

(≡5) ((φ∧ χ) ∨ ψ) ≡ ((χ∨ ψ) ∧ (φ∨ ψ))

(≡6) ((φ∨ χ) ∧ ψ) ≡ ((χ∧ ψ) ∨ (φ∧ ψ))

(≡7) (φ∨ (χ∧¬χ)) ≡ φ

(≡8) (φ∧ (χ∨¬χ)) ≡ φ
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(≡9) (φ→ χ) ≡ (¬φ∨ χ)

(≡10) (φ↔ χ) ≡ ((φ→ χ) ∧ (χ→ φ))

The WB-identity is weaker than SCI-identity, however it is still not flattened
to the equivalence. The set of WB axioms along with modus ponens allows us
to prove equations of the form φ ≡ χ provided φ↔ χ can be derived from the
set TFA of axioms, which is depicted in the following, alternative to axiomatic,
definition of WB:

WB = C({φ ≡ χ : (φ↔ χ) ∈ TFT}) (WB)

Definition 66 (Derivation, proof). Let Φ stand for a set of formulae of L.
A finite sequence φ1, ...,φn of formulae of L is a derivation of φ from Φ provided
φn = φ and each formula φi, i ≤ n, either belongs to Φ or has been derived
from some φi1 ,φi2 , (i1, i2 < i) through an application of modus ponens. If
Φ = TFA∪ IDA∪WBA, then derivation φ1, ...,φn is a proof of φ in the axiomatic
system for WB.

If φ1, ...,φn is a proof of φ from TFA ∪ IDA ∪WBA, then the length of this
proof is n.

Consequence operation CWB is defined by set TFA ∪ IDA ∪WBA of axioms
and a singular inference rule, modus ponens, that is φ ∈ CWB(Φ) iff φ ∈ C(Φ∪
TFA∪ SCI∪WBA). Elements of CWB(∅) are called logical theorems of WB. In
[38, p. 104] these facts are expressed as follows:

α ∈ CWB(Φ)⇔ α ∈ C(WB∪Φ)⇔ α ∈ C(WBA∪Φ).

Naturally, CWB satisfies conditions specified in Theorem 9.
Finally, in keeping with Suszko we introduce the logic WB as a deductive

system HWB.

Definition 67. HWB = 〈L,CWB〉.

4.2 Semantics of WB
Definition 68. Algebra A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉 of similarity type
〈1, 2, 2, 2, 2, 2〉 is called B-algebra provided that the following conditions are
satisfied:

(b1) ((a ∩̇ b) ∪̇ c) = ((b ∪̇ c) ∩̇ (a ∪̇ c)),

(b2) ((a ∪̇ b) ∩̇ c) = ((b ∩̇ c) ∪̇ (a ∩̇ c)),

(b3) (a ∪̇ (b ∩̇ ¬̇ b)) = a,

(b4) (a ∩̇ (b ∪̇ ¬̇ b)) = a,

(b5) (a →̇ b) = (¬̇a ∪̇ b),

(b6) (a ↔̇ b) = ((a →̇ b) ∩̇ (b →̇ a)).
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Set A is called a universe of situations.

Conditions (b1)—(b6) correspond to axioms (≡5)—(≡10). As we can see,
a B-algebra is a Boolean algebra with additional binary operation ≡̇ (see
Definition 17). Given a B-algebra A, by 0A and 1A we refer, respectively,
to the zero and the unit of A. (In the sequel we drop A in the superscript).

Definition 69. Pair 〈A,F 〉 is called a B-model if and only if A is a B-algebra
and F is a normal ultrafilter in A.

As a result, the above conditions (Definition 68) paired with the conditions
listed in Definition 49 give us a bigger set of schemata of valid equations (in
the case of SCI it consisted of the singular schema φ ≡ φ). With that, we can
define the satisfiability, truth and validity of a given formula in WB.

Definition 70 (Satisfiability of a formula in a model). LetM = 〈A,F 〉 be an
arbitrary but fixed B-model, and let h ∈ Hom(L,A). Formula φ is satisfied in
M under h if and only if h(φ) ∈ F .

Definition 71 (Truth of a formula in a model). LetM = 〈A,F 〉 be an arbitrary
but fixed B-model. Formula φ is true inM if and only if: for all h ∈ Hom(L,A)
φ is satisfied inM under h.

Definition 72 (Validity of a formula). Formula φ is valid in WB (in symbols
�WB φ) iff φ is true in all B-modelsM.

We will also refer to formulae valid in WB as WB-tautologies.

Theorem 18 (Semantic modus ponens). Let M = 〈A,F 〉 be a B-model. If
a ∈ F and a→̇b ∈ F , then b ∈ F .

Proof. Suppose a, a →̇ b ∈ F . From point (b5) in Definition 68 and point 3 from
Definition 49 we know that either ¬̇a ∈ F or b ∈ F . The former is impossible
per point d from Theorem 3.

Theorem 18 warrants that modus ponens applied to formulae true in a given
B-model always results in a formula which is true in the same model. Another
theorem states that WB is both sound and complete with respect to the
presented semantics.

Theorem 19. WB is the set of all and only formulae true in every B-model
[13; 38].

The proof of the theorem can be found in [38]. In the proof we show that WB
is a subset of the set of all formulae true in every B-model M = 〈A,F 〉. We
do it by showing that a given homomorphism h ∈ Hom(L,A) sends all WB
axioms to F , accompanied by the Theorem 18. Then, for a given φ /∈ WB we
show that there is a B-model such that φ is not an element of all formulae true
in the said model.
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4.3 Sequent Calculus G3WB

Sequent calculus G3WB is based on the sequent calculus we described in the
previous section, G3SCI. We extend G3SCI by one rule, a singular right identity
rule RB

≡. L2
≡, as mentioned earlier, has been added due to the utilization

of classical negation ¬φ in the calculus, instead of defining it as φ → ⊥.
Four left-sided identity rules constitute a syntactic interpretation of identity
connective in SCI. Rule RB

≡ (see Table 4.3), on the other hand, is a formalized
syntactic depiction of the (WB) definition and can be applied provided sequent
S does not contain any formula in the antecedent and only a singular formula in
the succedent. Moreover, to control the application of the rules, we introduced
markers to label whole sequents: C⇒ and I⇒. When we apply rules from premiss
to conclusion, label C⇒ allows the application of classical, structural and rule RB

≡;
label I⇒ allows the application of classical, structural and left identity-dedicated
rules. When we consider applications of rules from conclusion to premiss, we
can say that conclusion’s label I⇒ allows the application of all rules, whereas
conclusion’s label C⇒ allows the application of classical and structural rules only.
We therefore consider the following structure

Γ X⇒ ∆,

where X⇒∈ { I⇒, C⇒}. Γ X⇒ ∆ is called a WB-sequent.
It is worth commenting on the fact that in this particular system we do not

utilize Nergi’s strategy of turning axioms into rules of sequent calculus, as was
done in the case of G3SCI. The reason for this is rooted in simplicity; WB and
two other extensions are obtained through addition of axioms, therefore the set
of rules would gradually extend by addition of left-sided identity rules. If we
were to apply this strategy in WB, we would obtain six rules, which allow us
to introduce into the antecedent of the premiss of the rule a formula (φ ≡ χ)
which falls under the schema of one of the Boolean axioms, that is:

φ ≡ χ, Γ⇒ ∆
Γ⇒ ∆ LB

≡

From the automatic reasoning perspective, it might be quite tricky to decide
what exactly formula φ ≡ χ should specifically be. We therefore have decided to
formalize a different approach and examine the consequences of such a choice.
On the surface the proof-searching process can be easier with RB

≡, but we will
analyse certain struggles that this entails. We also note that a system with
rule LB

≡ in it has been examined in [59] and can be compared to the system
we present here, as both constitute sound and complete sequent systems for
WB (however with several structural differences, particularly with regard to the
structural rules’ admissibility). Nonetheless, in this thesis we will define G3WB
as {L∧,R∧,L∨,R∨,L→,R→,L↔,R↔,L¬,R¬,L1

≡,L2
≡,L3

≡,L4
≡,RB

≡, cut}.1

1We will consider two variants, the other one, that is {L∧, R∧, L∨, R∨, L→, R→, L↔,
R↔, L¬, R¬, L1

≡, L2
≡, L3

≡, L4
≡, RB

≡, Lwk, Rwk}, differing in the use of structural rules, which
we will comment on later on.
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Table 4.1: Rules of G3WB: classical rules

Γ X⇒ ∆,φ
¬φ, Γ X⇒ ∆

L¬
φ, Γ X⇒ ∆,φ

φ, Γ X⇒ ∆

Γ X⇒ ∆,¬φ
R¬

φ,χ, Γ X⇒ ∆

φ∧ χ, Γ X⇒ ∆
L∧

Γ X⇒ ∆,φ Γ X⇒ ∆,χ
Γ X⇒ ∆,φ∧ χ

R∧
φ, Γ X⇒ ∆ χ, Γ X⇒ ∆

φ∨ χ, Γ, X⇒ ∆
L∨

Γ X⇒ ∆,φ,χ
Γ X⇒ ∆,φ∨ χ

R∨
Γ X⇒ ∆,φ χ, Γ X⇒ ∆

φ→ χ, Γ X⇒ ∆
L→

φ, Γ X⇒ ∆,χ
Γ X⇒ ∆,φ→ χ

R→

φ,χ, Γ X⇒ ∆ Γ X⇒ ∆,φ,χ
φ↔ χ, Γ X⇒ ∆

L↔
φ, Γ X⇒ χ, ∆ χ, Γ X⇒ φ, ∆

Γ X⇒ ∆,φ↔ χ
R↔

where X⇒∈ { I⇒, C⇒}

We can (and will) consider the two following derived axiom schemata

Γ X⇒ ∆,> ⊥, Γ X⇒ ∆

as we can obtain them from the rules in Tables 4.1—4.3, for instance (we know
that > =df ¬⊥ =df ¬(p1 ∧¬p1)):

p1, Γ X⇒ ∆, p1

p1,¬p1Γ, X⇒ ∆
L¬

p1 ∧¬p1, Γ X⇒ ∆
L∧

Γ X⇒ ∆,¬(p1 ∧¬p1)
R¬

The second sequent axiom schema can be obtained analogously. We use these
shortcuts to keep derivations more concise.

Definition 73 (Derivation of WB-sequent Γ X⇒ ∆ in G3WB). Derivation of
WB-sequent Γ X⇒ ∆ in G3WB is a finite labelled tree with a single root labelled
with Γ X⇒ ∆ and each node-label connected with the labels of the (immediate)
successor nodes (if any) according to one of the rules of G3WB.

Definition 74 (Proof of WB-sequent Γ X⇒ ∆ in G3WB). Proof of WB-sequent
Γ X⇒ ∆ in G3WB is a derivation of Γ X⇒ ∆ in G3WB with axioms at all of the
leaves.
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Table 4.2: Rules of G3WB: structural rules

Γ X⇒ ∆
χ, Γ X⇒ ∆

Lwk
χ,χ, Γ X⇒ ∆

χ, Γ X⇒ ∆
Lctr

Γ X⇒ ∆
Γ X⇒ ∆,χ

Rwk
Γ X⇒ ∆,χ,χ

Γ X⇒ ∆,χ
Rctr

Γ X⇒ Σ,φ φ, Π X⇒ ∆

Γ, Π X⇒ Σ, ∆
cut

where X⇒∈ { I⇒, C⇒}

Let us consider the following proof of (φ∨ (φ→ ⊥)) ≡ (χ∨ (χ→ ⊥)):

(φ∨ (φ→ ⊥)),χ C⇒ χ,⊥

(φ∨ (φ→ ⊥)) C⇒ χ, (χ→ ⊥)
R→

(φ∨ (φ→ ⊥)) C⇒ (χ∨ (χ→ ⊥))
R∨

(χ∨ (χ→ ⊥)),φ C⇒ φ,⊥

(χ∨ (χ→ ⊥)) C⇒ φ, (φ→ ⊥)
R→

(χ∨ (χ→ ⊥)) C⇒ (φ∨ (φ→ ⊥))
R∨

C⇒ (φ∨ (φ→ ⊥))↔ (χ∨ (χ→ ⊥))
R↔

I⇒ (φ∨ (φ→ ⊥)) ≡ (χ∨ (χ→ ⊥))
RB
≡

When searching for a proof, we advise beginning with the root of the
derivation tree with label I⇒ to enable the application of identity-dedicated
rules. Of course, if we were to construct a proof for sequent ⇒ φ (assuming
there exists one) in G3cp, we could construct a similar proof of X⇒ φ in WB.
The root of such sequent tree could be labelled either with C⇒ φ or I⇒ φ as rules
from Table 4.1 work on both labels. We can therefore say that labels in the
case of classical and structural rules are, in a way, translucent; applying them
will not change the label of the WB-sequent.

Fact 1. Derivations of a WB-sequent C⇒ φ beginning with leaves labelled with
C⇒ can also be constructed ending with I⇒ φ and beginning with leaves labelled
with I⇒.

The reason for restrictions applied on the form of identity rules, especially
RB
≡, lies in controlling the application of rules. Suppose we want to apply rule

L1
≡ to an arbitrary sequent S. If we were to start the root-first construction

with the root labelled with C⇒ we would naturally not be able to apply it at all.
Moreover, an examination of the rules, particularly rule RB

≡, shows that we
can consider derivations with I⇒ labelling the root of the tree and C⇒ labelling
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Table 4.3: Rules of G3WB: identity rules

φ ≡ φ, Γ I⇒ ∆

Γ I⇒ ∆
L1
≡

χ↔ φ,χ ≡ φ, Γ I⇒ ∆

χ ≡ φ, Γ I⇒ ∆
L3
≡

¬φ ≡ ¬χ, Γ I⇒ ∆

φ ≡ χ, Γ I⇒ ∆
L2
≡

(φ⊗ χ) ≡ (ψ⊗ ω),φ ≡ ψ,χ ≡ ω, Γ I⇒ ∆

φ ≡ ψ,χ ≡ ω, Γ I⇒ ∆
L4
≡

C⇒ φ↔ χ
I⇒ φ ≡ χ

RB
≡

the leaves, while the opposite is impossible—we are forbidden to go from a
premiss(-es) labelled with I⇒ to a conclusion labelled with C⇒. Similarly, if we
were to consider cut with its conclusion labelled with I⇒, and premisses labelled
with I⇒ and C⇒, that is

Γ I⇒ ∆,φ φ, Π C⇒ Ψ

Γ, Π I⇒ ∆, Ψ
cut

we could potentially accept its application, but we do not recommend the
version of cut where at least one of the premisses is labelled with I⇒ and the
conclusion is labelled with C⇒, that is

Γ I⇒ ∆,φ φ, Π C⇒ Ψ

Γ, Π C⇒ ∆, Ψ
cut

as we would be re-allowing further use of identity-dedicated rules2 in a less
controlled way than RB

≡.
As ruleRB

≡ is not applicable to a sequent with label I⇒, we have to make a few
comments regarding the status of equations appearing in WB-sequents labelled
with C⇒. If we were to consider switching to language L′ without an identity
connective, we could use the inverse function of a translation, µ−1, going from L
to L′ (see Definition 64 in the previous chapter): for any φ ≡ χ within a formula
ψ we can substitute any variable pi for equation φ ≡ χ, provided the variable
does not appear in ψ. In the case of sequents labelled with C, we can treat
equations similarly as in the case of the mentioned translation: as propositional

2However, we do note that we could profit from its use in proofs ending with C⇒ which
would at some point require us to utilize identity-dedicated rules; a specific example will be
shown in Chapter 7.
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variables or, simply, as atomic expressions. This way we can notice that, in
fact, the satisfiability (truth and validity) of WB-sequents of the form Γ C⇒ ∆
can be defined on the ground of CPC. Ergo, the notion of ultrafilter will be
brought back to the Fregean-realm and depend on the semantic equivalence of
two formulae, rather than their semantic non-Fregean identity. This will be
visible particularly in the proof of Lemma 14.

Below we once again consider utilization of translation µ.

Lemma 11. If a WB-sequent C⇒ φ has a proof in G3WB, then there is a formula
χ of language LCPC such that χ is valid in CPC and there is a translation µ from
language LCPC to L such that µ(χ) = φ.

Proof. If we were to build proof for WB-sequent C⇒ φ, we know that no
identity-dedicated rules will be utilized. As in SCI in Theorem 17 we can then
use function µ−1 to obtain µ−1(φ) and build an analogous proof of ⇒ µ−1(φ)
in G3cp, since only classical and/or structural rules are required. Then µ−1(φ)
through Theorem 5 can be shown to be valid in CPC.

Lemma 12. If a WB-sequent C⇒ φ has a proof in G3WB, then there is a proof
of C⇒ φ in G3WB with no structural rules utilized.

Proof. Here we refer to the cut admissibility in G3cp. If we were to build a proof
for WB-sequent C⇒ φ, then per Lemma 11 we may as well build an analogous
derivation of sequent ⇒ µ−1(φ) in G3cp. We know that this particular sequent
calculus is cut-free. Therefore, provided ⇒ µ−1(φ) has a proof in G3cp with no
structural rules utilized, we know (considering the same construction as in the
case of Theorem 5) there is a way to build the same proof for C⇒ φ.

4.3.1 Completeness of G3WB

We prove completeness of the G3WB indirectly, by means of interpretation of
axiomatic system HWB within sequent calculus G3WB.

Theorem 20 (Interpretation of HWB within G3WB). If formula φ is provable
in axiomatic system HWB, then WB-sequent I⇒ φ is provable in G3WB.

Proof. We show completeness of the sequent calculus in the following steps:

1. We show that for every axiom φ, a sequent I⇒ φ has a proof in G3WB.

2. Based on the proof of a given formula in HWB, we will show that
WB-sequent I⇒ φ has a proof in G3WB through simulation of modus ponens
in sequent calculus.

Here we present proofs of axioms of WB:
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(≡5) ((φ∧ χ) ∨ ψ) ≡ ((χ∨ ψ) ∧ (φ∨ ψ))

D1....
D2....

C⇒ ((φ∧ χ) ∨ ψ)↔ ((χ∨ ψ) ∧ (φ∨ ψ))
R↔

I⇒ ((φ∧ χ) ∨ ψ) ≡ ((χ∨ ψ) ∧ (φ∨ ψ))
RB
≡

where D1 is the following derivation:

φ,χ C⇒ χ,ψ
φ,χ C⇒ χ∨ ψ

R∨
φ,χ C⇒ φ,ψ
φ,χ C⇒ φ∨ ψ

R∨

φ,χ C⇒ (χ∨ ψ) ∧ (φ∨ ψ)
R∧

φ∧ χ C⇒ (χ∨ ψ) ∧ (φ∨ ψ)
L∧

ψ
C⇒ χ,ψ

ψ
C⇒ χ∨ ψ

R∨
ψ

C⇒ φ,ψ
ψ

C⇒ φ∨ ψ
R∨

ψ
C⇒ (χ∨ ψ) ∧ (φ∨ ψ)

R∧

(φ∧ χ) ∨ ψ C⇒ (χ∨ ψ) ∧ (φ∨ ψ)
L∨

and D2:

χ,φ C⇒ φ,ψ χ,φ C⇒ χ,ψ
χ,φ C⇒ φ∧ χ,ψ

R∧
χ,ψ C⇒ φ∧ χ,ψ

χ,φ∨ ψ C⇒ φ∧ χ,ψ
L∨

ψ,φ∨ ψ C⇒ φ∧ χ,ψ
χ∨ ψ,φ∨ ψ C⇒ φ∧ χ,ψ

L∨

(χ∨ ψ) ∧ (φ∨ ψ) C⇒ (φ∧ χ) ∨ ψ
L∧

(≡6) ((φ∨ χ) ∧ ψ) ≡ ((χ∧ ψ) ∨ (φ∧ ψ))

D1....
(φ∨ χ) ∧ ψ C⇒ (χ∧ ψ) ∨ (φ∧ ψ)

L∧

D2....
(χ∧ ψ) ∨ (φ∧ ψ) C⇒ (φ∨ χ) ∧ ψ

L∨

C⇒ ((φ∨ χ) ∧ ψ)↔ ((χ∧ ψ) ∨ (φ∧ ψ))
R↔

I⇒ ((φ∨ χ) ∧ ψ) ≡ ((χ∧ ψ) ∨ (φ∧ ψ))
RB
≡

where D1 is the following derivation:

φ,ψ C⇒ χ∧ ψ,φ φ,ψ C⇒ χ∧ ψ,ψ
φ,ψ C⇒ χ∧ ψ,φ∧ ψ

R∧
χ,ψ C⇒ χ,φ∧ ψ χ,ψ C⇒ ψ,φ∧ ψ

χ,ψ C⇒ χ∧ ψ,φ∧ ψ
R∧

φ∨ χ,ψ C⇒ χ∧ ψ,φ∧ ψ
L∨

φ∨ χ,ψ C⇒ (χ∧ ψ) ∨ (φ∧ ψ)
R∨
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D2:

χ,ψ C⇒ φ,χ
χ,ψ C⇒ φ∨ χ

R∨
χ,ψ C⇒ ψ

χ,ψ C⇒ (φ∨ χ) ∧ ψ
R∧

χ∧ ψ C⇒ (φ∨ χ) ∧ ψ
L∧

φ,ψ C⇒ φ,χ
φ,ψ C⇒ φ∨ χ

R∨
φ,ψ C⇒ ψ

φ,ψ C⇒ (φ∨ χ) ∧ ψ
R∧

φ∧ ψ C⇒ (φ∨ χ) ∧ ψ
L∧

(χ∧ ψ) ∨ (φ∧ ψ) C⇒ (φ∨ χ) ∧ ψ
L∨

(≡7) (φ∨ (χ∧¬χ)) ≡ φ

φ
C⇒ φ

χ
C⇒ χ,φ

χ,¬χ C⇒ φ
L¬

χ∧¬χ C⇒ φ
L∧

φ∨ (χ∧¬χ) C⇒ φ
L∨

φ
C⇒ φ,χ∧¬χ

φ
C⇒ φ∨ (χ∧¬χ)

R∨

C⇒ (φ∨ (χ∧¬χ))↔ φ
R↔

I⇒ (φ∨ (χ∧¬χ)) ≡ φ
RB
≡

(≡8) (φ∧ (χ∨¬χ)) ≡ φ

φ,χ∨¬χ C⇒ φ

φ∧ (χ∨¬χ) C⇒ φ
L∧

φ
C⇒ φ

φ,χ C⇒ χ

φ
C⇒ χ,¬χ

R¬

φ
C⇒ χ∨¬χ

R∨

φ
C⇒ φ∧ (χ∨¬χ)

R∧

C⇒ (φ∧ (χ∨¬χ))↔ φ
R↔

I⇒ (φ∧ (χ∨¬χ)) ≡ φ
RB
≡

(≡9) (φ→ χ) ≡ (¬φ∨ χ)

φ
C⇒ χ,φ χ,φ C⇒ χ

φ→ χ,φ C⇒ χ
L→

φ→ χ
C⇒ ¬φ,χ

R¬

φ→ χ
C⇒ ¬φ∨ χ

R∨

φ
C⇒ φ,χ

¬φ,φ C⇒ χ
L¬

χ,φ C⇒ χ

¬φ∨ χ,φ C⇒ χ
L∨

¬φ∨ χ C⇒ φ→ χ
R→

C⇒ (φ→ χ)↔ (¬φ∨ χ)
R↔

I⇒ (φ→ χ) ≡ (¬φ∨ χ)
RB
≡
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(≡10) (φ↔ χ) ≡ ((φ→ χ) ∧ (χ→ φ))

D1....
D2....

C⇒ (φ↔ χ)↔ ((φ→ χ) ∧ (χ→ φ))
R↔

I⇒ (φ↔ χ) ≡ ((φ→ χ) ∧ (χ→ φ))
RB
≡

where D1 is the following derivation:

φ,χ,φ C⇒ χ φ
C⇒ χ,φ,χ

φ↔ χ,φ C⇒ χ
L↔

φ↔ χ
C⇒ φ→ χ

R→

φ,χ,χ C⇒ φ χ
C⇒ φ,φ,χ

φ↔ χ,χ C⇒ φ
L↔

φ↔ χ
C⇒ χ→ φ

R→

φ↔ χ
C⇒ (φ→ χ) ∧ (χ→ φ)

R∧

and D2:

χ→ φ,φ C⇒ χ,φ χ→ φ,φ,χ C⇒ χ

φ→ χ,χ→ φ,φ C⇒ χ
L→

φ→ χ,χ C⇒ φ,χ φ→ χ,χ,φ C⇒ φ

φ→ χ,χ→ φ,χ C⇒ φ
L→

φ→ χ,χ→ φ
C⇒ φ↔ χ

R↔

(φ→ χ) ∧ (χ→ φ)
C⇒ φ↔ χ

L∧

Modus ponens is obtainable in G3WB through utilization of cut:

D1....
I⇒ χ

D2....
I⇒ χ→ φ

χ
I⇒ χ φ

I⇒ φ

χ,χ→ φ
I⇒ φ

L→

χ
I⇒ φ

cut

I⇒ φ
cut

where D1 and D2 are proofs of I⇒ χ, I⇒ χ → φ, respectively. The remaining
reasoning is analogous to that presented in Theorem 11.

Proofs of axioms (≡5)—(≡10) and the shape of the rules utilized suggest
that if φ is a theorem characteristic of WB, the proof of WB-sequent I⇒ φ will
at some point require us to utilize rules other than those from G3SCI. In G3WB
we add rule RB

≡, which allows us to build a proof for formulae characteristic of
WB. We know that some labels of WB-sequents will be changed from C⇒ to I⇒.
Suppose we have a proof of I⇒ φ beginning with axioms labelled only with I⇒.
This formula is not characteristic of WB (but is in CPC and/or SCI) as RB

≡ has
not been used. This fact will be recalled in later sections, particularly regarding
a failed cut elimination procedure. These observations lead us to the following
lemma:
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Lemma 13. If φ ∈ WB \ SCI, then every proof of WB-sequent I⇒ φ starts with
at least one axiom labelled with C⇒.

Proof. We refer to the fact that the only rule allowing a change of labels is
RB
≡.

If RB
≡ was not used, labels would not change: proof of C⇒ φ starting with all

leaves labelled with C⇒ means that φ is a theorem of CPC (expressed in language
LSCI) and proof of I⇒ φ starting with all leaves labelled with I⇒ means that φ
is a theorem of SCI (some of which will be also theorems of CPC).

4.3.2 Soundness of G3WB

We now define semantic notions with regard to WB-sequents (analogous to those
in the previous chapter):

Definition 75 (Satisfiability of a WB-sequent). LetM = 〈A,F 〉 be an arbitrary
but fixed B-model and let h ∈ Hom(L,A). WB-sequent Γ X⇒ ∆ is satisfied in
M under h provided if all formulae from Γ are satisfied in M under h that is
h(χ) ∈ F (for all χ ∈ Γ), then at least one formula in ∆ is satisfied inM under
h as well.

Definition 76 (Truth of a WB-sequent). Let M = 〈A,F 〉 be an arbitrary
B-model. WB-sequent Γ X⇒ ∆ is true in M provided that for each h ∈
Hom(L,A), WB-sequent Γ X⇒ ∆ is satisfied inM under h.

Definition 77 (Validity of a WB-sequent). WB-sequent Γ X⇒ ∆ is valid in WB,
if it is true in each B-model.

Yet again we consider two properties of rules: preservability of
satisfiability/validity of WB-sequents (correctness) and invertibility. Similarly
as it was for G3SCI, the logical rule R¬,L¬,R∨,L∨,R∧,L∧,R→,L→,R↔, and
L↔ have both properties, and we will not include proofs showing that. We
will also omit proof of correctness and invertibility of left identity-dedicated
rules, which can also be found in the previous chapter. The definitions below
are analogous to ones from Chapter 3 and concern transfer of satisfiability. In
the case of rule RB

≡ we will consider transfer of validity between premiss and
conclusion.

Definition 78 (Correctness of rule). Rule R is correct in WB provided that for
each B-model M and for every valuation h in M, if the premiss(-es) of R is
(are) satisfied inM under h, then so is its (their) conclusion.

Definition 79 (Invertibility of rule). Rule R is invertible in WB provided that
for each B-modelM and for every valuation h inM, if the conclusion of R is
satisfied inM under h, then so is (are) its premisse(s).
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For the following lemmas, L denotes the language algebra and A denotes a
B-algebra.

RB
≡ is not correct in the sense of Definition 78. The counterexample is an

arbitrary equivalence satisfied in some modelM under some homomorphism h
and equation of the same formulae not satisfied in M under h. For the next
lemma we will consider another property of the rule: preservation of validity. To
prove it we will refer to Theorem 4. We will start, however, with the following
corollary:

Corollary 2. If a WB-sequent C⇒ φ has a proof in G3WB, sequent
C⇒ φ is valid

in WB.

Proof. Here we depend on the well documented semantic correctness of both
classical and structural sets of rules for classical connectives and the fact that
axioms of G3WB are valid in CPC.

Lemma 14. If WB-sequent I⇒ φ ≡ χ has a proof in G3WB, a root of which is
a conclusion of rule RB

≡, then
I⇒ φ ≡ χ is valid in WB.

Proof. Let us examine a proof of a WB-sequent I⇒ φ ≡ χ, where the last utilized
rule is RB

≡. Let us have the following:

(1) C⇒ φ↔ χ has a proof in G3WB,

(2) I⇒ φ ≡ χ is not valid in WB.

From (2) we know that φ ≡ χ is not satisfied in some B-model M = 〈A,F 〉
under some h, hence h(φ) ≡̇ h(χ) 6∈ F . F is normal, therefore h(φ) 6= h(χ), so
we have h(χ) 6≤ h(φ) or h(φ) 6≤ h(χ). From Theorem 4 we know that there is
a prime filter F ∗ such that

(∗) h(φ) /∈ F ∗ and h(χ) ∈ F ∗

(or the other way round, the reasoning is the same in both cases). As a result
we have h(φ)↔̇h(χ) /∈ F ∗, that is,

(∗∗) h(φ↔ χ) /∈ F ∗.

Theorem 3 guarantees that F ∗ is an ultrafilter, but 〈A,F ∗〉 does not particularly
have to be a B-model, as F ∗ can potentially not be normal. Therefore we need
to use the fact that sequent C⇒ φ↔ χ has been proved without the application
of identity-dedicated rules.

From (1) we know that WB-sequent C⇒ φ ↔ χ has a proof in G3WB.
From Lemma 11 we have a formula ψ of language LCPC such that ψ is valid
in Boolean algebras and there exists a translation µ from language LCPC to
L such that µ(ψ) = φ ↔ χ. If we consider algebra A without ≡̇, that
is A∗ = 〈A∗, ¬̇, ∩̇, ∪̇, →̇, ↔̇〉, then it is a Boolean algebra of similarity type
〈1, 2, 2, 2, 2〉, therefore ψ must be true in the CPC-model 〈A∗,F ∗〉. However,
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the composition h ◦ µ of function µ and h is a homomorphism from LCPC to A∗
and:

h ◦ µ(ψ) = h(µ(ψ)) = h(φ↔ χ) 6∈ F ∗

that is, the homomorphism sends ψ outside F ∗. A contradiction.

We now move to invertibility of the right identity-dedicated rule. Here, for
all rules we will stay with the same property: transmission of the satisfiability
of a WB-sequent from the conclusion to the premiss.

Lemma 15. RB
≡ is invertible in WB.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed B-model and h be a
homomorphism from L into A. Suppose that the following conditions hold:

(1) I⇒ φ ≡ χ is satisfied inM under h;

(2) C⇒ φ↔ χ is not satisfied inM under h.

From (2) we know that φ↔ χ is not satisfied inM under h. This means that
it is not the case that h(φ)↔̇h(χ) ∈ F , by which we know that either h(φ) ∈ F
and h(χ) /∈ F or h(φ) 6∈ F and h(χ) ∈ F . Therefore h(φ) 6= h(χ), which
means h(φ ≡ χ) 6∈ F .

Theorem 21 (Completeness). If a sequent X⇒ φ is valid in WB, it is provable
in G3WB.

Proof. By completeness of HWB and Theorem 20.

Theorem 22 (Soundness). If a sequent Γ X⇒ ∆ is provable in G3WB, it is valid
in WB.

Proof. The proof is analogous to the one of Theorem 13 in Chapter 3.

As a result from Theorems 21 and 22 we have

Theorem 23 (Adequacy). Sequent X⇒ φ is provable in G3WB iff X⇒ φ is valid
in WB.
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Chapter 5

WT logic and sequent calculus
G3WT

The following extension of SCI is a formal interpretation of proposition

5.141 If p follows from q and q from p then they are one and the
same proposition.

from Wittgenstein’s Tractatus, which we can interpret as the fact that
two logically equivalent sentences constitute different variants of the same
proposition. WT corresponds to modal system S4 and both of them are
finitely axiomatized [47]. We can easily propose a translation from WT to
S4, as � can be interpreted through means of identity connective ≡. However,
Suszko underlines that we cannot identify non-Fregean logics with modal logics,
particularly regarding NFLs extensionality and two-valuedness [51, p. 204]

WT is a set of sentences valid in topological Boolean algebras. Moreover,
we can interpret equations φ ≡ χ as �(φ ↔ χ), where � could be interpreted
as an interior operator on the Boolean algebra of situations [51, p. 200], which
will be further discussed with regard to the semantics.

5.1 Hilbert system for WT
We yet again utilize the same base language algebra as in the case of WB
language, that is an algebra of the similarity type 〈1, 2, 2, 2, 2, 2〉:

L = 〈L,¬,∧,∨,→,↔,≡〉.

In [38; 51] the language of WT (as well as the language of WH) is extended
by the addition of a binary connective � and a unary connective �. A formula
of the form φ � χ is read as: situation χ is included in situation φ, or: situation
φ involves situation χ, or: situation χ occurs in situation φ.1 We will stay
faithful to the language L and use the following abbreviations (knowing that
we can also define ⊥ =df p1 ∧¬p1 and > =df ¬⊥):

(φ � χ) =df ((φ→ χ) ≡ >)
1In the literature symbol “≤” appears in place of “�”; we use “�” as “≤” holds a different

meaning (ordering relation) in semantics utilized in this dissertation.
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as well as use the fact that � and ≡ are interdefinable in WT [51]:

�φ =df φ ≡ >

Also, we know that φ ≡ χ can be written as (φ↔ χ) ≡ >.
An axiomatic system for WT [51] is obtained by adding the following axiom

schemata (WTA) to the axiomatic system for WB (on the left side we present
the original version of the axiom, and on the right side—the axiom after using
the abbreviations omitting � and ≤, but utilizing > for simpler notation):

(≡11) �(φ↔ χ) ≡ (φ ≡ χ) ((φ↔ χ) ≡ >) ≡ (φ ≡ χ)

(≡12) �φ � φ ((φ ≡ >)→ φ) ≡ >
(≡13) �(φ∧ χ) ≡ (�φ∧�χ) ((φ∧ χ) ≡ >) ≡ ((φ ≡ >) ∧ (χ ≡ >))
(≡14) ��φ ≡ �φ ((φ ≡ >) ≡ >) ≡ (φ ≡ >)

Below we present examples of WT theorems (which are not in WB), similarly
as above, in two shapes:
1. �> ≡ > (> ≡ >) ≡ >
2. (φ ≡ χ) ≡ �(φ ≡ χ) (φ ≡ χ) ≡ ((φ ≡ χ) ≡ >)
3. (φ ≡ χ) � (φ↔ χ) ((φ ≡ χ)→ (φ↔ χ)) ≡ >
4. (φ ≡ χ) ≡ (χ ≡ φ) (φ ≡ χ) ≡ (χ ≡ φ)

5. ((φ ≡ χ) ∧ (χ ≡ ψ)) � (φ ≡ ψ) (((φ ≡ χ) ∧ (χ ≡ ψ))→ (φ ≡ ψ))

≡ >
6. (φ � χ) ≡ ((φ∧ χ) ≡ φ) ((φ→ χ) ≡ >) ≡ ((φ∧ χ) ≡ φ)

7. (�φ ≡ ¬�¬φ)→ ((φ ≡ >) ∨ (φ ≡ ⊥)) ((φ ≡ >) ≡ ¬(¬φ ≡ >))
→ ((φ ≡ >) ∨ (φ ≡ ⊥))

The definition of formal proof of a given formula φ in the axiomatic system
for WT is analogous to the earlier iterations of it in the non-Fregean systems
introduced earlier.

Definition 80 (Derivation, formal proof). Let Φ stand for a set of formulae
of L. A finite sequence φ1, ...,φn of formulae of L is a derivation of φ from Φ
provided φn = φ and formula φi, i ≤ n, is either from Φ or has been derived
from some φi1 ,φi2 , (i1, i2 < i) through an application of modus ponens. If
Φ = TFA∪ IDA∪WBA∪WTA, then φ1, ...,φn is a proof of φ in the axiomatic
system for WT.

We gradually add more axioms to successive non-Fregean systems, therefore
yet again consequence operation CWT is defined by a set TFA ∪ IDA ∪WBA ∪
WTA of axioms and a singular inference rule, modus ponens, which we define
analogously as was done for WB. Elements of CWT(∅) are called logical theorems
of WT.

In WT we can prove equations of the form φ ≡ χ, provided φ ↔ χ can be
proved using axioms from the set TFA ∪ IDA, which is depicted in the below
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definition of WT [38, p. 106]:

WT = C({α ≡ β : (α↔ β) ∈ C(∅)}).

WT is closed under both the Gödel rule (all three versions below are
equivalent)

φ,χ
φ ≡ χ

φ

φ ≡ >
φ

�φ

(if φ,χ ∈ WT, then φ ≡ χ ∈ WT) and the quasi-Fregean rule, that is

φ↔ χ

φ ≡ χ

φ→ χ,χ→ φ

φ ≡ χ

Theories closed under the quasi-Fregan rule are called quasi-Fregean. In
subsequent sections we will utilize a version of the quasi-Fregean rule in
sequent calculus (right identity-dedicated rule). This particular approach to
formalization of WT can be compared to systems proposed by Cresswell [8] and
Greniewski [20]. Cresswell introduced a Calculus of Functions of Propositions,
where a version of the quasi-Fregean rule is added in order to obtain a system
corresponding to modal logic S4. Greniewski adds a similar rule to his system
and obtains a logic corresponding to S4 as well. WT’s correspondence to S4
means we can translate formulae from one logic to the other and state that for
given formulae φ,χ ∈ L [38, p. 108]:

φ ≡ χ ∈ WT iff �(φ↔ χ) ∈ S4

Once again, in keeping with Suszko we introduce the logic WT as a deductive
system HWT.

Definition 81. HWT = 〈L,CWT〉.

The length of a formal proof of φ in HWT is defined in the same way as in
HWB. Modus ponens is the only inference rule, however we can also consider
the secondary inference rules presented above, all variants of the Gödel and
quasi-Fregean rules.

Theorem 24 ([56, p. 173]). If φ is a CPC theorem, then φ ≡ > is a theorem
of WT.

Proof. We show it is the case by means of applying the Gödel rule to a given
CPC theorem φ.

A similar observation can be made with regard to the possibilities of
quasi-Fregean rule application, so we can state that

Theorem 25. If φ↔ χ is a WB theorem, then φ ≡ χ is a theorem of WT.

Proof. Similarly as above, but this time we show it by means of utilizing the
quasi-Fregean rule.
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Lemma 16. If φ is a theorem of SCI then φ ≡ > is a theorem of WT.

Proof. We show it as above, through the application of the Gödel rule.

Omyła [38, p. 107] points out that a given binary connective ⊗ is called
equivalence in some theory Φ provided the following holds for its axiomatic
system HX = 〈L∗,CX〉, φ,χ ∈ L∗:

φ⊗ χ ∈ Φ iff CX(Φ ∪ {φ}) = CX(Φ ∪ {χ}).

Then, if Φ is quasi-Fregean, we will have the following (φ,χ ∈ L∗):

φ ≡ χ ∈ Φ iff C(Φ ∪ {φ}) = C(Φ ∪ {χ}).

However, as Omyła points out, the identity connective in SCI still cannot be
identified with equivalence, as for any formula φ we have the following [38]:

(φ ≡ ¬¬φ) /∈ C(∅), even though we have C({φ}) = C({¬¬φ})

On the other hand, in quasi-Fregean theories an equivalence connective is the
same as the identity connective.

As we have correspondence with S4 we can also state that WT is
quasi-complete/Halldén-complete.2

Definition 82 (Quasi-completeness/Halldén-completeness [13, p.
65]). Let Φ be an invariant SCI-theory in language L∗. Φ is
quasi-complete/Halldén-complete provided there are no formulae φ,χ ∈ L∗

satisfying all of the following conditions:

• φ,χ do not share propositional variables;

• φ∨ χ ∈ Φ;

• φ /∈ Φ and χ /∈ Φ.

5.2 Semantics of WT
A standard definition of topological Boolean algebra can be found in [43, p. 93]

Definition 83. By a topological Boolean algebra we understand a Boolean
algebra A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇〉 with an operation I which, to every element
a ∈ A, associates an element Ia ∈ A in such a way that the following axioms
are satisfied:

(I1) I(a ∩̇ b) = Ia ∩̇ Ib,

(I2) Ia ≤ a,

(I3) IIa = Ia,
2It is noteworthy that WB is not Halldén complete [70].
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(I4) I1 = 1.

Every operation I (in a Boolean algebra) satisfying I1–I4 is called an interior
operation.

We will also utilize an alternative definition of a topological Boolean algebra
proposed by Kagan [32].

Definition 84. Let B = 〈B, ¬̇, ∩̇, ∪̇, →̇, ↔̇〉 be a Boolean algebra, let ≡̇ be a
binary operator on B ×B into B and let A = 〈B, ≡̇〉. Then A is a topological
Boolean algebra, iff ≡̇ satisfies the following conditions for all a, b, c, d ∈ B:

1. a ≡̇ a = 1,

2. (a ≡̇ b) ≤ (a ↔̇ b),

3. (a ≡̇ c) ∩̇ (b ≡̇ c) ≤ ((a⊗ b) ≡̇ (c⊗ d)),

where ⊗ ∈ {∪̇, ∩̇, →̇, ↔̇, ≡̇}3.

Instead of conditions 1− 3 Suszko [47] proposes the following conditions:

1∗. a ≡̇ a = 1,

2∗. (a ≡̇ b)→̇(a ↔̇ b) = 1,

3∗. ((a ↔̇ b) ≡̇ 1) →̇ ((a ≡̇ b) ≡̇ 1) = 1,

4∗. (a ≡̇ c) ∩̇ (b ≡̇ c) = ((a ∪̇ b ∪̇ c →̇ a ∩̇ b ∩̇ c) ≡̇ 1).

however, in future considerations we will utilize Kagan’s definition (Definition
84).

Theorem 26 ([32], p. 103). If A = 〈B, ≡̇〉 is a topological Boolean algebra with
interior operator defined by Ia = a≡̇1, then A is a topological Boolean algebra
B with interior operator I satisfying conditions (I1) to (I4) from Definition 83.

Theorem 27 ([32], p. 104). If 〈B, I〉 is a topological Boolean algebra with
interior operator I, then a binary operator ≡̇ defined by a≡̇b = I(a↔̇b) will
satisfy conditions 1–3 from Definition 84.

Theorem 28 ([32], p. 104). In every topological Boolean algebra A the following
equations hold for all a, b ∈ A:

1. a ≡̇ b = b ≡̇ a,

2. If a ≤ b, then a ≡̇ 1 ≤ b ≡̇ 1,

3. (a ≡̇ b) ≡̇ 1 = a ≡̇ b,

4. (a ↔̇ b) ≡̇ 1 = a ≡̇ b,
3In Kagan’s definition operations →̇, ↔̇ are not listed. Moreover, Kagan’s consideration

are concerned with closure algebras, where closure operator is utilized instead of interior
operator. As these two formalizations of topological space – by closure operators and by
interior operators – are equivalent, we utilize algebras with an interior operator.
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5. ¬̇a ≡̇ ¬̇b = a ≡̇ b.

Let us also note that in a topological Boolean algebra we have [47, p. 23]:

a≡̇b = I(a↔̇b) implies a = b iff a↔̇b = 1.

Element a of a topological Boolean algebra is called open if Ia = a (or
a≡̇1 = a). Similarly as for topological spaces we observe that, if b is open,
then, for every a : b ≤ a iff b ≤ Ia. Therefore Ia is the greatest open element
contained in a.

In the case of WT I can be interpreted as a semantic correlate of �. � and
≡ are interdefinable, and so is I with ≡̇. Therefore, as ≡̇ may be used instead
of I as a primitive operation of topological Boolean algebras, we will use the
following definitional equations Ia = (a≡̇1), a≡̇b = I(a↔̇b), per Theorems 26
and 27. Instead of “topological Boolean algebra” we will use “TB-algebra”, for
short.

If h is a homomorphism from a TB-algebra A into a TB-algebra B, it
preserves the Boolean operations and additionally:

• h(Ia) = Ih(a) or h(a≡̇1) = h(a)≡̇1

for all a ∈ A.
The following definition is not utilized in the dissertation, however it

expresses the necessary condition for the existence of a normal ultrafilter in
a TB-algebra.

Definition 85. Any TB-algebra A = 〈A, ¬̇, ∪̇, ∩̇, →̇, ↔̇, ≡̇〉 is well-connected
[38, p. 50] iff for any a, b, c, d ∈ A the following condition holds:

if (a ≡̇ b) ∪̇ (c ≡̇d) = 1, then (a = b) or (c = d).

Theorem 29. In any TB-algebra A = 〈A, ¬̇, ∪̇, ∩̇, →̇, ↔̇, ≡̇〉 there is a normal
ultrafilter iff A is well-connected [50].

Definition 86 (TB-model). Pair 〈A,F 〉 is called a TB-model if and only if A
is a TB-algebra and F is a normal ultrafilter in TB-algebra.

Definition 87 (Satisfiability of a formula in a model). LetM = 〈A,F 〉 be an
arbitrary but fixed TB-model and h be an arbitrary homomorphism from L in
A. Formula φ is satisfied inM under h if and only if h(φ) ∈ F .

Definition 88 (Truth of a formula in a model). Let M = 〈A,F 〉 be an
arbitrary but fixed TB-model. Formula φ is true in M if and only if: for all
h ∈ Hom(L,A) φ is satisfied inM under h.

Definition 89 (Validity of a formula). Formula φ is valid in WT iff φ is true
in all TB-modelsM.

We then can show that WT is sound and complete with respect to the
presented algebraic semantics [38, p. 109].

Theorem 30. WT is the set of all and only formulae true in every TB-model.

Proof can be found in [38, p. 109].
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5.3 Sequent Calculus G3WT

As WT is an axiomatic extension of WB, our goal is to utilize the same base
for each system and introduce certain modifications that will underline the
differences regarding the identity connective properties. In the case of WB we
utilized labels to have control over the possible application of identity-dedicated
rules. In the case of WT we modify the right identity rule in a way that would
still allow the previous use of left-sided identity rules. As a result we will
consider the following right identity rule

Γ≡ ⇒ φ↔ χ

Γ≡ ⇒ φ ≡ χ
RT
≡

where Γ≡ consists of equations only. Why do we restrict the antecedent of
rule RT

≡ to consist of equations only? Its main aim is to simply prevent the
unwelcome possibility of proving the Fregean Axiom:

....
φ↔ χ⇒ φ ≡ χ

⇒ (φ↔ χ)→ (φ ≡ χ)
R→

In the above fragment of derivation we have non-identity in the antecedent of
a R→ premiss, therefore the sequent cannot be a conclusion of RT

≡, thus we are
safe from proving the Fregean Axiom; identity is still separate from equivalence.

Here, similarly as was done for G3WB, we decided on formalizing as rule the
definition of WT through a consequence operation instead of applying Negri’s
strategy. Axioms characterizing WT are all equations, which means that if we
were to apply the abovementioned strategy, we would obtain a rule similar to
LB
≡, where we would additionally be able to consider four axioms of WT. This

rule would allow us to introduce into derivation formulae of the shape of axioms
(≡11)–(≡14):

φ, Γ I⇒ ∆

Γ I⇒ ∆
LT
≡

where φ is one of WT axioms. This calculus has not been examined as of yet,
but it is interesting whether it would allow us (as in the case of calculus with
LB
≡) to show that structural rules are admissible. Since we would consider only

left-sided rules, it appears plausible that cut and other structural rules would
be admissible (since we would not need to consider the case with cut-formula
of the shape of equation being principal in both premisses of cut; this topic will
be elaborated on in the next chapter).

G3WT will be understood as the set of the rules {L∧, R∧, L∨, R∨, L→, R→,
L↔, R↔, L¬, R¬, L1

≡, L2
≡, L3

≡, L4
≡, RT

≡, cut}, see Tables 5.1, 5.3, 5.2.

Definition 90 (Derivation of sequent Γ ⇒ ∆ in G3WT). Derivation of Γ⇒ ∆
in G3WT is a labelled finite tree with a single root labelled with Γ⇒ ∆ and each
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Table 5.1: Rules of G3WT: classical rules

φ, Γ⇒ ∆,φ

Γ⇒ ∆,φ
¬φ, Γ⇒ ∆ L¬

φ, Γ⇒ ∆
Γ⇒ ∆,¬φ R¬

φ,χ, Γ⇒ ∆
φ∧ χ, Γ⇒ ∆ L∧

Γ⇒ ∆,φ Γ⇒ ∆,χ
Γ⇒ ∆,φ∧ χ R∧

φ, Γ⇒ ∆ χ, Γ⇒ ∆
φ∨ χ, Γ,⇒ ∆ L∨

Γ⇒ ∆,φ,χ
Γ⇒ ∆,φ∨ χ R∨

Γ⇒ ∆,φ χ, Γ⇒ ∆
φ→ χ, Γ⇒ ∆ L→

φ, Γ⇒ ∆,χ
Γ⇒ ∆,φ→ χ

R→

φ,χ, Γ⇒ ∆ Γ⇒ ∆,φ,χ
φ↔ χ, Γ⇒ ∆ L↔

φ, Γ⇒ χ, ∆ χ, Γ⇒ φ, ∆
Γ⇒ ∆,φ↔ χ

R↔

node-label connected with the labels of the (immediate) successor nodes (if any)
according to one of the rules.

Definition 91 (Proof of Γ⇒ ∆ in G3WT). Proof of sequent Γ⇒ ∆ in G3WT is
a derivation of Γ⇒ ∆ with axioms at all of its top nodes.

Similarly as in the case of G3WB, we can consider two additional axiom
schemata utilizing constants ⊥ and >, that is

Γ⇒ ∆,> ⊥, Γ⇒ ∆

proofs of which are analogous to the ones presented in Chapter 4; the only
difference being the lack of labels.

When it comes to the rule-set of sequent calculus G3WT, we will consider a set
of standard classical and structural rules, similarly as it was in the case of G3WB,
but we will omit the labels, as they are unnecessary in this sequent calculus.
As for the identity-dedicated rules, we will consider rules in Table 5.3, mostly
to keep derivations in G3WT as concise as possible, although we can consider
other possibilities of defining a sequent system for WT, depending on our goal.
There are two rules L3

≡ and RT
≡ that will be sufficient to prove both axioms

characterizing WB and the added axioms characterizing WT. Moreover, both
rules additionally work as a formalization of the quasi-Fregean rule mentioned
above. We know that, naturally, axiom (≡3) can be proved using the above
rules. Below we present derivations for axioms (≡1) and (≡2).
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Table 5.2: Rules of G3WT: structural rules

Γ⇒ ∆
χ, Γ⇒ ∆

Lwk
χ,χ, Γ⇒ ∆
χ, Γ⇒ ∆ Lctr

Γ⇒ ∆
Γ⇒ ∆,χ Rwk

Γ⇒ ∆,χ,χ
Γ⇒ ∆,χ Rctr

Γ⇒ Σ,φ φ, Π⇒ ∆
Γ, Π⇒ Σ, ∆ cut

Table 5.3: G3WT: identity rules

φ ≡ φ, Γ⇒ ∆
Γ⇒ ∆ L1

≡
χ↔ φ,χ ≡ φ, Γ⇒ ∆

χ ≡ φ, Γ⇒ ∆ L3
≡

¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆
φ ≡ χ, Γ⇒ ∆ L2

≡
(φ⊗ χ) ≡ (ψ⊗ ω),φ ≡ ψ,χ ≡ ω, Γ⇒ ∆

φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ L4
≡

Γ≡ ⇒ φ↔ χ

Γ≡ ⇒ φ ≡ χ
RT
≡

(≡1):

φ⇒ φ φ⇒ φ

⇒ φ↔ φ
R↔

⇒ φ ≡ φ
RT
≡

(≡2):

δ,φ,χ,φ⇒ χ δ,φ⇒ φ,χ,χ
δ,φ↔ χ,φ⇒ χ

L↔

δ,φ↔ χ,¬χ⇒ ¬φ R¬,L¬

δ,φ,χ,χ⇒ φ δ,χ⇒ φ,φ,χ
δ,φ↔ χ,χ⇒ φ

L↔

δ,φ↔ χ,¬φ⇒ ¬χ R¬,L¬
δ,φ↔ χ⇒ ¬φ↔ ¬χ R↔

δ ⇒ ¬φ↔ ¬χ L3
≡

δ ⇒ ¬φ ≡ ¬χ RT
≡

⇒ (φ ≡ χ)→ (¬φ ≡ ¬χ) R→
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where δ = φ ≡ χ. Let us also consider the following fragment of the proof of
an instance of axiom (≡4), where Γ≡ = {φ ≡ ψ,χ ≡ ω,φ ≡ χ}:

....
φ↔ ψ,χ↔ ω,φ↔ χ, Γ≡ ⇒ ψ ↔ ω

φ ≡ ψ,χ ≡ ω,φ ≡ χ⇒ ψ ↔ ω
L3
≡ × 3

φ ≡ ψ,χ ≡ ω,φ ≡ χ⇒ ψ ≡ ω
RT
≡

....
φ ≡ ψ,χ ≡ ω,ψ ≡ ω ⇒ φ ≡ χ

φ ≡ ψ,χ ≡ ω ⇒ (φ ≡ χ)↔ (ψ ≡ ω)
R↔

φ ≡ ψ,χ ≡ ω ⇒ (φ ≡ χ) ≡ (ψ ≡ ω)
RT
≡

(φ ≡ ψ) ∧ (χ ≡ ω)⇒ (φ ≡ χ) ≡ (ψ ≡ ω)
L∧

⇒ ((φ ≡ ψ) ∧ (χ ≡ ω))→ ((φ ≡ χ) ≡ (ψ ≡ ω))
R→

We can easily prove it through the use of L3
≡ and RT

≡ (and other classical
rules), we just have to keep in mind the context in which right identity can be
applied. We therefore could potentially choose the wrong order of application
of certain rules (in proof-search through root-first search) and close our way to
constructing the proof.

Also, to shorten the proofs we will consider two additional rules, which are
derivable with the use of RT

≡, L3
≡ and cut or with the use of RT

≡, L3
≡ and Lwk:

Γ,φ ≡ >,φ⇒ ∆
Γ,φ ≡ > ⇒ ∆

L≡>
Γ≡ ⇒ φ

Γ≡ ⇒ φ ≡ > R≡>

where Γ≡ consists of equations only. These two rules are derivable in G3WT ∪
{Lwk}:

• L≡>:

Γ,φ ≡ >,φ⇒ ∆
Γ,φ ≡ >,φ,> ⇒ ∆

Lwk Γ,φ ≡ > ⇒ φ,>, ∆
Γ,φ ≡ >,φ↔ >⇒ ∆ L↔

Γ,φ ≡ > ⇒ ∆ L3
≡

• R≡>

Γ≡,φ⇒ >
Γ≡ ⇒ φ

Γ≡,> ⇒ φ
Lwk

Γ≡ ⇒ φ↔ > R↔

Γ≡ ⇒ φ ≡ > RT
≡

or, instead of weakening, using cut, that is, they are derivable in G3WT:

• L≡>:

φ,> ⇒ φ φ, Γ,φ ≡ > ⇒ ∆
Γ,φ ≡ >,φ,> ⇒ ∆ cut Γ,φ ≡ > ⇒ φ,>, ∆

Γ,φ ≡ >,φ↔ >⇒ ∆ L↔

Γ,φ ≡ > ⇒ ∆ L3
≡
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• R≡>

Γ≡,φ⇒ >
Γ≡ ⇒ φ φ,> ⇒ φ

Γ≡,> ⇒ φ
cut

Γ≡ ⇒ φ↔ > R↔

Γ≡ ⇒ φ ≡ > RT
≡

We can also consider introducing them as primary rules, in addition to L3
≡ and

RT
≡.
We mentioned that WT corresponds to S4 and the identity connective ≡

can be interpreted as a version of the necessity connective �. We may therefore
examine how rules for � in sequent calculus for S4 can be translated to rules
characterizing ≡ in WT. In order to obtain sequent calculus for S4 we add to
G3cp the following modal rules [24]:

φ, Γ⇒ ∆
�φ, Γ⇒ ∆

L�
Γ⇒ ∆,φ

Γ⇒ ∆,♦φ R♦

�Γ⇒ ♦∆,φ
�Γ⇒ ♦∆,�φ R�

φ,�Γ⇒ ♦∆
♦φ,�Γ⇒ ♦∆

L♦

We can use the fact of correspondence between the two logics and consider
a pair of rules for the identity connective which are based on the modal rules.
We translate formulae preceded by � to language of WT and obtain rules L≡>
and R≡> (which, as we showed before, can be obtain through utilisation of L3

≡
and RT

≡ and cut or weakening):

φ, Γ⇒ ∆
�φ, Γ⇒ ∆

L�  
φ, Γ⇒ ∆

φ ≡ >, Γ⇒ ∆

�Γ⇒ ♦∆,φ
�Γ⇒ ♦∆,�φ R�  

Γ≡> ⇒ ∆¬(≡>),φ
Γ≡> ⇒ ∆¬(≡>),φ ≡ >

where Γ≡> consists of formulae φi in Γ, which are equal with >, i.e. for each
formula φi ∈ Γ, φi ≡ > ∈ Γ≡. Similarly for each χi ∈ ∆, ¬(χi ≡ >) ∈ ∆¬(≡>).

To sum up, we can consider three different approaches regarding specifying
the set of identity-dedicated rules:

(a) the set of two primary rules: {L3
≡, RT

≡},

(b) the set of four primary rules: {L3
≡, RT

≡, L≡>, R≡>},

(c) the set of five primary rules: {L1
≡,L2

≡,L3
≡,L4

≡,RT
≡}.

In order to minimize the size of derivations we will opt for version (c) with two
additional, derivable rules {L≡>, R≡>}, thus defining G3WT as {L∧, R∧, L∨,
R∨, L→, R→, L↔, R↔, L¬, R¬, L1

≡, L2
≡, L3

≡, L4
≡, RT

≡, cut}.
For WT and WH we consider slightly modified definition of the satisfiability

of a sequent.
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Definition 92 (Satisfiability of a sequent). Let M = 〈A,F 〉 be an arbitrary
but fixed TB-model and let h ∈ Hom(L,A). Sequent Γ ⇒ ∆ is satisfied in
M under h provided h(φ1)∩̇...∩̇h(φn) ≤ h(χ1)∪̇...∪̇h(χk), where Γ = φ1, ...,φn

and ∆ = χ1, ...,χk.

Definition 93 (Truth of a sequent). LetM = 〈A,F 〉 be an arbitrary TB-model.
Sequent Γ ⇒ ∆ is true in M provided that for each h ∈ Hom(L,A), sequent
Γ⇒ ∆ is satisfied inM under h.

Definition 94 (Validity of a sequent). Sequent Γ ⇒ ∆ is valid in WT, if it is
true in each TB-model.

We can now examine the following example of a derivation (of WT theorem
((φ ≡ χ)→ (φ↔ χ)) ≡ >):

(φ ≡ χ)→ (φ↔ χ)⇒ >

>,φ↔ χ,φ ≡ χ⇒ φ↔ χ

>,φ ≡ χ⇒ φ↔ χ
L3
≡

> ⇒ (φ ≡ χ)→ (φ↔ χ)
R→

⇒ ((φ ≡ χ)→ (φ↔ χ))↔ > R↔

⇒ ((φ ≡ χ)→ (φ↔ χ)) ≡ > RT
≡

5.3.1 Completeness of G3WT

We use a similar approach as was in the case of G3SCI and G3WB. We will show
that axiomatic system HWT can be simulated within G3WT.

Theorem 31 (Interpretation of HWT in G3WT). If formula φ is provable in
axiomatic system HWT, then sequent ⇒ φ is provable in G3WT.

Proof. We use the same construction as for G3WB. We know that modus ponens
is derivable in G3WT with the use of cut, so we omit this part and show that for
all axioms φ of WT, sequents ⇒ φ have proofs in G3WT:

(≡11) �(φ↔ χ) ≡ (φ ≡ χ) =df ((φ↔ χ) ≡ >) ≡ (φ ≡ χ)

(φ↔ χ) ≡ >,φ↔ χ⇒ φ↔ χ

(φ↔ χ) ≡ > ⇒ φ↔ χ
L≡>

(φ↔ χ) ≡ > ⇒ φ ≡ χ
RT
≡

φ↔ χ,φ ≡ χ⇒ φ↔ χ

φ ≡ χ⇒ φ↔ χ
L3
≡

φ ≡ χ⇒ (φ↔ χ) ≡ >
R≡>

⇒ ((φ↔ χ) ≡ >)↔ (φ ≡ χ)
R↔

⇒ ((φ↔ χ) ≡ >) ≡ (φ ≡ χ)
RT
≡

(≡12) �φ ≤ φ =df (((φ ≡ >)→ φ) ≡ >)

φ ≡ >,φ⇒ φ

φ ≡ > ⇒ φ
L≡>

⇒ (φ ≡ >)→ φ
R→

⇒ ((φ ≡ >)→ φ) ≡ >
R≡>
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(≡13) �(φ∧ χ) ≡ (�φ∧�q) =df ((φ∧ χ) ≡ >) ≡ ((φ ≡ >) ∧ (χ ≡ >))

(φ∧ χ) ≡ >,φ,χ⇒ φ

(φ∧ χ) ≡ >,φ∧ χ⇒ φ
L∧

(φ∧ χ) ≡ > ⇒ φ
L≡>

(φ∧ χ) ≡ > ⇒ φ ≡ >
R≡>

(φ∧ χ) ≡ >,φ,χ⇒ χ

(φ∧ χ) ≡ >,φ∧ χ⇒ χ
L∧

(φ∧ χ) ≡ > ⇒ χ
L≡>

(φ∧ χ) ≡ > ⇒ χ ≡ >
R≡>

(φ∧ χ) ≡ > ⇒ (φ ≡ >) ∧ (χ ≡ >) R∧
D1....

⇒ ((φ∧ χ) ≡ >)↔ ((φ ≡ >) ∧ (χ ≡ >)) R↔

⇒ ((φ∧ χ) ≡ >) ≡ ((φ ≡ >) ∧ (χ ≡ >)) RT
≡

where D1:

φ ≡ >,χ ≡ >,φ,χ⇒ φ φ ≡ >,χ ≡ >,φ,χ⇒ χ

φ ≡ >,χ ≡ >,φ,χ⇒ (φ∧ χ) R∧

φ ≡ >,χ ≡ > ⇒ (φ∧ χ)
2×L≡>

φ ≡ >,χ ≡ > ⇒ (φ∧ χ) ≡ >
R≡>

(φ ≡ >) ∧ (χ ≡ >)⇒ ((φ∧ χ) ≡ >) L∧

(≡14) ��φ ≡ �φ =df ((φ ≡ >) ≡ >) ≡ (φ ≡ >)

φ ≡ >, (φ ≡ >) ≡ > ⇒ φ ≡ >
(φ ≡ >) ≡ > ⇒ φ ≡ >

L≡>
φ ≡ > ⇒ φ ≡ >

φ ≡ > ⇒ (φ ≡ >) ≡ >
R≡>

⇒ ((φ ≡ >) ≡ >)↔ (φ ≡ >) R↔

⇒ ((φ ≡ >) ≡ >) ≡ (φ ≡ >) RT
≡

The remaining reasoning is analogous to that in the proof of Theorem 11.

Theorem 32 (Completeness). If a sequent ⇒ φ is valid in WT, it is provable
in G3WT.

Proof. Analogous to that of Theorem 12 presented in Chapter 3.

5.3.2 Soundness of G3WT

Since the correctness of rules uses different approach to the satisfiability of
sequent in some modelM under homomorphism h, below we present correctness
of both classical and identity-dedicated rules.

Lemma 17. L¬ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds: Γ⇒
∆,φ is satisfied inM under h. It means that ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(φ). We will

show that ¬φ, Γ⇒ ∆ is also satisfied inM under h, that is ¬̇h(φ) ∩̇ ⋂̇
h(Γ) ≤⋃̇

h(∆). We begin with multiplying both sides of ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(φ) with
¬̇h(φ), thus obtaining ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
(h(∆) ∪̇ h(φ)) ∩̇ ¬̇h(φ). Through

distributivity we have ¬̇h(φ) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

(h(∆) ∩̇ ¬̇h(φ)) ∪̇ (h(φ) ∩̇ ¬̇h(φ)).
Since h(φ) ∩̇ ¬̇h(φ) equals 0, we have ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤ (
⋃̇
h(∆) ∩̇ ¬̇h(φ)) ∪̇ 0.
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Then, as a ∪̇ 0 = a, we have ¬̇h(φ) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∩̇ ¬̇h(φ). Through
properties of ≤ we have both ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) and ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤
¬̇h(φ). The former can be brought back to the sequent form ¬φ, Γ ⇒ ∆ thus
showing that L¬ is correct in WT.

Lemma 18. R¬ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ, Γ ⇒ ∆ is satisfied in M under h. It means that h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

We will show that Γ ⇒ ∆,¬φ is also satisfied inM under h, that is ⋂̇
h(Γ) ≤⋃̇

h(∆) ∪̇ ¬̇h(φ). We begin with adding to both sides of h(φ) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

h(∆)
expression ¬̇h(φ), thus obtaining ¬̇h(φ) ∪̇ (h(φ) ∩̇ ⋂̇

h(Γ)) ≤ ⋃̇
h(∆) ∪̇ ¬̇h(φ).

Through distributivity we have (¬̇h(φ) ∪̇ h(φ)) ∩̇ (¬̇h(φ) ∪̇ ⋂̇
h(Γ)) ≤⋃̇

h(∆) ∪̇ ¬̇h(φ). Since ¬̇h(φ) ∪̇ h(φ) equals 1, we have 1 ∩̇ (¬̇h(φ) ∪̇ ⋂̇
h(Γ)) ≤⋃̇

h(∆) ∪̇ ¬̇h(φ). Then, as a ∩̇ 1 = a, we have ¬̇h(φ) ∪̇ ⋂̇
h(Γ) ≤⋃̇

h(∆) ∪̇ ¬̇h(φ). Through properties of ≤ we have both ¬̇h(φ) ≤⋃̇
h(∆) ∪̇ ¬̇h(φ) and ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ ¬̇h(φ). The latter can be brought back

to the sequent form Γ⇒ ∆,¬φ thus showing that R¬ is correct in WT.

Lemma 19. L∧ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ,χ, Γ⇒ ∆ is satisfied inM under h. That means that h(φ) ∩̇ h(χ) ∩̇ ⋂̇

h(Γ) ≤⋃̇
h(∆). Then also h(φ∧ χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

Lemma 20. R∧ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
Γ ⇒ ∆,φ and Γ ⇒ ∆,χ are satisfied in M under h. That means that the
following hold: ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(φ) and ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(χ). We

will show that Γ ⇒ ∆,φ ∧ χ is also satisfied in M under h, that is ⋂̇
h(Γ) ≤⋃̇

h(∆),h(φ ∧ χ). From ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(φ) and ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(χ)
we have ⋂̇

h(Γ) ∩̇ ⋂̇
h(Γ) ≤ (

⋃̇
h(∆) ∪̇ h(φ)) ∩̇ (

⋃̇
h(∆) ∪̇ h(χ)) which then

can be turned into ⋂̇
h(Γ) ≤ (

⋃̇
h(∆) ∪̇ h(φ)) ∩̇ (

⋃̇
h(∆) ∪̇ h(χ)). Through

distributivity, (⋂̇Γ) ≤ ⋃̇
h(∆) ∪̇ (h(φ) ∩̇ h(χ)).

Lemma 21. L∨ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be a
homomorphism of L into A. Suppose that the following condition holds:
φ, Γ ⇒ ∆ and χ, Γ ⇒ ∆ are satisfied in M under h. That means that
the following hold: h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) and h(χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

We will show that φ ∨ χ, Γ ⇒ ∆ is also satisfied in M under h, that is
h(φ∨χ) ∩̇ h(⋂̇Γ) ≤ ⋃̇

h(∆). From h(φ) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

h(∆) and h(χ) ∩̇ ⋂̇
h(Γ) ≤⋃̇

h(∆) we have (⋂̇h(Γ) ∩̇ h(φ)) ∪̇ (
⋂̇
h(Γ) ∩̇ h(χ)) ≤ ⋃̇

h(∆) and then, through
distributivity, (h(φ) ∪̇ h(χ)) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

Lemma 22. R∨ is correct in WT.
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Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
Γ ⇒ ∆,φ,χ is satisfied in M under h. That means that ⋂̇

h(Γ) ≤⋃̇
h(∆) ∪̇ h(φ) ∪̇ h(χ). From Definition 51 we have ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(φ ∨

χ).
Lemma 23. L→ is correct in WT.
Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
Γ ⇒ ∆,φ and χ, Γ ⇒ ∆ are satisfied in M under h. That means that
the following hold: ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(φ) and h(χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

We will show that φ → χ, Γ ⇒ ∆ is also satisfied in M under h, that is
h(φ→ χ) ∩̇ h(⋂̇Γ) ≤ ⋃̇

h(∆). We apply Lemma 17 to ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(φ)
thus obtaining ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆). By Lemma 21 from ¬̇h(φ) ∩̇ ⋂̇

h(Γ) ≤⋃̇
h(∆) and h(χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) we have (¬̇h(φ) ∪̇ h(χ)) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆),

then h(¬φ ∨ χ) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

h(∆) which then through Definition 51 gives us
h(¬φ→ χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

Lemma 24. R→ is correct in WT.
Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ, Γ ⇒ ∆,χ is satisfied in M under h. That means that h(φ) ∩̇ ⋂̇

h(Γ) ≤⋃̇
h(∆) ∪̇ h(χ). We will show that Γ ⇒ ∆,φ → χ is also satisfied in M

under h, that is ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(φ → χ). We apply Lemma 18 to
h(φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(χ) thus obtaining ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(χ) ∪̇ ¬̇h(φ).

By Lemma 22 we have ⋂̇
h(Γ) ≤ ⋃̇

h(∆) ∪̇ h(¬φ ∨ χ) which then through
Definition 51 gives us ⋂̇

h(Γ) ≤ ⋃̇
h(∆) ∪̇ h(φ→ χ).

Lemma 25. L↔ is correct in WT.
Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ,χ, Γ ⇒ ∆ and Γ ⇒ ∆,φ,χ are satisfied inM under h. Through Lemmas 19
and 23 and condition (6) from Definition 17 we conclude that φ↔ χ, Γ⇒ ∆ is
also satisfied inM under h.
Lemma 26. R↔ is correct in WT.
Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ, Γ ⇒ ∆,χ and χ, Γ ⇒ ∆,φ are satisfied inM under h. Through Lemmas 20
and 24 and condition (6) from Definition 17 we conclude that φ↔ χ, Γ⇒ ∆ is
also satisfied inM under h.
Lemma 27. L1

≡ is correct in WT.
Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
φ ≡ φ, Γ ⇒ ∆ is satisfied inM under h, that is h(φ ≡ φ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

From Definition 51 we have (h(φ) ≡̇ h(φ)) ∩̇ ⋂̇
h(Γ) ≤ ⋃̇

h(∆). By condition 1
from Definition 84 we have h(φ) ≡̇ h(φ) being equal to 1, therefore we conclude
1 ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) which by a ∩̇1 = a entails ⋂̇

h(Γ) ≤ ⋃̇
h(∆).
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Lemma 28. L2
≡ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition does
not hold: φ ≡ χ, Γ ⇒ ∆ is not satisfied in M under h, that is h(φ ≡
χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) does not hold. We know that (φ ≡ χ)→ (¬φ ≡ ¬χ) is a

tautology of WT. We can therefore add ¬φ ≡ ¬χ to the antecedent of a sequent
knowing the algebraic value of the antecedent will not change. This means that
h(¬φ ≡ ¬χ) ∩̇ h(φ ≡ χ) ∩̇ ⋂̇

h(Γ) 6≤ ⋃̇
h(∆), therefore ¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆

is not satisfied inM under h.

Lemma 29. L3
≡ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition does
not hold: φ ≡ χ, Γ ⇒ ∆ is not satisfied in M under h, that is h(φ ≡
χ) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) does not hold. We know that (φ ≡ χ) → (φ ↔ χ) is a

tautology of WT. We can therefore add φ ↔ χ to the antecedent of a sequent
knowing the algebraic value of the antecedent will not change. This means that
h(φ ↔ χ) ∩̇ h(φ ≡ χ) ∩̇ ⋂̇

h(Γ) 6≤ ⋃̇
h(∆), therefore φ ↔ χ,φ ≡ χ, Γ ⇒ ∆ is

not satisfied inM under h.

Lemma 30. L4
≡ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition does
not hold: φ ≡ ψ,χ ≡ ω, Γ ⇒ ∆ is not satisfied in M under h, that is
h(φ ≡ ψ) ∩̇ h(χ ≡ ω) ∩̇ ⋂̇

h(Γ) ≤ ⋃̇
h(∆) does not hold. We know that

((φ ≡ ψ) ∧ (χ ≡ ω)) → ((φ ⊗ χ) ≡ (ψ ⊗ ω)) is a tautology of WT.
We can therefore add (φ ⊗ χ) ≡ (ψ ⊗ ω) to the antecedent of a sequent
knowing the algebraic value of the antecedent will not change. This means
that h((φ ⊗ χ) ≡ (ψ ⊗ ω)) ∩̇ h(φ ≡ ψ) ∩̇ h(χ ≡ ω) ∩̇ ⋂̇

h(Γ) 6≤ ⋃̇
h(∆),

therefore sequent (φ⊗ χ) ≡ (ψ ⊗ ω),φ ≡ ψ,χ ≡ ω, Γ ⇒ ∆ is not satisfied in
M under h.

In the case of WT we can show that RT
≡ preserves a weaker property than

we examined for RB
≡ (which, in turn, provides a stronger rule property), the

satisfiability of a sequent.

Lemma 31. RT
≡ is correct in WT.

Proof. Let M = 〈A,F 〉 be an arbitrary, but fixed TB-model and h be
a homomorphism of L into A. Suppose that the following condition holds:
Γ≡ ⇒ φ↔ χ is satisfied inM under h. Now, let Γ≡ = {φ1 ≡ χ1, ...,φn ≡ χn}
(n might be 0). We know that the following objects are identical:

(a) h(φi ≡ χi) = (h(φi) ≡̇ h(χi)) ≡̇ 1 (per condition 3 from Theorem 28)

(b) h((φ1 ≡ χ1) ∧ ...∧ (φn ≡ χn)) ≡̇ 1 =

((h(φ1) ≡̇ h(χ1)) ∩̇ ... ∩̇ (h(φn) ≡̇ h(χn))) ≡̇ 1
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By assumption, h((φ1 ≡ χ1) ∧ ... ∧ (φn ≡ χn)) ≤ h(φ ↔ χ). By condition 2
from Theorem 28,

h((φ1 ≡ χ1) ∧ ...∧ (φn ≡ χn)) ≡̇ 1 ≤ h(φ↔ χ) ≡̇ 1.

By (b)

((h(φ1) ≡̇ h(χ1)) ∩̇ ... ∩̇ (h(φn) ≡̇ h(χn))) ≡̇ 1 ≤ h(φ↔ χ) ≡̇ 1.

By the definition of ≡̇ in terms of I and clause (I1) of Definition 83:

((h(φ1) ≡̇ h(χ1)) ≡̇ 1) ∩̇ ... ∩̇ ((h(φn) ≡̇ h(χn)) ≡̇ 1) ≤ h(φ↔ χ) ≡̇ 1

Then by (a),

h(φ1 ≡ χ1) ∩̇ ... ∩̇ h(φn ≡ χn) ≤ h(φ↔ χ) ≡̇ 1.

The left side is just

h((φ1 ≡ χ1) ∧ ...∧ (φn ≡ χn))

whereas h(φ↔ χ) ≡̇ 1 is (h(φ) ↔̇ h(χ)) ≡̇ 1 and by point 4 of Theorem 28 it
is equal to h(φ) ≡̇ h(χ). Hence finally

h((φ1 ≡ χ1) ∧ ...∧ (φn ≡ χn)) ≤ h(φ ≡ χ).

Therefore the conclusion is also satisfied inM under h.

Lemma 32. RT
≡ is invertible in WT.

Proof. Through clause 2 of Definition 84 we notice that the satisfiability of
a conclusion entails the satisfiability of the premiss of the rule.

Theorem 33 (Soundness). If a sequent is provable in G3WT, it is valid in WT.

Proof. The proof is analogous to that of Theorem 13 in Chapter 3.

As a result from Theorems 32 and 33 we have

Theorem 34 (Adequacy). Sequent ⇒ φ is provable in G3WT iff ⇒ φ is valid
in WT.
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Chapter 6

WH logic and sequent calculus
G3WH

WH, the third extension of SCI discussed by Suszko, is a formalization of the
following proposition from Wittgenstein’s Tractatus:

5.5303 Roughly speaking: to say of two things that they are
identical is nonsense, and to say of one thing that it is identical
with itself is to say nothing.

which is often quoted to emphasize aversion towards the sign of identity. Suszko
formalized this proposition through WH, which is a set of sentences interpreted
within Henle algebra. In WH we can state that a given situation is either
necessary or impossible. This notion brings us yet again closer to modal logic.
WH corresponds to modal logic S5, where � can be interpreted as interior
operator “I”.

6.1 Hilbert system for WH
We utilize the same language as in the previous extensions, that is an algebra
of the similarity type 〈1, 2, 2, 2, 2, 2〉

L = 〈L,¬,∧,∨,→,↔,≡〉

in which, yet again, we define ⊥ =df p1 ∧¬p1, > =df ¬⊥, (φ ≤ χ) =df ((φ →
χ) ≡ >) and �φ =df φ ≡ >. Suszko and Omyła utilize different language, that
is algebra of the similarity type 〈1, 2, 2, 2, 2, 2, 1〉

L� = 〈L,¬,∧,∨,→,↔,≡,�〉

which allows us to simplify the shape of formulae. Identity, as was the case for
WT, can be thought of as a version of necessity. We will, however, remain with
the formerly defined language for continuity and cohesion of all three extensions.
Depending on the language we choose to work with, an axiomatic system for
WH can be obtained in three different ways. If we had � in our language,
an axiomatic system for WH could be obtained by means of the addition of
formulae falling under (≡∗15) to the axiomatic system of WT:

(≡∗15) (�φ ≡ >) ∨ (�φ ≡ ⊥)
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or, for the language algebra L which we will utilize, it is obtained by the addition
of the following axiom scheme to the axiomatic system of WT:

(≡15) ((φ ≡ χ) ≡ >) ∨ ((φ ≡ χ) ≡ ⊥)

which can be described as the non-Fregean law of excluded middle. For any
equation φ ≡ χ we can say that it is either impossible or necessary. The
formula (≡15) was also introduced by Greniewski in [20] where he axiomatized
S5 through adding (≡15) to CPC with identity connective (in the original article
introduced through symbol .≡) together with the following quasi-Fregean rule:

φ↔ χ

φ ≡ χ

Formula (≡15), if we were to be faithful to the original notation, would be

written as ((p
.≡ q)

.≡ r0) ∨ ((p
.≡ q)

.≡ r
−
0 ). Greniewski referred to

the mentioned identity connective as another variant of equivalence, which
is separate from material equivalence. Additionally Greniewski considered
a third option, the so-called Hamilton’s equivalence ..≡, which can be defined
as φ ..≡ χ =df (φ ≡ χ) ∧ φ

−
2 (where φ

−
2 can be read as “logic does not tell us

whether φ occurs”[20]). A similar approach was undertaken by Cresswell [8]. He
formalized Calculus of Functions of Propositions (FC) with non-truth-functional
variables. In the variant of the logic corresponding to modal logic S5, identity is
characterized by the quasi-Fregean rule, axiom ((φ ≡ χ) → ⊥) → ((φ ≡ χ) ≡
⊥), reflexivity axiom and standard replacement rule.

The third axiomatization for WH comes from [56]. It can be formulated as
Boole algebra axioms and the following set:

(≡#
15) > ≡ (φ∨¬φ),

(≡#
16) ⊥ ≡ (φ∧¬φ),

(≡#
17) (φ ≡ χ) ≡ ((φ ≡ χ) ≡ >),

(≡#
18) ¬(φ ≡ χ) ≡ ((φ ≡ χ) ≡ ⊥).

Axiom (≡15) can be obtained from the axioms (≡#
17) and (≡#

18) from the
third axiomatization variant for WH [56]. In further considerations we will refer
to set WHA, which will consist of all instances of axiom scheme (≡15).

We define formal proof in axiomatic system in the standard way, following
the second variant of axiomatization:

Definition 95 (Derivation, formal proof). Let Φ stand for a set of formulae
of L. A finite sequence φ1, ...,φn of formulae of L is a derivation of φ from Φ
provided φn = φ and formula φi, i ≤ n, is either from Φ or has been derived
from some φi1 ,φi2 , (i1, i2 < i) through an application of modus ponens. If
Φ = TFA ∪ IDA ∪WBA ∪WTA ∪WHA, then φ1, ...,φn is a proof of φ in the
axiomatic system for WH.
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If φ1, ...,φn is a proof of φ from TFA∪ IDA∪WBA∪WTA∪WHA, then the
length of this proof is n. We undertake the same approach (as it was in the
previous chapters) to the consequence operation. This time we extend axiom
set by the addition of the set WHA and, in connection with this, consequence
operation CWH is defined by the set TFA∪ IDA∪WBA∪WTA∪WHA of axioms
and a singular inference rule, modus ponens. Elements of CWH(∅) are called
logical theorems of WH.

As previously, in keeping with Suszko we introduce the logic WH as
a deductive system HWH.

Definition 96. Pair HWH = 〈L,CWH〉 is a deductive system HWH.

6.2 Semantics of WH
In the previous section we presented three approaches to defining axiomatic
system for WH. We can add four axioms to the axiomatic system of WB or one
axiom to the axiomatic system for WT ((≡∗15) or (≡15), depending on language).
Following that, we present two equivalent approaches to defining Henle algebra.

Definition 97. Algebra

A = 〈A, ¬̇, ∪̇, ∩̇, →̇, ↔̇, ≡̇〉

is called a Henle algebra or H-algebra if and only if 〈A, ¬̇, ∪̇, ∩̇, →̇, ↔̇〉 is a Boole
algebra and for any a, b ∈ A operation ≡̇ satisfies the following:

a≡̇b =

1, if a = b

0, if a 6= b
(6.1)

Moreover, every H-algebra is also a well-connected TB-algebra [38, p. 52].
Omyła in [38, p. 110] notes that in B-models equations which are theorems

of WB do not have to be assigned to 1 in the algebra, but to other elements
of the filter. In models of WH logic, every equation satisfied in Henle model is
assigned 1, whereas equations not satisfied in a model are assigned 0.

Definition 98. A given TB-algebra A = 〈A, ¬̇, ∩̇, ∪̇, →̇, ↔̇, ≡̇〉 is a Henle
algebra provided for any a, b ∈ A the following condition is satisfied: ¬̇(a≡̇b) =
((a≡̇b)≡̇0).

Definition 99 (Henle model). By Henle model we understand any SCI-model
M = 〈A,F 〉 such that A is a Henle algebra [38, p. 114].

As modal logic S5 corresponds to WH we can translate formulae between
them using the following definitions:

• �φ =df φ ≡ (φ∨¬φ)

• φ ≡ χ =df �(φ↔ χ)
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Definition 100 (Satisfiability of a formula in a model). Let M = 〈A,F 〉 be
an arbitrary but fixed Henle model, h be an arbitrary homomorphism from L to
A. Formula φ is satisfied inM under h if and only if h(φ) ∈ F .

Definition 101 (Truth of a formula in a model). Let M = 〈A,F 〉 be an
arbitrary but fixed Henle model. Formula φ is true inM if and only if: for all
h ∈ Hom(L,A) φ is satisfied inM under h.

Definition 102 (Validity of a formula). Formula φ is valid in WH iff φ is true
in all Henle models.

Corollary 3. ((φ ≡ χ) ≡ >) ∨ ((φ ≡ χ) ≡ ⊥) is valid in WH.

Proof. Suppose it is not the case. We then have one Henle modelM = 〈A,F 〉
and homomorphism h such that h(((φ ≡ χ) ≡ >) ∨ ((φ ≡ χ) ≡ ⊥)) /∈ F ,
which in turn means that, consecutively h((φ ≡ χ) ≡ >)) /∈ F and h((φ ≡
χ) ≡ ⊥) /∈ F , and further ((h(φ)≡̇h(χ))≡̇1)) /∈ F and ((h(φ)≡̇v(χ))≡̇0) /∈
F . We also know that since M is a Henle model, for any two elements
a, b ∈ A we have (a≡̇b) = ((a≡̇b)≡̇1) and ¬̇(a≡̇b) = ((a≡̇b)≡̇0). But,
since ((h(φ)≡̇h(χ))≡̇0) /∈ F , then so is ¬̇(h(φ)≡̇h(χ)) /∈ F . We arrive
at h(φ)≡̇v(χ) /∈ F and ¬̇(h(φ)≡̇v(χ)) /∈ F . But, condition for semantical
negation shows us that ¬̇a ∈ F iff a ∈ F . A contradiction.

Theorem 35. WH is the set of all and only formulae true in every Henle model.

The proof can be found in [38, p. 114].

6.3 Sequent Calculus G3WH

Sequent Calculus for G3WH is obtained through the continuation of extending
rule set of previously presented systems. WH can be obtained through an
addition of axioms to either WB or WT. For continuity, as G3WT has been
obtained through modification of G3WB, we will expand rule set of G3WT to
obtain G3WH.

We here pivot to the way `G3SCI was obtained and we yet again utilize
Negri’s strategy of turning axioms into sequent calculus rules. This way we
obtain the following rule from axiom (≡15):

Γ, (φ ≡ χ) ≡ > ⇒ ∆ Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆
Γ⇒ ∆ L5

≡

which is added to the set of rules characterizing G3WT and will constitute G3WH.
In L5

≡ we have two active formulae and no principal formula. In a way its use
is similar to cut; (looking bottom-up) we introduce two possible scenarios in
our derivation—a given equation φ ≡ χ can be either necessary or impossible.
However, in contrast to cut, L5

≡ is a shared-context rule. Naturally, if we were
to turn axiom (≡∗15) into sequent rule using the same strategy, we would meet
the analogous outcome.
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Table 6.1: G3WH: identity rules

φ ≡ φ, Γ⇒ ∆
Γ⇒ ∆ L1

≡
χ↔ φ,χ ≡ φ, Γ⇒ ∆

χ ≡ φ, Γ⇒ ∆ L3
≡

¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆
φ ≡ χ, Γ⇒ ∆ L2

≡
Γ≡ ⇒ φ↔ χ

Γ≡ ⇒ φ ≡ χ
RT
≡

(φ⊗ χ) ≡ (ψ⊗ ω),φ ≡ ψ,χ ≡ ω, Γ⇒ ∆
φ ≡ ψ,χ ≡ ω, Γ⇒ ∆ L4

≡

(φ ≡ χ) ≡ >, Γ⇒ ∆ (φ ≡ χ) ≡ ⊥, Γ⇒ ∆
Γ⇒ ∆ L5

≡

where Γ≡ consists of equations only.

For the full sequent system we consider the standard set of classical and
structural rules (Tables 5.1 and 5.2) and the following set of identity-dedicated
rules:

As a result G3WB will be defined by the following set of rules {L∧, R∧, L∨,
R∨, L→, R→, L↔, R↔, L¬, R¬, L1

≡, L2
≡, L3

≡, L4
≡, L5

≡, RT
≡, cut}.

Definition 103 (Derivation of Γ⇒ ∆ in G3WH). Derivation of Γ⇒ ∆ in G3WH
is a labelled finite tree with a single root and each node-label connected with the
labels of the (immediate) successor nodes (if any) according to one of the rules.

Definition 104 (Proof of Γ ⇒ ∆ in G3WH). A proof of Γ⇒ ∆ in G3WH is
a derivation of Γ⇒ ∆ with axioms at all of the top nodes.

We shall now examine several examples of derivations in G3WH. (φ ≡ χ) ≡
((φ ≡ χ) ≡ >) is an example of WT theorem, therefore we do not need rule L5

≡
to prove it in G3WH. Similarly to previously examined systems, we shall utilize
additional, derivable axioms with > and ⊥.

φ ≡ χ,φ ≡ χ⇒ > >,φ ≡ χ⇒ φ ≡ χ

φ ≡ χ⇒ ((φ ≡ χ)↔ >) R↔

φ ≡ χ⇒ ((φ ≡ χ) ≡ >) RT
≡

D1....
⇒ (φ ≡ χ)↔ ((φ ≡ χ) ≡ >) R↔

⇒ (φ ≡ χ) ≡ ((φ ≡ χ) ≡ >) RT
≡
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where D1 is the following:

φ ≡ χ,>, (φ ≡ χ) ≡ > ⇒ φ ≡ χ (φ ≡ χ) ≡ > ⇒ φ ≡ χ,φ ≡ χ,>
(φ ≡ χ)↔ >, (φ ≡ χ) ≡ > ⇒ φ ≡ χ

L↔

(φ ≡ χ) ≡ > ⇒ φ ≡ χ
L3
≡

However, the rule is necessary to prove ¬(φ ≡ χ) ≡ ((φ ≡ χ) ≡ ⊥).

D1.... ¬(φ ≡ χ), (φ ≡ χ) ≡ ⊥ ⇒ (φ ≡ χ) ≡ ⊥
¬(φ ≡ χ)⇒ ((φ ≡ χ) ≡ ⊥) L5

≡
D2....

⇒ ¬(φ ≡ χ)↔ ((φ ≡ χ) ≡ ⊥) R↔

⇒ ¬(φ ≡ χ) ≡ ((φ ≡ χ) ≡ ⊥) RT
≡

where D1 is the following derivation:

φ ≡ χ,>, (φ ≡ χ) ≡ > ⇒ φ ≡ χ, (φ ≡ χ) ≡ ⊥ S1
(φ ≡ χ)↔ >, (φ ≡ χ) ≡ > ⇒ (φ ≡ χ) ≡ ⊥,φ ≡ χ

L↔

(φ ≡ χ) ≡ > ⇒ (φ ≡ χ) ≡ ⊥,φ ≡ χ
L3
≡

¬(φ ≡ χ), (φ ≡ χ) ≡ > ⇒ (φ ≡ χ) ≡ ⊥ L¬

where S1 stands for sequent (φ ≡ χ) ≡ > ⇒ >, (φ ≡ χ) ≡ >,φ ≡ χ and D2 is
the following derivation:

φ ≡ χ,φ ≡ χ,⊥, (φ ≡ χ) ≡ ⊥ ⇒ φ ≡ χ, (φ ≡ χ) ≡ ⊥ ⇒ φ ≡ χ,⊥
(φ ≡ χ)↔ ⊥,φ ≡ χ, (φ ≡ χ) ≡ ⊥ ⇒ L↔

(φ ≡ χ) ≡ ⊥,φ ≡ χ⇒ L3
≡

(φ ≡ χ) ≡ ⊥ ⇒ ¬(φ ≡ χ)
R¬

We follow with definitions analogous to those for G3WT.

Definition 105 (Satisfiability of a sequent). Let M = 〈A,F 〉 be an arbitrary
but fixed Henle model and let h ∈ Hom(L,A). Sequent Γ ⇒ ∆ is satisfied in
M under h provided h(φ1)∩̇...∩̇h(φn) ≤ h(χ1)∪̇...∪̇h(χk), where Γ = φ1, ...,φn

and ∆ = χ1, ...,χk.

Definition 106 (Truth of a sequent). Let M = 〈A,F 〉 be an arbitrary Henle
model. Sequent Γ ⇒ ∆ is true in M provided that for each h ∈ Hom(L,A),
sequent Γ⇒ ∆ is satisfied inM under h.

Definition 107 (Validity of a sequent). Sequent Γ⇒ ∆ is valid in WH, if it is
true in each Henle model.

6.3.1 Completeness of G3WH

Theorem 36 (Interpretation of HWH within G3WH). If formula φ is provable
in deductive system for HWH, then sequent ⇒ φ is provable in G3WH.
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Proof. Modus ponens can be obtained as in previous systems, through cut.
Naturally, axiom (≡15) can be easily proved by:

(φ ≡ χ) ≡ > ⇒ (φ ≡ χ) ≡ >, (φ ≡ χ) ≡ ⊥ S1
⇒ (φ ≡ χ) ≡ >, (φ ≡ χ) ≡ ⊥ L5

≡

⇒ ((φ ≡ χ) ≡ >) ∨ ((φ ≡ χ) ≡ ⊥) R∨

where S1 is sequent (φ ≡ χ) ≡ ⊥ ⇒ (φ ≡ χ) ≡ >, (φ ≡ χ) ≡ ⊥. Similarly
(≡∗15) can be proven in similar manner (with �φ =df φ ≡ >).

The rest of the reasoning is analogous to those in previous sections.

As a result, G3WH is complete.

Theorem 37 (Completeness). If a sequent ⇒ φ is valid in WH, it is provable
in G3WH.

Proof. Analogous to the one of Theorem 12 presented in Chapter 3.

6.3.2 Soundness of G3WH

In the case of correctness and invertibility of rules of G3WH we refer back to the
Definitions 62 and 63.

Lemma 33. Rule L5
≡ is correct in WH.

Proof. Suppose it is not the case, that is, we have the following conditions:

(1) Γ, (φ ≡ χ) ≡ > ⇒ ∆ is satisfied inM under h and

(2) Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆ is satisfied inM under h.

From (1) and (2) we have, respectively, ⋂̇
h(Γ) ∩̇ h((φ ≡ χ) ≡ >) ≤ ⋃̇

h(∆)
and ⋂̇

h(Γ) ∩̇ h((φ ≡ χ) ≡ ⊥) ≤ ⋃̇
h(∆). Then, through the properties of ≤,

we have ⋂̇
h(Γ) ∩̇ (h((φ ≡ χ) ≡ >) ∪̇ h((φ ≡ χ) ≡ ⊥)) ≤ ⋃̇

h(∆). Since valid
equations in Henle algebras are assigned with 1, expression ⋂̇

h(Γ) ∩̇ (h((φ ≡
χ) ≡ >) ∪̇ h((φ ≡ χ) ≡ ⊥)) ≤ ⋃̇

h(∆) being satisfied in M under h means
that so is expression ⋂̇

h(Γ) ≤ ⋃̇
h(∆).

Lemma 34. Rule L5
≡ is invertible in WH.

Proof. Suppose it is not the case, that is, we have the following conditions for
M and h:

1. Γ, (φ ≡ χ) ≡ > ⇒ ∆ is not satisfied inM under h or

2. Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆ is not satisfied inM under h and

3. Γ⇒ ∆ is satisfied inM under h.

We notice that 1 and 2 are contradictory with regards to 3 as an addition of
formulae (φ ≡ χ) ≡ > and (φ ≡ χ) ≡ ⊥ ⇒ ∆ to the premiss satisfied in M
under h will not alter the said property.
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Theorem 38 (Soundness). If a sequent Γ⇒ ∆ is provable in G3WH, Γ⇒ ∆ is
valid in WH.

Proof. The proof is analogous to one of Theorem 13 in Chapter 3.

As a result from Theorems 37 and 38 we have

Theorem 39 (Adequacy). Sequent ⇒ φ is provable in G3WH iff ⇒ φ is valid
in WH.
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Chapter 7

The case of cut

In this chapter we shall examine certain issues regarding cut elimination
procedure across sequent calculi for all three axiomatic extensions of SCI. The
reason for treating this as a separate matter is the fact that the outcome of the
following investigations is not definitive. Our goal is not to present a formal
and indisputable reason for the impossibility of constructing a cut elimination
proof. Our goal is rather to discuss certain limitations of the proposed sequent
formalizations and propose ways in which we could potentially overcome them.
We also treat this topic as a separate chapter in this work, since the problems
we will encounter are consecutively inherited, which, of course, comes from
our approach of building three sequent calculi as extensions of ones for weaker
non-Fregean logics. Ergo, some of the properties (or lack of them) from G3WB
will partly appear in G3WT and those from G3WT will be visible in G3WH.
We also purposely focus on the strategy of proving cut elimination that was
developed by Dragalin. Of course, we may consider other strategies, but the
mentioned method has been used for the sequent base `G3SCI. We shall show
how changes we introduce to the system lead to the failure of this particular
method and we point to the sources of such an outcome.

7.1 Cut elimination for G3SCI

We shall begin with a full proof of cut elimination for G3SCI, which differs
from the shortened proof presented in [4] due to several changes to the set of
classical and identity-dedicated rules. We shall begin with the weakening and
contraction, even though these rules are not a part of the examined sequent
system. The reason for this strategy relates to the cut elimination procedure,
which requires the presence of these structural rules. Therefore we start with
proof of the admissibility of weakening and contraction.

Definition 108 (Weight of a formula [36]). The weight w(φ) of a formula φ of
language L is defined inductively by

1. w(pi) = 1,

2. w(¬φ) = w(φ) + 1,

3. w(φ⊗ χ) = w(φ) +w(χ) + 1, where ⊗ ∈ {∧,∨,→,↔,≡}.

By `n Γ⇒ ∆ we mean there exists a derivation of Γ⇒ ∆ of height at most
n, where height of a derivation is defined as follows.
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Definition 109 (Height of derivation). A sequent of the form: φ, Γ⇒ ∆,φ has
a derivation of height 0. If a sequent φ has a derivation D of height n, then the
following derivation:

D....
φ

ψ
R

has height n + 1, where R is a one-premiss rule. If sequents ψ and φ
have derivations D′, D′′ of heights n and m respectively, then the following
derivation:

D′....
φ′

D′′....
φ′′

ψ R′

has height max(m,n) + 1, where R′ is a two-premiss rule.

Theorem 40 (Admissibility of Lwk and Rwk). If `n Γ⇒ ∆, then `n φ, Γ⇒ ∆
and `n Γ⇒ ∆,φ.

Proof. The proof is based on the fact that any derivation of Γ ⇒ ∆ can be
transformed into derivation of φ, Γ ⇒ ∆ (or Γ ⇒ φ, ∆) through addition of
formula φ to the antecedent (succedent) of each sequent of the derivation.

Strictly speaking, calculus G3SCI does not have the property of
height-preserving invertibility of rules. Example:

¬p⇒ ¬p

has a proof in G3SCI of height 0, since it is an axiom of G3SCI. But sequent
⇒ p,¬p does not have a proof in G3SCI of height 0. Hence the existence of a
proof of a conclusion of some R (a rule of G3SCI) which is of height n does not
guarantee the existence of a proof of the premise of R that has height at most n.
We therefore introduce system aG3SCI to overcome this particular issue.1 Let
aG3SCI stand for sequent calculus that differs from G3SCI only in one respect:
φ, Γ⇒ ∆,φ is an axiom of aG3SCI iff φ is a propositional variable or an equation.

Lemma 35. If a sequent has a proof in G3SCI, then it also has a proof in aG3SCI.

Proof. It suffices to show that every sequent of the form φ, Γ ⇒ ∆,φ, where φ
is a complex formula, but not an equation, is provable in aG3SCI. The proof is
by simple induction on weight of φ.

Base: for w(φ) = 1 the claim is trivially satisfied, since w(φ) > 1 by
assumption.

1This solution comes from Dorota Leszczyńska-Jasion in [33].
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Inductive part: let w(φ) = n+ 1. The reasoning depends on the shape of
φ. E.g. if it is φ = φ1 → φ2, then consider:

Γ,φ1 ⇒ ∆,φ2,φ1 φ2, Γ,φ1 ⇒ ∆,φ2
φ1 → φ2, Γ,φ1 ⇒ ∆,φ2

L→

φ1 → φ2, Γ⇒ ∆,φ1 → φ2
R→

Since w(φ1),w(φ2) ≤ n, by inductive hypothesis the top sequents of this
derivations have proofs in aG3SCI. Hence there is also a proof of φ1 → φ2, Γ⇒
∆,φ1 → φ2 in aG3SCI.

What is more, every proof of a sequent in aG3SCI is also a proof of the same
sequent in G3SCI. Every rule of aG3SCI is also a rule of G3SCI; the same goes for
every axiom of aG3SCI being one of G3SCI. Contraction is admissible in aG3SCI
(which will be showed later on in the section). Later it will be shown that
admissibility of contraction G3SCI boils down to admissibility of contraction in
aG3SCI

Below we will consider height-preserving invertibility of rules, which will be
of use in the subsequent proofs for admissibility of contraction in aG3SCI. The
proof is standard and can be found in [25].

Lemma 36. For every rule Rx of aG3SCI, if the conclusion of the Rx has a proof
of height n, its premisses have proofs of height ≤ n.

Proof. The proof for each rule is inductive. Below we will focus on rules L¬,
L∧ and L2

≡ the other cases are analogous.

L¬ We begin with the base, where the height of the derivation of the
conclusion ¬φ, Γ ⇒ ∆ equals 0, therefore the sequent is an axiom. This
means that some formula ψ ∈ Γ ∩ ∆. We know that if ψ ∈ Γ ∩ ∆, then
sequent Γ ⇒ φ, ∆ is also an axiom of aG3SCI. Induction hypothesis says
that the lemma can be applied for any proof of height n of the conclusion
of the rule. We shall show it works for the case in which the height of
the derivation of the conclusion equals n+ 1. Let us consider the proof of
height n+ 1 with the root labelled with sequent ¬φ, Γ ⇒ ∆. Two cases
are considered:

(a) ¬φ is principal;
(b) ¬φ is not principal.

In the case of (a), if the proof of ¬φ, Γ ⇒ ∆ is of height n+ 1, then we
know that the proof of Γ⇒ ∆,φ is of height n. In (b) ¬φ is a side formula
and the above sequent ¬φ, Γ⇒ ∆ results by an application of some other
rule Rx. If Rx is a one-premiss rule we have the following:

¬φ, Γ′ ⇒ ∆′

¬φ, Γ⇒ ∆ Rx

As ¬φ, Γ′ ⇒ ∆′ has a proof of the height n, the induction hypothesis can
be used to conclude that sequent Γ′ ⇒ φ, ∆′ has a proof of height at most
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n as well. Through the use of rule Rx we can conclude Γ⇒ φ, ∆ at height
at most n+ 1. The reasoning is similar if Rx is a two-premise rule.

L∧ We begin with the base, where the height of the derivation of the
conclusion φ∧χ, Γ⇒ ∆ equals 0, therefore the sequent is an axiom. This
means that some formula ψ ∈ Γ ∩ ∆. We know that if ψ ∈ Γ ∩ ∆, then
sequent φ,χ, Γ⇒ ∆ is also an axiom of aG3SCI. Induction hypothesis says
that the lemma can be applied for any proof of height n of the conclusion
of the rule. We shall show it works for the case in which the height of
the derivation of the conclusion equals n+ 1. Let us consider the proof of
height n+ 1 with the root labelled with sequent φ∧χ, Γ⇒ ∆. Two cases
are considered:

(a) φ∧ χ is principal;
(b) φ∧ χ is not principal.

In the case of (a) if proof of φ∧χ, Γ⇒ ∆ is of height n+ 1, then we know
that proof of φ,χ, Γ⇒ ∆ is of height n. In (b) φ∧χ is a side formula and
the above sequent φ ∧ χ, Γ ⇒ ∆ results by an application of some other
rule. In case of two-premiss rule we have the following:

φ∧ χ, Γ′ ⇒ ∆′ φ∧ χ, Γ′′ ⇒ ∆′′

φ∧ χ, Γ⇒ ∆ Rx

As φ∧χ, Γ′ ⇒ ∆′ and φ∧χ, Γ′′ have proofs of the height n, the induction
hypothesis can be used to both of these sequents to conclude that sequents
φ,χ, Γ′ ⇒ ∆′ and φ,χ, Γ′′ ⇒ ∆′′ have proofs of height at most n as well.
Through the use of rule Rx we can conclude φ,χ, Γ⇒ ∆ at height at most
n+ 1.

L2
≡ We begin with the base, where the height of the derivation of the

conclusion φ ≡ χ, Γ ⇒ ∆ equals 0, therefore the sequent is an axiom.
This means that some formula ψ ∈ Γ ∩ ∆ or φ ≡ χ ∈ ∆. We know that
if ψ ∈ Γ ∩ ∆, then sequent ¬φ ≡ ¬χ,φ ≡ χ, Γ ⇒ ∆ is also an axiom of
aG3SCI, the same goes for the situation in which φ ≡ χ ∈ ∆. Induction
hypothesis says that the lemma can be applied for any proof of height
n of the conclusion of the rule. We shall show it works for the case in
which the height of the derivation of the conclusion equals n+ 1. Let
us consider the proof of height n+ 1 with the root labelled with sequent
φ ≡ χ, Γ⇒ ∆. Two cases are considered:

(a) φ ≡ χ is principal;
(b) φ ≡ χ is not principal.

In the case of (a) if proof of φ ≡ χ, Γ⇒ ∆ is of height n+ 1, then we know
that proof of ¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆ is of height n. In (b) φ ≡ χ is a side
formula and the above sequent φ ≡ χ, Γ⇒ ∆ results by an application of
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some other rule. In the case of one-premiss rule we have the following:

φ ≡ χ, Γ′ ⇒ ∆′

φ ≡ χ, Γ⇒ ∆ Rx

As φ ≡ χ, Γ′ ⇒ ∆′ has a proof of the height n, the induction hypothesis
can be used to conclude that sequent ¬φ ≡ ¬χ,φ ≡ χ, Γ′ ⇒ ∆′ has a
proof of height at most n as well. Then, through the use of rule Rx we
can conclude ¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆ at height at most n+ 1.

The remaining cases are analogous.

In order to proceed with the proof of contraction admissibility, the following
corollary needs to be addressed:

Corollary 4. Let D be a derivation of a sequent S in aG3SCI such that the rules
Lctr and L4

≡ are applied in the following manner

φ ≡ ψ,φ ≡ ψ, (φ⊗ φ) ≡ (ψ⊗ ψ), Γ⇒ ∆
φ ≡ ψ,φ ≡ ψ, Γ⇒ ∆ L4

≡

φ ≡ ψ, Γ⇒ ∆ Lctr

Then D can be transformed in the derivation of the same sequent S in aG3SCI
such that no Lctr as shown above has been applied.

Proof. The mentioned fragment of the derivation can be replaced with the
following derivation, where no contraction rule has been utilized:

χ,φ ≡ ψ,φ ≡ ψ,φ ≡ ψ, Γ∗ ⇒ ∆
φ ≡ ψ,φ ≡ ψ,φ ≡ ψ, Γ∗ ⇒ ∆ L4

≡ φ ≡ ψ, Γ∗ ⇒ ∆,φ ≡ ψ,φ ≡ ψ

(φ ≡ ψ)↔ (φ ≡ ψ), δ,φ ≡ ψ, Γ⇒ ∆
L↔

δ,φ ≡ ψ, Γ⇒ ∆ L3
≡

φ ≡ ψ, Γ⇒ ∆ L1
≡

where χ = (φ⊗ φ) ≡ (ψ ⊗ ψ), δ = (φ ≡ ψ) ≡ (φ ≡ ψ), Γ∗ = Γ ∪ {δ}. In the
obtained derivation sequent χ,φ ≡ ψ,φ ≡ ψ,φ ≡ ψ, Γ∗ ⇒ ∆ contains two more
occurrences of formulas, than the leaf of the original derivation: φ ≡ ψ and δ.
By Theorem 40, if the leaf of the original derivation has a proof in G3SCI, then
the left leaf of the replacing derivation has a proof as well.

It is worth underlining that when we apply Corollary 4, we do not maintain
the same height of the resulting derivation, moreover, the use of weakening
is necessary, but the height of the premiss of the contraction is no longer a
subject of consideration since the use of contraction is no longer present in the
derivation.

Any application of contraction rule which does not fall under the case
described in Corollary 4 will be called a standard contraction application.
A non-standard application of contraction is one that is not standard.
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Theorem 41 (Admissibility of standard applications of contraction in aG3SCI).

1. If `n Γ⇒ ∆,φ,φ in aG3SCI, then `n Γ⇒ ∆,φ in aG3SCI.

2. If a sequent φ,φ, Γ ⇒ ∆ has a proof D in aG3SCI of height at most
n and D does not end with a non-standard application of contraction,
then φ, Γ⇒ ∆ has a proof in aG3SCI of height at most n.

Proof. The proof is by induction on the height of the derivation of the premiss
of contraction. We begin with the height of the premiss of the contraction
equal to 0; this situation is described by the case in which the premiss of the
contraction is an axiom. Then we consider the height of the premiss of the
contraction equal to n+ 1, within which two cases are considered: contraction
formula φ not being a principal formula and contraction formula φ being the
principal formula. To simplify the reasoning we will refer to these cases in the
following way:

1a The premiss of the contraction is an axiom;

2a Contraction formula φ is not a principal formula;

2b Contraction formula φ is a principal formula.

Below we consider an application of Lctr.
We begin with case 1a. If φ,φ, Γ⇒ ∆ is an axiom, then we know that so is

φ, Γ⇒ ∆.
We now move to induction step.
We move to case 2a. Contraction formula φ is not principal:

(L¬) We begin with the original derivation, where the height of the derivation
of the premiss of Lctr equals h+ 1, where +1 refers to the application of
L¬ and h is the height of the derivation of φ,φ, Γ⇒ ∆,ψ:

φ,φ, Γ⇒ ∆,ψ
φ,φ,¬ψ ⇒ ∆ L¬

φ,¬ψ, Γ⇒ ∆ Lctr

which we transform so Lctr is applied at the lesser height of the derivation,
that is h:

φ,φ, Γ⇒ ∆,ψ
φ, Γ⇒ ∆,ψ Lctr

φ,¬ψ, Γ⇒ ∆ L¬

(L∧) In the original derivation the height of the derivation of the premiss of
Lctr equals h+ 1

φ,φ,ψ,χ, Γ⇒ ∆
φ,φ,ψ ∧ χ, Γ⇒ ∆ L∧

φ,ψ ∧ χ, Γ⇒ ∆ Lctr
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which is modified so the height of the derivation of the premiss of Lctr

equals now h.

φ,φ,ψ,χ, Γ⇒ ∆
φ,ψ,χ, Γ⇒ ∆ Lctr

φ,ψ ∧ χ, Γ⇒ ∆ L∧

(L∨) In the original derivation the height of the derivation of the premiss of
Lctr equals max(hl,hr) + 1

φ,φ,ψ, Γ⇒ ∆ φ,φ,χ, Γ⇒ ∆
φ,φ,ψ ∨ χ, Γ⇒ ∆ L∨

φ,ψ ∨ χ, Γ⇒ ∆ Lctr

which is modified so the height of the derivation of the premisses of
applications of Lctr equals now, respectively, hl and hr.

φ,φ,ψ, Γ⇒ ∆
φ,ψ, Γ⇒ ∆ Lctr

φ,φ,χ, Γ⇒ ∆
φ,χ, Γ⇒ ∆ Lctr

φ,ψ ∨ χ, Γ⇒ ∆ L∨

The remaining cases for classical connectives and identity-dedicated rules
are analogous.

We move to case 2b. Again, we consider all left-sided rules (transformations for
right-sided rules are analogous).

(L¬) We begin with the original derivation:

¬φ, Γ⇒ ∆,φ
¬φ,¬φ, Γ⇒ ∆ L¬

¬φ, Γ⇒ ∆ Lctr

which we modify in the following manner:

Γ⇒ ∆,φ,φ
Γ⇒ ∆,φ Rctr

¬φ, Γ⇒ ∆ L¬

The obtained derivation moves contraction application at the lesser height
and through height-preserving invertibility of rule L¬ we know that
sequent Γ⇒ ∆,φ,φ can be proved by derivation of the height at most h.

(L∧) We begin with the original derivation, where the height of the derivation
of Lctr premiss is h+ 1:

ψ,χ,ψ ∧ χ, Γ⇒ ∆
ψ ∧ χ,ψ ∧ χ, Γ⇒ ∆ L∧

ψ ∧ χ, Γ⇒ ∆ Lctr
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and modify it in the following way:

ψ,ψ,χ,χ, Γ⇒ ∆
ψ,χ, Γ⇒ ∆ Lctr × 2

ψ ∧ χ, Γ⇒ ∆ L∧

By Lemma 36, the top sequent of this derivation is at height at most
h. The double application of Lctr amounts to double application of the
induction hypothesis. By application of L∧ we obtain the final sequent at
height at most h+ 1.

(L∨) We begin with the original derivation, where the height of the contraction
premiss is h+ 1:

φ,φ∨ χ, Γ⇒ ∆ χ,φ∨ χ, Γ⇒ ∆
φ∨ χ,φ∨ χ, Γ⇒ ∆ L∨

φ∨ χ, Γ⇒ ∆ Lctr

and modify it in the following way:

φ,φ, Γ⇒ ∆
φ, Γ⇒ ∆ Lctr

χ,χ, Γ⇒ ∆
χ, Γ⇒ ∆ Lctr

φ∨ χ, Γ⇒ ∆ L∨

which results in the derivation where at least one of the premisses of L∨ has
a derivation of height at most h. The derivation of the second premiss can
be even shorter. Here we again refer to the height-preserving invertibility
of rule L∨ (shown in Lemma 36) as the leaves in two derivations are
labelled with different sequents.

The remaining cases for classical connectives are analogous. We omit the case
for rule L1

≡ since there is no principal formula in its conclusion. Cases for
identity-dedicated rules L2

≡, L3
≡, L4

≡ are trivial since the principal formula is
kept in the premiss. Below we consider transformations for L2

≡ and L3
≡, the

transformation for L4
≡ is analogous.

(L2
≡) We begin with the height of the derivation of the premiss of Lctr being

equal to h+ 1:

¬φ ≡ ¬χ,φ ≡ χ,φ ≡ χ, Γ⇒ ∆
φ ≡ χ,φ ≡ χ, Γ⇒ ∆ L2

≡

φ ≡ χ, Γ⇒ ∆ Lctr

and modify it in the following way, obtaining lesser height of the premiss
of the contraction – h:

¬φ ≡ ¬χ,φ ≡ χ,φ ≡ χ, Γ⇒ ∆
¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆ Lctr

φ ≡ χ
L2
≡
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(L3
≡) We begin with the original derivation with the height of the derivation of

the premiss of Lctr being equal to h+ 1:

φ↔ χ,φ ≡ χ,φ ≡ χ, Γ⇒ ∆
φ ≡ χ,φ ≡ χ, Γ⇒ ∆ L3

≡

φ ≡ χ, Γ⇒ ∆ Lctr

and modify it in the following way, obtaining lesser height of the derivation
of the premiss of Lctr – h:

φ↔ χ,φ ≡ χ,φ ≡ χ, Γ⇒ ∆
φ↔ χ,φ ≡ χ, Γ⇒ ∆ Lctr

φ ≡ χ
L3
≡

Theorem 42 (Admissibility of Lctr and Rctr in G3SCI).

1. If `n Γ⇒ ∆,φ,φ in G3SCI, then `n Γ⇒ ∆,φ in G3SCI.

2. If `n φ,φ, Γ⇒ ∆ in G3SCI, then `n φ, Γ⇒ ∆ in G3SCI.

Proof. Suppose there is a proof of sequent φ,φ, Γ⇒ ∆ in G3SCI. By Lemma 35,
sequent φ,φ, Γ⇒ ∆ has also a proof in aG3SCI. Through Theorem 41 φ, Γ⇒ ∆
has a proof in aG3SCI, provided it falls under the assumption of Theorem 41.
However, if sequent φ,φ, Γ ⇒ ∆ does not fall under conditions from Theorem
41, i.e. it is obtained through non-standard contraction application, then per
Corollary 4 sequent φ, Γ ⇒ ∆ has a proof in aG3SCI in which contraction is
not used. This particular proof is a proof of sequent φ, Γ ⇒ ∆ in G3SCI. The
reasoning for point 1 is analogous.

Definition 110 (Cut-height). By height of an application of cut in a derivation
we shall understand the sum of heights of derivations of its two premisses.

Theorem 43 (Admissibility of cut). The cut rule of the form:

Γ⇒ ∆,ψ ψ, Θ⇒ Π
Γ, Θ⇒ ∆, Π

is admissible in G3SCI.

Proof. The proof is analogous to the one presented in [4], we just have to
consider three connectives in language LSCI that did not appear in [4] and the
rules defining them.

We use the following structure of the proof, which relies on the induction on
the height of the cut. We begin with the cut height being equal to 0; under this
scenario we consider the possibility of each cut premiss being an axiom. Then
we move to induction step, where we consider cut height equal to n+ 1. Under
this condition we consider the presence of different rules applied over cut. This
strategy has been proposed by Dragalin [9], and then simplified by Negri and
von Plato in [36], where the authors consider the following cases:
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(1) (cut) application with its left premiss being of an axiom form.

(2) (cut) application with its right premiss being of an axiom form.

(3) (cut) application with neither of the premisses of an axiom form.

(3.1) Cut-formula not principal in the left premiss.
(3.2) Cut-formula principal in the left premiss only.
(3.3) Cut-formula principal in both premisses.

In the proof we show that moving the cut upwards to the leaves will result
in its overall elimination from the whole derivation.

Let us start with (1). We can consider the following scenarios:

Γ⇒ ∆,ψ ψ, Π⇒ Θ
Γ, Π⇒ Θ, ∆

(a) cut formula ψ ∈ Γ: we obtain Γ, Π ⇒ Θ, ∆ through weakening of the
second premiss;

(b) Γ and ∆ share the same formula δ: Γ, Π⇒ Θ, ∆ is then also an axiom.

In the case of (2) we have the following scenarios:

(c) cut formula ψ ∈ Θ: we obtain Γ, Π ⇒ Θ, ∆ through weakening of the
first premiss;

(d) Θ and Π share the same formula δ: Γ, Π⇒ Θ, ∆ is an axiom;

We now move to (3.1). We consider the following cases in which cut-formula
is not principal in the left premiss:

(L¬) We begin with the original derivation:

Γ⇒ φ, Θ,ψ
¬φ, Γ⇒ Θ,ψ L¬ ψ, Π⇒ ∆

¬φ, Γ, Π⇒ Θ, ∆ cut

Where the height of the cut equals the sum of the heights of its two
premisses. In the derivation above (and in the subsequent ones) the height
of the left leaf will be denoted by hl and the height of the second, right
leaf will be denoted by hr. In this case the height of the (cut) application
is equal to hl + hr + 1. After the transformation in which the cut is moved
upwards, the value of the cut-height is equal to hl + hr, as we moved the
application of the cut upwards, therefore the objective has been met.

Γ⇒ φ,ψ, Θ ψ, Π⇒ ∆
Γ, Π⇒ φ, Θ, ∆ cut

¬φ, Γ, Π⇒ Θ, ∆ L¬
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(L∧) In this case the height of the (cut) application is equal to hl + hr + 1.
The original derivation is the following:

φ,χ, Γ⇒ ψ, Θ
φ∧ χ, Γ⇒ ψ, Θ L∧ ψ, Π⇒ ∆

φ∧ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, the value of
the cut-height is equal to hl + hr, therefore the objective has been met.

φ,χ, Γ⇒ ψ, Θ ψ, Π⇒ ∆
φ,χ, Γ, Π⇒ Θ, ∆ cut

φ∧ χ, Γ, Π⇒ Θ, ∆ L∧

(L∨) Below by h1
l and h2

l we mean the heights of, respectively, the leftmost leaf
and the right leaf of the left branch in the derivation. Consequently, in this
case the height of the (cut) application is equal to max(h1

l ,h2
l ) + hr + 1.

The original derivation is the following:

φ, Γ⇒ ψ, ∆ χ, Γ⇒ ψ, ∆
φ∨ χ, Γ⇒ ψ, ∆ L∨ ψ, Π⇒ Θ

φ∨ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, we obtain
two applications of cut. The value of the cut-height on the left branch
is equal to h1

l + hr, whereas the cut-height on the right branch equals
h2

l + hr, therefore the objective has been met.

φ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
φ, Γ, Π⇒ Θ, ∆ cut

χ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
χ, Γ, Π⇒ Θ, ∆ cut

φ∨ χ, Γ, Π⇒ Θ, ∆ L∨

(L→) In this case the height of the (cut) application is equal to max(h1
l ,h2

l ) +
hr + 1. The original derivation is the following:

Γ⇒ φ,ψ, Θ χ, Γ⇒ ψ, Θ
φ→ χ, Γ⇒ ψ, Θ L→ ψ, Π⇒ ∆

φ→ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, we, similarly
as for L∨, obtain two applications of cut. The value of the cut-height on
the left branch is equal to h1

l + hr, whereas the cut-height on the right
branch equals h2

l + hr, therefore the objective has been met.
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Γ⇒ φ, Θ,ψ ψ, Π⇒ ∆
Γ, Π⇒ φ, Θ, ∆ cut

χ, Γ⇒ Θ,ψ ψ, Π⇒ ∆
χ, Γ, Π⇒ Θ, ∆ cut

φ→ χ, Γ, Π⇒ Θ, ∆ L→

(L↔) In this case the height of the (cut) application is equal to max(h1
l ,h2

l ) +
hr + 1. The original derivation is the following:

φ,χ, Γ⇒ ∆,ψ Γ⇒ φ,χ,ψ, ∆
φ↔ χ, Γ⇒ ∆,ψ L↔ ψ, Π⇒ ∆

φ↔ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, we again
obtain two applications of cut. The value of the cut-height on the left
branch is equal to h1

l + hr, whereas the cut-height of the right branch
equals h2

l + hr, therefore the objective has been met.

φ,χ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
φ,χ, Γ, Π⇒ Θ, ∆ cut

Γ⇒ ∆,φ,χ,ψ ψ, Π⇒ Θ
Γ, Π⇒ Θ, ∆,φ,χ cut

φ↔ χ, Γ, Π⇒ Θ, ∆ L↔

(L1
≡) In this case the height of the (cut) application is equal to hl + hr + 1.

The original derivation is the following:

φ ≡ φ, Γ⇒ ∆,ψ
Γ⇒ ∆,ψ L1

≡ ψ, Π⇒ Θ
Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, the value of
the cut-height is equal to hl + hr, therefore the objective has been met.

φ ≡ φ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
φ ≡ φ, Γ, Π⇒ Θ, ∆ cut

Γ, Π⇒ Θ, ∆ L1
≡

(L2
≡) In this case the height of the (cut) application is equal to hl + hr + 1.

The original derivation is the following:

φ ≡ χ,¬φ ≡ ¬χ, Γ⇒ ∆,ψ
φ ≡ χ, Γ⇒ ∆,ψ L2

≡ ψ, Π⇒ Θ
φ ≡ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, the value of
the cut-height is equal to hl + hr, therefore the objective has been met.
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¬φ ≡ ¬χ,φ ≡ χ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
¬φ ≡ ¬χ,φ ≡ χ, Γ, Π⇒ Θ, ∆ cut

φ ≡ χ, Γ, Π⇒ Θ, ∆ L2
≡

(L3
≡) In this case the height of the (cut) application is equal to hl + hr + 1.

The original derivation is the following:

φ↔ χ,φ ≡ χ, Γ⇒ ∆,ψ
φ ≡ χ, Γ⇒ ∆,ψ L3

≡ ψ, Π⇒ Θ
φ ≡ χ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, the value of
the cut-height is equal to hl + hr, therefore the objective has been met.

φ↔ χ,φ ≡ χ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
φ↔ χ,φ ≡ χ, Γ, Π⇒ Θ, ∆ cut

φ ≡ χ, Γ, Π⇒ Θ, ∆ L3
≡

(L4
≡) In this case the height of the (cut) application is equal to hl + hr + 1.

The original derivation is the following:

(φ⊗ δ) ≡ (χ⊗ γ),φ ≡ χ, δ ≡ γ, Γ⇒ ∆,ψ
φ ≡ χ, δ ≡ γ, Γ⇒ ∆,ψ L4

≡ ψ, Π⇒ Θ
φ ≡ χ, δ ≡ γ, Γ, Π⇒ Θ, ∆ cut

After the transformation in which the cut is moved upwards, the value of
the cut-height is equal to hl + hr, therefore the objective has been met.

(φ⊗ δ) ≡ (χ⊗ γ),φ ≡ χ, δ ≡ γ, Γ⇒ ∆,ψ ψ, Π⇒ Θ
(φ⊗ δ) ≡ (χ⊗ γ),φ ≡ χ, δ ≡ γ, Γ, Π⇒ Θ, ∆

cut

φ ≡ χ, δ ≡ γ, Γ, Π⇒ Θ, ∆ L4
≡

The transformations in Point (3.2) are analogous – the right premise with
non-principal cut formula is considered.

The final step is to consider the last subcase, i.e., (3.3), in which the
cut-formula is a principal formula in both left and right premiss of the (cut).

We consider five logical connectives:

(1) ψ = ¬φ

(2) ψ = φ∧ χ

(3) ψ = φ∨ χ

(4) ψ = φ→ χ
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(5) ψ = φ↔ χ

We do not consider ψ of the form φ ≡ χ as we do not have any right-sided
identity rules in the rule set for G3SCI.

In these cases we refer to the induction hypothesis concerning the weight of
the cut-formula.
(1) The following derivation

φ, Γ⇒ ∆
Γ⇒ ∆,¬φ R¬

Π⇒ Θ,φ
¬φ, Π⇒ Θ L¬

Γ, Π⇒ Θ, ∆ cut

is replaced with the following one, where the cut-height is lesser than in the
original derivation.

Π⇒ Θ,φ φ, Γ⇒ ∆
Γ, Π⇒ Θ, ∆ cut

(2) The following derivation

Γ⇒ ∆,φ Γ⇒ ∆,χ
Γ⇒ ∆,φ∧ χ R∧

φ,χ, Π⇒ Θ
φ∧ χ, Π⇒ Θ L∧

Γ, Π⇒ Θ, ∆ cut

is replaced with the following one, where the upper cut-height is lesser than in
the above derivation. For the lower cut application we refer to the induction
hypothesis on the weight of the formula. Moreover, the contraction is used
(since we know that contraction is admissible in G3SCI).

Γ⇒ ∆,φ
Γ⇒ ∆,χ χ,φ, Π⇒ Θ

φ, Γ, Π⇒ Θ, ∆ cut

Γ, Γ, Π⇒ Θ, ∆, ∆ cut

Γ, Π⇒ Θ, ∆ ctr

(3) The following derivation

Γ⇒ φ,χ, Θ
Γ⇒ φ∨ χ, Θ R∨

φ, Π⇒ ∆ χ, Π⇒ ∆
φ∨ χ, Π⇒ ∆ L∨

Γ, Π⇒ Θ, ∆ cut

is replaced with one where the upper cut application is of a lesser height. For
the lower cut application we refer to the induction hypothesis on the weight of
the formula.

Γ⇒,φ,χ, Θ χ, Π⇒ ∆
Γ, Π⇒ φ, Θ, ∆ cut

φ, Π⇒ ∆
Γ, Π, Π⇒ Θ, ∆, ∆ cut

Γ, Π⇒ Θ, ∆
Lctr,Rctr
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(4) The following derivation

φ, Γ⇒ χ, ∆
Γ⇒ φ→ χ, ∆ R→

Π⇒ φ, Θ χ, Π⇒ Θ
φ→ χ, Π⇒ Θ L→

Γ, Π⇒ Θ, ∆ cut

we replace with the following one, where the height of the upper cut is lesser
than in the original derivation. For the lower derivation we refer to the induction
hypothesis on the weight of the formula.

Π⇒ Θ,φ
φ, Γ⇒ ∆,χ χ, Π⇒ Θ

φ, Γ, Π⇒ Θ, ∆ cut

Γ, Π, Π⇒ Θ, Θ, ∆ cut

Γ, Π⇒ Θ, ∆ ctr

(5) We introduce the original derivation

φ, Γ⇒ ∆,χ χ, Γ⇒ ∆,φ
Γ⇒ ∆,φ↔ χ

R↔
φ,χ, Π,⇒ Θ Π⇒ Θ,φ,χ

φ↔ χ, Π⇒ Θ L↔

Γ, Π⇒ Θ, ∆ cut

and we transform it in the following way, thus obtaining derivation, where the
two upper cut-heights are lesser than in the above derivation. For the lower cut
application we refer to the induction hypothesis on the formula weight.

Π⇒ Θ,φ,χ χ, Γ⇒ ∆,φ
Γ, Π⇒ Θ, ∆,φ,φ cut

Γ, Π⇒ Θ, ∆,φ Rctr

φ, Γ⇒ ∆,χ χ,φ, Π⇒ Θ
φ,φ, Γ, Π⇒ Θ, ∆ cut

φ, Γ, Π⇒ Θ, ∆ Lctr

Γ, Γ, Π, Π⇒ Θ, Θ, ∆, ∆ cut

Γ, Π⇒ Θ, ∆
Lctr,Rctr

Thanks to the admissibility of contraction (Theorem 42) the objective of the
proof has been met.

7.2 Cut issues in G3WB

Even though for the classical and SCI-dedicated part of the G3WB we can prove
the cut elimination theorem, the addition of RB

≡ either forces us to keep the cut
rule in the system or to eliminate it with the cost of keeping the weakening rule.
The reason for this lies in its particular shape. We can show the failure of cut
elimination in two ways. For the cut elimination procedure we use the notions
of height of the derivation and cut-height, as were presented in Section 7.1

Let us discuss the issues concerning the cut elimination first by referring
to the standard cut-elimination procedure originally proposed by Dragalin and
later reconstructed by Negri [36], as we described in the previous section.

Rule RB
≡ is excluded from cases (3.1) and (3.2) (below we can see the original

derivations, before transformation; Rx denotes an exemplary right-sided rule).
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D1.... Rx

I⇒ φ ≡ χ,ψ

D2....
ψ

I⇒
I⇒ φ ≡ χ

cut

D....
I⇒ ψ

D.... Rx

ψ
I⇒ φ ≡ χ

I⇒ φ ≡ χ
cut

Of course, we cannot consider RB
≡ in these cases, because by adding the

cut-formula, the contexts are not empty, which in turn prohibits us from
applying RB

≡.
Let us consider the last case, i.e., (3.3), in which the cut-formula is

a principal formula in both the left and right premiss of the (cut). Suppose
the cut-formula is φ ≡ χ.

In these cases we refer to the induction hypothesis on the weight of the
formula—we want to transform the original derivation through the use of
cut-formulae of a lesser weight.

We introduce the original derivation, in which φ ≡ χ was obtained through
L3
≡ (even though in the full proof we would have to consider other cases, in which

φ ≡ χ was obtained through L2
≡ and L4

≡), in which we notice that there is no
reduction of the weight of formulae. We can additionally consider reduction of
the cut-height on the left premiss of the cut and the right leaf in the derivation,
but we would be left with additional equivalence on the left side.

C⇒ φ↔ χ
I⇒ φ ≡ χ

R≡
φ↔ χ,φ ≡ χ, Γ I⇒ ∆

φ ≡ χ, Γ I⇒ ∆
L3
≡

Γ I⇒ ∆
cut

Moreover, if we were to examine the case in which L↔ and R↔ are applied
(which results in the reduction of the weight of formulae), we would encounter
problems with labels.

φ
C⇒ χ χ

C⇒ φ
C⇒ φ↔ χ

R↔

I⇒ φ ≡ χ
R≡

Γ,φ,χ,φ ≡ χ
I⇒ ∆ Γ,φ ≡ χ

I⇒ φ,χ, ∆

φ↔ χ,φ ≡ χ, Γ I⇒ ∆
L↔

φ ≡ χ, Γ I⇒ ∆
L3
≡

Γ I⇒ ∆
cut

Application of cut to φ C⇒ χ and Γ,φ,χ,φ ≡ χ
I⇒ ∆ (in order to cut formula χ)

is problematic since sequents have different labels.
We will now discuss which WB theorems require cut.
RB
≡ works in a restricted way and does not allow us to prove theorems from

other extensions of SCI. We are able to prove theorem

(φ ≡ (φ∧ χ))↔ ((φ∨ χ) ≡ χ) (7.1)
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of WB [51; 68], but at the same time we cannot prove the following theorem of
WT: (φ ≡ (φ∧ χ)) ≡ ((φ∨ χ) ≡ χ) as shown below:

....
φ ≡ (φ∧ χ) C⇒ (φ∨ χ) ≡ χ

....
(φ∨ χ) ≡ χ

C⇒ φ ≡ (φ∧ χ)
C⇒ (φ ≡ (φ∧ χ))↔ (φ∨ χ) ≡ χ

R↔

I⇒ (φ ≡ (φ∧ χ)) ≡ ((φ∨ χ) ≡ χ)
RB
≡

We will now examine cut issues in certain formulae. We look at the proof
of formula (φ ≡ (φ∧ χ))↔ ((φ∨ χ) ≡ χ) of WB (here, shown in two separate
derivations due to the size of the overall proof; later on, formula (φ ≡ (φ∧χ))→
((φ ∨ χ) ≡ χ) will be referred to as (♣)). To minimize the size of the proof,
we will use the following short-cut transitivity rule (which is a rule derivable
in G3WB with sequents labelled by I, as it was shown it is derivable in sequent
calculus for SCI, the proof can be found in [4]).

φ ≡ ψ,φ ≡ χ,χ ≡ ψ, Γ I⇒ ∆

φ ≡ χ,χ ≡ ψ, Γ I⇒ ∆
trans

We will present the proof of the formula in two derivations of its two
implications:

• (φ ≡ (φ∧ χ))→ ((φ∨ χ) ≡ χ)

D1....
I⇒ ((φ∧ χ) ∨ χ) ≡ χ

RB
≡

Γ, (φ ≡ (φ∧ χ)), (φ∨ χ) ≡ χ
I⇒ (φ∨ χ) ≡ χ

Γ, (φ ≡ (φ∧ χ)) I⇒ (φ∨ χ) ≡ χ
trans

(φ∨ χ) ≡ ((φ∧ χ) ∨ χ), (φ ≡ (φ∧ χ)),χ ≡ χ
I⇒ (φ∨ χ) ≡ χ

cut

φ ≡ (φ∧ χ),χ ≡ χ
I⇒ (φ∨ χ) ≡ χ

L4
≡

φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L1
≡

I⇒ (φ ≡ (φ∧ χ))→ ((φ∨ χ) ≡ χ)
R→

where Γ stands for {((φ∧χ)∨χ) ≡ χ, (φ∨χ) ≡ ((φ∧χ)∨χ),χ ≡ χ} and D1:

φ,χ C⇒ χ

φ∧ χ C⇒ χ
L∧

χ
C⇒ χ

((φ∧ χ) ∨ χ) C⇒ χ
L∨

χ
C⇒ φ∧ χ,χ

χ
C⇒ (φ∧ χ) ∨ χ

R∨

C⇒ ((φ∧ χ) ∨ χ)↔ χ
R↔

• ((φ∨ χ) ≡ χ)→ (φ ≡ (φ∧ χ))
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D2....
I⇒ δ

RB
≡

φ ≡ (φ∧ χ), Γ I⇒ φ ≡ (φ∧ χ)

δ,ω, (φ∨ χ) ≡ χ,φ ≡ φ
I⇒ φ ≡ (φ∧ χ)

trans

(φ∧ (φ∨ χ)) ≡ (φ∧ χ), (φ∨ χ) ≡ χ,φ ≡ φ
I⇒ φ ≡ (φ∧ χ)

cut

(φ∨ χ) ≡ χ,φ ≡ φ
I⇒ φ ≡ (φ∧ χ)

L4
≡

(φ∨ χ) ≡ χ
I⇒ φ ≡ (φ∧ χ)

L1
≡

I⇒ ((φ∨ χ) ≡ χ)→ (φ ≡ (φ∧ χ))
R→

where δ stands for φ ≡ (φ ∧ (φ ∨ χ)), ω stands for (φ ∧ (φ ∨ χ)) ≡ (φ ∧ χ), Γ
stands for {φ ≡ (φ∧ (φ∨ χ)),ω, ((φ∨ χ) ≡ χ),φ ≡ φ} and D2:

φ
C⇒ φ

φ
C⇒ φ,χ

φ
C⇒ φ∨ χ

R∨

φ
C⇒ φ∧ (φ∨ χ)

R∧
φ,φ∨ χ C⇒ φ

φ∧ (φ∨ χ) C⇒ φ
L∧

C⇒ φ↔ (φ∧ (φ∨ χ))
R↔

After the application of RB
≡ the labels changed from I⇒ to C⇒ (looking

bottom-up), which means we are no longer able to apply any identity-dedicated
rules.

What we see in the case of ((φ∧ χ) ≡ χ) ↔ ((φ∨ χ) ≡ χ) is the fact that
certain WB theorems require the application of cut. Other formulae of this kind
are the following:

1. ((φ→ χ) ≡ >)↔ ((φ∧¬χ) ≡ ⊥)

2. ((φ→ χ) ≡ >)→ ((φ ≡ >)→ (χ ≡ >))

3. ((φ∧ χ) ≡ >)↔ ((φ ≡ >) ∧ (χ ≡ >))

4. (φ ≡ χ)↔ ((φ↔ χ) ≡ >)

These formulae can give us insight into issues regarding cut elimination. Let
us additionally consider a proof of the formula ((φ→ χ) ≡ >)↔ ((φ∧¬χ) ≡
⊥) (again, shown in two separate derivations due to the size of the proof):

• ((φ→ χ) ≡ >)→ ((φ∧¬χ) ≡ ⊥)



7.2. Cut issues in G3WB 103

D1....
I⇒ ¬> ≡ ⊥

D2....
I⇒ δ

(φ∧¬χ) ≡ ⊥, δ,¬(φ→ χ) ≡ ⊥, Γ I⇒ (φ∧¬χ) ≡ ⊥

δ,¬(φ→ χ) ≡ ⊥, Γ I⇒ (φ∧¬χ) ≡ ⊥
trans

¬(φ→ χ) ≡ ⊥, Γ I⇒ (φ∧¬χ) ≡ ⊥
cut

¬> ≡ ⊥,¬(φ→ χ) ≡ ¬>, (φ→ χ) ≡ > I⇒ (φ∧¬χ) ≡ ⊥
trans

¬(φ→ χ) ≡ ¬>, (φ→ χ) ≡ > I⇒ (φ∧¬χ) ≡ ⊥
cut

(φ→ χ) ≡ > I⇒ (φ∧¬χ) ≡ ⊥
L2
≡

I⇒ ((φ→ χ) ≡ >)→ ((φ∧¬χ) ≡ ⊥)
R→

where δ stands for (φ∧¬χ) ≡ ¬(φ→ χ), Γ stands for {¬> ≡ ⊥,¬(φ→ χ) ≡
¬>, (φ→ χ) ≡ >}.

• ((φ∧¬χ) ≡ ⊥)→ ((φ→ χ) ≡ >)

D3....
I⇒ ¬⊥ ≡ >

D4....
I⇒ ω

(φ→ χ) ≡ >,ω,¬(φ∧¬χ) ≡ >, Γ′ I⇒ (φ→ χ) ≡ >

ω,¬(φ∧¬χ) ≡ >, Γ′ I⇒ (φ→ χ) ≡ >
trans

¬(φ∧¬χ) ≡ >, Γ′ I⇒ (φ→ χ) ≡ >
cut

¬⊥ ≡ >,¬(φ∧¬χ) ≡ ¬⊥, (φ∧¬χ) ≡ ⊥ I⇒ (φ→ χ) ≡ >
trans

¬(φ∧¬χ) ≡ ¬⊥, (φ∧¬χ) ≡ ⊥ I⇒ (φ→ χ) ≡ >
cut

(φ∧¬χ) ≡ ⊥ I⇒ (φ→ χ) ≡ >
L2
≡

I⇒ ((φ∧¬χ) ≡ ⊥)→ ((φ→ χ) ≡ >)
R→

where ω stands for (φ→ χ) ≡ ¬(φ∧¬χ), Γ′ stands for {¬⊥ ≡ >,¬(φ∧¬χ) ≡
¬⊥, (φ∧¬χ) ≡ ⊥} andD1–D4 are derivations of sequents I⇒ δi, where δi stands
for different theorems of WB. In order to construct proofs for these sequents
application of RB

≡ is necessary, followed (looking bottom-up) by applications of
different classical rules (these are obvious).

Sequent labels can prevent us from applying certain rules. Moreover, RB
≡

requires us to keep the antecedent empty while the succedent consisting of a
singular equation (in the conclusion of the rule). Suppose we have WB theorem
of the following form φ ↔ χ (similarly for φ → χ), where at least one of the
main components is an equation. We start building a proof with the sequent
I⇒ φ↔ χ to which we can apply R↔. As a result we have two branches, one of
which is labelled with φ I⇒ χ, and the other with χ I⇒ φ. In both cases, in order
to apply RB

≡, we can either apply weakening rules (which are not invertible) or
apply the cut rule, which enables the division of contexts.

Equivalences φ↔ χ, where both φ and χ are theorems of WB, do not require
cut application in the derivation, e.g., derivation of the following structure:
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φ,φ C⇒ φ

φ∧ φ C⇒ φ
L∧

φ
C⇒ φ φ

C⇒ φ

φ
C⇒ φ∧ φ

R∧

C⇒ (φ∧ φ)↔ φ
R↔

I⇒ (φ∧ φ) ≡ φ
RB
≡

(φ∧ φ) ≡ φ, (φ∨ φ) ≡ φ
I⇒ (φ∧ φ) ≡ φ

(φ∨ φ) ≡ φ
I⇒ (φ∧ φ) ≡ φ

cut

can be modified to exclude the use of cut. In this case we instead apply the
weakening rule and obtain the following derivation:

φ,φ C⇒ φ

φ∧ φ C⇒ φ
L∧

φ
C⇒ φ φ

C⇒ φ

φ
C⇒ φ∧ φ

R∧

C⇒ (φ∧ φ)↔ φ
R↔

I⇒ (φ∧ φ) ≡ φ
R≡

(φ∨ φ) ≡ φ
I⇒ (φ∧ φ) ≡ φ

wk

however in this particular case we need to know in advance that the components
of (for example) equivalence are indeed valid in WB.

Rule RB
≡ is the main reason for non-eliminable cut. Even if we were to

consider a different set of sequent calculus identity-dedicated rules as a base for
the SCI part of the calculus, we would be left with the same results. Let us
consider the identity rule proposed by Michaels in [35] with additional labels,
to fit into our framework:

Γ(n),α1, β1, Π I⇒ ∆(r), Θ Γ(n), Π I⇒ ∆(r),α1, β1, Θ

Γ(n),α1 ≡ β1, . . . ,αm ≡ βm
I⇒ ∆(r), γ1 ≡ η1, . . . , γs ≡ ηs

L≡

where Γ(n) and ∆(r) are sequents of propositional variables:

Γ(n) = p1, . . . , pn, ∆(r) = q1, . . . , qr

Π and Θ are sequences of equations: Π : α2 ≡ β2, . . . ,αm ≡ βm,α1 ≡ β1, β1 ≡
α1, (α2 ≡ β2)[α1/β1], . . . ,, (αm ≡ βm)[α1/β1],
Θ : γ1 ≡ η1, . . . , γs ≡ ηs, (γ1 ≡ η1)[α1/β1], . . . , (γs ≡ ηs)[α1/β1]
consisting of all possible results of substitutions of at least one occurrence of α1
with β1.
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Proof of formula (♣):
....

Γ1 I⇒ ∆1

....
Γ2 I⇒ ∆2

(φ ≡ (φ∧ χ)) I⇒ ((φ∨ χ) ≡ χ)
L≡

I⇒ (φ ≡ (φ∧ χ))→ ((φ∨ χ) ≡ χ)
R→

where Γ1 = {φ,φ ∧ χ,φ ≡ (φ ∧ χ), (φ ∧ χ) ≡ φ, (φ ∧ χ) ≡ (φ ∧ χ),φ ≡ ((φ ∧
χ) ∧ χ), (φ ∧ χ) ≡ ((φ ∧ χ) ∧ χ)}, ∆1 = {(φ ∨ χ) ≡ χ, ((φ ∧ χ) ∨ χ) ≡ χ} and
Γ2 = {φ ≡ (φ∧χ), (φ∧χ) ≡ φ, (φ∧χ) ≡ (φ∧χ),φ ≡ ((φ∧χ)∧χ), (φ∧χ) ≡
((φ ∧ χ) ∧ χ)}, ∆2 = {φ,φ ∧ χ, (φ ∨ χ) ≡ χ, ((φ ∧ χ) ∨ χ) ≡ χ}. In both
cases the result is the same as the result of an application of L2

≡, as we have
non-empty antecedents and succedents, which means we are still unable to use
RB
≡. Therefore we would still be forced to use cut, although this issue could

possibly be overcome through a modified/extended version of the substitution
rule. Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2 can both be obtained through the weakening of
sequent ⇒ ((φ∧ χ) ∨ χ) ≡ χ. ((φ∧ χ) ∨ χ) ≡ χ is a theorem of WB, therefore
the mentioned sequent can be proved with the use of RB

≡. WB can be therefore
formalized without the cut rule.

In lights of the issues discussed above, we can pose the following question:
can we in some way control the use of cut, or at least restrict the content of
the set of possible cut-formulae? We can discuss the issue of the subformula
property regarding G3WB. The standard definition for the subformula property
provides a property that cannot be met for the mentioned calculus, as
identity-dedicated rules consist of formulae not meeting the conditions in it.
In [60] it was shown that we can use an extended subformula property to show
that the sequent calculus G3ISCI (or rather its more minimalistic variant) is a
decidability procedure.

The following measure used in [60] differs from the weight of the formula in
value specified in condition 1.

Definition 111 (Complexity of a formula). By complexity of a formula of L
we mean the following value:

• c(φ) = 0, if φ ∈ Var or φ = ⊥ or φ = >;

• when φ is of the form ¬χ, then c(φ) = c(χ) + 1;

• when φ is of the form χ⊗ ψ, with ⊗ ∈ {∧,∨,→,↔,≡}, then c(φ) =
c(χ) + c(ψ) + 1.

Definition 112 (ex.subWB()). Let φ ∈ L,

1. φ ∈ ex.subWB(φ),

2. if ψ ∈ ex.subWB(φ) and χ is a subformula of ψ, then χ ∈ ex.subWB(φ),

3. if ψ ∈ ex.subWB(φ) and c(ψ ≡ ψ) 6 c(φ), then ψ ≡ ψ ∈ ex.subWB(ψ),
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4. if ψ ≡ χ ∈ ex.subWB(φ) and c(¬ψ ≡ ¬χ) 6 c(φ), then ¬ψ ≡ ¬χ ∈
ex.subWB(φ),

5. if ψ1 ≡ ψ2 ∈ ex.subWB(φ),χ1 ≡ χ2 ∈ ex.subWB(φ) and for ⊗ ∈ {∧,∨,→,
↔, ≡}, c((ψ1 ⊗ χ1) ≡ (ψ2 ⊗ χ2)) 6 c(φ), then (ψ1 ⊗ χ1) ≡ (ψ2 ⊗ χ2) ∈
ex.subWB(φ),

Each element of ex.subWB(φ) is called an extended subformula of φ.

In order to bypass the use of cut rule we can consider a new left-sided identity
rule, which allows us to introduce any formula that falls under any of the Boole
algebra axiom schemata:

φ, Γ I⇒ ∆

Γ I⇒ ∆
LB
≡

where φ is one of the Boole axioms. Completeness of label-free sequent calculus
with rule LB

≡ has been shown in [59].
LB
≡ can be obtained in G3SCI through the application of L1

≡, L3
≡ and L4

≡ or
through the use of the cut rule, but in both cases we are forced to use weakening
on both branches. For example, suppose φ is one of the Boole algebra axioms:

φ, Γ I⇒ ∆

φ,φ,φ ≡ φ, Γ I⇒ ∆
Lwk

D1....
I⇒ φ

φ ≡ φ, Γ I⇒ ∆,φ,φ
Lwk,Rwk

φ↔ φ,φ ≡ φ, Γ I⇒ ∆
L↔

φ ≡ φ, Γ I⇒ ∆
L3
≡

Γ I⇒ ∆
L1
≡

D1 is of course, a proof.
Now suppose we consider a quasi-analytic version of cut, where cut formula

φ can only be one of the Boolean algebra axioms:

I⇒ φ φ, Γ I⇒ ∆

Γ I⇒ ∆
cut

The derivation seen above shows us that we can also simulate quasi-analytical
cut by using left-sided identity rules, weakening and RB

≡. Moreover, it is evident
that in both rules, that is quasi-analytical cut and LB

≡, we can consider not only
Boolean algebra axioms, but also other Boolean algebra theorems.

We can now modify the above derivations of (φ ≡ (φ∧χ))↔ ((φ∨χ) ≡ χ)
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D1....

φ,χ C⇒ χ

φ∧ χ C⇒ χ
L∧

χ
C⇒ χ

(φ∧ χ) ∨ χ C⇒ χ
L∨

χ
C⇒ φ∧ χ,χ

χ
C⇒ (φ∧ χ) ∨ χ

R∨

C⇒ ((φ∧ χ) ∨ χ)↔ χ
R↔

I⇒ ((φ∧ χ) ∨ χ) ≡ χ
RB
≡

δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ, ∆
Lwk,Rwk

ω, δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L↔

δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L3
≡

φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L1
≡

I⇒ (φ ≡ (φ∧ χ))→ ((φ∨ χ) ≡ χ)
R→

where δ stands for (((φ ∧ χ) ∨ χ) ≡ χ) ≡ (((φ ∧ χ) ∨ χ) ≡ χ), ω stands for
(((φ∧χ)∨χ) ≡ χ)↔ (((φ∧χ)∨χ) ≡ χ), ∆ = {((φ∧χ)∨χ) ≡ χ, ((φ∧χ)∨
χ) ≡ χ}. Moreover, derivation D1 is the following one:

(φ∨ χ) ≡ χ, (φ∨ χ) ≡ ((φ∧ χ) ∨ χ),χ ≡ χ, ∆, δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ

(φ∨ χ) ≡ ((φ∧ χ) ∨ χ),χ ≡ χ, ∆, δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
trans

χ ≡ χ, ∆, δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L4
≡

∆, δ,φ ≡ (φ∧ χ) I⇒ (φ∨ χ) ≡ χ
L1
≡

Finally, at the end suppose we modify the right identity rule in the following
way, which encompasses both weakening rules and RB

≡:

C⇒ φ↔ χ

Γ I⇒ ∆,φ ≡ χ
R∗≡

The obtained rule is correct, it preserves the validity of a premiss and the
proof can be constructed analogously as in the case of its previous version.
However, unsurprisingly, the obtained rule is not invertible. Sequent calculus
for WB can be therefore formalized without the cut rule and the weakening rule,
using R∗≡ instead of RB

≡.

7.3 Cut issues in G3WT

For cut elimination procedure we use the base of the proof presented in Section
7.1. We will extend the proof by adding cases including identity-dedicated
rules. However, ultimately we will show that for several cases cut cannot be
eliminated.
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If the cut-formula δ is an equation α ≡ β, we could consider the following
scenario for RT

≡:

D1....
Γ≡ ⇒ δ

D2....
δ, Γ≡

′ ⇒ φ↔ χ

δ, Γ≡
′ ⇒ φ ≡ χ

RT
≡

Γ≡, Γ≡
′ ⇒ φ ≡ χ

cut

where cut height is h1 + h2 + 1. We then transform the derivation in the
following manner:

D1....
Γ≡ ⇒ δ

D2....
δ, Γ≡

′ ⇒ φ↔ χ

Γ≡, Γ≡
′ ⇒ φ↔ χ

cut

Γ≡, Γ≡
′ ⇒ φ ≡ χ

RT
≡

and obtain cut height h1 + h2.
We move to case (3.3) and consider the cut-formula principal in both

premisses of cut; the cut-formula is of the form α ≡ β.
....

Γ≡ ⇒ α ≡ β

....
α ≡ β, Γ⇒ ∆

Γ≡, Γ⇒ ∆ cut

For the left premiss of the cut we have only one possible rule to apply: RT
≡.

However, for the right premiss of the cut we can consider three subcases:

(3.3a) α ≡ β, Γ⇒ ∆ has been obtained from α ≡ β,¬α ≡ ¬β, Γ⇒ ∆ by means
of rule L2

≡,

(3.3b) α ≡ β, Γ⇒ ∆ has been obtained from α ≡ β,α↔ β, Γ⇒ ∆ by means of
rule L3

≡,

(3.3c) α ≡ β,ψ ≡ ω, Γ′ ⇒ ∆ (where ψ ≡ ω ∪ Γ′ = Γ) has been obtained from
α ≡ β,ψ ≡ ω, (α⊗ ψ) ≡ (β ⊗ ω), Γ⇒ ∆ by means of rule L4

≡.

For all of the listed cases we cannot assume how the previous steps of the
derivation have been achieved. If it is the case that equations introduced to
the derivation through cut application are not modified in the previous steps,
we are unable to eliminate cut through the process of replacing α ≡ β with
less complex formulae, as we do not have a rule in the system that allows us to
synthesize equations (when applying rules bottom up). There is one rule which
does that, L1

≡, but it only allows reflexive equations to be introduced. We are
unable to synthesize an arbitrary equation (in this case cut-formula α ≡ β)
through subsequent use of L1

≡ and other left-sided identity rules.
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Let us consider the following formula (φ ≡ (φ∧ χ))→ δ and its proof:

D1....
⇒ (φ ≡ χ) ≡ (χ ≡ φ)

δ, Γ⇒ δ

(φ ≡ χ) ≡ (χ ≡ φ),φ ≡ (φ∧ χ)⇒ δ
L4
≡

(φ ≡ (φ∧ χ))⇒ δ
cut

⇒ (φ ≡ (φ∧ χ))→ δ
R→

where Γ = {(φ ≡ χ) ≡ (χ ≡ φ),φ ≡ (φ ∧ χ)}, δ = ((φ ≡ (φ ≡ χ)) ≡
((φ ∧ χ) ≡ (χ ≡ φ))) and D1 is a proof, since `WT (φ ≡ χ) ≡ (χ ≡ φ). If
we had not applied the cut rule and if our proof building procedure had been
focused on the systematic use of rules aimed at obtaining less and less complex
formulae, we would not have been able to construct a proof. The above example
shows us that for certain formulae our goal should not be to obtain propositional
variables, but to construct equations in the antecedent of a sequent of the same
structure as the identity in the succedent of a sequent.

Here we arrive at similar point as in the case of G3WB: we can overcome
this issue, but not without a cost. In the derivation above through cut we
introduced formula (φ ≡ χ) ≡ (χ ≡ φ). We can also introduce it through
the joint application of L1

≡, L3
≡ and R↔. However, as a result we obtain more

formulae in the succedent of two obtained premisses.

δ,α,α,α ≡ α,φ ≡ (φ∧ χ)⇒ δ

α,α,α ≡ α,φ ≡ (φ∧ χ)⇒ δ
L4
≡

D1....⇒ α
α ≡ α,φ ≡ (φ∧ χ)⇒ δ,α,α

Lwk,Rwk

α↔ α,α ≡ α,φ ≡ (φ∧ χ)⇒ δ
L↔

α ≡ α,φ ≡ (φ∧ χ)⇒ δ
L3
≡

φ ≡ (φ∧ χ)⇒ δ
L1
≡

⇒ (φ ≡ (φ∧ χ))→ δ
R→

where α = (φ ≡ χ) ≡ (χ ≡ φ). Therefore, we are yet again required to use the
weakening rule, so we apply RT

≡ to one of the premisses. We propose a solution
similar to that we offered for G3WB—modified right-identity rule which will be
correct, but not invertible (due to the built-in weakening on both sides):

Γ≡ ⇒ φ ≡ χ

Γ, Γ≡ ⇒ φ ≡ χ, ∆

The standard approach to the cut admissibility procedure, in which we move
the application of cut upwards until we reach leaves, is not applicable in
G3WT. However, through analysis of the set of extended subformulae of our
initial problem, we can use identity-dedicated rules to introduce these extended
subformulae into our derivation, thus omitting the necessity of using cut. If we
were to construct such a set for formula δ, we would consider the set of extended
formulae of δ, it would contain α,α ≡ α and α↔ α.
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7.4 Cut issues in G3WH

We have built G3WH on the basis of G3WT, therefore we know that certain
issues regarding the admissibility of structural rules will be inherited; formulae
which were problematic for G3WT will remain problematic in G3WH. It is worth
noting, though, that the added rule L5

≡ does not create new problems in the
proof for cut elimination. In a standard cut elimination procedure we described
in previous chapters, we consider the following situation, where the cut-formula
is not principal in the left premiss of cut:

Γ, (φ ≡ χ) ≡ > ⇒ ∆, δ Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆, δ
Γ⇒ ∆, δ L5

≡ δ, Γ′ ⇒ ∆′

Γ, Γ′ ⇒ ∆, ∆′
cut

and we can change the order of the applied rules, thus lowering the overall
height of the cut application(s).

Γ, (φ ≡ χ) ≡ > ⇒ ∆, δ δ, Γ′ ⇒ ∆′

Γ, Γ′, (φ ≡ χ) ≡ > ⇒ ∆, ∆′
cut

Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆, δ δ, Γ′ ⇒ ∆′

Γ, Γ′, (φ ≡ χ) ≡ ⊥ ⇒ ∆, ∆′
cut

Γ, Γ′ ⇒ ∆, ∆′
L5
≡

The case in which the cut-formula is principal in the left premiss only is
analogous, and we start with the following derivation:

Γ′ ⇒ ∆′, δ
δ, Γ, (φ ≡ χ) ≡ > ⇒ ∆ δ, Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆

δ, Γ⇒ ∆ L5
≡

Γ, Γ′ ⇒ ∆, ∆′
cut

and modify it into:

Γ′ ⇒ ∆′, δ δ, Γ, (φ ≡ χ) ≡ ⊥ ⇒ ∆
Γ, Γ′, (φ ≡ χ) ≡ ⊥ ⇒ ∆, ∆′

cut
Γ′ ⇒ ∆′, δ δ, Γ, (φ ≡ χ) ≡ > ⇒ ∆

Γ, Γ′, (φ ≡ χ) ≡ > ⇒ ∆, ∆′
cut

Γ, Γ′ ⇒ ∆, ∆′
L5
≡

where the cut application height(s) is (are) lesser than in the original derivation.
We also know that these are the only two cases we would have to consider
regarding L5

≡’s role in the cut elimination procedure. We therefore know
that if in our derivations we are using L5

≡ but not RT
≡, then we can avoid

the unnecessary use of cut, as it is rule RT
≡ which has an adverse effect on

the cut admissibility procedure. Again, we can consider a similar option
with modification of the aforementioned troublesome rule, but the alternative
approach pressures us to use the (built-in or separate) weakening rule. Worth
noting is that in standard sequent formalization of modal logic S5 [37], to which
WH corresponds, cut elimination theorem cannot be proved. In G3WH the rule
that determines its similarity to S5 is, in this particular context, harmless.
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Chapter 8

Final remarks

The aim of the work was to develop and examine system sequents for
three non-Fregean theories proposed by Roman Suszko: WB, WT, and WH.
Non-Fregean systems reject the so-called Fregean Axiom

(φ↔ χ)→ (φ ≡ χ),

which equates equivalence with the identity connective. Suszko introduced
the identity connective to mark the difference between semantic correlates;
in Fregean systems, sentences are names of two truth values, whereas in
non-Fregean systems we rely on the notion of situation (stemming from
the ontology of Wittgenstein’s Tractatus). The weakest non-Fregean system
proposed by Suszko is SCI, and the three theories examined in this thesis are
its axiomatic extensions.

Sequent calculi for these three non-Fregean theories have not been proposed
before; in literature we can find proof systems mostly for SCI [4; 14; 16; 19; 28;
35; 41; 45; 46; 59; 66; 67], as well as its intuitionistic counterpart, ISCI [5; 6; 11;
60]. The systems G3WB, G3WT, and G3WH were built on the basis of sequent
calculus `G3SCI [4], which has been adapted to slightly different language, where
we use negation and equivalence. In both G3WB and G3WT, one right-sided rule
has been added, as a formalization of the consequence operation-based definition
of the two systems. In G3WB we additionally use two labels, C⇒ and I⇒, to have
better control over the application of the rules. These labels play a crucial role
in the formalization of right-sided identity rule RB

≡:

C⇒ φ↔ χ
I⇒ φ ≡ χ

RB
≡

which is a formalization of WB = C({φ ≡ χ : (φ ↔ χ) ∈ TFT}). Application
(bottom-up) of RB

≡ to a sequent changes its label from I⇒ to C⇒, which disables
the possibility of further use of other identity rules. This mechanism makes it
impossible to create proofs for formulae from other extensions. However, this
particular shape of the rule also makes it difficult to omit the cut application (in
some particular cases we discussed in the previous chapter). We therefore obtain
a system that is sound and complete with regard to Boole algebra semantics,
but lacks the cut elimination property.



112 Chapter 8. Final remarks

Similar issues are encountered in the case of G3WT. In this system we omit
the labels, but we add the similar right-sided identity rule RT

≡:

Γ≡ ⇒ φ↔ χ

Γ≡ ⇒ φ ≡ χ
RT
≡

which is a formalization of WT = C({φ ≡ χ : (φ↔ χ) ∈ C(∅)}). We now allow
the antecedent of a sequent to be non-empty, but it can only consist of other
equations. The aim of this restriction is to disable the possibility of proving
the Fregean Axiom. The fact that the right-sided rule is obtained by means
of some other strategy (in the case of G3SCI upon which it is based, the rules
characterizing identity are directly linked to axioms characterizing identity, and
are not linked to the overall definition of the logic), seems to complicate the
cut elimination procedure. We do not claim that the cut elimination theorem
does not hold for G3WT, but we have identified formulae whose proofs contain
the application of the cut rule. As a result we again obtain a system which
is sound and complete with regard to topological Boole algebra semantics, but
most likely lacks the cut elimination property.

In G3WH we use G3WT as the base and come back to the strategy of obtaining
sequent rules from axioms. As a result we add the new left-sided identity rule
L5
≡

(φ ≡ χ) ≡ >, Γ⇒ ∆ (φ ≡ χ) ≡ ⊥, Γ⇒ ∆
Γ⇒ ∆ L5

≡

where, looking bottom-up, at any point in the derivation we can add two
pieces of information to the antecedent of each premiss: that either φ ≡ χ is
necessary or impossible. This rule shares similarities with the cut rule, although
its presence in the system does not cause any issues with the cut elimination
procedure. However, as the system is based on G3WH, it inherits the same cut
elimination issues linked to the rule RT

≡. Even though the cut elimination is
still problematic, the overall system is sound and complete with regard to Henle
algebra.

Non-Fregean theories constitute an interesting field for further examination.
WT’s and WH’s correspondence to modal logics, respectively, S4 and S5 points
to the fact that cut elimination could be proved for both systems. We could
therefore examine other variants of sequent systems, such as labelled systems
or hypersequent calculi, to examine whether these modifications would make it
possible to build cut-free proofs. Suszko did not point out whether logic WB
corresponds to some modal system. It would be worth pursuing this analysis, as
it could shed some light on the encountered issues. It would also be interesting
to study intermediate systems between the three main extensions.

There are of course numerous other directions for non-Fregean research. In
the case of theories analyzed in this thesis we focus on the extensional language
originating from CPC. Identity can also be studied in other non-extensional
languages and in the context of non-classical systems, e.g., in intuitionistic
setting. There are proof systems for ISCI, but the analysis concerned with
intuitionistic counterparts of the main axiomatic extensions of SCI have been
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initiated as well. In these intuitionistic counterparts we have to study the
behavior of the identity connective, particularly in the axioms; certain axioms
would have to be omitted or reformulated to make sure the law of excluded
middle is not smuggled under the cover of equation content. Non-Fregean
identity in an intuitionistic context, gradually adopting different properties,
would certainly provide an intriguing research direction within the realm of
structural proof theory.
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