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Topics on Topological robotics

On topological complexity of K(G, 1)-spaces and effective topological complexity.

Arturo Espinosa Baro

Abstract

In this dissertation we work on several problems concerning the relationship between
topological complexity and sectional category, and groups. The work presented here can be
divided in two main branches.

In the first part of the thesis, we investigate topics related with the description of the
topological complexity of Eilenberg-MacLane spaces. First we develop the notion of sectional
category of group monomorphisms, as a more general framework of study and which
contains the original problem, and we provide a generalization of a characterization from
Farber, Grant, Lupton and Oprea of TC of a group in terms equivariant maps to the classifying
space of full families of subgroups.

We also develop a relative canonical class in this setting, and study its properties. Ad-
ditionally, we introduce the notion of Adamson cohomology theory into the study of
secat(H ↪→ G). We will proceed as well to generalize the notion of essential cohomol-
ogy classes to arbitrary group monomorphisms, and to build a more general version of the
Farber-Mescher spectral sequence in order to get a new bound for secat(H ↪→ G), which we
will specialize to obtain new lower bounds of sequential and fiberwise TC. To finish this first
part, we provide a characterization of TC of a group G in terms of the A-genus in the sense
of Clapp and Puppe.

In the second part, we switch our point of view, and consider, instead of K(G, 1)-spaces,
actions of groups over spaces, and so we investigate some properties of the effective topolog-
ical complexity of Błaszczyk and Kaluba. First we develop a notion of effective LS-category,
and then we observe the relationship between the effective TC and cat and the orbit map
with respect to the action in some situations, giving several computations and examples. We
will finish by providing cohomological arguments to determine cases in which such effective
TC is non-zero in dimension two.
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Tematy dotyczące robotyki topologicznej

Na złożoność topologiczna K(G, 1)-przestrzeni i efektywnej złożoności
topologicznej.

Arturo Espinosa Baro

Abstrakt

W przedstawionej rozprawie doktorskiej omawiany kilka dotyczących relacji pomiędzy
złożonością topologiczną , kategorią sekcyjną i grupami. Merytorycznie treść pracy podzielona
jest na dwa główne nurty tematyczne.

W pierwszej części dysertacji, badamy zagadnienia związane z opisem złożoności topolog-
icznej , oznaczanej przez TC, przestrzeni Eilenberga-MacLaina. Po pierwsze wprowadzamy
pojęcie kategorii sekcyjnej monomorfizmów grup jako ogólne narzędzie do badań, które
pozwala też opisać postawiony pierwotnie problem. Następnie uzyskujemy uogólnie-
nie charakteryzacji Farbera, Grant, Luptona i Oprei TC grupy w terminach odwzorowań
współzmienniczych do przestrzeni klasyfikujących pełne rodziny podgrup.

Używając wprowadzonych pojęć określamy kanoniczną relatywną klasę i badamy jej
własności. Dodatkowo pokazujemy, że do badania secat(H ↪→ G) można wykorzystać
pojęcie kohomologii Adamsona. Kolejno, uogólniamy określenie pojęcia istotnych klas koho-
mologii do przypadku dowolnych monomorfizmów grup, i konstruujemy bardziej ogólną
wersję ciągu spektralnego Farbera-Meschera. To ostatnie pozwala uzyskać nowe ograniczenie
na secat(H ↪→ G), które wykorzystujemy aby otrzymać nowe ograniczenie dolne na ciągową
i włóknistą złożoność topologiczną. Na koniec tej części podajemy charakteryzację TC grupy
G w terminach A-genusu w sensie Clapp i Puppe.

W drugiej części przedstawiamy pewne własności efektywnej topologicznej złożoności
w sensie Błaszczyka i Kaluby dla przestrzeni z działaniem grupy. Po pierwsze wprowadzamy
pojęcie efektywnej LS-kategorii, a następnie opisujemy związki pomiędzy efektywną złożonoś-
cią topologiczną, kategorią i odwzorowaniem rzutowania na przestrzeń orbit w wybranych
przypadkach podając obliczenia i przykłady. Na zakończenie podajemy warunki kohomo-
logiczne pozwalające określić w jakich przypadkach efektywna złożoność topologiczna jest
niezerowa w wymiarze dwa.
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Cuando eres niño te advierten:
«Limítate a contemplarlas.
Si las tocas, las espectrales
te dejarán su quemadura,

la marca a fuego, el estigma
de quien codicia lo prohibido.»

Quizá dijiste en silencio:
«Pretendo asir la marea,
acariciar lo imposible.»

— José Emilio Pacheco, Las flores del mar

A mis padres y a mi amada Magdalena
que son, respectivamente

cimientos y luz de mi existencia
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CHAPTER 1

Introduction

“Bo nie ma cofanki. Bo dla nas kierunek ruchu jest jeden:
naprzód. Bardzo możliwe że po kole, czy po elipsie, czy
śrubowej spirali - ale na przód.”

— Edward Stachura, Się

“No se pasa de la ceguera a la luz, no se entra en los
soberanos dominios del sol como quien entra en un teatro.
Es este un nacimiento en que hay también mucho dolor”

— Benito Pérez Galdós, Marianela

The term robot comes from the slavic root of “robot-”, with meanings connected to work
in different slavic languages (such as the polish robota). The first account of the word to
designate some kind of "artificial worker" was due to Karel Čapek in 1921, in his theatre
play R.U.R (Rossum’s Universal Robots), while the term robotics was coined by the famous
science-fiction writer Isaac Asimov to refer to the rising scientific discipline concerned with
the study of robots. Interestingly, it is not easy to define precisely what a robot is, as the
word means different things to different people, with even roboticists themselves having
discrepancies about what could or could not be considered as a robot. The Robot Institute of
America, in 1979, suggested the following definition:

A robot is a reprogrammable, multifunctional manipulator designed to move mate-
rial, parts, tools, or specialized devices through various programmed motions for the
performance of a variety of task.

Discussion over the specifics of the definition aside, it is generally accepted that the
ultimate objective in the field of robotics is, in the words of J.C. Latombe ([84]), the creation
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of fully autonomous robots, which accept high-level descriptions of tasks and execute them
without further human intervention. Such an endeavor raises numerous and complex
problems with plenty of ramifications and applications on the field. Certainly, one of the
most fundamental of such problems is the so called motion planning problem. Picture a robot
displacing over a space, starting from a point A and striving to reach a determined endpoint
B, naturally avoiding all the possible obstacles that could be present in such space. The
motion planning problem consists in providing a path, connecting the two known points,
that our robot can follow to fulfill its mission. Here we have to take into account that "robot"
is understood, in consonance with the aforementioned objective, in a broader sense, as any
kind of mechanical or digital device capable of automatic process, with a determined space
of possible “states". Such space is known as the configuration space of the system, and it is
naturally equipped with a topology, which opens up the way to consider a mathematical
(specifically topological) approach to study the different robotical problems and, as such,
conduces naturally to the growing field of Topological Robotics.

As such, given any topological space X, the motion planning problem over X consists
on providing an algorithm which, given any two points x, y ∈ X as input, returns as an
output a path γ with γ(0) = x and γ(1) = y. Naturally, one would hope for such a motion
planning to be “stable¨, i.e. continuous on the pair of points. Such continuity means that
small changes in either of the extreme state points translates into a predictable change of the
path followed by the robot. Unfortunately, this is hardly possible: the only configuration
spaces for which such a continuous motion planning algorithm is possible are those who are
contractible, and this is usually not the case, save for very basic situations. Of course, the
fact that this stability of the system is only possible for such simple (topologically speaking)
spaces indicates a relationship between the appearence of discontinuities in the system and
topological features of the base configuration space. Therefore, the question arise on how to
make this relationship precise.

In order to adress such question, Michael Farber developed in 2003 the notion of topological
complexity, denoted by TC(X), as a topological tool to measure this degree of instability of
mechanical systems. He was indeed inspired by previous work on the topological study
of the complexity of algorithms carried out by Smale [112] and Vassiliev [115]. As all the
information about the discointinuity of the motion planning algorithm is encoded in the
topological features of the space, this topological complexity is an homotopy invariant of
it, and, as such, constitues not only a tool of interest from the point of view of robotics, but
also a valuable invariant from a purely mathematical point of view. Indeed, the topological
complexity has a close connection with classic homotopy invariants previouly known, such
as the Lusternik-Schnirelmann category, or the sectional category (originally named genus) of
a fibration. Since its inception, the notion of topological complexity has attracted a lot of
interest, and a fruithful line of work has sprouted from considering different problems on
the field, including the development of several variations of the original notion, aimed at
measuring different aspects or properties of the motion planning problem or of the base
configuration spaces.
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1.1. Structure and contents of this dissertation

Figure 1.1: A topological feature of the configuration space inducing instability on the motion
planning

1.1 Structure and contents of this dissertation

In this thesis, we intend to contribute to the study of the relationship between topological
complexity and groups. In this sense, the work is divided into two clearly distinct parts,
regarding the role played by the groups. On one hand, we have the group as the subject of
interest per se, i.e. the study of the topological complexity of spaces that are determined, up to
homotopy, by their fundamental groups, named as Eilenberg-MacLane spaces, aspherical spaces
or classifying spaces (and denoted by K(G, 1)). In their celebrated article [47], S. Eilenberg and T.
Ganea provided, save fringe cases that were later worked out ([113], [114]) a purely algebraic
characterization of the Lusternik-Schnirelmann category of aspherical spaces. Following
the close connection between the two invariants, M. Farber posed the question on whether
such characterization was possible in the realm of TC. The answer seems elusive so far, but
the problem has sparkled a fruithful line of research, to which this work humbly intends to
contribute.

On the other hand we are interested in how symmetries that may be found in the configu-
ration space affect the motion planning problem. Those symmetries are codified as actions
on groups on the space and, as such, the main focus switch from groups themselves to their
possible actions. That brings us to the line of research of equivariant notions of topological
complexity. There have been many non-equivalent approaches to a notion of topological
complexity in the equivariant world, but we are interested, specifically, in one of them, the
known as effective topological complexity, first introduced by Z. Błaszczyk and M. Kaluba. The
key point of such topological complexity is that, while it does not arise as the most natural
notion of equivariant TC, is the one that actually tries to reduce the complexity of the motion
planning by taking advantage of the symmetries of the system. Unfortunately, this leads to a
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1.1. Structure and contents of this dissertation

variety of TC that it is particularly difficult to work with, and so far, original paper aside, it
has been poorly investigated and understood. As such, we want to contribute to deepen the
understanding of this invariant, by investigating some of its properties.

As mentioned just before this introduction, the work presented in this thesis has been
materialized in four different papers, and the purpose of this memory is to present them
in the frame of a cohesive narrative. Each of those papers corresponds, essentially, with a
chapter of this thesis, with some variations in exposition.

Chapter 2 constitutes a small survey of basic tools that will be used throughout the rest of
the dissertation, mostly notions of homological algebra, group cohomology and equivariant
cohomology.

Chapter 3 is of purely expositive nature. We recall the main formal definitions associated
with the motion planning problem, as well as the definition of topological complexity and
sectional category. We outline some of its main properties, providing some useful basic
examples that will come at hand later on.

The original contributions of the present work are distributed amongst chapters 4 to 7.
We will proceed to give a brief outline of each chapter, highlighting the main results.

Chapter 4

In Chapter 4 we present, with some significant additions, the results of a joint project with Z.
Błaszczyk and J.G. Carrasquel Vera, published in [14]. Given a non-torsion group G, and H
one of its subgroups, we introduce the notion of sectional category of the subgroup inclusion
H ↪→ G, secat(H ↪→ G). Studying this invariant constitutes a natural generalization of
the problem of determining the topological complexity of a group G, given that TC(G) can
be understood as secat(∆G ↪→ G × G). We obtain a generalization of a characterization
from Farber, Grant, Lupton and Oprea (see [56]) of topological complexity in terms of maps
between the universal space of G and the classifying space with respect to the semi-full family
generated by the subgroup:

Theorem (Theorem 4.1.4). The sectional category of H ↪→ G coincides with the minimal integer
n ≥ 0 such that the G-equivariant map ρ : EG → E⟨H⟩G can be G-equivariantly factored up to
G-homotopy as

EG E⟨H⟩G

(E⟨H⟩G)n,

ρ

where (E⟨H⟩G)n denotes the n-skeleton of E⟨H⟩G.

We also describe and develop a “relative canonical class” analogous to the one developed
by Berstein and Schwarz for the study of Lusternik–Schnirelmann category theory. In
particular, we can prove a generalization of the Costa and Farber theorem for the powers of
the canonical class, presented in [35]:

4 Chapter 1



1.1. Structure and contents of this dissertation

Theorem (Theorem 4.1.11). If n = cd G ≥ 3, then secat(H ↪→ G) ≤ n − 1 if and only if ωn = 0.

Then, we introduce a new actor into the fray, the Adamson cohomology theory of the
pair (G, H). First defined by Adamson in [1], and later systematized by G. Hochschild in
the more general setting of relative homological algebra (see [75]), we find a canonical class
in Adamson cohomology, which turns out to be universal, and relate it with the previously
defined relative canonical class. Of particular interest is the possibility of characterizing
Adamson cohomology groups in terms of zero divisors in usual cohomology for a suitable
choice of coefficient systems:

Theorem (Proposition 4.2.8). For any G-module M and n ≥ 1, we have

Hn([G : H], M) = ker
[

H1(G, HomZ(I⊗n−1, M)) → H1(H, HomZ(I⊗n−1, M))
]

.

In particular,
H1([G : H], M) = ker

[
H1(G, M) → H1(H, M)

]
.

We also find a spectral sequence associated to the pair (G, H) which contains the informa-
tion of Adamson cohomology in its second page, and recast Adamson cohomology in terms
of Bredon cohomology, of which we give a new and independent proof.

Theorem (Theorem 4.2.14). Given a G-module M, let M be the Or⟨H⟩G-module defined by setting
M(G/K) = MK. Then

H∗([G : H], M
) ∼= H∗

⟨H⟩(E⟨H⟩G, M).

In particular, cd [G : H] ≤ cd⟨H⟩G.

Chapter 5

The contents of Chapter 5 constitute part of a joint work with M. Farber, S. Mescher and J.
Oprea, see [49]. Here we present mainly the algebraic part of such work, in line with the
approach taken in Chapter 4.

Continuing with the ideas developed in Chapter 4, we start by providing alternative
characterizations of relative Berstein-Schwarz classes with respect to subgroup inclusions.
We also generalize the notion of essential cohomology classes, first introduced by Farber and
Mescher in [57], to arbitrary group monomorphisms, and we use them to give new bounds
for the sectional category of inclusions of normal subgroups, summarized in the following
theorem:

Theorem (Theorem 5.1.6 and Theorem 5.1.7). Let N ◁ G be a normal subgroup, put Q := G/N
for the quotient group and let π : G → Q denote the projection.

a) Let ω ∈ H1(G; I) be the Berstein-Schwarz class of G relative to N and let β ∈ H1(Q; IQ) be the
Berstein-Schwarz class of Q, where IQ ⊂ Z[Q] denotes the augmentation ideal of Q. Then

π∗β = ω.
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b) Let A be a left Z[Q]-module and let n ∈ N. A cohomology class u ∈ Hn(G; π∗A) with u ̸= 0 is
essential relative to N if and only if there exists v ∈ Hn(Q; A) with π∗v = u.

c) If there exists a left Z[Q]-module A for which π∗ : Hcd(Q)(Q; A) → Hcd(Q)(G; A) is non-zero,
then

secat(N ↪→ G) = cd(Q).

Once this is accomplished, we will proceed to develop a thorough generalization of the
construction of a spectral sequence to sectional categories of subgroup inclusions, that was
carried out for the topological complexity of aspherical spaces in [57]. The properties of such
spectral sequence are summarized as follows:

Theorem (Theorem 5.2.4). Let n ∈ N and let u ∈ Hn(G; A) with u ̸= 0.

a) The class u is essential relative to H if and only if u ∈ Dn,0
n .

b) Dn,0
1 = ker[ι∗ : Hn(G; I) → Hn(H; Ĩ)], where ι∗ is induced by the inclusion ι : H ↪→ G.

c) Let s ∈ {0, 1, . . . , n − 1}. Then u ∈ Dn,0
s+1 if and only if

u ∈ Dn,0
s and u ∈ ker

[
js : Dn,0

s → En−s,s
s

]
.

Of particular interest is the expression of the zeroth-page of such spectral sequence in
terms of products of cohomology groups of isotropy subgroups with respect to certain action
of H on G/H. Namely, if C ′

s(G/H) is the set of orbits of (G/H) \ {H} with respect to said
action, we find the following decomposition of Er,s

0 .

Theorem (Theorem 5.2.5). Let s ∈ N. For each C ∈ C ′
s(G/H) fix a representative xC ∈ C and let

NC := HxC be the isotropy group of xC. Then, for any Z[G]-module A we have

Er,s
0

∼= ∏
C∈C ′

s(G/H)

Hr(NC, ResG
NC
(A)) ∀r ∈ N.

We will use the power of this spectral sequence (in particular of the decomposition
indicated just above) to derive a new lower bound for sectional category of arbitrary subgroup
inclusions in terms of the cohomological dimension of the isotropy groups with respect to
the prescribed left H-action on the coset space G/H.

Theorem (Theorem 5.3.3). Let G be a geometrically finite group and let H ≤ G be a subgroup. For
each x ∈ G, we let Hx denote the isotropy group of the left H-action on G/H in xH and put

κG,H := sup{cd(Hx) | x ∈ G \ H}.

Then we get the lower bound

secat(H ↪→ G) ≥ cd(G)− κG,H.

We carry out the consequences of this very general result for sequential topological
complexity and for the parametrized topological complexity of group epimorphisms.
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Theorem (Theorem 5.4.2 and Theorem 5.4.8). a) Let π be a geometrically finite group and let
r ∈ N with r ≥ 2. Then

TCr(K(π, 1)) ≥ r · cd(π)− k(π),

where k(π) = max{cd(C(g)) | g ∈ π \ {1}}.

b) Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism. Then

TC[ρ : G → Q] ≥ cd(G ×Q G)− k(ρ),

where
k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g ̸= 1}.

As an application, we will also show that for a free amalgamated product of the form
π1 ∗H π2, where H is malnormal both in π1 and in π2, we obtain that

TCr(K(π1 ∗H π2, 1)) ≥ r · cd(π1 ∗H π2)− max{k(π1), k(π2)} ∀r ≥ 2.

Chapter 6

To close our study of the topological complexity of aspherical spaces, in Chapter 6 we
return to some of the ideas we explored at the beginning of Chapter 4. The objective of
this chapter is to recast the sectional category of subgroup inclusions and, in particular, the
sequential topological complexities of aspherical spaces in the lenguage of another category-
like homotopy invariant, the A-genus. This will be accomplished through the more general
identification of the sectional category of connected covers of a CW-complex X to A-genus(X)

for a suitable choice of family A.

Theorem (Theorem 6.2.1, Corollary 6.2.2 and Proposition 6.2.4). Let X be a path connected
CW-complex with π1(X) = π. If q : X̂ → X is a connected covering, then

secat(q) = A-genus(X̃)

where A = {π/π1(X̂)}.
In particular we have the following:

(1) Let G a torsion-free group, and H ⩽ G. Then we have secat(H ↪→ G) = A-genus(EG) where
A = {G/H}.

(2) TCr(X) ≥ A-genus(X̃r) for A := {πk/∆π,r}.

(3) Furthermore, if X is aspherical, then TCr(X) = A-genus(X̃r).

Such characterization, coupled with the already known properties of A-genus, allow us
to derive new bounds for sectional category and sequential topological complexities.

Theorem (Proposition 6.2.6). Let G be a torsion-free group, H ⩽ G and A = {G/H}.

(a) Given F a full family of subgroups of G we have that secat(H ↪→ G) ≤ A-genus(EF (G)).
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(b) For any subgroup K ⩽ G subconjugate to H such that cd⟨K⟩G ≥ 3 we have secat(H ↪→ G) ≤
cd⟨K⟩G.

(c) Under the hypothesis of (b), if K ⊴ G then secat(H ↪→ G) ≤ cd(G/K).

In particular, we obtain some bounds in terms of subgroups of the given group, which in
the case of sequential topological complexities provide a new explicit measure of the lack of
monotonicity of topological complexity with respect to inclusion of subgroups, and allow us
to give a new bound for the case of the semidirect product of groups.

Theorem (Corollary 6.2.8 and Corollary 6.2.9). Let π be a torsion free group with subgroups
H, K ⩽ π, and J ⩽ H. The following inequality holds

secat(J ↪→ H) ≤ (secat(K ↪→ π) + 1)(B-genus((π/K)) + 1)− 1

for B = {H/J}.
In particular, for the specific case of the iterated diagonal inclusions ∆H,r ↪→ Hr and ∆π,r ↪→ πr

the above inequality yields

TCr(H) ≤ (TCr(π) + 1)(B-genus(πr/∆π,r) + 1)− 1

where B = {Hr/∆H,r} and r ∈ N with r ≥ 2.
Moreover, we have TCr(H ⋊ K) ≥ TCr(K).

We close the chapter with some quick thoughts about a new notion of topological com-
plexity for proper actions and A-genus with respect to the family of finite subgroups.

Chapter 7

In Chapter 7, the last part of this dissertation, we change our point of view about the role that
groups play: instead of the topological complexity of spaces whose homotopy type is wholly
determined by the isomorphism type of their fundamental groups (the Eilenberg-MacLane
spaces), we care about more general kind of spaces, but such that they present symmetries,
i.e group actions, that, while undetected by the classic version of topological complexity,
might be put to use to reduce the complexity of the motion planning algorithms. That was
the foundational idea behind the notion of effective topological complexity, first introduced
by Z. Błaszczyk and M. Kaluba in [16]. In this chapter, we further investigate this variant of
topological complexity, investigating some of its properties.

We start our analysis by studying the relationship between the different broken path
spaces, and introducing the notion of the global effective path space, as a limit of a chain
of inclusions. Then we proceed define an effective version of the Lusternik-Schnirelmann
category, which will play an analogous role to the classic LS-category in this setting. In
particular, we obtain the effective version of the classic bound of TC in terms of LS-cat, and
other crucial properties summarized in the following theorem.
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Theorem (Theorem 7.4.2, Proposition 7.4.4 and Corollary 7.5.4). Let X be a G-space. The
following statements hold:

(1) catG,∞(X) ≤ TCG,∞(X) ≤ catG×G,∞(X × X) ≤ 2catG,∞(X).

(2) Let ρX : X → X/G be the orbit map with respect to the action of G. Then cat(ρX) ≤ catG,∞(X).

(3) catG,∞(X) = 0 if and only if TCG,∞(X) = 0.

Afterwards, we will turn our attention to discussing the problem of determining the kind
of G-spaces with TCG,∞(X) = 0. The relationship hinted there between the orbit projection
map ρX : X → X/G and the effective TC will be adressed further later on, through the study
of the relationship between ρX and TCG,∞(X) in two distinct cases: when the orbit projection
map has a strict section, and when it is a fibration. Our findings are summarized in the
following theorem.

Theorem (Theorem 7.6.1 and Theorem 7.6.4). Let X be a G-space. If ρX : X → X/G has a strict
section s : X/G → X, the following holds:

(1) catG,∞(X) = cat(X/G).

(2) TCG,∞(X) = TC(X/G).

If the orbit map ρX is a fibration instead, then we have:

(1) catG,∞(X) = catG,2(X) = cat(ρX) ≤ cat(X/G).

(2) TCG,∞(X) = TCG,2(X) ≤ TC(X/G).

We will discuss plenty of examples in both situations, mostly concerning actions of
compact Lie groups, and some consequences of the above result.

In the final section of this chapter, we will show how the broken path space at stage two
P2(X) is homotopically equivalent to the saturated diagonal ℸ(X), and we will make use of
this information to derive some dimensional conditions for the non-vanishing of the stage 2
effective topological complexity for compact G-ANR with G finite.

Theorem (Theorem 7.7.3, Corollary 7.7.4). Let G be a finite group, and X a compact G-ANR such
that cd(XH) ≤ cd(X) for all non-trivial subgroup H ⩽ G. Then, for any L list of elements of G,
cd(ℸL(X)) ≤ cd(X) + |L| − 1. In particular, we have

cd(ℸ(X)) ≤ cd(X) + |G| − 1.

Under these assumptions, if |G| ≤ cd(X), then it holds that TCG,2(X) > 0.
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CHAPTER 2

A small preliminary toolbox

In this chapter we will introduce the basic necessary framework that will be instrumental
during this dissertation, and thoroughly used therein. Naturally, we hold no claim of
originality over any of the contents presented in this chapter, and the experienced reader
might very well skip it altogether, should they be already familiar with the material. At the
beginning of each section we will suggest some standard bibliographic references for the
interested reader.

2.1 Basic definitions of homological algebra

We will provide a very short summary of the very basic notions of homological algebra,
that are instrumental in the study of group cohomology, and that we will use extensively
through a significant part of this dissertation. By no means we intend to present a complete
survey on the matter, and for the reader interested in increasing their knowledge of the matter
we suggest classic manuals on the topic, such as [116], [107] or the absolute all-time classic
seminal book of H. Cartan and S. Eilenberg, [26].

2.1.1 Chain complexes and homology

We will start by reviewing the most basic definitions, that constitutes the bedrock of the
whole theory.

Definition 2.1.1. Let R be a ring. A chain complex (C∗, d∗) is a sequence of R-modules
Ci with R-module homomorphisms di : Ci → Ci−1 such that di−1 ◦ di = 0. Likewise, by
a cochain complex (C∗, d∗) we understand a sequence of R-modules Ci and of R-module
homomorphisms di : Ci → Ci+1 such that di+1 ◦ di = 0. In both cases, the di maps are called
the differentials of the (co)chain complex.

13
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Whenever the situation is general enough, we will write the arrows orientation in terms
of chain complexes. Bear in mind though that everything is immediately translatable into
cochain complexes just by properly reversing the direction of the differentials.

Obviously, the idea that composition of the successive diferentials is zero implies that the
image of any differential map lies in the kernel of the next. In particular, we can define the
key notion of exactness of a sequence of R-modules.

Definition 2.1.2. We say that a sequence of R-modules

· · · → Mn
fn−→ Mn+1

fn+1−−→ Mn+2
fn+2−−→ · · ·

is exact if Im fn = ker fn+1 for all n. In particular, exact sequences of the form

0 → L → M → N → 0

are called short exact sequences.

Definition 2.1.3. Given two (co)chains (C∗, d∗) and (C′
∗, d′∗) we define a chain map f∗ : C∗ →

C′
∗ to a collection of R-module homomorphisms fi : Ci → C′

∗ that commutes with the respec-
tive differentials, that is, such that for every i the following diagram is commutative

· · · Ci+1 Ci Ci−1 · · ·

· · · C′
i+1 Ci Ci−1 · · ·

di+2

fi+1

di+1 di

fi

di−1

fi−1

d′i+2 d′i+1 d′i d′i−1

We can recall now the definition of (co)homology of (co)chain complexes.

Definition 2.1.4. The n-dimensional (co)homology group of the (co)chain complex (Ci, di) is
defined as

Hn(C∗, d∗) = ker dn
/

Im dn+1 Hn(C∗, d∗) = ker dn
/

Im dn−1

respectively. As in the usual (co)homology of topological spaces, the elements of ker di are
called (co)cycles, while those in Im di are known as (co)boundaries.

We are interested in defining a notion of equivalence between (co)chain complexes, that
will make them impossible to distinguish from the point of view of homology. This role will
be played by the chain homotopies.

Definition 2.1.5. Given two (co)chain complexes (C∗, d∗) and (C′
∗, d′∗), we say that two chain

maps f∗, g∗ : C∗ → C′
∗ are chain homotopic, denoted (in analogy to the topological case) f ≃ g,

if there exists a diagonal chain map h∗ : C∗ → C′
∗ i.e. for each degree i we have hi : Ci → C′

i+1

for chain complexes (and hi : Ci → Ci−1 for cochain ones) such that

hi ◦ d′i+1 + hi−1 ◦ di = fi − gi (d′i−1 ◦ hi + hi+1 ◦ di = fi − gi for cochain complexes).
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By the commutativity of the (co)chain map and the differentials at each degree, it is
straightforward to see that a (co)chain map always induces an associated homomorphism
in (co)homology. In particular, it is just an exercise of diagram chasing to verify that the
following statement holds.

Proposition 2.1.6. Two chain homotopic maps f∗, g∗ : C∗ → C′
∗ induce the same homomorphism in

(co)homology
H∗( f ) = H∗(g) H∗( f ) = H∗(g).

Given three (co)chain complexes A, B and C we say that they form a short exact sequence
of (co)chain complexes

0 → A → B → C → 0

if, for every index i, the following commutative diagram has exact rows

...
...

...

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0

...
...

...

(with the corresponding change of direction for cochains). It is an exercise of diagram chasing
derived from the snake lemma to show that this short exact sequence of (co)chains determine
long exact sequences in (co)homology

· · · → Hn+1(C)
δ−→ Hn(A) → Hn(B) → Hn(C) → · · ·

· · · → Hn(C) δ−→ Hn+1(A) → Hn+1(B) → Hn+1(C) → · · ·

where the δ maps are called (in analogy to the topological case) connecting homomorphisms.
Recall that the bifunctor HomR(·, ·) is covariant in the first component and contravariant

in the second. As such, if we fix an R-module A, and we apply the functor HomR(·, A) to a
chain complex (C∗, d∗) we obtain a cochain complex where, for each i, the functor inverts the
direction of the differential, i.e. we get

HomR(Ci, A)
HomR(·,A)(di)−−−−−−−−→ HomR(Ci+1, A).

Recall also that HomR(·, A) is not an exact functor (i.e. it doesn’t preserve exact sequences of
R-modules) but it is instead left exact. That means that, for any right exact sequence

M′ → M → M′′ → 0
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the induced sequence

0 → HomR(M′′, A) → HomR(M, A) → HomR(M′, A)

is exact. We will use both such fact in a short while to define the Ext groups and, consequently,
the cohomology of groups.

2.1.2 Projective modules and Ext groups

We need a specific kind of R-modules and chain complexes in order to give a precise definition
of the cohomology of the group. In this subsection we will introduce the notion of projective
modules and projective resolutions, and we will use them to build the Ext groups.

Definition 2.1.7. Let R be a ring, and P an R-module. We say that P is a projective module

if, for every R-linear map P
g−→ N and any short exact sequence of R-modules M

f−→ N → 0
there exists an unique R-linear map h : P → N making the following diagram commutative:

P

M N 0

h g

f

In particular, every free R-module F is projective.

Let now I be an R-module. We say that I is an injective module if, for any short exact

sequence of R-modules 0 → M
f−→ N and any R-linear map αM → I there exists an unique

R-linear map λ : M → I making the following diagram commutative:

I

0 M N
f

α
λ

Let P be a R-module. It is not difficult to show that the following are equivalent conditions
of projectiveness of P to that of the definition above.

• There exists a R-module Q such that P ⊕ Q is a free R-module.

• Every exact sequence of R-modules 0 → A → B
f−→ P → 0 is split exact, i.e. there is a

R-module homomorphism g : P → B such that f ◦ g = idP.

• The functor HomR(P, ·) is exact.

Definition 2.1.8. Let R be a ring, and M a (left) R-module.
We say that a projective resolution of M is an exact sequence

P : · · · → P2 → P1 → P0 → M → 0

such that Pi is a projective R-module for every i ≥ 0.
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Conversely, for an injective resolution of M we understand an exact sequence

J : 0 → M → J0 → J1 → J2 → · · ·

where Ji is an injective R-module for every i ≥ 0.

Given an arbitrary R-module M we may always construct an associated projective resolu-

tion in a very straightforward manner. Start choosing an epimorphism F0
d0−→ M, where F0 is

a free module that surjects onto M, and consider its kernel K0 = ker d0. Now choose another

free module F1 with an epimorphism F1
f1−→ K0, and consider in turn its kernel K1 = ker f1.

Proceeding iteratively, we obtain a projective (in this case actually free) resolution of the form

· · · Fn · · · F2 F1 F0 M 0

Kn−1 K1 K0

dn

fn

d2

f2

d1

f1

d0

The kernels Ki are called the syzygies of the resolution (colourful name borrowed from Greek
by Cayley but mostly popularized later on by Hilbert), and are key pieces for many techniques
of studying projective resolutions in classic homological algebra. As for the injective case,
it is also possible to prove that for every R-module it is possible to construct an injective
resolution, though in this case the proof is less straightforward.

Of course, as it becomes apparent from the procedure just described, projective resolutions
are by no means unique. In fact, each step of the construction involved a particular choice,
which means that the range of possible resolutions of that sort that can be constructed for
a giving module can be significantly large. As it turns out, it matters not, as all of them are
chain homotopy equivalent.

Theorem 2.1.9 (The comparison theorem). Let P• → M and Q• → M two different projective
resolutions of an R-module M. Then P• and Q• are chain homotopy equivalent, i.e. there exist chain
maps

ϕ : P• → Q• ∧ ψ : Q• → P•

lifting the identity on M and such that

ψ ◦ ϕ ≃ idP• ∧ ϕ ◦ ψ ≃ idQ• .

We can now proceed to define the Ext groups.

Definition 2.1.10. For a ring R the n-th extension bifunctor

ExtR(·, ·) : R-Mod → Ab

from the category of R-modules to the category of abelian groups is defined as the right-
derived functor of HomR(·, ·). Specifically, let M and N be two left R-modules, and P• → M
a projective resolution of M. We define the nth-extension group of M and N by

Extn
R(M, N) = Hn(HomR(P•, N)

i.e. the n-th cohomology group of the cochain complex HomR(P•, N).
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Proposition 2.1.11 (Basic properties of Ext). Let M, M1, M2 and N, N1, N2 be left R-modules,
and let n ∈ N. Then the following properties hold:

(a) Ext0
R(M, N) ∼= HomR(M, N).

(b) Any homomorphism of R-modules f : M1 → M2 induces a group homomorphism

f ∗ : Extn
R(M2, N) −→ Extn

R(M1, N).

Conversely, any homomorphism of R-modules g : N1 → N2 induces a group homomorphism

g∗ : Extn
R(M, N1) −→ Extn

R(M, N2).

(c) Consider a short exact sequence of R-modules

0 → A → B → C → 0.

As a consequence of the long exact sequence in cohomology, there are exact sequences

0 → HomR(M, A) → HomR(M, B) → HomR(M, C)

→ Ext1
R(M, A) → Ext1

R(M, B) → ...

0 → HomR(C, N) → HomR(B, N) → HomR(A, N)

→ Ext1
R(C, N) → Ext1

R(B, N) → ...

(d) If P is a projective R-module, then Extn
R(P, N) = 0 ∀n ≥ 1.

(e) If J is an injective R-module, then Extn
R(M, J) = 0 ∀n ≥ 1.

(f) For any collection {Q1, · · · , Qn}i∈I of R-modules we have

Extn
R(
⊕
i∈I

Qi, M) ∼= ∏
i∈I

Extn
R(Qi, M) Extn

R(M,
⊕
i∈I

Qi) ∼=
⊕
i∈I

Extn
R(M, Qi)

Consider two rings R, S with an inclusion R ⊂ S. It is obvious that any S module can be
regarded as an R module just by restriction of scalars. However, it is possible to go also in the
opposite direction. There are two ways of performing this, depending of the interpretation of
what ”enlarging" should mean, but here we will just make use of one of them, the so called
extension of scalars. Given an R-module M, form the tensor product S ⊗R M, where S is seen
as a right R-module, and then use the left operation of S on itself to turn the tensor product
into an S-module, by putting

s · (s′ ⊗ m) := ss′ ⊗ m

for s, s′ ∈ S and every m ∈ M. We say that S ⊗R M is the S-module obtained from M
by extension of scalars. It is an obvious enlargement of M in the sense that there exists a
canonical R-module homomorphism

i : M → S ⊗R M m 7→ 1 ⊗ m.
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It is characterized by means of an universal property: given N an S-module, and an R-module
homomorphism f : M → N there is an unique S-module homomorphism g : S ⊗R M → N
making the following diagram commutative

M S ⊗R M

N

i

f
g

(2.1.1)

2.2 Group cohomology

In this section we will recall the very basics of the vast field of group cohomology. The
standard bibliographic reference for the interested non-expert reader is the famous and
notoriously beautiful textbook by K. Brown [22]. We begin, as it is mandatory, by recalling
the definition of ring group and group modules.

Definition 2.2.1. Let G be a group (written here multiplicatively). The (integral) group ring
of G is the ring Z[G] whose underlying abelian group is the free Z-module

⊕
g∈G Z freely

generated by G, and whose multiplication is the Z-linear extension of the operation in G, i.e.

· : Z[G]× Z[G] Z[G](
∑

h∈G
mhh, ∑

k∈G
nkk

)
∑
g∈G

(
∑

hk=g
mhnk

)
g.

Definition 2.2.2. A (left) Z[G]-module (also sometimes called G-module) consists of an
abelian group A which carries a G-representation, i.e. such that there exists an action of the
group G on A through a map · : G × A → A satisfying

1 · a = a, g · (a + b) = g · a + g · b, (g · h) · a = g · (h · a) ∀g, h ∈ G ∧ a, b ∈ A.

It is straightforward to check that this action extends to an operation of the group ring
Z[G] on A endowing A with a module structure with respect to the ring Z[G] in the usual
sense, hence justifying the definition just provided. Naturally, a homomorphism of Z[G]-
modules α · A → M is just a homomorphism between abelian groups that satisfies

α(ga) = gα(a) ∀g ∈ G, a ∈ A.

We say that a G-module A has a trivial module structure if ga = a for all g ∈ G and all
a ∈ A. Of particular relevance is the so called augmentation map

ε : Z[G] Z

∑
g∈G

mgg ∑
g∈G

mg
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where Z is regarded as a trivial Z[G]-module. The kernel of this module homomorphism is
called the augmentation ideal of Z[G]

K = ker ε = Span({g − 1| g ∈ G}).

One way to construct G-modules that will be of particular interest for us is by means of
linearization of permutation representations. For any G-set X, one can form the free abelian
group generated by X, denoted by Z[X], and extend the action of G on X to a linear action
of G on Z[X], in a manner completely analogous to the one in the definition of the group
ring. In fact, it is obvious that the group ring is just a particular case when the G-set consider
is G itself with the natural action on itself. The Z[G]-module that results from it is called a
permutation module of X.

There is one example of such modules that will be crucial for us in the future.

Example 2.2.3. Let G be a group, and H ≤ G. The set of lateral cosets G/H is a natural G
set with G acting by left translation. As such, one can construct the associated permutation
module Z[G/H].

Furthermore, notice that the operation of disjoint union of G-sets corresponds with
the direct sum operation in the category of Z[G]-modules. Consequently Z[⨿i∈J Xi] =⊕

i∈J Z[Xi]. As the action of G on a G-set X induce a natural decomposition as a disjoint union
of orbits, we see that every permuation module decomposes as Z[X] ∼=

⊕
x∈X Z[G/Gx] where

x ranges over the representatives of orbits of the G-action. and Gx stands for the isotropy
subgroup of x (see (2.3.1) for a precise definition). As a consequence, for every free G-set
X, the permutation module Z[X] is a free Z[G]-module. In particular, for every subgroup
H ⩽ G it follows that Z[G] is a free Z[H]-module with basis the set of representatives of the
H-cosets of G. Indeed, every free Z[G]-module F can be seen as a free Z[H]-module, just
consider F ∼=

⊕
J Z[G] ∼=

⊕
J(
⊕

E Z[H]), where E here stands for the set of representatives of
H-cosets. As every projective Z[G]-module P is a direct summand of a free Z[G]-module,
F = P ⊕ P′, we observe that P is also Z[H]-projective, hence it follows that any projective
Z[G]-projective resolution is also a Z[H]-projective resolution.

We can now recall the standard definition of cohomology of a group G, in terms of the
ExtZ[G] groups of Z[G]-projective resolutions of Z.

Definition 2.2.4. Let G be a group, A a Z[G]-module and n ∈ Z. Take a Z[G]-projective
resolution of Z as a trivial Z[G]-module P• → Z. We define the n-th cohomology group of
G with coefficients in A, written Hn(G, A), by

Hn(G, A) := Hn(HomZ[G](P•, A)) = Extn
Z[G](P•, A).

By the comparison theorem, 2.1.9, it is straightforward that such notion is well defined, as
the chain homotopy between two projective resolutions of Z prescribed by the comparison
theorem induces a (canonical) isomorphism at the level of Ext groups. Notice that, given the
contravariance of the HomZ[G]-functor on the second coordinate, if we look at the first terms
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of a Z[G]-projective resolution of Z under its transformation by HomZ[G](·, A), we have a
left exact sequence

0 → HomZ[G](Z, A) → HomZ[G](P0, A) → HomZ[G](P1, A)

from which we can easily infer the identification

H0(G, A) = HomZ[G](Z, A) = AG (2.2.1)

where AG just stands for the invariants of A with respect to the action of G (see next section
for the precise definition).

Remark 2.2.5. For any Z[G]-module A (with group structure denoted here additively) define
the notion of crossed homomorphism as a map ϕ : G → A satisfying the condition

ϕ(gh) = ϕ(g) + (g · ϕ(h)) ∀g, h ∈ G.

The crossed homomorphisms are sometimes called derivations, hence the classic notation of the
set of all crossed homomorphisms with respect to A as Der(G, A). A principal homomorphism,
in turn, it is defined as a map ϕ : G → A satisfying ϕ(g) = g · a − a for some a ∈ A. It is
immediate to see that every principal homomorphism is also a crossed homomorphism. The
set of all principal homomorphism to A is denoted by P(G, A).

It is known that the first cohomology group of G with coefficients in A corresponds with
the equivalence classes of crossed homomorphisms with respect to principal homomorphisms,
i.e

H1(G, A) ∼= Der(G, A)
/

P(G, A)

(see for example [22, Chapter IV, Section 2]). Later in the dissertation (see Proposition 4.2.12)
we will give an analogue to this characterization for relative cohomology.

For any pair of Z[G]-modules M, N there exists a natural diagonal action of G on the
groups HomZ(M, N), exploiting the bifunctoriality of HomZ(·, ·) and the fact that G acts on
both coordinates. Such action is explicitely determined by the expression

(g f )(m) := g f (g−1n) g ∈ G, f ∈ HomZ(M, N), m ∈ M.

From this action, the following identification is straightforward

HomZ[G](M, N) = HomZ(M, N)G. (2.2.2)

In particular, by virtue of the well-known Hom-Tensor adjunction, for any other Z[G]-module
Q we know that

HomZ(M ⊗ Q, N)G ∼= HomZ(M, HomZ(Q, N))G

so observe that, as a consequence of (2.2.2) we have the isomorphism

HomZ[G](M ⊗ Q, N) ∼= HomZ[G](M, HomZ(Q, N)). (2.2.3)

The diagonal G-action over the Hom groups defined above also translates into a helpful
property for working with the Ext-groups.
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Proposition 2.2.6 ([22] Proposition III.2.2). Let M and N be G-modules. If M is Z-torsion free
then

Ext∗Z[G](M, N) ∼= H∗(G, HomZ(M, N))

where G acts diagonally on HomZ(M, N).

Consider a subgroup inclusion H ↪→ G. As we mentioned in the first section of this
chapter, any Z[G]-module A inherits an obvious structure as Z[H]-module just by restriction
of scalars. We will call this the restriction module with respect to H, denoted by ResG

H(A).
Moreover, given a Z[H]-module M, from the obvious ring inclusion Z[H] ↪→ Z[G] coming
from the subgroup inclusion we can, as well, consider the process of extension of scalars. The
output is what is known as the induction module with respect to H

IndG
H(M) := Z[G]⊗Z[H] M.

2.2.1 K(G, 1)-spaces

Definition 2.2.7. Let G be a group. In the following we will say that a space X is of type
K(G, 1) if its homotopy groups satisfy

πi(X) ∼=

G if i = 1,

{0} if i ̸= 1.

If the space X is taken as a CW complex (as it will always be our case), an immediate
consequence of Whitehead’s theorem is that the homotopy type of X is determined by the
isomorphism class of G, hence any two K(G, 1) CW complexes are homotopically equivalent.
As a result, by abuse of notation, we will also write K(G, 1) as a space instead of X if our
considerations are independent of the chosen model space of type K(G, 1). We say that
such space K(G, 1) is an aspherical space, or an Eilenberg-MacLane space associated to G or,
equivalently, the classifying space of G, and it is sometimes also denoted by BG. The universal
cover of BG will be denoted by EG, and it is sometimes called the total space of G. The
classifying property that gives BG its name states that, for any principal G-bundle f : X → Y
(see precise definition later this chapter) there exists a map φ : Y → BG (called classifying map)
such that the following commutative square is a pullback diagram

X EG

Y BG.

f p

φ

One way to visualize a CW structure on EG is by regarding it as the ∆-complex (or
weak simplicial complex) having for n-simplices the ordered (n + 1)-tuples of elements
of G, [g0, g1, · · · , gn]. The attaching of such a n-simplex to (n − 1)-simplices of the form
[g0, · · · , ĝi, · · · , gn] (where ĝi denotes that the vertex gi is removed) is performed in the same
way a standard n-simplex attach to its faces. Notice that the following assignment

[g0, g1, · · · , gn] → [1, g0, g1, · · · , gn]
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defines an extra degeneracy in EG

s−1 : EGn → EGn+1

and so EG is a contractible space (see, for example, [65, Lemma III.5.1]). There is an obvious
left action of G on EG, defined, for any g ∈ G, by

g([g0, g1, · · · .gn]) = [gg0, gg1, · · · , ggn].

It is immediately seen that only the identity element sends any tuple to itself, and so it is easy
to check that this constitutes a covering space action. Therefore, the space EG is the universal
cover of its quotient under the orbit map by this action. Thus we can define, without loss
of generality, BG = EG/G. Given that the left G-action on EG consist basically on freely
permuting the simplices, the ∆-complex structure of EG is naturally inherited by BG. Since
all the vertices of EG are identified to each other through the action of G, we can consider BG
as having just one vertex.

Remark 2.2.8. Recall that every ∆-complex X can be understood as a CW-complex in which
each cell en

α is equipped with a distinguished characteristic map of the form

σα : ∆n → X

satisfying that its restriction to each face ∆n−1 of ∆ is the corresponding distinguished map
σβ for some (n − 1)-dimensional cell en−1

β . As such, we can just look at ∆-complexes as
CW-complexes with an extra layer of combinatorial information.

This construction is usually very big and, as such, it can be useful to have other possible
models for EG in mind. One of the most prevalent in the literature is the so called Milnor
construction, first presented in the celebrated article [100]. This model is defined as the infinite
join of the group G with itself, i.e.

EG := colimn(G ∗ G ∗ · · · ∗ G︸ ︷︷ ︸
n

) = ∗∞G (2.2.4)

Regardless of the model considered, by the contractibility of EG, the associated cellular chain
complex of EG augmented over Z is, obviously, a Z[G] free (hence projective) resolution of
the trivial Z[G]-module Z. Therefore, by the comparison theorem, we immediately observe
that the purely algebraically defined notion of cohomology of a group G with coefficients
in a Z[G]-module A admits an obvious topological interpretation as the singular (cellular)
cohomology of the associated K(G, 1)-space with local coefficient system A

H∗(G, A) = H∗(K(G, 1); A)

In particular, there is an obvious free resolution F∗ → Z of Z coming from the ∆-complex
structure of EG, known as the standard resolution, F∗ = {F∗, ∂∗}. For each n > 0 the module
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Fn is the free Z-module generated by the (n + 1)-tuples [g0, g1, · · · , gn] of elements of G, with
the previously defined G-action, and the boundary operator is defined as

∂n : Fn → Fn−1 ∂n = Σn
i=0(−1)idi

where the di are induced by the face maps of the original ∆-complex, i.e.

di([g0, g1, · · · , gn]) = [g0, g1, · · · , ĝi, · · · , gn].

Definition 2.2.9. Let G be a group, we define the cohomological dimension of G, denoted by
cd(G), as one of the following equivalent conditions:

cd(G) =

inf{n ∈ Z| Z admits a Z[G]− projective resolution of length n}

sup{n ∈ Z| Hn(G, A) ̸= 0 for some Z[G]− module M}

The geometric dimension of G, denoted by gd(G) is defined as the minimal dimension of a
model of BG.

Remark 2.2.10. Notice that if G is a discrete group with torsion, it contains an isomorphic
copy of a non trivial cyclic group. But any such cyclic group has infinite periodic projective
resolution (see for example [22, Example III.1.2]), hence infinite cohomological dimension.
Therefore, only groups without torsion can be cohomologically finite.

Since the cellular chain complex of EG yields a free (hence projective) resolution of Z as
trivial Z[G]-module, we clearly have the inequality

cd(G) ≤ gd(G).

What about the equality? The exact relationship between both dimensions is described
by a beautiful result due to S. Eilenberg and T. Ganea, appearing as Theorem 1 in their
celebrated article [47]. As Eilenberg and Ganea limited themselves to state the theorem,
without demonstration, we refer the readers to [22, Theorem VIII.7.1] for a comprehensive
and thoroughly detailed proof.

Theorem 2.2.11 (Eilenberg-Ganea theorem for cohomological dimension). Let G be a discrete
group and put n := max{cd(G), 3}. Then there exists an n-dimensional K(G, 1)-space. That is, for
cd(G) ≥ 3 we always have the equality

gd(G) = cd(G).

It is important to remark that, by the Stallings-Swan theorem (see [113] and [114]) we
know that a group G has cd(G) = 1 if and only if G is free, and any free group has a
one dimensional model for BG, given by a wedge of circles, so the equality between both
dimensions is preserved. Consequently, only the case cd(G) = 2 is still unknown. This leads
to the formulation of the famous Eilenberg-Ganea conjecture.
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Conjecture 2.2.12 (The Eilenberg-Ganea conjecture). If cd(G) = 2 then there is a 2-dimensional
K(G, 1).

The investigation of the Eilenberg-Ganea conjecture goes way beyond the scope of this
dissertation. For our purposes, it just suffices to keep in mind that, in some situations, we
have to adress the possible occurence of the problematic case of cd(G) = 2 in our formulation
of dimension-related hypothesis on groups.

In the setting of topological complexity, the main groups that will be involved are those
whose cohomological dimension is finite. By our discussion above, this implies that the
geometric dimension of their classifying spaces is finite as well.

Definition 2.2.13. A group G is called geometrically finite if there exists a finite CW complex
of type K(G, 1).

2.2.2 The Cohomology ring

To close this section, let us very briefly remind the notion of cup product in group cohomology
(we assume previous knowledge of the topological definition for cellular cohomology of
topological spaces, see for example [74, Section 3.2, Chapter 3]), which turns the cohomology
of a group into a (graded) commutative ring, and that will be of frequent use later on. We will
just sketch the construction and mention the main properties, and we will not delve deeply
into the details.

Notice that, if we have two different Z[G]-projective resolutions P∗ → Z and Q∗ → Z,
its tensor product P∗ ⊗ Q∗ → Z, where G is acting diagonally by components (indeed
acting by restriction of scalars with respect to the diagonal inclusion G → G × G) is also a
Z[G]-projective resolution.

Let M and N be a pair of Z[G]-modules, and P∗ and Q∗ two Z[G]-projective resolutions
of Z. We can define a product at cochain level, called the cross-product by

× : HomZ[G](P∗, M)⊗ HomZ[G](Q∗, N) HomZ[G×G](P∗ ⊗Q∗, M ⊗ N)

f ⊗ g ( f × g) :=
[
(x, y) 7→ (−1)|g|·|x|( f (x)⊗ g(y))

]
where here |g| and |x| denote the degree of g and x, respectively. It is easy to show that
the product of two cocycles is again a cocycle whose cohomology class depends just on the
classes of the given ones, so this product induces a subsequent cross product in cohomology

× : Hm(G, M)⊗ Hn(G, N) → Hm+n(G × G, M ⊗ N)

Consider now that P∗ = Q∗. There is, a priori, not obvious map from P∗ to P∗ ⊗ P∗, but
by the comparison theorem we know that there exists an augmentation-preserving map
d∗ : P∗ → P∗ ⊗P∗, and that any two chain maps of this kind are chain homotopy equivalent.
Any such map of this type is called a diagonal approximation. In particular, if P∗ is taken as the
standard resolution F∗, there is a well known diagonal approximation ∆ : F∗ → F∗ ⊗ F∗ called
the Alexander-Whitney diagonal map, whose explicit expression is determined by the formula:
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∆([g0, · · · , gn]) :=
n

∑
k=0

[g0, · · · , gk]⊗ [gk, · · · , gn] (2.2.5)

(see more details in [22, p. 108]).
The cup product at cohomology level will be induced in turn by a cochain cup product,

defined by composing the cochain cross product previously introduced with a diagonal
approximation. In particular, if we are using the standard resolution, for two cochains
u ∈ HomZ[G](F∗, M) and v ∈ HomZ[G](F∗, M) we can define its product by

u ∪ v := (u × v) ◦ ∆

where here ∆ denotes specifically the Alexander-Whitney diagonal map 2.2.5. We are now
prepared to recall the definition of the cup product in group cohomology.

Definition 2.2.14. Let G be a group, ∆ : G → G × G the diagonal inclusion, M and N be two
Z[G]-modules, and consider two cohomology classes u ∈ Hp(G, M) and v ∈ Hq(G, N). We
define the cup product of u and v (denoted by u ∪ v) to be the element

∆∗(u × v) ∈ Hp+q(G, M ⊗ N)

and M ⊗ N is regarded as a Z[G]-module through the diagonal action of G.

As later in the text we intend to introduce a relative analogue of the cup product for a
different cohomology theory, we need to summarize the properties that characterize such
product. In the next theorem we list them.

Theorem 2.2.15 (Chapter V.3 of [22]). The cup product satisfies the following properties:

(1) Dimension 0: The cup product H0(G, M)⊗ H0(G, N) → H0(G, M ⊗ N) is the map

MG ⊗ NG → (M ⊗ N)G

induced by the inclusions MG ↪→ M and NG ↪→ N.

(2) Naturality with respect to coefficient homomorphisms: Given Z[G]-module homomorphisms
f : M → M′ and g : N → N′ and cohomology classes u ∈ H∗(G, M) and v ∈ H∗(G, N) we
have

( f ⊗ g)∗(u ∪ v) = f∗(u) ∪ g∗(v).

(3) Compatibility with the connecting homomorphism: Let 0 → M′ → M → M′′ → 0 be a
short exact sequence of Z[G]-modules and let N be a Z[G]-module such that the sequence

0 → M′ ⊗ N → M ⊗ N → M′′ ⊗ N → 0

is exact. Then we have δ(u ∪ v) = δ(u) ∪ v for any u ∈ Hp(G, M′′) and v ∈ Hq(G, N), and
where δ here stands for the connecting homomorphism.

Similarly, if 0 → N′ → N → N′′ → 0 is a short exact sequence such that

0 → M ⊗ N′ → M ⊗ N → M ⊗ N′′ → 0

is exact then δ(u ∪ v) = (−1)pu ∪ δ(v) for any u ∈ Hp(G, M) and Hq(G, N′′).
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(4) Existence of identity: The element 1 ∈ H0(G, Z) = Z satisfies 1 ∪ u = u ∪ 1 = u for all class
u ∈ H∗(G, M).

(5) Associativity: Given ui ∈ H∗(G, Mi) for 1 ≤ i ≤ 3 we have (u1 ∪ u2) ∪ u3 = u1 ∪ (u2 ∪ u3).

(6) Graded commutativity: For any classes u ∈ Hp(G, M) and v ∈ Hq(G, N) we have

u ∪ v = (−1)pq(v ∪ u).

2.3 G-spaces and classifying spaces of families of subgroups

We will review here the basic notions of G-spaces and equivariant maps, with a special focus
on the notion of classifying space with respect to certain families of subgroups of G, and the
equivariant cohomology theory due to Bredon associated to them. The standard references
for the reader who wish to deepen their knowledge on the subject are the textbooks of W.
Lück ([93], see also his great and compact survey on the topic [92]) and T. tom Dieck [37]. For
the basics of Bredon cohomology theory, of course we refer to the seminal book of G. Bredon
himself, [20].

Definition 2.3.1. A G-space X is a topological space equipped with a group action by G such
that, for each g ∈ G we have that g : X → X is a continuous map. For each subgroup H ≤ G
we denote by XH the set of all invariant points under H, that is

XH = {x ∈ X | hx = x, ∀h ∈ H}.

We say that a G-space X is G-connected or G-simply connected if, for each subgroup
H ≤ G, the invariant space XH is, respectively, connected or simply connected.

For each point x ∈ X we can define the isotropy subgroup at x, denoted by Gx, as the
subgroup of G of the form

Gx = {g ∈ G | gx = x}. (2.3.1)

If instead of fixing a point we require fixing a whole subspace Y ⊂ X, we can consider the
isotropy subgroup of Y by

GY = {g ∈ G | gy = y, ∀y ∈ Y}.

A G-equivariant map (also called simply G-map) f : X → Y between G-spaces X and
Y is a continuous map satisfying f (gx) = g · f (x) for any g ∈ G and x ∈ X. For any
two G-equivariant maps f0, f1 : X → Y we say that they are G-homotopic if there exists a
G-equivariant homotopy between them, i.e. a continuous G-map

F : X × I → Y, F(x, 0) = f0(x) ∧ F(x, 1) = f1(x) ∀x ∈ X

where we consider G acting trivially on the unit interval I. Evidently, for two G-spaces X and
Y a G-homotopy equivalence is a G-equivariant map f : X → Y with a G-homotopy inverse,
i.e. a G-map in reverse direction g : Y → X such that g ◦ f is G-homotopic to idX and f ◦ g is
G-homotopic to idY.
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Definition 2.3.2. A G − CW-complex X is a G-space together with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆
⋃
k≥0

Xk = X

such that X is equipped with the colimit (or final) topology with respect to such filtration,
and with Xn obtained from Xn−1, for each n ≥ 0, by a process of attaching equivariant
n-dimensional cells, that is, such that there exists a pushout diagram of G-maps of the form

⨿
i∈In

G/Hi × Sn−1 Xn−1

⨿
i∈In

G/Hi × Dn Xn

⨿i∈In qn
i

⨿i∈In Qn
i

(2.3.2)

For each n, the space Xn is called the n-skeleton, in complete analogy to the non-equivariant
case.

There is an analogue of the classic Whitehead theorem for equivariant cellular complexes,
see for example [97, Chapter 1, Theorem 3.2].

Theorem 2.3.3 (Equivariant Whitehead Theorem). Let f : Y → Z be a G-map between G-CW-
complexes such that for each H ≤ G and for any basepoint x0 ∈ YH the induced map

πi(YH, x0) → πi(ZH, f (x0))

is an isomorphism for all i < k and an epimorphism for i = k. Then for any G-CW-complex X the
induced map on the set of G-homotopy classes

f∗ : [X, Y]G → [X, Z]G

is an isomorphism if dim X < k, and an epimorphism if dim X = k.

Definition 2.3.4. Let B be a topological space, and suppose P is a G-space equipped with a
G-equivariant map p : P → B where G acts trivially on B, (i.e. p factors uniquely through the
orbit space P/G). We say that (P, p, B) is a principal G-bundle if B has a covering by open sets
{Ui}i such that there exist G-equivariant homeomorphisms

ϕUi : p−1(Ui) → Ui × G

making the following diagram commutative

p−1(Ui) U × G

Ui

ϕUi

p
ρ
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The requisite required in the definition above is called the local triviality condition. Here
U × G has a (right) G-action determined by the natural action of G on itself, that is, defined
by (u, g)h = (u, gh). Notice that this is implying that G acts freely on P and that p factors
through a homeomorphism p : P/G → B. Therefore, a principal G-bundle is just a locally
trivial free G-space P with orbit space B.

Every G-space X determines an obvious principal G-bundle (X, ρ, X/G) via the orbit
projection map. If we consider another G-space Y, and a G-equivariant map f : X → Y, we
define the quotient map associated to f as the map induced between the orbit spaces by f , i.e.

ρ f : X/G → Y/G ρ f (xG) = f (x)G.

Definition 2.3.5. Let (P, p, B) be a principal G-bundle, and F a (left) G-space. We can consider
a (right) action of G on P × F by (x, y)g = (xg, g−1y) for (x, y) ∈ X × F and g ∈ G. Put
PF := (P × F)/G under the action just defined, and let pF : PF → B be the factorization of the
composition

P × F πP−→ P
p−→ B

by the projection P × F → PF. Then we call (PF, pF, B) the fibre bundle over B with fibre F, with
associated principal G-bundle (P, p, B). The group G is called the structure group of the fibre
bundle.

Thye following theorem yields a criteria to measure the sections of fibre bundles, and will
be instrumental later on in this dissertation.

Theorem 2.3.6 (Chapter 4, Theorem 8.1 of [78]). Let G be a group, (P, p, B) a principal G-bundle
and (PF, pF, B) a fibre bundle with structure group G constructed as above. The sections of the fibre
bundle (PF, pF, B) are in bijective correspondence with maps

ϕ : P → F ϕ(xg) = g−1ϕ(x) x ∈ P, g ∈ G.

The cross section corresponding to each ϕ is defined by

sϕ(xG) := (x, ϕ(x))G ∈ PF.

Given a group G and any subgroup H ⩽ G, consider EG, the total space of G, seen as an
H-space with the action induced by the subgroup inclusion ι : H → G. The orbit projection
map under this action EG → EG/H is a principal H-bundle, with contractible total space.
Thus, one observes that EG/H is a model for the classifying space BH. Furthermore, the
projection EG/H → BG with respect to the residual G-action is a fibration with fiber the
coset space G/H. Consequently, we have that, up to homotopy, there exists a fibration

G/H → K(H, 1)
K(ι,1)−−−→ K(G, 1)
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2.3.1 Classifying spaces with respect to subgroup families and Bredon cohomol-
ogy

Recall that a family F of subgroups of G is said to be full provided that it is non-empty and
is closed under conjugation and the taking of subgroups. This also entails the fact that the
family is closed under taking intersections as well. We will write ⟨H⟩ for the smallest full
family of subgroups of G containing H.

Definition 2.3.7. The classifying space of G with respect to F is a G-CW complex EFG satisfying
the following conditions:

• every isotropy group of EFG belongs to F ,

• Universal property: for any G-CW complex X with all isotropy groups in F there exists a
unique (up to G-equivariant homotopy) G-equivariant map X → EFG.

In particular, there is a unique G-equivariant map EG → EFG, where EG is the classifying
space of G with respect to the family consisting of the trivial subgroup, or, in other words, the
universal cover of a K(G, 1) space. Observe as well that for any subgroup H ⩽ G the family
F ∩ H = {K ∈ F | K ⩽ H} is, in turn, a full family of subgroups of H. Consequently, EFG is
a H-space when considering the action of H induced by the subgroup inclusion, and since F
is closed under taking subgroups and intersections, EFG is also a model for EF∩H H. Further
properties of EFG are discussed at length in [92].

There are many possible ways to construct models for the classifying space EF (G), and we
will recall two of them that will be useful in Chapter 4. Let {Hi}i be a collection of subgroups
of G, and consider the family generated by this set, ⟨{Hi}i⟩ , i.e. the family consisting of all
the subgroups of the members of {Hi}i and all their conjugates by elements of G. Put

∆⟨{Hi}⟩ := ⨿
i

G/Hi.

For this family, J.A. Arciniega-Nevárez and J.L. Cisneros-Molina built the following model:

Proposition 2.3.8 (Proposition 4.16 of [4]). A model for E⟨{Hi}i⟩(G) is the geometric realization of
the simplicial set whose n-simplices are the ordered (n + 1)-tuples (x0, · · · , xn) of elements of ∆⟨{Hi}⟩.
The face operators are given by

di(xo, · · · , xn) = (x0, · · · , x̂i, · · · , xn)

and the degeneracy operators are defined by

si(x0, · · · , xn) = (x0, · · · , xi, xi, · · · , xn).

The action of any g ∈ G on an n-simplex (x0, · · · , xn) gives the simplex (gx0, · · · , gxn).

Also, for the particular case of the family ⟨H⟩, as explained by J. V. Blowers in [18, Section
IV], one possible model for the classifying space E⟨H⟩(G) is the Milnor-Blowers construction
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which is defined, in close similarity to the original Milnor join model for EG (recall (2.2.4)) as
the infinite join of the coset space by H, i.e.

E⟨H⟩(G) ≃ ∗∞(G/H) (2.3.3)

Let us briefly review now the definition of Bredon cohomology. In order to do so, first we
have to introduce the necessary formalism of modules over an orbit category associated to a
group.

Definition 2.3.9. Let G be a group. Define:

• The orbit category of G associated to a family F of subgroups of G, written OrFG, is a
category whose objects are homogeneous G-spaces G/K for K ∈ F , and morphisms
are G-equivariant maps between them.

• A OrFG-module is a contravariant functor from OrFG to the category of abelian groups.

• A OrFG-homomorphism between OrF -modules is, consequently, a natural transforma-
tion.

The category of OrFG-modules inherits the structure of an abelian category from the
category of abelian groups; in particular, the notion of a projective OrFG-module is defined.
If the family contains the trivial subgroup, the principal component refers to evaluating the
module or morphism on the orbit object determined by the trivial group {1} ⊂ G, i.e. on the
G/{1} component.

For every G/K ∈ OrF , we define the free OrF -module based at G/K, denoted by

Z[MapG(G/·, G/K)]

as the OrF -module which assigns to an orbit object G/H the free Z-module

Z[MapG(G/H, G/K)]

generated by the set of G-equivariant maps from G/H to G/K. For any other OrF -module
M there exists, as a consequence of Yoneda’s Lemma, a natural bijection of Z-modules

HomOrF (Z[MapG(G/·, G/K)], M) → M(G/K) given by f 7→ f (G/K)(idG/K).

We say that a OrF -module is free if it is isomorphic to a direct sum of the form⊕
I

Z[MapG(G/·, G/Ki)] (2.3.4)

for an appropiate choice of objects G/Ki ∈ OrF and index set I.

Definition 2.3.10. Let F be a full family of subgroups of G. Given a G-CW complex X
with isotropy groups in F , define the OrF n-cellular group of X as a OrFG-module Cn(X) as
follows.
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• Cn(X)(G/K) = Cn(XK), where Cn(XK) denotes the group of cellular n-chains of XK =

{x ∈ X | kx = x for any k ∈ K}.

• If φ : G/K → G/L is a G-equivariant map, then φ(gK) = gg0L for some g0 ∈ G such
that g−1

0 Kg0 ⊆ L. Consequently, φ induces a cellular map

XL → XK x 7→ g0x,

which descends to the chain level to define a homomorphism

Cn(φ) : Cn(XL) → Cn(XK).

For any n ≥ 1, there is an obvious OrFG-homomorphism dn : Cn(X) → Cn−1(X), and so we
have the OrFG-cellular chain complex (C∗(X), d∗).

According to the pushout attachments in 2.3.2 for each n ≥ 0, and by excision, if we
evaluate these cellular groups at each object G/H ∈ OrF we obtain the chain of isomorphisms

Cn(X)(G/H) ∼= Cn(XH) = Hn(XH
n , XH

n−1)
∼= Hn(⨿

In

(G/Hi)× (Dn, Sn−1))

∼=
⊕

In

Hn((G/Hi)× (Dn, Sn−1)) ∼=
⊕

In

H0((G/Hi)
H)

∼=
⊕

In

Z[(G/Hi)
H ] ∼=

⊕
In

Z[MapG(G/H, G/Hi)].

(2.3.5)

which, in view of 2.3.4, allows us to see that Cn(X) is indeed a free OrF -module for every
n ≥ 0.

We can now introduce the definition of the Bredon equivariant group cohomology theory.

Definition 2.3.11. Using notation from Definition 2.3.10 above, define the Bredon cohomology
of X with respect to the family F and with coefficients in a OrFG-module M as

H∗
F (X, M) = H∗(HomOrF G(C∗(X), M)

)
.

The Bredon cohomological dimension of G with respect to F , denoted cdF G, is the length of
the shortest possible OrFG-projective resolution of Z, where Z is a constant OrFG-module
which sends every morphism to id : Z → Z. Recall that ⟨H⟩ denotes the smallest full family
of subgroups of G containing H.

By considering the evaluation on the principal component, we have a homomorphism of
complexes

HomOrF (C∗(X), A) → HomZ[G](C∗(X), A) (2.3.6)

Notice that if X is a free G-CW complex, it is built by attachment of G-cells without non-trivial
isotropy subgroups. Therefore, the OrF cellular chain complex C∗(X) reduces to the principal
component, and C∗(X) ∼= C∗(X). In that situation, the homomorphism 2.3.6 induces an
isomorphism

H∗
F (X, A) → H∗(X/G, A). (2.3.7)

The following is an analogue to Eilenberg-Ganea theorem in the setting of Bredon equiv-
ariant cohomology:
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Theorem 2.3.12 ([94] Theorem 0.1, see also [92] Theorem 5.2). Let G be a discrete group, F a
semi-full family of subgroups of G, and d ∈ Z such that d ≥ 3. Then there exists a G − CW-model
for EF (G) of dimension lesser or equal to d if and only if cdF (G) ≤ d.

2.4 Basic notions of spectral sequences

As some spectral sequences will be developed later on during this dissertation, we will recall
the most basic definitions needed. This is just a slight glimpse into a notoriously complicated
and technical topic, and we will go no further than introducing the most crucial notions
to understand our arguments. For the reader interested in learning more about the subject
(whose relevance in the field of algebraic topology is beyond any doubt), we refer to the
classic source [98], perhaps the deepest and most thorough general textbook about the topic.
For more specific approaches to the practical usage of tools coming from spectral sequences
on homological algebra or group cohomology, we refer to [22], [116] or [107]. Additionally, for
an elementary survey about practical usage of spectral sequences in the context of algebraic
topology through examples, we recommend a particular favourite of the author of these lines,
[36].

Definition 2.4.1. A differential bigraded module over a ring R is a collection of R-modules
{Ep,q}p,q whith p and q integers, and a bi-graduated map d : E∗,∗ → E∗,∗ called differential,
of bidegree either (s, 1 − s) of (−s, s − 1) for some integer s, satisfying d ◦ d = 0.

The presence of a differential map allows to consider the homology of the bigraded
module. In the case of cohomology (which will constitute our tool of interest) the cohomology
groups associated to such differential are defined, for every value of p and q, in a natural
way:

Hp,q(E∗,∗, d) := ker d : Ep,q → Ep+s,q−s+1
/

Im d : Ep−s,q+s−1 → Ep,q .

Definition 2.4.2. A spectral sequence of cohomological type is a collection of differential
bigraded R-modules {E∗,∗

r , dr} for r ∈ N0. For each r, the differential dr is of bidegree
(r, 1 − r), and for all values of p, q and r we have

Ep,q
r+1

∼= Hp,q(E∗,∗
r , dr).

The bigraded module Ep,q
r receives the name of r-th page of the spectral sequence.

If there is some integer r > 0 such that Ep,q
k

∼= Ep,q
r for all k ≥ r, we say that the spectral

sequence stabilizes at the page r. Hence, we denote Ep,q
∞ := Ep,q

k . This bimodule is usually
called the infinity page of the sequence.

Definition 2.4.3. Given a graded R-module H∗, we say that a spectral sequence {E∗,∗
r , dr}

converges to H∗ if there exists a filtration

0 = F∗H∗ ⊂ · · · ⊂ F1H∗ ⊂ F0H∗ = H∗
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such that for all p and q there is an isomorphism

Ep,q
∞

∼= FpHp+q
/

Fp+1Hp+q

We denote it by Ep,q
r ⇒ H∗.

One of the richest sources for the construction of spectral sequences are double complexes,
as they usually offer practical examples of differential bigraded modules. We proceed to
briefly introduce them now.

Definition 2.4.4. A double complex over a ring R {M∗,∗, d′, d′′} is a bigraded module over R
equipped with two R-linear maps, called directional differentials

d′ : Mp,q → Mp+1,q and d′′ : Mp,q → Mp,q+1 ∀p, q

satisfying

d′ ◦ d′ = 0 d′′ ◦ d′′ = 0 d′ ◦ d′′ + d′′ ◦ d′ = 0

Each double complex M comes with an associated total complex, Tot∗(M) defined by
putting, for each n,

Totn(M) :=
⊕

p+q=n
Mp,q

with total differential d = d′ + d′′. The bidirectionality of the differential of the total com-
plex allows to construct two different spectral sequences associated to its cohomology. Let
H∗,∗

I (M) = H(M∗,∗, d′), i.e.

Hp,q
I = ker d′ : Mp,q → Mp+1,q

/
Im d′ : Mp−1,q → Mp,q

and, analogously H∗,∗
I I = H∗(M∗,∗, d′′), that is

Hp,q
I I = ker d′′ : Mp,q → Mp,q+1

/
Im d′′ : Mp,q−1 → Mp,q

Both H∗,∗
I (M) and H∗,∗

I I (M) are differential bigraded modules with differentials d′′ and d′

induced, respectively, by d′′ and d′. Therefore, we can define bigraded complexes

H∗,∗
I HI I(M) = H(H∗,∗

I I (M), d′) H∗,∗
I I HI(M) = H(H∗,∗

I (M), d′′).

Theorem 2.4.5 (Convergence theorem for first quadrant sequences). Given a double complex
{M∗,∗, d′, d′′} there are two spectral sequences {F∗,∗

r , dF
r } and {G∗,∗

r , dG
r }, satisfying

F∗,∗
2

∼= H∗,∗
I HI I(M) G∗,∗

2
∼= H∗,∗

I I HI(M).

If Mp,q = {0} for p < 0 or q < 0 then both sequences converge to H∗(Tot(M), d).
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2.4.1 Exact couples

We will recall now one of the most useful and simple ways of visualizing spectral sequences,
in the shape of exact couples. Every double complex can be rearranged into an exact couple,
so both approaches are, actually, equivalent, and the use of each approach depends on the
specific case and kind of information that we are interested in.

Definition 2.4.6. Let D and E be bigraded R-modules equipped with module homomor-
phisms

i : D → D j : D → E k : E → D

such that they fit in a commutative diagram

D D

E

i

jk

We say that this is an exact couple, and we denote it by C = {D, E, i, j, k}, if this diagram is
exact at each group, i.e.

Im i = ker j Im j = ker k Im k = ker i.

The exactness property of the couple endowes E with a differential structure as R-module,
with the differential defined as d = j ◦ k. Indeed

d ◦ d = (j ◦ k) ◦ (j ◦ k) = j ◦ (k ◦ j) ◦ k = 0.

As such, we can form an associated derived couple. Allow us just a moment to briefly
describe the process of such formation, and the basic inner working of exact couples. Define

E′ = H(E, d) = ker d
/

Im d D′ = i(D) = ker j.

Also, consider the following readjustment of the original homomorphisms present in the
exact couple

i′ = i|i(D)
: D′ → D′ j′ : D′ → E′ with j′(i(x)) + d(E) ∈ E′

for x ∈ D. Notice that, for x, x′ ∈ D, if i(x) = i(x′) then x − x′ ∈ ker i, and there exists y ∈ E
satisfying k(y) = x − x′. Consequently

(j ◦ k)(y) = d(y) = j(x)− j(x′) and j(x) = j(x′) + d(y)

so j(x) + d(E) = j(x′) + d(E) seen as cosets in E′, which shows that j′ is well defined. Define
as well

k : E′ → D′ by k′(e + d(E)) = k(e).

This map is also well defined: for elements e, e′ ∈ E, if e + d(E) = e′ + d(E) then there exists
some x ∈ E such that e′ = e + d(x), and we see that

k(e′) = k(e) + k(d(x)) = k(e) + (k ◦ j ◦ k)(x) = k(e).
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Additionally, given that d(e) = 0 we know that k(e) ∈ ker j = Im i = D′. We define the
derived couple associated to the exact couple C by C ′ = {D′, E′, i′, j′, k′}. It is just an exercise of
diagram chasing to see that the derived couple C ′ is itself an exact couple: notice that

ker i′ = Im i ∩ ker i = ker j ∩ Im k = k(k−1(ker j)) = k(ker d) = k′(ker d/ Im d) = Im k′.

Given that D′ = i(D) = D/ ker i we also observe the chain of equalities

ker j′ = j−1(Im d)
/

ker i = j−1(j(Im k))
/

ker i

= (Im k + ker j)
/

ker i = (ker i + ker j)
/

ker i

= i(ker j) = i(Im i) = Im i′.

Finally we see that
ker k′ = ker k/ Im d = Im j/ Im d = Im j′.

Once we have seen that exactness is preserved under taking derivation, given an arbitrary
exact couple C it is just natural to iterate the process of taking derivations, which outputs the
nth-derived couple of C,

Cn = {D(n), E(n), i(n), j(n), k(n)}.

Now, since by definition E(n+1) = H(E(n), d(n)) we see the appearance of an obvious spectral
sequence, determined by the differential structure of the exact couple.

Theorem 2.4.7. Let D∗,∗ and E∗,∗ be bigraded R-modules fitting inside an exact couple C =

{D∗,∗, E∗,∗, i, j, k}. Then, there exists a spectral sequence {Er, dr} of cohomological type with Er =

(E∗,∗)(r−1), the (r − 1)-derived module of E∗,∗, and dr = j(r) ◦ k(r).

2.5 Brief reminder of some Lie groups

To conclude this chapter, we will make a quick recollection of the definitions of some basic
Lie groups that will constitute a rich source of examples in Chapter 7, for commodity of the
reader, but without developing their properties. An accessible text on the matter is [73].

Definition 2.5.1. A Lie group (sometimes called continuous group) is a group G with the
structure of a smooth manifold, such that the inversion and multiplication maps

G → G, g 7→ g−1 and G × G → G, (g, h) 7→ gh

are smooth maps.

Many of the classical examples of Lie groups come from the realm of linear algebra, in
the form of matrix groups. Denote the space of n × n-dimensional matrices with entries on
a field F by Mn(F). As the reader surely knows, this is not a group under the operation of
matrix multiplication, as not all of its elements admit a multiplicative inverse. Consequently,
we just have to restrict such space to the largest subset admiting such a group structure.
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Definition 2.5.2. The general linear group of order n over the field F ∈ {R, C}, denoted by
GL(n, F), is the group of all n × n invertible matrices with entries in F, i.e.

GL(n, F) := {A ∈ Mn(F) | ∃B ∈ Mn(F) such that AB = BA = In}.

The special linear group is the (normal) subgroup SL(n, F) ◁ GL(n, F) of invertible matrices
with determinant equal to 1. Let {Ak}k∈J be a sequence of matrices in Mn(F). A matrix Lie
group is a subgroup of the general linear group G ⩽ GL(n, C) with the property that for any
sequence {Ak}k∈J of matrices in G convergent to a matrix A, then either A ∈ G or A is not
invertible.

Observe that the condition imposed on G is actually the same as requesting that G is
a closed subset of GL(n, C). As such, we can equivalently say that a matrix Lie group is a
closed subgroup of GL(n, C). Below we recall the definition of some of the most relevant of
them, the (special) orthogonal and unitary Lie groups, and the symplectic group. Together
with GL(n, F) and SL(n, F), they form the well-known family of classical Lie groups.

Definition 2.5.3. Define the following matrix groups:

(a) The n-orthogonal group over F as the subgroup of the n-general linear group on F of
orthogonal matrices, i.e.

O(n, F) = {A ∈ GL(n, F) | AT A = AAT = In}.

If F = R, it is denoted simply by O(n). If, however, the field of choice is F = C, we
denote O(n, C) = U(n), and we call it the unitary group of degree n.

(b) The special orthogonal group of degree n by

SO(n) := {A ∈ O(n) | det(A) = 1}.

Respectively, the special unitary group of degree n, if the subgroup of U(n) defined by

SU(n) := {A ∈ U(n) | det(A) = 1}.

(c) The simplectic group of degree 2n over F as the group of 2n × 2n-matrices over F preserving
the non-degenerate skew-symmetric bilinear form defined by

ω(x, y) =
n

∑
i=1

(xiyi+n − yixi+n) ∀x, y ∈ Fn

that is Sp(2n, F) = {A ∈ M2n(F) | ω(Ax, Ay) = ω(x, y)∀x, y ∈ Fn}.

Equivalently, the form ω can be written as ω(x, y) = ⟨Ωx, y⟩, where here ⟨, ⟩ denotes the
standard symmetric bilinear form on Fn and

Ω :=

 0 −In

In 0

 .
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The compact symplectic group in degree n, in turn, can be seen as the intersection of the
symplectic group Sp(2n, C) with the 2n × 2n-unitary group

Sp(n) = Sp(2n, C) ∩ U(2n) = Sp(2n, C) ∩ SU(2n).

It is easy to see from the definitions that, for every n ≥ 2, each of the aforementioned
matrix Lie groups at degree n − 1 are closed subgroups of their n-degree versions, i.e.

O(n − 1) ⩽ O(n) U(n − 1) ⩽ U(n) Sp(n − 1) ⩽ Sp(n)

SO(n − 1) ⩽ SO(n) SU(n − 1) ⩽ SU(n)

Furthermore, as both (n) and U(n) are not centerless groups, we can considered their
quotients by their respective centers, which gives us the projective orthogonal and unitary
groups, respectively

PO(n) := O(n)
/

Z(O(n)) PU(n) := U(n)
/

Z(U(n)) .

The usual explicit construction of the spin group, Spin(n), is achieved through its identi-
fication with a subgroup of the group of invertible elements in the n-dimensional Clifford
algebra. As we are just interested in a quick recollection of the definitions, we will instead
describe Spin(n) in the geometric non-explicit way. In that sense, we can see Spin(n) as the
Lie group that, as a manifold, is the universal cover of SO(n). Since π1(SO(n)) = Z2 for
n ≥ 3, this is a double cover, and Spin(n) fits in a short exact sequence of groups

{1} → Z2 → Spin(n)
p−→ SO(n) → {1}.

Indeed, the group operation can be defined in terms of path lifts: the preimage of the
neutral element of SO(n) by the covering map, p−1(1) has two elements and, without loss of
generality, we set one of them to be the identity, which we can denote e. For any two elements
α, β ∈ Spin(n), define their product as follows: choose paths γα and γβ in Spin(n) such that
γα(0) = γβ(0) = e, γα(1) = α and γβ(1) = β. These, in turn, define a path γ in SO(n) by
putting γ(t) := p(γα(t)) · p(γβ(t)). Denote by γ the unique lift of γ to Spin(n) through p,
with γ(0) = e. Then the product can be defined as α · β = γ(1).

The exceptional group G2 is three simple Lie groups, in a complex form, a compact real form
and a split real form. The compact real form, in particular, can be defined in two alternative
but equivalent ways. Define, on the euclidean space R7, the associative 3-form by

ω(u, v, w) := ⟨u, v × w⟩ ∀u, v, w ∈ R7

where here ⟨, ⟩ is again the canonical bilinear form, and v × w stands for the usual cross
product of vectors. Then G2 is defined as the subgroup of GL(7, R) that preserves this 3-form.
Alternatively, G2 can be seen as the automorphism group of the octonions seen as a normed
algebra.
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CHAPTER 3

Topological complexity and sectional category

In this expository chapter we will recall the main definitions and properties of our main
subjects of interest, those of topological complexity, Lusternik-Schnirelmann category and
sectional category, that will be needed for the rest of the dissertation, and we will give some
basic examples of computations. No original results are included here, and we will give
plenty of bibliographic references for the interested reader.

3.1 The motion planning problem

Now we will proceed to turn the intuitive ideas that we outlined in the introduction into
precise definitions. Any mechanical system S determines the array of all its possible states.
Regarding each of them as a point on a space, we naturally obtain a topological space
associated to the mechanical system, known as the configuration space of S. Without loss
of generality we can assume all the spaces to be path connected (otherwise we just have
to part the problem into each of the path-connected components). Obviously, each of the
points of the configuration space X corresponds with a possible state of the system and, as
such, continuous paths between points correspond with continuous motion between states
of the system. As mentioned in the introduction, one of the crucial problems in robotics
is the known as motion planning problem: given two different possible states x and y of the
mechanical system, we strive to produce an algorithm instructing how to transition from x to
y. Such an algorithm is called a motion planner. In the language of the configuration system, a
motion planner in X is an algorithm which, given a pair of points (x, y) ∈ X × X, outputs a
path γ between x and y.

Definition 3.1.1. The free path space of X, denoted by PX, is defined as the set of all continuous
paths in X

PX = {γ : I = [0, 1] → X}
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with the compact open topology. The path space fibration of X is the fibration

π : PX → X × X

given by sending each path to its extreme points, i.e π(γ) = (γ(0), γ(1)).

In view of this definition, a motion planning algorithm can be described as a map s : X ×
X → PX such that π ◦ s = idX×X. Hence, a motion planner is just a section of the path space
fibration π.

However, as we indicated in the introduction, the existence of such a section is far from
the norm and, as a consequence, most spaces do not admit a continuous motion planning
algorithm. If such a section exists, and we fix a b ∈ X, we can define a map S(x, t) = s(x, b)(t).
This gives us S(x, 0) = x and S(x, 1) = b. Since s is a continuous map, S defines a deformation
retract of X to a point. Therefore, only contractible spaces admit continuous motion planning
algorithms. The converse of this statement, originally proved by Farber in [53, Theorem 1], is
also quite straightforward: if there exists an homotopy H from X to a point x0 ∈ X, i.e.

H(x, 0) = x, H(x, 1) = x0, ∀x ∈ X

for every pair of points (x, y) ∈ X × X a continuous motion planner can be define by first
moving x to x0 through the retraction prescribed by the homotopy H and then concatenating
with the inverse of the path that brings y to x0.

Example 3.1.2. Perhaps the simplest and most obvious example of a robot that would come
to mind is that of an automata moving on an open field without any kind of obstacles, such
as the plane R2. This is indeed the case of a configuration space being contractible, and a
motion planner between any two points x, y ∈ R2 is given just by taking the segment joining
x and y.

As soon as we consider slightly more elaborated authomatic processes, the contractibility
is usually lost. Observe the two examples in the figure below.

θ

(a) A rotating sliding knob (b) A spherical pendulum

Figure 3.1: Some examples of simple robots
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In the case of the sliding knob, any state of the robot is determined by two parameters
(x, θ), where x marks the position on the axis of sliding, and θ represents the angle of rotation.
As such, the configuration space corresponds with X = R1 × S1 that is, a cylinder.

The spherical pendulum is just a bar attached to a point and with a mass at the end. We
observe that, during the movement, the mass can be at any possible point of a sphere of
radius the length of the bar, hence the configuration space corresponds with such sphere
X = S2.

Example 3.1.3. Consider one of the most usual cases of mechanical systems, a robot arm. This
consists of a determined number n of rigid bars attached by revolving joints. The most natural
way to describe a position of the arm is to determine the angles formed by the bars at the
revolving points (it is important to note that, conceptually, we are allowing self-intersections
of the arm). See the example in the image.

a1

q1

a2 q2

a3q3
a4

q4

Figure 3.2: A mechanical robot arm with 4 revolving joints and a fixed grip at the extreme. Notice
that, while the length of the bars may be important for engineering purposes, they are irrelevant from
the point of view of topological robotics.

As such, each position of the system is determined by a n-tuple of angles (α1, · · · , αn),
hence the associated configuration space is just the n-torus

X = S1 × · · · × S1︸ ︷︷ ︸
n

= Tn

Example 3.1.4. Let X be an arbitrary topological space. We define the configuration space
of a system of n particles moving through the space X and avoiding collisions between
themselves by

F(X, n) := {(x1, · · · , xn) ∈ X × · · · × X︸ ︷︷ ︸
n

|xi ̸= xj ∀i ̸= j}.

A configuration space of the type F(X, n) is commonly called the nth-ordered configuration
space of X. Notice that there is a naturally defined action of Sn, the symmetric group of order
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n, on F(X, n) by

Sn × F(X, n) F(X, n)

(σ, (x1, · · · , xn)) (xσ(1), xσ(2), · · · , xσ(n)).

The quotient space under this action is known as the nth-unordered configuration space

C(X, n) := F(X, n)/Sn

where we “forget” the labels of the points and we can consider them at any possible order.

Figure 3.3: A system of particles moving on a space without colliding.

Ordered and unordered configuration spaces defined as above are very common objects
in algebraic topology. In particular, the configuration spaces of the real plane F(R2, n) and
C(R2, n) are crucial in braid theory. Indeed, they are the classifying spaces of the n-strand
braid group, and the n-strand pure braid group, respectively:

Bn := π1(C(R2, n)) Pn := π1(F(R2, n))

Additionally, a common subject of study in the context of topological robotics are the ordered
configuration spaces F(Γ, n) where Γ is a graph, as they are used to model several objects
moving along a prescribed net represented by Γ (such as possible routes on a factory floor,
for example) avoiding collisions.

3.2 Topological complexity and related invariants

As the continuity of a motion planning algorithm is only possible for contractible configura-
tion spaces, one could naturally ask how to measure the degree of instability related with the
underlying topological features of the space. In order to measure such discontinuity, Michael
Farber introduced in [53] the notion of topological complexity.

Definition 3.2.1. Let X be a path-connected topological space. The topological complexity of X,
denoted by TC(X), is the least integer k ≥ 0 such that there exists an open cover of X × X
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by a family of open subsets {Ui}0≤i≤k satisfying that, for each 0 ≤ i ≤ k there exists a local
section of the path space fibration, i.e a map

si : Ui → X × X with π ◦ si = idUi .

If no such k exists, we say that TC(X) = ∞.

The idea that serves as a basis for this definition is to subdivide X × X into pieces on
which there are continuous motion planners, called domains of continuity. Provided such
an open cover {Ui}i∈I by those domains, with local continuous sections si : Ui → PX of
the path space fibration, and a pair of configurations (x1, y1) ∈ X × X, one can organize
the motion planning by finding the smallest index i0 such that (x1, y1) ∈ Ui0 , and then give
the path prescribed by si0(x1, y1). The discontinuity of the motion planning as a function
of the state points easily becomes apparent. Indeed, suppose two open subsets U1 and U2

with U1 ∩ U2, a pair of states (x1, y1) ∈ U1 very close to the boundary, and another pair
(x2, y2) ∈ U2 \ U1 very close to (x1, y1) (see the figure below). It is evident that the motion
planner for (x1, y1), determined by s1(x1, y1), may be completely distinct to s2(x2, y2), as the
local sections evaluated over the intersection, s1|U1∩U2

and s2|U1∩U2
, are in general different.

(x1, y1)

(x2, y2)

U1 U2

U3

Figure 3.4: An open covering {Ui}i∈J for the topological complexity of a space.

The keen reader might wonder whether it would be possible to approach the definition
by considering subdivisions of other kind, not necessarily by open covers. Indeed, Farber
consider this possibility in its original article, and he gave several different characterizations
of TC(X), which he showed to be equivalent for sufficiently nice spaces.

Certainly one of the main properties of the topological complexity of a space X is that it is
an homotopy invariant of X.

Proposition 3.2.2 (Farber, [53]). If X is a homotopy retract of Y, then TC(X) ≤ TC(Y). In
particular, TC(X) = TC(Y) if X is homotopy equivalent to Y.
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The topological complexity is closely related to another classical homotopy invariant,
probaly one of the most important of the field: the Lusternik-Schnirelmann category. Origi-
nally defined by L. Lusternik and L. Schnirelmann (see [91]) as a mean to provide a lower
bound on the number of critical points of any smooth function on a manifold. Even though
the initial aim of this notion was analytical in nature, after it was reformulated by [64] it be-
came a powerful and interesting tool in a broad array of topics within algebraic topology (see
[34] for the universally acclaimed reference textbook on the matter, covering both properties
and applications). In a moment we will make more precise the extent of the relationship
between the two invariants, but the similarity of the definitions give an initial clue into it.

Definition 3.2.3. Let X be a path connected topological space. The Lusternik-Schnirelmann
category of X, denoted by cat(X) is defined as the least integer k ≥ 0 such that there exists a
cover of X by open subsets, {Ui}0≤i≤k with the property that, for each 0 ≤ i ≤ k the inclusion
map ιi : Ui ↪→ X is nullhomotopic.

It is also possible to consider the notion of Lusternik-Schnirelmann category of a map,
instead of a space. Let f : X → Y a map between topological spaces. We define the LS-
category of f , denoted cat( f ), as the least integer k ≥ 0 such that X can be covered by a
family of open subsets {Ui}0≤i≤k satisfying that, for every 0 ≤ i ≤ k, the restriction of f to Ui

is nullhomotopic. Interestingly, there are several approaches in the literature to the definition
of the topological complexity of a map, see for example [104], [101] or [111]. We will not
delve into them in this text, as we will not be making use of such notions in the present work.

Remark 3.2.4. In the literature there exist two approaches to topological complexity, namely
the non-reduced and the reduced ones, depending whether TC corresponds with the exact
number of local sections or with said number minus one, respectively. In this dissertation, all
the topological complexities are considered as reduced.

3.2.1 Sectional category and TC

In fact, both TC and LS-cat are particular cases of a more general invariant, called the sectional
category. Originally conceived as genus of a fibration by A. Schwarz in the seminal paper
[110], it was subsequently generalized to arbitrary maps by A. Fet [61] and I. Berstein and T.
Ganea [12].

Definition 3.2.5. The sectional category of a map f : X → Y, written secat( f ), is defined to be
the smallest integer n ≥ 0 such that there exists an open cover U0, . . . , Un of Y and continuous
maps si : Ui → X with the property that f ◦ si is homotopic to the inclusion Ui ↪→ Y for any
0 ≤ i ≤ n (i.e. si is a local homotopy section of f over Ui).

Remark 3.2.6. It is important to note that the condition of si being a local homotopy section
can be strengthened if the map f is, indeed, a fibration. Under such assumption, the maps si

are (continuous) local sections of f , i.e. f ◦ si = idUi .

44 Chapter 3



3.2. Topological complexity and related invariants

The reader have surely noticed the similarity with Definitions 3.2.1 and 3.2.3, so we can
now recast both TC and LS-cat in the lenguage of sectional category.

Definition 3.2.7. Given π : PX → X × X the path space fibration, the topological complexity
of X can be defined as

TC(X) = secat(π).

Denote by P∗X the based path space, which is the restriction of PX to paths starting at a
previously fixed point x ∈ X. Define the fibration

ev1 : P∗X → X

which maps every path to its initial point, that is ev1(γ) = γ(1). Then, we can define the
Lusternik-Schnirelmann category of X as

cat(X) = secat(ev1).

Furthermore, it follows from [54, Corollary 18.2] that

TC(X) = secat(∆X : X → X × X), (3.2.1)

where ∆X(x) = (x, x) is the diagonal embedding.
Further on we will make use of several basic properties of sectional category. Moreover,

many of the classic facts about LS-category and topological complexity can be easily derived
as a consequence of such properties, so we will summarize them in the next theorem. Before
that, however, recall that the fibrewise join of a fibration F → E

p→ B is another fibration
p ∗ p : E ∗B E → B whose fibre has the homotopy type of the join F ∗ F and whose total space
is given by

E ∗B E =
{
(x, y, t) ∈ E × E × [0, 1]

∣∣ p(x) = p(y)
}

modulo the relations (x, y, 0) ∼ (x′, y, 0) and (x, y, 1) ∼ (x, y′, 1). It is convenient to think
of the elements of the total space of the n-fold fibrewise join of p as formal sums of the
form ∑n

i=1 tixi, where every xi is understood to lie in the same fibre of p, and all the ti’s are
non-negative real numbers such that ∑n

i=1 ti = 1.
We can proceed now to state the announced theorem containing the fundamental proper-

ties of sectional category. For a detailed proof of each of the statements, we refer the interested
reader to the original paper of Schwarz, [110].

Theorem 3.2.8. Let F → E
p−→ B a fibration, then the following properties hold:

(a) secat(p) ≤ cat(B).

(b) If g : X → Y is homotopic to f , then secat( f ) = secat(g).

(c) Let p : E → B be a fibration, and f : X → B a map. Consider the pullback fibration f ∗p over
B. Then secat( f ∗p) ≤ secat(p). In particular, if p : E → B is a fibration and h : B′ → B is a
homotopy equivalence, then secat(p) = secat(p′) for p′ the induced fibration of h by p.
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(d) Given two fibrations p : E → B and p′ : E′ → B such that there exists a commutative diagram

E E′

B B

f

p p′

=

Then secat(p′) ≤ secat(p).

(e) Let k ∈ N, If there are reduced cohomology classes

ui ∈ ker
[

p∗ : H̃∗(B; Ai) → H̃∗(E; p∗Ai)
]

,

where Ai is a local coefficient system over B for each i ∈ {1, 2, . . . , k}, such that

u1 ∪ u2 ∪ · · · ∪ uk ̸= 0 ∈ H∗(B, A1 ⊗ A2 ⊗ · · · ⊗ Ak),

then we have secat(p) ≥ k.

(f) secat(p) ≤ k if and only if the (k + 1)-fold fibrewise join of p

p ∗ · · · ∗ p︸ ︷︷ ︸
k+1

: E ∗B · · · ∗B E → B

has a section.

(g) Given two fibrations p : E → B and p′ : E → B consider their product

p × p′ : E × E′ → B × B.′

We have the inequality secat(p × p′) ≤ secat(p) + secat(p′).

(h) Assume dim(B) = d, and that F is (s − 1)-connected (i.e. πk(F) = 0 for every k < s). Then we
have

secat(p) <
d + 1
s + 1

.

Notice that both path space fibrations π and ev1 previously defined fit to a pullback
diagram of the form

P∗X PX

X X × X.

ev1 π

{x0}×X

As a consequence, by (d) and (g) of Theorem 3.2.8 we obtain one of the most important
bounds of topological complexity, in terms of LS-category.

Proposition 3.2.9. If X is a path-connected and paracompact space we have the inequalities

cat(X) ≤ TC(X) ≤ cat(X × X).
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Let X be an (s − 1)-connected space. It is clear from the definition that the homotopy fiber
of the path space fibrations is of the homotopy type of ΩX, the loop space of X, and by the
hypothesis of connectivity on X we know that ΩX is (s − 2)-connected. The next corollary
thus immediately follows from Theorem 3.2.8 (h).

Corollary 3.2.10. Let X be an (s − 1)-connected space, for s > 0. Then we have the upper bounds

cat(X) ≤ dim(X)

s
TC(X) ≤ 2 dim(X)

s
.

In particular, if X is path connected

cat(X) ≤ dim(X) and TC(X) ≤ 2 dim(X).

Given a path-connected space X and a commutative ring A, the cup length of X with
coefficients in A (denoted by clA(X)) is defined as the maximal integer k ≥ 0 such that there
exists k reduced cohomology classes u1, · · · , uk ∈ H̃∗(X; A) such that u1 ∪ · · · ∪ uk ̸= 0. We
say that a reduced cohomology class u ∈ H̃∗(X × X; A) is a zero divisor of X if it satisfies

u ∈ ker
[

H∗(X × X; A)
∆∗
−→ H∗(X; A)

]
.

The zero divisors cup length of X is defined as the nilpotency of the kernel ideal of the
map ∆∗, i.e. the length of the longest non-trivial product of zero divisors of X. As an
immediate consequence of Theorem 3.2.8 e) and the alternative characterization 3.2.1 we have
the well-known cohomological lower bounds of LS-category and topological complexity:

Corollary 3.2.11. Let X be a path-connected space, and a commutative ring A. We have the following
lower bounds.

(a) clA(X) ≤ cat(X).

(b) nilker
[

H∗(X × X; A)
∆∗
−→ H∗(X; A)

]
≤ TC(X).

It is also interesting to mention two particular bounds of the Lusternik-Schnirelmann
category of a map, as we will make use of them a couple of times later during this work.

Proposition 3.2.12. Let f : X → Y a map between topological spaces. The category of f satisfies

(a) cat( f ) ≤ min{cat(X), cat(Y)}.

(b) cat( f ) ≥ clA(Im f ∗).

Furthermore, we will need the following characterization of the sectional category of
certain pullback fibrations in terms of the category of the base changing map:

Proposition 3.2.13 (Proposition 9.18 of [34]). Let p : E → B be a fibration arising as a pullback of
a fibration p′ : E′ → B′

E E′

B B′

f ′

p p′

f

where E′ is contractible. Then we have secat(p) = cat( f ).
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3.2.2 Examples of computations

In what follows we provide some computations of basic cases for both LS-category and
topological complexity, mostly using the properties stated above.

LS-category

We will start by adressing the computation of LS-category for some common topological
spaces.

• For every n ≥ 1 the computation of LS-category of the n-sphere Sn is pretty much
straightforward from the definition: given that Sn is not contractible, we have cat(Sn) >

0. Now notice that every n-sphere can be covered by two contractible open subspaces,
two discs each of them covering each of the hemispheres. Consequently, cat(Sn) = 1,
regardless of the dimension.

• Now we quickly compute the LS-category of the n-torus, Tn. It is straightforward to
see that clZ(Tn) = n. Hence, by Corollaries 3.2.11 and 3.2.10 we have

n = clZ(Tn) ≤ cat(Tn) ≤ dim Tn = n

hence cat(Tn) = n.

• The same strategy as in the torus case can be employed to find the LS-category of both
real and complex projective spaces.

It is well-known that H∗(RPn; Z2) = Z2[α]/αn+1 with dim(α) = 1. Therefore clZ2(RPn) =

n and we have
n = clZ2(RPn) ≤ cat(RPn) ≤ dim(RPn) = n

so cat(RPn).

Similarly, we know that H∗(CPn) = Z[α]/αn+1 with dim(α) = 2, so clZ(CPn) = n and,
in analogy with the real case, we obtain

n = clZ(CPn) ≤ cat(CPn) ≤ dim(CPn)/2 = 2n/2 = n

(notice that here the denominator reflects the fact that CPn is simply connected) thus
cat(CPn) = n.

Topological Complexity

The situation for topological complexity, however, is in most cases far more complicated.

• Indeed, for the case of the spheres there is a noticeable contrast in that their topological
complexity depends on whether the dimension is odd or even. Let us consider first the
odd case. Define an open cover of S2n+1 formed by the open sets

U0 := {(x, y)|x, y ∈ S2n+1 with x ̸= −y}.
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U1 := {(x, y)|x, y ∈ S2n+1 such that x = −y}.

A local section of the path space fibration over U0 can be defined by assigning to every
pair of points x, y ∈ U0 the shortest geodesic joining them. In order to define the local
section over U1, recall that S2n+1 has a non-vanishing continuous tangent vector field v.
Then, for every x ∈ U1 the local section is defined by joining x with −x through the
geodesic with tangent vector at x equal to v(x).

For even-dimensional spheres, we will use the cohomological lower bound from Corol-
lary 3.2.11. Start by taking a generator of the cohomology ring u ∈ H2n(S2n) and define
the following cohomology class

v := u ⊗ 1 − 1 ⊗ u ∈ H4n(S2n × S2n).

It is easy to see that this class is a zero-divisor. Indeed, ∆∗(u ⊗ 1) = u = ∆∗(1 ⊗ u)
and, consequently, ∆∗(v) = 0. Now observe that the product of v with itself is itself a
non-trivial class.

v ∪ v = ((u ⊗ 1)− (1 ⊗ u)) ∪ ((u ⊗ 1)− (1 ⊗ u))

= −(u ⊗ 1) ∪ (1 ⊗ u)− (1 ⊗ u) ∪ (u ⊗ 1)

= −2u ⊗ u ̸= 0.

Therefore, by the cohomological lower bound in Corollary 3.2.11, we have that TC(S2n) ≥
2. By the upper dimensional bound provided in Corollary 3.2.10, we know that
TC(S2n) ≤ 2, and thus we obtain the equality TC(S2n) = 2.

• Let us think about product of spheres

X = Sn × · · · × Sn︸ ︷︷ ︸
k

(which, in particular, encompass the case of the k-torus Tk). Using the product inequality
in Theorem 3.2.8(g) and the computation of the TC of spheres above, we have that

TC(X) ≤

k if n is odd

2k if n is even.
(3.2.2)

We will see that it is, in fact, an equality. Let ui ∈ Hn(X; Q) be the cohomology class
obtained as a pullback of the fundamental class of Sn via the projection X → Sn onto
the i-th factor, for 1 ≤ i ≤ k. Observe that the products

k

∏
i=1

(1 ⊗ ui − ui ⊗ 1) ̸= 0 if n is odd
k

∏
i=1

(1 ⊗ ui − ui ⊗ 1)2 ̸= 0 if n is even

which, by the cohomological lower bound, shows that we have the equality in 3.2.2.
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• The values of the topological complexity of real and complex projective spaces were
studied by Farber, Tabachnikov and Yuzvinsky in [59]. The complex case was com-
puted through the more general calculation of the topological complexity of symplectic
manifolds. We reproduce here the argument. Let X be a closed 2n-dimensional sim-
ply connected symplectic manifold. The upper dimensional bound informs us that
TC(X) ≤ 2 dim(X)/2 = 2n. Now, let ω be the symplectic 2-form on X, determining a
cohomology class [ω] ∈ H2(X; R). We know that [ω]n ̸= 0 thus [ω]⊗ 1 − 1 ⊗ [ω] is a
zero divisor of X whose 2n-th power is non-trivial, since it contains the term

(−1)n
(

2n
n

)
[ω]n ⊗ [ω]n

so the cohomological lower bound shows that TC(X) = 2n. Since CPn are examples of
simply connected symplectic manifolds, TC(CPn) = 2n.

The real case is more interesting. Indeed, the cornerstone of [59] is the identification of
the topological complexity of RPn (save fringe cases also adressed in the article) with
the immersion dimension of real projective spaces into real euclidean spaces.

Theorem 3.2.14 (Theorem 12, Proposition 18 and Corollary 2 of [59]). For any n ∈ N

different of 1, 3 or 7, the value of TC(RPn) coincides with the smallest integer k such that there
exists an immersion of RPn into the euclidean space Rk.

For n = 1, 3, 7 we have TC(RPn) = n.

• Let X = Σg denote the compact orientable surface of genus g. We have to distinguish
cases depending on possible values of g.

Both the cases of g ∈ {0, 1} were already settled above: as Σ0 = S2 and Σ1 = T2, we
know that

TC(Σ0) = TC(Σ1) = 2.

So let us consider the case g ≥ 2. In this situation, we find 1-dimensional cohomology
classes u1, u2, v1, v2 ∈ H1(Σg, Q) satisfying

u1u2 = v1v2 = u1v2 = u2v1 = u2
1 = u2

2 = v2
1 = v2

2 = 0

and u1v1 = u2v2 is non trivial in H2(Σg, Q). The product of zero divisors

2

∏
i=1

(ui ⊗ 1 − 1 ⊗ ui) ∪ (vi ⊗ 1 − 1 ⊗ vi)

provides a non-zero cohomology class, so we obtain the lower bound TC(Σg) ≥ 4.
By the dimension connectivity bound of Corollary 3.2.10, we see that TC(Σg) ≤
2 dim(Σg) = 4, thus we conclude the identity TC(Σg) = 4.

• The situation for non-orientable surfaces Ng is more complex. The non-orientable
surface of genus g = 1 is the real projective plane N1 = RP2, and so by Theorem 3.2.14
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and the calculations of immersion dimension we know that TC(N1) = 3. For g ≥ 5,
A. Dranishnikov established in [42] that TC(Ng) = 4 and, later on, in [40], he showed
that TC(N4) = 4, and that the specific techniques used therein could not be extended
to the cases g ∈ {2, 3}. These remaining cases were finally settled by D.C. Cohen and L.
Vandembroucq in [32], where they proved through impressive explicit computations of
zero-divisors cup lengths with local coefficients that TC(Ng) = 4 for any g ≥ 2.

• The topological complexity of ordered configuration spaces of euclidean spaces Rm

was computed, for m = 2 and m ≥ 3 odd, by M. Farber and S. Yuzvinsky in [60], while
the remaining cases were calculated by M. Farber and M. Grant in [55].

TC(F(Rm, n)) =

2n − 2 for all m odd

2n − 3 for all m even

3.2.3 The sequential topological complexities

The notion of sequential or higher topological complexities was introduced by Y. Rudyak in [108]
as a generalization of topological complexity which models the motion planning problem for
robots that are supposed to make some pre-determined intermediate stops along their ways.
We briefly recall their definition.

Definition 3.2.15. Let X be a path-connected topological space. For each r ∈ N with r ≥ 2
the map

pr : PX → Xr, pr(γ) =
(
γ(0), γ

( 1
r−1

)
, γ
( 2

r−1

)
, . . . , γ

( r−2
r−1

)
, γ(1)

)
,

is a fibration. The r-th sequential topological complexity of X is defined as

TCr(X) := secat(pr : PX → Xr).

Notice that, by definition, the notion of sequential topological complexity includes that
of the classic topological complexity, which occurs as TC2(X) = TC(X). As noted in [9] the
r-th sequential topological complexity of X can be defined as the sectional category of the
fibration

eX
r : X Jr Xr

γ (γ(11), · · · , γ(1r)).

where Jr is the wedge of r unit intervals [0, 1] (with 0 as the base point for each of them),
and 1i stands for 1 in the ith interval, for every 1 ≤ i ≤ r. Furthermore, as eX

r is the standard
fibrational substitute for the iterated diagonal map

∆X,r : X Xr

x (x, · · · , x︸ ︷︷ ︸
r

)
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one can equivalently define
TCr(X) = secat(∆X,r). (3.2.3)

Other possible fibrations which are not necessarily fibrational substitutes of the iterated
diagonal can be used to define TCr(X). We will not make use of such approaches in this
work, so we refer the reader to [9] for interesting discussion on that matter.

3.3 LS category and TC of Eilenberg-MacLane spaces

As we announced at the introduction, much of this work is focused at the investigation of the
topological complexity, and related homotopy invariants, of Eilenberg-MacLane spaces of
discrete groups. Consequently, we will close this chapter by giving the precise definitions
of what we understand by LS-category or (sequential) topological complexity of an abstract
group G. We will obviously restrict just to the case of torsion-free groups, as groups with
torsion have infinite LS-category and topological complexity (see Remark 2.2.10).

By the homotopy invariance of Lusternik-Schnirelmann category, and given that the
homotopy type of a K(G, 1)-space is determined by the isomorphism class of G, it is natural
to define the notion of LS-category of a discrete group simply by considering the LS-category
of a space of type K(G, 1).

Definition 3.3.1. Let G be an abstract group, and X = K(G, 1). Define the LS-category of G
by putting cat(G) := cat(X).

In the very same celebrated paper where they elucidated the exact relationship between
geometric and cohomological dimension of groups, Eilenberg and Ganea recorded as well
the relationship between the cohomological dimension of a group and its LS-category save
low dimensions, which were later complemented with the work of Stallings and Swann.

Theorem 3.3.2 (Eilenberg-Ganea theorem for category, [47]). Let G be an abstract group, and
X = K(G, 1). Then it holds cat(X) = cd(X).

The interested reader can consult [102] for an excelent survey of the topic, including a
comprehensive proof of the Eilenberg-Ganea theorem for category.

A crucial ingredient for the study of the Lusternik-Schnirelmann category of Eilenberg-
MacLane spaces is the Berstein-Schwarz class, defined as the one dimensional cohomology
class β ∈ H1(π, K) represented by the augmentation short exact sequence

0 → K → Z[π]
ε−→ Z → 0. (3.3.1)

This class was shown to be universal in [44], in the sense that for any other cohomology class
α ∈ H1(π, A) there exists a Z[π]-homomorphism f : Kn → A such that α = f ∗(βk).

As the lector surely noticed, it is natural to define the topological complexity of a discrete
group in complete analogy with the Lusternik-Schnirelmann category case.

Definition 3.3.3. Let π be an abstract group, and X = K(π, 1). Define the topological
complexity of π by TC(G) := TC

(
X
)
.

52 Chapter 3



3.3. LS category and TC of Eilenberg-MacLane spaces

In analogy to the Berstein-Schwarz class, A. Costa and M. Farber defined in [35] a
cohomology class to play a similar role in the study of the topological complexity of groups.
Observe that the group ring Z[π] can be seen as a (π × π)-module with respect to the action
(g, h)a = gah−1 for every g, h, a ∈ π. Consequently, the augmentation map ε : Z[π] → Z is a
Z[π ×π]-homomorphism with Z seen as a trivial Z[π ×π]-module, and the associated short
exact sequence 3.3.1 becomes a sequence of Z[π × π]-modules. Therefore, we can define the
canonical class as the one dimensional class v ∈ H1(π × π, K) represented by the sequence
3.3.1. However, in stark contrast from the Berstein-Schwarz class, this canonical class is not
universal.

Motivated by the Eilenberg-Ganea theorem for category, Farber, in [54], naturally won-
dered whether it is possible to obtain some similar statement for the case of topological
complexity.

Question 3.3.4 (Eilenberg-Ganea problem for TC). For any torsion-free discrete group π, is it
possible to characterize TC(π) purely in terms of algebraic properties of π?

Such question is not by any means a trivial one. Even though the homotopy type of
a K(π, 1)-space (and hence all of its homotopy invariants) is completely determined by
the group π, the description of such invariants may involve some homotopy-theoretical
constructions that can not be expressed in terms of classifying spaces. Indeed, as of today,
Question 3.3.4 remains possibly as the single most important open problem for the TC-
community. As such, the topological complexity of aspherical spaces has received a lot of
attention, and has been studied from various perspectives, becoming one of the most fruithful
lines of research in the field of topological robotics.

Up until recently, any progress in this context was mostly related to a specific choice
of a family of groups: choose a family of groups, then use its characteristic features (e.g. a
particularly well understood cohomology ring or a specific subgroup structure) to deduce, or
at least estimate, topological complexity of its members, see among others [31], [72], [40] and
[32]. Perhaps the most comprehensive result in this direction was obtained by M. Farber and
S. Mescher [57], through the development of the notion of essential cohomology classes.

Definition 3.3.5. A cohomology class α ∈ Hn(π × π, A) is essential if there exists a homomor-
phism of Z[π × π]-modules f : Kn → A such that f ∗(vn) = α.

By means of studying such essential classes, they proved that if a group π is hyperbolic
in the sense of Gromov and it admits a compact model of a K(π, 1) space, then its topological
complexity is equal to either cd (π ×π) or cd (π ×π)− 1. Continuing on that line of thought,
Dranishnikov in [39] improved that estimation by showing that, when π is hyperbolic

TC(π) = cd(π × π) = 2cd(π).

Further on, very recently K. Li [88] showed a generalization of this for certain toral relatively
hyperbolic groups.
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However, in a recent breakthrough, Farber, Grant, Lupton and Oprea [56] related TC(π)

to invariants coming from equivariant Bredon cohomology. More specifically, they proved
that

TC(π) ≤ cd⟨∆π⟩(π × π),

where recall that cd⟨∆π⟩(π × π) denotes the cohomological dimension of π × π with respect
to the family of subgroups of π × π generated by the diagonal subgroup ∆π. By Theorem
2.3.12, this number can be seen as the smallest possible dimension of E⟨∆π⟩(π × π). This
result came as a consequence of a new characterization of TC(π) as follows

Theorem 3.3.6 (Theorem 3.3 of [56]). Let X be a finite aspherical CW-complex with fundamental
group π = π1(X, x0). Then TC(X) coincides with the minimal integer k such that the canonical map

E(G) → E⟨∆π⟩(G)

is G-equivariantly homotopic to a map taking values in the k-skeleton (E⟨∆π⟩(G))k.

The sequential topological complexities of aspherical spaces have been studied by M.
Farber and J. Oprea in [58]. In particular, given a geometrically finite group π, it is shown in
[58, Lemma 4.2 and Corollary 4.3] that TCr(K(π, 1)) coincides with the sectional category of
the covering of (K(π, 1))r that is associated with the diagonal subgroup

∆π,r := {(g, g, . . . , g) ∈ πr | g ∈ π}. (3.3.2)

While the original proof relies on the identification of TCr(K(π, 1)) with the notion of D-
topological complexity of K(π, 1), we will give a direct proof in Chapter 6, see the proof of
Proposition 6.2.4 and also Remark 6.2.5.

So far little is known about the sequential TC of aspherical spaces. In [58] the Bredon
cohomology approach from [56] is transferred to sequential TC yielding lower and upper
bounds for sequential TC as well. There are also computations of sequential TCs of certain
classes of aspherical spaces in the literature, see e.g. [66] for the case of a closed oriented
surface.
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CHAPTER 4

Sectional category of subgroup inclusions

Introduction

In this chapter we begin a systematic study of the sectional category of subgroup inclusions:
briefly put, given a group G and its subgroup H, we define secat(H ↪→ G) as the sectional
category of the corresponding map between Eilenberg–MacLane spaces. This setting includes
TC, as the topological complexity of X can be seen as the sectional category of the diagonal
inclusion X → X × X, so that TC(π) = secat(∆π ↪→ π × π) and, as we will see in the
next chapter, other variants of topological complexity. In fact, the cornerstone of [56], a
characterization of TC(π) as the smallest integer n ≥ 0 such that a certain canonical (π × π)-
equivariant map E(π × π) → E⟨∆π⟩(π × π) can be equivariantly deformed into the n-
dimensional skeleton of E⟨∆π⟩(π × π), has a generalization to this more general context.
We also describe and develop a “relative canonical class” analogous to the one developed
by Berstein and Schwarz for the study of Lusternik–Schnirelmann category theory, which
particularizes to the Costa-Farber canonical class for the inclusion of the diagonal subgroup.
In fact, we will prove a generalization of the Costa-Farber theorem, relating secat(H ↪→ G)

and powers of the Berstein-Schwarz relative class.

Moreover, we introduce the Adamson cohomology theory (first described in [1]) into
the study of secat(H ↪→ G), hence also into the study of TC(π). We also dig a bit into the
Adamson cohomology theory itself, and as such we define a notion of cup products, and
of a canonical class, which turns out to be universal. In particular, we exhibit a relationship
between the “zero-divisors” of H∗(G, M) → H∗(H, M), which provide a lower bound
for secat(H ↪→ G), and the Adamson cohomology of the pair (G, H), and we provide an
alternative proof of the relationship between Adamson and Bredon cohomology with respect
to the family generated by the subgroup.

Most of the contents of this chapter appear in [14], though there are some additions which
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are not present in the aforementioned article.

Notation

• Throughout the next two chapters G is a discrete group and H ⊆ G its fixed subgroup,
and G/H denotes the set of left cosets of H in G equipped with a canonical G-action.
Whenever we specialize to the setting of topological complexity, we take G = π × π

and H = ∆π, the diagonal subgroup of π × π.

• We let 1 ∈ G denote the unit element and Z[G] the integer group ring of G.

• We further let
ε : Z[G] → Z ε(∑

g∈G
ng · g) = ∑

g∈G
ng

be the augmentation and K = ker ε be the augmentation ideal, seen as a left Z[G]-
module.

• Given a subgroup H ≤ G, we let Z[G/H] be the associated permutation module as a
left Z[G]-module. We further let

σ : Z[G/H] → Z σ( ∑
x∈G/H

)nx · x = ∑
x∈G/H

nx

denote its augmentation.

• For any left Z[G]-module M, we put M̃ := ResG
H(M) for the left Z[H]-module that is

obtained via restriction of scalars from Z[G] to Z[H].

• We always let ⊗ without any subscript denote the tensor product ⊗Z of abelian groups.
Given a Z[G]-module M and p ∈ N we denote the p-fold tensor power of M by

Mp := M ⊗ M ⊗ · · · ⊗ M

and consider it as a Z[G]-module with respect to the diagonal G-action on Mp.

• Given two left Z[G]-modules M1 and M2 we consider HomZ(M1, M2), the set of group
homomorphisms from M1 to M2, as a left Z[G]-module via the diagonal G-action given
by

(g · f )(m) := g f (g−1m) ∀m ∈ M1, g ∈ G, f ∈ HomZ(M1, M2).

• Given a short exact sequence of G-modules

0 → A i→ B → C → 0,

and a G-module map f : B → M with f ◦ i = 0, we will write f̂ for the induced map

A B C

M.

i

f
f̂
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4.1. Sectional category of subgroup inclusions

4.1 Sectional category of subgroup inclusions

By classical results of algebraic topology, for any two groups G1 and G2 there is a one-to-one
correspondence between based homotopy classes of continuous maps K(G1, 1) → K(G2, 1)
and group homomorphisms G1 → G2, induced by associating with any continuous map

f : K(G1, 1) → K(G2, 1)

the induced homomorphism π1( f ) : G1 → G2 between the fundamental groups. As such, we
can consider the associated sectional category.

Definition 4.1.1. Let G1 and G2 be groups and let φ : G1 → G2 be a group homomorphism.
We define the sectional category of φ by

secat(φ : G1 → G2) := secat( fφ : K(G1, 1) → K(G2, 1)),

or just secat(φ), where fφ is a continuous map with π1( fφ) = φ. By Theorem 3.2.8.b), secat(φ)

is well-defined.

In particular, given a group G and a subgroup H ≤ G, the inclusion i : H ↪→ G induces a
covering map

K(i, 1) : K(H, 1) → K(G, 1)

between the corresponding Eilenberg–MacLane spaces, which satisfies π1
(
K(i, 1)

)
= i.

Definition 4.1.2. Define the sectional category of the subgroup inclusion H ↪→ G, denoted
secat(H ↪→ G), as

secat(K(i, 1) : K(H, 1) → K(G, 1))

Due to homotopy invariance of sectional category, secat(H ↪→ G) depends only on the
conjugacy class of H in G.

Notice that, for π a torsion free group, if X is a space of type K(π, 1), then obviously
X × X is of type K(π ×π, 1), so we may view ∆X as a continuous map K(π, 1) → K(π ×π, 1).
One easily checks that the homomorphism between fundamental groups induced by this
map is indeed given by

∆ : π → π × π, ∆(g) := (g, g),

which is evidently a monomorphism. We denote ∆π := Im ∆. It then follows from the
equality (3.2.1) and the definition that

TC(K(π, 1)) = secat(∆π ↪→ π × π). (4.1.1)

As such, we can visualize the whole investigation of the topological complexity of aspherical
spaces as a particular case of the more general theory of sectional category of subgroup
inclusions as defined above.

Both statements of the following theorem are obtained straightforwardly as special cases
of Theorem 3.2.8 a) and e).
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Theorem 4.1.3. Let G be geometrically finite and let ι : H ↪→ G be the inclusion of a subgroup.

a) secat(ι : H ↪→ G) ≤ cd(G).

b) If there are reduced cohomology classes

ui ∈ ker
[
ι∗ : H̃∗(G; Ai) → H̃∗(H, ResG

H(Ai))
]

,

where Ai is a left Z[G]-module for each i ∈ {1, 2, . . . , k}, which satisfy u1 ∪ u2 · · · ∪ uk ̸= 0, then

secat(ι : H ↪→ G) ≥ k.

4.1.1 A characterization of secat(H ↪→ G)

The aim of this subsection is to prove the following result.

Theorem 4.1.4. The sectional category of H ↪→ G coincides with the minimal integer n ≥ 0 such
that the G-equivariant map ρ : EG → E⟨H⟩G can be G-equivariantly factored up to G-homotopy as

EG E⟨H⟩G

(E⟨H⟩G)n,

ρ

where (E⟨H⟩G)n denotes the n-skeleton of E⟨H⟩G.

This is a generalization of Farber, Grant, Lupton and Oprea’s [56, Theorem 3.3], (see The-
orem 3.3.6) where TC(π) is described as the minimal integer n ≥ 0 such that the (π × π)-
equivariant map E(π ×π) → E⟨∆π⟩(π ×π) can be equivariantly deformed into the n-skeleton
of E⟨∆π⟩(π × π). Our approach closely follows theirs. This was very recently proved indepen-
dently in [25], albeit by different means. The next lemma is an abstraction of an intermediate
step in the proof of [56, Theorem 2.1].

Lemma 4.1.5. We have secat(H ↪→ G) ≤ n if and only if the Borel fibration

pn : EG ×G ∗n+1(G/H) → EG/G

has a section, where ∗n+1(G/H) denotes the (n + 1)-fold join of G/H.

Proof. The map

EG ×G (G/H) → EG/H given by G(x, gH) 7→ Hg−1x

is easily seen to be a homeomorphism which commutes with projections onto EG/G. Con-
sequently, p0 is isomorphic to the fibration EG/H → EG/G, which is a model for the map
K(H, 1) → K(G, 1).

It follows that secat(H ↪→ G) = secat(p0). By statement (f) of Theorem 3.2.8, secat(p0) ≤
n if and only if the (n + 1)-fold fibrewise join of p0 has a section. Thus in order to conclude
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the proof, it remains to verify that the (n + 1)-fold fibrewise join of p0 coincides with pn. To
this end, note that the map

EG ×G ∗n+1(G/H) → ∗n+1
EG/G

(
EG ×G (G/H)

)
given by

G

(
x,

n+1

∑
i=1

tigi H

)
7→

n+1

∑
i=1

tiG(x, gi H)

is a homeomorphism which commutes with projections onto EG/G.

Proof of Theorem 4.1.4. In view of Theorem 2.3.6 sections of the fibration

pn : EG ×G ∗n+1(G/H) → EG/G

introduced in Lemma 4.1.5 are in one-to-one correspondence with G-equivariant maps of the
form

EG → ∗n+1(G/H).

Consequently, Lemma 4.1.5 can be restated as saying that secat(H ↪→ G) coincides with the
minimal integer n ≥ 0 such that there exists a G-equivariant map EG → ∗n+1(G/H).

Let m ≥ 0 be the minimal integer such that the G-equivariant map EG → E⟨H⟩G can be
deformed into the m-dimensional skeleton of E⟨H⟩G. We will now use the fact that the infinite
join ∗∞(G/H) is a model for E⟨H⟩G (recall (2.3.3)). Given that dim ∗n+1(G/H) = n, the
existence of a G-equivariant map EG → ∗n+1(G/H) implies the existence of a G-equivariant
map

EG → ∗n+1(G/H) → (E⟨H⟩G)n → E⟨H⟩G

by the equivariant cellular approximation theorem. Since any two G-equivariant maps
EG → E⟨H⟩G are G-equivariantly homotopic, this last composition is ρ and we see that
secat(H ↪→ G) ≥ m.

On the other hand, the G-equivariant map

(E⟨H⟩G)m → ∗∞(G/H)

yields an associated G-equivariant map to the m + 1-join

(E⟨H⟩G)m → ∗m+1(G/H)

by the equivariant Whitehead Theorem (see Theorem 2.3.3). This, in turn, implies the
existence of a final G-equivariant map

EG → (E⟨H⟩G)m → ∗m+1(G/H)

which shows that secat(H ↪→ G) ≤ m.

As an immediate corollary, we obtain a generalization of [56, Corollary 3.5.1]:

Corollary 4.1.6. Let H ↪→ G be a monomorphism of groups, then

secat(H ↪→ G) ≤ dim E⟨H⟩G.
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4.1.2 The Berstein-Schwarz class of G relative to H

We will now recall a construction from [44]. Take the usual augmentation associated to a
group G

0 ↪→ K
i

↪−→ Z[G]
ε−→ Z → 0

and Kn with G-module structure induced by the diagonal action of G on the tensor product
of copies of K. Given that Kn is a free abelian group, and that there exists an isomorphism
g⊗m 7→ g⊗ gm from Z[G]⊗Kn with action on the first factor to Z[G]⊗Kn with the diagonal
one, we have that Z[G]⊗ Kn is a free G-module. Splicing together short exact sequences of
G-modules

0 → Kn+1 → Z[G]⊗ Kn ε⊗id−−→ Kn → 0

yields a G-module free resolution of Z

· · · → Z[G]⊗ Ks ps−→ Z[G]⊗ Ks−1 → · · · → Z[G]⊗ K
p1−→ Z[G]

ε−→ Z → 0, (4.1.2)

where for each s > 1

ps : Z[G]⊗Ks → Z[G]⊗Ks−1, ps(x⊗ y⊗ z) = ε(x) · i(y)⊗ z ∀x ∈ Z[G], y ∈ K, z ∈ Ks−1.

Such projective resolution will be denoted by G.
Using G just defined, we can give an alternative and simple description of the cup product

on the cohomology of G.

Proposition 4.1.7. Let [a] ∈ Hp(G, A) and [b] ∈ Hq(G, B) be cohomology classes represented by
cocycles

a : Z[G]⊗ Kp → A and b : Z[G]⊗ Kq → B.

Then the cup product [a][b] ∈ Hp+q(G, A ⊗ B) is represented by the map

Z[G]⊗ Kp+q ε⊗id−−→ Kp+q â⊗b̂−−→ A ⊗ B.

Proof. Denote by F the standard resolution of Z as a G-module and consider a map φ : F →
G defined by φp : Z[Gp+1] → Z[G]⊗ Kp with

φp(x0, x1 . . . , xp) = x0 ⊗ (x1 − x0)⊗ · · · ⊗ (xp − xp−1).

This is a well defined chain map. The proof of this fact follows closely the combinatorics of
the proof of [57, Lemma 3.1]. To show it, we need to see that

φp−1(dp(x0, x1, · · · , xp)) = (x1 − x0)⊗ · · · ⊗ (xp − xp−1). (4.1.3)

The case p = 1 is immediate. To prove it for p > 1, start by putting

∏
p
(x0, x1, · · · , xp−1) := x0 ⊗ (x1 − x0)⊗ · · · ⊗ (xp−1 − xp−2)
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so we can rewrite 4.1.3 in terms of these expresions as

φp−1(dp(x0, x1, · · · , xp)) =
p

∑
i=0

(−1)i ∏
p
(x0, · · · , x̂i, · · · , xp−1).

Observe that the last two terms in the sum above amount to

(−1)p−1x0 ⊗ (x1 − x0)⊗ · · · ⊗ (xp−2 − xp−3)⊗ (xp − xp−1)

and thus the left hand side of 4.1.3 can be expressed as[
p−1

∑
i=0

(−1)i ∏
p−1

(x0, · · · , x̂i, · · · , xp−1)

]
⊗ (xp − xp−1).

By induction on p, it follows that this coincides with 4.1.3. Now, the result follows from the
commutativity of the following G-module diagram

Fp+q (F ⊗F )p+q (G ⊗ G)p+q

Gp+q Kp+q A ⊗ B,

∆

φ

φ⊗φ

a⊗b

ε⊗id â⊗b̂

where ∆ denotes the Alexander–Whitney diagonal map, see expression 2.2.5 in Chapter 2,
and the action on tensor products is diagonal.

Consider a permutation G-module Z[G/H] and write I for the kernel of the augmentation
homomorphism Z[G/H] → Z, given by gH 7→ 1 for any gH ∈ G/H. Define a G-module
homomorphism ξ : Z[G]⊗K → I as the composition of ε⊗ id and the map µ : K → I induced
by the canonical projection G → G/H in

K Z[G] Z

I Z[G/H] Z.

ε

=

This is obviously a cocycle, and thus it represents a one-dimensional cohomology class
ω ∈ H1(G, I), which motivates the following definition:

Definition 4.1.8. Let H ≤ G be a subgroup. We define the Berstein-Schwarz class of G relative
to H as the class ω ∈ H1(G; I) represented by the cocycle

ξ ∈ HomZ[G](Z[G]⊗ K, I), ξ = µ ◦ (ε ⊗ idK),

where µ : K → I is induced by the canonical projection G → G/H.

By Proposition 4.1.7, its n-th power ωn ∈ Hn(G, In) is represented by the map

Z[G]⊗ Kn ε⊗id−−→ Kn µn

−→ In.
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Lemma 4.1.9. The class ω defined as above is a zero-divisor, i.e.

ω ∈ ker
[
H1(G, I) → H1(H, I)

]
.

Proof. The H-module homomorphism Z[G] → I defined by g 7→ gH − H shows that ξ

considered as an H-module homomorphism is a coboundary.

The next proposition relates the powers of relative Berstein-Schwarz classes to sectional
category.

Proposition 4.1.10. Let H ≤ G be a subgroup and let ω ∈ H1(G; I) be the Berstein-Schwarz class
of G relative to H. Then

secat(H ↪→ G) ≥ height(ω) = sup{n ∈ N | ωn ̸= 0}.

Proof. Let i : H ↪→ G be the inclusion and let k := height(ω). By 4.1.9, it holds that
ω ∈ ker ι∗. Thus, it follows immediately from Theorem 4.1.3.b) by taking ui = ω for each
i ∈ {1, 2, . . . , k}.

In the particular case of G = π × π and H = ∆π is the diagonal subgroup of π × π, this
class coincides with the canonical TC-class introduced by Costa and Farber in [35]. This fol-
lows from the fact that (π ×π)/∆π and π seen as a (π ×π)-set via the action (g, h)x = gxh−1

are isomorphic as (π × π)-sets.

Berstein in [11] showed that for a connected CW-complex X of dimension n ≥ 3, cat(X) =

n if and only if there exists a class u ∈ H1(X, K) such that un ̸= 0 in Hn(X, Kn), where K
is the augmentation ideal of Z[π1(X)]. Costa and Farber gave a version of this result for
topological complexity ([35, Theorem 7]). Here, we state an analogue of their result illustrating
the relationship between secat(H ↪→ G) and the Berstein-Schwarz class of G relative to H.

Theorem 4.1.11. Put n := cd G ≥ 3. Then secat(H ↪→ G) ≤ n − 1 if and only if ωn = 0.

We postpone the proof to the end of this chapter.

4.2 Adamson cohomology and sectional category

In this section we briefly review Adamson cohomology, a theory first introduced by Adamson
[1] for finite groups. Later Hochschild [75] generalized the ideas of Adamson to develop
a homological algebra theory in the relative setting. Then we proceed to recast Adamson
cohomology in terms of equivariant Bredon cohomology.

4.2.1 Review of the Adamson cohomology theory

Recall that an exact sequence of G-modules

· · · → Mi
fi+1−−→ Mi

fi−→ Mi−1 → · · ·
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is said to be (G, H)-exact provided that ker fi is a direct summand of Mi as an H-module for
each i. A G-module P is said to be (G, H)-projective provided that for every short (G, H)-exact

sequence of modules M
f−→ N → 0 and every G-homomophism g : P → N, there exists a

G-homomorphism h : P → M making the diagram

P

M N 0

h g

f

commutative. Finally, given a G-module M, a (G, H)-projective resolution of M is an (G, H)-
exact sequence of G-modules

· · · → Pn → Pn−1 → · · · → P0 → M → 0

such that Pi is (G, H)-projective for each i ≥ 0.

Example 4.2.1. Given n ≥ 0, define Cn(G/H) to be the permutation module Z
[
(G/H)n+1],

where (G/H)n+1 is equipped with the diagonal G-action, i.e

g(g0H, . . . , gnH) = (gg0H, . . . , ggnH)

Furthermore, let dn : Cn(G/H) → Cn−1(G/H) be given by

dn(g0H, . . . , gnH) =
n

∑
i=0

(−1)i(g0H, . . . , ĝnH, . . . , gnH),

where ĝnH means that the element gnH is removed from the tuple. Hochschild [75] proved
that (C, d) forms a (G, H)-projective resolution of the trivial G-module Z, with the augmen-
tation map defined by sending every coset to 1. This resolution will be called the standard
resolution of G relative to H.

In an analogous way to the non-relative case, Hochschild defined the relative extension
functor as

Extn
(G,H)(M, N) := Hn(HomZ[G](P∗, N)

)
,

where M and N are G-modules, and P∗ is a (G, H)-projective resolution of M. Then the
Adamson cohomology of G with respect to H with coefficients in a G-module M is defined as

H∗([G : H], N
)

:= Ext∗(G,H)(Z, N),

where Z is the trivial G-module. The Adamson cohomological dimension of G relative to H,
defined as the length of the shortest possible (G, H)-projective resolution of Z, will be
denoted by cd [G : H]. This number can be equivalently characterized as the maximal integer
n ≥ 0 such that Hn([G : H], M

)
̸= 0 for some G-module M, as in spirit of [116, Chapter 4,

Lemma 4.1.6].
Note that the Adamson relative cohomology defined like this can be seen as a particular

case of the cohomology of a permutation representation, with G/H as the base G-set, see
Blowers [18].
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4.2.2 Adamson canonical class and its universality

Consider the short exact sequence of G-modules,

0 → I ↪→ Z[G/H]
ε−→ Z → 0.

Tensoring it over Z with Ik−1, the k − 1-fold tensor power of I over Z seen as a G-module via
the diagonal G-action, yields another short exact sequence:

0 → Ik ↪→ Z[G/H]⊗ Ik−1 ε⊗id−−→ Ik−1 → 0.

Splicing all those sequences together for varying k yields an exact sequence

· · · → Z[G/H]⊗ Ik → Z[G/H]⊗ Ik−1 → · · · → Z[G/H] → Z → 0.

This is a (G, H)-projective resolution. To see (G, H)-exactness, note the decomposition as an
H-module

Z[G/H]⊗ Ik ∼= (Z ⊗ Ik−1)⊕ (I ⊗ Ik−1).

In order to see projectiveness, define the inverse maps

α : Z[G/H]⊗ I → Z[G]⊗H I α(xH ⊗ y) = (x ⊗ x−1y)

and
β : Z[G]⊗H I → Z[G/H]⊗ I β(x ⊗ y) = xH ⊗ xy.

We define the G-action on Z[G] ⊗H I such that is compatible with the diagonal one in
Z[G/H]⊗ I. As such, define the G-module structure on Z[G]⊗H I by the action

g(x ⊗ y) = α(g(xH ⊗ xy)).

As a consequence, we have

g(x ⊗ y) = α(g(xH ⊗ xy)) = α(gxH ⊗ gxy) = gx ⊗ y,

and we see that the action restricts to the first component. Then we use [75, Lemma 2] and
thus, generalizing this morphism to Z[G/H]⊗ In for every n > 0, we have that every term
in the exact sequence constructed above is (G, H)-projective.

The (G, H)-projective resolution above lets us define a cup product on Adamson coho-
mology as in Proposition 4.1.7.

Definition 4.2.2. Let [a] ∈ Hp([G : H], A) and [b] ∈ Hq([G : H], B) be cohomology classes
represented by cocycles

a : Z[G/H]⊗ Ip → A and b : Z[G/H]⊗ Iq → B.

Define the cup product [a][b] ∈ Hp+q([G : H], A ⊗ B) as the class represented by the map

Z[G/H]⊗ Ip+q ε⊗id−−→ Ip+q â⊗b̂−−→ A ⊗ B.
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It is easy to check that this product verifies the properties dimension 0, naturality with respect
to coefficient homomorphisms, compatibility with δ, associativity and commutativity analogous to
the ones listed in Theorem 2.2.15.

Definition 4.2.3. The Adamson canonical class ϕ ∈ H1([G : H], I
)

is the class represented by

the cocycle Z[G/H]⊗ I ε⊗id−−→ I. Also, height(ϕ) is the largest n ≥ 0 such that

ϕn ∈ Hn([G : H], In)

is nonzero.

The Adamson canonical class is universal in the sense that every other Adamson coho-
mology class can be recovered from a corresponding power of the canonical class through a
change of coefficient system, as the next proposition shows.

Proposition 4.2.4. For any G-module A and any class λ ∈ Hn([G : H], A
)

there exists a G-
homomorphism h : In → A such that h∗(ϕn) = λ.

Proof. Let f : Z[G/H]⊗ In → A be a cocycle representing the class λ ∈ Hn([G : H], A). By
the definition of the cup product in Adamson cohomology, the class ϕn is represented by

Z[G/H]⊗ In ε⊗id−−→ In.

Taking h = f̂ we see that h∗(ϕn) = λ.

Corollary 4.2.5. Let ϕ ∈ H1([G : H], I) be the Adamson canonical class, we have that

cd [G : H] = height(ϕ).

4.2.3 Adamson cohomology and zero-divisors

One of the consequences of the universality of the canonical class defined in the subsection
above is the possibility of characterizing Adamson cohomology groups in terms of zero
divisors sets of usual group cohomology for a suitable choice of coefficient systems. Before
we proceed to show it, however, we need to introduce first two auxiliary lemmas.

Lemma 4.2.6. Let M and N be left Z[G]-modules. Let Z[G]⊗ M be equipped with the diagonal
G-action. Then

Φ : HomZ[G](Z[G/H]⊗ M, N) → HomZ[H](M̃, Ñ), (Φ( f ))(x) := f (H ⊗ x) ∀x ∈ M,

is an isomorphism of abelian groups.

Proof. It is easy to see that Φ is a well-defined group homomorphism. Consider the map

Ψ : HomZ[H](M̃, Ñ) → HomZ[G](Z[G/H]⊗ M, N), (Ψ( f ))(H ⊗ x) = g f (g−1x).

For each f ∈ HomZ[H](M̃, Ñ) and h ∈ H we obtain that

gh f (h−1g−1x) = g f (g−1x) ∀g ∈ G, x ∈ M,

Chapter 4 67



4.2. Adamson cohomology and sectional category

since f is a Z[H]-homomorphism. This shows that Ψ( f )(gH ⊗ m) is independent of the
chosen representative of gH, thus Ψ( f ) : Z[G/H]⊗ M → N well-defined.

For all f ∈ HomZ[H](M̃, Ñ), g1, g2 ∈ G and x ∈ M we further compute that

(Ψ( f ))(g1 · g2H ⊗ x) = Ψ( f )(g1g2H ⊗ g1x) = g1g2 f (g−1
2 g−1

1 g1x)

= g1 · g2 f (g−1
2 x) = g1 · (Ψ( f ))(g2H ⊗ x),

so Ψ( f ) ∈ HomZ[G](Z[G/H]⊗ M, N). Hence, Ψ is well-defined and it is apparent that Ψ is a
group homomorphism. A simple computation shows that Ψ is a two-sided inverse of Φ.

This isomorphism at the level of Hom groups induces, in turn, another isomorphism
between Ext groups.

Lemma 4.2.7. Let M and N be left Z[G]-modules. Let Z[G/H]⊗ M be equipped with the diagonal
G-action. Then there are isomorphisms

Extr
Z[G](Z[G/H]⊗ M, N) ∼= Extr

Z[H](M̃, Ñ) ∀r ∈ N0.

Proof. Let

0 → N ↪−→ J0
j0−→ J1

j1−→ J2
j2−→ . . .

be an injective resolution of N over Z[G]. By Lemma 4.2.6, there is an isomorphism

Φi : HomZ[G](Z[G/H]⊗ M, Ji) → HomZ[H](M̃, J̃i)

for each i ∈ N0 and one checks without difficulties that Φi is compatible with the maps
induced by the ji. At this point, it suffices to show that each of the J̃i is an injective Z[H]-
module as passing to cohomology then shows the claim.

Let J be an injective Z[G]-module, X and Y be Z[H]-modules and i : X ↪→ Y be a
monomorphism of Z[H]-modules and let f ∈ HomZ[H](X, J̃). We consider the induced
Z[G]-modules IndG

H(X) and IndG
H(Y). One checks from the universal property of induced

modules (see diagram 2.1.1 for the particular case of induced modules), that i induces a
Z[G]-homomorphism ĩ : IndG

H(X) ↪→ IndG
H(Y), which is again injective since Z[G] is free as

a right Z[H]-module, and f induces f̃ ∈ HomZ[G](IndG
H(X), J). Since J is injective over Z[G],

it follows that there exists

φ̃ ∈ HomZ[G](IndG
H(Y), J) with f̃ = φ̃ ◦ ĩ.

Define the map

φ : Y → J by φ(y) := φ̃(1 ⊗Z[H] y)

for each y ∈ Y. One checks without difficulties that φ is a Z[H]-homomorphism with

(φ ◦ i)(y) = φ̃(1 ⊗Z[H] i(y)) = φ̃(ĩ(1 ⊗Z[H] y)) = f̃ (1 ⊗Z[H] y) = f (y)

for all y ∈ J. This shows that J̃ is injective over Z[H] and thereby completes the proof.
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Using the previous two corollaries, we obtain the following characterization of Adamson
cohomology groups in terms of zero divisors of usual group cohomology.

Theorem 4.2.8. For any G-module A and n ≥ 1, we have

Hn([G : H], A) = ker
[

H1(G, HomZ(In−1, A)) → H1(H, HomZ(In−1, A))
]

.

In particular,
H1([G : H], A) = ker

[
H1(G, A) → H1(H, Ã)

]
.

Proof. Consider the short exact sequence

0 → In → Z[G/H]⊗ In−1 → In−1 → 0.

Applying the Ext functor with coefficients on A, we obtain the associated long exact sequence

0 → HomZ[G](In−1, A) → HomZ[G](Z[G/H]⊗ In−1, A)
κ−→ HomZ[G](In, A)

ν−→

Ext1
Z[G](In−1, A)

γ−→ Ext1
Z[G](Z[G/H]⊗ In−1, A) → Ext1

Z[G](In, A) → · · ·

By the universality of the Adamson canonical class given in Proposition 4.2.4, through the
correspondence f 7→ f̂ , we get

Hn([G : H], A) ∼= HomZ[G](In, A)/Im(κ).

We also have, by exactness, the chain of isomorphisms

HomZ[G](In, A)/Im(κ) ∼= HomZ[G](In, A)/ ker(ν) ∼= Im(ν) ∼= ker(γ).

To continue the proof, observe that Lemma 4.2.7 gives us the isomorphism

Ext1
Z[G](Z[G/H]⊗ In−1, A) ∼= Ext1

Z[H]( Ĩn−1, Ã),

which is induced by the map

HomZ[G](Z[G/H]⊗ In−1, A) → HomZ[H]( Ĩn−1, Ã)

defined by associating to any G-homomorphism f : Z[G/H] ⊗ In−1 → A the restriction
f|1⊗In−1

to 1 ⊗ In−1 ⊂ Z[G/H]⊗ In−1 (this, in turn, is a particular case of the isomorphism
defined in Lemma 4.2.6). Finally, by the isomorphism provided in Proposition 2.2.6, we have
that

Ext1
Z[G](In−1, A) ∼= H1(G, HomZ(In−1, A))

and
Ext1

Z[H]( Ĩn−1, Ã) ∼= H1(H, HomZ(In−1, A)).

The action on HomZ(In−1, A) is defined by

(g f )(x) = g f (g−1x) ∀g ∈ G, f ∈ HomZ(In−1, A) and x ∈ In−1.

Then γ becomes the restriction homomorphism, which finishes the proof.
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Consider the canonical map
ρ : EG → E⟨H⟩G

and the chain homotopy homomorphism between the cellular chain complex of EG and the
relative standard resolution of G with respect to H which corresponds to sending g 7→ gH,
its class in the coset space G/H. Now, after applying the functor HomZ[G](·, A), consider the
induced maps on cohomology, which gives a map between the Adamson cohomology and
the usual cohomology of the group

ρ∗ : H∗([G : H], A) → H∗(G, A). (4.2.1)

Observe that, at the chain level, this map is induced by the projection Z[G] → Z[G/H] and
therefore it respects product structures. The following result arises immediately from the
definitions involved, if we take I as the coefficient module in the previous homomorphism.
Nonetheless, it is relevant enough to be highlighted on its own:

Proposition 4.2.9. With ρ∗ defined as before, let ϕ and ω be the Adamson canonical class and the
Berstein-Schwarz class relative to H, respectively. We have

ρ∗(ϕ) = ω.

Remark 4.2.10. It is interesting to note that the naturality of ρ∗ with respect to change of
coefficient system implies that Im ρ∗ corresponds to the essential classes in the sense of [57],
recall Definition 3.3.5. The notion of essential cohomology classes will play a crucial role in
the next chapter, when we will generalize them to arbitrary group monomorphisms.

4.2.4 Relative crossed and principal homomorphisms

Before proceeding with further considerations about Adamson cohomology and sectional
category, let us take a moment to consider an alternative description of the Adamson coho-
mology groups at dimension one, in light of the discussion of the previous subsection. We
will introduce relative analogues to the notion of crossed and principal homomorphisms,
and will see that the Adamson cohomology groups at dimension one are expressible, in full
analogy to the non-relative case, in terms of those types of homomorphisms.

Let A be a G-module, and consider the short exact sequence of G-modules associated to
the augmentation

0 → I → Z[G/H] → Z → 0

and their associated relative Ext-sequence

0 → Ext0
(G,H)(Z, A) → Ext0

(G,H)(Z[G/H], A) → Ext0
(G,H)(I, A)

→ Ext1
(G,H)(Z, A) → Ext1

(G,H)(Z[G/H], A) → ...

Since Z[G/H] is a (G, H)-projective module, we know that

Ext1
(G,H)(Z[G/H], A) = {0}.
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Moreover, as described in [75, Pg 253], we can identify the Ext0-terms as Hom-groups in the
following manner

0 → HomZ[G](Z, A) → HomZ[G](Z[G/H], A)
i∗−→ HomZ[G](I, A) → H1([G : H], A) → 0.

In particular, this shows that the Adamson cohomology group of dimension one can be seen
as

H1([G : H], A) ∼= coker
[
i∗ : HomZ[G](Z[G/H], A) → HomZ[G](I, A)

]
.

By Lemma 4.2.6 we have the isomorphism

Φ : HomZ[G](Z[G/H], A) → HomZ[H](Z, A) ∼= AH, Φ( f ) = f (H).

Such isomorphism fits in a diagram of the form

HomZ[G](Z[G/H], A) HomZ[G](I, A)

AH
Φ

i∗

λ

(4.2.2)

where the map λ is defined as follows

λ : AH → HomZ[G](I, A), (λ(a))(gH − H) = g · a − a.

It is straightforward to see that, indeed, λ(a) is a Z[G]-homomorphism for each element
a ∈ AH. If we compute now the composition (λ ◦ Φ) we observe

((λ ◦ Φ)( f ))(gH − H) = (λ( f (H)))(gH − H) = g · f (H)− f (H)

= f (gH)− f (H) = (i∗ f )(gH − H),

and thus the diagram 4.2.2 commutes. Hence, we can alternatively express

H1([G : H], A) ∼= coker[λ : AH → HomZ[G](I, A)]. (4.2.3)

Putting

P(G,H)(A) := { f ∈ HomZ[G](I, A) | ∃a ∈ AH : f (gH − H) = g · a− a ∀gH − H ∈ I} = Im λ,

we obtain from the isomorphism 4.2.3 and the previous definition yet another possible
characterization of the one-dimensional Adamson cohomology group, in the form

H1([G : H], A) ∼= HomZ[G](I, A)
/

P(G,H)(A) . (4.2.4)

Most readers that are already aware of the notion of principal homomorphisms (or those
who previously read Remark 2.2.5) have probably noticed that the set P(G,H)(A) essentially
constitutes a relative notion of the set of principal homomorphisms with respect to the Z[G]-
module A. As such, it is natural to introduce a definition of relative crossed and principal
homomorphisms.
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Definition 4.2.11. Let A be a left G-module.

a) A (G, H)-relative crossed homomorphism with coefficients in A is a map φ : G/H → A,
which satisfies

φ(g · xH) = φ(gH) + g · φ(xH) ∀g, x ∈ G.

The set of all (G, H)-relative crossed homomorphisms with coefficients in A is denoted by
C(G,H)(A).

b) A (G, H)-relative principal homomorphism with coefficients in A is a map φ : G/H → A, for
which there exists an a ∈ AH, such that

φ(gH) = g · a − a ∀g ∈ G.

The set of all (G, H)-relative principal homomorphisms with coefficients in A is denoted
by P(G,H)(A).

Same as the non-relative case, it is straightforward to check that every (G, H)-relative
principal homomorphism is a (G, H)-relative crossed homomorphism. One further checks
that C(G,H)(A) and P(G,H)(A) are groups with respect to pointwise addition.

Proposition 4.2.12. Let A be a left G-module. Then

H1([G : H]; A) ∼= C(G,H)(A)
/

P(G,H)(A) .

Proof. One checks that

Ψ : HomZ[G](I, A) → C(G,H)(A), (Ψ( f ))(gH) = f (gH − H) ∀g ∈ G,

is a group isomorphism and that

Im (Ψ ◦ λ) = P(G,H)(A).

The claim then follows from the above computation.

4.2.5 A spectral sequence

We will make a brief introduction to the existence of a spectral sequence which contains
information about both Adamson and usual cohomology. This sequence is derived from a
much more general theory of relative homological algebra developed in [48]. We will restrict
here to our case of interest.

Take the (G, H)-projective resolution of Z

· · · → Z[G/H]⊗ In → · · · → Z[G/H]⊗ I → Z[G/H] → Z → 0.

Looking at it as an object in the category of sequences of G-modules consider a G-projective
resolution of it, which gives us a double complex
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· · · Pi,j · · · Pi,0 Qi 0

...
...

...

· · · P0,j · · · P0,0 Q0 0

· · · Z[G/H]⊗ I j · · · Z[G/H] Z 0

such that every Pi,j is G-projective, every column is a G-projective resolution, and each row
(except the first one) is split exact. Now, applying the functor HomZ[G](−, A) for some
choice of coefficient system A, we obtain another double complex and its associated spectral
sequence. Let us have a glance at the horizontal filtration. Given that every row above the
first one is split exact we have that

Ep,q
0 = HomZ[G](Pp,q, A) and Ep,q

1 = 0

for every q > 0. Moreover, one observes that

Ep,0
1

∼= HomZ[G](Qp, A).

As we can see, the spectral sequence collapses and, given that Q∗ is a projective resolution of
Z as a trivial G-module, as stated before, it converges to

Ext∗Z[G](Z, A) = H∗(G, A).

The vertical filtration provides more information. Every column is a projective resolution,
so the first page of the spectral sequence has the form

Ep,q
1 = Extq

Z[G]
(Z[G/H]⊗ Ip, A).

The differential on this page is the map Ep,q
1

d1−→ Ep+1,q
1 induced by the original differential on

the (G, H)-projective resolution,

Z[G/H]⊗ Ip+1 ι◦ε⊗id−−−→ Z[G/H]⊗ Ip.

Therefore, the second page of the spectral sequence corresponds to

Ep,q
2 = Hp(Extq

Z[G]
(Z[G/H]⊗ I∗, A)).

It is in this second page where, if we restrict to q = 0, Adamson cohomology appears. Indeed

Ep,0
2 = Hp([G : H], A)

and we have the following proposition.

Proposition 4.2.13. There exists a spectral sequence

Ep,q
2 = Hp(Extq

Z[G]
(Z[G/H]⊗ I∗, A)) ⇒ Hp+q(G, A)

such that Ep,0
2 = Hp([G : H], A).
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4.2.6 Adamson vs Bredon cohomology

We will now recast Adamson cohomology in terms of equivariant Bredon cohomology in
order to reconcile our approach with that of Farber, Grant, Lupton and Oprea [56].

Theorem 4.2.14. Given a G-module A, let A be the Or⟨H⟩G-module defined by setting A(G/K) =
AK. Then

H∗([G : H], A
) ∼= H∗

⟨H⟩(E⟨H⟩G, A).

In particular, cd [G : H] ≤ cd⟨H⟩G.

We note that this result has been recently derived with different methods in [5], and also
in [103] when G is a finite group.

Proof. In what follows, we take as a model for E⟨H⟩(G) the geometric realization of a suitable
∆-complex such that its cellular chain complex coincides with the standard resolution of G
relative to H (for details on the construction see [4, Proposition 4.16], recalled in Chapter 2 as
Proposition 2.3.8). In order to compare Adamson and Bredon cohomologies, first evaluate the
cellular Or⟨H⟩(G)-chain complex on the principal component, wich gives us, as previously
described (see Chapter 2 chain of isomorphisms 2.3.5)

Cn(E⟨H⟩(G))(G/{1}) = Hn(E⟨H⟩(G)n+1, E⟨H⟩(G)n).

By excision, we have that

Cn(E⟨H⟩(G))(G/{1}) = Z[(G/H)n+1].

For every n ≥ 0 define a homomorphism

Φ : HomZ[G]

(
Z
[
(G/H)n], A

)
→ HomOr⟨H⟩G

(
Cn(E⟨H⟩G), A

)
by assigning to every φ ∈ HomZ[G]

(
Z
[
(G/H)n], A

)
a map φK for every subgroup K ∈ ⟨H⟩,

defined as the composition

Z[((G/H)K)n] ↪→ Z[(G/H)n]
φ−→ A

where the first map is the inclusion (that is, the one induced by the trivial element). If we
consider, given H, K ∈ ⟨H⟩, an equivariant map G/L → G/K, which can be identified as a
g ∈ G such that gLg−1 ≤ K, we have the following diagram

Z[((G/H)K)n] Z[((G/H)L)n]

Z[(G/H)n] Z[(G/H)n]

AK AL

φ φ
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where both the top and bottom horizontal morphisms denote action by g. Due to the fact
that φ is a G-module homomorphism, the diagram above is commutative. Moreover, Φ com-
mutes with the differential. Indeed, if we consider Φ(δφ) with φ ∈ HomZ[G](Z[(G/H)n], A)

(and δ the corresponding differential) we obtain, for every g : G/L → G/K, a diagram
analogous to the one above with the top and bottom horizontal arrows being the action
by g and the vertical ones the maps which assigns to every tuple (x0, · · · , xn) the element

∑i(−1)i φ(x0, · · · , x̂i, · · · , xn). Now, considering ∂ as the differential in the Bredon complex,
for every g : G/L → G/K the map ∂Φ(φ) gives us a diagram

Z[((G/H)K)n] Z[((G/H)L)n]

Z[((G/H)K)n+1] Z[((G/H)L)n+1]

AK AL

AK AL

φK

φL

φ
′
K

d d

φ
′
L

with the diagonal arrows the respective differentials in the corresponding complexes and
φ

′
∗ defined as the composition φ∗ ◦ d. Now, given that every φ∗ is defined as the compo-

sition of an inclusion followed by φ, φ
′
∗ assigns to every tuple (x0, · · · , xn) the element

∑i(−1)i φ(x0, · · · , x̂i, · · · , xn). And so Φ is a well-defined homomorphism of cochain com-
plexes.

Finally, the map Φ is surjective and injective. In order to see surjectiveness, construct for
any map

α ∈ HomOr⟨H⟩(G)(C∗(E⟨H⟩(G)), A)

and for every K ∈ ⟨H⟩ a diagram

Z[((G/H)K)n] Z[G/H]

AK A

αK α1

where the top vertical arrow is the inclusion induced by 1 ∈ G. Then such a map α can be
seen as the image of α1 via Φ. The injectivity is immediate from the definition of Φ.

Given that Φ is a bijective map for every n, there exists a map

Ψ : HomOr⟨H⟩G
(
Cn(E⟨H⟩G), A

)
→ HomG

(
Z
[
(G/H)n], A

)
such that Φn ◦ Ψn and Ψn ◦ Φn are the respective identities for every n ≥ 0. The map Ψ is
easily seen as a chain homomorphism, given that

Ψn+1 ◦ ∂n = Ψn+1∂n(ΦnΨn) = Ψn+1(Φn+1δn)Ψn = δn ◦ Ψn.
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Finally, we have that

Ψn ◦ Φn − id = δn−1hn + hn+1δn ∧ Φn ◦ Ψn − id = ∂n−1h′n + h′n+1∂n

where the chain homotopies are defined as

hn : HomG
(
Z
[
(G/H)n], A

)
→ HomG

(
Z
[
(G/H)n−1], A

)
and

h′n : HomOr⟨H⟩G
(
Cn(E⟨H⟩G), A

)
→ HomOr⟨H⟩G

(
Cn−1(E⟨H⟩G), A

)
diagonal maps corresponding with sending every element in their respective domains to 0.
Thus Φ defines a chain homotopy equivalence between the Adamson and Bredon cochain
complexes, which gives us the desired isomorphism

H∗([G : H], A
) ∼= H∗

⟨H⟩(E⟨H⟩G, A).

Even though Bredon cohomology theory has raised an extensive amount of research since
its very inception, the main setback is still the high difficulty of making not only explicit
computations, but also of obtaining good bounds for cohomological dimension in most
cases. In the face of this structural difficulty Adamson cohomology offers a simpler tool,
both theoretically and computationally that, as we just showed, allows to bound Bredon
cohomological dimension from below. The natural question that arises is when does Adamson
cohomological dimension detect Bredon cohomological dimension?

The most natural example of coincidence of both dimensions happens, as expected, when
the subgroup is normal. Indeed, consider H ≤ G a subgroup and K ◁ G is a normal subgroup
contained in H. The group G acts on E⟨H/K⟩(G/K) through the natural projection to the
lateral classes by K, and if we take an H/K-fixed point p ∈ E⟨H/K⟩(G/K), p is also an H-fixed
point, given that hp = hKp = p for any h ∈ H. Since the projection onto the lateral classes by
K sends ghg−1 to gK(hK)g−1K, the definition of the family ⟨H⟩ and the universal property
of E⟨H⟩(G) gives us a way of relating the model of the classifying space of G with respect to
⟨H⟩ and the classifying space modulo K:

Proposition 4.2.15 ([4] Proposition 4.21 and Corollary 4.22). Let H ≤ G, and K ◁ G a normal
subgroup of G contained in H. Then, a model for E⟨H/K⟩(G/K) is also a model for E⟨H⟩(G). In
particular, if H is normal in G, E(G/H) is a model for E⟨H⟩(G).

The natural future line of work here is to investigate in which other cases Adamson
cohomological dimension is enough to detect Bredon cohomological dimension, and to study
how to control and bound the differences between them when they differ.

Additionally, despite the fact that Adamson cohomology is easier to approach than
Bredon cohomology, in general it is not a simple task to make explicit calculations. As such,
there is ample room for future investigation of ways of computing Adamson cohomological
dimension. In particular, we trust the naturality of the Adamson canonical class will prove
fruithful in this matter.

76 Chapter 4



4.3. Further remarks on secat(H ↪→ G)

4.3 Further remarks on secat(H ↪→ G)

In view of [56, Corollary 3.5.1], we know that TC(π) ≤ cd⟨∆π⟩(π × π) under certain mild
assumptions on π. By our generalization of this result in Corollary 4.1.6, and the definition
of Bredon cohomological dimension, we know that secat(H ↪→ G) ≤ cd⟨H⟩G. It is therefore
hard not to ask whether TC(π) = cd⟨∆π⟩(π × π) or, more generally, whether secat(H ↪→
G) = cd⟨H⟩G or secat(H ↪→ G) = cd[G : H]. The two latter cannot possibly be true, as the
following examples show.

Example 4.3.1. (1) Consider the inclusion 2Z ↪→ Z. By Theorem 3.2.8, secat(2Z ↪→ Z) = 1.
On the other hand, given that the subgroup is normal, the Adamson cohomology coincides
with the usual cohomology of the quotient (see [1, Theorem 3.2]) and then H∗([Z : 2Z], A) =

H∗(Z/2Z, A). Therefore we observe

cd[G : H] = cd Z2 = cd⟨2Z⟩Z = ∞.

(2) It is perhaps interesting to note that this phenomenon is not torsion-related. Consider
the inclusion [Fn, Fn] ↪→ Fn, where Fn denotes the free group of n generators, and [Fn, Fn] its
commutator subgroup. Similarly as above, secat

(
[Fn, Fn] ↪→ Fn

)
= 1, but

cd[Fn : [Fn, Fn]] = cd⟨[Fn,Fn]⟩Fn = cd Zn = n.

Nevertheless, it is possible to find cases where sectional category and Adamson cohomo-
logical dimension coincide, as in the next example.

Example 4.3.2. (1) Recall that a group G is said to be nilpotent of order n if there exists a series
of normal subgroups {1} = G0 ◁ G1 ◁ · · · ◁ Gn = G where Gi+1/Gi ≤ Z(G/Gi) (equivalently
[G, Gi+1] ≤ Gi). Consider the group

H3 = ⟨a1, a2, b|[a1, b] = 1, [a2, b] = 1, [a2, a1] = b⟩

known as the three dimensional Heisenberg group. This is one of the most paradigmatic torsion-
free nilpotent groups. The infinite cyclic group N generated by b is a central subgroup of H3

and H3 fits in a central group extension

{1} → N → H3 → F → {1}

where F is a free abelian group with basis in one-to-one correspondence with the generators
of H3. Given that N is central (and so is normal) in H3, by [1, Theorem 3.2] we have

H∗([H3 : N]) = H∗(F) with Hn(F) ∼= Z(2
n).

The details on how to obtain the cohomology ring structure for integer coefficients of H3 can
be consulted in [76]. It can be seen that the nilpotence of the kernel of the homomorphism in
cohomology induced by the inclusion N ↪→ H3 is 2 and so, by Theorem 3.2.8, we obtain

2 ≤ secat(N ↪→ H3) ≤ 3 = cd(H3).
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Proposition 4.2.15 gives us that a model for E⟨N⟩H3 is homotopically equivalent to EH3/N,
and then

dim E⟨N⟩H3 = cd[H3 : N] = cd(H3/N) = cd(F) = 2.

By Theorem 4.1.4 and its Corollary 4.1.6 we know that secat(N ↪→ H3) ≤ dim E⟨N⟩H3.
Therefore secat(N ↪→ H3) ≤ cd[H3 : N] = 2 and we conclude that

secat(N ↪→ H3) = cd[H3 : N] = 2.

(2) Consider the subgroup inclusion of Z ↪→ Z × Z → Z taken as the inclusion in the
first factor. This can be represented by the fibration

S1 × R
id×exp−−−−→ T2.

where exp denotes the exponential map exp : R → S1 defined by exp(θ) = eiθ . Looking at T2

as S1 × S1, take as an open cover the one defined by

U0 = S1 × S1 \ {1} U1 = S1 × S1 \ {−1}

(or, equivalently, any choice of two antipodal points). For each Ui, we have a local section of
the fibration, defined by taking the identity on the S1 factor, and lifting the other factor to R

by considering the argument of the exponential map, i.e.

si(eiθ1 , eiθ2) = (eiθ1 , θ2).

This informs us that secat(Z ↪→ Z × Z) = 1. By the normality of the subgroup, we have that

cd[Z × Z : Z] = cd(Z) = 1

and consequently

secat(Z ↪→ Z × Z) = cd[Z × Z : Z].

As an open question, it remains to elucidate the full relationship between sectional
category of subgroup inclusions and Adamson cohomological dimension with respect to the
subgroup, and in which cases the former can be represented, or bounded in some direction,
by the latter. This line of work, of course, is strongly related to the investigation of how
good Adamson cohomological dimension detects Bredon cohomological dimension, and
how big the difference can be in interesting cases, as discussed at the end of section 3. It is
also important to note that these cases do not provide much information in the context of
topological complexity, given that the diagonal subgroup is normal in the product group
only under the assumption that the group is abelian.

In [56] an analogue of the Costa–Farber canonical class is defined in the context of Bredon
cohomology, u ∈ H1

⟨∆π⟩(π × π, I). This class is shown to be universal in loc. cit. Moreover,
the image of this class via the homomorphism ρ∗ is precisely the usual Costa-Farber class. If
instead of the family ⟨∆π⟩ generated by the diagonal subgroup, we would take the family of
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subgroups F , generated by a subgroup H ≤ G, it is possible to define a cohomology class
represented by the short exact sequence of Bredon modules

0 → I → Z[·, G/H]
ε−→ Z → 0

where I is the kernel of the augmentation ε. Let us denote it also, abusing notation, by u. This
class is the canonical class associated to the family F , and arguments analogues to the case of
the diagonal family show that it is also universal, and, evaluating in the principal component,
it is immediate that its image by the principal component evaluation homomorphism

ρ1 : H1
⟨H⟩(G, I) → H1(G, I(G/{1}))

is the Berstein-Schwarz class of G relative to H introduced in Subsection 4.1.2.

Remark 4.3.3. To our knowledge, despite Theorem 4.2.14, universality of the Bredon class
does not imply in a straightforward manner universality of the Adamson class. This is due to
the fact that IH need not coincide with I(G/H).

Put ρ⟨H⟩ for the greatest integer n ≥ 0 such that the principal component evaluation
homomorphism

ρn : Hn
⟨H⟩(G, A) → Hn(G, A(G/{1}))

is non-trivial for some Or⟨H⟩G-module A. A straightforward generalization of [56, Theorem
4.1], using Theorem 4.1.4, immediately shows that

ρ⟨H⟩ ≤ secat(H ↪→ G).

The next result shows that this lower bound for sectional category is never better than the
standard cohomological lower bound.

Proposition 4.3.4. With the notation above, height(ω) ≥ ρ⟨H⟩.

Proof. Suppose there exists α ∈ Hn
⟨H⟩(G, A) such that ρ∗(α) ̸= 0. Universality of u implies

that there exists an Or⟨F⟩G-homomorphism f : In → A such that f ∗(un) = α. But then
f induces also a G-module homomorphism between the principal components of Bredon
modules and, thus, it gives a commutative diagram of group cohomologies

Hn
⟨H⟩(G, In) Hn(G, In)

Hn
⟨H⟩(G, A) Hn(G, A).

ρ∗

f ∗ f ∗

ρ∗

By hypothesis ρ∗(α) ̸= 0 so ρ∗( f ∗(un)) ̸= 0 and, by commutativity, ρ∗(un) = ωn, the
Berstein-Schwarz class of G relative to H, is nonzero.

Observe that one can also define the essential dimension of a subgroup inclusion ι : H ↪→ G,
denoted by ρ∗[G:H] as the greatest integer n ≥ 0 such that the canonical homomorphism
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in cohomology defined in (4.2.1) is non trivial for some G-module A (the nomenclature
is inherited from Remark 4.2.10). The fact that ρ∗ respects product structures allows to
reinterpretate this definition as the greatest dimension of Im(ρ∗) ⊂ H∗(G, M) as a subalgebra
of the usual group cohomology for some suitable choice of coefficients M (probably twisted).
We have a clear lower bound for secat(H ↪→ G), as well as a straightforward analogue of
Proposition 4.3.4 for the essential dimension.

Proposition 4.3.5. Let ι : H ↪→ G be a group monomorphism, we have that

secat(H ↪→ G) ≥ height(ω) ≥ ρ∗[G:H].

Proof. The proof is completely analogous to that of Proposition 4.3.4: consider ρ∗[G:H] = n.
Then there exists a G-module A and a non-trivial class α ∈ Hn([G : H], A) with ρ∗(α) = η ̸= 0
in H∗(G, M). By Proposition 4.2.4, we know that there exists a G-module homomorphim
µ : In → A such that α = µ∗(ϕn). By naturality, we have a commutative diagram of group
cohomologies

Hn([G : H], In) Hn(G, In)

Hn([G : H], A) Hn(G, A).

ρ∗

µ∗ µ∗

ρ∗

Given that ρ∗ respects products, ρ(ϕn) = ωn. As a consequence, we get that ωn ̸= 0, and the
rest of the claim follows from Proposition 4.1.10.

Proposition 4.3.4 also allows for a particularly simple proof of Theorem 4.1.11.

Proof of Theorem 4.1.11. Put n := cdG ≤ 3. The “only if” part is an immediate consequence of
the kernel-nilpotency lower bound for sectional category, see Theorem 3.2.8. For the converse
statement, recall that the extension problem

EGn−1 (E⟨H⟩G)n−1

EGn

ρ

has a solution provided that the cocycle cn(ρ) representing the extension is cohomologous
to zero in Hn(G, πn−1(E⟨H⟩G)n−1

)
. Let us take a closer look at how the obstruction cocycle

arises; further details can be found in [37, Chapter II.3]. Write [ρ] for the G-homotopy class of

ρ : EGn−1 → (E⟨H⟩G)n−1.

Note that both EGn−1 and (E⟨H⟩G)n−1 are (n− 2)-connected spaces, and the pair (EGn, EGn−1)

is (n − 1)-connected, hence the (relative) Hurewicz homomorphism gives isomorphisms

πn(EGn, EGn−1) → Hn(EGn, EGn−1),

πn−1(EGn−1) → Hn−1(EGn−1),

πn−1
(
(E⟨H⟩G)n−1

)
→ Hn−1

(
(E⟨H⟩G)n−1

)
.
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Consequently, we have a diagram

πn(EGn, EGn−1) πn−1(EGn−1) πn−1
(
(E⟨H⟩G)n−1

)

Hn(EGn, EGn−1) Hn−1(EGn−1) Hn−1
(
(E⟨H⟩G)n−1

)
,

∂

ϱ

ρ∗

ϱ ϱ

where ∂ is the boundary operator of the long exact sequence of homotopy groups of the pair
(EGn, EGn−1) and can be identified as the corresponding epimorphism over the kernel of the
n-differential in the cellular chain complex via the Hurewicz isomorphisms. The obstruction
cocycle associated to ρ is defined as

cn(ρ) = ρ∗∂ϱ−1.

By hypothesis ωn = 0 so ρ∗(un) = ωn = 0 and we conclude that ρ∗ is trivial in degree n.
Now select an Or⟨H⟩-module having the coefficient system πn−1((E⟨H⟩)n−1) as its principal
component, such as

πn−1((E⟨H⟩)n−1)(G/K) = πn−1((E⟨H⟩)n−1)
K

By the universality of the Bredon class u, we know that there exists an Or⟨H⟩-module homo-
morphism

f ∗ : In → πn−1((E⟨H⟩)n−1)

which, in turns, after evaluation on the principal components, induces a commutative
diagram

Hn
⟨H⟩(G, In) Hn(G, In)

Hn
⟨H⟩(G, πn−1((E⟨H⟩)n−1)) Hn(G, πn−1((E⟨H⟩)n−1)).

ρ∗

f ∗ f ∗

ρ∗

We observe that the obstruction class lives in the image of ρn and therefore it must be zero.
The Eilenberg-Ganea theorem (see Theorem 2.2.11) states that cd(G) = n implies the existence
of a n-dimensional EG thus, by dimensional reasons, the map ρ can be then extended to the
whole space EG. Consequently, by Theorem 4.1.4

secat(H ↪→ G) ≤ n − 1.

Remark 4.3.6. Notice that, in general, the obstruction class should be taken in the Bredon
cohomology of the corresponding G-CW complex. However, as EG is a free G-CW com-
plex, as discussed in Chapter 2 Bredon cohomology reduces to the cellular cohomology of
the quotient space by the group action (and hence the usual group cohomology of G) see
isomorphism 2.3.7.
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4.3.1 Addendum: on the case of topological complexity

After the publication of [14], the article that constitutes the ground material for this chapter,
M. Grant, K. Li, E. Meir and I. Patchkoria further investigated the relationship between
some equivariant cohomological dimensions in [70], and explored the connections of some of
them with the topological complexity of groups. In particular, they found explicit examples
of groups for which the topological complexity is strictly less than the Adamson (and,
consequently, also Bredon) cohomological dimension with respect to the diagonal subgroup.
To finish this chapter we will describe the main of such examples.

Definition 4.3.7. Let Γ be a discrete group. We say that a Γ-group is another discrete group G
equipped with an action of Γ by automorphisms (i.e. a homomorphism φ : Γ → Aut(G)).

For an arbitrary group G there is a natural G-group structure by considering the action of
G on itself by conjugation. In this situation, we have an isomorphism of pairs of the form

(G ⋊ G, G)
∼=−→ (G × G, ∆G), (g, h) 7→ (gh, h). (4.3.1)

Example 4.3.8 (Example 5.9 of [70]). Let G = ⟨a, b | c := a2 = b2⟩ be the fundamental group
of the Klein bottle. The group G decomposes as the amalgamated group G ∼= ⟨a⟩ ∗⟨c⟩ ⟨b⟩. In
fact, if two powers am and bn are conjugated in G for some m, n ∈ Z, then m and n satisfies
m = n = 2k for some k ∈ Z, thus am = bn = ck.

Consider the structure of G-group by conjugation on G. It is possible to proof the equalities

cd[G ⋊ G : G] = cd⟨G⟩(G ⋊ G) = ∞.

By the pair isomorphism 4.3.1 we observe that this is equivalent to show that

cd[G × G : ∆G] = cd⟨∆G⟩(G × G) = ∞.

Take the (G × G)-subgroup generated by (a, b), i.e.

δ(G) := {(am, bn) | m ∈ Z}.

Note that ⟨(c, c)⟩ is in the intersection family ⟨∆G⟩ ∩ δ(G). Moreover, due to the amalgam
structure of G, and since if am is conjugate to bn then m = 2k and (am, bn) = (ck, ck), we
see that any element of δ(G) contained in a subgroup in ⟨∆G⟩ is contained in the subgroup
⟨(c, c)⟩, and therefore ⟨∆G⟩ ∩ δ(G) coincides with the family generated by ⟨(c, c)⟩.

As ⟨(c, c)⟩ is normal in δ(G) with quotient Z2, Shapiro’s Lemma for Bredon cohomology
(see [63, Chapter 3 Proposition 3.31]) gives

∞ = cd(Z2)
4.2.15
= cd⟨∆G⟩∩δ(G)(δ(G)) ≤ cd⟨∆G⟩(G × G).

The proof for Adamson cohomology is essentially analogous, applying Shapiro’s Lemma for
relative cohomology with respect of group families (see for example [70, Lemma 2.14]).

But remember that TC(G) = 4, as shown by Cohen and Vandembroucq in [32], thereby
proving that TC(G) cannot coincide neither with Bredon, nor with Adamson cohomological
dimensions.
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CHAPTER 5

Lower bounds of sectional category of subgroup inclusions

Introduction

In the previous chapter we laid the foundation of the study of sectional category of subgroup
inclusions. In particular, we introduced the notion of relative Berstein-Schwarz class with
respect to subgroup monomorphisms, in strong analogy to the usual Berstein-Schwarz class
for Lusternik-Schnirelmann category, and which becomes the Farber-Costa class for the
particular case of the diagonal subgroup inclusion. In this chapter we will make use of these
tools to derive new lower bounds for sectional category of fibrations inducing subgroup
inclusions.

We will commence by providing an alternative description of the relative Berstein-
Schwarz class in terms of the Bockstein homomorphism associated to the augmentation
short exact sequence, and then we will derive several of its implications. The most important
for our purposes is the generalization of the essential cohomology classes defined by M. Farber
and S. Mescher in [57] for the case of topological complexity to our more general setting
of sectional categories of subgroup inclusions. We will study in detail the case of essential
classes relative to normal subgroups, providing new bounds.

Later on, we turn our attention to the spectral sequence constructions developed by
Farber and Mescher in [57], containing the information about essential cohomology classes.
While such spectral sequence constructed therein can be used to derive lower bounds for the
topological complexity of aspherical spaces, we show how to generalize the construction to
sectional categories of fibrations inducing subgroup inclusions. By means of said spectral
sequence, we derive a new lower bound for such sectional categories, depending on the
cohomological dimension of isotropy subgroups of the left subgroup action action induced
on the left cosets space. In the last part of the chapter we specialize such lower bound and
study its applications to the case of sequential topological complexity of aspherical spaces
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(which subsumes the ) and of parametrized topological complexity of group epimorphisms,
as studied by M. Grant in [67].

The contents of this chapter constitute a large part of [49].

5.1 Essential classes relative to subgroups

As we were discussing in the previous chapter, the role of relative Berstein-Schwarz classes
for sectional categories of subgroup inclusions is analogous to the role of Berstein-Schwarz
classes for Lusternik-Schnirelmann category and the role of the so-called canonical classes
for topological complexity. Throughout this section we shall discuss more extensively how
canonical classes are related to relative Berstein-Schwarz classes, and we will generalize the
notion of essential classes to arbitrary subgroup inclusions.

The following lemma provides an alternative characterization of relative Berstein-Schwarz
classes and is an analogue of [35, Lemma 5].

Lemma 5.1.1. Consider the short exact sequence of G-modules

0 → I i→ Z[G/H]
σ→ Z → 0 (5.1.1)

and let δ : H0(G, Z) → H1(G, I) denote the Bockstein homomorphism associated with that sequence.
Then

ω = δ(1),

where 1 ∈ H0(G, Z) is a generator.

Proof. Let ρ : Z[G] → Z[G/H] denote the homomorphism induced by the orbit space
projection. As we defined in Subsection 4.1.2 of the previous chapter we know that we can
represent ω ∈ H1(G, I) by a cocycle

f : Z[G]⊗ K → I f = ρ ◦ (ε ⊗ idK).

We consider the long exact sequence associated with

0 → C0(G, I) → C0(G, Z[G/H]) → C0(G, Z) → 0.

In terms of our resolution, its connecting homomorphism, i.e. the Bockstein homomorphism,
is obtained via diagram chasing in

0 HomZ[G](Z[G], I) HomZ[G](Z[G], Z[G/H]) HomZ[G](Z[G], Z) 0

0 HomZ[G](Z[G]⊗ K, I) HomZ[G](Z[G]⊗ K, Z[G/H]) HomZ[G](Z[G]⊗ K, Z) 0

d∗1

i∗ σ∗

d∗1 d∗1
i∗ σ∗

The augmentation ε ∈ HomZ[G](Z[G], Z) is a cocycle. By definition of the maps involved, it
holds that ε = σ ◦ ρ, i.e. σ∗(ρ) = ε. Diagram chasing shows that

i∗( f ) = d∗1(ρ),
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so by definition of the Bockstein homomorphism, we obtain that

δ(1) = δ([ε]) = [ f ] = ω.

Here, one sees that 1 = [ε] generates H0(G, Z) as ε(g) = 1 for each g ∈ G.

By elementary homological algebra, tensoring the short exact sequence (5.1.1) with a left
Z[G]-module M that is Z-free yields a short exact sequence of Z[G]-modules

0 → I ⊗ M → Z[G/H]⊗ M → M → 0 (5.1.2)

with respect to the diagonal G-actions. In complete analogy with a statement for the canonical
class observed in Section 3 of [57], we derive the following statement.

Corollary 5.1.2. Let M be a Z-free left Z[G]-module and let u ∈ Hi(G, M), where i ∈ N0. Consider
the Bockstein homomorphism δ of the coefficient sequence

0 → I ⊗ M → Z[G/H]⊗ M → M → 0.

Then we have the equality

δ(u) = ω ∪ u ∈ Hi+1(G, I ⊗ M).

Proof. It follows straight from Theorem 2.2.15 by the compatibility with the connecting
homomorphism and the graded commutativity of the cup product that

δ(u) = δ(u ∪ 1) = (−1)iu ∪ δ(1) = (−1)iu ∪ ω = ω ∪ u.

We let HomZ(Is, M) be equipped with the diagonal G-action and consider

evs : I ⊗ HomZ(Is+1, M) → HomZ(Is, M), ev(x ⊗ f ) = f (x ⊗ ·),

which is seen to be a Z[G]-homomorphism. The following statement and its proof are
analogues and carried out along the lines of [57, Proposition 7.3].

Proposition 5.1.3. Let A be a left Z[G]-module. For any cohomology class u ∈ Hr(G, HomZ(Is+1, A))

one has

δ(u) = −(evs)∗(ω ∪ u),

where δ is the Bockstein homomorphism associated with the short exact coefficient sequence

0 → HomZ(Is, A)
σ∗
→ HomZ(Z[G/H]⊗ Is, A)

i∗→ HomZ(Is+1, A) → 0 (5.1.3)

obtained by applying HomZ(·, A) to (5.1.2) in the case of M = Is.
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Proof. We first observe that (5.1.3) is indeed short exact, since Is, Z[G/H]⊗ Is and Is+1 are
all Z-free. Let

β : Hr(G, HomZ(Is+1, A)) → Hr+1(G, I ⊗ HomZ(Is+1, A))

denote the Bockstein homomorphism of the short exact coefficient sequence

0 → I ⊗ HomZ(Is+1, A) ↪→ Z[G/H]⊗ HomZ(Is+1, A)
σ⊗id→ HomZ(Is+1, S) → 0

obtained by letting M = HomZ(Is+1, A) in (5.1.2). By Corollary 5.1.2, it holds that

β(u) = ω ∪ u.

Thus, the claim immediately follows if we can show that δ = −(evs)∗ ◦ β. We first consider
the homomorphism

F : Z[G/H]⊗ HomZ(Is+1, A) → HomZ(Z[G/H]⊗ Is, A)

given by Z-linearly extending

(F(xH ⊗ f ))(zH ⊗ y) = f ((zH − xH)⊗ y) ∀x, z ∈ G, y ∈ Is, f ∈ HomZ(Is+1, A).

We compute that

(F(g · (xH · f )))(zH ⊗ y) = F(gxH ⊗ (g · f ))(zH ⊗ y)

= (g · f )((zH − gxH)⊗ y) = g f ((g−1zH − xH)⊗ g−1y)

= g(F(x ⊗ f ))(g−1zH ⊗ g−1y) = (g · F(x ⊗ f ))(zH ⊗ y)

for all g, x, z ∈ G, y ∈ Is and f ∈ HomZ(Is+1, M). Hence, F is a Z[G]-homomorphism.
Consider the following diagram with exact rows:

0 I ⊗ HomZ(Is+1, M) Z[G/H]⊗ HomZ(Is+1, M) HomZ(Is+1, M) 0

0 HomZ(Is, M) HomZ(Z[G/H]⊗ Is, M) HomZ(Is+1, M) 0

evs

i⊗id

F

σ⊗id

id

−σ∗ i∗

To show that the left-hand square of this diagram commutes, we compute for all x, z ∈ G,
y ∈ Is and f ∈ HomZ(Is+1, M) that

((−σ∗ ◦ evs)((xH − H)⊗ f ))(zH ⊗ y) = −σ(zH) · f ((xH − H)⊗ y) = − f ((xH − H)⊗ y).

and moreover

((F ◦ (i ⊗ id))((xH − H)⊗ f ))(zH ⊗ y) = (F(xH ⊗ f ))(zH ⊗ y)− (F(H ⊗ f ))(zH ⊗ y)

= f ((zH − xH)⊗ y)− f ((zH − H)⊗ y) = − f ((xH − H)⊗ y).
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Comparing the results shows the commutativity of the left-hand square. Concerning the
right-hand square, we derive that

((i∗ ◦ F)(xH ⊗ f ))((zH − H)⊗ y) = (F(xH ⊗ f ))(zH ⊗ y)− (F(xH ⊗ f ))(H ⊗ y)

= f ((zH − xH)⊗ y)− f ((H − xH)⊗ y)

= f ((zH − H)⊗ y) = σ(xH) · f ((zH − H)⊗ y) = ((σ ⊗ id)(x ⊗ f ))((zH − H)⊗ y).

Thus, the above diagram commutes. Considering the long exact cohomology sequences
associated with the coefficient groups of the above diagram, the naturality of Bockstein
homomorphisms shows that

−(evs)∗ ◦ β = δ ◦ id∗ = δ,

which we wanted to show. The claim immediately follows. Here, the additional sign stems
from the fact that we have considered −σ∗ instead of σ∗ in the bottom row of the diagram.

We introduce some additional terminology which generalizes the notion of essential
classes introduced in [57].

Definition 5.1.4. Let n ∈ N and let α ∈ Hn(G, A) with α ̸= 0. We say that α is essential relative
to H if there exists a homomorphism of Z[G]-modules φ : In → A, such that

φ∗(ω
n) = α.

Remark 5.1.5. Cohomology classes which are essential relative to subgroups are used to
derive lower bounds on the sectional category of the corresponding subgroup inclusion:
Assume that for some n ∈ N, there exists a class u ∈ Hn(G, A) with u ̸= 0 that is essential
relative to H. By definition of essential classes, this requires that ωn ̸= 0 ∈ Hn(G, In), which
in turn yields that secat(H ↪→ G) ≥ n by Proposition 4.1.10.

5.1.1 Essential classes relative to normal subgroups

To close this section, let us consider the case of the inclusion of a normal subgroup. In
this setting we can characterize essential classes relative to that subgroup as pullbacks of
non-trivial classes in the cohomology of the quotient group through the homomorphism in
cohomology induced by the quotient map. This is, in certain measure, a generalization of
the ideas present in the case of the inclusion of the diagonal subgroup in abelian groups, as
considered in [57, Section 6].

Proposition 5.1.6. Let N ◁ G be a normal subgroup, put Q := G/N for the quotient group and let
π : G → Q denote the projection.

a) Let ω ∈ H1(G, I) be the Berstein-Schwarz class of G relative to N and let β ∈ H1(Q, IQ) be the
Berstein-Schwarz class of Q, where IQ ⊂ Z[Q] denotes the augmentation ideal of Q. Then

π∗β = ω.
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b) Let A be a left Z[Q]-module and let n ∈ N. A cohomology class u ∈ Hn(G, π∗A) with u ̸= 0 is
essential relative to N if and only if there exists v ∈ Hn(Q, A) with π∗v = u.

Proof. Throughout the proof, we will use the projective resolution (Z[G]⊗ K∗, p∗) of Z over
Z[G] and the projective resolution (Z[Q]⊗ I∗Q, p∗) of Z over Z[Q], both defined as in 4.1.2 of
Chapter 4, to compute the cohomology groups of G and Q, respectively. By abuse of notation,
we further denote the ring homomorphism induced by π by π : Z[G] → Z[Q] as well.

a) By definition of the augmentation ideals and of π, it holds that π(K) ⊂ IQ and in the
notation of Definition 4.1.8, we write µ := π|K : K → IQ. By factorwise applying π, one
obtains a chain map

π# : Z[G]⊗ K∗ → Z[Q]⊗ I∗Q,

This map induces a cochain map

(π#)
∗ : HomZ[Q](Z[Q]⊗ I∗Q, A) → HomZ[G](Z[G]⊗ K∗, π∗A),

which in turn induces the pullback map

π∗ : H∗(Q, A) → H∗(G, π∗A).

Denote the augmentations of G and Q by εG and εQ, respectively. As shown in [44], the
Berstein-Schwarz class β ∈ H1(Q, IQ) is then represented by the cocycle

fβ : Z[Q]⊗ IQ → IQ, fβ = εQ ⊗ idIQ .

One easily checks that εQ ◦ π = εG, so that

(π#)
∗( fβ)(x)(y) = (εQ ◦ π)(x) · π#(y) = εG(x) · µ(y) = (µ ◦ (εG ⊗ idK))(x ⊗ y).

for all x ∈ Z[G] and y ∈ K. By definition of ω, it is represented by this latter cocycle.
Passing to cohomology then shows that π∗β = ω.

b) Assume that u is essential relative to N, such that there exists a Z[G]-homomorphism
φ : In → π∗A with

u = φ∗(ω
n) = φ∗((π

∗β)n) = (φ∗ ◦ π∗)(βn).

One easily checks that π∗ IQ = I as Z[G]-modules. Moreover, since we can view φ : In
Q →

A as a Z[Q]-homomorphism and since the diagram

Hn(Q, In
Q)

φ∗−−−→ Hn(Q, A)

π∗
y π∗

y
Hn(G, In)

φ∗−−−→ Hn(G, π∗A)

(5.1.4)

obviously commutes, we obtain that u = π∗v, where v := φ∗(βn) ∈ Hn(Q, A).
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Conversely, assume that there exists a class v ∈ Hn(Q, A), for which u = π∗v. By the
universality of Berstein-Schwarz classes, see [44], there exists a Z[Q]-homomorphism

ψ : In
Q → A,

such that v = ψ∗(βn). In fact, by definition of pullback modules, we can view ψ as a
Z[G]-homomorphism

ψ : In = π∗ In
Q → π∗A.

Replacing φ∗ by ψ∗, the diagram corresponding to (5.1.4) commutes as well, so we obtain
that

u = π∗(ψ∗(βn)) = ψ∗(π
∗(βn)) = ψ∗(ω

n),

hence u is essential.

We want to derive an estimate for secat(N ↪→ G) from the previous proposition, for
which we need to introduce another notion. Recently, Mark Grant defined the cohomological
dimension cd(ϕ) of a group homomorphism ϕ : G → H to be the maximum k for which there
exists some H-module A so that the induced homomorphism at cohomology level

ϕ∗ : Hk(H, A) → Hk(G, ϕ∗A)

is non-trivial. The first published account of the study of this new dimension is even more
recent, see [43].

For the proof of the following theorem we recall that the LS-category of a map f : X → Y
is the smallest integer m for which there are m + 1 open sets U0, . . . , Um which cover X
and such that each of the restrictions f |Uj is nullhomotopic. For a group homomorphism
ϕ : G → H, we write cat(ϕ) for the category of the associated map of aspherical spaces
K(G, 1) → K(H, 1).

Theorem 5.1.7. Let N ◁ G be a normal subgroup, put Q := G/N for the quotient group and let
π : G → Q denote the projection. Then

cd(π : G → Q) ≤ secat(N ↪→ G) ≤ cd(Q).

In particular, if π∗ : Hcd(Q)(Q, A) → Hcd(Q)(G, π∗A) is non-zero for some Z[Q]-module A, then
secat(N ↪→ G) = cd(Q).

Proof. Put k := cd(π : G → Q) and let A be a left Z[Q]-module and u ∈ Hk(Q, A) with
π∗u ̸= 0. Then, by Proposition 5.1.6, π∗u ∈ Hk(G, π∗A) is essential relative to N. This in
particular yields that ωk ̸= 0, where ω ∈ H1(G, I) denotes the Berstein-Schwarz class of G
relative to N and it follows from Proposition 4.1.10 that secat(N ↪→ G) ≥ k.

To show the other inequality we can argue through properties of Lusternik-Schnirelmann
category as found in [34]. First, let’s note that the exact sequence

{1} → N i→ G π→ Q → {1}
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gives a fibre sequence
K(N, 1) i→ K(G, 1) π→ K(Q, 1)

where we have used the same notation for the space maps. A fibre sequence arises as a
homotopy pullback

K(N, 1) P∗(K(Q, 1))

K(G, 1) K(Q, 1)

i

π

where P∗(K(Q, 1)) → K(Q, 1) is the based path space fibration. By Proposition 3.2.13, because
P∗(K(Q, 1)) is contractible, we have secat(i : N ↪→ G) = cat(π). But a standard property of
the category of a map is that it is bounded above by both the category of its domain and the
category of its codomain (see Proposition 3.2.12). Hence,

secat(i : N ↪→ G) = cat(π) ≤ cat(K(Q, 1)) = cd(Q). (5.1.5)

Assume now the hypothesis that π∗ : Hcd(Q)(Q, A) → Hcd(Q)(G, π∗A) is non-zero for some
Z[Q]-module A. Then, by definition, cd(π) ≥ cd(Q). Combining this with the lower bound
by cd(π) and with inequality 5.1.5 shows that

secat(N ↪→ G) = cd(π) = cd(Q).

Remark 5.1.8. (1) Notice that if we assume cd(Q) ̸= 2 (and thus we remove the pathological
case prescribed by the Eilenberg-Ganea conjecture) one could also argue in the proof of
the upper bound of Theorem 5.1.7 as follows: observe first that, by Corollary 4.1.6, it
holds that

secat(N ↪→ G) ≤ dim E⟨N⟩G

where E⟨N⟩G is the classifying space of the family of groups generated by N. Since
N is a normal subgroup of G, we derive from Proposition 4.2.15 that dim(E⟨N⟩G) =

dim(K(Q, 1)), where K(Q, 1) is a classifying space of Q. Using the Eilenberg-Ganea
theorem and Theorem 4.1.3.a) we derive that

secat(N ↪→ G) ≤ dim(K(Q, 1)) = cd(Q).

Combining this with the first inequality of Theorem 5.1.7 shows the claim.

(2) Since cat(K(Q, 1)) = cd(Q) for any Q by the Eilenberg-Ganea theorem, there arose the
natural conjecture that cat(ϕ) = cd(ϕ) for any homomorphism ϕ : G → H. This was
disproved by T. Goodwillie using an infinitely generated group G. In [43, Theorem 5.4] a
finitely generated example was derived and we shall use this in Example 5.1.9.

Example 5.1.9. While the hypothesis that cd(π : G → Q) = cd(Q) on cohomology in
Theorem 5.1.7 is sufficient to derive secat(N ↪→ G) = cd(Q), it is not necessary. We can see
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this using [43, Theorem 5.4] as follows. We recall that in [19], D. Bolotov defined a closed
manifold M4 with fundamental group π1(M) = Z ∗ Z3 for which, as shown in [43], the
pullback map

µ∗ : H3(K(Z ∗ Z3, 1), A) → H3(M, A)

is the zero homomorphism for all Z ∗ Z3-modules A, where µ : M → K(π, 1) is a classifying
map of the universal cover. The hyperbolization procedure of [27] gives a closed aspherical
manifold W4 and a degree one map α : W → M which induces a surjection of fundamental
groups. The surjective group homomorphism G = π1(W) → Z ∗ Z3 is then induced by the
composition

W α→ M
µ→ K(Z ∗ Z3, 1) = S1 ∨ T3

and we have a map θ : W → T3 given by the composition

W α→ M
µ→ S1 ∨ T3 c→ T3

where c : S1 ∨ T3 → T3 collapses S1. Abusing notation, the induced homomorphism of
fundamental groups θ : G → Z3 is also a surjection. Letting N = ker θ, we have an exact
sequence

{1} → N i→ G θ→ Z3 → {1}.

In [43, Theorem 5.4] it is shown that

cat(θ) = cd(Z3) = 3.

As in Remark 5.1.8, this means that secat(N ↪→ G) = 3 as well. However, the fact that
µ∗ = 0 and that θ = c ◦ µ ◦ α shows that the map θ∗ : H3(Z3, A) → H3(G, A) is trivial for any
coefficient module, hence cd(θ) < 3.

5.2 Forming the spectral sequence

In this section we will proceed to generalize the construction of a spectral sequence to
sectional categories of subgroup inclusions that has been carried out for the topological
complexity of aspherical spaces by M. Farber and S. Mescher in [57, Section 7]. In our setting,
the spectral sequence fom [57] corresponds to the choice of

G = π × π and H = ∆π,

for a given group π. The steps of the construction are carried out in analogy with the
corresponding parts of [57] and instead of giving individual references for each statement,
we view this as a general reference to [57, Section 7]. The interested reader will have no
difficulties in finding the analogous statements therein.
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5.2.1 The construction of the spectral sequence

Let G be a group, let H ≤ G be a subgroup and let ω ∈ H1(G, I) be the Berstein-Schwarz
class of G relative to H. Let A be a left Z[G]-module. Define the groups

Er,s
0 = Extr

Z[G](Z[G/H]⊗ Is, A), Dr,s
0 = Extr

Z[G](Is, A) ∀r, s ∈ N0.

Let i : I ↪→ Z[G/H] denote the inclusion. For each s ∈ N the short exact sequence from
(5.1.2) with M = Is yields a short exact sequence of Z[G]-modules

0 → Is+1 fs−→ Z[G/H]⊗ Is gs−→ Is → 0, (5.2.1)

where we have

fs : Is+1 → Z[G/H]⊗ Is fs := i ⊗ idIs

and

gs : Z[G/H]⊗ Is → Is gs(x ⊗ y) = σ(x) · y.

For each s, the sequence in (5.2.1) induces a long exact Ext-sequence with coefficients in
A, which is in the above notation given as

· · · → Er,s
0

k0−→ Dr,s+1
0

i0−→ Dr+1,s
0

j0−→ Er+1,s
0 → · · · (5.2.2)

where

• i0 : Dr,s+1
0 → Dr+1,s

0 denotes the connecting homomorphism,

• j0 : Dr,s
0 → Er,s

0 is induced by (gs)∗ : HomZ[G](Is, A) → HomZ[G](Z[G/H]⊗ Is, A),

• k0 : Er,s
0 → Dr,s+1

0 is induced by ( fs)∗ : HomZ[G](Z[G/H]⊗ Is, A) → HomZ[G](Is+1, A).

We put

E0 :=
⊕

r,s∈N0

Er,s
0 =

⊕
r,s∈N0

Extr
Z[G](Z[G/H]⊗ Is, A)

and

D0 :=
⊕

r,s∈N0

Dr,s
0 =

⊕
r,s∈N0

Extr
Z[G](Is, A)

and consider the summandwise defined maps

i0 : D0 → D0, j0 : D0 → E0, k0 : E0 → D0.

Together with these maps the groups D0 and E0 form an exact couple

D0 D0.

E0

i0

j0k0
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For each p ∈ N we denote its p-th derived exact couple as

Dp Dp

Ep

ip

jpkp

where, for each p ∈ N the module Dr,s
p is defined as the image of p compositions of the map

i0, i.e.
Dr,s

p = Im (ip−1 : Dr−1,s+1
p−1 → Dr,s

p−1) = Im (i0 ◦ · · · ◦ i0︸ ︷︷ ︸
p

: Dr−p,s+p
0 → Dr,s

0 )

and, naturally, the module E∗,∗
p is defined by taking cohomology with respect to the differen-

tial defined by the exact couple, that is

E∗,∗
p = H∗(E∗,∗

p−1, dp−1).

The zeroth page of the first-quadrant cohomological spectral sequence obtained thereby is
formed by the groups Er,s

0 and the differential

d0 : Er,s
0 → Er,s+1

0 , d0 := j0 ◦ k0 ∀r, s ∈ N0.

Note that we can view Dr,s
p ⊂ Dr,s

0 as subsets for each p ∈ N and we will occasionally do so
without further mention.

Let n, p ∈ N with p ≤ n. Taking a class α ∈ Dn,0
p we know by definition that α = ip

0 (γ)

for some γ ∈ Dn−p,p
0 . By Proposition 2.2.6, we can identify

Dn−p,p
0 = Extn−p

Z[G]
(Ip, A) ∼= Hn−p(G, HomZ(Ip, A)).

Following an iterated use of the identification provided by Proposition 5.1.3, we obtain the
following characterization of Dn,0

p , which is a generalization of [57, Corollary 7.4].

Proposition 5.2.1. Let n, p ∈ N with p ≤ n and let α ∈ Dn,0
0 . Then α ∈ Dn,0

p if and only if there
exists γ ∈ Hn−p(G, HomZ(Ip, A)) with

α = ψ∗(ω
p ∪ γ),

where ψ : Ip ⊗ HomZ(Ip, A) → A is the Z[G]-homomorphism given by

ψ(x1 ⊗ · · · ⊗ xp ⊗ f ) = f (xp ⊗ xp−1 ⊗ · · · ⊗ x1).

This proposition has an immediate consequence for sectional categories.

Theorem 5.2.2. Let n, p ∈ N with p ≤ n. If Dn,0
p ̸= {0}, then ωp ̸= 0 and thus

secat(H ↪→ G) ≥ p.

Proof. By Proposition 5.2.1, every class in Dn,0
p is obtained as a pushforward of a cup product

of ωp with another class. So if there is a non-trivial class in Dn,0
p , then it necessarily holds that

ωp ̸= 0 and the claim follows from Proposition 4.1.10.
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5.2.2 Essential classes and the spectral sequence

To extract further consequences for secat(H ↪→ G) from the spectral sequence, we need to
find a more manageable description of our groups Er,s

0 . This is immediately achieved through
the isomorphism defined in 4.2.7, as the following corollary shows:

Corollary 5.2.3. Let r ∈ N and s ∈ N0. Then

Er,s
0

∼= Extr
Z[H]( Ĩs, Ã).

Proof. This is the special case of Lemma 4.2.7 obtained by letting M = Is and N = A.

The following theorem summarizes the most important properties of the spectral sequence.
In particular, it provides an equivalent condition for a cohomology class to be essential in
terms of its pertenence to a group Dn,0

n .

Theorem 5.2.4. Let n ∈ N and let u ∈ Hn(G, A) with u ̸= 0.

a) The class u is essential relative to H if and only if u ∈ Dn,0
n .

b) Dn,0
1 = ker[ι∗ : Hn(G, A) → Hn(H, Ã)], where ι∗ is induced by the inclusion ι : H ↪→ G.

c) Let s ∈ {0, 1, . . . , n − 1}. Then u ∈ Dn,0
s+1 if and only if

u ∈ Dn,0
s and u ∈ ker

[
js : Dn,0

s → En−s,s
s

]
.

Proof. a) By Proposition 5.2.1, u ∈ Dn,0
n if and only if there is a class µ ∈ H0(G, HomZ(In, A)),

such that u = ψ∗(ωn ∪ µ), where ψ is described in the statement of said proposition. But

H0(G, HomZ(In, A)) = (HomZ(In, A))G = HomZ[G](In, A)

and one checks without difficulties that, seeing µ as a Z[G]-homomorphism, it holds that

u = ψ∗(ω
n ∪ µ) = µ∗(ω

n).

The claim immediately follows.

b) By definition and exactness of the exact couple,

Dn,0
1 = Im

[
i0 : Dn−1,1

0 → Dn,0
0

]
= ker

[
j0 : Dn,0

0 → En,0
0

]
= ker

[
j0 : Extn

Z[G](Z, A) → Extn
Z[G](Z[G/H], A)

]
= ker

[
j0 : Extn

Z[G](Z, A) → Extn
Z[H](Z, Ã)

]
= ker

[
ι∗ : Hn(G, A) → Hn(H, Ã)

]
,

where we used Corollary 5.2.3.

c) This is an immediate consequence of the inner workings of exact couples (see Subsection
2.4.1).
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5.2.3 Computing the zero-th page

In [57], the authors proceeded from the construction of the spectral sequence by introducing
certain decompositions of terms of the form Er,s

0 for r > 0 and s > 0 into products of
cohomology groups of centralizers of elements of the groups involved. We will show next
that this can be generalized as well and derive decompositions of parts of our spectral
sequence as products of cohomology groups of certain isotropy groups of H-actions that will
be introduced momentarily.

We consider the left H-action on the left cosets G/H given by

H × G/H → G/H, h · gH = (hg)H. (5.2.3)

For each s ∈ N we further consider the diagonal H-action

H × (G/H)s → (G/H)s, h · (g1H, . . . , gsH) = (hg1H, hg2H, . . . , hgsH).

We denote the set of orbits of this action for each s ∈ N by

Cs(G/H) := {H · (g1H, g2H, . . . , gsH) | g1H, . . . , gsH ∈ G/H}.

We put (G/H)∗ := (G/H) \ {H} and

C ′
s(G/H) := {H · (g1H, g2H, . . . , gsH) | g1H, . . . , gsH ∈ (G/H)∗} ⊂ Cs(G/H).

The above action equips Z[G/H]⊗s with the structure of a left Z[H]-module and we consider
Is ⊂ Z[G/H]⊗s as a Z[H]-submodule. This submodule structure obviously coincides with
the one obtained by Ĩs = (ResG

H(I))s that we previously considered. One checks that as free
abelian groups

Is =
⊕

g1 H,...,gs H∈(G/H)∗

Z · (g1H − H)⊗ (g2H − H)⊗ · · · ⊗ (gsH − H) ∀s ∈ N

and note that for all s ∈ N, g1H, . . . , gsH ∈ G/H and h ∈ H it holds that

h · (g1H− H)⊗ (g2H− H)⊗· · ·⊗ (gsH− H) = (hg1H− H)⊗ (hg2H− H)⊗· · ·⊗ (hgsH− H).

From this, one observes that for each C ∈ C ′
s(G/H), we obtain a Z[H]-submodule

JC ⊂ Is, JC :=
⊕

(g1 H,...,gs H)∈C

Z · (g1H − H)⊗ (g2H − H)⊗ · · · ⊗ (gsH − H),

and that
Ĩs =

⊕
C∈C ′

s(G/H)

JC (5.2.4)

is a decomposition of Z[H]-modules. Moreover, for each C ∈ C ′
s(G/H), we let Z[C] denote

the free abelian group generated by the elements of C. One checks without difficulties that
for each C the map φC : Z[C] → JC that is obtained by Z-linearly extending

φ(g1H, g2H . . . , gsH) = (g1H − H)⊗ (g2H − H)⊗ · · · ⊗ (gsH − H), (5.2.5)

is an isomorphism of Z[H]-modules.
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Theorem 5.2.5. Let s ∈ N. For each C ∈ C ′
s(G/H) fix a representative xC ∈ C and let NC := HxC

be the isotropy group of xC. Then

Er,s
0

∼= ∏
C∈C ′

s(G/H)

Hr(NC, ResG
NC
(A)) ∀r ∈ N.

Proof. Fix r ∈ N. By Corollary 5.2.3, it holds that Er,s
0

∼= Extr
Z[H]( Ĩs, Ã). From this, using

(5.2.4), the isomorphism ϕC : Z[C] → JC given by (5.2.5) and the addivity of Ext-functors
(recall (f) of Proposition 2.1.11) we derive that

Er,s
0

∼= ∏
C∈C ′

s(G/H)

Extr
Z[H](JC, Ã) ∼= ∏

C∈C ′
s(G/H)

Extr
Z[H](Z[C], Ã).

Let C ∈ C ′
s(G/H). For any left Z[H]-module M we observe that, since H acts transitively on

C, the map

HomZ[H](Z[C], M)
∼=→ HomZ[NC ](Z, ResH

NC
(M))

(2.2.1)
= (ResH

NC
(M))NC , f 7→ f (xC), (5.2.6)

is a group isomorphism. Let

· · · −→ Pr
pr−→ Pr−1

pr−1−→ . . .
p2−→ P1

p1−→ P0
p0−→ Z −→ 0

be a free resolution of Z over Z[H]. Since Z[C] is a free abelian group, it follows from [22,
Corollary III.5.7] that

· · · −→ Z[C]⊗ Pr
idZ[C]⊗pr−→ Z[C]⊗ Pr−1 −→ · · · −→ Z[C]⊗ P1

idZ[C]⊗p1−→ Z[C]⊗ P0 −→ Z[C] −→ 0

is a free resolution of Z[C] over Z[H]. Consequently, we can compute the above Ext-groups
as

Extr
Z[H](Z[C], Ã) = Hr(HomZ[H](Z[C]⊗ P∗, Ã), (idZ[C] ⊗ p∗)∗)

Let r ∈ N0. If we consider HomZ(Pr, Ã) as a left Z[H]-module with respect to the diagonal
H-action then we obtain

HomZ[H](Z[C]⊗ Pr, Ã)
(2.2.3)∼= HomZ[H](Z[C], HomZ(Pr, Ã))

(5.2.6)∼= (HomZ(Pr, Ã))NC

(2.2.2)
= HomZ[NC ](Pr, ResG

NC
(A))

and one checks that an explicit isomorphism is given by

Fr : HomZ[H](Z[C]⊗ Pr, Ã) → HomZ[NC ](Pr, ResG
NC
(A)), (Fr( f ))(q) = f (xC ⊗ q) ∀q ∈ Pr.

One checks that the Fr are compatible with the differentials, thus induce isomorphisms

(Fr)∗ : Extr
Z[H](Z[C], Ã) → Hr(HomZ[NC ](P∗, ResG

NC
(A)), p∗r ) ∀r ∈ N0,

where we used the obvious fact that

ResH
NC
(Ã) = ResH

NC
(ResG

H(A)) = ResG
NC
(A).

Since each Pr is free as a left Z[H]-module, it is free as a left Z[NC]-module as well. Hence,
P∗ is a free resolution of Z over Z[NC], such that

Hr(HomZ[NC ](P∗, ResG
NC
(A)), p∗r ) = Hr(NC, ResG

NC
(A)) ∀r ∈ N0.

Combining the previous observations shows the claim.
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5.3 Consequences for sectional categories of subgroup inclusions

In this section we derive a lower bound on sectional categories of subgroup inclusions from
Theorem 5.2.5. We adopt all of the spectral sequence notation from the previous section.

Definition 5.3.1. Let G be a group and let H ≤ G be a subgroup. For each x ∈ G, we let Hx

denote the isotropy group of the left H-action on G/H in xH and put

κG,H := sup{cd(Hx) | x ∈ G \ H}.

The following result is a consequence of the previous properties of the spectral sequence:

Proposition 5.3.2. Let G be a geometrically finite group and let H ≤ G be a subgroup. Let A be a
left Z[G]-module, let n ∈ N and let u ∈ Hn(G, A) = Dn,0

0 . If n ≥ κG,H, then

u ∈ Dn,0
n−κG,H

.

Proof. Since G is geometrically finite, it follows that κG,H < +∞. Let s ∈ N. By definition of
the H-actions, for each C ∈ C ′

s(G/H) there is some x ∈ G \ H, such that NC ≤ Hx. By [22,
Proposition VIII.2.4], this yields that

cd(NC) ≤ cd(Hx) ≤ κG,H

for each C ∈ C ′
s(G/H). In particular, Hr(NC, ResG

NC
(A)) = 0 whenever r > κG,H, so we

derive from Theorem 5.2.5 that

Er,s
0 = {0} ∀r > κG,H, s ∈ N. (5.3.1)

In particular,
En−s,s

0 = {0} ∀s ∈ {1, 2, . . . , n − κG,H − 1}.

In terms of Theorem 5.2.4.c), this yields that

u ∈ ker
[
js : Dn,0

s → En−s,s
s

]
for 1 ≤ s ≤ n − κG,H − 1

so it follows directly from Theorem 5.2.4.c) that u ∈ Dn,0
n−κG,H

.

This has an immediate consequence for sectional categories of subgroup inclusions.

Theorem 5.3.3. Let G be a geometrically finite group and H ≤ G be a subgroup. Then

secat(H ↪→ G) ≥ cd(G)− κG,H.

Proof. Put n := cd(G), let A be a left Z[G]-module with Hn(G, A) ̸= {0} and let u ∈
Hn(G, A) with u ̸= 0. It follows from Proposition 5.3.2 that u ∈ Dn,0

n−κG,H
. Thus, we obtain

from Theorem 5.2.2 that secat(H ↪→ G) ≥ n − κG,H.

We want to describe the number κG,H in a more tangible way.
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Lemma 5.3.4. Let G be a group, let H ≤ G be a subgroup, let x ∈ G and let Hx denote the isotropy
group of the left G-action on G/H in xH. Then

Hx = H ∩ xHx−1.

Proof. Let h ∈ H with xhx−1 ∈ H. Then xhx−1 · xH = xhH = xH, hence xhx−1 ∈ Hx.
Conversely, let g ∈ Hx and let h1 ∈ H be arbitrary. Then there exists an h2 ∈ H with

g · xh1 = xh2 ⇔ g = xh2h−1
1 x−1 ⇒ g ∈ xHx−1.

Corollary 5.3.5. Let G be a geometrically finite group and H ≤ G be a subgroup. Then

κG,H = max{cd(H ∩ xHx−1) | x ∈ G \ H}.

Proof. This follows immediately by applying Lemma 5.3.4 to the definition of κG,H.

Remark 5.3.6. If H is not a self-normalizing subgroup of G, then there exists some non-trivial
element x ∈ NG(H) \ H such that H ∩ xHx−1 = H. Thus, κG,H = cd(H) in this case and
Theorem 5.3.3 yields

secat(H ↪→ G) ≥ cd(G)− cd(H).

This is, of course, the case if we consider a normal subgroup N ◁ G. In this situation, with
Q = G/N, and under the necessary assumption that cd(Q) < ∞, we obtain

cd(G)− cd(N) ≤ secat(N ↪→ G) ≤ cd(Q).

In Theorem 5.1.7 we have seen a condition for the sectional category to reach the top dimen-
sion. It is interesting to remark as well that if Hcd(N)(N, Z[N]) is free abelian then, by [13,
Theorem 5.5], we have that cd(Q) = cd(G)− cd(N) and thus

secat(N ↪→ G) = cd(G)− cd(N)

under such assumption.

5.4 Applications to topological complexity

We next want to check explicitly that our Theorem 5.3.3 indeed recovers the corresponding
result from [57]. However, we will do it through an application of it to the more general
version of sequential topological complexity (which, as seen previously, subsumes the original
notion as one of its concrete cases).

Once that goal is accomplished, we will close this section (and indeed this chapter) with a
specialization of Theorem 5.3.3 to the case of parametrized topological complexity of group
epimorphisms.

98 Chapter 5



5.4. Applications to topological complexity

5.4.1 Sequential topological complexity of aspherical spaces

Let π be a geometrically finite group. As referenced in Chapter 3 at 3.3.2, the rth sequential
topological complexity TCr(K(π, 1)) coincides with the sectional category of the covering of
(K(π, 1))r that is associated with the diagonal subgroup ∆π,r. By the definition of secat(H ↪→
G), this shows that TCr(K(π, 1)) is given as the sectional category of the inclusion of ∆π,r

into the product πr, i.e.
TCr(K(π, 1)) = secat(∆π,r ↪→ πr). (5.4.1)

Our aim in this subsection is to put to use Theorem 5.3.3 in order to find a new lower
bound for sequential TC of Eilenberg-MacLane spaces (of whom not much is known so far).
However, to obtain a tangible lower bound, first we need to determine the value of κπr ,∆π,r

more explicitly.

Lemma 5.4.1. For each r ∈ N with r ≥ 2, it holds that

κπr ,∆π,r = k(π) := max{cd(C(g)) | g ∈ π \ {1}},

where C(g) denotes the centralizer of g ∈ π.

Proof. Let x = (x1, . . . , xr) ∈ πr \ ∆π,r and let (h, h, . . . , h) ∈ ∆π,r. Then

x(h, h, . . . , h)x−1 ∈ ∆π,r ⇔ (x1hx−1
1 , x2hx−1

2 , . . . , xrhx−1
r ) ∈ ∆π,r

⇔ x1hx−1
1 = x2hx−1

2 = · · · = xrhx−1
r .

For all i, j ∈ {1, 2, . . . , r} we compute that

xihx−1
i = xjhx−1

j ⇔ x−1
j xih = hx−1

j xi ⇔ h ∈ C(x−1
j xi).

One derives from this observation that

(h, h, . . . , h) ∈ ∆π,r ∩ x∆π,rx−1 ⇔ h ∈
⋂
i ̸=j

C(x−1
j xi).

This shows in particular that any subgroup of πr of the form ∆π,r ∩ x∆π,rx−1, where x /∈ ∆π,r,
is isomorphic to a subgroup of the centralizer of an element of π \ {1}, so we derive that
κπr ,∆π,r ≤ k(π). On the other hand, given an arbitrary g ∈ π with g ̸= 1, if we put x0 :=
(g, 1, . . . , 1) ∈ πr, then it follows from the above that

(h, h, . . . , h) ∈ ∆π,r ∩ x0∆π,rx−1
0 ⇔ h ∈ C(g),

so C(g) is indeed isomorphic to a group of the form ∆π,r ∩ x∆π,rx−1. This shows that
κπ,r ≥ k(π) and the two inequalities together show the claim.

Thus, we obtain the following consequence of our main lower bound.

Theorem 5.4.2. Let π be a geometrically finite group and let r ∈ N with r ≥ 2. Then

TCr(K(π, 1)) ≥ r · cd(π)− k(π),

where k(π) = max{cd(C(g)) | g ∈ π \ {1}}.
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Proof. We derive from Theorem 5.3.3 and from (5.4.1) that

TCr(K(π, 1)) ≥ cd(πr)− κπr ,∆π,r

= r · cd(π)− k(π),

where in the last step we used Lemma 5.4.1 and the main result of [38] on cohomological
dimensions of products of geometrically finite groups.

Remark 5.4.3. (1) In the case of r = 2, the previous theorem yields the lower bound of

TC(K(π, 1)) ≥ 2cd(π)− k(π)

for topological complexity. Although not explicitly stated therein, this inequality is an
immediate consequence of the main results of [57].

(2) If π is a torsion-free hyperbolic group, then C(g) is infinite cyclic for each g ∈ π∗, so
Theorem 5.4.2 and Theorem 4.1.3.a) imply that

r · cd(π)− 1 ≤ TCr(K(π, 1)) ≤ r · cd(π) ∀r ≥ 2

in this case. It has in fact been shown by S. Hughes and K. Li in [77] that indeed
TCr(π) = r cd(π) for all torsion-free hyperbolic groups with π not isomorphic to Z and
all r ≥ 2. However, the methods of [77] only generalize slightly beyond the hyperbolic
case and do not yield a general lower bound for geometrically finite groups.

(3) If π is a free abelian group, then ∆π,r is a normal subgroup of πr with πr
/

∆π,r
∼= πr−1.

In this case, we derive from Theorem 5.1.7 that

TCr(π) = cd(πr−1) = (r − 1) · cd(π) ∀r ≥ 2.

This has already been observed in [9, Corollary 3.13].

(4) Suppose that x = (x1, · · · , xr) ∈ πr satisfies x∆π,rx−1 = ∆π,r. From the proof of Lemma
5.4.1 we can infer that this implies π ⊂ C(xjx−1

i ) for every i ̸= j. But this means, in turn,
that xjx−1

i ∈ Z(π). Therefore

Nπr(∆π,r) = {(x1, · · · , xr) ∈ πr | xjx−1
i ∈ Z(π), ∀i ̸= j}.

Consequently, if the group π satisfies Z(π) = {1}, the diagonal subgroup ∆π,r is self-
normalizing.

We want to apply Theorem 5.4.2 to a certain class of free amalgamated products whose
centralizers were studied by T. Lewin. For this purpose, we need to introduce a notion from
group theory.

Definition 5.4.4. Let G be a group. A subgroup H ≤ G is malnormal if

xHx−1 ∩ H = {1} ∀x ∈ G ∖ H.

100 Chapter 5



5.4. Applications to topological complexity

In the following, given a group G and g ∈ G we let CG(g) denote its centralizer whenever
it is ambiguous which group we are referring to.

Corollary 5.4.5. Let π1 and π2 be geometrically finite groups and consider a free product with
amalgamation π1 ∗H π2, such that H is malnormal in π1 or malnormal in π2. Then for each r ≥ 2

TCr(π1 ∗H π2) ≥ r · cd(π1 ∗H π2)− max{k(π1), k(π2)}.

Proof. Put π := π1 ∗H π2 and let g ∈ π, g ̸= 1. By [87, Theorem 2], the centralizer Cπ(g) is
infinite cyclic or isomorphic to Cπ1(g) or Cπ2(g). In the first case, it holds that cd(Cπ(g)) =
1, while in the other two cases it holds that cd(Cπ(g)) ≤ k(π1) or cd(Cπ(g)) ≤ k(π2),
respectively. Since g was chosen arbitrarily, this yields that

k(π) ≤ max{1, k(π1), k(π2)} = max{k(π1), k(π2)},

so the claim follows immediately from Theorem 5.4.2.

Remark 5.4.6. For explicit computations using Corollary 5.4.5, there are some general results
about cohomological dimensions of free amalgamated products that come in handy. More
precisely, let π1 and π2 be groups of finite cohomological dimension and consider a free
product with amalgamation π1 ∗H π2. It is shown in [13, Proposition 6.1] that

max{cd(π1), cd(π2)} ≤ cd(π1 ∗H π2) ≤ max{cd(π1), cd(π2)}+ 1.

and that a necessary condition for cd(π1 ∗H π2) = max{cd(π1), cd(π2)}+ 1 to hold is that
cd(π1) = cd(π2). It is further shown in [13, Corollary 6.5] that a sufficient condition for this
equality is that both π1 and π2 are of type FP∞ and that H is of finite index both in π1 and in
π2.

5.4.2 Parametrized topological complexity of epimorphisms

The parametrized topological complexity of a fibration has been introduced by D. Cohen, M.
Farber and S. Weinberger in [30]. Given a fibration p : E → B, one considers EI

B as the space
of all continuous paths γ : I := [0, 1] → E in a single fibre of p, i.e. such that the path p ◦ γ is
constant. Define the space

E ×B E = {(e, e′) ∈ E × E | p(e) = p(e′)}

of all possible pairs of configurations lying in the same fibre of p. Then, the map

Π : EI
B → E ×B E Π(γ) = (γ(0), γ(1))

is a fibration with fibre ΩX. The parametrized topological complexity of p is defined as

TC[p : E → B] = secat(Π : EI
B → E ×B E).

We want to apply the results previously obtained to the parametrized topological complexity
of group epimorphisms. This algebraic variant of parametrized topological complexity was
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defined and investigated by M. Grant in [67]. Given two groups G and Q and an epimorphism
ρ : G ↠ Q there exists a fibration fρ : K(G, 1) → K(Q, 1), whose fibre is path-connected and
which induces ρ on the level of fundamental groups. Moreover, it is shown in loc. cit. that
TC[ fρ : K(G, 1) → K(Q, 1)] is independent of the choice of fρ and that

TC[ fρ : K(G, 1) → K(Q, 1)] = secat(∆G ↪→ G ×Q G) =: TC[ρ : G ↠ Q].

Here, ∆G = {(g, g) ∈ G × G | g ∈ G} denotes the diagonal subgroup and

G ×Q G := {(x, y) ∈ G × G | ρ(x) = ρ(y)}.

We discuss an alternative description of these pullback groups in the following lemma.

Lemma 5.4.7. Let G, Q be groups, let ρ : G → Q be an epimorphism. Then

G ×Q G = ((ker ρ)× 1) · ∆G.

Proof. Let k ∈ ker ρ and g ∈ G. Then, since ρ is a homomorphism, ρ(kg) = ρ(k) · ρ(g) = ρ(g),
so that (kg, g) ∈ G ×Q G. Conversely, let (g1, g2) ∈ G ×Q G. Then

ρ(x) = ρ(y) ⇔ ρ(x)(ρ(y))−1 = 1 ⇔ ρ(xy−1) = 1 ⇔ xy−1 ∈ ker ρ.

Thus (x, y) = (xy−1, 1) · (y, y) ∈ ((ker ρ)× 1) · ∆G.

We now want to apply our results on sectional categories to this setting. The following
statement is a straightforward application of Theorem 5.3.3.

Theorem 5.4.8. Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism.
Then

TC[ρ : G → Q] ≥ cd(G ×Q G)− k(ρ),

where
k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g ̸= 1}.

Proof. It follows from Theorem 5.3.3 that TC[ρ : G → Q] ≥ cd(G ×Q G)− ℓ, where

ℓ := κG×QG,∆G = max{cd(∆G ∩ z∆Gz−1) | z ∈ (G ×Q G) \ ∆G}.

It only remains to show that k(ρ) = ℓ. It follows from Lemma 5.4.7 that

ℓ = max{cd(∆G ∩ (xh, h)∆G(xh, h)−1) | x ∈ ker ρ \ {1}, h ∈ G}
= max{cd(∆G ∩ (x, 1)∆G(x, 1)−1) | x ∈ ker ρ \ {1}},

since, evidently, (h, h)∆G(h, h)−1 = ∆G for all h ∈ G.
Let x ∈ ker ρ with x ̸= 1 and let g ∈ G. Then

(g, g) ∈ (x, 1)∆G(x, 1)−1 ⇔ ∃h ∈ G : (g, g) = (x, 1)(h, h)(x, 1)−1 = (xhx−1, h)

⇔ ∃h ∈ G : g = h ∧ g = xhx−1

⇔ g = xgx−1 ⇔ x = g−1xg ⇔ g−1 ∈ C(x) ⇔ g ∈ C(x).
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Moreover, the map

C(x) → ∆G ∩ (x, 1)∆G(x, 1)−1 g 7→ (g, g)

is easily seen to be a group isomorphism. We immediately derive that k(ρ) = ℓ.

To study the cohomological dimension of G ×Q G, we can characterize such pullback
groups as semidirect products.

Lemma 5.4.9. Let G, Q be groups and let ρ : G ↠ Q be an epimorphism. Then

Φ : G ×Q G → (ker ρ)⋊φ G, Φ(g, h) = (gh−1, h),

is a group isomorphism, where φ : G → Aut(ker ρ), (φ(g))(x) = gxg−1.

Proof. One checks without difficulties that Φ is injective. Moreover, for each (x, y) ∈ (ker ρ)⋊
G it holds that Φ(xy, y) = (x, y), so Φ is surjective as well. For all (g1, h1), (g2, h2) ∈ G ×Q G
we further compute that

Φ((g1, h1) · (g2, h2)) = Φ(g1g2, h1h2) = (g1g2h−1
2 h−1

1 , h1h2)

= (g1h−1
1 · h1g2h−1

2 h−1
1 , h1h2) = (g1h−1

1 (φ(h1))(g2h−1
2 ), h1h2)

= (g1h−1
1 , h1) • (g2h−1

2 , h2) = Φ(g1, h1) • Φ(g2, h2).

where • denotes multiplication in (ker ρ)⋊ϕ G. Thus, Φ is an isomorphism.

Corollary 5.4.10. Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism.
Then

TC[ρ : G ↠ Q] ≤ cd(G) + cd(ker ρ).

Proof. It is well known that the cohomological dimension of a semidirect product is at most
the sum of those of its factors. Thus, it follows from Lemma 5.4.9 and the lower bound from
Theorem 4.1.3.a) that

TC[ρ : G ↠ Q] ≤ cd(G ×Q G) ≤ cd(G) + cd(ker ρ).

Corollary 5.4.11. Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism.
Assume that Hn(ker ρ, Z[ker ρ]) is Z-free for n = cd(ker ρ). Then

2cd(G)− cd(Q)− k(ρ) ≤ TC[ρ : G ↠ Q] ≤ 2cd(G)− cd(Q),

where k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g ̸= 1}.

Proof. Since G is geometrically finite and Hn(ker ρ, Z[ker ρ]) is Z-free, it follows from [13,
Theorem 5.5], that

cd(ker ρ) = cd(G)− cd(Q). (5.4.2)
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The upper bound on TC[ρ : G ↠ Q] thus follows directly from Corollary 5.4.11. Regarding
the lower bound, we derive from Lemma 5.4.9 and again [13, Theorem 5.5] that

cd(G ×Q G) = cd(G) + cd(ker ρ)
(5.4.2)
= 2cd(G)− cd(Q).

The lower bound is then an immediate consequence of Theorem 5.4.8.

If we want to consider the case of the inclusion of a normal subgroup notice that, for G
and Q groups and ρ : G ↠ Q an epimorphism, then ∆G is a normal subgroup of G ×Q G if
and only if ker ρ ⊂ Z(G), where Z(G) denotes the center of G. Indeed, since (g, h) ∈ G ×Q G,
it holds that ρ(g) = ρ(h) and thus g−1h ∈ ker ρ. So, if ker ρ ⊂ Z(G), this condition is satisfied
for all (g, h) ∈ G ×Q G and x ∈ G. Conversely, if ∆G is normal G ×Q G, then we derive
by taking (g, h) = (a−1, 1) for a ∈ ker ρ that indeed ker ρ ⊂ Z(G). As such, we are in the
situation that the associated group extension

{1} → ker(ρ) → G
ρ−→ Q → {1}

is central. Therefore, by [67, Corollary 5.2] we know that

TC[ρ : G ↠ Q] = cd(ker(ρ)).

But we can also derive an approach to this case as a consequence of the more general
computation provided by Theorem 5.1.7.

Proposition 5.4.12. Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism.
Assume that ker ρ lies in the center of G and consider the homomorphism

ϕ : G ×Q G → ker ρ, ϕ(g, h) = gh−1.

Then
cd(ϕ : G ×Q G → ker ρ) ≤ TC[ρ : G ↠ Q] = cd(ker ρ).

Proof. We observe using Lemma 5.4.7 that the map

G ×Q G → ker ρ (g, h) 7→ gh−1

in fact induces a group isomorphism

ψ : (G ×Q G)
/

∆G

∼=→ ker ρ

by the assumption on ker ρ. Since the projection p : G ×Q G → (G ×Q G)/∆G is easily seen
to satisfy ψ ◦ p = ϕ, we derive from the assumptions, Theorem 5.1.7 and [67, Corollary 5.2]
that

TC[ρ : G ↠ Q] = cd
(
(G ×Q G)

/
∆G

)
= cd(ker ρ)

TC[ρ : G ↠ Q] ≥ cd(p) = cd(ϕ).
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CHAPTER 6

Sectional category and topological complexity of groups as A-genus

Introduction

We will conclude our study of the topological complexities of aspherical spaces and sectional
category of subgroup inclusions by developing some of the ideas implicit in our charac-
terization of secat(H ↪→ G) given in Theorem 4.1.4. In this short chapter, we will see that
the sectional category of a subgroup inclusion H ↪→ G and, consequently, also the (sequen-
tial) topological complexity of aspherical spaces can be characterized by means of another
category-like homotopy invariant, known as the A-genus, for A a suitable family of G-spaces.
Even though the proof of such result is relatively straightforward, the characterization has
some interesting consequences, and allows to find in a rather direct manner new bounds
for both sectional category and sequential topological complexities, and to generalize and
reformulate some of the already well-known bounds. We will close the chapter with some
thoughts about further uses of A-genus for proper actions of groups.

6.1 The notion of A-genus

The main notion of interest for this chapter, as we just indicated above, is that of A-genus of
a G-space X with respect to a family A of G-spaces. Such concept was gradually developed
by several authors in different degrees of generality. The first accounts, that of A-genus for
A = {G}, are due to C.T. Yang [117] for G = Z2, M.A. Krasnoselski [83] for Zp, to Schwarz
[110] for free actions of discrete groups and finally to E. Fadell [50] for free actions of arbitrary
groups. However, the more general notion of A-genus that we will employ during this
chapter is due to T. Bartsch in [7], where he developed the notion for arbitrary choices of
groups and families of G-spaces. Indeed, Bartsch will be our main reference throughout this
chapter, specifically his classic book on the matter, see [8].
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In particular, the notion of A-genus can be seen as a special case of the more general
concept of A-category, which in the equivariant context was due to M. Clapp and D. Puppe
in [29], as a way of generalizing the notion of Lusternik-Schnirelmann category and stuying
critical point theory with respect to group actions, see [28]. Let G be a group, and fix a set of
G-spaces A.

Definition 6.1.1. Let X and Y be G-spaces. We define the A-category of a G-equivariant
map f : X → Y, denoted by A-cat( f ), as the smallest integer k ≥ 0 such that there exists
an open cover {U0, · · · , Uk} of X such that for every i ∈ {0, · · · , k} there is some Ai ∈ A
and G-equivariant maps αi : Xi → Ai and βi : Ai → Y satisfying that the restriction f|Xi

is
G-homotopically equivalent to βi ◦ αi. If no such integer exists, we set A-cat( f ) = ∞.

We define the A-category of a G space X as A-cat(X) := A-cat(idX).

The relationship between different versions of topological complexity and the A-category
of the configuration space has been studied before. Indeed, N. Iwase and M. Sakai in [80] first
recasted TC(X) in terms of the A-category of X for a suitable family A, while W. Lubawski
and W. Marzantowicz in [89] and A. Ángel, H. Colman, M. Grant and J. Oprea in [3] studied
the situation for equivariant versions of topological complexity. It is important to mention as
well the work of P. Capovilla, C. Loeh and M. Moraschini, [25], where the ideas of Clapp and
Puppe are employed to give new variants of A-category and to study its relationship with
TC. However, to our knowledge, all these approaches have been only from the perspective of
the A-category of a space in the sense of the above definition, and no attempt has been made
to exploit the specificities of the properties of A-genus in order to study its applications to
the setting of topological complexity. This is precisely our goal in this chapter. It is time now
to recall the definition of A-genus.

Definition 6.1.2. The A-genus of a G-space X is defined as the A-category of the constant
map, i.e. A-genus(X) := A-cat(X → ∗). Equivalently, A-genus(X) is the smallest integer
k ≥ 0 such that there exists an open cover {U0, · · · , Uk} of X satisfying that, for every
0 ≤ i ≤ k there exists Ai ∈ A and a G-equivariant map Ui → Ai.

It becomes immediately apparent from the definitions that A-genus constitutes a lower
bound for the A-category of a G-space. Indeed, for any G-space X and family A we have
A-genus(X) ≤ A-cat(X), see [8, Proposition 2.9]. The interested reader can check in loc.
cit. explicit examples where such inequality is indeed strict. The following proposition
summarizes the basic properties of A-genus that will be of most use for our purposes. In
particular, we have to highlight the characterization of A-genus in terms of the join of spaces
from the family A.

Proposition 6.1.3 ([8] Proposition 2.9, Proposition 2.15 and Proposition 2.17). Let G be a group,
X a G-space and A a family of G spaces. The A-genus satisfies the following properties:

(a) A-genus(X) is the smallest integer k ≥ 0 such that there exists A0, · · · , Ak ∈ A and a G-
equivariant map of the form X → A0 ∗ · · · ∗ Ak.
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(b) Monotonicity: If there exists a G-equivariant map X → Y then A-genus(X) ≤ A-genus(Y)

(c) Normalization If A ∈ A then A-genus(A) = 0.

(d) Let H ≤ G closed, consider a family A of G-spaces and a family B of H-spaces. Then, for any
G-space X

B-genus(X) ≤ (A-genus(X) + 1)(max{B-genus(A) : A ∈ A}+ 1)− 1

Given that we aim to identify A-genus with certain sectional categories, we would want
an analogous to the cohomological lower bound in the context of A-genus. This role is
played by a notion of length relative to the family A. Let h∗ be a multiplicative G-equivariant
cohomology theory, and I ⊆ h∗(∗) an ideal. The (A, h∗, I)-length of a G-space X, denoted by
lA,h∗,I(X) (or simply l(X) when the required imputs are clear) is defined to be the smallest
integer k ≥ 0 such that there exists A0, · · · , Ak ∈ A with the property that, for any class
αi ∈ I ∩ ker[h∗(∗) → h∗(Ai)] for every 0 ≤ i ≤ k, the cup product

p∗X(α1) ∪ · · · ∪ p∗X(αk) = 0

where here pX denotes the map that collapses X to one point, pX : X → ∗. Using the
properties of the length (see [8, Chapter 4]) we can see that, if X → A0 ∗ · · · ∗ Ak is a G-
equivariant map as in (a) of Proposition 6.1.3, then we have the inequality

l(X) ≤ l(A0 ∗ · · · ∗ Ak) ≤
k

∑
i=1

l(Ai)

and therefore we have the expected relationship between A-genus and the length, l(X) ≤
A-genus(X) for every G-space X, see [8, Corollary 4.9].

6.2 Sectional category and sequential TC as A-genus

In this section we obtain the aforementioned characterization of the sectional category of a
group monomorphism and the rth-sequential topological complexity of a K(G, 1)-space for
every r ≥ 2 in terms of A-genus. In fact, we will prove a more general statement, that the
sectional category of every connected covering can be seen as an A-genus for a suitable family
A. From there, we will easily infer the rest of characterizations. All the groups considered
throughout this section will be taken as discrete.

Theorem 6.2.1. Let X be a path connected CW-complex. If q : X̂ → X is a connected covering, then

secat(q) = A-genus(X̃)

where A =
{

π1(X)
/

π1(X̂)

}
.
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Proof. First recall that, by means of the associated bundle construction, we can consider the
connected covering q : X̂ → X as a bundle

q0 : X̃ ×π1(X)

(
π1(X)

/
π1(X̂)

)
→ X

associated to the principal π1(X)-bundle of the universal covering X̃ → X.
Take {Ui}0≤i≤n an open covering of X such that for each 0 ≤ i ≤ n there exists si : U → X̂

a local section of the fibration q over Ui. Notice that the restriction of q0 to Ui is again a
covering. Moreover, if q has a local section over U, then there is a naturally induced local
section of q0. By Theorem 2.3.6, the sections of

q0 : q−1
0 (Ui)×π1(X)

(
π1(X)

/
π1(X̂)

)
are in one-to-one correspondence with π1(X)-equivariant maps

q−1
0 (Ui) → π1(X)

/
π1(X̂) .

Observe that {q−1
0 (Ui)}0≤i≤n constitutes an open cover of X̃ for A-genus, with

A =
{

π1(X)
/

π1(X̂)

}
,

hence we conclude the equality

secat(q) = secat(q0) = A-genus(X̃).

An immediate consequence of the previous theorem and our definition of secat(H ↪→ G)

is the characterization of the sectional category of any subgroup inclusion in terms of the
A-genus.

Corollary 6.2.2. Let G be a torsion-free group, and H ⩽ G. Then we have

secat(H ↪→ G) = A-genus(EG)

where A = {G/H}

Proof. As introduced in Definition 4.1.2, secat(ι : H ↪→ G) coincides with the sectional cate-
gory of the fibration

K(ι, 1) : K(H, 1) → K(G, 1).

The covering map EG/H → EG/G associated to H provides an explicit fibration whose sec-
tional categorry corresponds with secat(H ↪→ G). Therefore, the claim follows immediately
from Theorem 6.2.1.

Remark 6.2.3. Notice that an alternative proof of Corollary 6.2.2 is also implicit in the proof
of Theorem 4.1.4. Indeed, such proof indicates that secat(H ↪→ G) corresponds with the
smallest integer k ≥ 0 such that there exists an equivariant map of the form

EG → ∗n+1(G/H).

Thus the result follows from Proposition 6.1.3 (a).
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Now we turn our attention to the corresponding characterization for sequential topo-
logical complexities. In this caseFor the case of the iterated diagonal subgroup inclusion
∆π,r ↪→ πr, we can reason as follows

Proposition 6.2.4. Let r ∈ N with r ≥ 2, and let X be a path connected CW-complex with
π1(X) = π. Put A := {πk/∆π,r}. The following holds:

(1) TCr(X) ≥ A-genus(X̃r).

(2) Furthermore, if X is aspherical, then TCr(X) = A-genus(X̃r).

Proof. (a) Let q : X̂r → Xr be the connected covering associated to the diagonal subgroup
∆π,r ⩽ πr. Recall that q∗(π1(X̂r, x̂0)) ⩽ π1(Xr, x0) is either the diagonal group ∆X,r or
a subgroup of πr conjugated to it, depending just on the choice of basepoint x0 ∈ X.
Indeed, we can realize X̂r as

X̂r = X̃r
/

∆π,r ,

i.e. as the orbit space of the ∆π,r-action on X̃r obtained by restricting the πr-action that is
given as the r-fold product of the π-action on X̃ by deck transformations.

As the fibration eX
r : X Jr → Xr is the standard fibrational substitute of the r-iterated

diagonal map ∆X,r : X → Xr, we know that, up to a choice of basepoint,

(eX
r )∗(π1(X Jr)) = ∆π,r.

Therefore, we know that there exist basepoints x ∈ X Jr and x̂ ∈ X̂r such that

(eX
r )∗(π1(X Jr , x)) = q∗(π1(X̂r, x̂))

and by the lifting criterion for coverings there exists a map h : X Jr → X̂r lifting the
fibration eX

r . As such, we can construct a commutative diagram of the form

X Jr X̂r

Xr Xr.

h

eX
r q

=

As a consequence of statement (d) in Theorem 3.2.8, one observes that

TCr(X)
(3.2.3)
= secat(eX

r ) ≥ secat(q) = A-genus(X̃r)

where the last equality is a consequence of Theorem 6.2.1 for the family A =
{

πr
/

∆π,r

}
.

(b) Assume now that X = K(π, 1). Given the homotopy equivalence X Jr ≃ X, we have
that X Jr is an aspherical space. Under the hypothesis, we also know that the connected
cover space X̂r is aspherical as well and, by the isomorphism induced at the level of
fundamental groups, the map h becomes an homotopy equivalence between X ≃ X Jr

and X̂r. Therefore we obtain the chain of equalities

TCr(X) = secat(∆r) = secat(q ◦ h) = secat(q) = A-genus(X̃r)
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which finishes the proof.

Remark 6.2.5. If instead of using the fibrational substitute of the diagonal map we would
want to see the proof of Proposition 6.2.4 directly from the map pr : PX → Xr as in Definition
3.2.15, we can argue as follows. There is a well-defined continuous map

ϕX : PX → X̂r, ϕ(γ) = ρ(γ̃(0), γ̃( 1
r−1 ), . . . , γ̃( r−2

r−1 ), γ̃(1)),

where γ̃ denotes a lift of γ to X̃. (This map was first studied in the case of r = 2 in [59,
Theorem 4.1].) Then the following diagram commutes:

PX X̂r

Xr
pr

ϕX

q

where q : X̂ → Xr is again the connected cover associated to the diagonal subgroup ∆π,r. If
X is aspherical, then ϕK is a fibre homotopy equivalence since both PX and X̂r are of type
K(π, 1) and both of their fundamental groups map isomorphically onto ∆π,r ⊂ πr. Since ϕX

commutes with the two fibrations, it follows from Dold’s theorem, see [96, Section 7.5] that
ϕX is a fibre homotopy equivalence, and so secat(pr) = secat(q), and we can then conclude
the proof as above.

6.2.1 Consequences of the characterization

The characterization of Theorem 6.2.1 allows as well to derive new bounds for secat(H ↪→ G)

in terms of genus of classifying spaces for subgroup families and Bredon cohomological
dimension.

Proposition 6.2.6. Let G be a torsion-free group, H ⩽ G and A = {G/H}.

(a) Given F a full family of subgroups of G we have that

secat(H ↪→ G) ≤ A-genus(EF (G)).

(b) For any subgroup K ⩽ G subconjugate to H such that cd⟨K⟩G ≥ 3 we have

secat(H ↪→ G) ≤ cd⟨K⟩G.

(c) Under the hypothesis of (b), if K ⊴ G then

secat(H ↪→ G) ≤ cd(G/K).

Proof. (a) By the universal property of the classifying space with respect to a full family of
subgroups, for any such family F there exists a G-equivariant map

ρ : EG → EF (G).
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By virtue of monotonicity of A-genus (property (b) of Proposition 6.1.3) and Theorem
6.2.4, this yields

secat(H ↪→ G) = A-genus(EG) ≤ A-genus(EF (G)).

(b) Let K ⩽ G subconjugated to H. By the generalized Eilenberg-Ganea theorem for families,
Theorem 2.3.12, there exists an n-dimensional model of the space E⟨K⟩(G). As the infinite
join of coset spaces is a model for the classifying space with respect to the family ⟨H⟩,
recall (2.3.3), the equivariant Whitehead Theorem (see Theorem 2.3.3) implies that there
exists a G-equivariant map

EG → ∗n+1(G/K).

But as the subgroup K is taken as subconjugated to H, the maps G/K → G/H induce
G-equivariant maps at the level of joins, thus there exists a G-equivariant map

EG → ∗n+1(G/K) → ∗n+1(G/H).

The claim now follows from the characterization of A-genus in terms of the join, property
(a) of Proposition 6.1.3.

(c) Finally, under the hypothesis of statement (b), assume further that the subgroup is normal,
K ⊴ G. Then, Proposition 4.2.15 informs us that E(G/K) is in fact a model for E⟨K⟩(G).
Using (b) above we conclude the inequality

secat(H ↪→ G) ≤ cd⟨K⟩G = cd(G/K).

Remark 6.2.7. For any r ∈ N with r ≥ 2, whenever we specialize Proposition 6.2.6 to the case
of the iterated diagonal inclusion ∆π,r ↪→ πr, and K ⩽ πr subconjugated to ∆r,π, we obtain
the following new bounds for TCr(π)

(a) TCr(π) ≤ A-genus(EF (π
r)).

(b) TC(π) ≤ cd⟨K⟩π
r.

(c) TCr(π) ≤ cd(πr/K) if K ⊴ πr.

Observe that, if in statement (b) we take H = ∆r,π ∼= π, we easily recover the upper bound
from [58, Corollary 3.2].

Moreover, consider a central subgroup H ⩽ π. Its image through the iterated r-diagonal
∆r(H) ⩽ πr is a normal subgroup of πr. Under these assumptions, statement (c) of Proposi-
tion 6.2.6 recovers the well-known result from M. Grant, [69, Proposition 3.7] for r = 2, and
gives a generalization for r > 2.
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It is interesting to note that the usual zero-divisors cup length cohomological lower bound
can be recovered from the full generality of the properties of the length. Recall that the Borel
equivariant cohomology of a G-space X is defined by

H∗
G(X; M) = H∗(EG ×G X; M).

Now take h∗ as the Borel equivariant cohomology theory, and I = h∗(∗) ≃ H∗(Bπr). For any
subgroup H ≤ πr we have h∗(πr/H) ≃ H∗(BH). Hence, for the iterated diagonal inclusion
∆π,r ↪→ πr this becomes

I ∩ ker[h∗(∗) → h∗(πr/∆π,r)] = ker[H∗(Bπr) → H∗(B∆π,r)],

and the induced map p∗Eπr is an isomorphism.

An immediate but interesting consequence of Theorem 6.2.1, Proposition 6.2.4 and prop-
erty (d) of Proposition 6.1.3 is the following bound for sectional category and sequential
topological complexities with respect to subgroups of a given group.

Corollary 6.2.8. Let π be a free torsion group with subgroups H, K ⩽ π, and J ⩽ H. The following
inequality holds

secat(J ↪→ H) ≤ (secat(K ↪→ π) + 1)(B-genus((π/K)) + 1)− 1

for B = {H/J}.
In particular, for the specific case of the iterated diagonal inclusions ∆H,r ↪→ Hr and ∆π,r ↪→ πr

the above inequality yields

TCr(H) ≤ (TCr(π) + 1)(B-genus(πr/∆π,r) + 1)− 1

where B = {Hr/∆H,r} and r ∈ N with r ≥ 2.

Proof. For the first part of the statement, consider A = π/K and B = {H/J}. By Theorem
6.2.1 we have the identifications

secat(K ↪→ π) = A-genus(Eπ), secat(J ↪→ H) = B-genus(Eπ)

which, combined with Proposition 6.1.3 (d), shows the claim.
For the second part, if we define A = {πr/∆π,r} and B = {Hr/∆H,r}, Proposition 6.2.4

(2) gives the characterizations

TCr(π) = A-genus(Eπ), TCr(H) = B-genus(Eπ)

hence the result follows once again from Proposition 6.1.3 (d).

Notice that the most significant aspect of this bound is that it gives us a explicit computable
measure of how much the sequential topological complexities of groups fail to be monotone
under subgroup inclusions. In particular, we can exploit such measure to explore new
examples of lower bounds with respect to subgroups. Here we present the case of the
semidirect product of groups.

112 Chapter 6



6.2. Sectional category and sequential TC as A-genus

Corollary 6.2.9. Let H and K be torsion free groups. Then we have TCr(H ⋊ K) ≥ TCr(K)

Proof. Put G := H ⋊ K. As the semidirect product G is given by a group extension of the
form

{1} → H → G = H ⋊ K
p−→ K → {1}

and K ⩽ G, we have an induced K-equivariant map

Gr
/

∆G,r
(p×···×p)−−−−−→ Kr

/
∆K,r .

Corollary 6.2.8 gives us the following inequality

TCr(K) ≤ (TCr(G) + 1)(B-genus(Gk/∆G,r) + 1)− 1

for the family B = {(Kr)/∆K,r}. But statements (b) and (c) of Proposition 6.1.3 indicate that

B-genus
(

Gr
/

∆G,r

)
≤ B-genus

(
Kr
/

∆K,r

)
= 0

so the claim follows.

Compare our result with the alternative lower bound by the cohomological dimension
given by M. Grant, G. Lupton and J. Oprea, [71, Corollary 1.3] for r = 2.

For any subgroup H ⩽ π × π containing the diagonal subgroup ∆π consider the family
B = {(π ×π)/H}. Given that the natural projection (π ×π)/∆π → (π ×π)/H is a (π ×π)-
equivariant map, we see that B-genus((π × π)/∆π) = 0. Then, by Proposition 6.1.3(d) we
get the inequality:

B-genus(E(π × π)) ≤ A-genus(E(π × π)) = TC(π).

Now, observe that there is a correspondence between subgroups of π × π containing the
diagonal subgroup ∆π and normal subgroups of π. To see this, first assume ∆π ⩽ H ⩽ π × π,
and define the subgroup of π determined by

K := {x | (1, x) ∈ H}.

This is clearly a normal subgroup, since

(g, g)(1, x)(g−1, g−1) = (1, gxg−1) ∀(g, g) ∈ π × π

and the left side of the equality is in H, since H is an overgroup of the diagonal subgroup ∆π.
Now, if K ⊴ π, we can easily define its associated overgroup of ∆π by

HK := {(g, h) | g−1h ∈ K}.

From here, notice that, since B-genus(E(π × π)) = secat(H ↪→ π × π) by Corollary 6.2.2
and repeated application of Proposition 6.1.3 (d) we get a descending sequence of bounds

0 ≤ · · · ≤ secat(HKi+1 ↪→ π × π) ≤ secat(HKi ↪→ π × π) ≤ · · · ≤ TC(π × π)

where, for each index i ≥ 0, the group HKi is the overgroup of ∆π associated to the normal
subgroup Ki ⊴ π × π for an ascending chain of normal subgroups of π × π of the form

∆π = K0 ⩽ K1 ⩽ · · · ⩽ Ki ⩽ Ki+1 ⩽ · · · ⩽ π × π
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6.2.2 Thoughts on proper genus and proper topological complexity of groups

We will finish this chapter with some very quick reflections on A-genus and topological
complexity for proper actions of groups, that might be of interest for future work on the
matter. Let G an arbitrary discrete group, this time possibly with torsion. Define the family
of finite subgroups of G, denoted F in := {H ⩽ G | |H| < ∞}. The classifying space with
respect to such family is known as the classifying space for proper actions of G, and it is usually
denoted by EG. Its orbit space with respect to the natural G-action EG/G is denoted by BG.
This space receives the name of classifying space for proper G-bundles, as it classifies proper
G-bundles in an analogous way in which BG classifies principal G-bundles (as shown in [10]).
Clearly, dimG(EG) = 0 if and only if G is finite. In case G is torsion free, it is also evident
that EG ≃ EG. So the truly interesting case for us is whenever G is a group with torsion. As
we know, for such groups the topological complexity is, indeed, infinite. However, there is a
powerful realization result in the spirit of Kan-Thurston involving the classifying space for
proper actions, due to I. Leary and B. Nucinkis.

Proposition 6.2.10 (Theorem 1’ of [85]). For any CW-complex X there exists a group GX such that
BGX is homotopy equivalent to X. The group GX has a torsion-free subgroup KX of index two. If X is
finite, there is a finite model for BKX.

Consequentially, every connected CW-complex has the homotopy type of a BG. Moreover,
as it is shown in the proof of Proposition 6.2.10, the group is not torsion free except in the
case that X is one-dimensional. As such, the previous result provides us with a wide range
of cases in which TC(G) is finite even though G has torsion. This result motivates our next
definition.

Definition 6.2.11. Define the G-proper topological complexity of G, denoted by TC(G), as
TC(G) = TC(BG).

It is important to distinguish this notion from the previously defined concept of proper
topological complexity, which deals with different kind of information, and it is defined by
means of proper homotopy theory techniques. The main interest of TC(G) lies in the fact that
it allows us to recover the usual notion of topological complexity of the group G whenever G
is torsion free, but it also potentially provides more information in good enough cases when
G has torsion but has good properties with respect its proper actions (in the sense of being
realized by a finitely dimensional CW-complex by means of the procedure from Proposition
6.2.10).

Remark 6.2.12. As it usually happens in Mathematics, the problem lies within finding
concrete examples. One of the possible approaches is through the usage of the nullification
functor. Let A and X be topological spaces, we say that X is A-null if the mapping space
Map(A, X) is homotopically equivalent to X via X → Map(A, X), the inclusion of constant
maps. We define the A-nullification of X as an endofunctor PA : Spaces → Spaces that takes
every space X to a corresponding A-null space PA(X) such that there exists a universal map
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X → PA(X) which induces a weak homotopy equivalence Map(PA(X), Y) ≃ Map(X, Y)
for every A-null space Y. It is possible to see that any other A-null space U satisfying that
property is homotopically equivalent to PA(X). It is not within our objectives to develop
further the machinery required or its properties, we refer the interested reader to [45] for
a thoroughful treatment of these tools. Consider now the set of all prime numbers P =

{p1, p2, · · · } and define the space Wn =
∨n

i=1 BZpi and W∞ =
∨

P BZp, where p ranges over
the set of all prime numbers. The interesting point is that for any G such that there exists a
finite dimensional model for BG, there is a homotopy equivalence BG ≃ PW∞(BG), see [62,
Theorem 3.2]. Colourful examples through this technique can be found for some wallpaper
groups (see [109] for precise definitions), thanks to the computations carried out by R. Flores
in [62].

Naturally, we can always consider the corresponding A-genus of an arbitrary discrete
group G with respect to the family of its finite subgroups.

Definition 6.2.13. Let G an arbitrary group, and F in the closed family of finite subgroups.
Define the proper genus of the group G by genus(G) := F in-genus(EG).

In view of the characterization from Proposition 6.2.4, it is natural to ask whether the
proper versions of topological complexity and genus coincide or not. Before adressing that
matter, we will show a dimensional lower bound for the proper genus of a group.

Proposition 6.2.14. Let G be a discrete group such that there is a finite dimensional model for
BG satisfying Hn(BG; A) ̸= 0 for some n ∈ N and some coefficient system A. Then we have
genus(G) ≥ n.

Proof. Let genus(G) = k. By Proposition 6.1.3 (a) there exists a G-equivariant map

f : EG → ∗k+1
i=0 (G/Fi)

where for each i ∈ {0, 1, · · · , k+ 1} the group Fi ∈ F in. The join space ∗k+1
i=0 (G/Fi) is naturally

a proper G-CW complex, where the isotropy subgroup of each point (t0, a0, t1, a1, · · · , tk, ak)

corresponds with the intersection group
⋂

ai
Gai . By the universal property of EG, there exists

a G-equivariant map
g : ∗k+1

i=0 (G/Fi) → EG

satisfying that g ◦ f is G-homotopically equivalent to the identity. Passing to the quotient,
this yields a homotopically commutative diagram of CW-complexes

BG [∗k+1
i=0 (G/Fi)]

/
G

BG.

f

g

Due to the fact that each coset space G/Fi is discrete for every Fi ∈ F in, we observe that
dim

(
[∗k+1

i=0 (G/Fi)]
/

G
)
≤ dim

(
∗k+1

i=0 (G/Fi)
)
= k. But the induced composite map in coho-

mology

Hn(BG; A)
g∗−→ Hn

(
[∗k+1

i=0 (G/Fi)]
/

G ; A
) f

∗

−→ Hn(BG; A)

Chapter 6 115



6.2. Sectional category and sequential TC as A-genus

is obviously an isomorphism, hence by dimensional reasons it must hold that k ≥ n, which
shows the claim.

We conclude this chapter with a couple of examples of this lower bound.

Example 6.2.15. (a) Suppose a group G such that its classifying space for proper G-bundles
BG is a finite dimensional CW-complex with the homotopy type of a n-dimensional
sphere Sn. By Proposition 6.2.14, we have that genus(G) ≥ n. However,

TC(G) = TC(BG) = TC(Sn) =

1 n odd

2 n even

Through this example, we can conclude that the difference between genus(G) and TC(G)

may be arbitrarily large.

(b) More generally, we can consider the case of virtual Poincaré duality groups. Recall that
given a group G we say that G virtually satisfies a property if there exists a subgroup
H ⩽ G of finite index with such property. R. Kim proved a specialization of Proposition
6.2.10, see [82, Theorem 1, Corollary 2], stating that for any finite connected simplicial
complex X, there exists a virtually torsion-free group G with EG a cocompact manifold
such that BG is homotopy equivalent to X. Furthermore, he also shown that for any finite
connected simplicial complex X, there is a virtual Poincaré duality group G such that BG
is homotopy equivalent to X.

Thus, for a finite simplicial complex X with Hn(X; A) ̸= 0 for some n > 1 and some
coefficient system A, let H be a torsion free Poincaré duality subgroup of a group G,
such that |G : H| ≤ ∞, satisfying that EG is a cocompact manifold and BG ≃ X, as in
[82, Theorem 1, Corollary 2]. By the cocompacity of EG we know that BG has a finite
dimensional model, thus by Proposition 6.2.14, we have genus(G) ≥ n.
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CHAPTER 7

TC in presence of symmetries: on properties of effective topological
complexity

Introduction

Since the inception of the concept of topological complexity, we have witnessed the emergence
of several distinct variants, depending either on different versions of the motion planning
problem (recall, for example, the sequential or parametrized topological complexities seen
in previous chapters), or on specific kind of information from the motion planning that we
might be interested in analyzing. One of those kinds of ”specific information" concerns the
impact of the symmetries that often appear in the configuration spaces, and that one might
want to take into account whenever studying the instability of the motion planning problem.
Formally, those symmetries are seen as actions of groups on the base topological space X and,
as such, this naturally leads to the inception of equivariant versions of topological complexity.
There are several non-equivalent approaches to the matter, such as the equivariant topological
complexity from H. Colman and M. Grant [33], the strongly equivariant TC developed by
A. Dranishnikov in [41] as a variant of the former, the invariant TC of W. Lubawski and W.
Marzantowicz introduced in [89], or the more recent notions of effectual topological complexity
(by N. Cadavid-Aguilar, J. González, B. Gutiérrez and C. A. Ipanaque-Zapata, [23]) and orbital
TC (defined by E. Balzer and E. Torres-Giese, [6]). We will briefly introduced their definitions
in the next section, but without entering into many details.

However, these versions of equivariant topological complexity, while mathematically
relevant on their own, do not take into account the possibility of “easing" the task of the
motion planning through the use of the symmetries of the space. Consider, for example, the
case of a robotic arm with two identical pliers, such as the represented in Figure 7.1.

Observe that, while both states are different, any object that has to be manipulated by
the arm can be grabbed equally well in both cases. Situations equivalent to this one are
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State 1

A

B

State 2

B

A

Figure 7.1: A mechanical arm in physically different, but functionally equivalent states, since grips A
and B are indistinguishable.

extremely common in the world of mechanical systems. The problem is that the original
approach to topological complexity does not take this sort of phenomena into account. And
yet, the example above suggests that symmetries in configuration spaces can simplify the task
of motion planning, given that, even though symmetric positions are physically different,
they can be considered as functionally equivalent. Therefore every planning algorithm
instructing a robot how to move between all possible states is a waste of effort, and it can
be made easier if we take into account this functional equivalences. Given that most of the
equivariant versions of TC do not exploit such potential simplifications, and in order to
study this possibilites, Z. Błaszczyk and M. Kaluba introduced in [16] a new invariant, with
precisely this foundational idea, which they baptised as effective topological complexity. In
light of this notion, the effective motion planners considered in this context output paths that
are tipically no longer continuous, but with discontinuities parametrized by the symmetries
of the configuration space. As such, whenever a mechanical system follows such a path and
runs into a point of discontinuity, it re-interprets its position accordingly within a batch of
symmetric positions, and then resumes normal movement.

So far, the effective topological complexity remains a poorly understood variant of TC.
The purpose of this chapter is to contribute to the understanding of said invariant, by
investigating some of its properties. In particular, we will introduce and study the notion of
effective Lusternik-Schnirelmann category, which will play the role of the usual LS-category
in the effective setting. We will also study the relationship between effective LS-category and
topological complexity with some possible properties of the orbit projection map with respect
to the group action, giving plenty of examples of computations and bounds derived from our
results. The chapter will conclude with some dimensional conditions for the non-vanishing
of effective topological complexity at stage two of compact G-ANR spaces with finite group
actions.

The contents of this chapter are featured in [15].
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7.1 Equivariant notions of topological complexity

Before we proceed to jump into the intricacies of the effective topological complexity, we
will dedicate a section to give a small briefing of the main notions of equivariant topological
complexities present in the literature. As our main interest lies essentially in the effective
variant, we will not delve deeply into the details. We refer the reader interested in going
deeper into the matter to the compact survey by A. Ángel and H. Colman [2], or to the more
recent one by M. Grant [68].

The first version of topological complexity to appear (and also probably the most natural
from a purely mathematical point of view) was the equivariant topological complexity,
developed by H. Colman and M. Grant in [33]. If X is a G-space, there is a naturally induced
action on the path space PX and on X × X defined by

G × PX → PX, G × (X × X) → X × X,

g(γ)(t) = g(γ(t)), g(x, y) = (gx, gy).

Under such actions, the endpoints evaluation map π : PX → X × X is a G-fibration, and one
can defines the equivariant topological complexity as follows.

Definition 7.1.1. The equivariant topological complexity of X (denoted by TCG(X)) is the
least integer n ≥ 0 such that there exists an open cover of X × X by G-invariant sets
{U0, U1, · · · , Un}, where for each 0 ≤ i ≤ n there is a G-equivariant map

si : Ui → PX

making the following diagram commutative

PX

Ui, X × X

π
si

Althoug this definition is probably the most natural for an equivariant version of topolog-
ical complexity, it has some limitations. The main one from our interests in this chapter is
that, instead of simplifying the motion planning, the introduction of the information coming
from the symmetries complexifies the task, as one has the inequality

TC(X) ≤ TCG(X)

for any G-space X. Moreover, this inequality can not only be strict, but also arbitrary large.

Example 7.1.2 ([68], Example 3.8). Let Z2 act on S1 ⊆ C by complex conjugation. Then one
has the following equalities

TCG(S1) = ∞ TC(S1) = 1.
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Another significant drawback related to the previous one is that, contrary to what one
would expect, the equivariant topological complexity does not necessarily coincide with
the classical one for free G-spaces. One of the reasons explaining this phenomena is that
the definition of TCG(X) involves the diagonal action of G on the product space, while the
definition of TC(X/G) involves mostly the quotient space of X × X by the action of G × G.

In order to adress this issue, W. Lubawski and W. Marzantowicz, in [89], took a different
approach. Define the fibered path space over the orbit space as

PX ×X/G PX = {(α, β) ∈ PX × PX | Gα(1) = Gβ(0)}.

One can think of this as the space of broken paths in the configuration space X that are
continuous except for one point, where they are allowed to jump to another point in their
same orbit by the action of G. The product group G × G acts on PX ×X/G PX by putting
(g, h)(α, β) = (gα, hβ). The natural projection map defined by

pX : PX ×X/G PX → X × X pX(α, β) = {α(0), β(1)}

is a (G × G)-fibration, under the component-wise action. This motivate the definition of the
invariant topological complexity.

Definition 7.1.3. The invariant topological complexity of X (written TCG(X)) is the least
integer n ≥ 0 such that there exists an open cover of X × X by (G × G)-invariant sets
{U0, U1, · · · , Un} where for each 0 ≤ i ≤ n there is a (G × G)-equivariant local section

si : Ui → PX ×X/G PX

making the following diagram commutative

PX ×X/G PX

Ui, X × X

pX
si

It is quite straightforward from the definition that, as it was intended, the invariant
topological complexity is bounded from below by the topological complexity of the orbit
space, i.e.

TC(X/G) ≤ TCG(X)

for any G-space X. The following result summarizes some of the properties of both equivari-
ant and invariant TC with respect to fixed points sets.

Proposition 7.1.4 ([33] Corollary 5.4 and [89] Corollary 3.26). For any subgroups H, K ⩽ G one
has

TC(XH) ≤ TCG(X) TCK(X) ≤ TCG(X)

For any G-space X we have TC(XG) ≤ TCG(X)
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There is a natural version of LS-category in the equivariant setting, originally defined by
Marzantowicz in [95], the so called Lusternik-Schnirelmann G-category, which is defined as
follows.

Definition 7.1.5. For a G-space X we say that a G-invariant open subset U ⊆ X is G-categorical
if the inclusion U ↪→ X is G-homotopic to a G-equivariant map with values in a single orbit.

The Lusternik-Schnirelmann G-category of X, denoted by catG(X), is defined as the smallest
integer m ≥ 0 such that there exists an open cover of X by m + 1 G-categorical open subsets.

Indeed, for both equivariant and invariant topological complexity, a lower bound in terms
of LS G-category can be found, at least in cases where the set of fixed points is non-empty.

Proposition 7.1.6 (Proposition 5.7, Corollary 5.8 of [33] and Proposition 2.7 of [17]). Let X be a
G-space.

(a) If X is G-connected, then TCG(X) ≤ catG(X × X).

(b) If X is completely nrmal, G-connected and with at least some fixed point x ∈ XG, then

catG(X) ≤ TCG(X) ≤ 2catG(X).

(c) If X has a fixed point x0 ∈ XG then catG(X) ≤ TCG(X).

Despite the nice properties of invariant topological complexity, there is an obvious set-
back in its relationship with the topological complexity of the base G-space, coming from
Proposition 7.1.4: TCG(X) can be arbitrary larger than TC(X). In fact, there is no obvious
bound relating TCG(X) and TC(X), and both inequalities may occur. Consequently, it is not
a valid tool for the specific purpose of reducing the complexity of the motion planning based
on the symmetries of the configuration space.

We will conclude this section mentioning briefly three other equivariant versions of
topological complexity.

Definition 7.1.7. Let X be a G-space. We define

(a) The strongly equivariant topological complexity of X, denoted by TC∗
G(X), as the smallest

integer n ≥ 0 such that there exists a (G × G)-invariant open cover {U0, U1, · · · , Un}
of X × X (seen as a (G × G)-space via the component-wise action) such that for each
0 ≤ i ≤ n there exists a G-equivariant local section si : Ui → PX making the following
diagram commutative

PX

Ui, X × X

π
si

(b) The effectual topological complexity of X as the sectional category

TCG
effl(X) = secat(ϵ)
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where ϵ denotes the composite map

ϵ : PX π−→ X × X
id×ρX−−−→ X × (X/G)

(c) The orbital topological complexity of X as

TCG
orb(X) = secat(PX

ρX◦π−−−→ X/G).

The strongly equivariant topological complexity was introduced by A. Dranishnikov in
[41], as an alternative and more restrictive version of the equivariant topological complexity
of Colman and Grant. His aim was, indeed, to produce new upper bounds of ordinary
topological complexity, and clearly for any G-space X we have TC(X) ≤ TCG(X) ≤ TC∗

G(X).
The effectual topological complexity was introduced by N. Cadavid-Aguilar, J. González,

B. Gutiérrez and C.A. Ipanaque-Zapata in [23] in close relationship with the effective topo-
logical complexity, while the orbital TC developed by E. Balzer and E. Torres-Giese in [6] was
developed as a variant of the effectual one. Both are indeed upper bounds for the effective
topological complexity.

7.2 Effective Topological Complexity.

We will devote this section to provide a quick review of our main notion of interest, that of
effective topological complexity. As such, We recall both its construction and the most useful
properties that were first proved in [16].

Given a topological group G acting on a pointed CW-complex X, and k ≥ 1 an integer,
define the k-broken path space by

Pk(X) = {(γ1, · · · , γk) ∈ (PX)k | Gγi(1) = Gγi+1(0) for 1 ≤ i ≤ k}.

This is obviously a generalization of the fibered path spaces over the orbit space from
Lubawski and Marzantowicz, and they can be seen as the spaces of paths broken into k
continuous components, with discontinuities consisting on controlled jumps between points
in the same G-orbit. In particular, for dimensions one and two we have the obvious equalities

P1(X) = PX P2(X) = PX ×X/G PX.

Denote by ρX : X → X/G the projection of X onto its orbit space, and by δX : ℸ(X) → X × X
the inclusion of the saturated diagonal into X × X. Recall that the saturated diagonal
corresponds with the subset

ℸ(X) = {(g1x, g2x) ∈ X × X | g1, g2 ∈ G and x ∈ X}.

In section 7 we will see another characterization of the saturated diagonal by dividing it
into “slices” indexed by elements of the group, that will come in handy in order to use
Mayer-Vietoris to find bounds for its cohomological dimension.
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Now we need to define the generalized path-space fibrations that encapsulate the desired
information about the symmetries in the configuration space. Define the map πk : Pk(X) →
X × X by

πk(γ1, · · · , γk) = (γ1(0), γk(1)).

Indeed, this can be seen as a fibration in the following manner: If π : PX → X × X denotes
the pathspace fibration, take the restriction of the product fibration (π)k to the subspace
X × ℸ(X)k−1 × X ⊆ (X × X)k. The outcome of this is, again, a fibration

pk : Pk → X × ℸ(X)k−1 × X

fitting in a pullback diagram of the form

Pk(X) (PX)k

X × ℸk−1(X)× X (X × X)k.

pk (π)k

idX×(δX)
k−1×idX

As such, composing pk with the projection onto the first and last factors, we obtain πk.

Definition 7.2.1. With the notation above, define

• A (G, k)-motion planner on an open subset U ⊂ X × X is defined as local homotopy
section of πk over U, that is, a map s : U → Pk(X) such that πk ◦ s ≃ idU .

• The k-stage effective path space fibration as the above defined map

πk : Pk(X) → X × X πk(α1, · · · , αk) = (α1(0), αk(1)).

• The k-stage effective topological complexity, denoted by TCG,k(X), as the smallest integer
n ≥ 0 such that there exists an open cover of X × X by n+ 1 sets admiting (G, k)-motion
planners. Equivalently,

TCG,k(X) = secat(πk).

The following lemma condenses some of the most basic properties of TCG,k(X) introduced
in [16]:

Lemma 7.2.2 ([16, Lemma 3.2, Theorem 3.3]). TCG,k(X) satisfies the following properties:

(1) The following inequalities hold for any k ≥ 1 and any subgroup H ≤ G:

(a) TCG,k(X) ≤ TCH,k(X).

(b) TCG,k+1(X) ≤ TCG,k(X).

(2) If there exists a G-map f : X → Y and a map g : Y → X such that f ◦ g ≃ idY then

TCG,k(Y) ≤ TCG,k(X).

In particular, if X and Y are G-homotopically equivalent, then

TCG,k(X) = TCG,k(Y).
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Definition 7.2.3. Let k0 ≥ 1 be the minimal integer such that TCG,k(X) = TCG,k+1(X) for
k ≥ k0. We define the effective topological complexity of X as

TCG,∞(X) = TCG,k0(X).

Equivalently

TCG,∞(X) = min{TCG,k(X) | k ≥ 1}.

Notice here a striking difference of effective topological complexity: unlike the previously
developed notions of equivariant or invariant TC, the effective version does not require the
motion planners to be equivariant. In this setting, the symmetries are just employed, in light
of Lemma 7.2.2, to reduce the complexity of the motion planning task, making sure that, no
matter the action, it will never be more complex than the one given by the original topological
complexity.

One of the main focus of the original paper from Błaszczyk and Kaluba revolves around
providing a full study of the effective topological complexity of Zp spheres of any dimen-
sion. As bedrock examples that come in handy in many situations, we summarize here the
classification provided in [16]:

Proposition 7.2.4 ([16, Corollary 5.10]). Let p be a prime. Suppose Zp acting on Sn with an
r-dimensional fixed point set, for −1 ≤ r ≤ n − 1 (r = −1 meaning free action).

• If p > 2 then TCZp,∞(Sn) = TC(Sn) =

1 if n is odd

2 if n is even, n > 0.

• If p = 2, then TCZ,∞(Sn) depends on r as indicated in the following table:

O. PRESERVING O. REVERSING

r = −1 1

0 ≤ r ≤ n − 2

1
for n – odd

2 1
for n – even for n – even, if linear

r = n − 1
— 0

not possible if linear

where recall that a group G acts linearly on a n-dimensional sphere Sn if there exists a real
vector space V of dimension n + 1, with Sn seen as the unit sphere of V, and with a linear action
of G such that Sn is a G-invariant subspace of V.
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Remark 7.2.5. In[23] Cadavid-Aguilar, González, Gutiérrez and Ipanaque-Zapata introduced
a tweaked and alternative version of effective topological complexity, different to the original
one defined above. They defined a variant of the k-broken path space, QG

k (X), as the subspace
of (PX × G)k−1 × PX consisting of the tuples (α1, g1, · · · , αk−1, gk−1, αk) such that αi(1) · gi =

αi+1(0). Defining the G-twisted evaluation map

ϵk : QG
k X × X

(α1, g1, · · · , gk−1, αk) (α1(0), αk(1))

their alternative notion of k-effective topological complexity is defined as

TCG,k
effv(X) = secat(ϵk).

As it becomes apparent at first glance, the space QG
k (X) is designed to encode the precise

leaping that assembles a broken path, and this constitutes the main difference with the
original notion. Indeed,

TCG,k
effv(X) = TCG,k+1

effv (X)

for every k ≥ 2 and moreover
TCG,k(X) ≤ TCG,k

effv(X). (7.2.1)

The main advantage of this approach lies in their significant simplification with respect to the
original definition. However, while conceptually interesting on its own, this alternative vision
of effective TC does not adress the foundational idea of reducing to the minimum possible the
complexity of the motion planning problem through the use of its symmetries, save for nicely
enough cases, as inequality 7.2.1 shows. In fact, this simplification might be a tad excessive for
some purposes, as the original notion of effective TC may fall non-trivially below dimension
2 (we illustrate a basic example later on, see Proposition 7.7.7). Consequently, we think that
the further development of the original notion continues to be a worthwhile enterprise.

It is also interesting to remark that, based upon this alternative notion of effective topolog-
ical complexity, Balzer and Torres-Giese introduced in [6] the sequential version of effective
TC in the sense of [23], which coincides, at dimension two, with TCG

effv.

7.3 The global effective path space

We will start our study on the properties of the effective topological complexity by taking a
look in this section at the broken path spaces themselves. In particular, we define a notion of
“final" or global effective path space, encompassing the information of all the broken path
spaces for each stage k ≥ 0.

Consider, for each integer k ≥ 0, the inclusion Pk(X)
ιk
↪−→ Pk+1(X) defined by

ι0(x) = cx ∈ PX

and, for every k > 0

ιk((γ1, · · · , γk)) = (γ1, · · · , γk, cγk(1)) ∈ Pk+1(X).
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As one could easily expect from the definition, these inclusions are well behaved.

Lemma 7.3.1. For each integer k ≥ 0, the inclusion Pk(X)
ιk
↪−→ Pk+1(X) embeds the broken path

space Pk(X) as a closed subspace of Pk+1(X).

Proof. The case k = 0 is straightforward. For any k ≥ 1 define the projection map that sends
any broken path in Pk+1(X) to its last component as a path in PX, i.e.

φk+1 : Pk+1(X) → PX φk+1(γ1, · · · , γk+1) = γk+1.

It is immediate to check that this is a well defined continuous map, and such that

ϕk+1 = pk+1|Pk+1(X)

where pk+1 : (PX)k+1 → PX is just the obvious projection map into the (k + 1)-coordinate.
Now, consider the obvious inclusion i : X → PX given by i(x) := cx. Given that X is taken to
be a Hausdorff space, PX is Hausdorff as well and, as we assumed X to be compact, i(X) is
compact in PX and, therefore, closed. Observe that

ιk(Pk−1(X)) = φ−1
k+1(i(X))

and thus the claim follows from the continuity of φk+1.

Definition 7.3.2. We define the global effective path space, denoted by P∞(X) as colimPk(X)

with respect to the chain of inclusions

X
ι0
↪−→ PX

ι1
↪−→ P2(X)

ι2
↪−→ · · · Pk(X)

ιk
↪−→ Pk+1(X)

ιk+1
↪−→ · · ·

endowed with the final (colimit) topology.

It is clear that we can visualize the building at each stage of the global effective path space
through the chain of inclusions considered above as a sort of “cellular attachment”, in the
following sense: for each integer n ≥ 0, the broken path space at stage n can be seen as fitting
the pushout diagram

Pn−1(X) Pn−1(X)

Pn(X) \ P◦
n−1(X) Pn(X)

φn−1

ιn−1

where P−1(X) = ∅ and obviously P0(X) \ P◦
−1(X) = P0(X) = X.

Given that the global effective path space P∞(X) is endowed with the weak (colimit)
topology, any subset U ⊂ P∞(X) is open (respectively closed) if and only if, for every n ≥ 0,
the intersection U ∩ Pn(X) is open (respectively closed).

Proposition 7.3.3. Let S : F → P∞(X) be a continuous map. If F is both Hausdorff and compact,
then S factors through Pn(X) for some integer n.
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Proof. Take the image S(F) ⊂ P∞(X) as a compact subset. Let us assume that the statement
is false. As such, there exists an infinite subset of integers J such that the intersection
S(F)

⋂
(Pk(X) \ Pk−1(X)) is non-empty for every k ∈ J . Now, for each k ∈ J , take exactly

one distinguished element of such intersection

xk ∈ S(F)
⋂
(Pk(X) \ Pk−1(X))

which defines a sequence of integers J = {xk}k∈J of infinite length, such that that xn ̸= xm if
n ̸= m by its definition.

Given that J ⊂ P∞(X) with induced topology, any subset of J is open (alternatively
closed) in P∞(X) if and only if its intersection J ∩ Pk(X) is open/closed in Pk(X) for each
k ≥ 0. Now, for each xk ∈ J notice that

{xk} ∩ Pr(X) =

∅ if r < k

{xk} if r ≥ k.

It is clear that Pr(X) and P∞(X) are Hausdorff spaces, given that PX is Hausdorff, and Pr(X)

and P∞(X) can be seen as a subspaces of (in)finite products of copies of PX. As such, the
one point set {xk} is closed. For any r ∈ J the intersection J ∩ Pr(X) = {xki}ki∈J for ki ≤ r,
and therefore J ∩ Pr(X) is expressible as a finite union of closed subsets for every r, hence is
closed. This implies that J is a closed subset of P∞(X). Now, it is straightforward to show
that every subset of J is closed, and consequently J is equipped with the discrete topology
which, by the hypothesis of compacity, contradicts the assumption.

Consider now each broken path space Pk(X) as a Gk-space via the component-wise
action. The space X × X has a natural structure as a (G × G)-space, but it can be seen also as
a Gk-space via precomposition of the (G × G)-action with the projection Gk → G × G onto
the first and last coordinates. In this manner πk : Pk(X) → X × X becomes a Gk-equivariant
map, and one obtains the following commutative diagram.

Pk(X) X × X

Pk(X)/Gk X/G × X/G

P(X/G)

πk

Here the vertical maps are orbit projections, the lower horizontal map is induced by πk,
the oblique map on the left is the concatenation of a sequence of k paths in X/G, and the
oblique map on the right is the path space fibration for X/G. Composing the orbit projection
for Pk(X) and the concatenation of paths in Pk(X)/Gk, we get the obvious commutative
diagram
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Pk(X) X × X

P(X/G) X/G × X/G.

θk ρX×X

Proposition 7.3.4. Let X be a G space and suppose that, for some k > 0, there exists a continuous
map

sk : P(X/G) → Pk(X)

such that θk ◦ sk = idP(X/G). Then TCG,k+2(X) ≤ TC(X/G) and therefore

TCG,∞(X) ≤ TC(X/G).

Proof. Let n := TC(X/G). Consider {Vi}0≤i≤n with Vi ⊂ X/G × X/G and si : Vi → P(X/G)

a local section for the path space fibration π : P(X/G) → X/G × X/G for every 0 ≤ i ≤ n.
Define for each 0 ≤ i ≤ n the open set Ui = (ρX × ρX)

−1(Vi). The map sk restricted to Ui

is of the form sk(γ) = (γ1, · · · , γk) with the obvious condition Gγj(1) = Gγj+1(0) for every
0 ≤ j ≤ k. Now define, for each Ui, a map

ξi : Ui → Pk+2(X) ξi(x, y) = (cx, sk(γ), cy)

for γ(0) = [x] and γ(1) = [y]. It is immediate from its definition that πk ◦ ξi = idUi and thus
{Ui}0≤i≤n constitutes a categorical cover for TCG,k+2(X). Consequently

TCG,k+2(X) ≤ n = TC(X/G).

Remark 7.3.5. It is important to note that the section sk assumed before is not necessarily
induced by a section s : X/G → X of the orbit map ρX. We will see that, if such a section s
exists, then Proposition 7.3.4 is just an immediate consequence of Theorem 7.6.1, that we will
state and prove in a later section.

7.4 Effective LS-category

In most cases topological complexity is a significantly difficult invariant to compute, one for
which no general systematic way of calculation exists. One of the possible approaches to give
estimates for TC relies in its well known bounds by Lusternik-Schnirelmann category which
is, in most cases, an easier invariant to compute, and it is generally better understood than its
counterpart.

As we discussed in Section 7.1, there is a natural version of LS-category in the equivariant
setting, the Lusternik-Schnirelmann G-category. Indeed, as we saw for both equivariant and
invariant topological complexity, a lower bound in terms of LS G-category can be found, at
least in cases where the set of fixed points is non-empty, see Proposition 7.1.6. However, as
pointed out by Z. Błaszczyk and M. Kaluba in [16, Section 7], such lower bound is not possible
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for effective topological complexity. Moreover, they noted that this impossibility do not stem
from the particular definition of the invariant, but rather from the philosophy behind it, i.e.
such bound would be impossible to accomplish for any other homotopy invariant T C with
the property T C(X) ≤ TCG,∞(X). In fact, such an anomalous behaviour in the effective
setting is hardly surprising. After all, unlike the cases of (strongly) equivariant and invariant
TC, the effective motion planners are not required to be equivariant.

Given the additional layer of difficulty that the effective topological complexity carries, it
is only natural to ponder whether a category lower bound can be laid down in the effective
setting. The unfeasibility of the LS G-category points out to the necessity of considering a
new candidate, an analogue of usual LS-category for the effective setting. In this section
we will fill such void, and we will develop a notion of effective Lusternik-Schnirelmann
category, which we will show that behaves analogously in the effective setting as the classic
LS-category does in the classic one.

Recall that, given a fibration f : X → Y, property (1) in Theorem 3.2.8 gives the upper
bound cat(Y) ≥ secat( f ). Let x0 ∈ X such that P∗X is the space of paths starting at x0, and
consider the inclusion X ↪→ X × X by x 7→ (x0, x). There is an obvious pullback diagram of
the form

P∗X PX

X X × X

ev1 π

and taking into account that cat(X) = secat(ev1), we have the classic chain of inequalities
relating category and TC

cat(X) ≤ TC(X) ≤ cat(X × X) ≤ 2cat(X). (7.4.1)

We can further generalize the previous pullback diagram considering an analogous
pullback diagram associated, for each k > 0, to the k-effective fibration πk :

Pk
∗(X) Pk(X)

X X × X.

qk πk

In this way we obtain a fibration qk : Pk
∗(X) → X as a pullback of πk by the inclusion of

X ↪→ X × X. Those are, precisely, the fibrations that encode in the effective setting the
relationship analogous to the one the usual LS-category had with the standard TC. Thus, the
definition comes naturally.

Definition 7.4.1. For an integer k ≥ 1 we define the k-effective Lusternik-Schnirelmann
category of a G-space X as catG,k(X) = secat(qk). The effective LS-category of X, thus, is
defined as

catG,∞(X) = min{catG,k(X) | k ≥ 1}.
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It is straightforward from the definition that q1 = ev1, so catG,1(X) = cat(X). Indeed,
the classic chain of inequalities relating LS-category and topological complexity 7.4.1 can be
generalised to the effective setting in a natural way:

Theorem 7.4.2. For X a G-space, the following chain of inequalities holds:

catG,∞(X) ≤ TCG,∞(X) ≤ catG×G,∞(X × X) ≤ 2catG,∞(X). (7.4.2)

Proof. For the first inequality, observe that qk is defined as a pullback fibration of the k-
effective fibration πk, so the inequality holds by (3) in Theorem 3.2.8.

To show the second inequality, first notice that we can immediately identify Pk
∗(X × X) =

Pk
∗(X)× Pk

∗(X). Consider a categorical cover {Uj}0≤j≤n of X × X for qk, take any of its open
subsets Ui ⊂ X × X and a local section sUj of qk over U, defined as

sUj := ((s1, · · · , sk), (s′1, · · · s′k))

where, for each 1 ≤ i ≤ k, the entries si and s′i correspond with components of the local
section to the i-th coordinate of Pk

∗(X) for each of the two copies of X in the cartesian product.
Define now a map from Ui to the (2k − 1)-broken path space

σUj : Uj → P2k−1(X) σUj(x, y) = (sk(x, y)−1, · · · , s1(x, y)−1 ∗ s′1(x, y), · · · , s′k(x, y))

where, for each index 1 ≤ i ≤ k, we denote by si(x, y)−1 the path walked in reverse orienta-
tion, and s1(x, y) ∗ s′1(x, y) is just the corresponding concatenation of paths. One checks that
this map determines a local section for the fibration π2k−1 over Uj for each of the possible
choices of Uj in the categorical cover, hence

TCG,∞(X) ≤ catG,∞(X × X).

Finally, the last inequality is just a consequence of property Theorem 3.2.8(4).

From the definition and Theorem 3.2.8 it is obvious that, in analogy with the effective
topological case

catG,∞(X) ≤ catG,k(X) ≤ cat(X). (7.4.3)

As such, combining 7.4.3, Proposition 7.4.2 (and a consequence derived from it that we will
make explicit in the next section, Corollary 7.5.4) and Theorem 7.2.4, we immediately derive
the effective LS category of Zp-spheres.

Corollary 7.4.3. For any prime p, suppose Zp acting on Sn. Then catZp,∞(Sn) = 1.

Recall that by the LS-category of a map f : X → Y we understand the minimal number
of open sets in a covering of X such that f is nullhomotopic over each one of them. It is not
surprising that the category of the orbit map of X with respects to the G-action turns out to
be a lower bound for the effective LS category of X:

Proposition 7.4.4. Let X be a G-space, and ρX : X → X/G the orbit map with respect to the action
of G. Then cat(ρX) ≤ catG,∞(X).
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Proof. Define a map λ : Pk
∗(X) → P∗(X/G) by composing each path component in Pk

∗(X)

with the orbit map ρX : X → X/G, and then concatenating the resulting paths in X/G in the
order prescribed by their appearance in the k-tuple. Explicitly put

λ : Pk
∗(X) P∗(X/G)

(α1, · · · , αk) (ρX ◦ α1) ∗ · · · ∗ (ρX ◦ αk).

The map λ thus defined fits inside a commutative diagram of the form

Pk
∗(X) P∗(X/G)

X X/G.

λ

qk q1

ρX

Consider now {Ui}0≤i≤n an effective categorical open cover of X for catG,∞(X), and take for
each index 0 ≤ i ≤ n a local section si : Ui → Pk

∗(X) of qk. Define for each 0 ≤ i ≤ n a map

Hi : Ui × I → X/G H(x, 0) = (λ ◦ si)(x)(0) H(x, 1) = (λ ◦ si)(x)(1) = ρ|Ui
(x).

Notice that Hi defines a a homotopy between ρX|Ui
, the restriction of the orbit map on Ui,

and a constant map, making ρX|Ui
nullhomotopic and therefore showing that {Ui}0≤i≤n is a

categorical cover for cat(ρX), so it follows cat(ρX) ≤ catG,∞(X).

Let us discuss an example on how to make use of the notion of effective LS-category to
bound effective topological complexity from below.

Example 7.4.5. Consider CPn × CPn with Z2 acting on the product by switch of coordinates.
It is clear that the action is not free, but it can be turned into a free action in a standard way by
applying the Borel construction. That way, by considering the orbit projection with respect to
this induced free action we end up with a 2-fold covering projection map

ρ : CPn × CPn × S∞ → (CPn × CPn × S∞)/Z2.

The category of a map is bounded below by the cup length of its image in cohomology, (recall
Proposition 3.2.12) so we have cat(ρ) ≥ clR(Im ρ∗). Recall that the real cohomology ring
structure of CPn corresponds with

H∗(CPn; R) = R[α]/(αn+1) |α| = 2.

If we denote by x and y the generators of the second cohomology group of CPn × CPn

corresponding to the factors of the product then by [74, Proposition 3G.1] we have that
x + y ∈ Imρ∗. Given that

(x + y)2n =

(
2n
n

)
xnyn ̸= 0

we obtain that clR(Imρ∗) ≥ 2n, and so it follows that

TCZ2,∞(CPn × CPn) ≥ catZ2,∞(CPn × CPn) ≥ cat(ρ) ≥ 2n.
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7.5 The problem of TCG,∞(X) = 0

It is well known since the inception of the whole theory, [53, Theorem 1] that the only spaces
with topological complexity equal to zero are those which are contractible. Perhaps, it is not
so surprising that, given the additional layer of complexity that is involved in the definition
of the effective variant, such a basic case it is still unknown. In this section we will briefly
discuss the situation, and also present counter-examples to certain proposed characterizations
of TCG,∞(X) = 0.

It is immediate to check from the definition that, by design, if X is a contractible or
G-contractible space, then TCG,∞(X) = 0. The converse, however, is not true, and an easy
counterexample can be constructed by considering the computation of the Zp-spheres of
Theorem 7.2.4:

Example 7.5.1. Consider the unit n-sphere Sn, for n ≥ 1, equipped with a Z2 action by invo-
lution, which interchanges the two hemispheres and leaves the equator fixed. By Theorem
7.2.4 we have that TCZ2,∞(Sn) = 0.

Despite the failure of this reciprocity, the condition that the effective topological complex-
ity of a G-space is zero imposes a strong condition over orbit map with respect to the action,
as the following proposition shows.

Proposition 7.5.2. Let X be a G-space such that TCG,∞(X) = 0. Then the orbit projection map
ρX : X → X/G is nullhomotopic.

Proof. Assume that TCG,∞(X) = 0. Then there is an integer k ≥ 0 such that there exists a
global section of the k-effective fibration πk, i.e. a map

s : X × X → Pk(X) πk ◦ s ≃ idX×X.

Defining the map
ζk : X × X → P(X/G), ζk := θk ◦ s,

we obtain the following commutative diagram

P(X/G)

X × X X/G × X/G.
ρX×ρX

ζk

Therefore, for a choice of a distinguished point x0 ∈ X, we can define a map

H : X × I X/G

(x, t) ζk(x0, x)(t)

which, evaluated at t = 0 and t = 1, gives the following values

H(x, 0) = ζk(x0, x)(0) = ρX(x0), H(x, 1) = ζk(x0, x)(1) = ρX(x).
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Hence, H defines a homotopy between the orbit map ρX and the constant path cρX(x0), and as
a result ρX is seen to be nullhomotopic.

Unfortunately, the converse of the previous implication, again, does not hold in general.
This time the counterexample is a little bit more elaborated, though:

Example 7.5.3. Consider the six-dimensional sphere, S6, with Z2 acting on it via the antipodal
action. Now, take the orbit projection map ρ : S6 → RP6. The eighth suspension of the orbit
projection

Σ8 : Σ8S6 → Σ8RP6

coming from the antipodal action on S6 can be seen to be nullhomotopic (by the work
of E. Rees in his PhD thesis, see [106, Corollary 2]). However, Σ8S6, equipped with the
corresponding involution has a 7-dimensional fixed point set. By Theorem 7.2.4, we have that

TCZ2,∞(Σ8S6) = 1.

In the previous section, we made use of our definition of effective LS-category to general-
ize the classic bound of topological complexity in terms of Lusternik-Schnirelmann category,
see Theorem 7.4.2. It is important to notice that one of the immediate consequences of such
upper and lower bound indicates an alternative approach to the problem of determining the
kind of G-spaces with effective topological complexity equal to zero.

Corollary 7.5.4. If X is a G-space, catG,∞(X) = 0 if and only if TCG,∞(X) = 0.

7.6 Effective topological complexity and the orbit projection

It is only natural to ponder about the relationship between the effective topological complexity
of a G-space and distinguished properties of the orbit projection map associated to the G-
action. In this section, we will investigate the influence of two of such properties. First, we
analyze the scenario where the orbit projection map is endowed with a strict section. After
that, we consider the instance where the orbit map is a fibration. In both cases, plenty of
examples of computations and bounds are given.

7.6.1 Orbit map has a strict section

In the circumstance that the orbit projection by the group action is equipped with a strict
section s : X/G → X, the effective framework gets significantly simplified. By using this
section, one can lift all paths in X/G to paths in the base space X, and the effective LS category
and topological complexity coincide with the corresponding non-effective ones of the orbit
space.

Theorem 7.6.1. Let X be a G-space. If the orbit map ρX : X → X/G has a strict section s : X/G →
X, the following holds:

(1) catG,∞(X) = cat(X/G).
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(2) TCG,∞(X) = TC(X/G).

Proof. Let us prove the second claim. Start by considering an open cover {Ui}0≤i≤n with
Ui ⊂ X/G × X/G and a local section σi : Ui → P(X/G) of π1 for each 0 ≤ i ≤ n. Now put
Vi := (ρX × ρX)

−1(Ui) an open set in X × X, and consider the map induced at the level of
path spaces by the section s, i.e.

s : P(X/G) PX

γ s(γ)(t) = s(γ(t)).

Now we can define a local section of the effective fibration π3 : P3(X) → X × X, denoted
ςi : Vi → P3(X), by the expression

ςi(x, y) := (cx, s[σi([x], [y])], cy).

This shows that TCG,∞(X) ≤ TC(X/G).
For the reverse inequality, let n := TCG,∞(X), and consider an open cover {Vi}0≤i≤n

of X × X, and ςi : Vi → Pk(X) as a continuous local section for the effective fibration
πk : Pk(X) → X × X for some k > 0 realizing TCG,∞(X). Define

ρx : Pk(X) → P(X/G)

as a map induced in Pk(X) by the orbit map, by projecting any k-broken path γ = (γ1, · · · , γk) ∈
Pk(X) through the orbit map, and concatenating, for each 1 < j < k, the end point of ρX(γj)

with the initial point of ρX(γj+1), i.e.

ρX(γ1, · · · , γk) = (ρX ◦ γ1) ∗ · · · ∗ (ρX ◦ γk).

Finally, observe that for each 0 ≤ i ≤ n the composite map

ξi := ρx ◦ ςi ◦ (s × s)

defines a local section of π1 : P(X/G) → X/G × X/G over Ui := (s × s)−1(Vi), and so
TC(X/G) ≤ TCG,k(X).

With this approach in mind, the proof of 1. is, essentially, analogous. Start by considering
{Ui}0≤i≤m, a categorical open cover for cat(X/G). If we regard cat as a sectional category
we have, for each 0 ≤ i ≤ m, a local section σi : Ui → P(X/G). Define now, as above,
Vi = (ρX × ρX)

−1(Ui) and a local section for q2 by

ςi(x) := (s[σi([x])], cx).

This shows that catG,2(X) ≤ cat(X/G). For the reverse inequality, if we have an open cover
{Vi}0≤i≤m and local sections ςi : Vi → Pk

∗(X) of the fibration qk for some k realizing catG,∞(X)

then, putting Ui = (s × s)−1, we can define a local section of ev1 : P(X/G) → X/G over Ui

by
ξi := λk ◦ ςi ◦ s

where λk is as defined in the proof of Proposition 7.4.4.
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Let explore some examples of the theorem above:

Example 7.6.2. (1) As an immediate consequence we obtain that TCZ2,∞(Sn) = 0 when the
action is the flip (i.e. reflection interchanging the hemispheres and fixing the equator).
Though this was computed in [16, Proposition 5.7], Theorem 7.6.1 provides a more general
and conceptual explanation to it.

(2) Recall that the unitary group U(n) fits inside a split short exact sequence of groups of the
form

SU(n) ↪→ U(n) → U(1) ∼= S1.

Hence, by Theorem 7.6.1

TCSU(n),∞(U(n)) = TC(S1) = 1.

(3) Recall that the special orthogonal group, denoted SO(n), is the group of orthogonal
matrices in the n-dimensional euclidean space with determinant equal to 1. The principal
bundle

SO(3) → SO(4) → S3

has a section, and consequently

TCSO(3),∞(SO(4)) = TC(S3) = 1.

Later on we will see more applications of our results to more general cases of SO(n).

(4) As illustrated in the previous two cases, split Lie group extensions are a rich source of
examples for G-spaces equipped with strict sections for their orbit map. Other instances
of split exact sequences of groups in the spirit of the previous example can be obtained in
the following manner: let p > 2 be a prime integer, r ≥ 1 and define the central product

S(pr, pr) = SU(pr)×Γpr SU(pr)

where Γpr corresponds with the diagonal cyclic subgroup of the center of order pr. Now
one can make SU(pr) act on S(pr, pr) by left action on just the first coordinate of the
central product. Under this action we obtain a principal bundle

SU(pr) → S(pr, pr) → PU(pr)

and such bundle has, indeed, a global section. Hence we get

TCSU(pr),∞(S(pr, pr)) = cat(PU(pr)) = 3(pr − 1)

where the last equality was computed in [79].

(5) Let X be a based space, and G any group. Construct the space Z = ∨g∈GXg defined
by Xg = X, and equipped with a G-action given by hxg = xhg for xg = x ∈ Xg. Then
TCG,∞(Z) = TC(X).
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The last case of the previous example allows us to give an easy realization result for
effective topological complexity:

Corollary 7.6.3. Let G any finite group and n ≥ 0 a non-negative integer. Then there exists a
G-space X such that TCG,∞(X) = n.

Proof. Consider a space Y with TC(Y) = n (an easy example is Y = Tn). Now, construct
the space X = ∨g∈GYg defined in the same manner as in Example 7.6.2 (3) above. As a
consequence of Theorem 7.6.1 we have that TCG,∞(X) = TC(Y) = n.

7.6.2 Orbit map is a fibration

In this case, the situation has richer derivations, but requires a bit more subtlety. The equality
obtained in the presence of a strict section is not always possible. However, we can collapse
both effective LS category and topological complexity at stage 2, and bound them both by
their corresponding non-effective counterparts of the orbit space by the group action, as the
following theorem shows.

Theorem 7.6.4. Let X be a G-space such that the orbit map ρX : X → X/G is a fibration. Then:

(1) catG,∞(X) = catG,2(X) = cat(ρX) ≤ cat(X/G).

(2) TCG,∞(X) = TCG,2(X) ≤ TC(X/G).

Proof. To prove (i), let {Ui}0≤i≤n be a categorical open cover of X for cat(ρX). By the hypoth-
esis of nullhomotopy of ρX over every Ui, it is possible to construct a family of homotopies of
the form

Hi : Ui × I → X/G, Hi(x, 0) = ρX(x0), Hi(x, 1) = ρX(x).

Since ρX is a fibration, by the homotopy lifting property Hi can be lifted through ρX to a
homotopy Ki : Ui × I → X satisfying

Ki(x, 0) = x0, ρX ◦ Ki = Hi.

Define now, for every 0 ≤ i ≤ n, a map

si : Ui → P2
∗ (X) by si(x) = (Ki(x, ·), cx).

It is clear that si constitutes a local section for the fibration q2 : P2
∗ (X) → X over Ui, and

therefore catG,2(X) ≤ cat(ρX). By Proposition 7.4.4, this means that

catG,∞(X) = catG,2(X) = cat(ρX)

and the last inequality of the claim follows from usual properties of the category of a map.

To prove (ii), let {Ui}0≤i≤n be an open cover of X × X such that there exists, for every
0 ≤ i ≤ n, a local section si : Ui → Pk(X) of the k-effective fibration πk over Ui, for some k
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such that TCG,k(X) = TCG,∞(X). Recall from the proof of Theorem 7.6.1 that one can define
a map ρX : Pk(X) → X/G × X/G induced by the orbit projection map ρX by

ρX(γ1, · · · , γk) = (ρX ◦ γ1) ∗ · · · ∗ (ρX ◦ γk).

Through the map ρX, every local section si defines a homotopy

Hi : Ui × I → X/G

by putting

Hi((x, y), 0) = ρX(si(x, y))(0) = ρX(x), Hi((x, y), 1) = ρX(si(x, y))(1) = ρX(y).

Since ρX is a fibration by hypothesis, we have a lifting for Hi, the homotopy

Ki : Ui × I → X

satisfying
Ki((x, y), 0) = x, ρX ◦ Ki = Hi.

Through this homotopy it is possible to define a local section σi : Ui → P2(X) of the effective
fibration π2 over Ui, by putting

σi(x, y) := (Ki((x, y), ·), cy)

which shows that TCG,∞(X) = TCG,2(X).
For the last inequality, consider {Vi}0≤i≤m an open cover of X/G × X/G such that there

exists, for each 0 ≤ i ≤ m, a local section over Vi of the path space fibration π : P(X/G) →
X/G × X/G. Define for each i a homotopy

Pi : Vi × I → X/G

satisfying Pi(([x], [y]), 0) = [x] and Pi(([x], [y]), 1) = [y] for each ([x], [y]) ∈ Vi, and put
Wi := (ρX × ρX)

−1(Vi). There are induced homotopies

Wi × I
(ρX×ρX)×idI−−−−−−−→ Vi × I

Pi−→ X/G

and, since ρX is a fibration, we can lift them to obtain new homotopies

Qi : Wi × I → X

such that
ρX ◦ Qi = Pi ◦ ((ρX × ρX)|Wi

× idI)

and consequently
Qi((x, y), 0) = x Qi((x, y), 1) = z ∈ [y].

Through this last family of homotopies, a local section λi : Wi → P2(X) for the effective
fibration π2 can then be defined by putting

λi(x, y) := (Qi((x, y), ·), cy)

thus TCG,2(X) ≤ TC(X/G).
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Whenever G is a discrete group acting properly discontinuously on X, Theorem 7.6.4
recovers the bound of effective topological complexity by TC(X/G) of [23, Theorem 1.1].
However, the situation is much more interesting if we are considering actions of compact Lie
groups.

Example 7.6.5. (a) Under the identification of S1 as the topological unitary group U(1), we
have a very well known fibre bundle

S1 ↪→ S2n+1 → CPn.

As a consequence of (2) of Theorem 7.6.4, we see that

TCS1,∞(S2n+1) ≤ TC(CPn) = 2n

(where the value of TC(CPn) was computed in [59], see Theorem 3.2.14 on Chapter 3). In
this case, however, the bound provided by theorem is far from a sharp one. Notice that
we can consider the subgroup inclusion Zp ⩽ S1 and hence, by virtue of Lemma 7.2.2
and Theorem 7.2.4 one gets

TCS1,∞(S2n+1) ≤ TCZp,∞(S2n+1) = 1

and, as a consequence of Proposition 7.5.2, TCS1,∞(S2n+1) = 1.

Furthermore, we can take the principal bundle associated to the classifying space of U(1),

S1 ↪→ EU(1) → BU(1) ≡ S1 ↪→ S∞ → CP∞

and in, this case, the contractibility of S∞ implies that TCS1,∞(S∞) = 0.

(b) It is well known that the identification map (sometimes called “realification")

ϕ : Cn×n → R2n×2n

given by putting

C := A + iB 7→

A −B

B A


allows to identify the linear group U(n) as a subgroup of SO(2n). To be more specific, it
can be shown that

ϕ(U(n)) = SO(2n) ∩ ϕ(GL(n, C)).

There is then a principal U(3)-bundle

U(3) ↪→ SO(6) → CP3

which, in conjunction with Theorem 7.6.4 informs us that

TCU(3),∞(SO(6)) ≤ TC(CP3) = 6.
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(c) Think of the S2n+1 sphere immersed in the (n + 1)-dimensional complex space Cn+1.
Recall that the map T : Cn+1 → Cn+1 defined as the scalar multiplication by the p-th
root of unity, (i.e. T(z) = exp(2πi/p)z for z ∈ S2n+1) generates the standard complex
representation of the cyclic group Zp. This induces a free action on S2n+1 under a complex
unitary map of period p. The orbit space of such action is the well known lens space
L2n+1

p .

We can consider, in S2n+1, the scalar multiplication of z ∈ S2n+1 by exp(2πix/p), where
x ∈ R. This operation defines a group homomorphism g : R → Aut(S2n+1) which
commutes with the induced periodic map T : S2n+1 → S2n+1. Consequently, g induces
an action of R on the lens space L2n+1

p through an induced homomorphism g : R →
Aut(L2n+1

p ). If we take an integer k, it is easy to see that exp(2πik/p) = (exp(2πi/p)k)

which informs us that the integers act trivially on L2n+1
p . Therefore, the map g factors

through the exponential map and it subsequently induce an action of S1, regarded as the
circular group, on the lens space L2n+1

p , defined explicitely as

s · [z] = [exp(2πix/p)z]

for z ∈ S2n+1, [z] ∈ L2n+1
p and s ∈ S1, x ∈ R such that s = exp(2πix). Jaworowski, in

[81], demonstrated that such an action is free and, furthermore, that the orbit space under
it corresponds with the complex projective space CPn. Therefore, by Theorem 7.6.4 we
see that

TCS1,∞(L2n+1
p ) ≤ TC(CPn) = 2n.

(d) Although the situation is significantly more complicated in the case of real projective
spaces, we can still make use of the known topological complexity of RPn for certain
values of n to derive even more examples from Theorem 7.6.4. As it is discussed in [79,
Section 4], we have the following principal bundles of compact Lie groups over real
projective spaces:

Sp(1) → SO(5) → RP7, SU(3) → SO(6) → RP7,

G2 → SO(7) → RP15, Spin(7) → SO(9) → RP15,

G2 → PO(8) → RP7 × RP7.

Therefore, by Theorem 7.6.4 and the computation of the topological complexity of real
projective spaces in dimension 7 and 15 carried out in [59], we obtain the inequalities:

TCSp(1),∞(SO(5)) ≤ 7, TCSU(3),∞(SO(6)) ≤ 7,

TCG2,∞(SO(7)) ≤ 23, TCSpin(7),∞(SO(9)) ≤ 2,

TCG2,∞(PO(8)) ≤ 14.
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Let G be a matrix Lie group, and H ≤ G a closed subgroup. It is a well known fact that G
has the structure of a fibre bundle

H ↪→ G
ρ−→ G/H

(see, for example [73, Proposition 13.8]). In particular, Theorem 7.6.4 produces very easy
upper bounds for actions of closed matrix subgroups in their immediate matrix overgroup:

Corollary 7.6.6. Let n ∈ N. Then the following holds:

(a) TCSO(n−1),∞(SO(n)) = 1 for n even and TCSO(n−1),∞(SO(n)) ≤ 2 for n odd.

(b) For n ≥ 2 we have TCU(n−1),∞(U(n)) = 1.

(c) For n ≥ 3, we have TCSU(n−1),∞(SU(n)) = 1.

(d) For all n ≥ 1 we have TCSp(n−1),∞(Sp(n)) = 1.

Proof. The statements have almost analogous proofs. All of them depend on the identification
of the orbit maps with fibrations with base spheres of appropiate dimension (to see a proof
of these facts see, for example, [73, Section 13.2]) and on the computation of the standard
topological complexity of spheres (see [52] or the computations we carried in Chapter 2).

(a) SO(n − 1) acting over SO(n) fits into a fibration

SO(n − 1) ↪→ SO(n)
ρ−→ SO(n)

/
SO(n − 1) ∼= Sn−1.

By (2) of Theorem 7.6.4 we know that

TCSO(n−1),∞(SO(n)) ≤ TC(Sn−1) =

1 for n even

2 for n odd

(b) The action of U(n − 1) on its overgroup U(n) fits into a principal bundle

U(n − 1) ↪→ U(n) → U(n)
/

U(n − 1) ∼= S2n−1

which informs us, by virtue of (2) of Theorem 7.6.4, that

TCU(n−1),∞(U(n)) ≤ TC(S2n−1) = 1.

(c) The subgroup SU(n − 1) acting over SU(n) fits into a fibration of the form

SU(n − 1) ↪→ SU(n)
ρ−→ SU(n)

/
SU(n − 1) ∼= S2n−1.

Once again, (2) of Theorem 7.6.4 implies that

TCSU(n−1),∞(SU(n)) ≤ TC(S2n−1) = 1.
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(d) Finally, Sp(n − 1) acting over Sp(n) makes the orbit map projection into a fibration

Sp(n − 1) ↪→ Sp(n)
ρ−→ Sp(n)

/
Sp(n − 1) ∼= S4n−1.

As previously, by (2) of Theorem 7.6.4

TCSp(n−1),∞(Sp(n)) ≤ TC(S4n−1) = 1.

Finally note that, as a consequence of Proposition 7.5.2, the previously determined upper
bounds by 1 are, indeed, sharp equalities.

For any pair of numbers n, k ∈ N, with k < n, we say that a (compact) Stiefel manifold
over a field F ∈ {R, C, H}, denoted by Vk(F

n), is the set of k-orthonormal tuples of vectors
in Fn, with the subspace topology in Fn+k. Conversely, a k-Grassmannian over Fn is the
set of all possible k-dimensional vector subspaces of Fn. The group O(k, F) acts freely on
Vk(F

n), by rotating a k-frame in the space it spans. The orbits of this action are precisely
the orthonormal k-frames spanning a given k-dimensional subspace, that is, the orbit map
corresponds with a fibration (indeed a principal O(k, F)-bundle) of the form

O(k, F) ↪→ Vk(F
n)

ρ−→ Gk(F
n).

If we specialize the concrete choice of the field, we obtain fibrations

O(k, R) ↪→ Vk(R
n)

ρ−→ Gk(R
n) U(k, C) ↪→ Vk(C

n)
ρ−→ Gk(C

n) (7.6.1)

which allow us to give upper bounds for the effective topological complexity of orthogonal
actions on Stiefel manifolds.

Corollary 7.6.7. Let k, n ∈ N with k < n. Then the following bounds are satisfied:

(a) TCO(k),∞(Vk(R
n)) ≤ 2k(n − k)− 1

(b) TCU(k),∞(Vk(C
n)) ≤ 2k(n − k)

Proof. As a consequence of the fibrations in 7.6.1 and (2) of Theorem 7.6.4, we know that

TCO(k),∞(Vk(R
n)) ≤ TC(Gk(R

n)) and TCU(k),∞(Vk(C
n)) ≤ TC(Gk(C

n)).

Then both claims follow from the upper bounds for the topological complexity of Grassmann
manifolds computed by P. Pavešić in [105, Proposition 4.1, Theorem 4.2].

We will briefly recall the definition of more general orthonormal frame bundles defined
over smooth manifolds, and we will apply our results to that setting. Let M be an n-
dimensional (oriented) Riemann manifold, define, for every x ∈ M the space

Fx(M) := {(v1, · · · , vn) ∈ (Tx M)n | (v1, · · · , vn) a positive orthonormal basis of Tx M}

and from it the space of positive orthonormal frames of M by putting

F(M) := {(x, b) | x ∈ M, b ∈ Fx(M)}.
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Build the continuous map pF(M) : F(M) → M by pF(M)(x, b) = x. Then pF(M) has the struc-
ture of a smooth principal SO(n)-bundle, called the bundle of positive orthonormal frames
of M.

Corollary 7.6.8. Let M a path-connected n-dimensional smooth manifold, and pF(M) : F(M) → M
defined as above. Then

(a) TCSO(n),∞(F(M)) ≤ 2 dim(M).

(b) Furthermore, if M is parallelizable, then

TCSO(n),∞(F(M)) = TC(M).

Proof. (a) Given that pF(M) is a principal bundle, we are under the assumptions of Theorem
7.6.4, hence

TCSO(n),∞(F(M)) ≤ TC(F(M)/SO(n)) = TC(M) ≤ 2 dim(M)

where the last inequality just comes from the well-known dimensional bound of topolog-
ical complexity, see Corollary 3.2.10.

(b) Under the hypothesis of M being parallelizable, pF(M) : F(M) → M becomes a trivial
SO(n)-bundle, thus the claim follows from Theorem 7.6.1.

To check computations of usual topological complexity of orthonormal frame bundles we
refer the readers to the analysis of S. Mescher on the matter, see [99].

Under nice enough group actions, the quotient space of a smooth manifold is itself a
manifold with a smooth structure making the orbit map a fibration.

Corollary 7.6.9. Let G be a Lie group acting smoothly, freely and properly on a connected smooth
manifold M. Then

TCG,∞(M) ≤ 2(dim(M)− dim(G)).

Proof. By the quotient manifold theorem (see [86, Theorem 21.10]) the orbit space M/G has
the structure of a topological manifold with

dim(M/G) = dim(M)− dim(G)

and with an unique smooth structure satisfying that the orbit map ρM : M → M/G is a
smooth submersion. By the Ehresmann’s fibration theorem (see [46, Theorem 8.5.10]) ρM is a
(locally trivial) fibration, hence Theorem 7.6.4 gives us

TCG,∞(M) = TCG,2(M) ≤ TC(M/G) ≤ 2(dim(M)− dim(G))

where the last inequality just follows from the dimensional upper bound of TC.
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We can easily obtain the same inequality for locally smooth free actions though, un-
like in the case above, we have to impose compacity as an additional restriction. Let us
recall some terminology first. Let G be this time a compact Lie group, acting over a closed
connected smooth manifold M. Since G is compact, we observe that, for any x ∈ M, the
map qx : G/Gx → G(x) given by qx(gGX) = gx is a homeomorphism, and the orbit G(x) is
said to be of type G/Gx. We say that the G action is locally smooth if there is a linear tube
φ : G ×H V → M about every orbit of type G/H, where V is an orthogonal representation of
the subgroup H. Locally smooth actions come equipped with principal orbits, i.e. orbits of
type G/H such that H is subconjugated to any isotropy subgroup Gx ⩽ G. By virtue of [21,
Theorem IV.3.8] we have that

dim(M/G) = dim(M)− dim(P).

If, furthermore, the action of G is taken as free, the orbit projection map ρM : M → M/G
becomes a fibration, hence Theorem 7.6.4 applies, and we have

TCG,∞(M) ≤ TC(M/G) ≤ 2 dim(M/G)

and, since dim(P) = dim(G), we immediately get

TCG,∞(M) ≤ 2(dim(M)− dim(G)). (7.6.2)

Compare both Corollary 7.6.9 and inequality 7.6.2 above with the upper bounds for usual
topological complexity of smooth manifolds with locally smooth free actions obtained by M.
Grant in [69].

It is possible to find conditions under which the effective LS category and the regular LS
category coincide in this setting:

Corollary 7.6.10. Let X be a G-space with basepoint x0 ∈ X. If the orbit projection map ρX : X →
X/G is a fibration and the orbit of the base point Gx0 is contractible in X then

catG,∞(X) = cat(X).

Proof. Let {Ui}0≤i≤n be a categorical cover for cat(ρX) and define, for each Ui ⊂ X a homo-
topy Hi : Ui × I → X/G such that

Hi(x, 0) = ρX(x0) and Hi(x, 1) = ρX(x).

Given that ρX is a fibration, we can lift Hi to a homotopy Ki : Ui × I → X satisfying

Ki(x, 1) = x and ρX ◦ Ki = Hi.

By the hypothesis of contractibility of the orbit of the basepoint, there is a continuous map
θ : Gx0 → P∗X such that θ(x)(1) = x for all x ∈ Gx0. Consequently, it is possible to define a
section for the LS-cat fibration ev1 over Ui as the concatenation

si(x) := θ(Ki(x, 0)) ∗ Hi(x, ·)

which shows that cat(ρX) = cat(X). The claim thus follows from the equality cat(ρX) =

catG,∞(X) provided by (1) of Theorem 7.6.4.
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Naturally, the previous corollary is of particular interest in situations where we can
assume the coincidence between LS-category and topological complexity, so the computation
of effective topological complexity would be derived from the (generally easier) task of
knowing the classic LS-category.

Corollary 7.6.11. Let G be a finite group and X a free G-space such that cat(X) = TC(X). Then
TCG,∞(X) = cat(X).

Proof. The chain of inequalities in Theorem 7.4.2 shows that catG,∞(X) ≤ TCG,∞(X) ≤ TC(X).
By Corollary 7.6.10 above we know that catG,∞(X) = cat(X), and the claim follows from the
hypothesis.

We will close this subsection by mentioning some interesting examples of the previous
corollaries.

Example 7.6.12. (1) Let G be a connected Lie group. In [51, Lemma 8.2], Farber proved the
equality TC(G) = cat(G). Therefore, if there exists a finite non-trivial discrete subgroup
H ≤ G, Corollary 7.6.11 implies that

TCH,∞(G) = cat(G).

Recall that, for example, if G is a non-nilpotent and simply connected group (such as
groups of upper triangular matrices with diagonal terms equal to one) there always exists
a non-trivial finite subgroup H.

(2) Generalizing Farber’s result, Lupton and Scherer demonstrated in [90, Theorem 1] that, if
X is a connected CW H-space, then TC(X) = cat(X). Consequently, if G is a finite group
acting freely on X, Corollary 7.6.11 applies and TCG,∞(X) = cat(X).

(3) A particularly simple example comes from free products on spheres. Let G be a finite
group acting freely on the k-dimensional torus

Tk = S1 × · · · × S1︸ ︷︷ ︸
k

.

Then we have TCG,∞(Tk) = k.

More generally, we can consider products of odd dimensional spheres, so if G acts freely
on the product S2n+1 × · · · × S2n+1︸ ︷︷ ︸

k

we obtain

TCG,∞(S2n+1 × · · · × S2n+1︸ ︷︷ ︸
k

) = k

Remark 7.6.13. Notice that for a result in the spirit of Corollary 7.6.10, the hypothesis about
the fibrational nature of the orbit projection map is crucial. Indeed, observe for example the
case of a nilmanifold M with the characteristic transitive action of a nilpotent (contractible)
Lie group G. The orbit map ρM has an obvious section (since the orbit space consists of a
single element)
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7.7 Cohomological conditions for non-vanishing of TCG,2(X)

One of the significant open problems suggested in the original article of Błaszczyk and Kaluba
[16] concerned the determination of the kind of sequences that could arise as sequences of
effective topological complexities. The problem is too broad and general, and it will most
certainly require a specific in-depth inquiry on the matter, which goes beyond the scope of
the present article. However, we will make a first contribution to the problem.

In this section we will study some cohomological conditions to determine whether or not
the effective topological complexity at stage two vanishes. The set stage is not arbitrary by
any means: such cohomological conditions are examined over the saturated diagonal, and
we will make use of an homotopy equivalence between ℸ(X) and the stage 2 broken path
space P2(X) to infer the aforementioned non-vanishing condition.

Let us start by noticing that the saturated diagonal ℸ(X) can be easily represented as

ℸ(X) = {(gx, x) | g ∈ G, x ∈ X}.

The inclusion {(gx, x) | g ∈ G, x ∈ X} ⊂ ℸ(X) is obvious, while for any pair (g1x, g2x) ∈
ℸ(X) it is possible to define

(gy, y) ∈ {(gx, x) | g ∈ G, x ∈ X}, for g = g1g−1
2 and y = g2x.

This, in turn, informs us that we can decompose ℸ(X) as the union of “slices" of the saturated
diagonal, i.e.

ℸ(X) =
⋃

g∈G

ℸg(X),

where, for each g ∈ G, we set

ℸg(X) := {(gx, x) | x ∈ X}.

This decomposition will be quite useful for the rest of our arguments throughout this section.
However, before proceeding further, let us describe the homotopy equivalence between ℸ(X)

and the broken path space P2(X).

Lemma 7.7.1. Let X be a G space. There is a homotopy equivalence between ℸ(X) and P2(X).

Proof. Start by noticing that there is an obvious inclusion

ι : ℸ(X) ↪→ P2(X) ι(gx, x) = (cgx, cx).

Now, consider a map f : P2(X) → ℸ(X) defined as

f (γ1, γ2) = (γ1(1), γ2(0)).

It is immediate to see that the composition f ◦ ι corresponds with idℸ(X). For the other
composition, we obtain

(γ1, γ2) = ι(γ1(1), γ2(0)) = (cγ1(1), cγ2(0)).
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Define the map H : P2(X)× I → P2(X) by

H((γ1, γ2), 0) = (γ1, γ2), H((γ1, γ2), 1) = (cγ1(1), cγ2(0)),

H((γ1, γ2), t) = (γt
1, γt

2) ∀0 < t < 1

where for all 0 ≤ s ≤ 1 we put

γt
1(s) = γ1(t(1 − s) + s), γt

2(s) = γ2(s(1 − t)).

One observes that said map defines a homotopy between ι ◦ f and idP2(X) and, as such, we
have the homotopy equivalence ℸ(X) ≃ P2(X).

Notice that the above lemma generalizes the homotopy equivalence between P2(X) and
ℸ(X) noted by Cadavid-Aguilar and González in [24] for finite free actions into arbitrary
group actions.

Throughout the rest of this section, assume that G is a finite group, and X is a compact
G-ANR. By [89, Theorem 3.15] this implies, in turn, that the saturated diagonal ℸ(X) becomes
a (G × G)-ANR, and we can apply the cohomological Mayer-Vietoris sequence for general
subsets that are retractions of open subsets (check, for example, [74, Pag. 150]). Also recall
that by the cohomological dimension of a space X we mean the largest integer n ≥ 0 such that
there exists a local coefficient system M satisfying Hn(X; M) ̸= 0.

Lemma 7.7.2. Let X be a G-CW complex such that cd(XH) ≤ cd(X) for all non-trivial subgroups
H ⩽ G. Then, given any list L of non-trivial subgroups of G, we have

cd

( ⋃
H∈L

XH

)
< cd(X) + |L| − 1.

Proof. We will proceed by induction. Consider the base case |L| = 1, then L consists of only
one non-trivial subgroup H of G and hence cd(XH) ≤ cd(X) by the initial hypothesis.

Now assume that the claim is satisfied for any list of subgroups of cardinality n − 1, and
define L := {K1, · · · , Kn−1} ∪ {H} with H, Ki ⩽ G for all 1 ≤ i ≤ n − 1. Define the sets

A :=
⋃

Ki∈L

XKi and B := XH.

Notice that the intersection corresponds to the following union of fixed point sets

A ∩ B =

( ⋃
Ki∈L

XKi

)
∩ XH =

⋃
Ki∈L

(XKi ∩ XH) =
⋃

Ki∈L

X.⟨Ki ,H⟩

By the induction hypothesis, we have the inequalities

cd(A) < cd(X) + n − 2 cd(A ∩ B) < cd(X) + n − 2,

while we also have the inequality cd(B) < cd(X) as a consequence of the initial hypothesis.
Applying the Mayer-Vietoris sequence to the spaces just defined, and putting d := cd(X) +

n − 2, we obtain a sequence
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· · · Hd(A ∪ B; M) Hd(A; M)⊕ Hd(B; M) Hd(A ∩ B; M)

Hd+1(A ∪ B; M) 0 0

where M is an arbitrary (possibly twisted) coefficient system and, by the cohomological di-
mensional bounds stated above, we have that Hd+1(A ∪ B; M) = 0, and thus we obtain
that

cd

( ⋃
Ki∈L

XKi

)
∪ XH) < cd(X) + |L| − 1.

The lemma above is instrumental, both in the result itself and in the argument of the
proof, of the following bound of the cohomological dimension of the saturated diagonal.

In the same spirit as before, for any list of elements L ⊆ G, define the relative saturated
diagonal with respect to L as

ℸL(X) =
⋃

gi∈L

ℸgi(X).

Theorem 7.7.3. Let X be a G-CW complex such that cd(XH) ≤ cd(X) for all non-trivial subgroup
H ⩽ G. Then, for any L list of elements of G,

cd(ℸL(X)) ≤ cd(X) + |L| − 1.

In particular we have that

cd(ℸ(X)) ≤ cd(X) + |G| − 1.

Proof. The idea of this proof builds upon the argument used in the previous lemma, and we
will proceed, once again, by induction. First assume we consider lists consisting on only one
element. Then ℸL(X) is just homeomorphic to X and, as such, cd(ℸL(X)) = cd(X).

Now, let us assume that the induction hypothesis is satisfied for any list of elements
of G of length n − 1. Define an arbitrary list of such length L′ = {g1, · · · , gn−1}, and let
L = L′ ∪ {r} for G′ = {g1, · · · , gn−1} a subgroup of order n − 1 and r an element of G not
included in L′. Consider the decomposition

ℸL(X) =
⋃

ki∈L

ℸki(X) =

 ⋃
gi∈L′

ℸgi(X)

 ∪ ℸr(X).

Define now the sets

A :=
⋃

gi∈L′
ℸgi(X) B := ℸr(X).

The intersection of these two subsets corresponds with the following set

A ∩ B =

 ⋃
gi∈L′

ℸgi(X)

 ∩ ℸr(X) =
⋃

gi∈L′

(
ℸgi(X) ∩ ℸr(X)

)
.
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For each gi ∈ L′, the intersection ℸgi(X) ∩ ℸr(X) is equivalent to the set

{x ∈ X | (gix, x) = (rx, x)},

which implies r−1gix = x. Thus we can identify the intersection

ℸgi(X) ∩ ℸr(X) ∼= X⟨r−1gi⟩

and, consequentially, the intersection above can be reformulated as an union of invariant sets
of the form

A ∩ B =
⋃

gi∈L′
X⟨r−1gi⟩.

Define M as the collection of non-trivial subgroups of G

M := {⟨r−1g1⟩, · · · , ⟨r−1gn−1⟩}.

By Lemma 7.7.2 we know that cd(A ∩ B) < cd(X) + n − 2. By the induction hypothesis
one observes cd(A) < cd(X) + n − 2 and clearly cd(B) = cd(X). Applying now the Mayer-
Vietoris sequence as in Lemma 7.7.2 yields the exact sequence

· · · Hd(A ∪ B; M) Hd(A; M)⊕ Hd(B; M) Hd(A ∩ B; M)

Hd+1(A ∪ B; M) 0 0
and given the cohomological dimensional bounds stated above, we obtain

cd(A ∪ B) = cd(ℸL(X)) ≤ cd(X) + |L| − 1.

which gives us the desired result.

As a consequence of the previous result, we can deduce a cohomological condition on the
base space X for non-vanishing second stage effective topological complexity, reflected in the
following corollary.

Corollary 7.7.4. Under the assumptions of Theorem 7.7.3, we have that, if |G| ≤ cd(X), then
TCG,2(X) > 0.

Proof. Consider the second effective fibration π2 : P2(X) → X × X. This map induces an
homomorphism in cohomology

H∗(X × X; M)
π∗

2−→ H∗(P2(X); M).

By the homotopy equivalence given in Lemma 7.7.1, this homomorphism can be seen as

H∗(X × X; M) → H∗(ℸ(X); M)

and, by Proposition 7.7.3, Hk(ℸ(X); M) = 0 for any k > cd(X) + |G| − 1. However, H2n(X ×
X) ̸= 0, which implies the existence of at least one non-trivial element in

ker(H∗(X × X; M) → H∗(ℸ(X)); M).

Thus, by (2) in Theorem 3.2.8, we have secat(π2) = TCG,2(X) > 0.
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Remark 7.7.5. In [24, Definition 7.3] the authors introduced the notion of effective zero-divisors.
Namely, considering the inclusion of the saturated diagonal δX : ℸ(X) → X × X, we say that
an effective zero-divisor is an element in the kernel of the induced map in cohomology

δ∗X : H∗(X × X; R) → H∗(ℸ(X); R)

where cohomology is considered with arbitrary coefficients. As noted by Grant in [68], it is
implicit in [24] that, if X is a free G-space with G a finite group, we have the following lower
bound

TCG,2(X) = TCG,∞(X) ≥ nil ker(δ∗X : H∗(X × X; R) → H∗(ℸ(X); R)).

Our Corollary 7.7.4 generalizes such lower bound (at stage two) to non necessarily free
actions with prescribed cohomological dimensional bounds.

Example 7.7.6. Let us consider now the case of our space being a n-sphere (for n > 1)
with a Z2-action by involution and codimension one fixed point set. Z2 acts on Sn by
a reflection interchanging the hemispheres, and the action, as such, is linear. Adopt the
notation Z2 = {1, g}, where 1 acts as the identity element. As above, take the split saturated
diagonal ℸ(Sn) as the union of slices

ℸ(Sn) = ℸ1(Sn)
⋃

ℸg(Sn).

Similarly as before, the intersection ℸ1(Sn)
⋂
ℸg(Sn) corresponds with the set of elements of

Sn such that x = gx, which is precisely (Sn)Z2 , the set of invariants by the action of Z2.

By Lemma 7.7.1, we know P2(Sn) is homotopically equivalent to the saturated diagonal
ℸ(Sn). Given that the dimension of the fixed point set (Sn)Z2 is n − 1 by the choice of the
group action, we are under the hypothesis of Theorem 7.7.3 and thus, by Corollary 7.7.4, we
have that TCZ2,2(Sn) > 0.

The idea of how to find the (Z2, 2)-motion planners is essentially analogous to [16,
Proposition 5.6]. Let us recall it briefly. Define a homeomorphism τ : Sn → Sn by

τ(x0, · · · , xn) := (−x0,−x2, x1, · · · ,−xn, xn−1).

The two-fold motion planners are given over the open covering

U1 = {(x, y) ∈ Sn × Sn | y ̸= −x},

U2 = {(x, y) ∈ Sn × Sn | y ̸= −τ(x)}

(where it is obvious that all points of the form (x,−x) are indeed contained in U2). The motion
planner over U1 is just s1(x, y) := s′(x, y), where s′(x, y) denotes the shortest arc connecting
two non-antipodal points x and y. Meanwhile, the motion planner s2 : U2 → P2(Sn) is
defined by putting

s2(x, y) := (cx, s′(x, τ(x)) ∗ s′(τ(x), y)) ∀(x, y) ∈ U2.
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But under this choice of action, by Theorem 7.2.4, we actually know that

TCZ2,∞(Sn) = TCZ2,3(Sn) = 0.

Indeed, recall that a (Z2, 3)-motion planner over Sn can be defined, as shown in [16, Proposi-
tion 5.7], by

s(x, y) := (cx, s′(Γ(x)x, N) ∗ s′(N, Γ(y)y, cy))

for any x, y ∈ Sn, where N ∈ Sn denotes the north pole, and Γ(x) is the trivial element of Z2

if x ∈ Sn
+, and its generator otherwise.

Notice that in the previous example we have just realized the following basic sequence
for involutions on arbitrary spheres Sn, n > 1, with codimension one fixed point set.

Proposition 7.7.7. Let Z2 act on Sn by involution, with fixed point set of codimension one. Then,
the effective topological complexity sequence associated to Sn is

TCZ2,k(Sn) =


2, k = 1,

1, k = 2,

0, k ≥ 3.

Naturally, one of the clear objectives on the field would be fully determining all the
sequences that appear as {TCG,k}-sequences. The investigation of the realization of more
complex sequences, or on the generalization of the previously developed methods to higher
k-stage effective topological complexities will be the subject of future work.
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