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The financial support obtained within the following projects is also acknowledged:

• National Science Centre of Poland, Opus Grant No: 2017/27/B/ST3/00621.

• National Science Centre of Poland, Opus Grant No: 2022/45/B/ST3/02826.

• National Science Centre of Poland, Preludium Grant No: 2021/41/N/B/ST3/02098.

• NAWA-STER co-financed project No: PPI/STE2020/1/00007/U/00001.

• University of Excellence, ID-UB action 003, No: 003/13/UAM/0016.





To the boundaries of knowledge.





Contents

List of articles constituting the dissertation

Abstract

I Introduction

1 Aim and Motivation 1

2 Model systems and basic theory 5

2.1 Quantum impurities and where to find them . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Quantum impurity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Single impurity Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Noninteracting case: resonant level model . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Resonant level model: spectral function and electronic transport . . . . . . . . . 8

3 The many-body physics of interacting quantum impurities 11

3.1 Numerical renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Renormalization group flow diagram . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Linear response transport properties . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Numerical methods for systems out of equilibrium 19

4.1 Hybrid numerical renormalization group - time-dependent density matrix renormalziation

group approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 The hybrid logarithmic-linear discretization scheme . . . . . . . . . . . . . . . . 20

4.1.2 Thermofield representation of the lead modes . . . . . . . . . . . . . . . . . . . 21

4.1.3 Recombination of the leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.4 Initial state quench and time evolution . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.5 Steady-state and physical observables . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Perturbation theory for strongly asymmetric systems . . . . . . . . . . . . . . . . . . . 25



4.3 Nonequilibrium thermoelectric transport coefficients . . . . . . . . . . . . . . . . . . . 28

5 Summary 31

6 Streszczenie (Summary in Polish) 35

Bibliography 41

II Articles constituting the dissertation 51

7 Linear response transport properties 53

7.1 Spin Seebeck effect of correlated magnetic molecules [A] . . . . . . . . . . . . . . . . 53

8 Nonequilibrium steady-state transport: Kondo correlations from both leads 71

8.1 Nonequilibrium spintronic transport through Kondo impurities [B] . . . . . . . . . . . . 71

8.2 Nonequilibrium steady-state thermoelectrics of Kondo-correlated quantum dots [C] . . . 83

9 Nonequilibrium transport properties in the asymmetric coupling limit 101

9.1 Nonequilibrium Seebeck effect and thermoelectric efficiency of Kondo-correlated molecu-

lar junctions [D] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Spin-resolved nonequilibrium thermopower of asymmetric nanojunctions [E] . . . . . . 117

9.3 Giant tunnel magnetoresistance induced by thermal bias [F] . . . . . . . . . . . . . . . . 133

Appendices 142

A List of Scientific Achievements 143

A.1 Complete list of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 List of Seminars and Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 Experience in Scientific Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.4 List of Research visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.5 List of Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.6 Other Scientific Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B Statements concerning the Author’s contributions 147



List of articles constituting the

dissertation

[ A ] Anand Manaparambil & Ireneusz Weymann.

Spin Seebeck effect of correlated magnetic molecules

Sci. Rep., vol. 11, no. 9192, 28 Apr. 2021, pp. 1-15, doi: 10.1038/s41598-021-88373-7.

[ B ] Anand Manaparambil, Andreas Weichselbaum, Jan von Delft & Ireneusz Weymann.

Nonequilibrium spintronic transport through Kondo impurities. (Editor’s Suggestion)

Phys. Rev. B, vol. 106, no. 12, 14 Sept. 2022, p. 125413, doi:10.1103/PhysRevB.106.125413.

[ C ] Anand Manaparambil, Andreas Weichselbaum, Jan von Delft & Ireneusz Weymann.

Nonequilibrium steady-state thermoelectrics of Kondo-correlated quantum dots.

arXiv, 4 Sept. 2024, doi:10.48550/arXiv.2409.03102.

[ D ] Anand Manaparambil & Ireneusz Weymann.

Nonequilibrium Seebeck effect and thermoelectric efficiency of Kondo-correlated

molecular junctions.

Phys. Rev. B, vol. 107, no. 8, 7 Feb. 2023, p. 085404, doi:10.1103/PhysRevB.107.085404.

[ E ] Anand Manaparambil & Ireneusz Weymann.

Spin-resolved nonequilibrium thermopower of asymmetric nanojunctions.

Phys. Rev. B, vol. 109, no. 11, 4 Mar. 2024, p. 115402, doi:10.1103/PhysRevB.109.115402.

[ F ] Anand Manaparambil & Ireneusz Weymann.

Giant tunnel magnetoresistance induced by thermal bias.

J. Magn. Magn. Mater., vol. 587, 1 Dec. 2023, p. 171272, doi:10.1016/j.jmmm.2023.171272.

https://doi.org/10.1038/s41598-021-88373-7
https://doi.org/10.1103/PhysRevB.106.125413
https://doi.org/10.48550/arXiv.2409.03102
https://doi.org/10.1103/PhysRevB.107.085404 
https://doi.org/10.1103/PhysRevB.109.115402
https://doi.org/10.1016/j.jmmm.2023.171272




Abstract

Quantum impurity systems can be designed at the nanoscale as semiconductor quantum dots, nanowires,

adatoms or magnetic molecules embedded in tunnel junctions, or on a metallic surface as in scanning

tunneling microscopy settings. Such systems can exhibit various quantum effects originating from the

strong confinement of electrons into lower dimensions. More complex many-body phenomena can emerge

when the impurity starts to interact with the rest of the system. The Kondo effect is one such fascinating

many-body phenomenon originating from the strong electronic interactions between the impurity and the

conduction band electrons. Many characteristic behaviors are exhibited by Kondo-correlated quantum

impurity systems. Primarily, a resonance peak in the density of states of the impurity at the Fermi level,

the so-called Kondo-Abrikosov-Suhl resonance, emerges which can also mediate the transport through the

impurity resulting in a characteristic zero-bias conductance peak in Kondo systems. The Kondo resonance

can also manifest in the thermoelectric transport properties, such as the Seebeck coefficient, if the system

is not particle-hole symmetric. While there is a great understanding of such correlated states at equilibrium,

describing the Kondo correlations out of equilibrium had been an open problem in the field of condensed

matter physics. The works that make up this doctoral dissertation shed light on various scarcely explored

nonequilibrium regimes of quantum transport in the presence of Kondo correlations.

In this dissertation, the author presents the results of theoretical and numerical investigations into

the nonequilibrium electronic, spintronic and thermoelectric transport through quantum dots as well as

magnetic molecules coupled to nonmagnetic or ferromagnetic leads. A particular emphasis is placed on

addressing the nonlinear applied bias or temperature gradient effects on the transport through quantum dots

in the presence of Kondo correlations. The calculations performed within this dissertation employed the

state-of-the-art methods, such as a hybrid numerical renormalization group - time dependent density matrix

renormalization group quench method, to describe the transport across the Kondo-correlated impurity

systems in the nonequilibrium settings. Quantum dot systems in the strongly asymmetric coupling

limit were studied by treating the weaker coupling as a perturbation on the strongly coupled subsystem.

The results in this dissertation presents the first quantitatively accurate description of spintronic and

thermoelectric transport in the nonequilibrium Kondo regime, establishing a valuable benchmark for

future theoretical and experimental research efforts. These findings not only deepen our understanding

of fundamental quantum phenomena but also pave the way for advancements in applications such as

spintronic devices and energy-efficient technologies.
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Chapter 1

Aim and Motivation

The study of electronic, thermoelectric, and heat transport through nanoscale structures comes with their

own unique set of challenges due to the role of quantum effects at these scales. Phenomena such as

quantum confinement, electronic correlations, and complex many-body effects dominate the behavior of

such systems, leading to transport properties that are highly non-trivial and distinct from those in bulk

materials [1–5]. With the ongoing trend of device miniaturization, pushing technology toward the lower

physical limits in size, it is essential to understand the quantum nature of these systems under various

external conditions, including electric fields, magnetic fields, and temperature gradients [6, 7].

Quantum dot systems, in particular, have emerged as ideal platforms for studying nanoscale transport.

These structures, which confine electrons in a quasi-zero-dimensional space, exhibit a range of fascinating

effects, including quantized energy levels, Coulomb blockade, and, at low temperatures, the Kondo effect

[2]. Owing to their tunable properties, quantum dots are of great interest for both fundamental physics and

potential applications in quantum computing, thermoelectric energy conversion, and spintronics.

Despite the growing experimental progress in probing these systems, the theoretical description of

transport through quantum dots and other nanoscale structures remains a challenge, particularly when

strong electron correlations are involved. Many traditional approaches to quantum transport, such as

Landauer’s formalism or various Green’s function methods [8–12], are effective in weakly interacting

systems but fall short when applied to strongly correlated regimes, where interactions between electrons

are no longer negligible. This is especially the case when studying many-body phenomena like the

Kondo effect, which arises when a localized spin interacts with a sea of conduction band electrons at low

temperatures, giving rise to correlated transport behavior.

To address the complexities of correlated systems, advanced numerical techniques such as the numerical

renormalization group (NRG) [13, 14] and the density matrix renormalization group (DMRG) [15–17]

methods have been developed. These methods offer non-perturbative frameworks capable of capturing

strong electron correlations in equilibrium systems with great precision. In particular, the NRG has been

instrumental in elucidating the low-energy properties of quantum dot systems, especially in the linear

response regime where transport can be described near equilibrium. For example, it has successfully been
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used to study the Kondo effect and Coulomb blockade phenomena, providing quantitative agreement with

experimental results [18–20].

However, the non-equilibrium regime, where devices operate under applied voltages or thermal gradi-

ents, poses additional challenges [21–28]. Standard methods, such as the NRG, which are highly effective

in equilibrium, often break down when describing out-of-equilibrium transport, where nonlinear effects

become significant. Understanding transport in these regimes is crucial, as many modern nano-devices

operate in far-from-equilibrium conditions. For instance, quantum dots functioning as thermoelectric

generators or transistors need to be understood in conditions where significant energy exchange occurs

between different parts of the system [29–31]. The goal of this thesis is therefore to fill the theoretical gap

in understanding the nonlinear transport through strongly correlated nanostructures by employing hybrid

methods that combine the strengths of various numerical approaches. The main objectives of the thesis

can be summarized as follows:

• Adaptation and development of numerical techniques to describe the transport through Kondo-

correlated systems in far-from-equilibrium settings.

• Investigations of the electronic, thermoelectric and spin-caloritronic signatures of the Kondo effect

beyond the linear response regime.

• Providing quantitatively reliable theoretical predictions in the nonequilibrium regime to aid experi-

mental exploration of Kondo systems.

For this purpose, I employ a method that integrate the numerical renormalization group (NRG) with the

time-dependent density matrix renormalization group (tDMRG), an approach known as the NRG-tDMRG

approach [32]. This hybrid method offers the advantage of treating both strong electron correlations under

nonequilibrium conditions in a numerically exact manner.

Additionally, I incorporate an NRG-based perturbative approach [33, 34], which allows for the study

of transport properties beyond linear response regime, providing a simpler framework for analyzing

real-world devices that operate under finite biases or temperature gradients. This approach is particularly

relevant for asymmetric experimental setups, such as single electron transistors, molecular junctions or

adatoms under scanning tunneling microscope.

By employing these advanced numerical methods, this dissertation seeks to provide a deeper under-

standing of the behavior of quantum dot systems and other correlated nanostructures in nonlinear regimes,

thereby addressing key open questions in the field of quantum transport.

The present doctoral dissertation consists of two parts. The part I comprising of six chapters acts as

an introduction to the research problems under investigation. In chapter 2, I will introduce the physical

systems and relevant physics that dictates the transport through nanostructures. The chapter 3 will be

dedicated to renormalization group methods, particularly the NRG method, a quantitatively reliable

non-perturbative method to describe such correlated systems. The nonequilibrium numerical methods
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employed in the publications that make up this thesis will be introduced in chapter 4. The dissertation and

the included publications are summarized in chapter 5 (in English) and chapter 6 (in Polish).

The part II consisting of three chapters, has the publications organized according to the numerical

methods employed and consequently the parameter regimes under investigation. The chapter 7 presents

results that used NRG to study the linear response transport properties of a large spin impurity coupled to

ferromagnetic electrodes. The publications using the NRG-tDMRG method, that addressed nonequilibrium

spintronic and thermoelectric transport through a quantum dot strongly coupled to two leads, are presented

and summarized in chapter 8. The chapter 9 contains the publications that studied the transport in the

strongly asymmetric coupling regime using the NRG-based perturbation approach. The publications in

this chapter explore the thermoelectric, spin-caloritronic and tunnel magnetoresistance of asymmetrically

coupled quantum dot systems. The first two parts of the dissertation are followed by an Appendix that

contains the list of all scientific publications, awards and other scientific activities of the doctoral student

achieved during the doctoral studies and co-author statements outlining the individual contributions to the

publications constuting this dissertation.
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Chapter 2

Model systems and basic theory

2.1 Quantum impurities and where to find them

The presence of magnetic impurities in physical systems that surprised the physicists dates back to the

1930s when the experiments on the low temperature resisitivity of gold and gold metal alloys showed a

distinctive uptick in the resisitivity curve [35]. Though this went unexplained at the time, this behavior

was later attributed to the presence of magnetic impurities in the system and came to be known as the

Kondo effect [36]. With the advent of nanotechnology, it turned out that such quantum impurity systems

can be constructed in artificial heterostructures [37]. Thus, from an experimental perspective, transport

through such structures has been studied using various setups involving single electron transistors (SET)

[38–43], nanowires [44–47], carbon nanotubes [48, 49], molecular magnets [50–52], adatoms [53–55] and

other quantum impurity systems [56–60].

In this chapter, I will present some of the most important models used to describe the quantum impurity

systems and some basic properties exhibited by them. More involved phenomena, such as the Kondo effect

originating from the strong interactions, will be described in the next chapter along with the numerical

techniques used to explore them.

2.2 Quantum impurity models

Figure 2.1: The schematic of a quantum impurity (QI) coupled to two leads [left (L) and right (R)] kept at
temperatures TL,TR, and chemical potentials µL,µR ,respectively.
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The transport through impurities can be described according to various models that are valid for

different parameter regimes. In this section, we discuss the theoretical models used to study the quantum

impurities such as quantum dots or magnetic molecules coupled to electronic reservoirs. Figure 2.1 shows

the schematic for a typical setup of quantum impurity coupled to leads kept at different temperatures TL and

TR and chemical potentials µL and µR. The schematic in Fig. 2.1 can correspond to different experimental

setups as mentioned in the previous section. The Hamiltonian that describes such a setup is as follows.

H = Himp +HT +Hleads , (2.1)

where Himp refers to the Hamiltonian of the quantum impurity, HT is the tunneling Hamiltonian that

describes the tunneling of electrons between the leads and the impurity and finally Hleads is the Hamiltonian

of the leads. Though Eq. (2.1) is the general form of a quantum impurity Hamiltonian, effective models

such as the s-d model, a.k.a the Kondo model, exist to represent specific parameter regimes. The Kondo

Hamiltonian [2, 36] for a spin S coupled to a metallic reservoir takes the form,

HKondo = J S⃗ · s⃗(0)+∑
kσ

εk c†
kσ

ckσ . (2.2)

Here, S⃗ ≡ [Sx,Sy,Sz] is the spin operator of the impurity, while s⃗(0) = 1
2 ∑σσ ′ ∑k c†

kσ
σ⃗σσ ′ ckσ ′ denotes the

effective spin of the conduction band electrons near the impurity, with σ⃗ ≡ [σx,σy,σz] being the vector

of the Pauli matrices and J is the Kondo coupling. As evident from the first term of the Hamiltonian,

this model neglects the charge fluctuations from the impurity and thus can extract the physics originating

purely from the spin processes. It is still interesting to note that, the spin-flip processes can result in a

net charge transfer between the impurity and the lead, which can be further interpreted as a transfer of

pseudofermions [2]. Moreover, to emphasize the historical significance, this is the first theoretical model

by which Jun Kondo was able to explain the uptick of the resistivity curves in Ref. [35] using second order

perturbation theory, hence the name Kondo model [36]. The Kondo Hamiltonian is a low energy effective

Hamiltonian derivable from a much general single impurity Anderson model (SIAM) [61]. Consequently,

the effective Kondo coupling J can be obtained from the SIAM parameters in the local moment regime.

using the Schrieffer-Wolff transformation [2, 62].

2.2.1 Single impurity Anderson model

Figure 2.2 shows the energy level diagram for an interacting quantum dot, acting as the quantum impurity

part, coupled to two leads as described by the Single Impurity Anderson Model. The quantum impurity

part of the SIAM can thus be expressed as [61],

Himp = εd (n↑+n↓)+U n↑n↓−gµB B(n↑−n↓)/2, (2.3)
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Figure 2.2: The energy level diagram for a SIAM with left and right leads kept at different chemical
potentials and temperatures.

where nσ = d†
σ dσ corresponds to the number operator for an electron with spin σ on the quantum dot with

energy εd with the creation (annihilation) operators d†
σ (dσ ). The second term describes the Coulombic

repulsion U when the quantum dot is doubly occupied, and the third term corresponds to the Zeeman

splitting under the presence of a magnetic field B.

When the quantum dot is tunnel coupled to an electronic reservoir, the tunneling of electrons between

the quantum dot and the lead is described by the tunneling Hamiltonian HT of the form,

HT = ∑
αkσ

vαkσ (d†
σ cαkσ + c†

αkσ
dσ ). (2.4)

The vαkσ are the tunnel matrix elements between an electron in the quantum dot level with spin σ and the

conduction band electron with momentum k and spin σ on the lead α ∈ {L,R} defined by the lead creation

(annihilation) operators c†
αkσ

(cαkσ ). The conduction band is treated as a Fermi sea of noninteracting

electrons Hleads.

Hleads = ∑
αkσ

εαkσ c†
αkσ

cαkσ . (2.5)

Thus, the entire system can then be modelled using the total Hamiltonian HSIAM = Himp +HT +Hleads.

2.2.2 Noninteracting case: resonant level model

In the absence of the Coulombic interaction (U = 0), the SIAM simplifies to the resonant level model

(RLM). Since there is no interaction on the quantum dot, electrons with one particular spin do not influence

the transport of its counterpart, resulting in the impurity orbital level being just a path for the conduction

band electrons to tunnel through. One can directly identify this characteristic from their corresponding

Green’s functions.

For an RLM with a metallic reservoir, the retarded Green’s function is defined as,

Gr
σ (t, t

′) =−iΘ(t − t ′)⟨{dσ (t), d†
σ (t ′)}⟩. (2.6)
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Since the RLM consists of only quadratic terms, the explicit form of the retarded Green’s function can

be determined by the equations of motion technique [63]. In the frequency domain, the Greens function

Gr
σ (ω) is of the form,

Gr
σ (ω) =

1
ω − εd + iΓσ

, (2.7)

where Γσ is the level broadening, or more generally the hybridization function, which originates from the

imaginary part of the self-energy correction due to the tunnel coupling, and is direcly dependent on the

tunneling matrix elements. For a flat conduction band with frequency indpendent couplings v = vαkσ and

in the wide band limit, the hybridization function for spin σ takes the form Γ = πρσ |v|2, where ρσ is the

density of states for spin σ . In the next section, I will describe how such a hybridization term influences

the physical observables in the system.

2.2.3 Resonant level model: spectral function and electronic transport

The spectral function Aσ (ω) =− 1
π

Im[Gr
σ (ω)] is a physical observable directly derivable from the Green’s

functions. From the physical perspective, Aσ (ω) contains the relevant information about the local density

of states of the quantum dot. The spectral function of the RLM, derived from the retarded Green’s function

in Eq. (2.7) comprises of a Lorentzian peak at the energy εd with the width determined by the hybridization

function Γ,

Aσ (ω) =
1
π

Γ

(ω − εd)2 +Γ2 . (2.8)

A direct consequence of coupling an impurity to electronic leads are the transport of electrons through the

impurity energy level. The electronic current from a lead to the impurity can be determined by the rate of

change of the occupation of the lead α ∈ {L,R}, Nα = ∑kσ c†
αkσ

cαkσ ,

Iα =−e⟨Ṅα⟩ ≡ − i e
ℏ
⟨[H,Nα ]⟩. (2.9)

Nα commutes with the noninteracting lead Hamiltonian Hleads and the impurity Hamiltonian Himp. The

only contribution to the current is from the term ⟨[HT ,Nα ]⟩. Thus, the total current across the impurity can

be calculated from,

I =
ie
h ∑

αkσ

vαkσ ⟨c†
αkσ

dσ −H.c.⟩. (2.10)

These expectation values depend on the Green’s functions and Fermi functions of the leads. A general

expression of the current across an impurity is given by the Meir-Wingreen formula [63, 64]. But for

systems with proportionate couplings, and in the noninteracting limit, Meir-Wingreen formula boils down

8



Figure 2.3: (a) The spectral function for the resonant level model at εd = 0 , (b) the current-voltage
characteristics and (c) the corresponding differential conductance G = dI/dV as a function of the bias
voltage V for different values of Γ and assuming temperature of the leads TL = TR = 0.001Γ.

to a much simpler well-known expression, the Landauer-Buttiker formula [4, 65–67],

I =
2e
ℏ

∫
dω [ fL(ω)− fR(ω)]T(ω), (2.11)

where T(ω) is the transmission coefficient, fα (ω) is the Fermi function of lead α and the prefactor 2

corresponds to the number of spin channels. The transport across the quantum dot depends on the available

electron density on the quantum dot, hence the transmission coefficient can be related to the spectral

function as, T(ω) = π ΓA(ω) [64]. A more general form of transport is to have different couplings Γα to

each lead α . In such a case, the transmission coefficient and spectral functions become of the form,

T(ω) = π
4ΓL ΓR

Γ
A(ω) =

4ΓL ΓR

(ω − εd)2 +Γ2 , (2.12)

where Γ = ΓL + ΓR is the total broadening of the resonant level due to the couplings to both leads.

For temperatures T ≪ Γ, potential bias V applied as µL = 0 and µR = V , the transport properties can

directly scan the density of states of the quantum dot. Specifically, the differential conductance becomes

G(V ) = dI/dV = 2e2

h T(ω =V ), and can thus be used experimentally to investigate the density of states

of such systems. Figure 2.3(a) shows the spectral function of a RLM for different level broadenings Γ.

The influence of the level broadening on the current-voltage characteristics is depicted in Fig. 2.3(b). The

differential conductance as a function of V perfectly resembles the spectral function, and hence the density

of states of the dot.

The physics of a quantum impurity becomes more complicated once we introduce the on-dot interaction

U ̸= 0. In the next chapter, we discuss the difficulties introduced by the interactions and the numerical

methods available to tackle them.
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Chapter 3

The many-body physics of interacting

quantum impurities

When the ingenuity and the equations stop resulting in reliable solutions to the world around you, the

physicists rely on their loyal calculating machines. In many of the cases, an efficiently adapted algorithm

can provide solution to otherwise unsolvable analytical labyrinths. Particularly for the case of quantum

many-body systems, the numerical techniques, such as the numerical renormalization group and the density

matrix renormalization group constitute the state-of-the-art methods to study the physics originating from

the strong electronic correlations in nanostructures.

The Kondo problem is one example of such a challenge that is very hard to deal with analytically. The

perturbative treatment of the Kondo problem as done by Jun Kondo resulted in logarithmic divergences at

low temperatures [36]. Though this logarithmic divergence was able to explain the rise in low-temperature

resistivity of bulk metal alloys, having divergences in a theoretical description is often frowned upon in

physics. A more systematic renormalization treatment of the conduction band done by P.W. Anderson

[8], now known as the poor man’s scaling, also ended up in logarithmic divergences of the renormalized

couplings. But to their cresit, both these works were able to identify an energy scale at the low temperatures

where the logarithmic divergences dominate. This gave rise to the first definition of the Kondo energy

scale or more commonly known as the Kondo temperature TK ,

TK ∼ D exp(−1/ρJ), (3.1)

where D is the band half-width, ρ the density of states of the conduction band, and J the Kondo coupling.

As Sir Isaac Newton famously remarked, "If I have seen further, it is by standing on the shoulders of

giants", K.G. Wilson in 1975, astutely recognized from the aforementioned works that the relevant physics

of the Kondo problem occurs at low energies and had to be given greater importance. In his seminal work

[13], Wilson’s ingenious idea to deal with the persistent logarithmic divergences was to introduce them

into the conduction band. More precisely, he introduced a logarithmic discretization of the conduction
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band, strategically enhancing the significance of low-energy contributions. This worked wonders for the

Kondo problem and related quantum impurity problems in general. Wilson’s approach came to be known

as the Numerical Renormalization Group method. It revolutionized the understanding of quantum impurity

problems and earned him the Nobel prize in physics in 1982. In the next section, I will describe Wilson’s

NRG method in detail.

3.1 Numerical renormalization group

Figure 3.1: The schematic illustration of the NRG steps [14]. (a) The conduction band is seperated into
logarithmically spaced intervals Ik, (b) shows the conduction band after discretization where a single level
represents the whole interval and (c) the semi-infinite Wilson chain after tridiagonalization with decaying
couplings tn and on-site energies ξn.

The Wilson’s NRG is a non-perturbative method to study strongly correlated systems. Though NRG

can be applied to various physical systems, the effectiveness of NRG in the study of quantum many-body

systems is nothing short of impressive. In simple terms, NRG procedure can be summarized as follows,

(i) Discretization of the continuum energy band,

(ii) Tridiagonalization: transformation to tight-binding Wilson chain,

(iii) Iterative diagonalization of the Hamiltonian,

(iv) Truncating the high energy modes to resolve the low energy behavior.

I will describe the relevance of each step of the NRG here and then discuss how the common quantum

impurity problems look through the lens of NRG. The fundamental concept behind NRG is a truncative

iterative diagonalization with the assumption that the ground state of the total interacting Hamiltonian can

be described by the low energy eigenstates of the intermediate Hamialtonians in the Wilson chain. For a

quantum impurity coupled to an electronic reservoir, one can implement NRG with the following steps:

i) Discretization: We start by discretizing the conduction band logarithmically as shown in Fig. 3.1(a),

typically described in NRG literature using the discretization parameter Λ. The logarithmically discretized

intervals in the positive energy regime are defined as, Ik = [Λ−k,Λ−(k+1)], where k = [0,1,2,3, · · · ] and

analogously for the negative energies. The half width of the conduction band is taken to be D = 1.
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This logarithmic discretiation is important to resolve the low-energy physics, especially in the case of

such phenomena as the Kondo effect. From the point of view of the physics concerned, the logarithmic

discretization, by design, gives more importance to the lower energy scales than the higher energies,

resulting in the high resolving power of the NRG in the energy domain. In terms of the numerics, this

scheme of discretization deals with the logarithmic divergences that come up in the analytical approaches

at low energy scales, thus resulting in a more stable numerical results. Moreover, the scaling behaviors

exhibited by various systems, such as the Kondo scaling, can be captured naturally by the way we describe

the conduction band. Note that one can only discretize the conduction band till the Fermi level, thus

NRG is not suitable to deal with the nonequilibrium phenomena resulting from different lead chemical

potentials.

Once the conduction band is discretized, each interval is represented by a single energy εk. It is

important to note that there is a certain degree of freedom associated with the choice of discretization

schemes and associated energies εk, outlined by different schemes as in the references [14, 68, 69]. An

additional factor of Λ−z with z ∈ [0,1] known as the z-shift can also be used to improve the discretization

artifacts in the NRG results by averaging over the data with different z-shifts [14]. After discretization,

the impurity is coupled directly to each discretized interval Ik of the conduction band, via the couplings

vαkσ =
√

Γα

πρ
Λ−k/2, that depend on the hybridization function Γα , width of the interval by Λ−k and

the band structure ρ near the discretized energy. The discretization of conduction band results in a

transformation of the impurity coupled with a continuum bath to a star geometry of couplings, where the

impurity is coupled to each and every discretized energy level on the conduction band [cf. Figs. 3.1(a,b)].

ii) Tridiagonalization:: One can transform the Hamiltonian with the discrete conduction band into a

semi-infinite tight-binding chain, known as the Wilson chain for logarithmic discretization [13], as shown

in Fig. 3.1(c). This can be accomplished by making use of the Lanczos method [70–72]. The transformed

Hamiltonian constitutes the Hamiltionian of the NRG method with conduction band represented by the

Wilson chain, which is given by,

HNRG = Himp +∑
σ

vσ ( f †
0σ

dσ +H.c.)+
∞

∑
n=0

∑
σ

ξn f †
nσ fnσ +

∞

∑
n=0

∑
σ

tn ( f †
nσ fn+1σ +H.c.), (3.2)

where f †
nσ ( fnσ ) is the creation (annihilation) operator for an electron with spin σ on the nth site of the

Wilson chain. The impurity level described in Himp is coupled to the zero-th site of the Wilson chain via

the second term. The third term describes the on-site energies ξn of the nth site of the Wilson chain, and

the coupling between the sites is denoted by the hoppings tn.

Starting from H0 = Himp +∑σ vσ ( f †
0σ

dσ +H.c.)+ξ0 f †
0σ

f0σ , one can generate the full NRG Hamil-

tonian in Eq. (3.2) via the recursion relation,

Hn+1 =
√

ΛHn +∑
σ

ξn+1 f †
n+1σ

fn+1σ +∑
σ

tn ( f †
nσ fn+1σ +H.c.). (3.3)

This relation adds one site to the impurity after another, thus essentially forming the full Wilson chain.
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iii) Iterative diagonalization: Consequently, one can systematically diagonalize the Wilson chain

Hamiltonian HNRG by diagonalizing the impurity Hamilton Himp first, then adding a subsequent site of the

Wilson chain according to Eq. (3.3) followed by the diagonalization of the new effective total Hamiltonian

Hn, and accordingly in an iterative fashion.

iv) Truncation: Introducing additional fermionic sites with f †
nσ leads to a significant expansion of the

Hilbert space. This is where one of the main assumptions of the NRG procedure comes in. Assuming that

the ground state of the final Hamiltonian can be described by the low energy eigenstates of the intermediate

Hamiltonians Hn, we truncate the Hilbert space by keeping a maximum number Nkeep of lowest energy

eigenstates after each iteration. This truncation of the Hilbert space at each iteration keeps the calculations

numerically feasible for a finite chain length N. An improvement on the original NRG procedure, i.e., the

full density matrix - numerical renormalization group (fdmNRG) [14, 73] has managed to make use of the

discarded states during truncation. The truncated states along with the kept states of the last NRG iteration

are used to generate the "full" density matrix. Taking the expectation values of the operators along this

"full" density matrix allows the NRG procedure to minimize the lose of information by truncation.

In theory, one can extend the Wilson chain up to infinity in order to describe the entire energy regime

of the system. From a practical perspective, one has to stop the iterative procedure at some point. One

can make use of some special properties of the Wilson chain for this purpose. The exponential decay

of the hoppings tn ∼ Λ−n/2, results in a natural energy scale seperation along the Wilson chain. Thus

one can cut the Wilson chain at site N and still be able to resolve energies above ∼ Λ−(N−1)/2. A more

rigorous argument is from the renormalization fixed points: Eq. (3.3) , also known as the renormalization

group transformation, transforms Hn into a rescaled effective Hamitonian Hn+1. Beyond a certain n, the

renormalization procedure does not bring any changes to the spectrum of Hn, thus converging the RG

transformation into a fixed point of the renormalization group transformation. It is not guaranteed that

a fixed point will always exist in the renormalization procedure. In some cases, a particular number of

repeated applications of the renormalization group transformation may contain a fixed point. Therefore, in

the case of impurity problems, one typically examines the spectra of the even and odd sites of the Wilson

chain separately to identify these fixed points.

3.1.1 Renormalization group flow diagram

The energy spectra of the Hamiltonian evolves with every subsequent action of the RG transformation.

This evolution or flow of the energy states is referred to as the RG flow in literature. The RG flow for a

SIAM is presented in Fig. 3.2 with N = 100 sites of the Wilson chain and maximum number of kept states

Nkeep = 1000.

The SIAM has three RG fixed points. i) Free-orbital (FO) fixed point: this fixed point corresponds to

an effective Hamiltonian with the impurity decoupled from the bath. ii) Local moment (LM) fixed point:

an effective Hamiltonian with single occupation of the orbital level describes this fixed point. i.e., an

impurity with orbital level below the Fermi level (εd =−U/2 in our case), beyond the level broadening
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Figure 3.2: The renormalization group flow of the lowest energy eigenstates in the odd Wilson sites (left
panel) and even Wilson sites (right panel) for a SIAM with Γ = 0.001,U = 50Γ, εd =−U/2 and standard
NRG parameters Λ = 2, N = 100, Nkeep = 1000. The SIAM parameters are in the units of band half-width
D = 1.

(εd <−Γ), and U ≫ Γ to avoid double occupancy. iii) Strong-coupling (SC) fixed point: corresponds to

the impurity strongly coupled to the zero-th Wilson site. This effective coupling in the SC fixed point is so

strong that the rest of the Wilson chain is essentially decoupled from the system.

One can identify these fixed points from the RG flow of the spectra presented in Fig. 3.2. Numerically,

the fixed points are seen as a relatively stationary behavior of the spectra along the RG flow. For

5 < n < 10, we have the FO fixed point as the impurity is relatively unperturbed by the Wilson chain.

Around 20< n< 60, the system passes through the local moment fixed point. The strong coupling fixed

point is reached for n> 80. The crossovers between the fixed points can be related to the corresponding

energy-scales. Specifically, the system moves from FO to LM at energies around Γ = 0.001 ≈ Λ−10/2.

The crossover from the LM to SC occurs at energies near the Kondo temperature. For a SIAM, the Kondo

temperature TK can be estimated analytically by the Haldane formula [74],

TK =

√
ΓU
2

exp
[

π εd (εd +U)

2ΓU

]
. (3.4)

Thus, for the system parameters in Fig. 3.2, the Kondo temperature is TK = 1.4×10−11 ≈ Λ−72/2, resulting

in the crossover to the SC fixed point occuring at n ≈ 72.

Moreover, the degeneracy of the ground state at the fixed points can also provide insights into the

system. LM has two-fold degenerate ground state, corresponding to the degenerate spin states of the

quantum dot. On the other hand, SC has a singlet ground state consisting of the strongly coupled impurity

level and the zero-th Wilson site. This in turn sheds light onto the screening properties of the Kondo

effect, since the singlet ground state of the combined impurity and zero-th site of the Wilson chain remains

unaffected by the rest of the bath/chain under further RG transformations.
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3.1.2 Spectral function

Figure 3.3: The spectral function Aσ (ω) of a SIAM with Γ = 0.001,U = 10Γ, εd =−U/2 and standard
NRG parameters Λ = 2, N = 100, Nkeep = 1000 with z-averaging over 4 different z-shifts. The parameters
are in the unit of band half-width D = 1. The inset shows the same data in the logarithmic x axis.

The expectation values of any operator (pairs) defined on the Wilson chain can be readily calculated

from the NRG spectra by using the Lehmann representation. Thus, the spectral function Aσ (ω) =

− 1
π

Im(Gr
σ (ω)) can be obtained according to the operators in the definition of Gr(ω). Since the NRG

spectrum is discrete, one obtains the spectral function as delta peaks binned in the energy domain. This

discrete spectral weights are then broadened to obtain a smooth spectral function [75].

The spectral function for a SIAM at the particle-hole (p-h) symmetry point, εd =−U/2, calculated

using NRG is shown in Fig. 3.3. The spectral function consists of two maxima at ω =±U/2, known as

the Hubbard peaks, which are broadened by the hybridization function Γ. With decreasing temperature, a

resonance peak starts to emerge in the spectral function at the Fermi level. This resonance, widely known

as the Kondo-Abrikosov-Suhl resonance or the Kondo resonance in short, is a characteristic feature of the

many-body Kondo effect originating from strong electron-electron interactions in the low energy regime.

3.1.3 Linear response transport properties

In the linear response regime of potential bias V and temperature gradient ∆T , one can find the charge

current IC and the heat current IQ to be as follows,


IC

IQ


= ∑

σ


 e2 L0σ −eL1σ/T

−eL1σ L2σ/T




 V

∆T


 , (3.5)

where,

Lnσ =−1
h

∫
dω ω

n ∂ f (ω)

∂ω
Tσ (ω). (3.6)

Here, Ln = ∑σ Lnσ , commonly referred to as the Onsager integrals, are determined from the transmission

coefficient Tσ (ω). From the NRG perspective, the spectral functions can be directly calculated from the

16



NRG spectra as discrete delta peaks, which in turn can be related to T(ω). Thus, the Onsager integrals can

be directly calculated by folding ∂ f (ω)
∂ω

onto the delta peaks of the spectral function A(ω) with appropriate

weights [76].

Based on Eq. (3.5), one can define the linear response transport coefficients as,

G = e2 L0, (3.7)

S = − 1
eT

L1

L0
, (3.8)

κ =
1
T

(
L2 −

L2
1

L0

)
, (3.9)

where G is the differential conductance, S is the Seebeck coefficient and κ is the electronic contribution to

the heat conductance.

Figure 3.4: The linear response transport properties: (a) differential conductance G, (b) Seebeck coefficient
S and (c) normalized electronic contribution to the heat conductance κ/G0 for a SIAM with Γ = 0.01,
U = 0.1 for different values of orbital energy εd with temperatures as indicated in the legends.

Figure 3.4 shows the linear response transport coefficients calculated for a SIAM with Γ = 0.01 and

U = 0.1 for different values of temperatures. At high temperatures, the conductance shown in Fig. 3.4(a)

shows peaks around εd ≈ 0,−U corresponding to the tunneling processes happening when the orbital

level is close to the lead Fermi level. When the temperature is decreased, the conductance in the local

moment regime −U ≲ εd ≲ 0 starts to increase, due to the Kondo effect. The conductance reaches

the theoretical maxima for temperatures well below the Kondo temperature TK. The uneven rise in the

conductance for different values of orbital level εd are linked to the dependence of TK on εd as in the

Haldane formula mentioned in Eq. (3.4). The universal scaling of the Kondo resonance with respect to the

Kondo temperature, and consequently the universality of the differential conductance G(T/TK), dictates

the twin peak structure of G(εd) seen in Fig. 3.4(a) for intermediate temperatures. TK being a crossover

energy scale, is only defined up to a prefactor of the order of 1. Alternative definitions of TK make use of

the spin susceptibility χ ′′ at zero temperature [2], half-width of the Kondo resonance or consequently the

half-width of the zero-bias conductance peak G(TK) = G(0)/2 [39].

The linear response Seebeck coefficient S shown in Fig. 3.4(b) can be related to the asymmetry of
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the spectral function near ω = 0. At the particle-hole symmetry point εd =−U/2, the spectral function

is symmetric with respect to ω = 0 resulting in S = 0. Using the same argument, one can infer that S

will remain antisymmetric across the p-h symmetry point. When the temperature is reduced, as Kondo

resonance starts to form in the density of states of the impurity, and thus essentially altering the spectral

function near ω = 0, the Seebeck coeffient changes sign. This sign change in the Seebeck coefficient has

been identified as a characteristic feature of the Kondo effect [77]. It is important to note that, unlike the

TK defined as the half-width of the conductance peak which follows the universal scaling, the temperature

at which the Seebeck cpefficient changes sign is not a universal Kondo energy scale. Rather a scaling akin

to G(0)/2 was found to exist for the temperature at which S exhibits the largest magnitude in the Kondo

regime [77].

The electronic contribution to the heat conductance κ does not show any signatures of the Kondo

effect. Rather, κ contains significant values near εd ≈−U,0 corresponding to the energy transfer via the

tunneling processes mediated by the quantum dot orbital.

The NRG calculations presented in this chapter are performed using the open-source Flexible DM-

NRG code [78]. This code is used for the NRG calculations in the publications [A,B,D-F]]. The NRG

calculations for the publication [C] have been performed using the open-source QSpace tensor library

available for Matlab [79].
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Chapter 4

Numerical methods for systems out of

equilibrium

The works that constitute this thesis primarily employ two methods to investigate the nonequilibrium

behavior of the quantum impurity systems, i) a hybrid NRG-tDMRG thermofield quench method and ii) an

NRG based perturbation method. In the following sections, I will describe these methods in more detail.

4.1 Hybrid numerical renormalization group - time-dependent den-

sity matrix renormalziation group approach

The hybrid NRG-tDMRG method [32] can treat the system which has truly nonequilibrium correlations

such as an interacting quantum dot coupled to leads kept under large and finite potential or thermal biases.

A quantum impurity system described by a SIAM Hamiltonian as in Sec. 2.2.1 is considered as a model

system in this chapter.

In short, employing the NRG-tDMRG to study the nonequilibrium transport of a quantum impurity

system requires the seperation of equilibrium and nonequilibrium energy modes of the leads and a

thermofield treatment to map the leads into a particle-hole representation. The equilibrium lead modes

together with the impurity are treated with NRG to generate a renormalized impurity (RI) ground state,

which is quenched with the filled (empty) modes in the nonequilibrium regime of the particle-hole

representation using tDMRG. These steps are explicitly presented in Fig. 4.1 for an impurity coupled to

two metallic leads (L,R). Thus, the implementation of NRG-tDMRG can be seperated into four parts, i)

the hybrid discretization scheme, ii) thermofield representation, iii) tridiagonalization and recombination

of the lead modes and iv) initial state quench and time evolution. Each step is further described in the

following sections.
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Figure 4.1: The NRG-tDMRG recipe: (a) the difference in lead Fermi distributions fL(ω)− fR(ω)
defining the transport window [−D∗,D∗]. (b,c) the hybrid discretization of the conduction band, i.e.,
linearly (logarithmically) discretized inside (outside) the transport window depicted as green (red) dashed
lines. (d) the full system geometry after the discretization, i.e., the impurity coupled to each of the
discretized modes in the left (L) and right (R) leads. (e) The schematic of the couplings after the
thermofield treatment where the impurity is coupled to the filled particle modes (filled squares) and the
empty hole modes (empty squares) in the enlarged Hilbert space. (f) The effective Wilson chains for the
left-right recombined hole modes (empty circles) and particle modes (filled circles). The particles and
holes outside the transport window are further recombined, represented as the half-filled red circles. (g)
The initial state in the matrix product state (MPS) formalism with a renormalized impurity coupled to
empty hole modes and filled particle modes ready for time evolution. Figure adapted from Ref. [32]

4.1.1 The hybrid logarithmic-linear discretization scheme

Unlike the discretization in NRG, where the entire conduction band is discretized logarithmicaly

according to the discretization parameter Λ, the NRG-tDMRG employs a hybrid discretization scheme.

The hybrid discretization scheme is based on the assumption that the high energy modes will essentially

be in equilibrium whereas the lower energy modes can solely describe the nonequilibrium dynamics

contributing to the transport. Thus, the regimes for the two discretizations are determined according to

the transport window (TW) defined by the energy D∗ at which the difference in Fermi functions fL/R(ω)

drops below a threshold value ε , i.e., max [ fL(D∗)− fR(D∗)]< ε . Resulting in the definition of D∗ as

D∗ = µ +T log(ε−1 −1). (4.1)

Beyond TW ≡ [−D∗,D∗], the modes are in equilibrium as the difference in Fermi functions of the leads

| fL(ω)− fR(ω)| is essentially zero [cf. Fig. 4.1 (a-b)].

We discretize the energies outside the TW according to the discretization parameter Λ, Inside the TW,

a linear discretization scheme according to the linear discretization parameter δ is performed as shown in

Fig. 4.1 (b). For a smooth transition from the logarithmic discretization to the linear discretization, the

energy intervals are determined by a function of the form
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E(x) =





δ · x, for | x |≤ D∗/δ

δ ·sinh[ln(Λ)(x∓D∗
δ
)]

log(Λ) ∓δ ·D∗, for x ≶±D∗/δ ,

where x ∈ Z. This function thus generates a linearly discretized energy intervals for E < |D∗| and

logarithmically discretized intervals for E > |D∗| with a continous first derivative between the logarithmic

and linear part. It is relevant to note that a z-shift akin to NRG discretization schemes also exist in the

choice of discretizations here. As shown in Fig. 4.1 (c), each discretized interval Ik = [Ek,Ek+1] has a

representative energy εk determined as,

εk =





Ek+1−Ek
ln(Ek+1/Ek)

, if |Ek|, |Ek+1|> D∗

1
2 (Ek+1 +Ek), elsewhere.

The tunnel coupling between the impurity and a discretized mode k is given as vασk =
√

Γα δk/π , where

δk is the size of the interval Ik.

The reliable timescales attained by the tDMRG time evolution are of the order of 1/D where D is the

bandwidth. Since, the hybrid discretization scheme also changes the effective bandwidth for the tDMRG

implementation from D → D∗, it allows for the time evolution to reach longer timescales of the order of

1/D∗. This is crucial in obtaining the steady-state value of the quantities of interest.

4.1.2 Thermofield representation of the lead modes

The conduction band discretized according to the prescription described in previous section is then

subject to a thermofield treatment. Advantages of introducing a thermofield representation of the leads are

manyfold. First of all, it transforms the lead modes into a more useful physical representation with particle-

like and hole-like modes. In this particle-hole picture, the finite temperature states can be represented as

pure states, allowing for a "simple" initial state description for the quench and time evolution as will be

discussed later. Additionaly, the lead modes that decouple from the system can be described as simple

product space in this description and can be omitted to improve computational efficiency. Moreover, the

nonequilibrium parameters, such as the lead potential and the lead temperature, become embedded in the

tunnel couplings of the transformed Hamiltonian in the thermofield description.

For the thermofield representation, the Hilbert space is doubled by introducing a decoupled auxiliary

mode cq2 for every lead mode cq1 = cq. Here, we use the composite index q ≡ {α,k,σ} for a concise

representation. In the enlarged Hilbert space, spanned by {|0,0⟩q, |0,1⟩q, |1,0⟩q, |1,1⟩q}, we choose |0,1⟩q

and |1,0⟩q to represent a pure state |Ω⟩ such that ⟨A⟩= ⟨Ω|A|Ω⟩ is the thermal expectation value of the

operator A acting on the physical lead. Such a state |Ω⟩ can be represented as

|Ω⟩= ∏
q

(√
1− fq|0,1⟩q +

√
fq|1,0⟩q

)
. (4.2)
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The choice of |0,1⟩q and |1,0⟩q is equally good as the choice of |0,0⟩q and |1,1⟩q. The former choice has

states with the same particle number resulting in the following Hilbert space rotation to retain particle

number conservation. We rotate the Hilbert space in order to provide a product state representation of the

thermal state


c̃q1

c̃q2


=



√

1− fq −
√

fq
√

fq
√

1− fq




cq1

cq2


 . (4.3)

The new tilde basis has the modes defined as c̃q1 |Ω⟩= c̃†
q2 |Ω⟩= 0, thus the modes corresponding to the

index 1 and 2 can be interpreted as the holes and particles, respectively.

Thus, the rotation transforms the lead Hamiltonian in the enlarged Hilbert space as, Hlead +Haux =

∑q j εqc†
q jcq j = ∑q j εqc̃†

q j c̃q j, where Haux is the Hamiltonian of the auxiliary part corresponding to j = 2 in

the original (non-tilde) basis. We set εq2 = εq1 = εq to avoid any couplings between the particle and hole

modes after the rotation. More importantly, after the thermofield representation, the tunnel couplings in

the tunneling Hamiltonian, HT = ∑q j(ṽq j d†
ασ c̃q j +H.c.), will contain in itself the information about the

nonequilibrium parameters, specifically, the temperature and potential of the leads via the Fermi functions

as ṽq1 = vq
√

1− fq and ṽq2 = vq
√

fq.

Since the tunnel couplings are now functions of the lead Fermi functions, we can decouple the particle

and hole modes according to their respective weights
√

fα and
√

1− fα . For energies outside the transport

window, i.e., εk > D∗ =⇒ fα(εk)≈ 0 and εk <−D∗ =⇒ fα(εk)≈ 1. Thus,

ṽq1 ≈ 0 if εk <−D∗, (4.4)

ṽq2 ≈ 0 if εk > D∗. (4.5)

4.1.3 Recombination of the leads

After the thermofield treatment of the lead modes, we recombine both left and right leads into one

effective lead. One can define an effective coupling to the recombined lead mode based on the couplings

to the individual L,R modes. This is a standard trick used for describing the equilibrium transport across a

single impurity coupled to two leads [14]. Since all the information about the nonequilibrium parameters

is already embedded in the tunnel couplings after the thermofield treatment, such a recombination remains

valid in this picture. The effective modes and couplings thus take the form,

ṽeven
ki =

√
|ṽLki|2 + ṽRki|2, (4.6)

c̃even
kσ i = 1

ṽeven
ki

(ṽLki c̃Lkσ i + ṽRki c̃Rkσ i) , (4.7)

c̃odd
kσ i = 1

ṽeven
ki

(−ṽ∗Rki c̃Lkσ i + ṽ∗Lki c̃Rkσ i) . (4.8)

This recombination decouples half of the lead modes from the system, resulting in only the "even"
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modes contributing to the transport. Note that, we have to recombine the leads seperately for the holes

and particles in order to keep the simple product form of the thermal state |Ω⟩. The recombined particle

and hole lead modes are tridiagonalized to form "Wilson-like" chains with couplings tn [cf. Fig. 4.1 (f)].

"Wilson-like" in the sense that the couplings corresponding to only the higher-energy sites follow an

exponential decay, while this trend of energy scale seperation is absent at the farther end of the chain.

Beyond the transport window, the particle and hole modes do not introduce any dynamics in the system.

Thus, the hole and particle modes in the high energy regime are combined to form one chain, resulting in

the geometry described in Fig. 4.1 (f). The logarithmic part of the system is then treated using NRG to get

the ground state |Φ⟩ini. Thus, the whole system is described in MPS framework according to Fig. 4.1 (g),

where the renormalized impurity in the MPS chain is coupled to one side by the "filled" particle modes

and "empty" hole modes to the other side. As a consequence, the initial state can be described as

|Ψini⟩= |0⟩⊗ |0⟩⊗ |0⟩⊗ · · ·⊗ |0⟩⊗ |Φini⟩⊗ |1⟩⊗ . . . |1⟩⊗ |1⟩⊗ |1⟩. (4.9)

4.1.4 Initial state quench and time evolution

Density Matrix Renormalization Group

The density matrix renormalization group (DMRG) method introduced by Steven White [15], inspired

from the original Wilson’s NRG paper [13], was aimed at solving a class of problems not suitable for

NRG. In general terms, the DMRG procedure starts by considering two subsystems of the entire system,

and slowly increasing the Hilbert space dimension by introducing additional parts of the full system, in

theory, until the whole system is described. The truncation to manage the Hilbert space dimension during

each step of the DMRG procedure is based on the low energy eigenstates in the reduced density matrix of

the growing subsystem. Unlike NRG, where the final system is described by low energy eigenstates of

the intermediate Hamiltonians, DMRG ground state is obtained from the low energy eigenstates of the

reduced density matrices of the contained subsystems. Hence the name - density matrix renormalization

group. By design, DMRG is best suited for treating 1-dimensional systems. Since, one can easily define

two subsystems making a cut at any part of the 1-D system and increase the Hilbert space by moving parts

of one subsystem to the next. In the case of Matrix Product State representations, this is accomplished by

the singular value decomposition (SVD) of the combined tensors. For a finite size 1-D system, DMRG

ground state is obtained by starting from an initial guess of the ground state and iteratively sweeping the

system, while variationally approximating the initial guess to the ground state.

Though the initial applications of DMRG were as described above, various extensions like via projected

entangled pair states (PEPS) for higher dimensional systems [80, 81], time-dependent DMRG (tDMRG)

for quenches and/or time evolution of quantum systems [82, 83], open-system DMRG to study dissipative

systems [84–86] and many others have came into the picture over time. Reader can refer to [17, 87] for

detailed reviews on the DMRG method.

We use the time-dependent DMRG method to time evolve the initial state. More precisely, a second-
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order Trotter time evolution [88, 89] as described below is employed.

Trotter time evolution

Having a system described by N sites and assuming only hopping between the neighboring sites, the

time evolution of the state can be described according to the pairwise Hamiltonian Hn,n+1 acting on

neighbouring sites n and n+1. Thus, the total Hamiltonian has the form

H =
N−1

∑
n=1

Hn,n+1. (4.10)

Consequently, the MPS state can be time evolved by using the two-site matrix product operators as,

exp(−iHt) =
N−1

∏
n=1

exp(−iHn,n+1t). (4.11)

The Trotter time evolution comes from splitting the time window t into Nt parts, thus implementing

the full time evolutions by small timesteps δ t = t/Nt . In the small timestep δ t, the time evolution can be

described by even Hamiltonians Heven = ∑n=even Hn,n+1 and odd Hamiltonians Hodd = ∑n=odd Hn,n+1 as,

exp(−iHoddδ t) exp(−iHevenδ t)+O(δ t2), (4.12)

with an error of the order of O(δ t2). An improvement of this approach is called second-order Trotter time

evolution, where the error scales as O(δ t3). Here, the evolution is done according to

exp(− i
2 Hoddδ t) exp(−iHevenδ t) exp(− i

2 Hoddδ t)+O(δ t3). (4.13)

Therefore, a second-order Trotter time evolution is used to time evolve the initial MPS state |Ψini⟩ in

Eq. (4.9) according to the total Hamiltonian of the enlarged Hilbert space H = H +Haux. The coupling

between the high energy part (Φini) and the low energy part is quenched across a finite time window and is

time evolved further to reach the nonequillibrium steady-state.

4.1.5 Steady-state and physical observables

The physical observables to be computed have to be defined in the MPS basis as operators, so that the

dynamics can be extracted by taking expectation value over |Ψ(t)⟩ after a set number of timesteps.

The observables of interest in transport are of course the current and occupation number nσ = d†
σ dσ of

the quantum dot. The current from lead α to the quantum dot defined as in Eq. (2.10) takes the form,

Iα =
2e
ℏ ∑

kσ

Im(vαkσ ⟨d†
σ cαkσ ⟩) =

2e
ℏ ∑

kσ

∑
j

Im(ṽαkσ j⟨d†
σ c̃αkσ j⟩). (4.14)

Weighing the contributions to the particle current from each mode by their respective energy defines

24



Figure 4.2: Representative dynamics of the particle current I (top row) and energy current IQ (bottom
row) calculated using NRGtDMRG for a SIAM with Γ = 0.001, U = 12Γ and εd =−U/3 for different
nonequilibrium parameters V and ∆T .

the energy current IQ as,

IQ
α =

2
ℏ ∑

kσ

∑
j

εkσ jIm(ṽαkσ j⟨d†
σ c̃αkσ j⟩). (4.15)

Note that, a symmetrized particle (energy) current defined as I(Q)
sym = 1

2 (I
(Q)
L − I(Q)

R ) converges to the

steady-state before the individual currents (cf. Fig. 4.2). The NRG-tDMRG procedure was implemented

in the MPS framework using the open-souce QSpace tensor library for Matlab [79], with symmetries

implemented using [90, 91].

The dynamics of the particle current and the heat current for NRG-tDMRG run for different nonequi-

librium parameters is shown in Fig. 4.2. The charge current shows a transient behavior corresponding to

the time window of the quench, and starts to oscillate around a finite steady-state value. This steady-state

value can be extracted in various ways. In the work [B], the steady-state was obtained by averaging the

dynamics over a number of oscillations. An improvement to this, by using linear prediction to obtain the

t → ∞ value , has been used in the most recent paper [C].

4.2 Perturbation theory for strongly asymmetric systems

In the absence of strong couplings, complex many-body phenoma do not emerge in quantum impurity

systems. Rather, the transfer of electrons between the leads and the quantum dot via tunneling processes

result in a net charge transfer giving rise to single-electron charging effects [92]. With the lowest-order

perturbation theory in the tunneling Hamiltonian HT , one can find the tunneling rates Γ between the

quantum dot and a weakly coupled lead, thus providing an expression for the electronic current I [93].
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Note that, introducing higher order contributions from the perturbation theory will result in co-tunneling

processes containing approximated many-body features of the lowest order, thus the derivation in this

section can only be considered accurate for very weak couplings where the sequential tunneling processes

are solely responsible for the transport.

A smart way of setting up the system allows to abuse this perturbation formulation for the transport

and reveal many-body features in the quantum dot [33, 94] . For this purpose, a special case of the

Hamiltonian HSIAM presented in the Sec. 2.2.1 is considered. The impurity is strongly coupled to the left

lead (µL = 0,TL = 0, i.e., kept in equilibrium with the dot) where the coupling to the right lead (containing

the nonequilibrium parameters µR =−eV,TR = ∆T ) is treated as a perturbation on this strongly coupled

subsystem. This asymmetric model resembles many experimental setups to study quantum transport,

such as scanning tunneling microscopy (STM) setups for molecular junctions [95–98], semiconductor

quantum dot and single electron transistor (SET) setups [41, 99, 100], where the coupling to an individual

lead can be easily tuned. In the case of STM, the weakly coupled lead corresponds to the tip of the

scanning tunneling microscope and the coupling can be tuned by moving the tip away or closer to the

impurity/molecule. For SET experiments, the coupling between the dot and a single electronic reservoir

can be tuned by electrostatic gate voltages to control the tunnel barrier. Such easily relatable experimental

setups proved to be an additional motivation to study transport in the strongly asymmetric coupling limit. It

is relevant to emphasize that the perturbation is performed with respect to the tunnel matrix elements, thus

choosing a nonlinear potential or temperature gradient characterizing the density of states in the weakly

coupled lead is perfectly valid under this formulation.

The Hamiltonians for such an asymmetric setup consisting of a strongly coupled left subsystem HL,

weakly coupled to the right lead HR via the tunneling Hamiltonian HT can be written as,

HL = εd ∑
σ

nσ +U n↑n↓+∑
kσ

εk c†
Lkσ

cLkσ + tL ∑
kσ

(d†
σ cLkσ + c†

Lkσ
dσ ), (4.16)

HT = tR ∑
kσ

(d†
σ cRkσ + c†

Rkσ
dσ ), (4.17)

HR = ∑
kσ

(εk − eV )c†
Rkσ

cRkσ , (4.18)

Htot = HL +HT +HR. (4.19)

Here, the left subsystem L consists of the quantum dot with energy level εd , Coulombic repulsion U ,

strongly coupled to the left lead kept at µL = 0, TL = 0 with tunnel matrix elements tL =
√

ΓL/(π ρL)

between them. The temperature of the left lead is assumed to be much less than any other energy scale

in the system, and thus for all practical purposes can be approximated to TL ≈ 0. The right lead kept at

µR =−eV and TR = ∆T is defined as the right subsytem. The two subsystems are weakly coupled via the

tunnel coupling tR =
√

ΓR/(π ρR) with ΓR ≪ ΓL.

Assuming the left and right subsystems were initially decoupled and in equiibrium, one can define
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their respective density matrices as,

ρL(i) =
1
Z

exp(−βEi), (4.20)

ρR( j) =
1
Z

exp(−βE j).

The transition rate Γi→ f between an initial state of the system |i⟩ with energy Ei and a final state of the

system | f ⟩ with energy E f can be expressed as,

Γi→ f =
2π

ℏ
|⟨ f |HT |i⟩|2δ (Ei −E f ). (4.21)

Weighing by the occupation of the subsystems ρL and ρR, and summing over all the possible contributions

of single electron charge transfer, one ends up at the tunneling rate ΓL→R from the left to right of the form,

ΓL→R =
2π

ℏ ∑
i, j,i′, j′

|tR|2|⟨ j′, i′|∑
k,σ

c†
Rkσ

dσ |i, j⟩|2δ (EN
i +ENR

j −EN−1
i′ −ENR+1

j′ )ρL(i)ρR( j). (4.22)

Here, i and j are the eigenstates of the N-particle initial density matrices described in Eq. (4.21), and i′

and j′ are the eignestates after a single electron transfer. Making use of the diagonal form of the initial

density matrices and transforming into the time domain,

ΓL→R =
2π

ℏ
t2
R ∑

i, j,i′, j′

∫
∞

−∞

dt
2π

∑
kσ

|⟨ j′|c†
Rkσ

| j⟩|2 ρR( j)|⟨i′|dσ |i⟩|2 ρL(i)ei(∆ER
j, j′+∆EL

i,i′−eV ) t
. (4.23)

Absorbing the time evolution into the operators, d†
σ (t) = e−iHL t d†eiHL t and c†

Rkσ
(t) = e−iHR t c†

Rkσ
eiHR t ,

one can rewrite the above equation in the form of Green’s functions as,

ΓL→R =
1
ℏ

t2
R

∫
∞

−∞

dt e−i eVt
∑
kσ

⟨d†
σ (t)dσ (0)⟩⟨ckσ (t)c†

kσ
(0)⟩. (4.24)

Here, the correlators correspond to the lesser and greater Green’s functions on the left and right subsystems

respectively as, ⟨d†
σ (t)dσ (0)⟩ = −iG<

d,σ (−t) and ⟨ckσ (t)c†
kσ
(0)⟩ = iG>

cRKσ
(t). Transforming back into

the energy domain, one can rewrite

ΓL→R =
1
ℏ

t2
R

∫
dω ∑

σ

G<
dσ
(ω)G>

ψσ
(ω + eV ), (4.25)

where ψσ ≡∑k ckσ , and G<
dσ
(ω) and G>

ψσ (ω) are equilibrium Green’s functions on HL and HR respectively,

with G<
dσ
(ω) = 2πi fL(ω)ρdσ (ω) and G>

ψσ
(ω) =−2πi(1− fR(ω))ρR. The forward current IF between

L and R is then,

IF = 2π

ℏ |tR|2ρRσ

∫
∞

−∞
dω fL(ω)[1− fR(ω − eV )]ρdσ (ω). (4.26)
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Figure 4.3: A quantum dot strongly coupled to the left lead with temperature TL = 0 and chemical potential
µL = 0. The associated spectral function is depicted in the middle as AL(ω). The right lead is kept at
chemical potential µR =−eV and temperature TR = ∆T .

Similarly, the backward current also takes the form,

IB = 2π

ℏ |tR|2ρRσ

∫
∞

−∞
dω [1− fL(ω)] fR(ω − eV )ρdσ (ω), (4.27)

where ρRσ is the spin-resolved density of states of the right lead and ρdσ is the spin-resolved density of

states of the quantum dot. For a flat band on the right lead ρRσ is considered to be constant, hybridization

function to the right lead ΓR = 2πρ t2
R, and the density of states on the strongly coupled subsystem

represented by the spectral function of the dot AL(ω), the total current through spin channel σ can be

calculated as Iσ = IF
σ − IB

σ ,

Iσ (V,∆T ) =
ΓRσ

ℏ

∫ D

−D
dω [ fL(ω)− fR(ω − eV )]ALσ (ω). (4.28)

The Fermi functions fα(ω)≡ f (ω,µα ,Tα) of the lead α are explicit functions of chemical potentials µα

and lead temperature Tα .

A typical setup in the presence of Kondo correlations in the strongly coupled subsystem with ΓR ≪ ΓL

is shown in Fig. 4.3.

4.3 Nonequilibrium thermoelectric transport coefficients

Having a large and finite V and/or ∆T , the definitions for the transport properties described in Sec. 3.1.3

do not necessarily translate into the nonequilibrium regime. In this section, I define a set of transport

coefficients that is valid in the nonequilibrium regime once the nonequilibrium current I(V,∆T ) can be

determined. Firstly, the definition of the differential conductance G = (dI/dV )∆T ≡ G(V,∆T ) is applicable

across the regimes and remains the same.

The classical definition of the Seebeck coefficient S = −(V/∆T )I=0, is determined by the bias V

required to compensate for the thermoelectric current I induced by the temperature gradient ∆T . Such a
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definition only deals with a system with initial potential bias Vini = 0 and thus Iini = 0 initially. A direct

extension of this definiton is to consider a system with finite initial potential Vini =V and no temperature

gradient ∆Tini = 0, which runs a current I(V,0) ̸= 0. When a temperature gradient ∆T is applied across

the system, the contribution from the thermoelectric current changes I(V,0)→ I(V,∆T ), which can be

brought back to the original value by a change in the potential ∆V . Thus, the nonequilibrium Seebeck

coefficient Sn(V,∆T ) can be defined analogous to the classic definition,

Sn(V,∆T ) =−
(

∆V
∆T

)

I(V+∆V,∆T )=I(V,0)
. (4.29)

Further, a differential Seebeck coefficient Sd(V,∆T ) that acts as a response function on V and ∆T can

be defined in the nonlinear regime as,

Sd(V,∆T ) = −
(

dV
d∆T

)

I
(4.30)

= −
(

∂ I
∂∆T

)

V

/(
∂ I
∂V

)

∆T
, (4.31)

where the numerator is the thermoelectric response of the current at constant V , and the denominator is

the differential conductance at constant ∆T . Both of these quantities are experimentally accessible in the

nonequilibrium regime and have been theoretically estimated for asymmetric quantum dot systems in the

publications [D,E].
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Chapter 5

Summary

The technological advances in the field of nanotechnology opened up a wide array of experimental

platforms that are capable of exploring various aspects of quantum physics. Quantum dots, nanowires,

nanotubes, superconducting qubits, molecular junctions and 2D materials like graphene are some notable

platforms that are used to study various condensed matter phenomena originating from quantum effects.

Due to the prominent role of quantum effects in such systems, various applications in quantum information

technologies, cryogenics, thermoelectric cooling, energy harvesting, sensing technologies and many others

have been proposed for such nanostructures that can rival their contemporary counterparts.

There exists a class of such nanostructures manufacturable using quantum dots, nanowires, single-

electron transistors, molecular junctions or adatoms that can simulate quantum impurity systems. Such

systems can confine the electrons into a quasi-zero-dimensional space to exhibit various interesting

properties. Apart from the quantum confinement effects, electronic correlations and many-body effects

give rise to more complex phenomena in these systems. The Kondo effect is such a many-body phenomena

through which the conduction band electrons can screen the impurity spin. This results in a many-body

correlated state known as the Kondo state, where the spatial correlations extend up to large length scales

compared to the size of the impurity in such nanostructures. The spatial extension of such screening

correlations of the Kondo effect is commonly referred to as the Kondo cloud. Many characteristic signatures

are exhibited when Kondo correlations exist in a quantum dot system coupled to an electronic reservoir,

such as a resonance peak in the quantum dot density of states at the Fermi level (Kondo-Abrikosov-Suhl

resonance), zero-bias conductance peak in transport and a sign change in the Seebeck effect. Moreover,

such Kondo-correlated systems show universal scaling behavior. This means that different experimental

setups with Kondo correlations can be directly compared by rescaling the corresponding experimental data

according to their respective Kondo energy scales.

Theoretical description of Kondo systems had been a daunting task for condensed matter physicists

since the relevant physics comes from strong correlations at very low energies. Analytical approaches to

describe the systems below the Kondo energy scale come with approximations of the relevant electronic

correlations. A quantitatively reliable, numerically exact, controlled non-perturbative approach exists in the
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name of numerical renormalization group. This had been the bread and butter for providing quantitatively

reliable theoretical results for experiments in the Kondo regime. But NRG is an equilibrium method, and

cannot describe systems out-of-equilibrium. Thanks to the advances in the experimental aspects of Kondo

systems, there exists experimental setups that are capable of accurately studying far-from-equilibrium

behavior in the Kondo regime. Thus, it is very relevant to describe the Kondo effect and its signatures

under far-from-equilibrium conditions.

Thus, the main goal of this thesis is to describe Kondo systems in the scarcely explored regime of

nonequilibrium. A controlled non-perturbative method combining the NRG and time dependent density

matrix renormalization group is used to provide quantitatively accurate description of nonequilibrium

transport across a Kondo-correlated quantum dot. A special case of strongly asymmetric coupling is treated

with perturbation theory to investigate its spintronic properties, such as the tunnel magnetoresistance,

thermoelectric and spin-caloritronic properties.

This thesis titled Nonequilibrium transport and Kondo correlations in nanoscale systems is presented as

a series of publications [A-F]. The part I provides a concise introduction to the central concepts surrounding

the thesis, main objectives and motivation for the research problem and the numerical techniques used to

investigate them. The part II contains the publications that constitute this thesis, primarily organized based

on the specific regimes of interest and the corresponding numerical methods employed to study them.

Chapter 7 consisting of the publication [A] is a linear response NRG study of a large spin magnetic

molecule coupled to nonmagnetic/ferromagnetic leads. In this work, I investigated a magnetic molecule,

modelled as an orbital level with an exchange interaction to a spin-1 magnetic core, coupled to nonmagnetic

and ferromagnetic leads. This simplified effective model helps to unveil the dependence of the linear

response transport properties on the internal parameters of the impurity such as the magnitude of the

exchange interaction, ferromagnetic or antiferromagnetic nature of the exchange interaction and magnetic

anisotropy, in addition to the various energy scales from the outside, such as the Kondo energy scale,

ferromagnetic contact induced exchange field and temperature. This publication provided a detailed and

exhaustive study of the competing energy scales and the corresponding characteristics on the differential

conductance, Seebeck coefficient and spin-Seebeck coefficient. Some highlights of the results in this

study include the competition between the Kondo effect and other energy scales reflecting in the sign

changes of the Seebeck and the magnitude of the zero-bias conductance. The spin-Seebeck coefficient

did not show any characteristic sign changes corresponding to the Kondo effect, but the regime of finite

spin-Seebeck coefficient for an orbital level interacting with the magnetic core were shown to extend

to lower temperatures than the spin-Seebeck effect exhibited by spin-1/2 impurities. Moreover, this

publication unveiled various parameter regimes for the values of magnetic anisotropy and the exchange

interactions, which can give rise to pronounced Seebeck and spin-Seebeck coefficients. Though, it is

important to note that this did not result in any increase in the thermoelectric efficiency as the conductance

was suppressed considerably for the relevant parameter regimes.

Chapter 8 consists of the publications [B,C] that deal with the nonequilibrium transport across a
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quantum dot strongly coupled to two leads. The system studied in this chapter has Kondo-correlations

mediated by conduction band electrons from both leads. The hybrid NRG-tDMRG method is employed

to investigate the nonequlibrium steady-state transport properties of the quantum impurity systems. The

publication [B] investigates how ferromagnetism of the leads influences the transport across the quantum

dot. The results in this publication provided the first quantitatively accurate calculations for the spintronic

transport through a Kondo-correlated quantum dot coupled to ferromagnetic leads. The Kondo energy

scale in the applied bias was extracted from the zero-bias conductance peak and its dependence on the

lead polarization was studied. In the absence of particle-hole symmetry, the differential conductance as

a function of the applied bias showed a split-peak structure originating from the ferromagnetic contact

induced exchange field. A particular value of magnetic field was shown to compensate for this exchange

field splitting and to recover the zero-bias conductance peak.

The dependence of the transport properties on the individual lead temperatures and the associated

thermoelectric transport is studied in paper [C]. This paper addressed a long-standing problem regarding

the description of Kondo effect in the presence of nonlinear temperature gradients. In this work, the

NRG-tDMRG method was extended to describe transport across a quantum dot strongly coupled to leads

with independent temperatures. In the zero-bias regime, the differential conductance showed a radial

behavior in the plane of left-right lead temperatures TL,TR. Far from intuitions, the points of half-maxima

of the conductance, directly relatable to the Kondo energy scale, depicted a ’Kondo circle’ in the TL,TR

plane. This unveiled a dominance of second order contributions of the individual lead temperatures in

the Kondo scaling regime, and indicated the presence of an effective equilibrium temperature that can

replicate, with almost quantitative accuracy, the case with different lead temperatures. The sign changes in

the thermoelectric current also showed a rough circle in the TL,TR plane. The points of sign change of

thermopower having deviations from the circular behavior are not surprising as the point of sign change in

the thermopower does not directly correspond to any energy scales under consideration. A polynomial fit

was also provided for fitting any possible experimental data available for such systems. This paper further

discusses the thermopower and its comparison to the effective equilibrium temperature values and heat

conductance in the presence of finite temperature gradients.

Chapter 9 deals with a specific case of strong asymmetric coupling limit addressed in the publications

[D-F]. In such a case, the quantum dot is strongly coupled to one lead and weakly coupled to the second

lead. The transport properties are studied using the perturbation theory based approach described in

chapter 4. Treating the strongly coupled part using NRG, this method includes all the processes between

the strongly coupled lead and the quantum dot, but only the lowest order processes from the weakly

coupled lead contribute to the transport. This special case is reflected in various experimental setups such

as scanning tunneling spectroscopy, semiconductor quantum dots or single electron transistors.

The thermoelectric transport properties of a quantum dot asymmetrically coupled to two metallic

leads are investigated in the publication [D]. The extensions of Seebeck coefficient to the nonequilibrium

settings, such as the nonequilibrium Seebeck coefficient Sn and differential Seebeck coefficient Sd are
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calculated for various nonequilibrium parameter regimes. Important findings of this publication constitutes

new sign changes of Sn and Sd in the finite potential and temperature bias regime. This publication goes

on to explore the thermoelectric efficiency of the asymmetric setup in the presence of nonequilibrium

conditions, and found that depending on the parameters of the strongly coupled system, there exists

different regimes of V and ∆T where the quantum dot system can output high thermoelectric efficiency. A

more experimentally realizable system with capacitive couplings and voltage dependent orbital level was

also investigated in this paper to aid experimental explorations.

An extension of the above work to the case of ferromagnetic leads was realized in publication [E].

Here, the nonequilibrium thermoelectric and spin-caloritronic properties under various configurations of

the spin polarization on the leads have been investigated. This paper unveiled new sign changes in the

nonequillibrium Seebeck coefficients originating from the competition between the Kondo effect and the

ferromagnetic-contact induced exchange field. The setup mentioned above can also result in extremely

large tunnel magnetoresistances in the presence of finite thermal bias. This scenario has been investigated

and published in the short paper [F].

In conclusion, this doctoral dissertation presents the theoretical results on various aspects of transport

in correlated systems exhibiting the Kondo effect in nonequilibrium conditions. The research utilized

sophisticated numerical computational methods, including the hybrid NRG-tDMRG method, which

enabled the inclusion of correlations in a rigorous manner and yielded quantitatively accurate results. The

results presented in the six publications comprising the dissertation contributed to a deeper understanding

of Kondo correlations beyond linear response and provided new results and predictions for the experimental

investigation of such phenomena, thereby contributing to the development of spin-based nanoelectronics

and caloritronics. Additionally, the obtained results offered insights into various potential applications of

correlated quantum dot systems, including spintronic and thermoelectric applications.
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Chapter 6

Streszczenie (Summary in Polish)

Postęp w dziedzinie nanotechnologii umożliwił implementację szerokiej gamy platform eksperymental-

nych, które pozwalają badać najbardziej fundamentalne aspekty fizyki kwantowej. W tym kontekście,

szczególne miejsce zajmują układy niskowymiarowe, takie jak kropki kwantowe, nanodruty, nanorurki,

złącza molekularne czy też materiały dwuwymiarowe, takie jak grafen. Ze względu na dominującą

rolę efektów kwantowych w takich układach, nanostruktury odgrywają również kluczową rolę, jeżeli

chodzi o potencjalne zastosowania w nowoczesnych technologiach, w tym w technologiach kwantowych.

W szczególności, obejmują one technologie związane z przechowywaniem i przetwarzaniem informa-

cji, a także informację kwantową, nanoelektronikę, kriogenikę, technologie sensoryczne i energetyczne

oraz wiele innych potencjalnych zastosowań, które są konkurencyjne w stosunku do ich współczesnych

odpowiedników.

Ciekawą grupą nanostruktur są struktury quasi-zero-wymiarowe obejmujące kropki kwantowe, tranzys-

tory jednoelektronowe, molekuły lub adatomy, które mogą symulować zachowanie układów domieszek

kwantowych. W tego typu układach, oprócz efektów kwantowych prowadzących do dyskretnej struktury

energetycznej, korelacje elektronowe i efekty wielociałowe mogą prowadzić do wystąpienia bardziej

złożonych efektów fizycznych. Jednym z takich wielociałowych zjawisk jest efekt Kondo, w którym

elektrony przewodnictwa ekranują spin domieszki kwantowej. W rezultacie powstaje wielociałowy stan

skorelowany, znany jako stan Kondo, w którym korelacje przestrzenne rozciągają się na dużą skalę w

porównaniu do rozmiaru domieszki w takich nanostrukturach. Przestrzenny rozkład korelacji spinowych

w zjawisku Kondo jest często określany jako chmura Kondo.

W układzie kropki kwantowej sprzężonej z rezerwuarem elektronów, gdy występują korelacje Kondo,

można zaobserwować wiele charakterystycznych cech, takich jak dodatkowy rezonans w gęstości stanów

kropki kwantowej na poziomie Fermiego, tzw. rezonans Kondo-Abrikosova-Suhla, maksimum zero-

napięciowego przewodnictwa, czy też zmianę znaku współczynnika Seebecka w funkcji temperatury.

Co więcej, okazuje się, że skorelowane układy wykazujące istnienie efektu Kondo charakteryzują się

uniwersalnym zachowaniem. Oznacza to, że różne eksperymentalne układy z korelacjami Kondo można

bezpośrednio porównać, przeskalowując odpowiednie dane eksperymentalne zgodnie z odpowiednimi
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skalami energii związanymi z efektem Kondo.

Dokładny, teoretyczny opis układów z korelacjami Kondo stanowił ogromne wyzwanie dla fizyków

materii skondensowanej, ponieważ istotne zjawiska wynikają z silnych korelacji elektronowych przy

bardzo niskich temperaturach. Analityczne podejścia do opisu tego typu zjawisk wymagają odpowiednich

przybliżeń związanych z korelacjami elektronowymi, które nie dostarczają precyzyjnych wyników iloś-

ciowych. Istnieje jednak metoda nieperturbacyjna, znana jako numeryczna grupa renormalizacji (NRG),

która jest ilościowo wiarygodna, numerycznie dokładna i kontrolowana. Metoda ta jest podstawowym

narzędziem do otrzymania ilościowo wiarygodnych wyników, które mogą być bezpośrednio porównywane

z wynikami doświadczalnymi dla układów w reżimie Kondo. Numeryczna grupa renormalizacji jest jednak

metodą równowagową i nie opisuje układów poza równowagą. Okazuje się jednak, że dzięki postępom w

eksperymentalnych badaniach układów Kondo, wiele doświadczeń jest przeprowadzanych w warunkach

dalekich od równowagowych. Dlatego też niezwykle ważne jest dokładne opisanie zjawisk korelacyjnych,

w tym efektu Kondo i jego zachowania, w takich warunkach. Głównym celem niniejszej dysertacji

było właśnie przeprowadzenie ilościowo dokładnej analizy charakterystyk transportowych skorelowanych

układów wykazujących zjawisko Kondo w warunkach nierównowagowych. W tym celu, zastosowana

została hybrydowa metoda nieperturbacyjna, łącząca metodę NRG z zależną od czasu grupą renormalizacji

macierzy gęstości (tDMRG), dla układu kropki kwantowej silnie sprzężonej do zewnętrznych elektrod

metalicznych. Ponadto, rozpatrzono także przypadek silnie asymetrycznego złącza tunelowego z kropką

kwantową, który został przeanalizowany przy pomocy metody NRG w oparciu o rachunek zaburzeń

względem słabo sprzężonej elektrody. Metody te pozwoliły na dokładne przeanalizowanie właściwości

transportowych badanych układów, z uwzględnieniem aspektów spintronicznych, termoelektrycznych i

spinowo-kalorytronicznych.

Niniejsza dysertacja pt. „Transport nierównowagowy i korelacje Kondo w układach nanoskopowych”

składa się z cyklu sześciu publikacji [A-F]. Część I rozprawy zawiera zwięzłe wprowadzenie do na-

jważniejszych pojęć istotnych dla pracy doktorskiej, główne cele i motywację dla podjętego problemu

badawczego oraz techniki numeryczne używane do badań. Część II zawiera publikacje, które składają

się na dysertację, zorganizowane przede wszystkim w oparciu o konkretne obszary zainteresowania i

odpowiadające im metody numeryczne stosowane w obliczeniach.

Rozdział 7, zawierający publikację [A], przedstawia wyniki badań własności termoelektrycznych w

odpowiedzi liniowej przeprowadzonych przy użyciu metody NRG dla układu dużej molekuły magnety-

cznej sprzężonej z niemagnetycznymi lub ferromagnetycznymi elektrodami. Molekuła magnetyczna była

modelowana poprzez jeden poziom orbitalny sprzężony wymiennie do rdzenia magnetycznego o spinie

S = 1. Ten uproszczony model efektywny pozwolił określić zależności charakterystyk transportowych

od wewnętrznych parametrów molekuły, takich jak wielkość sprzężenia wymiany, ferromagnetyczny lub

antyferromagnetyczny charakter sprzężenia wymiany czy też wartość anizotropii magnetycznej. Ponadto,

w układzie istotne były skale energii związane ze zjawiskiem Kondo, polem wymiany indukowanym przez

sprzężenie z ferromagnetycznymi elektrodami oraz temperaturą. Publikacja [A] przedstawia szczegółowe
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wyniki badań wykazujących konkurujący charakter powyższych efektów oraz ich wpływ na przewod-

nictwo różniczkowe, współczynnik Seebecka oraz spinowy współczynnik Seebecka. Kilka kluczowych

rezultatów obejmuje stwierdzenie występowania współoddziaływania pomiędzy efektem Kondo a po-

zostałymi skalami energetycznymi, co odzwierciedla się w zmianach znaku współczynnika Seebecka i

wielkości przewodnictwa liniowego. Ponadto, pokazano, że spinowy współczynnik Seebecka nie wykazy-

wał charakterystycznych zmian znaku związanych z efektem Kondo. Natomiast w obszarze dodatnich

wartości spinowego współczynnika Seebecka, wykazano, że obszar ten rozciąga się na znacznie niższe

temperatury w stosunku do układów domieszek magnetycznych o spinie S = 1/2. Co więcej, w publikacji

określono zakresy parametrów anizotropii magnetycznej i sprzężenia wymiany, które mogą prowadzić

do znaczących wartości współczynnika Seebecka oraz jego spinowego odpowiednika. Warto jednak

podkreślić, że obszary te nie były bezpośrednio związane ze wzrostem wydajności termoelektrycznej

układu, ponieważ przewodnictwo było istotnie tłumione dla powyższych zakresów parametrów.

Rozdział 8 obejmuje publikacje [B,C], które dotyczą transportu nierównowagowego przez kropkę

kwantową silnie sprzężoną z dwoma elektrodami. Układ badany w tym rozdziale posiada silne korelacje

Kondo, które wynikają z ekranowania spinu kropki kwantowej poprzez elektrony przewodnictwa z obu

elektrod. W badaniach zastosowano hybrydową metodę NRG-tDMRG, która pozwoliła uzyskać iloś-

ciowo dokładne wyniki w warunkach nierównowagowych przy ścisłym uwzględnieniu efektów korelacji

elektronowych.

Publikacja [B] przedstawia badania pokazujące jak ferromagnetyzm elektrod wpływa na nierównowag-

owy transport przez kropkę kwantową. Wyniki zawarte w publikacji prezentują pierwsze, ilościowo

dokładne dane dotyczących zależnego do spinu transportu przez skorelowaną kropkę kwantową wykazu-

jącą efekt Kondo, która jest sprzężona z ferromagnetycznymi elektrodami. Skala energetyczna charak-

terystyczna dla efektu Kondo została wyznaczona na podstawie zależności przewodności różniczkowej

od napięcia, co umożliwiło zbadanie wpływu polaryzacji spinowej ferromagnetycznych elektrod. W

przypadku braku symetrii elektron-dziura, przewodność różniczkowa w funkcji napięcia transportowego

wykazała strukturę złożoną z rozszczepionego piku Kondo, wynikającego z obecności pola wymiany

wywołanego przez ferromagnetyczne elektrody. Ponadto, w pracy pokazano, że odpowiednio przyłożone

zewnętrzne pole magnetyczne może kompensować powyższe rozszczepienie przywracając maksimum

anomalii zero-napięciowej przewodnictwa układu.

W publikacji [C] zbadano zależność własności transportowych od poszczególnych temperatur elektrod

oraz związany z tym nierównowagowy transport termoelektryczny. Publikacja ta rozwiązała długotrwały

problem opisu efektu Kondo w obecności nieliniowych gradientów temperatury. W pracy rozszerzono

metodę NRG-tDMRG o możliwość opisu transportu przez kropkę kwantową silnie sprzężoną z elektrodami

o niezależnych temperaturach. W przypadku zerowego napięcia transportowego przewodnictwo wykazało

radialne zachowanie w płaszczyźnie temperatur lewej i prawej elektrody, TL,TR. Wbrew intuicji, punkty

połowicznego maksimum przewodnictwa, bezpośrednio powiązane ze skalą energetyczną efektu Kondo,

tworzyły tzw. ‘okrąg Kondo’ w płaszczyźnie TL,TR. Ujawniło to dominację wkładów drugiego rzędu
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dla indywidualnych temperatur elektrod w zakresie skalowania zjawiska Kondo i wskazało na obecność

efektywnej temperatury równowagowej, która może z niemal ilościową dokładnością odtworzyć przypadek

z różnymi temperaturami elektrod. Ponadto, zmiany znaku widoczne w prądzie termoelektrycznym

również ukazały zbliżoną do okręgu strukturę w płaszczyźnie TL,TR. Odchylenia punktów zmiany znaku

współczynnika Seebecka od zachowania opisanego okręgiem w płaszczyźnie TL,TR nie są zaskakujące,

ponieważ punkty te nie są bezpośrednio związane z żadną z rozważanych skal energetycznych. W

pracy przedstawiono również dopasowanie wielomianowe, które może być zastosowane do porównania

z dostępnymi danymi eksperymentalnymi dla takich układów. Artykuł omawia ponadto zachowanie

współczynnika Seebecka oraz jego porównanie z wartościami efektywnej temperatury równowagowej

oraz przewodnictwa cieplnego w obecności skończonych gradientów temperatury.

Rozdział 9 dotyczy specyficznego przypadku silnie asymetrycznego złącza tunelowego, dla którego

wyniki opisano w publikacjach [D-F]. W takim przypadku kropka kwantowa jest silnie sprzężona z jedną

elektrodą i słabo sprzężona z drugą. Własności transportowe zostały zbadane za pomocą podejścia opartego

na teorii zaburzeń, opisanego w rozdziale 9. Korzystając z metody NRG do wyznaczenia lokalnej gęstości

stanów części silnie sprzężonej, można uwzględnić wszystkie procesy pomiędzy silnie sprzężoną elektrodą

a kropką kwantową, podczas gdy do transportu przyczyniają się jedynie procesy najniższego rzędu z

elektrodą słabo sprzężoną. Ten szczególny przypadek znajduje odzwierciedlenie w różnych układach

eksperymentalnych, obejmujących spektroskopię skaningową adatomów czy też półprzewodnikowe kropki

kwantowe bądź tranzystory jednoelektronowe z asymetrycznymi sprzężeniami do zewnętrznych elektrod.

W publikacji [D] przebadano własności transportu termoelektrycznego układu kropki kwantowej

asymetrycznie sprzężonej z dwoma metalicznymi elektrodami. W pracy rozszerzono badania na współczyn-

nik Seebecka w warunkach nierównowagowych, wyznaczając nieliniowy współczynnik Seebecka Sn oraz

różniczkowy współczynnik Seebecka Sd , dla różnych zakresów parametrów. Kluczowe wyniki tej pub-

likacji obejmują nowe zmiany znaku Sn i Sd w reżimie skończonej różnicy potencjałów oraz gradientu

temperatury. W publikacji zbadano także efektywność termoelektryczną asymetrycznego układu w

warunkach nierównowagowych i stwierdzono, że w zależności od parametrów silnie sprzężonego układu

istnieją różne zakresy V i ∆T , w których układ kropki kwantowej może wykazywać wysoką efektywność

termoelektryczną. Dodatkowo, aby uwzględnić parametry odpowiadające realnym nanostrukturom, w

artykule przedstawiono wyniki termoelektrycznego transportu dla układu z pojemnościowymi sprzężeniami

oraz zależnym od napięcia poziomem orbitalnym.

Rozszerzenie powyższej pracy na przypadek elektrod ferromagnetycznych zostało zrealizowane w

publikacji [E]. W pracy tej zbadano własności termoelektryczne oraz ich spinowo zależne wielkości

poza stanem równowagi zakładając różne konfiguracje polaryzacji spinowej w elektrodach. W artykule

ujawniono nowe zmiany znaku widoczne w nierównowagowych współczynnikach Seebecka, wynikające z

konkurencji pomiędzy efektem Kondo a polem wymiany indukowanym przez ferromagnetyczne elektrody.

Opisany układ może również prowadzić do niezwykle dużych wartości tunelowego magnetooporu w

obecności skończonego gradientu termicznego. To zjawisko zostało zbadane i opisane artykule [F].
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Podsumowując, niniejsza rozprawa doktorska przedstawia wyniki teoretycznych badań różnych as-

pektów transportu przez skorelowane układy wykazujące efekt Kondo w obszarze nierównowagowym.

Badania przeprowadzono z wykorzystaniem nowoczesnych numerycznych metod obliczeniowych obejmu-

jących hybrydową metodę NRG-tDMRG, co pozwoliło uwzględnić korelacje w sposób ścisły i uzyskać

ilościowo dokładne rezultaty. Wyniki zaprezentowane w sześciu publikacjach stanowiących dysertację

przyczyniły się do lepszego zrozumienia korelacji Kondo poza odpowiedzią liniową oraz dostarczyły

nowych rezultatów i przewidywań do eksperymentalnego badania takich zjawisk, przyczyniając się tym

samym do rozwoju spinowej nanoelektroniki i kalorytroniki. Ponadto, uzyskane rezultaty dostarczyły

również wglądu w różne potencjalne zastosowania układów skorelowanych kropek kwantowych, obejmu-

jące aplikacje spintroniczne czy też termoelektryczne.
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Spin Seebeck effect of correlated 
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In this paper we investigate the spin-resolved thermoelectric properties of strongly correlated 
molecular junctions in the linear response regime. The magnetic molecule is modeled by a single 
orbital level to which the molecular core spin is attached by an exchange interaction. Using the 
numerical renormalization group method we analyze the behavior of the (spin) Seebeck effect, 
heat conductance and figure of merit for different model parameters of the molecule. We show that 
the thermopower strongly depends on the strength and type of the exchange interaction as well 
as the molecule’s magnetic anisotropy. When the molecule is coupled to ferromagnetic leads, the 
thermoelectric properties reveal an interplay between the spin-resolved tunneling processes and 
intrinsic magnetic properties of the molecule. Moreover, in the case of finite spin accumulation in the 
leads, the system exhibits the spin Seebeck effect. We demonstrate that a considerable spin Seebeck 
effect can develop when the molecule exhibits an easy-plane magnetic anisotropy, while the sign of 
the spin thermopower depends on the type and magnitude of the molecule’s exchange interaction.

Thermoelectric properties of nanoscale systems have recently attracted a considerable attention1–5. This is due 
to the fact that such systems are expected to offer much better thermoelectric efficiency as compared to their 
bulk counterparts6–8. Moreover, it turns out that studying the behavior of thermoelectric coefficients can pro-
vide additional information about various correlations and quantum interference present in the system9–16. One 
prominent example resulting from electronic correlations is the Kondo effect17,18 observed in quantum dots 
and molecules19,20, for which the sign changes of the thermopower have been proposed as additional signatures 
and measures of the strength of Kondo correlations21–24. In fact, thermoelectric properties of Kondo-correlated 
nanoscale junctions have been recently explored experimentally10,25,26.

Interestingly, the thermoelectric phenomena of nanostructures have also been explored in the case of systems 
involving magnetic components. In fact, with the discovery of the spin Seebeck effect27, a new field of interest, 
namely spin caloritronics, have started blossoming28–32. It transpires that the interplay of charge, heat and spin 
gives rise to a rich behavior of the thermoelectric coefficients that are now spin-dependent33–35. In correlated 
magnetic nanostructures, such as e.g. quantum dots coupled to ferromagnetic leads, the spin thermopower was 
shown to provide further information about an exchange field and its interactions with electronic correlations 
driving the Kondo effect36,37. Moreover, the spin Seebeck effect has also been studied in the case of quantum dots 
subject to external magnetic field38–40. An interesting situation occurs when the junction comprises a molecule of 
large spin, since the spin Seebeck effect is then additionally conditioned by intrinsic parameters of the molecule, 
such as an exchange interaction, magnetic anisotropy or the magnitude of the molecule’s spin41,42. In fact, the 
spin-dependent thermoelectric properties of large-spin molecular junctions have already been studied in the 
case of weak coupling to the contacts43–46, whereas the system’s behavior in the strongly correlated case remains 
to a large extent unexplored. This comprises the goal of this paper, which is to further extend the understanding 
of thermoelectricity in strongly correlated magnetic molecular systems.

We therefore undertake the studies of the Seebeck and spin Seebeck effects for a large-spin molecule, such 
as a single molecular magnet47–49, embedded in a tunnel junction with either nonmagnetic or ferromagnetic 
contacts. The focus is on the linear response regime with respect to the applied potential and temperature gra-
dients, which justifies the usage of the numerical renormalization group (NRG) method50,51 for the calculations. 
This method allows for obtaining very accurate results for the electrical and heat conductances as well as the 
Seebeck effect and the corresponding figure of merit in the full parameter space of the model. The molecule is 
assumed to possess an orbital level, through which transport takes place, which is exchange coupled to the spin 
of the molecule’s internal core52–54. First of all, we show that the Seebeck coefficient strongly depends on the type 
and strength of the exchange interaction. In particular, for antiferromagnetic exchange, we find an additional 
sign change of the thermopower as a function of temperature. Moreover, in the case of magnetic contacts, the 
interplay of Kondo screening with exchange field determines the thermoelectric response of the system. We 
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consider two specific cases regarding the spin relaxation time in the leads35,36. In the case of slow spin relaxation, 
a spin bias can be generated in the system, which gives rise to the spin Seebeck effect. On the other hand, for fast 
spin relaxation, the spin Seebeck effect does not develop, however, the thermoelectric coefficients still exhibit 
interesting spin-resolved properties due to spin dependence of tunneling processes. We believe that our study, 
by providing a comprehensive analysis of (spin) thermopower in the case of large-spin molecules, adds a new 
insight into the interplay of heat, charge and spin in magnetic molecules, contributing thus to further develop-
ment of molecular spin caloritronics.

Results
The schematic of the studied system is presented in Fig. 1. A high-spin magnetic molecule, of spin S = Sc + s , is 
coupled to external magnetic leads, whose magnetizations point in the same direction. The molecule’s easy axis 
is assumed to coincide with the direction of leads’ magnetizations. It is further assumed that a single molecular 
energy level is active in transport and this orbital level is coupled through an exchange interaction J to the core 
spin Sc of the molecule. Thus, the Hamiltonian of the molecule reads as52–54,

where ε and U denote the energy of the molecule’s orbital level and Coulomb correlation energy between two 
electrons of opposite spin occupying that level. n̂σ ≡ d̂†σ d̂σ is the occupation number operator for an electron 
of spin σ and d̂†σ ( ̂dσ ) is the corresponding creation (annihilation) operator. The spin operator for an electron 
occupying the orbital level is denoted by ŝ ≡ (1/2)

∑

σσ ′ d̂†σ σσσ ′ d̂σ ′ , where σ ≡ (σ x , σ y , σ z) denotes the vector 
of the Pauli matrices, and Ŝc is the operator for the core spin of the molecule. The two spins are coupled by the 
exchange interaction J, which can be either of ferromagnetic ( J > 0 ) or antiferromagnetic ( J < 0 ) type, depend-
ing on the sign of J. The molecule can be subject to magnetic anisotropy denoted by D and Ŝz is the zth component 
of the molecule spin operator Ŝ = Ŝc + ŝ . In calculations, we assume Sc = 1 , while the spin of electrons on the 
orbital level is given by s = 1/2 or s = 0 , depending on its occupancy. Consequently, the total molecule’s spin is 
S = 3/2 for singly occupied orbital level or S = 1 in the case when the occupation is even.

The tunneling processes between the molecule and the leads are described by the following Hamiltonian

where q = L for the left and q = R for the right electrode, the operator ĉ†qkσ ( ̂cqkσ ) creates (annihilates) an electron 
with energy εqkσ , momentum k and spin σ in the q-th lead, and vqkσ denotes the corresponding tunnel matrix 
elements. The leads are described within the non-interacting quasi-particle approximation by

Having defined the three parts of the Hamiltonian, the total Hamiltonian is given by, Ĥ = Ĥmol + Ĥtun + Ĥleads

.
The tunnel coupling between the molecule and the leads gives rise to the broadening of the orbital level, 

which can be described by, Ŵqσ = πρqσ v
2
qσ , where ρqσ is the spin-dependent density of states at the Fermi 

level in the lead q and we assumed momentum-independent tunnel matrix elements vqkσ ≡ vqσ . We then 
define the full broadening function, which for spin σ can be written as, Ŵσ = (1+ ηp)Ŵ , where Ŵ = ŴL + ŴR 

(1)Ĥmol = ε
∑

σ

n̂σ + Un̂↑n̂↓ − J Ŝc · ŝ− DŜ2z ,

(2)Ĥtun =
∑

qkσ

vqkσ (ĉ
†
qkσ d̂σ + d̂†σ ĉqkσ ),

(3)Ĥleads =
∑

qkσ

εqkσ ĉ
†
qkσ ĉqkσ .

Figure 1.   Schematic of the considered molecular junction. It consists of a magnetic molecule of spin S = Sc + s 
tunnel-coupled to external leads, with spin-dependent coupling strengths, ŴLσ and ŴRσ , for the left and right 
lead. Sc is the spin of the molecule’s magnetic core, while s denotes the spin of electrons occupying the orbital 
level. The molecule is assumed to effectively possess one orbital level, through which transport takes place, that 
is exchange-coupled (with coupling strength J) to the molecule’s core spin Sc . The orbital level is characterized 
by on-site energy ε and the Coulomb correlations U. There is a voltage ( �µσ ) and temperature ( �T ) gradient 
applied to the system. In the case of magnetic contacts, the voltage gradient may be spin-dependent. In 
considerations we assume Sc = 1 , while s = 1/2 ( s = 0 ) when the orbital level occupancy is odd (even).
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and Ŵq = Ŵq↑ + Ŵq↓ , whereas p is the effective spin polarization of the left and right ferromagnetic lead, 
p = (pL + pR)/2 , and η = 1 ( η = −1 ) for spin-up (spin-down) electrons.

Thermopower in the case of nonmagnetic leads.  We focus on the thermoelectric transport proper-
ties of the considered molecular junction in the linear response regime. The interesting thermoelectric phe-
nomena happening across the magnetic molecule can be quantified using the transport coefficients, such as the 
electrical conductance G, the thermopower (Seebeck coefficient) S, as well as the thermal conductance κ and the 
thermoelectric figure of merit ZT. In the linear response regime, these quantities can be expressed in terms of 
Onsager integrals Lnσ55

where Tσ (ω) is the energy-dependent transmission coefficient for the spin channel σ , f is the Fermi–Dirac dis-
tribution function and µ denotes the electrochemical potential. The electrical conductance G and the electronic 
contribution to the thermal conductance κ can be then found from

where e is the electron charge, T denotes the temperature and Ln =
∑

σ Lnσ . On the other hand, the thermo-
power S is defined as S = −[�V/�T]J=0 , on the condition of vanishing of the charge current J. Hence, S can 
be expressed in the form

Having defined G, S and κ , one can obtain the thermoelectric figure of merit ZT ≡ GS2T/κ.
Let us first consider the case of nonmagnetic molecular junction. The linear conductance and the Seebeck 

coefficient as a function of the molecule’s orbital level energy ε and temperature T are shown in Fig. 2. The first 
column shows the results for J = 0 , while the second (third) column corresponds to the case of the ferromagnetic 
(antiferromagnetic) exchange interaction J. The case of J = 0 is shown just for reference and allows us to clearly 
reveal the effects stemming from the presence of large-spin molecule. To begin with, we consider the behavior 
of the linear conductance. The largest changes with lowering the temperature are visible when the orbital level is 
singly occupied, i.e. for −U � ε � 0 . In this case, the Kondo effect can develop at sufficiently low temperatures, 
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∫
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Figure 2.   Conductance and thermopower of molecule in nonmagnetic junction. The linear conductance G 
and thermopower S as a function of the position of molecule’s level ε and temperature T in the case of (a,d) 
J = 0 , (b,e) ferromagnetic ( J = 10TK ) and (c,f) antiferromagnetic ( J = −TK ) exchange interaction, where 
TK = 0.0022 is the Kondo temperature in the case of ε = −U/2 , J = 0 and p = 0 . The other parameters are: 
Ŵ = 0.05 , U = 0.5 , D = 0 , in units of band halfwidth, and p = 0 . The spin of the molecule is equal to S = 3/2.
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such that T � TK , where TK is the Kondo temperature17. Once T ≪ TK , the conductance reveals a plateau as 
a function of ε of height G = 2e2/h in the case of J = 018,20. However, for magnetic molecules described by the 
Hamiltonian (1), the low-temperature behavior strongly depends on the type of exchange interaction J56. For 
ferromagnetic exchange, the Kondo effect always develops with lowering T, however, TK becomes reduced 
compared to the case of J = 0 . On the other hand, in the antiferromagnetic-J case, once |J| � TK , the spin on 
the orbital level strongly binds with the magnetic core spin, which results in the suppression of the conductance 
through the system. In this case, in the singly occupied orbital regime, one only observes a small enhancement 
(a local maximum) of G with decreasing T followed by its strong suppression56.

The different scenarios discussed above give rise to a unique behavior of the Seebeck coefficient, which is 
presented in the bottom row of Fig. 2. The first observation is that, as expected9,12, the thermopower changes 
sign with respect to the particle-hole symmetry point, ε = −U/2 . Moreover, one can see that the behavior of S 
for T � Ŵ is hardly affected by the type of exchange interaction J. This is because in our considerations |J| < Ŵ 
and the effects of finite J can be visible only when T � |J| . Let us anyway summarize the main features of the 
high-temperature behavior. One observes two pronounced maxima for T ≈ Ŵ in the case when the orbital level 
is either empty or doubly occupied. On the other hand, when moving to the Coulomb blockade regime where the 
orbital level is singly occupied, the thermopower changes sign and two local extrema develop antisymmetrically 
around ε = −U/2 for T ≈ Ŵ21,36. With lowering the temperature, distinct features appear, resulting from the 
interplay of the correlations driving the Kondo effect and the molecule’s exchange interaction. First of all, one 
can note that in the case of J = 0 , the regions of large |S| extend from the empty and doubly occupied regimes 
for T ≈ Ŵ downwards to low temperatures in the single occupancy regime. For singly occupied orbital level, the 
thermopower exhibits then a sign change as a function of T, see Fig. 2d, which signals the relevance of the Kondo 
correlations21. A qualitatively similar behavior can be observed in the case of ferromagnetic exchange interaction 
J, see Fig. 2e, with the main difference associated with smaller temperatures at which the corresponding sign 
change occurs. This is associated with the fact that the sign change occurs at the onset of the Kondo correlations 
and, because the Kondo effect develops at much lower temperatures in the case of ferromagnetic J compared 
to the case of J = 0 (see Fig. 2a,b), one observes that the sign change in S is also shifted to lower temperatures. 
However, this shift is not proportional to the corresponding shift visible in the behavior of G. It is because while 
much smaller temperatures are needed for the full development of the Kondo effect in the case of ferromagnetic 
J, the temperature associated with the onset of the Kondo correlations only weakly decreases with J. This is why 
the crossover for J > 0 is only slightly shifted to lower temperatures compared to the case of J = 0 , cf. Fig. 2d,e. 
Interestingly, qualitatively new features compared to the case of J ≥ 0 can be observed in the case of antifer-
romagnetic exchange interaction, where an additional sign change at low temperatures is present, see Fig. 2f.

Further insight into the behavior of the thermoelectric properties can be obtained from the inspection of 
Fig. 3, which presents the temperature dependence of G, S, κ and ZT for different values of the exchange inter-
action J, as indicated. This figure is generated for the case when the orbital level is detuned from the particle-
hole symmetry point, such that a considerable thermopower can be observed. In addition, the orbital level is 
assumed to be singly occupied ( ε = −U/3 ), such that the system is in the local moment regime and the Kondo 
correlations are relevant at sufficiently low temperatures. Let us start with the analysis of the linear conduct-
ance. In the case of ferromagnetic J (see the solid lines in the figure), the enhancement of J results in a decrease 
of the Kondo temperature. In this case the ground state is always two-fold degenerate with total spin given by 
S = Sc + 1/2 and the Kondo effect develops irrespective of J, though TK becomes very cryogenic with increasing 
J56. Consequently, we observe mainly quantitative changes in Fig. 3a, while qualitative behavior is the same. On 
the other hand, the situation is completely different in the case of antiferromagnetic exchange interaction J < 0 , 
see the dashed lines in Fig. 3. Now, with increasing |J|, the ground state becomes S = Sc − 1/2 , since the spin 
on the orbital level binds anti-ferromagnetically with the molecule’s core spin. Because of that, the Kondo effect 
is quenched once the temperature becomes lower than the energy scale responsible for this antiferromagnetic 
state. As a result, the temperature dependence of conductance exhibits a nonmonotonic behavior56, see Fig. 3a. 
We note that such behavior is similar to the two-stage Kondo effect observed in side-attached double quantum 
dots where the hopping induces an antiferromagnetic interaction between the dots57.

The behavior of the conductance has a strong influence on the Seebeck coefficient. This is because the tem-
perature dependence of conductance reflects the energy dependence of the transmission coefficient T (ω) and, 
from the Sommerfeld expansion, the thermopower at low temperatures can be estimated from (note that tem-
perature T is in units of energy)

where T (ω) =
∑

σ Tσ (ω) . One can thus see that the thermopower is related to the monotonicity of the varia-
tion of the spectral function with energy. This is why in the case of ferromagnetic exchange interaction we only 
observe qualitative changes in S, see the solid lines in Fig. 3b. The enhancement of J suppresses then the Kondo 
temperature, which is seen in the behavior of S as a shift of the local minimum towards smaller temperatures. 
However, a completely different scenario develops for antiferromagnetic J, where an additional sign change 
occurs and S exhibits an extra maximum for temperatures corresponding to the energy scale at which G(T) starts 
decreasing with lowering T, see the dashed curves in Fig. 3b.

Despite a spectacular impact of exchange interaction on the thermopower, its effect on the thermal con-
ductance is less pronounced, see Fig. 3c. This is because κ is considerable only at energy scales corresponding 
to the coupling strength and Coulomb correlations and thus, as long as |J| ≪ Ŵ , κ hardly depends on the type 
and magnitude of exchange interaction. On the other hand, the figure of merit ZT displays new peaks in the 
case of antiferromagnetic J, see Fig. 3d, which are associated with the above-discussed maxima emerging in the 
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temperature dependence of S. We also note that the influence of J on κ is more visible when one plots κ/T , see the 
inset in Fig. 3c. It is nicely visible that the qualitative behavior of κ/T resembles that of the linear conductance, 
which is a direct consequence of the Wiedemann–Franz law. A similar behavior has been recently observed for 
T-shaped double quantum dots23.

Effect of magnetic anisotropy.  We now focus on elucidating the role of magnetic anisotropy on the thermo-
electric properties of the considered molecular junction. We consider both an easy-axis ( D > 0 ) and easy-plane 
( D < 0 ) types of magnetic anisotropy. First we note that in the case of ferromagnetic exchange interaction 
between the orbital level and molecule’s core spin the magnetic anisotropy has a very moderate influence on the 
thermoelectric properties. It does not lead to new qualitative behavior as long as |D| is smaller than the corre-
sponding Kondo temperature, therefore in the following we just analyze the case of antiferromagnetic exchange 
coupling J. The temperature dependence of the conductance and the Seebeck coefficient for this situation is 
shown in Fig. 4, where the left (right) column corresponds to the easy-plane (easy-axis) magnetic anisotropy 
case. This figure was generated for the same orbital level position as in Fig. 3, such that the orbital level is detuned 
from the particle-hole symmetry point, while the system stays in the local moment regime. In the absence 
of anisotropy the conductance displays a nonmonotonic dependence, characteristic of the antiferromagnetic 
exchange coupling. When an easy plane anisotropy arises in the system and the molecule possesses a half-integer 
spin, it results in a two-fold degenerate ground state of S = 1/2 , such that the Kondo effect can be restored. This 
is clearly seen in Fig. 4a, where one observes an upturn of the conductance with lowering T. This in turn has 
a considerable impact on the Seebeck coefficient, which exhibits an additional sign change, see Fig. 4b. On the 
other hand, in the case of easy plane anisotropy, the low-temperature conductance again becomes increased with 
D, as can be seen in Fig. 4c. This is however just associated with a decreased exchange interaction between the 
molecule’s core spin and the spin of the orbital level, and not with the reinstatement of the Kondo effect. Con-
sequently, while the Seebeck coefficient strongly depends on D, no additional sign changes are present. In fact, 
the maximum in S for D = 0 becomes suppressed with increasing D and smears out completely once D ≈ TK , 
see Fig. 4d.

Figure 3.   Dependence of thermoelectric coefficients on exchange interaction. (a) The conductance, (b) Seebeck 
coefficient, (c) heat conductance and (d) figure of merit as a function of temperature for selected values of 
exchange interaction J in the case of nonmagnetic contacts. The solid (dashed) lines correspond to the case of 
ferromagnetic (antiferromagnetic) exchange interaction. The inset in (c) presents the temperature dependence 
of κ/T . The parameters are the same as in Fig. 2 with ε = −U/3.
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Thermopower in the case of ferromagnetic leads.  We now turn to the discussion of thermoelectric 
properties in the case of ferromagnetic electrodes. For the ferromagnetic contacts, we assume a moderate spin 
polarization58–60, p = 20% . In this section we assume that the spin relaxation in the contacts is relatively fast, such 
that no spin accumulation develops and the induced potential gradient does not depend on spin, �µ↑ = �µ↓ . 
In this regime, although the spin Seebeck effect does not develop, the spin-dependence of tunneling processes 
greatly modifies the thermoelectric transport properties of the system as compared to the nonmagnetic case. We 
also note that in the absence of spin accumulation the formulas for spin-dependent thermoelectric coefficients 
are the same as in case of nonmagnetic leads35,36.

The linear conductance and the Seebeck coefficient as a function of ε and T calculated for different values of 
J are displayed in Fig. 5. In the behavior of the conductance one can clearly observe the signatures of an effective 
exchange field that develops in the molecule coupled to ferromagnetic electrodes54,61. Such an exchange field, 
which within the perturbation theory at zero temperature and for J = 0 can be described as61,

results in a spin-splitting of the molecule’s orbital level, when it is detuned from the particle-hole symmetry 
point of the model ε = −U/2 . In the case of considered molecule, this field depends in a nontrivial way on the 
properties of the molecule, such as J, D and Sc , however, it still vanishes whenever ε = −U/254,62. If the exchange 
field splitting becomes larger than the Kondo temperature, it suppresses the Kondo resonance. As a consequence, 
the low-temperature conductance in the Coulomb blockade regime is generally decreased except for ε = −U/2 , 
where a local maximum as a function of ε is present, see Fig. 5a. A similar conductance suppression can be seen in 
the case of ferromagnetic exchange interaction J presented in Fig. 5b. However, now the suppression of G is larger 
as compared to the case of J = 0 , which is associated with a smaller Kondo temperature when J > 0 . On the other 
hand, when J is antiferromagnetic, mainly quantitative changes can be observed in the conductance behavior, cf. 
Figs. 2c and 5c. Namely, the region of suppression of low-temperature conductance is now smaller, which is an 
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Figure 4.   The effect of magnetic anisotropy in the case of molecule with nonmagnetic contacts. The 
temperature dependence of (a,c) the conductance and (b,d) the Seebeck coefficient in the case of 
antiferromagnetic exchange interaction J = −TK for selected values of magnetic anisotropy D. The left (right) 
column presents the case of easy-plane (easy-axis) type of magnetic anisotropy. The parameters are the same as 
in Fig. 2 with ε = −U/3.
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indication that the exchange field hinders the formation of an antiparallel spin state between the orbital level and 
the core spin. Because of that, the decrease of conductance due to that formation is correspondingly weakened. 
The signatures of the interplay of exchange field, Kondo correlations, and the molecule’s exchange interaction 
are also visible in the behavior of the thermopower, which is presented in the bottom row of Fig. 5. One can see 
that the main changes are visible in the low-temperature behavior, which reveals the energy scale associated 
with the exchange field. More specifically, in the case of ferromagnetic exchange interaction, an additional sign 
change in S occurs as compared to the case of nonmagnetic leads, whereas for antiferromagnetic J the Seebeck 
coefficient becomes generally reduced, cf. Figs. 2 and 5.

To shed more light onto the thermoelectric behavior of the considered magnetic molecular junction, in Fig. 6 
we present the temperature dependence of the conductance, Seebeck coefficient, heat conductance and figure 
of merit calculated for different values of exchange interaction, as indicated. This figure was determined for a 
relatively low value of detuning from the particle-hole symmetry point, ε = −0.48U , such that the exchange field 
effects rather compete than surpass other energy scales, and the system’s behavior is most interesting. First of 
all, one can note that below a certain temperature the conductance stops changing any more and retains its low-
temperature value. This characteristic energy scale is set by the exchange field �εexch—when this field is larger 
than thermal energy, it determines the transport behavior and no further dependence on lowering T is visible, 
see Fig. 6. The Seebeck effect becomes then suppressed and so does the figure of merit. This can be understood 
by referring to the Sommerfeld expansion: once the exchange field is the dominant energy scale the conductance 
becomes constant and so does the low-energy transmission coefficient. Consequently, [∂T (ω)/∂ω]ω=0 ≈ 0 and 
thus S ≈ 0 . This explains why S ≈ 0 and ZT ≈ 0 for T/Ŵ � �εexch/Ŵ ≈ 10−4 , see Fig. 6b,d.

Let us now focus on the most interesting behavior, which is present for temperatures of the order and larger 
than the exchange field, and let us start with the case of ferromagnetic exchange interaction J > 0 . One can see 
that increasing J results in suppression of the low-temperature conductance, see Fig. 6a. This results from the fact 
that increasing J leads to lowering of TK , and once �εexch � TK , the Kondo peak becomes suppressed. This is also 
visible in the thermopower and the figure of merit where a new maximum emerges at energy scale correspond-
ing to the exchange field T ≈ �εexch , see Fig. 6. While in the case of ferromagnetic exchange interaction mainly 
qualitative effects are visible, the case of antiferromagnetic exchange is completely different, see the dashed lines 
in Fig. 6. In this case, increasing |J| gives rise to the suppression of the conductance due to the formation of an 
antiferromagnetic spin state between the molecule’s orbital level and its magnetic core. When |J| is relatively low, 
the exchange field wins over the antiferromagnetic interaction and only a small suppression of G as a function 
of T is present, see e.g. the curve for J = −0.3TK in Fig. 6a. However, further enhancement of |J|, stabilizes the 
antiferromagnetic state of the molecule and a full suppression of G is obtained once J � −2TK . This behavior 
gives rise to a new maximum visible both in S and ZT. Moreover, while the maximum associated with the con-
ductance drop as T is lowered moves to higher energies with decreasing J ( J < 0 ), there is an extra maximum 

Figure 5.   Conductance and thermopower of molecule in ferromagnetic junction. The linear conductance G 
and thermopower S as a function of the position of molecule’s level ε and temperature T in the case of (a,d) 
J = 0 , (b,e) ferromagnetic ( J = 10TK ) and (c,f) antiferromagnetic ( J = −TK ) exchange interaction. The other 
parameters are the same as in Fig. 2 with p = 20%.
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visible just at the energy scale corresponding to T ≈ �εexch . As a consequence, the temperature dependence of 
the Seebeck coefficient displays an interesting triple-peak structure, see Fig. 6b.

To complete the picture, in Fig. 7 we present the temperature dependence of G and S calculated for different 
values of magnetic anisotropy. Similarly to the case of nonmagnetic leads, we display the data for antiferromag-
netic exchange interaction, which shows the most interesting behavior. Let us first analyze the case of uniaxial 
anisotropy, which is presented in the right column of Fig. 7. One can see that finite anisotropy gives rise to an 
enhancement of the low-temperature conductance. This is a consequence of the fact that anisotropy breaks the 
symmetry of the antiferromagnetic state of the molecule responsible for the conductance suppression. This effect 
gives rise to a local maximum in the Seebeck coefficient that develops at the energy scale of the order of magnetic 
anisotropy, see Fig. 7d. The case when the molecule exhibits easy-plane type of anisotropy is shown in the left 
column of Fig. 7. Now, one can observe a very strong dependence of both G and S on the magnitude of mag-
netic anisotropy. First of all, the low-T conductance exhibits a nonmonotonic dependence on D < 0 . Once the 
easy-plane anisotropy is present in the system and |D| � 0.1TK , G becomes suppressed. However, this tendency 
becomes reversed when D � −0.1TK , such that one observes an enhancement of G at low temperatures, see 
Fig. 7a. This is associated with the formation of a doublet ground state in the molecule in the case of considerable 
easy-plane anisotropy. Now, however, one witnesses a subtle interplay between the antiferromagnetic exchange 
interaction, the easy-plane magnetic anisotropy, the exchange field that splits the doublet state of the molecule 
and the Kondo correlations. The antiferromagnetic J gives rise to the suppression of G at low temperatures, which 
is however slightly hindered by the exchange field. On the other hand, turning on D ( D < 0 ), results initially 
in a larger suppression of the conductance, nevertheless, increased values of |D| eventually make the doublet 
state the ground state of the molecule, enhancing thus G due to the Kondo effect. Consequently, for sufficiently 
large |D|, the conductance shows a pronounced Kondo resonance, see Fig. 7a. The behavior of the conductance 
is clearly revealed in the temperature dependence of the Seebeck coefficient, which is shown in Fig. 7b. One can 
see that for values of D such that the conductance starts increasing, the thermopower exhibits a considerable 
maximum, which actually develops for T ≈ �εexch . With further increase of |D|, this maximum becomes how-
ever decreased and its position moves towards higher temperatures of the order of the Kondo temperature, see 
Fig. 7b. This large enhancement of the Seebeck coefficient is a result of interplay between the intrinsic properties 
of the molecule, such as its magnetic anisotropy, and the ferromagnetism of the leads. Unfortunately, this effect 

Figure 6.   Dependence on exchange interaction in the case of ferromagnetic junction. (a) The conductance, 
(b) Seebeck coefficient, (c) heat conductance and (d) figure of merit as a function of temperature for selected 
values of exchange interaction J in the case of ferromagnetic leads. The solid (dashed) lines correspond to the 
case of ferromagnetic (antiferromagnetic) exchange interaction. The inset in (c) presents κ/T as a function of 
temperature. The parameters are the same as in Fig. 5 with ε = −0.48U.

62



Anand Manaparambil & Ireneusz Weymann

9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9192  | https://doi.org/10.1038/s41598-021-88373-7

www.nature.com/scientificreports/

is not associated with a particularly large figure of merit since the corresponding electrical conductance is then 
relatively low, see Fig. 7a.

Spin Seebeck effect.  When the electrodes are ferromagnetic and are characterized by a long spin relaxa-
tion time, in addition to the charge current, a spin current can be generated in the system35,36. The spin current IS 
flows if there is a difference between chemical potentials for given spin direction, i.e. in the presence of a spin bias 
�µ↑ �= �µ↓ . The development of spin bias is conditioned by the spin relaxation time in the contacts compared 
to the time of tunneling events. The case of fast spin relaxation was discussed in previous section, now, let us 
focus on the situation when the spin accumulation can build up in the leads, i.e. when the spin relaxation time is 
long. In such case, the spin Seebeck effect SS can develop in the system. Assuming open circuit conditions, i.e. the 
vanishing of the spin and charge currents, it can be found from, SS = (S↑ − S↓)/2 , where Sσ is the thermopower 
in the spin channel σ , which yields35,36

On the other hand, the Seebeck coefficient in the case of finite spin bias is given by35,36, 
S = − 1

2|e|T

(

L1↑/L0↑ + L1↓/L0↓
)

 , whereas the heat conductance can be expressed as, κ = 1
T

∑

σ

(

L2σ − L21σ /L0σ
)

.
We would like to emphasize that in the case of ferromagnetic leads in the absence of spin accumulation, 

the Seebeck effect is due to a generated voltage difference that is not spin dependent. However, the tunneling 
processes themselves do depend on spin, therefore one then observes the spin-dependent Seebeck effect. On 
the other hand, when the spin accumulation is relevant in the leads, a spin bias becomes generated, which gives 
rise to the spin Seebeck effect. Such spin thermopower results from the spin splitting of the chemical potentials 
in the contacts and is associated with the corresponding spin current. Moreover, we would like to note that spin 
Seebeck effect due to electron transport is also referred to as the spin-dependent Seebeck effect, whereas the 
typical Seebeck effect in the case of magnetic contacts is referred to as spin-resolved Seebeck effect29,32. However, 
in our paper we adopt the notion introduced by Świrkowicz et al.35.
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Figure 7.   The effects of magnetic anisotropy in the case of ferromagnetic junction. The temperature 
dependence of (a,c) the conductance and (b,d) the Seebeck coefficient in the case of antiferromagnetic exchange 
interaction J = −TK for selected values of magnetic anisotropy D. The left (right) column presents the case of 
easy-plane (easy-axis) type of magnetic anisotropy. The parameters are the same as in Fig. 5 with ε = −0.48U.
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The Seebeck and spin Seebeck coefficients as a function of temperature and the position of the molecule’s 
orbital level calculated for different values of exchange interaction J are shown in Fig. 8. First of all, we note 
that the Seebeck effect at higher temperatures T ≈ Ŵ behaves generally very similarly as in the case of no spin 
accumulation in the leads, however, its low-temperature behavior is changed. While in the absence of spin 
accumulation, S exhibits an additional sign change for −U � ε � 0 and T � 0.01Ŵ , in the case of long spin 
relaxation these features are not seen anymore. Instead, the Seebeck coefficient changes sign only once around 
T ≈ Ŵ and extends to low temperatures till it is quenched by the exchange field, see the first row of Fig. 8. On 
the other hand, the spin Seebeck effect displays completely different behavior. As can be seen, the only sign 
change occurs across the particle-hole symmetry point when tuning the position of the molecule’s orbital level. 
Moreover, the overall behavior is reversed as compared to the Seebeck coefficient. In the regions where S is 
generally negative SS is positive and vice versa. This is directly associated with the definition of S and SS—while 
S captures the spin-resolved contributions due to hole and electron processes, SS presents mainly the difference 
between the spin-dependent components. As can be seen in the bottom row of Fig. 8, the spin-up contribution 
dominates the thermopower for ε > −U/2 , while for ε < −U/2 the spin-down thermopower is dominant. Such 
behavior is visible in all considered cases, namely, for J = 0 as well as for ferromagnetic and antiferromagnetic 
exchange interaction. However, there are some subtle differences. First of all, the spin Seebeck effect is finite for 
lower temperatures in the case of finite J, as compared to the case with J = 0 . Moreover, while for ferromagnetic 
J, SS exhibits a local maximum for T ≈ 0.01Ŵ , for antiferromagnetic J, there is a small local minimum in the 
temperature dependence of spin Seebeck effect, see Fig. 8f.

The above-mentioned features are better visible in the temperature dependence of the thermopower and 
spin thermopower presented in Fig. 9. Moreover, it turns out that the above discussion is not fully complete, 
since one can now clearly observe that a sign change of both the Seebeck as well as spin Seebeck effect can 
develop, provided that the exchange interaction is sufficiently large. In the case of ferromagnetic exchange, a 
large minimum in S develops with increasing J at energy scale corresponding to the exchange field, see Fig. 9a. 
On the other hand, for the spin Seebeck effect a maximum forms at the same temperature for which S exhibits 
a minimum. An interesting behavior occurs for antiferromagnetic exchange interaction, when with increasing 
|J|, both the thermopower and spin thermopower change sign once J � −TK . More specifically, S exhibits then 
a pronounced maximum, whereas a considerable minimum develops in SS for T ≈ �εexch , see Fig. 9. The sign 
change of the thermopower is associated with the fact that the exchange field effects, which determine the sign of 
S and SS for low values of J, become overwhelmed by antiferromagnetic J, once the exchange interaction becomes 
sufficiently large, i.e. |J| � �εexch.

To further understand the spin thermopower of magnetic molecules, we present the impact of magnetic ani-
sotropy on the Seebeck and spin Seebeck effects for the case of antiferromagnetic exchange interaction in Fig. 10. 
First of all, for the case of uniaxial type of magnetic anisotropy, as shown in the right column of Fig. 10, there is 
a suppression in the minima (maxima) present in the Seebeck (spin Seebeck) effect with increasing anisotropy. 
This behavior is in fact similar to that observed in the case of no spin accumulation discussed in previous section. 
However, the case of an easy plane type of anisotropy presented in the left column of Fig. 10 shows far more inter-
esting behavior. The thermopower and spin thermopower exhibit a change in sign around T ≈ �εexch ≈ 10−4 
for values of D � −0.1TK . For temperatures T � �εexch , a considerable peak, positive (negative) for the spin 

Figure 8.   The spin Seebeck coefficient. (a–c) The Seebeck and (d–f) spin Seebeck coefficient as a function of 
temperature and orbital level position calculated for (a,d) J = 0 (b,e) ferromagnetic J and (c,f) antiferromagnetic 
J in the case of finite spin accumulation in the leads. The other parameters are the same as in Fig. 5.
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Seebeck (Seebeck) effect, is formed. On the other hand, for T � �εexch an additional maximum (minimum) 

Figure 9.   Spin thermopower for different values of exchange interaction. (a) The Seebeck and (b) spin Seebeck 
effect as a function of temperature for different values of exchange interaction J, as indicated. The parameters are 
the same as in Fig. 5 with ε = −0.48U.

Figure 10.   Spin thermopower for different values of magnetic anisotropy. The temperature dependence of 
(a,c) the thermopower and (b,d) the spin thermopower in the case of antiferromagnetic exchange interaction 
J = −TK for selected values of magnetic anisotropy D. The left (right) column presents the case of easy-plane 
(easy-axis) type of magnetic anisotropy. The parameters are the same as in Fig. 9.
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develops for S ( SS ), see the left column of Fig. 10. Further increase in the magnitude of anisotropy D suppresses 
the local extrema in the thermopower, as seen in the case of no spin accumulation. Consequently, one observes 
a strong nonmonotonic dependence of the (spin) Seebeck effect on the value of the easy-plane anisotropy. Large 
values of S and SS develop for such intrinsic parameters of the molecule that the temperature dependence of G is 
most spectacular, i.e. when the Kondo effect starts being restored with increasing |D|. However, once a plateau 
in G is formed at low temperatures due to the Kondo effect, which happens for considerable values of D < 0 , 
the thermopower becomes suppressed, see Fig. 10.

Discussion
We have determined the thermoelectric properties of large-spin magnetic molecules attached to both nonmag-
netic and ferromagnetic electrodes. Our analysis was focused on the strong correlation regime where the Kondo 
effect can emerge. To accurately address the system’s behavior in this nonperturbative regime, we have employed 
the numerical renormalization group method, which allowed us to study the electrical and heat conductances, the 
Seebeck effect and the figure of merit in the full parameter space of considered molecular junction. In particular, 
we have considered the cases of both ferromagnetic and antiferromagnetic exchange interaction J between the 
orbital level of the molecule and its magnetic core. Moreover, we have also analyzed the effect of finite magnetic 
anisotropy of the molecule.

In the case of nonmagnetic contacts, we have shown that the behavior of the Seebeck effect strongly depends 
on the type of exchange interaction J. In the case of ferromagnetic exchange, we have shown that the Seebeck 
coefficient displays features qualitatively similar to the case of J = 0 (quantum dot case). However, due to a 
reduced Kondo temperature, the sign change in S occurs at a lower temperature and the thermopower was found 
to retain finite values extending to much lower T compared to the quantum dot case. Interestingly, in the case of 
antiferromagnetic exchange interaction, we have found a new sign change of the thermopower, at energy scale 
corresponding to the exchange interaction between the orbital level and molecule’s core spin. Moreover, we have 
also determined the influence of finite magnetic anisotropy on the thermoelectric properties of magnetic mol-
ecule. Finite magnetic anisotropy gives rise to new qualitative features especially in the case of antiferromagnetic 
J, where a new sign change of thermopower occurs in the case of easy-plane magnetic anisotropy.

On the other hand, when the leads are ferromagnetic, depending on the spin relaxation time, spin accumula-
tion may be generated in the contacts giving rise to the spin Seebeck effect. First, we have focused on the impact 
of the spin-resolved tunneling on the thermopower in the absence of spin accumulation. We have shown that 
in the case of ferromagnetic exchange interaction there is an additional sign change in the temperature depend-
ence of the thermopower. On the other hand, the low-temperature Seebeck effect has been found to strongly 
depend on the position of the molecule’s orbital level, which conditioned the strength of the exchange field in 
the molecule. Generally, the Seebeck effect becomes quenched once the temperature gets smaller than the cor-
responding exchange field.

Finally, we have assumed that the spin relaxation time in the leads is long, so that a spin bias can be generated 
in the system, resulting in the spin Seebeck effect. We have shown that for relatively low values of molecule’s 
exchange interaction the spin Seebeck effect changes sign only when tuning the orbital level across the particle-
hole symmetry point. This is associated with the fact, that the sign of the spin thermopower is conditioned by 
the sign of the exchange field, which changes only when crossing ε = −U/2 . However, if the molecule’s antifer-
romagnetic exchange interaction becomes larger than the Kondo temperature, the temperature dependence of 
the spin Seebeck effect can exhibit a sign change. This feature is associated with the interplay of exchange field, 
antiferromagnetic interaction between the orbital level and molecule’s core spin and the Kondo correlations. A 
similarly nontrivial behavior have been observed in the case of finite easy-plane magnetic anisotropy. We have 
found that the spin Seebeck effect exhibits then a nonmonotonic dependence on the magnitude of anisotropy. 
This effect is related to a revival of the Kondo effect when the anisotropy becomes large enough to bring about 
the two-fold degenerate ground state of the molecule, i.e. when the easy-plane anisotropy wins over both the 
exchange field as well as the molecule’s antiferromagnetic exchange interaction.

As far as the experimental progress is concerned, the field of molecular spin caloritronics is rather at its initial 
stage of development. The model studied here can however also describe quantum dots or impurities coupled 
to a large spin. It is therefore worth mentioning that, recently, there have been successful measurements of ther-
mopower of Kondo-correlated quantum dots10,25,26. Moreover, spin-resolved electronic transport properties of 
molecular junctions have already been extensively studied60,63–65. Therefore, it seems that all the necessary ingre-
dients are at hand and, with the state-of-the-art apparatus, it should be possible to explore the effects presented 
in this paper. We do hope that our work will foster further experimental efforts in this direction.

Methods.  The thermoelectric properties of the system in the linear response regime can be characterized by 
the Onsager integrals, Lnσ , which depend on the spin-resolved transmission coefficient Tσ (ω) . The transmis-
sion coefficient Tσ (ω) can be related to the spin-dependent spectral function Aσ (ω) using the relation

where Aσ (ω) = −Im[GR
σ (ω)]/π and GR

σ (ω) is the Fourier transform of the retarded Green’s function of the mol-
ecule’s orbital level, GR

σ (t) = −iθ(t)�{d̂σ (t), d̂
†
σ (0)}� . The main task is thus to accurately determine the spectral 

function of the system. One of the most powerful methods in this regard is the Wilson’s numerical renormaliza-
tion group method50,51,66,67, which allows for nonperturbative treatment of all correlations in the system. In this 
method one performs a discretization of the conduction band with discretization parameter � and, consecutively, 

(10)Tσ (ω) =
4ŴLσŴRσ

ŴLσ + ŴRσ
πAσ (ω),
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a tridiagonalization of the Hamiltonian describing such discretized system is performed. Eventually, one obtains 
the following NRG Hamiltonian50

in which the molecule is coupled to the first site of the tight-binding chain with exponentially decaying hoppings 
ξn . Here, f̂ †nσ creates a spin-σ electron at the Wilson site n and W denotes the band halfwidth, which is used as 
energy unit W ≡ 1 . This Hamiltonian is then solved in an iterative fashion by retaining a fixed number of states 
NK . While the kept states are used to construct the statespace for the next iteration, the states that are discarded 
during calculation play a vital role in the problem as these states are used to construct the complete many-body 
basis of the full NRG Hamiltonian68. The discarded states are then used for the calculation of quantities of inter-
est with the aid of the full density matrix69. In our calculations we have exploited the Abelian symmetries for the 
system’s spin zth component and charge. We have used � = 2 and kept at least NK = 2000 states in the iteration. 
Moreover, we have determined the Onsager transport coefficients from the raw NRG data without the need of 
broadening the Dirac delta peaks36.
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In this work we analyze the nonequilibrium transport through a quantum impurity (quantum dot or molecule)
attached to ferromagnetic leads by using a hybrid numerical renormalization group–time-dependent density
matrix renormalization group thermofield quench approach. For this, we study the bias dependence of the
differential conductance through the system, which shows a finite zero-bias peak, characteristic of the Kondo
resonance and reminiscent of the equilibrium local density of states. In the nonequilibrium settings, the resonance
in the differential conductance is also found to decrease with increasing the lead spin polarization. The latter
induces an effective exchange field that lifts the spin degeneracy of the dot level. Therefore, as we demonstrate,
the Kondo resonance can be restored by counteracting the exchange field with a finite external magnetic field
applied to the system. Finally, we investigate the influence of temperature on the nonequilibrium conductance,
focusing on the split Kondo resonance. Our work thus provides an accurate quantitative description of the
spin-resolved transport properties relevant for quantum dots and molecules embedded in magnetic tunnel
junctions.

DOI: 10.1103/PhysRevB.106.125413

I. INTRODUCTION

Charge and spin transport through nanostructures such as
nanowires, quantum dots, and molecules have been under rig-
orous experimental and theoretical research worldwide. These
studies are motivated primarily by the possible applications
in spintronics, nanoelectronics, and spin caloritronics, as well
as fascinating physics emerging at the nanoscale [1–4]. In
particular, the high research interest in transport through ar-
tificial quantum impurity systems stems from the observation
of the Kondo effect, a many-body phenomenon, in which the
spin of a quantum impurity becomes screened by conduction
electrons of attached electrodes [5–7]. Many studies, both ex-
perimental and theoretical ones, focused on providing a deep
understanding of the interplay between the Kondo physics
and other many-body phenomena, such as ferromagnetism
[8,9] and superconductivity [10,11], have been carried out.
In this regard, especially interesting in the context of spin
nanoelectronics are quantum dots or molecules attached to
ferromagnetic electrodes [12,13]. Besides the fact that such
nanostructures allow for implementing devices with highly
spin-resolved properties, they enable the exploration of the
interplay between the itinerant ferromagnetism and the strong
electron correlations [9,14–16]. In fact, the spintronic trans-
port properties of ferromagnetic quantum impurity systems
have been the subject of extensive investigations [8,9,14–

*anaman@amu.edu.pl

25]; however, their accurate quantitative description in truly
nonequilibrium settings still poses a formidable challenge.

Reliable equilibrium and linear-response studies of trans-
port through quantum impurity systems have been made
possible by a robust nonperturbative numerical renormaliza-
tion group (NRG) method [26,27]. Unfortunately, this method
falls short when describing the nonequilibrium behavior. On
the other hand, although nonequilibrium situations can be
studied by various analytical methods, their main drawback
is an approximate treatment of electron correlations. It is im-
portant to note that these disadvantages have been overcome
by the time-dependent density matrix renormalization group
(tDMRG) method [28], which, however, has the drawback that
it can reliably study the system’s behavior only for timescales
of the order of 1/D, where D is the half bandwidth of the
conduction band. A reliable quantum quench approach to
study the transport through quantum impurity systems out of
equilibrium was recently proposed by Schwarz et al. [29].
This approach combines both the NRG and tDMRG methods
and, in addition, makes use of the thermofield treatment [30]
to efficiently describe the system.

In this paper, by employing the hybrid NRG-tDMRG
thermofield quench approach [29], we provide an accu-
rate theoretical investigation of the nonequilibrium transport
through a quantum impurity interacting with ferromagnetic
leads. In particular, we study the bias voltage dependence of
the differential conductance, which exhibits a zero-bias peak,
a characteristic feature of the Kondo effect, when the system
is tuned to the particle-hole symmetry point. We show that
the Kondo energy scale in the applied bias potential decreases
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FIG. 1. Model system. A magnetic impurity (quantum dot or
molecule), characterized by an orbital level of energy εd and
Coulomb correlations U , is attached to two ferromagnetic contacts
with spin-dependent coupling strengths �Lσ and �Rσ , respectively.
These leads are locally in equilibrium at a global temperature T ,
but with a voltage bias V = μL − μR that is applied symmetrically
across them.

with increasing the lead spin polarization. On the other hand,
when we detune the system away from this symmetry point,
we observe a splitting of the zero-bias peak for finite lead
spin polarization, which can be attributed to the emergence
of a local exchange field in the impurity. Furthermore, we
study the behavior of this split Kondo peak under external
parameters, such as applied magnetic field or temperature.
We show that a particular value of the magnetic field can
lead to the restoration of the Kondo resonance in the system.
Moreover, we determine the temperature dependence of the
differential conductance at the bias voltage corresponding to
the split Kondo peak.

This paper is organized as follows. In Sec. II we describe
the model and method used in calculations. The main results
and their discussion are presented in Sec. III, where we first
analyze the differential conductance at the particle-hole sym-
metry point and then study the effect of the finite exchange
field on the transport behavior. We also examine the possi-
bility to restore the Kondo effect using magnetic field and
determine the temperature dependence. Finally, this paper is
summarized in Sec. IV.

II. MODEL AND METHOD

The considered system consists of a quantum impurity
(quantum dot or a molecule) attached to two ferromagnetic
leads with spin-dependent couplings, subject to a voltage bias,
as shown schematically in Fig. 1. More specifically, such a
system can be described by a single-impurity Anderson model
[31], in which the quantum impurity is modeled as

Himp =
∑

σ

εdσ nσ + Un↑n↓, (1)

where nσ = d†
σ dσ , where d†

σ creates an electron with spin
σ ∈ {↑,↓} ≡ {+1,−1} at the impurity; εdσ ≡ εd − σ

2 B de-
notes the energy of an impurity energy level, with B being
the external magnetic field in units of gμB ≡ 1; and U is
the Coulomb repulsion experienced when the level is doubly
occupied.

The leads attached to the impurity are assumed to be
ferromagnetic metals and are characterized by the Fermi func-
tions, fα (ω) = [e(ω−μα )/T + 1]−1 (using units of h̄ = kB =
e = 1 throughout), where the index α refers to the leads, α ∈
{L, R} ≡ {−1,+1}, and μα = αV/2. The lead Hamiltonian

reads as follows:

Hlead =
∑
αkσ

εαkσ c†
αkσ

cαkσ , (2)

with c†
αkσ

creating an electron in lead α with energy εαkσ ,
momentum k, and spin σ . The quantum impurity is coupled
to the leads according to the Hamiltonian Hhyb,

Hhyb =
∑
αkσ

(vαkσ d†
σ cαkσ + H.c.). (3)

The electronic transition between each lead mode cασk

and the impurity spin state σ is specified by the tun-
nel matrix elements vαkσ . This coupling between the lead
and impurity induces an impurity-lead hybridization in the
system, expressed by the hybridization function �ασ (ω) =
π

∑
k |vαkσ |2δ(ω − εαkσ ). Finally, the total Hamiltonian of the

system reads

Htot = Himp + Hlead + Hhyb. (4)

In this work we assume a constant hybridization function over
the entire bandwidth 2D (we use D := 1 as the unit of energy
throughout, unless specified otherwise). The hybridization
function can thus be written as �ασ (ω) = �ασ ϑ (D − |ω|),
with ϑ (·) being the Heaviside step function and constant
�ασ = πρασ |vασ |2, where ρασ is the spin-dependent density
of states of lead α. Assuming that vασ ≡ v is independent of
the spin or lead, it is then convenient to introduce the spin
polarization pα of the ferromagnetic contact α,

pα = ρα↑−ρα↓
ρα↑+ρα↓

. (5)

The coupling strength can then be written as �ασ =
(1 + σ pα )�α , with �α = (�α↑ + �α↓)/2. The total coupling
strength for spin σ is given by �σ = �Lσ + �Rσ . In the fol-
lowing we assume that the system is left-right symmetric, i.e.,
�L = �R ≡ �/2 and pL = pR ≡ p. Consequently, the com-
puted electrical current through the impurity is independent of
the sign of the applied bias voltage V , and therefore, it suffices
to analyze V � 0.

The impurity parameters are fixed to

U = 0.012, � = 0.001 (6)

throughout this paper to ensure a well-defined Kondo regime
well isolated from the finite bandwidth, with the impurity level
position εd varied from particle-hole symmetric (εd = −U/2)
to asymmetric (εd = −U/3).

We use a hybrid NRG-tDMRG thermofield quench method
[29] to study the nonequilibrium behavior of the system. This
initializes the leads in thermal equilibrium at their respective
chemical potentials before they get dynamically coupled when
smoothly turning on the coupling to the impurity. This method
can treat the correlations exactly while sustaining the nonequi-
librium conditions of a fixed chemical potential difference and
fixed temperature in the leads. We define a transport window
(TW) using the Fermi functions of the leads [ fL(ω) �= fR(ω)].
The energies outside the TW are assumed to be in equi-
librium and are discretized logarithmically according to the
logarithmic discretization parameter �, and energies inside
the TW are assumed to be out of equilibrium and discretized
linearly according to the linear discretization parameter δ.
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A thermofield treatment is performed on the discrete energy
levels which maps the system to a particle-hole representa-
tion. Moreover, in this particle-hole picture, the tunnel matrix
elements turn out to be functions of the bias voltage V , thus
containing information about the nonequilibrium settings. The
particle and hole modes in the leads are recombined sepa-
rately, leaving the impurity coupled with one set of effective
particle modes and one set of effective hole modes. Then,
NRG is applied to the logarithmically discretized part of the
system, resulting in a renormalized impurity (RI), which is
coupled to the linearly discretized part of the hole and particle
chain. We represent the RI in the matrix product state (MPS)
framework as one site of the MPS chain coupled to completely
filled particle and completely empty hole modes in the linearly
discretized sector. The system is then time evolved using a
second-order Trotter time evolution, where the coupling be-
tween the RI and the lead modes is switched on over a finite
time window. Further details of the method are presented in
the Appendix.

III. RESULTS AND DISCUSSION

In the case of quantum dots or molecules attached to
ferromagnetic contacts the transport properties are strongly
dependent on the spin-resolved charge fluctuations between
the impurity and ferromagnets. These fluctuations give rise
to the level renormalization δεσ . Because, for p > 0, δε↑ �=
δε↓, a spin splitting of the impurity level can be generated,
�εexch ≡ δε↑ − δε↓, referred to as a ferromagnetic-contacted
induced exchange field. Here the exchange field is defined
such that �εexch > 0 tends towards a negative impurity mag-
netization, which in terms of sign is contrary to the definition
of B in Eq. (1). Hence, the effective total magnetic field
experienced by the impurity is given by

Beff
tot � B − �εexch. (7)

The exchange field in the local moment regime can be esti-
mated within the second-order perturbation theory, and it is
given by [8]

�ε
p
exch = 2p�

π
Re[φ(εd ) − φ(εd + U )], (8)

where φ(ε) = �( 1
2 + iε

2πT ), with �(z) being the digamma
function. At T = 0, the formula for the exchange field simply
becomes

�ε
p
exch = p

2�

π
ln

∣∣ εd

εd + U

∣∣︸ ︷︷ ︸
≡γ (�,

εd
U )

. (9)

The most important property of �εexch is its tunability with
changing the position of the orbital level. As follows from
the above formula, �εexch changes sign when crossing the
particle-hole (p-h) symmetry point, εd = −U/2, at which it
vanishes.

We begin our analysis with the study of the influence of the
lead polarization on the nonequilibrium conductance of the
system when the impurity energy level is tuned to εd = −U/2.
We then proceed to examine the case when the system is
detuned from the p-h symmetry point (εd �= −U/2), where
the exchange field can introduce spin splitting in the system.

FIG. 2. The bias voltage dependence at T = 0 and particle-hole
symmetry εd = −U/2 of (a) the mean current J on a log-log scale
(inset lin-log) and (b) the corresponding differential conductance G
on a lin-log scale. The various curves are for different values of the
lead spin polarization p, as indicated.

We also analyze the influence of temperature and applied
magnetic field on the split Kondo resonance observed in the
differential conductance out of the p-h symmetry point.

A. Conductance at the p-h symmetry point

The mean current J (V ) and the corresponding differen-
tial conductance G(V ) through the system calculated at the
particle-hole symmetry point (εd = −U/2) for different val-
ues of the lead spin polarization p are presented in Fig. 2. For
this we always evaluate the symmetrized current as discussed
in Sec. A2 [see Eq. (A4)]. For p = 0, we observe a zero-bias
conductance peak, characteristic of the Kondo effect [6,7].
However, when p is finite, the Kondo temperature is found
to decrease with increasing lead spin polarization. This was
predicted to affect the Kondo temperature of the system at
equilibrium using the poor man’s scaling method [8]:

TK,p ≡
√

�U

2
exp

{
πεd (εd + U )

2�U

arctanh(p)

p

}
. (10)

The decrease in the Kondo energy scale with spin polar-
ization can be understood by realizing that by construction
with Eq. (5), increasing polarization reduces the hybridization
of the suppressed spin orientation. As such, this decreases
the rate of spin-flip cotunneling processes responsible for the
Kondo effect.

To quantitatively elucidate the influence of p on the Kondo
effect, we define the Kondo energy scale VK in the applied bias

125413-3

75



Nonequilibrium spintronic transport through Kondo impurities

ANAND MANAPARAMBIL et al. PHYSICAL REVIEW B 106, 125413 (2022)

FIG. 3. Comparison of the Kondo energy scale VK in the ap-
plied bias potential at εd = −U/2 [Eq. (6)] with the corresponding
equilibrium values of TK obtained from NRG calculations and
the theoretical prediction for TK (denoted by TK,p) using the poor
man’s scaling approach, Eq. (10). The Kondo energy scales are
normalized with their corresponding values at p = 0, with TK,0 =
2.2 × 10−5 and VK(0) = 3.6 × 10−5 = 1.64 TK,0, and TK(0) = 2.6 ×
10−5 = 1.18 TK,0.

voltage as the half-maximum point of the conductance curve,
i.e., G(VK )/G(0) = 1

2 at T = B = 0. In Fig. 3 we present
the dependence of VK obtained from our NRG-tDMRG nu-
merical calculations along with the Kondo temperature TK,p

estimated from Eq. (10) using the poor man’s scaling and
TK(p) calculated using the equilibrium NRG [32] from the
temperature dependence of the linear conductance based on
the definition G(TK )/G(0) = 1

2 . Our nonequilibrium data cor-
roborate the general tendency to decrease the Kondo energy
scale with increasing spin polarization p. However, Fig. 3
also demonstrates some deviations: VK is slightly larger than
the equilibrium TK but smaller than the Kondo temperature
predicted by the analytical formula (10), after normalizing the
Kondo energy scales with respect to their respective values at
p = 0.

B. Effect of finite exchange field

We now discuss the behavior of the differential conduc-
tance in the case when the energy level is away from the p-h
symmetry point (εd = −U/3) but still in the local moment
regime where strong electron correlations play a vital role.
The solid lines in Fig. 4(a) show the bias dependence of the
conductance with an increase in the lead spin polarization
p, computed at zero external magnetic field. We observe a
finite zero-bias peak that gets suppressed when p grows. This
effect can be attributed to the emergence of exchange field
in the system [see Eq. (8)]. The exchange field introduces a
spin splitting of the orbital level, which suppresses the Kondo
resonance, once |�εexch| � TK,VK. The color-coded arrows in
Fig. 4(a) indicate the magnitude of the exchange field for the
corresponding spin polarizations obtained from Eq. (8) with
T = 0. When the exchange field energy approaches the Kondo
energy scale of the system, |�εexch| ≈ TK, the zero-bias con-
ductance becomes suppressed. When the spin polarization
increases further, the differential conductance starts to develop

FIG. 4. (a) The differential conductance G as a function of the
bias voltage in the case when the orbital level is detuned from the
particle-hole symmetry point (solid lines) using εd = −U/3 [Eq. (6)]
for different values of the spin polarization p as indicated in the
legend. To check the continuity from the equilibrium regime, the
corresponding NRG results for the linear-response conductance are
marked by the color-matched squares on the left vertical axis. For
comparison, we also show curves, where the macroscopic spin po-
larization was turned off and replaced, instead, by the corresponding
local magnetic field B = �ε

p
exch (dotted curves). Here the value

for �ε
p
exch was determined by Eq. (8) at T = 0, and its absolute

value is indicated by the color-coded arrows. For p = 0, we obtain
TK,0 = 3.7 × 10−5,VK = 6 × 10−5 = 1.62 TK,0 for the voltage bias
where the differential conductance drops to half its zero-bias value.
(b) The solid (open) circles maps the location of the split Kondo
peak from the solid (dotted) curves in (a), denoted by Vpeak, tracked
as a function of spin polarization p. Solid lines in (b) present the
extrapolation using a linear fit of the squared data for the smallest po-
larizations (first three data points), thus fitting Vpeak = a0γ

√
p2 − p2

0

with �εexch = γ p, where γ = 0.4413 � [see Eq. (9)], and the fit
parameters a0 = 1.001, p0 = 0.072 (vertical line). Similarly, the fit
of the open symbols (dotted line) results in a0 = 0.860, p0 = 0.070.

a peak around V ≡ Vpeak ≈ |�εexch|, which is reminiscent of
the splitting of the local density of states (LDOS) vs frequency
in the presence of a sufficiently strong local magnetic field.
To be specific, the peak in the differential conductance pre-
sented in Fig. 4(a) emerges for p � 0.1. For this value of spin
polarization, we can find that TK,p = 3.66 × 10−5, |�ε

p
exch| �
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4.4 × 10−5 = 1.2 TK,p. Increasing the polarization further, the
peak at V ≈ |�εexch| persists while the conductance overall
diminishes.

The dotted lines in Fig. 4(a) correspond to the case in
which the system has no exchange field (i.e., p = 0) but an
external magnetic field is applied, whose magnitude equals
the exchange field calculated from Eq. (8) according to the
spin polarizations mentioned in Fig. 4(a). This comparison
shows two major differences between the exchange field and
the magnetic field. First, a strong enough exchange field sup-
presses the split Kondo peak in the differential conductance
significantly more strongly and leaves only a residual conduc-
tance derived from the hybridization side peak energies V �
εd [note the log scale in Fig. 4(a)]. This is mainly attributed
to the fact that the Kondo scale gets reduced with increasing
spin polarization (see Fig. 3), such that the ratio |�εexch|/TK

is enhanced for the presence of an exchange field when com-
pared to a local magnetic field. Second, the location of the split
Kondo peak for finite p occurs at slightly higher voltages than
for the case of a local magnetic field. The latter effect may be
attributed to B ≈ �εexch representing a lowest-order estimate.
The explicit dependence of Vpeak on the spin polarization p
in the two above-discussed cases is shown in Fig. 4(b). For
comparison, we also present the p dependence of �εexch and
TK,p estimated from the respective analytical formulas. We
can see that, indeed, the split Kondo peak emerges when
|�εexch| � TK,p. Moreover, by comparing �εexch and TK,p, we
can find that these two energy scales become equal for p =
0.0834. Keeping in mind that this is an approximate estimate,
our numerical results corroborate this tendency very well. The
split Kondo peak shows a slightly nonlinear behavior around
low spin polarizations. We fit the V 2

peak data against p2 to

unveil any behavior of the form Vpeak∼
√

p2 − p2
0. Both the

fits for the exchange field and the corresponding magnetic
field give essentially the same value of p0�0.071, indicated
by the gray vertical line in Fig. 4(b). The prefactor of the fit is
exactly 1 (1.001) within numerical accuracy in the presence of

polarization, with Vpeak �
√

(�ε
p
exch )2 − (γ p0)2 [see Eq. (9)].

This is also clearly seen in Fig. 4(b) in that the fit exactly
coincides with �εexch for larger p. In the case of a substitute
local magnetic field B = �ε

p
exch but unpolarized leads, the fit

reads Vpeak � 0.860
√

(�ε
p
exch )2 − (γ p0)2. This systematically

offsets the peaks with the dashed data in Fig. 4(a) by a con-
stant factor of 0.860 towards slightly smaller values of the
bias voltage yet leads to the disappearance of the split peak
at around the same polarization p0. On the semilog scale in
Fig. 4(b) this change in the prefactor simply shifts the fits
vertically relative to each other, as also reflected in the data
for the full polarization range.

The symbols on the left vertical axis in Fig. 4(a) correspond
to the linear-response data obtained by NRG, which is equiv-
alent to the differential conductance for V → 0. As also seen
in later figures, while we have good overall consistency [e.g.,
see the inset in Fig. 6(b) below], there are minor quantitative
differences in the NRG-tDMRG results compared with the
linear-response NRG results. These are attributed to the differ-
ent parametrization and discretization schemes. Specifically,

FIG. 5. The differential conductance G as a function of the bias
voltage calculated at fixed p = 0.2 for different values of external
magnetic field as indicated using εd = −U/3 [Eq. (6)], thus with
�ε

p
exch = −0.0882� [Eq. (9)]. The color-matched arrows indicate

|Beff
tot | as defined in Eq. (7). The corresponding NRG results for

the linear-response conductance are shown by the color-matched
squares on the left vertical axis. The inset shows the behavior of
G( ,V → 0) as a function of the magnetic field B, with a signif-
icantly denser set of data points from NRG-tDMRG (line) and the
symbols from NRG as in the main panel. The maximum of G(B)
occurs at Bmax = 1.12 �ε

p
exch.

linear conductance within linear response in NRG can be ob-
tained strictly at V = 0+ [33]. In contrast, the NRG-tDMRG
approach always must assume a small, but finite, voltage in
the presence of finite level spacing with the objective being
to numerically compute a steady-state current via a real-time
simulation.

C. The influence of magnetic field

In Fig. 5 we study the influence of external magnetic field
on the split Kondo peak exhibited by the system detuned out
of the p-h symmetry point assuming the lead spin polarization
p = 0.2. We observe a full restoration of the zero-bias Kondo
resonance by an applied magnetic field with a magnitude that
can counterbalance the spin splitting induced by the exchange
field; see the curve for B = 1.1 |�ε

p
exch| in Fig. 5. However,

a further increase in magnetic field is shown to suppress the
zero-bias peak again. This behavior qualitatively matches the
experimental results discussed in Fig. 2 in Ref. [14]. As seen
from the color-coded arrows in Fig. 5, the position of the
split Kondo resonance corresponds to V ≈ |Beff

tot |, as defined
in Eq. (7). The revival of the Kondo resonance can be dis-
tinctly observed from the inset in Fig. 5, where G(V → 0)
exhibits a maximum around Bmax � |�ε

p
exch| such that Beff

tot �
0 [Eq. (7)]. More precisely, from the inset in Fig. 5, Bmax =
1.12 |�ε

p=0.2
exch |, with the small difference being primarily at-

tributed to the perturbative nature of the analytic formula (8).
The prefactor approximately coincides with a similar scale
factor already encountered in Fig. 4(b), where B = |�ε

p
exch|

also underestimated the peak position by an approximate fac-
tor of 1/0.860 = 1.16.
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FIG. 6. The bias voltage dependence of the differential con-
ductance G for fixed p = 0.2 and B = 0 calculated for different
temperatures as indicated in the legend, using εd = −U/3 [Eq. (6)].
(a) presents G(V ) on the logarithmic scale, while (b) shows the same
data on the linear scale with a focus on the low-bias behavior. The
linear-response NRG results are shown by the color-matched squares
on the left axis. The inset in (b) compares the linear-response conduc-
tance as a function of the temperature of our hybrid scheme (using
V = 10−3 T) with NRG results, where the large square symbols of
the latter are identical to the ones in the main panels.

D. Temperature dependence of the split Kondo peak

In this section we analyze the effect of finite temperature
on the split Kondo resonance. Figure 6 shows the bias volt-
age dependence of the differential conductance for various
temperatures calculated for εd = −U/3 and p = 0.2. One can
see that increasing T results in the suppression of the split
Kondo peak, which completely disappears once the thermal
energy exceeds the induced exchange splitting. Increasing
temperature still further overall suppresses the differential
conductance. The suppression of the split Kondo peak is ac-
companied by a weak increase in the conductance at zero bias
for temperatures corresponding to the splitting of the LDOS
due to the exchange field, as seen in the inset in Fig. 6(b). This
can be used to estimate the temperature where the splitting in
the differential conductance disappears. The split Kondo peak
can survive up to a maximum temperature Tmax defined as
the temperature at which G(V → 0, T ) = G(V = Vpeak, T ).
For the spin polarization p = 0.2, we estimate Tmax = 2.06 ×
10−2 � = TK,0.2.

FIG. 7. The energy dependence of the equilibrium zero-
temperature normalized spectral function π�σ Aσ (ω) calculated for
εd = −U/3, p = 0.2, and B = 0 [Eq. (6)]. Note the logarithmic
energy scale.

The V → 0 differential conductance is equivalent to linear
response in thermal equilibrium. The latter is readily obtained
with NRG, with a direct comparison shown in the inset in
Fig. 6(b). Overall, we observe good quantitative agreement.
The points corresponding to the temperatures plotted in the
main panels are marked by the same color-matched squares.
Since linear response can be efficiently obtained with NRG, a
denser set of data points is permitted in the inset.

The weak increase in the linear-response conductance
for a finite temperature can be explained by examining
the energy dependence of the equilibrium local density
of states, i.e., the impurity spectral function, assuming
that this LDOS changes only weakly at low tempera-
tures T � max(TK, |�εexch|). The linear-response conduc-
tance G = �σ Gσ is obtained from the spectral function
using Gσ (T ) = πe2

h

∫ D
−D dω �σ Aσ (ω)[− f ′(ω)] [33], where

Aσ (ω) = − 1
π

Im Gσ (ω) is the spin-resolved spectral function
based on the retarded impurity Green’s function Gσ (ω) and
f ′(ω) is the derivative of the Fermi function at temperature T .
Now if the exchange field due to polarization is sufficiently
strong, |�εexch| � TK, it will already split the spin-averaged
LDOS at equilibrium, as shown for p = 0.2 in Fig. 7. When
temperature is increased, the transport window widens and
thus encompasses more weight from the split peaks. Assum-
ing that the LDOS changes only weakly by turning on a small
temperature T � max(TK, |�εexch|), the contributions from
the peak in the spectral function around ω ≈ |�εexch| will
increase the linear-response conductance up to T � |�εexch|,
where it reaches a maximum before it starts to decrease.

An explicit temperature dependence of the split Kondo
peak conductance for a few selected values of spin polar-
ization is shown in Fig. 8. Figure 8 is determined at finite
bias voltage V (p) ≈ |�ε

p
exch|, i.e., at the voltage correspond-

ing to the location of the split Kondo peak Vpeak shown in
Fig. 4. As seen by the vertical markers in Fig. 8, V agrees
well with |�ε

p
exch| for large polarization p but clearly starts

to differ for smaller p, given that there is no peak at finite
V for p � 0.0834. By starting from the peak conductance,
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FIG. 8. The temperature dependence of the differential con-
ductance G at fixed bias voltage V = Vpeak corresponding to the
maximum of the split Kondo peak in Fig. 4(a) calculated for different
spin polarizations using εd = −U/3 [Eq. (6)], where the circles on
the left axis replicate the peak in the zero-temperature data in Fig. 4.
The color-matched vertical dotted lines mark the peak bias voltage
V (p) at which conductance is calculated, whereas the dashed lines
indicate |�ε

p
exch|. These are roughly located where the peak conduc-

tance is reduced by about half relative to a background conductance
due to the hybridization side peaks at energy εd .

we can now clearly see in Fig. 8 the decrease in the re-
maining Kondo resonance as the temperature increases. The
logarithmic decrease in the split Kondo peak conductance at
higher temperatures was experimentally observed in Fig. 3(a)
of Ref. [9]. In the case of p = 0.1, the split Kondo peak just
emerged, with |�ε

p=0.1
exch | ≈ TK, as can be observed from Fig. 4

and the vertical blue lines in Fig. 8. Hence, we can see a slight
nonmonotonic behavior arising from the interplay between
the Kondo effect and the exchange field. More generally, we
can infer from Figs. 6 and 8, for the split Kondo regime,
i.e., sufficiently strong polarization p with |�εexch| > TK, that
GV vs T (GT vs V ) will exhibit a nonmonotonic behavior if
T < |�εexch| (V < |�εexch|) but a monotonic decay if T �
|�εexch| (V � |�εexch|). We also note that the temperature
dependence of the nonequilibrium differential conductance at
V ≈ |�εexch| does not show a universal dependence. This can
be understood by realizing that the system is then out of the
Kondo regime.

IV. SUMMARY

In this paper we have studied the nonequilibrium spin-
resolved transport through a quantum dot coupled to ferro-
magnetic leads while treating the correlations exactly. We
showed that when the dot level is at the particle-hole sym-
metry point, the Kondo resonance can be observed for any
value of spin polarization p, but the Kondo energy scale in the
bias potential VK reduces with increasing spin polarization.
However, when the dot level is detuned out of the particle-hole
symmetry point, we observed the emergence of an exchange
field �εexch in the system, which splits the zero-bias conduc-
tance peak when it is comparable to or larger than the Kondo
energy scale. A finite value of magnetic field B ≈ |�εexch| was
able to restore the Kondo resonance in such a system. More-

over, we determined the temperature dependence of the split
Kondo peak and showed that the character of this dependence
depends on the ratio of exchange field to the Kondo energy
scale. Our work provides benchmark results for nonequilib-
rium spintronic transport through quantum impurity systems
in the presence of ferromagnetic leads.
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APPENDIX: THE HYBRID NRG-tDMRG THERMOFIELD
QUENCH APPROACH

This Appendix provides more details of the hybrid NRG-
tDMRG thermofield quench method [29] used to calculate the
spin-resolved transport properties of the system in nonequilib-
rium settings.

1. Thermofield treatment of the leads

To describe the leads we use the thermofield approach
[30,34,35], in which an auxiliary Hilbert space, equivalent
to the lead Hilbert space but decoupled from the system, is
introduced to the lead Hamiltonian, effectively doubling the
Hilbert space. This allows us to simplify the computational
problem since the decoupled modes of thermal leads can be
expressed as simple product states. More importantly, the
thermofield approach enables the description of the thermal
states as pure states, which can then be time evolved within
the matrix product state framework.

A pure state |�〉 is defined on this enlarged space such that
the thermal expectation value of an observable A in the origi-
nal physical Hilbert space can be obtained from the enlarged
space using 〈A〉 = 〈�|A|�〉, where the state |�〉 is defined as

|�〉 =
∏

q

(
√

1 − fq|0, 1〉q + √
fq|1, 0〉q ). (A1)

Here the composite index corresponds to q ≡ {α, k, σ }, fq ≡
fα (εαkσ ), and the Fock states, |0, 1〉q and |1, 0〉q, which act as
the basis for the new Hilbert space, are defined as cq1|0, 1〉q =
c†

q2|0, 1〉q = c†
q1|1, 0〉q = cq2|1, 0〉q = 0. We define the modes

c̃q j in a rotated basis such that |0̃, 1̃〉q = √
1 − fq|0, 1〉q +√

fq|1, 0〉q, using the transformation(
c̃q1

c̃q2

)
=

(√
1 − fq

√
fq√

fq
√

1 − fq

)(
cq1

cq2

)
. (A2)

With this transformation, the initial pure product state |�〉 is
such that c̃q1|0, 1〉q = c̃†

q2|0, 1〉q = 0, which essentially results
in one set of modes ( j = 2) being fully occupied, while the
rest ( j = 1) are empty. The fully filled (empty) states in the
new basis resemble the particle (hole) description of the lead
Hamiltonian. The particles and holes will be recombined later
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for the NRG part of the calculations but will be treated sepa-
rately for the tDMRG time evolution, as described later.

2. The hybrid NRG-tDMRG time evolution

The hybrid NRG-tDMRG approach we employ combines
the strong assets of both NRG and DMRG, namely, the ability
of NRG to resolve logarithmic energy scales and the ability of
DMRG to describe nonequilibrium situations at energy scales
close to the bandwidth. One fundamental difference between
the two methods is that while NRG is fundamentally based on
logarithmic discretization, DMRG studies have found incred-
ible success based on a linear discretization of the lead energy
continuum. The energy scales that distinguish the regimes of
implementation of these methods are denoted by the transport
window (TW), which is determined by the difference in the
electrochemical potentials of the leads, fL(ω) �= fR(ω). As-
suming that the lead levels far from the TW are essentially
in equilibrium, we implement a logarithmic discretization
scheme outside the transport window in order to later treat
them with the aid of the NRG. On the other hand, the energies
inside the TW are discretized linearly to be compatible with
the DMRG formalism. The discretized energy intervals are
denoted by Ek and are defined as

Ek (x) =
{

δx, | x |� D∗/δ,
δsinh[ln(�)(x∓ D∗

δ
)]

log(�) ∓ δD∗, x ≶ ±D∗/δ,

where δ and � are the linear and logarithmic discretization
parameters, respectively. The energy levels outside the TW
are treated using the numerical renormalization group method,
giving rise to a renormalized impurity (RI) with a reduced
effective bandwidth 2D∗. As a result of the thermofield trans-
formation in the linear sector, the system can be effectively
described as a renormalized impurity coupled to two chains,
corresponding to the tridiagonalized chains of the particle and
hole modes.

The Hamiltonians, Hlead and Hhyb, transform according to
the aforementioned rotation as

Hlead = Hlead + Haux =
∑

q j

εqc†
q jcq j =

∑
q j

εqc̃†
q j c̃q j,

Hhyb =
∑

q j

(ṽq jd
†
σ c̃q j + H.c.), (A3)

where j ∈ {1, 2} and the transformed couplings
ṽq1 = vq

√
1 − fq and ṽq2 = vq

√
fq. After the transformation,

we recombine the particles and holes in the logarithmically
discretized regime through another tridiagonalization in order
to apply NRG. Furthermore, we recombine the transformed
left and right lead modes so that one set of modes decouples
from the system, which is common in the case of equilibrium
NRG studies [27].

We perform a second-order Trotter time evolution on the
initial state of the system, |ψini〉 = |φini〉 ⊗ |�〉, during which
the coupling between the linear and logarithmic sectors is
switched on over a finite time interval. Here |φini〉 is the initial
state of the RI, and |�〉 is the pure product state of the linear
sector. We calculate the symmetrized current

J = JL − JR (A4)
at each time step of the system’s evolution, where JL (JR) is
defined as the current flowing from the left (right) lead to the
impurity and Jα = ∑

σ Jασ . The system is time evolved until
the relevant observables start to fluctuate around a mean value
and a nonequilibrium steady state is reached. We evaluate our
main quantity of interest—the current—as the mean of the
symmetrized current over a finite time interval where the sys-
tem shows steady-state behavior. The averaging time window
is chosen by scanning through the current dynamics to find the
one with least error around the mean value. The corresponding
differential conductance G = dJ (V )/dV is calculated from
the mean symmetrized current. Both NRG and tDMRG calcu-
lations are implemented in the matrix product state framework
[36]. In calculations we assume � = 2.5 and δ = 0.0625D∗.
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The transport across a Kondo-correlated quantum dot coupled to two leads with independent
temperatures and chemical potentials is studied using a controlled non-perturbative, and in this sense
exact numeric treatment based on a hybrid numerical renormalization group combined with time-
dependent density matrix renormalization group (NRG-tDMRG). We find a peak in the conductance
at finite voltage bias vs. the temperature gradient ∆T = TR − TL across left and right lead. We
then focus predominantly on zero voltage bias but finite ∆T far beyond linear response. We reveal
the dependence of the characteristic zero-bias conductance on the individual lead temperatures.
We find that the finite-∆T data behaves quantitatively similar to linear response with an effective
equilibrium temperature derived from the different lead temperatures. The regime of sign changes
in the Seebeck coefficient, signaling the presence of Kondo correlations, and its dependence on the
individual lead temperatures provide a complete picture of the Kondo regime in the presence of finite
temperature gradients. The results from the zero-bias conductance and Seebeck coefficient studies
unveil an approximate ‘Kondo circle’ in the TL/TR plane as the regime within which the Kondo
correlations dominate. We also study the heat current and the corresponding heat conductance vs.
finite ∆T . We provide a polynomial fit for our numerical results for the thermocurrent as a function
of the individual lead temperatures which may be used to fit experimental data in the Kondo regime.

I. INTRODUCTION

Strong electronic correlations in a magnetic impurity
coupled to electronic reservoirs result in a many-body
screening phenomenon, mediated by the conduction band
electrons, known as the Kondo effect [1]. The Kondo ef-
fect manifests itself in the density of states of the impu-
rity as a narrow resonance peak around the Fermi level
widely known as the Kondo-Abrikosov-Suhl resonance
[2, 3]. This Kondo resonance that increases the low tem-
perature resistivity of bulk metal alloys [4] has been found
to be present in various classes of nanostructures, involv-
ing single electron transistors [5–10], nanowires [11–14],
carbon nanotubes [15, 16], molecular magnets [17–19],
adatoms [20–22] and other quantum impurity systems
[23–27]. Such nanostructures are very tunable and act
as a robust platform to explore various aspects of the
Kondo effect [6, 28]. Moreover, the transport proper-
ties of Kondo-correlated impurity systems carry charac-
teristic signatures of the Kondo effect, which emerge at
low temperatures near the Kondo energy scale. Partic-
ularly, the zero-bias peak in the differential conductance
[5, 6] and a sign change in the Seebeck coefficient at
low energies [29–33] signify the presence of Kondo cor-
relations in the system. The characteristic density of
states present in the quantum dots makes them a class of

∗ anaman@amu.edu.pl

prospective systems to work as efficient energy-harvesters
[34–42]. Various proposals, such as the charge Kondo ef-
fect [43], multi-quantum dot setups [44, 45], including
the case of asymmetric couplings to the leads [46, 47],
have pointed towards a considerable thermoelectric effi-
ciency of quantum-dot based heat engines. Thermoelec-
tric quantum dot devices have also demonstrated promis-
ing applications in sensing [46, 48] and cooling technolo-
gies [49–51].

An accurate description of the Kondo effect relies on
the exact treatment of electronic correlations at low
energy scales. Though many theoretical methods, in-
cluding the Bethe-Ansatz [52, 53], perturbation theory
[54], Fermi liquid theory [55] and the dynamical mean
field theory [56], can tackle the Kondo problem and
contribute to the qualitative understanding of the phe-
nomenon at low energies, all of them rely on approxi-
mating the electronic correlations to describe the ener-
gies near the Kondo energy scale. The numerical renor-
malization group method (NRG) [57, 58], considered to
be the best at tackling the Kondo problem, can provide
quantitatively accurate description of the Kondo effect,
but only up to linear response studies near equilibrium
[29].

Notable theoretical attempts to describe the nonequi-
librium transport through a Kondo impurity had em-
ployed nonequilibrium Greens function (NEGF) [59–
61], renormalized perturbation theory (RPT) [62], gen-
eralized Fermi liquid theory [63–66], perturbative ap-
proaches [47, 67], auxiliary master equation approach
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(AMEA) [48, 68, 69], non-crossing approximation (NCA)
[70, 71] and slave-boson mean field theory (SBMFT) [60].
Though each method has its own virtues and provides
theoretical insights at various limits, a complete pic-
ture of the whole nonequilibrium Kondo regime had re-
mained elusive. A hybrid method, incorporating both nu-
merical renormalization group and time-dependent den-
sity matrix renormalization group (tDMRG) method
based on a thermofield quench approach (NRG-tDMRG),
has achieved the feat of describing the nonequilibrium
transport through a Kondo-correlated system with exact
treatment of correlations [72]. Until now, this method
has been employed to address the electronic transport
under finite potential bias [72] and spintronic transport
in the presence of ferromagnetism in the leads [73]. In
this work, we extend the NRG-tDMRG method to de-
scribe the nonequilibirum Kondo effect in the presence of
finite temperature gradients. In particular, we consider a
quantum dot symmetrically coupled to two metallic leads
held at different temperatures that can be tuned indepen-
dently. The choice of symmetric couplings to the leads
allows for the Kondo correlations to develop over both
the leads, uncovering the influence of the individual lead
temperatures on the Kondo effect. The dynamics of the
electronic and heat currents are calculated using NRG-
tDMRG and their nonequilibrium steady state values are
extracted using linear prediction across a finite time win-
dow. We characterize the Kondo regime as a function of
the individual lead temperatures using the zero-bias con-
ductance and the Seebeck coefficient of the system. We
find that transport in the presence of a nonlinear tem-
perature gradient can be qualitatively described by linear
response results with an effective equilibrium tempera-
ture. Our results demonstrate that the Kondo correla-
tions persist as a circle when depicted in the individual
lead temperatures.

Our work provides the first quantitatively accurate
results for the thermoelectric transport coefficients of
Kondo-correlated quantum dot in far-from-equilibrium
settings. The paper is organized as follows: Sec. II de-
scribes the system Hamiltonian and the transport prop-
erties under study. In Sec. III, we discuss the results from
NRG-tDMRG calculations. We begin by discussing a
noninteracting system in Sec. III A, and then moving on
to the interacting system described by the single impu-
rity Anderson model in Sec. III B. The influence of tem-
perature gradient on the zero-bias transport properties
is discussed in Sec. III B 1. The differential conductance
at zero-bias and for a finite potential bias in the presence
of different lead temperatures is discussed in Sec. III B 2.
The thermoelectric current, Seebeck coefficient and heat
transport properties are discussed in Sec. III B 3. Finally,
the paper is summarized in Sec. IV.

II. MODEL AND METHOD

A. Hamiltonian

FIG. 1. The schematic of a quantum dot with orbital level
εd and Coulomb repulsion U coupled to the left (α = L) and
right (α = R) metallic lead with hybridization function Γα.
Each lead is held at different temperature Tα and chemical
potential µα = ±V/2.

Our system consists of a quantum dot strongly coupled
to two metallic leads. The Hamiltonian of such a system
can be described as

H = Himp +Hlead +Htun, (1)

where Himp is the impurity part of the Hamiltonian de-
scribed by a single impurity Anderson model (SIAM)
with orbital energy εd and Coulomb interaction U . Himp

takes the form

Himp = εd(n↑ + n↓) + U n↑n↓, (2)

where nσ = d†σdσ is the number operator, with dσ(d
†
σ)

being the annihilation (creation) operator for a dot elec-
tron with spin σ. The leads are modeled as noninteract-
ing particles

Hlead =
∑

α

Hα =
∑

αkσ

εαkc
†
αkσcαkσ, (3)

with cαkσ (c†αkσ) denoting the annihilation (creation) op-
erator for an electron in the lead α with energy εαk
and spin σ. Finally, the tunneling Hamiltonian Htun de-
scribes the coupling of the quantum dot to the leads

Htun =
∑

αkσ

(vαkd
†
σcαkσ +H.c.), (4)

where vαk is the tunneling matrix element between the
kth mode in the lead α and the quantum dot. The
dot hybridizes with the leads with the coupling strength
given by, Γα = πρα|vαk|2, where ρα denotes the den-
sity of states of the lead α, which is assumed to be flat
ρα ≡ 1/2D, with D being the band halfwidth which is
used as the unit of energy, hence D = 1. In the follow-
ing, without loss of generality, we assume that the system
is symmetric ΓL = ΓR = Γ. We set

Γ = 0.001, U = 12Γ, εd = −U/3, (5)

unless specified otherwise. The bias voltage V is applied
symmetrically as µL = −µR = V/2 and the left and
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right lead temperatures TL, TR can be controlled inde-
pendently.

To accurately take into account correlation effects
at truly nonequilibrium settings, we employ a hy-
brid NRG-tDMRG method in the matrix product state
(MPS) framework [72, 73]. This method consists of a
logarithmic-linear discretization scheme of the conduc-
tion bands, a thermofield treatment, followed by a re-
combination of the leads modes, and finally the time
evolution by the second-order Trotter decomposition to
reach the nonequilibrium steady-state. The resolution of
the method in the energy domain is conditioned by the
number of intervals within the transport window. The
steady state values as t→ ∞ of heat and charge currents
are found from linear prediction of finite time dynamics
(cf. App.B).

Since the hybrid NRG-tDMRG approach involves a lin-
ear discretization within the transport window and then
the time evolution in this discretized basis by tDMRG,
for realistic calculations in the case of a finite thermal
bias, this sets the limit on the difference in the tempera-
tures of the left and right leads to be around two orders
of magnitude. More detailed description of the method
is presented in App.A.

B. Transport coefficients

The charge current Jασ from the lead α to the quantum
dot in the spin channel σ is given by

Jασ = e ⟨Ṅασ⟩ = − ie
ℏ
⟨[Nασ, H]⟩

=
e

ℏ
∑

k

Im (vαk ⟨d†σcαkσ⟩). (6)

Here, Nασ =
∑

k c
†
αkσcαkσ is the occupation number in

the lead α. Similarly, the energy current JE
α from the

lead α to the quantum dot can be described based on the
lead Hamiltonian Hα as

JE
α = ⟨Ḣα⟩ = − i

ℏ
⟨[Hα, H]⟩

=
1

ℏ
∑

kσ

εαk Im (vαk ⟨d†σcαkσ⟩). (7)

In the case of V = 0, the energy current can be consid-
ered as the heat current JQ ≡ JE . We note that since
the symmetrized charge (heat) current J (Q)(t) converges
faster than the current contributions from the individual
leads, J

(Q)
ασ (t), it is more efficient to find the steady-state

value of the total current J (Q)(t),

J (Q)(t) =
∑

σ

1

2
[J

(Q)
Lσ (t)− J

(Q)
Rσ (t)]. (8)

More details about estimating J (Q)(t) and the steady
state J (Q) can be found in App.B.

The differential electronic conductance G and the elec-
tronic contribution to the heat conductance κ are respec-
tively defined as

G =

(
dJ

dV

)

TL, TR

,

κ =

(
JQ

∆T

)

V

. (9)

The Seebeck coefficient S estimates the potential V
required to compensate for the induced thermoelectric
current J under a finite temperature gradient ∆T and it
is defined as

S = −
(
V

∆T

)

J=0

. (10)

For the transport across an impurity coupled to metal-
lic leads in the linear response regime, these transport co-
efficients can be estimated as a function of the Onsager
integrals, Ln = − 1

h

∫
dω(ω − µ)n ∂f

∂ωT (ω), where T (ω) is
the transmission coefficient of the impurity and it is es-
sentially equivalent to the equilibrium spectral function
A(ω) [74]. The linear response transport coefficients can
thus take the form [29]

G0 = e2 L0,

S0 = − 1

eT

L1

L0
, (11)

κ0 =
1

T

(
L2 −

L2
1

L0

)
.

III. RESULTS AND DISCUSSION

In this section, we present and discuss the NRG-
tDMRG results for the nonequilibrium transport through
a quantum dot in the presence of temperature gradi-
ents. The details of the NRG-tDMRG calculations are
described in App.A where the method specific param-
eters are provided in App.A 4. First, the results for a
noninteracting impurity under finite potential bias and
temperature gradient are compared with exact results in
Sec. III A. On the other hand, the nonequilibrium trans-
port across an interacting impurity in the presence of a
finite temperature gradient is discussed in Sec. III B.

A. Noninteracting case: Resonant Level Model

As a benchmark for the nonequilibrium calculations,
we consider the noninteracting resonant level model
(RLM), i.e., essentially the Anderson model with U = 0.
For this case, the current flowing through the system can
be solved exactly [74]

J(V,∆T ) =
2e

h

∫
dω T (ω) [fL(ω)− fR(ω)], (12)
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FIG. 2. The differential conductance for the resonant level
model (U = 0) vs. potential bias V for fixed ∆T ∼ T (see
model parameters to the left) and orbital energies εd as indi-
cated in the legend. NRG-tDMRG data (dots) is compared
to exact analytic curves for continuum (lines) as a consistency
check.

where T (ω) denotes the transmission coefficient, which
can be related to the quantum dot spectral function
A(ω), T (ω) = πΓA(ω). For the noninteracting quantum
dot, the spectral function can be found exactly through
the equation of motion for the Green’s function. The
transmission coefficient is then given by T (ω) = Γ2/(Γ2+
(ω − εd)

2), where fα(ω) = 1/{1 + exp[(ω − µα)]/Tα}
is the Fermi-Dirac distribution function of lead α with
kB ≡ 1. The differential conductance G(V ) calculated
using NRG-tDMRG method for a noninteracting quan-
tum dot with different orbital level energies εd in the
presence of finite potential and temperature gradients
is shown in Fig. 2. The differential conductance G(V )
has a peak around V = 2 εd, which is attributed to the
Lorentzian peak in A(ω) located at ω = εd. The shift
in the differential conductance peak from the Lorentzian
peak originates from the symmetric nature of applied bias
µL = −µR = V/2, resulting in the transport window
(TW) [fL(ω)−fR(ω)] inside the integral in Eq. (12) scan-
ning the peak mainly around ω = 2V . It is important to
note that the both temperatures (TL, TR) smear out the
transport window and can thus only broaden the conduc-
tance peak. The exact analytical calculations (lines) in
Fig. 2 agree perfectly with the NRG-tDMRG data (dots),
affirming that this technique can capture the nonequilib-
rium transport primarily originating from the nonlinear
dependence of the lead Fermi distributions on V and T .

B. Interacting case: Single Impurity Anderson
Model

In the presence of finite U , the nonequilibrium trans-
port across the quantum dot becomes highly nontrivial
and cannot be boiled down to an analytical description
without sufficient approximations [60, 65]. But, the lin-

ear response description of transport across an interact-
ing quantum dot in equilibrium can very well be calcu-
lated using the definitions in Eq. (12) once the spectral
function A(ω) is obtained. The equilibrium spectral func-
tion A(ω) of a SIAM with finite U can be calculated using
NRG with extreme precision, and thus it will be used as
the benchmark for the calculation of linear response co-
efficients. The NRG data discussed in this section have
been calculated using the QSpace tensor library for Mat-
lab [75–77] with discretization parameter Λ = 2, iteration
number N = 60 and the maximum number of states kept
NK after each iteration as 210.

1. Influence of finite temperature gradient

We first introduce the finite temperature gradient
across a SIAM by keeping the left lead temperature at
TL = 0.01Γ and changing the right lead temperature
from TR = 0.01Γ to TR = 0.5Γ. The electric current
J(V, TL, TR) and heat current JQ(V, TL, TR) across the
SIAM using (5) is calculated for bias voltages close to
linear response V0 ≈ 0.005Γ using the NRG-tDMRG
method. Thus the differential conductance G(TL, TR) ≡
G(V = 0, TL, TR) can be estimated as

G(TL, TR) = 1
2V0

(
J(V0)− J(−V0)

)∣∣∣
TL,TR

. (13)

The choice of linear response bias voltage V0 is such that
any nonlinear behavior of G(V ) can be avoided, allowing
us to treat the estimated currents as linear in V . Since
the bias values V = ±V0 are effectively in the linear
response regime, the charge (heat) current J (Q) at zero
bias can be calculated according to the linear response
expansion as,

J (Q)(TL, TR) =
1
2

(
J (Q)(V0) + J (Q)(−V0)

)∣∣∣
TL,TR

. (14)

The electronic contribution to the heat conduc-
tance according to Eq. (9) can thus be κ(TL, TR) =
JQ(TL, TR)/(TR−TL). The information about J(TL, TR)
and G(TL, TR) at V = 0 is sufficient to calculate the See-
beck coefficient S for the respective parameters. More-
over, the linear response in V allows the current for small
voltages to be expressed as J(V ) = J(0) + V G for con-
stant TL and TR. Thus the Seebeck coefficient S from its
definition in Eq. (10) can be estimated as,

S(TL, TR) = − 1

TR − TL

J(TL, TR)V=0

G(TL, TR)V=0
. (15)

The transport coefficients for a quantum dot in the
presence of finite temperature gradient calculated using
NRG-tDMRG are shown in Fig. 3. The differential con-
ductance G seen in Fig. 3(a) shows the evolution of the
zero-bias conductance peak as a function of the orbital
energy εd. The red dots in Fig. 3(a) display the NRG-
tDMRG data for TL = TR = 0.01Γ, which match ex-
actly with the equilibrium NRG data (red curve) for
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FIG. 3. (a) Differential conductance G, (b) Seebeck coefficient S, and (c) heat conductance κ of an interacting quantum dot
[SIAM using parameters (5) except for εd which is varied here] vs. orbital level position εd in the linear response regime with
respect to the bias voltage. The left lead is kept at temperature TL = 0.01Γ throughout, while the right lead temperatures
are specified with the legend in (b). The colored symbols are the nonequilibrium data from the NRG-tDMRG calculations and
the solid lines present the equilibrium NRG data with the same parameters but calculated for an effective global temperature
Teff = Trms. Numerically, the determination of S and κ require a finite temperature difference ∆T . Hence, no red dots are
shown for the case TL = TR in (b) and (c). The limiting case ∆T → 0, however, is reflected in the small ∆T/T ∼ 0.1 data set
(blue triangles), which already agrees well with the equilibrium NRG data for ∆T = 0 (red line).

G0 computed with a global temperature T = 0.01Γ.
The large conductance inside the local moment regime,
−U ≲ εd ≲ 0, is a characteristic feature of the Kondo
resonance and the thermal fluctuations from the leads
with temperature T = 0.01Γ limit the conductance from
reaching the unitary value of G0 = 2e2/h.

The Kondo temperature TK in the local moment
regime is analytically given by the improved Haldane for-
mula from Fermi liquid theory [64]

TK =

√
ΓU

2
exp

[
π εd (εd + U)

2 ΓU
+
π Γ

2U

]
. (16)

Since the Kondo temperature represents a crossover
scale, it is only defined up to a prefactor of order one.
Hence, alternatively from a data or experimental point
of view, the Kondo temperature can be estimated by the
temperature at which the zero-bias conductance drops
by half. Below, we will refer to this as TK′ , where based
on our data for the parameters in Eq. (5), TK′ ≃ 1.05TK
[cf. Fig. 4(c) and caption].

For the SIAM parameters in Eq. (5), we have TK =
0.042Γ [as compared to the lowest value at εd = −U/2,
TK = 0.025Γ]. Thus, in the local moment regime, the
G(εd) curves in Fig. 3(a) show minima at εd = −U/2 cor-
responding to the lowest TK. We proceed to heat up the
right lead (TR), as specified in the legends of Fig. 3. With
increasing TR, the differential conductance in the local
moment regime decreases as the Kondo resonance dies
off with increasing thermal fluctuations from the hotter
lead. The equilibrium NRG cannot account for different
lead temperatures, but one can still define an effective
global temperature Teff at equilibrium as the root mean
square value of the left and right lead temperatures

Teff = Trms =
√

1
2 (T

2
L + T 2

R). (17)

The significance of the root mean square value will be
discussed in the next section, Sec. III B 2. For the sake of
the discussion here, it is sufficient to note that Trms → T
when TR → TL.

In Fig. 3 we show that a striking agreement exists be-
tween the nonequilibrium NRG-tDMRG results at finite
thermal bias (colored symbols) and the equilibrium NRG
results with an effective global temperature Trms defined
as the root mean square value of the lead temperatures.
Implying that the dependence on the individual lead tem-
peratures mimics the dependence of equilibrium Kondo
resonance width with a global temperature Trms. This
is consistent with the low temperature limit from the
perturbation theory and slave-boson mean field theory
results of Ref. [60]. Moreover, the NRG-tDMRG re-
sults are valid for higher temperatures due to the ex-
act treatment of correlations. It is also interesting to
note that this effective Trms equivalence extends even
into the mixed valence and empty/filled orbital regimes
(εd ≲ −U , εd ≳ 0). Furthermore, the experimental works
for the thermoelectrics in the Kondo regime show a good
agreement with our results. Figure 2 of Ref. [30], show-
ing the differential conductance and thermocurrent with
∆T/T ≈ 0.3 for different T near the Kondo regime, be-
haves in a very similar way to the results presented here.
On the other hand, the experimental data for the See-
beck coefficient shown in Fig. 4 of Ref. [31] were related
to the linear response NRG results. We note that in this
case, the corresponding temperature gradients, though
not precisely determined due to the experimental con-
ditions, reached ∆T/T ≈ 2/3 which is well beyond lin-
ear response theory. The qualitative agreement obtained
with linear-response NRG, nevertheless, we attribute to
the Trms equivalence discussed in this paper. A more
quantitative agreement can be obtained using T = Trms
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in the NRG calculations, provided that the temperatures
of the individual leads are known. Of course, deep in
nonequilibrium, i.e., much beyond linear response, one
needs to resort to out-of-equilibrium approaches such as
NRG-tDMRG.

The linear response Seebeck coefficient S0 of a quan-
tum dot as a function of the global temperature has been
shown to change sign with the onset of the Kondo correla-
tions [29–31, 60]. On the other hand, the nonlinear tem-
perature gradient dependence of S in the Kondo regime is
largely unknown. Here, with our NRG-tDMRG method,
we are able to provide first accurate data on it, which
are presented in Fig. 3(b). The red curve represents the
equilibrium case where Trms = TL = TR = 0.01Γ. Note
that the calculation of S from NRG-tDMRG requires a fi-
nite temperature gradient according to Eq. (15) and thus
nonequilibrium data is absent for the TL = TR case. The
representative linear response results from NRG-tDMRG
are presented in the case of TR = 0.011Γ (blue traingles)
and agree well with the equilibrium results from NRG.
The Seebeck coefficient remains antisymmetric across the
particle-hole symmetry point εd = −U/2 and has a non-
zero value in the local-moment regime, as expected for
finite temperatures below TK.

When the right lead temperature is increased, i.e. with
a finite thermal bias, the Seebeck coefficient becomes re-
duced and starts to change sign in the local moment
regime around TR = 0.2Γ, indicating the destruction
of the Kondo resonance. Interestingly and quite unex-
pectedly, the comparison to the equilibrium NRG results
with a global temperature Trms gives a reasonably good
agreement in the local moment regime. The sign change
in equilibrium S0(T ) occurs at higher temperatures than
TK, which is also reflected in our finite ∆T results. How-
ever, outside the local moment regime, where the Kondo
correlations do not emerge, the Seebeck coefficient in-
creases in magnitude (no sign changes) with the increase
in TR and, correspondingly, with Trms. In this regime,
the effective linear response results show growing devi-
ations from the nonequilibrium results with increasing
temperature gradient.

Finally, for the sake of completeness, we examine the
heat conductance κ as a function of εd in Fig. 3(c). The
heat conductance is dominated by the contribution asso-
ciated with charge fluctuations, which are most active at
resonances. As can be seen, κ generally has two peaks
corresponding to the proximity of the resonant levels to
the Fermi energy at εd ≈ 0 and εd ≈ −U . With a finite
thermal bias, κ shows deviations from the linear response
Trms calculations that increase with raising the tempera-
ture gradient.

2. The Kondo circle

In this section, we discuss how the Kondo effect de-
pends on the individual lead temperatures. For this, we
choose the orbital level εd = −U/3, for the system to

be in the local moment regime, but far enough from the
particle-hole symmetry point to develop sufficient ther-
mopower S.

Figure 4(a) presents the zero-bias differential conduc-
tance G as a function of the independent left and right
lead temperatures. The conductance G has its maxi-
mum as TL, TR → 0 and decays radially in the TL − TR
plane. In particular, we focus on the temperatures in the
scaling regime, i.e. around T = TK, where the conduc-
tance G0(T ) is known to exhibit universal behavior. The

black [white] dashed curves denote circles of radii
√
2TK,

where TK is estimated from Eq. (16) [
√
2TK′ , where TK′

is estimated as the half-width of the linear-response con-
ductance G0(Trms)]. Though the Kondo temperature
TK′ ≈ 1.05TK from the numerical NRG data provides a
more accurate approximation of the Kondo energy scale
than the analytical formula, for the sake of generality
and ease of estimation, we will stick to TK as the defi-
nition of Kondo temperature in this paper. Therefore,
the half-width of the conductance peak lying on the TK′

circle is an immediate consequence from the definition of
Trms and its correspondence to the nonlinear ∆T in the
local moment regime [cf. Fig. 3(a)]. The horizontal cross-
sections in panel (b) show how the conductance decays
as a function of the right lead temperature TR, where
the temperature on the left lead TL determines the peak
value of the conductance curve. The G(TR) curve lies
below the linear response G0(TR = TL = T ) curve for
TR < TL and coincides with the linear response results
at TL = TR to remain above the linear response data
for TR > TL. Due to the left-right symmetry in the sys-
tem, the previous arguments hold true even if one swaps
TL and TR. The conductance data G(TL, TR) is plotted
against the rescaled Trms temperature in the panel (c).
The rescaled data lies perfectly on top of the linear re-
sponse G0(Trms) curve. This is a useful result, especially
for the experimental exploration of the Kondo regime.
In experiments, where one do not reach the truly linear
response regime [30–33], Trms can provide reliable the-
oretical estimations from equilibrium NRG calculations
to accurately identify the parameter space of the Kondo
regime in TL and TR separately.

In general, the zero-bias conductance peak along with
the Kondo resonance is known to get smeared with in-
creasing thermal fluctuations [6, 8]. The influence of
the individual lead temperatures on the whole G(V )
curve beyond linear response bias voltage regime is less
trivial and is shown in Fig. 5(a). The lower plane in
Fig. 5(a) presents the G(V ) calculations for a cold left
lead temperature TL ≈ 0.1TK and with increasing the
right lead temperatures TR > TL. For small tempera-
tures TR ≪ TK, the conductance peak remains sharp in
the finite V regime but with an increase in TR around
TR ≈ 0.2TK the Kondo peak starts to get smeared out
in V . This behavior is clearly seen in G(V ) curves for
different TR presented in Fig. 5(b), where the increase in
TR suppresses the conductance at zero bias and smears
the zero-bias conductance peak further into the finite V

90



Anand Manaparambil, Andreas Weichselbaum, Jan von Delft & Ireneusz Weymann

7

FIG. 4. (a) The differential conductance G through the quantum dot with orbital energy εd = −U/3 as in (5) as a function
of the left and right lead temperatures, TL and TR, in the linear response regime V → 0. The black dashed curve shows a
circle of radius

√
2TK corresponding to Trms = TK [cf. Eq. (16)], while the white dashed line shows Trms = TK′ estimated as

the half-width of the zero-bias conductance peak from the NRG data versus effective temperature. The colored symbols in (b)
present horizontal cross-sections of (a) for different values of TL, as shown with panel (c) vs. TR on a logarithmic scale. For
comparison, the black dashed line displays the linear response NRG results of G vs. TR = TL ≡ T . Panel (c): Data in (b)
replotted against the effective global temperature Trms in Eq. (17). This is again contrasted with the equilibrium NRG data
(black dashed line) where the vertical dash-dotted line denotes the half-width of equilibrium conductance TK′ ≃ 1.05TK.

FIG. 5. (a) The differential conductance G through a quantum dot [SIAM using (5)] vs. TL, TR and a finite potential bias V .
The data in the vertical plane is the same as in Fig. 4 (a), the horizontal plane is calculated with TL = 0.1TK and for different
TR as specified in the legends of panel (b). The black [white] dashed lines on the horizontal plane show the contours of constant
conductance G = (0.8, 0.7, 0.6) [G = 0.5]. The green dashed line indicates TR = V/2, cf. inset to panel (c). Panel (b) shows
the cross-sections (symbols) of the horizontal plane in panel (a) for a fixed right lead temperature as indicated by the colored
labels. The solid lines show the corresponding G(V ) calculations for an effective global lead temperature Trms = TL = TR.
The inset in panel (b) tracks VK, the Kondo scale in the applied bias, defined as G(VK) = 0.5. Panel (c) shows the differential
conductance G(TR) from the horizontal plane in panel (a) for a finite potential difference V , as indicated by the colored labels.

Lines represent spline interpolations of the semilog-x data used to estimate the peak position T peak
R . Inset shows T peak

R vs. V ,

which approximately follows T peak
R = V/2 (green sdashed line).

regime.

Furthermore, we observe in our simulations that any
configuration of the lead temperatures G(V )TL,TR

can be
approximated by a G(V )Trms,Trms

curve with global tem-

perature Trms [cf. solid lines in Fig. 5(b)]. The Kondo
energy scale in the applied bias VK, defined as the bias at
which the conductance drops to one-half G(VK) = 1/2, is
a characteristic energy scale of the nonequilibrium Kondo
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effect and behaves differently from TK. The inset in
Fig. 5(b) shows the dependence of VK on Trms. At low
temperatures T ≪ TK, we recover the Fermi liquid the-
ory prediction for the Kondo energy scales VK/TK ≈ 3/2
[64, 72, 73, 78]. It can be seen that VK increases with
Trms, corresponding to the smearing of the Kondo reso-
nance with thermal fluctuations up to Trms ≈ TK. Be-
yond which the Kondo resonance is considerably de-
stroyed by the thermal fluctuations, such that G(V ) fails
to attain the definition of VK for temperatures around
Trms ≈ 1.3TK [cf. Fig. 5(b)].

Figure 5(c) shows the influence of the right lead tem-
perature TR on the differential conductance G(TR)TL,V

with a constant TL and finite potential bias V . For
very small potential biases V ≪ TK, the differential
conductance G monotonously decreases with increasing
TR, closely resembling the true zero-bias conductance
curve in Fig. 4(b). In the case of a large potential bias
V ≳ TK, the G(TR) curves show maxima roughly lo-

cated at a finite right lead temperature T peak
R ≈ V/2

[cf. inset of Fig. 5(c)]. This nonmonotonous behavior of
G(TR)TL,V for V > TK can be attributed to the splitting
of the Kondo resonance in the presence of large poten-
tial biases. Due to the bias configuration in our system,
µL/R = ±V/2, the peaks of the split-Kondo resonance
will be located at the respective lead potentials µL/R for
V ≳ TK, resulting in the additional feature in G(TR)
around TR = V/2.

3. Thermoelectrics of the Kondo circle

Instead of diving directly into the Seebeck coefficient,
we first look at the thermoelectric current driven by the
finite thermal bias in Fig. 6. The panel (a) shows the
NRG-tDMRG results for the charge current as a function
of both the left and right lead temperatures. The current
J(TL, TR)V=0 is antisymmetric across the TL = TR line,
as the temperature gradient changes sign across this line.
In addition, there exists another sign change roughly as
a circle in the TL, TR plane corresponding to the onset of
Kondo correlations. The current at zero bias, computed
as J(TL, TR)V=0 = 1

2 (J(V0) + J(−V0))
∣∣
TL,TR

from the

data for small ±V0 [cf. Eq. (13)], can be fitted by the
polynomial expression up to order n as in

J(TL, TR)V=0 = Γ TL−TR

Trms
pn(x ≡ TL

TK
, y ≡ TR

TK
),(18)

where

pn(x, y) =
n∑

k=1

k∑

i=0

ak,i x
i yk−i, (19)

ak,i = ak,k−i . (20)

Having V = 0, the current needs to be antisymmet-
ric under inversion TL ↔ TR. This is taken care of
by the leading factor TL − TR on the RHS. The re-
maining polynomial pn(

TL

TK
, TR

TK
) thus must be symmetric

under inversion. This constrains the polynomial terms
to Eq. (20). The denominator Trms keeps the prefactor

in check for large ∆T . i.e., the ratio TL−TR

Trms
→

√
2

as TR → ∞. Thus providing a much more consistent
weights for the data points with large ∆T used in the
variational fitting. We note that a clean polynomial
fit of the form (TL − TR) pn(

TL

TK
, TR

TK
) can still provide

an acceptable fit for the current, but including the de-
nominator Trms considerably improves the fit at low T .
At first glance, Eq. (18) only seems to account for the
first order in ∆T . But, the first order polynomial terms
TL,TR together with the TL−TR prefactor makes up the
(TL − TR)

2 ≡ ∆T 2 dependence, the polynomial terms
T 2
L, T

2
R and TL TR have encoded in it the information of

the ∆T 3 dependence, and accordingly for the higher or-
der dependences in ∆T . Thus the polynomial fit con-
tains, but is not limited to, the perturbative expansion
of J on ∆T .
The polynomial coefficients are determined by mini-

mizing the cost function

C =
∑

i

∣∣∣J(TL, TR)
∣∣
i
− Γ (TL−TR)

Trms

∣∣
i
pn(xi, yi)

∣∣∣
2

, (21)

where the sum runs over all data points i with TL ̸=
TR. The quality of the fit is then estimated by the error
measure δfit =

√
min(C). The fit in Fig. 6 used n = 4

with coefficients

(a10 ) = (2.7874)

(a20, a21 ) = (−1.0856,−0.9690)

(a30, a31 ) = (0.1363, 0.1418)

(a40, a41, a42) = (−0.0068,−0.0091,−0.0060) (22)

n δfit/J̄

1 0.9690

2 0.0051

3 0.0010

4 0.0002

TABLE I. The degree n of the polynomial used for the fit
and corresponding error δfit relative to J̄ the largest value of
thermoelectric current inside the Kondo circle.

The thermoelectric current from the polynomial fit
Eq. (18) is shown in Figs. 6(b,c). The polynomial fit ac-
curately recovers the regions of sign change in Fig. 6(a).
The error measure of the fits presented in Table I shows
that increasing order of the polynomial improves the fit
quality. The fit converges at higher orders of the poly-
nomial, indicated by the decreasing magnitude of the
polynomial coefficients for the higher order terms [cf.
Eq. (22)].
The estimation of S from Eq. (15) relies on the induced

thermocurrent being small enough to be compensated by
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FIG. 6. (a) Thermoelectric current J through a quantum dot [SIAM using (5)] vs. TL and TR at V = 0 (computed as the
average current for V = ±10−2TK). The data points located at the white dots are interpolated by the smooth color shading
(cf. color bar). Panel (b) same as panel (a), but showing the polynomial fit of its data points based on Eq. (18) instead. Panel
(c) shows horizontal cuts of the polynomial fit (lines) in panel (b) with their corresponding data points (symbols) from panel
(a).

FIG. 7. (a) Thermoelectric current J through a quantum dot [SIAM using (5)] vs. TL, TR and for very small potential biases
V . The black dashed curve shows the voltage V required to compensate the thermocurrent according to a linear response
expansion with G0. The grid of NRG-tDMRG data in V is represented as white dots on the V, TR plane. (b) The Seebeck
coefficient S = −V/∆T = −J/(G∆T ) (assuming linear response in G) for the same parameters as in panel (a). Panel (c) shows
the horizontal cross-sections of the panel (b) comparing S calculated from the fit [cf. Eq. (18)] (solid line) and S estimated
from J(TL, TR)V =0 from NRG-tDMRG (colored symbols). For comparison, the black dashed curve shows the linear response
NRG calculations for S0 with TL = TR. The colored vertical lines denote the corresponding left lead temperature TL for each
S(TR) curve.

a linear response bias V . In Fig. 7(a) we show the exten-
sion of the density plot in Fig. 6(a) towards the third di-
mension in the bias voltage V . The lower plane in V, TR
is calculated for TL ≈ 0.1TK [brown curve in Fig. 6(c)],
which contains the largest value of thermocurrent data
in the Kondo regime. The points of zero current in the
lower plane show that a bias voltage V < V0 is sufficient
to compensate for the induced thermocurrent. The zero

current (white) in the interpolated colormap from the
NRG-tDMRG data for finite V = ±V0 coincides with
the bias estimated from the linear response expansion
(black dashed curve) of the current with the linear re-
sponse conductance G0(Trms), further corroborating the
choice of the linear response V0. Thus, Fig. 7(b) depicts
the Seebeck coefficient S estimated for the full scaling
regime in TL, TR plane. From the sign changes of the
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thermoelectric current J(TL, TR) in Fig. 6, only the sign
change corresponding to the Kondo correlations survive
for S(TL, TR). This region of the sign change in the
Seebeck coefficient now fully represents the temperature
regime in which the Kondo correlations survive. The
Kondo regime is roughly a circle in the TL, TR plane,
slightly squeezed in the TL = TR direction. It is impor-
tant to note that the radius of the Kondo regime in the
TL, TR plane determined by the points of sign change in
S does not show any universal scaling with respect to TK.
The equilibrium NRG studies of S0 have already demon-
strated that the temperature at which S0(T ) shows the
maximum negative value in the Kondo regime scales with
the Kondo temperature TK. But the temperature at
which S0 changes sign, denoting the onset of Kondo cor-
relations, does not exhibit such scaling with respect to
TK [29].

The quantitative behavior of S(TL, TR)V=0 is shown
in Fig. 7(c). The Seebeck coefficient S estimated from
the NRG-tDMRG calculations (colored symbols) of the
thermoelectric current J(TL, TR)V=0 in Fig. 6 and S es-
timated from the polynomial fit for the thermoelectric
current (solid lines) as in Eq. (18) with a constant TL are
plotted as a function of TR. Near the equilibrium temper-
ature TR → TL, the NRG-tDMRG results approach the
linear response NRG estimations of S0. We note that,
since TL = TR induces no thermoelectric current, the
extraction of the linear response S0 using NRG-tDMRG
from the chosen TL, TR grid of discrete datapoints is not
possible [cf. Eq. (15)], and hence no datapoints from
NRG-tDMRG are shown for the case of TL = TR in
Fig. 7(c). The polynomial fit for the thermoelectric cur-
rent from Eq. (18) is unrestrained and can provide an
approximation of the linear response S0 for TL → TR.
S(TR → TL) estimated from the fit shows slight quantita-
tive difference from the true linear response S0 obtained
from NRG, presumably stemming from the absence of
very small ∆T in the data used for fitting. In general,
for a constant TL in the Kondo regime, S(TR) starts from
a negative value for TR → 0 and shows a minima at tem-
perature TR of the order of TK. With further increase
in the temperature, S(TR) grows gradually until chang-
ing its sign denoting the total destruction of the Kondo
resonance.

The comparison of S(TL, TR) rescaled by the effective
temperature Trms and the linear response S0(T ) from
NRG is presented in Fig. 8. Unlike the differential con-
ductance G(Trms), the rescaled S(Trms) data do not fully
resemble the linear response S0(T ) behavior, with in-
creasing deviations for large temperature gradients. We
observe that the deviation of S(Trms) depends on the
minima of the linear response S0. We define Tp as the
temperature, at which S0 has a negative peak. When
the cold lead temperature is larger than Tp, S(Trms) lies
closer to the linear response S0. But for the case of a
cold lead temperature below Tp, left lead temperature
TL ≈ 0.1TK in our case [cf. red diamonds in Fig. 8],
S(Trms) shows the largest deviations from the linear re-

FIG. 8. The Seebeck coefficient S (TL, TR) (colored symbols)
with a fixed TL (vertical colored lines) plotted against the
effective temperature Trms. The dashed line shows the equi-
librium NRG data for S0 (TL = TR = Trms).

sponse S0.

From the data in Fig. 8 we can conclude that the mag-
nitude of the Seebeck coefficient is not enhanced when
compared to linear response Slin under zero-bias condi-
tions even with nonlinear temperature gradients. Fur-
thermore, the data in Fig. 8 shows rather small values
|S| ≲ 1 for the Seebeck coefficient in the Kondo regime.
This is in contrast, for example, to Fig. 3 where the See-
beck coefficient can reach values an order of magnitude
higher |S| ≲ 1 just outside the local moment regime.
Based on these findings, let us briefly comment here on
how to potentially enhance the thermoelectric response
in the Kondo regime [42]. It was suggested that an asym-
metric coupling to the leads together with a finite poten-
tial bias can improve the thermoelectric response in the
Kondo regime, as suggested in Ref. [46]. While the NRG-
tDMRG method is well-suited to handle such systems, a
thorough investigation of this scenario necessitates a de-
tailed study of its own and thus is beyond the scope of
the present work.

Lastly, we analyze the heat current and heat conduc-
tance in the presence of a finite temperature gradient.
The heat current JQ across the quantum dot coupled to
leads with temperatures TL and TR is shown in Fig. 9(a).
Unlike the Seebeck coefficient, there exist no sign change
in the heat conductance characterizing the Kondo reso-
nance. Thus, the heat current shows only one sign change
corresponding to the change in the sign of the temper-
ature gradient TL − TR. The electronic contribution to
the heat conductance κ calculated for the cross sections
in panel (a) is presented in panel (b). It can be seen that
for a constant TL, κ is enhanced with increase in TR.
When reaching TR = TL, the heat conductance smoothly
crosses the linear response κ0.
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FIG. 9. (a) The heat/energy current JQ through a quantum
dot [SIAM using (5)] as a function of the left lead temperature
TL and the right lead temperature TR. (b) shows the heat
conductance κ for different values of TL, as indicated. The
dashed line corresponds to the equilibrium NRG results for
κ0 (T = TL = TR). The inset presents the horizontal cross
sections of panel (a) used for the estimation of κ in panel (b).

IV. SUMMARY

In this work we have provided accurate quantitative
results for the thermoelectric transport properties of a
Kondo-correlated quantum dot subject to nonlinear tem-
perature and voltage gradients. The calculations have
been performed with the aid of numerical renormaliza-
tion group–time-dependent density matrix renormaliza-
tion group method. First of all, we have demonstrated
that the thermoelectric behavior of the system, involv-
ing charge and heat currents as well as the Seebeck co-
efficient, can be qualitatively described by an effective
global temperature Trms. Moreover, a detailed investi-
gation of the zero-bias conductance with respect to the

individual lead temperatures unveiled the Kondo regime
as a circle in the plane of left-right lead temperatures,
further affirming the qualitative agreement with Trms.
The thermoelectric current also showed characteristic
sign changes crossing over to the Kondo regime, as a
slightly distorted circle with the deviations occurring at
large temperature gradients. Moreover, we have pro-
vided a qualitative expression to fit the thermoelectric
current as a function of the left and right lead temper-
atures. Finally, we have discussed the heat current and
conductance near the Kondo regime, which were mostly
determined by the contribution from charge fluctuations,
hardly revealing characteristics of the Kondo resonance.
The thermoelectrics in the presence of finite tempera-

ture gradients at zero bias voltage did not show any en-
hancement of the thermoelectric properties originating
from the nonlinear contributions in the Kondo regime.
However, investigating the nonequilibrium regime of
asymmetrically coupled Kondo-correlated systems [46] is
a promising direction where NRG-tDMRG can yield re-
liable insights. This complex scenario warrants a dedi-
cated study of its own which goes beyond the scope of
the present work and thus is left for the future.
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Appendix A: The Hybrid NRG-tDMRG method

We use a hybrid NRG-tDMRG method to study the
nonequilibrium dynamics of the quantum dot coupled to
leads with finite thermal and potential bias. Below, we
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provide more details about this method and its extension
to finite thermal gradients.

1. Hybrid discretization scheme

Primarily, we separate the conduction band into
modes that can be treated in equilibrium and out-of-
equilibrium. i.e., the modes with fL(ω) − fR(ω) = 0
correspond to the modes that are at equilibrium and
fL(ω) − fR(ω) ̸= 0 are the modes that are out of equi-
librium, where fα(ω) is the Fermi function for the lead
α. For simplicity, we keep the largest |ω| that satisfies
fL(ω) − fR(ω) ̸= 0 as our effective bandwidth D∗ and
define the transport window as [−D∗, D∗] (essentially in-
cluding more equilibrium modes into the tDMRG part,
which is easier to handle and provides a more accurate
description than moving more nonequilibrium modes into
the NRG part). The energies outside |D∗| are discretized
logarithmically according to the discretization parame-
ter Λ and the energies inside |D∗| are discretized linearly
according to the discretization parameter δ. In this dis-
cretized setting, the coupling between the quantum dot
energy level εd to a discretized mode in the lead α with
momentum k is given as vq =

√
Γαδk/π, where δk is the

size of the corresponding interval in the discretized band.

2. Thermofield treatment

We go on to describe the modes in this log-lin dis-
cretized band under a thermofield description. This en-
tails the introduction of an auxiliary decoupled Hilbert
space akin to the physical Hilbert space. For a mode cq1
in the physical Hilbert space, where q ≡ α, k, σ is a com-
posite index, we introduce an auxiliary mode cq2, where
the index 2 denotes that the mode is in the auxiliary
Hilbert space. This enlarged Hilbert space is rotated by,

(
c̃q1
c̃q2

)
=

(√
1− fq −

√
fq√

fq
√
1− fq

) (
cq1
cq2

)
, (A1)

such that in the rotated tilde Hilbert space, the modes

c̃q1 |Ω⟩ = c̃†q2 |Ω⟩ = 0 can be interpreted as holes (1) and

particles (2), where Ω =
∏

q(
√
1− fq |0, 1⟩q+

√
fq |1, 0⟩q)

is a pure state that can represent the thermal expectation
value of an operator A on the physical lead as ⟨A⟩ =
⟨Ω|A|Ω⟩.

In the rotated Hilbert space, the lead Hamiltonian be-
comes,

Hlead = Hlead +Haux =
∑

qj

εqc
†
qjcqj =

∑

qj

εq c̃
†
qj c̃qj .

(A2)
We set εq2 = εq1 to keep the total lead HamiltonianHlead

diagonal. Similarly, the tunneling Hamiltonian in the
rotated Hilbert space can be described as,

Htun =
∑

qj

(ṽqjd
†
ασ c̃qj +H.c.), (A3)

where the couplings ṽq1 = vq
√

1− fq and ṽq2 = vq
√
fq

become functions of the Fermi-Dirac distribution func-
tions and, thus, encompass the information about the
nonequilibrium parameters, such as the temperature and
potential bias on the leads.

3. Recombination of the leads and
tridiagonalization

Outside the transport window [−D∗, D∗], the impurity
is coupled to only half of the lead modes. Since, fα → 1
results in the hole coupling ṽq1 → 0 and fα → 0 results
in the particle coupling ṽq2 → 0. This essentially means
that both the high energy particle modes and the low
energy hole modes decouple from the impurity. Whereas
for the energies inside the transport window, we use a
different approach to simplify the structure. Then, a
single impurity coupled to two leads can be described
using an effective model with an impurity coupled to a
single recombined lead and such a recombination of the
leads results in half of the modes being decoupled from
the system. This results in the quantum impurity being
coupled to a set of hole lead modes and another set of
particle lead modes. In next step, we proceed to tridiago-
nalize these particle and lead modes separately, resulting
in two chains that are coupled to the impurity, one from
the hole modes and another from the particle modes.
In these chains, we can identify two sectors, the sector
from the high energy modes that lies closest to the impu-
rity on the chain exhibiting properties of a Wilson chain,
i.e., energy scale separation and couplings that decay as
tn ∼ Λ−n.

4. NRG treatment of high energy modes and time
evolution

Since the modes outside the transport window are es-
sentially in equilibrium, we recombine the holes and par-
ticles in the high energy sector for a more physically ac-
curate description. This results in our impurity being
coupled to an effective Wilson chain corresponding to
the high energy sector, which is then further coupled to
the separate hole and particle chains. We treat the re-
combined high energy modes using the numerical renor-
malization group method and extract the ground state
of the high energy sector as |ϕini⟩. |ϕini⟩ will act as the
initial state for the high energy part of the chain, where
the low energy hole modes are kept empty and the par-
ticle modes filled. Thus, our initial state for the time
evolution |ψini⟩ becomes

|ψini⟩ = |0⟩⊗|0⟩⊗. . . |0⟩⊗|ϕini⟩⊗|1⟩⊗· · ·⊗|1⟩⊗|1⟩. (A4)

We time evolve |ψini⟩ using the second-order Trotter time
evolution with a quench on the coupling between the high
energy and low energy sector over a finite time window.
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The NRG-tDMRG calculations for the SIAM in this
paper are performed with parameters Λ = 2.5, δ/D∗ =
0.01, Nkeep = 900 kept states in the effective NRG basis
of the renormalized impurity, and a truncation tolerance
of ϵSVD = 10−5 for the tDMRG sweeps. The observables
are calculated for 100 tDMRG sweeps with the first 20
sweeps dedicated for the quench.

5. Charge and heat current

The particle current or the charge current Jα from the
lead α to the quantum dot can be described as,

Jασ = e ⟨Ṅσ⟩ = − i

ℏ
⟨[Nσ, H]⟩

Jασ =
e

ℏ
∑

k

Im (vαk ⟨d†cαk⟩) (A5)

≡ e

ℏ
∑

k

∑

j

Im (ṽqj ⟨d†c̃qj⟩). (A6)

Similarly, the energy current JE
α from the lead α to the

quantum dot can be described based on the lead Hamil-
tonian as,

JE
α = ⟨Ḣα⟩ = − i

ℏ
⟨[Hα, H]⟩

=
2e

ℏ
∑

kσ

∑

j

εqIm(ṽqj⟨d†c̃qj⟩). (A7)

The symmetrized current Jσ(t) converges faster than the
individual lead currents Jασ,

Jσ(t) =
1

2
(JLσ(t)− JRσ(t)) (A8)

Appendix B: Extracting steady state observables via
linear prediction

The particle current shows a transient behavior dur-
ing the quench window and starts to oscillate around a
steady-state value. This steady state is extracted using
linear regression. We start by generating a kernel for the
oscillating part based on the training window

yn+1 =
[
a1 a2 · · · an

]
︸ ︷︷ ︸

K




x1
x2
...
xn


 , (B1)

where the kernel K estimates the next data point yn+1

based on the previous n data points {x1, x2 · · ·xn}. We
estimate K as the least squared approximation of the
data points in the training window. The spectral de-
composition of the kernel has the information about the
oscillating behavior of the data. In particular, we isolate
the eigenvector with the real eigenvalue (corresponding

to the non-oscillating part) to estimate the steady state
current at t→ ∞

J(t→ ∞) =
∥e⃗0∥√
e0
, (B2)

where e⃗0 is the eigenvector corresponding to the real
eigenvalue e0. Figure 10 shows the charge current (a,b,c)
and the heat current (d,e,f) dynamics of a SIAM using
(5) obtained from NRG-tDMRG. The steady state value
estimated from linear prediction is shown as the horizon-
tal dashed line.

Appendix C: Effective Kondo energy scale

Analytical dependence of the Kondo energy scale on
the temperature gradient has been discussed in Ref. [60]
by using the perturbation theory and slave-boson mean-
field theory. According to the perturbation theory, the
Kondo energy scale depends on the temperature gradient
as,

T̃PT
K (∆T ) =

√
T 2
K +

(
∆T
2

)2 − ∆T
2 , (C1)

where T̃K is defined as the energy scale at which the
second-order term dominates in the perturbation expan-
sion of the conductance in the Kondo model [Eq. (11)
and Eq. (13) from the Ref.[60]]. Nevertheless, through-
out this paper, TK denotes the intrinsic Kondo tempera-
ture of the system as defined in Eq. (16).
From the NRG-tDMRG calculations, an effective tem-

perature of Trms = TK in the TL − TR plane represents
a circle of the form T 2

L + T 2
R = 2T 2

K. To compare with
the results from perturbation theory, we consider TL = T
and TR = T +∆T . Thus, we can define the energy scale
T̃K(∆T ) for a fixed ∆T ,

G(T, T +∆T )
∣∣
T=T̃K

= G0/2, , (C2)

i.e., as the temperature T at which G(T, T +∆T ) reaches
the half maximum of the conductance peak G0 at T =
∆T = 0. By definition then, T̃K reduces with increas-
ing ∆T towards zero, and becomes undefined for suffi-
ciently large ∆T > TK once G(T, T + ∆T ) < G0/2 for

all T . In this sense, T̃K → 0 does not indicate a small
physical Kondo scale, per se, but rather the disappear-
ance of the Kondo physics. Based on the Kondo circle
T 2
L + T 2

R = 2T 2
K [cf. Sec. III B 2], Eq. (C2) provides an

analytical expression for T̃K

T̃K(∆T ) =

√
T 2
K −

(
∆T
2

)2 − ∆T
2 . (C3)

This expression for T̃K(∆T ) is very similar to the pertur-
bation theory result, except for the difference in sign of
the ∆T 2 term under the square root.
The temperature T̃K defined on the Kondo circle and

the Kondo temperature T̃PT
K from the perturbation the-

ory show good agreement for small ∆T [cf. Fig. 11]. With
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(a)

(d)

(b)

(e) (f)

(c)

FIG. 10. The finite time dynamics of (a,b,c) charge current J and (d,e,f) heat current JQ across a SIAM for representative
values of the applied potential and temperature gradients. The horizontal dashed line shows the steady state value obtained
from linear prediction.

FIG. 11. The Kondo energy scale in Eq. (C3) as a function of
the temperature gradient ∆T compared to the perturbation
theory (Eq. (C1)) results from Ref. [60].

increasing ∆T , T̃K decays faster than T̃PT
K and proceed

to become undefined beyond ∆T =
√
2TK .
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(Received 14 October 2022; revised 18 January 2023; accepted 23 January 2023; published 7 February 2023)

We theoretically study the nonequilibrium thermoelectric transport properties of a strongly-correlated
molecule (or quantum dot) embedded in a tunnel junction. Assuming that the coupling of the molecule to the
contacts is asymmetric, we determine the nonlinear current driven by the voltage and temperature gradients by
using the perturbation theory. However, the subsystem consisting of the molecule strongly coupled to one of the
contacts is solved by using the numerical renormalization group method, which allows for accurate description of
Kondo correlations. We study the temperature gradient and voltage dependence of the nonlinear and differential
Seebeck coefficients for various initial configurations of the system. In particular, we show that in the Coulomb
blockade regime with singly occupied molecule, both thermopowers exhibit sign changes due to the Kondo
correlations at nonequilibrium conditions. Moreover, we determine the nonlinear heat current and thermoelectric
efficiency, demonstrating that the system can work as a heat engine with considerable efficiency, depending on
the transport regime.

DOI: 10.1103/PhysRevB.107.085404

I. INTRODUCTION

Thermoelectric properties of nanoscale systems have be-
come a subject of extensive studies [1–5]. This is because
such structures, due to their reduced dimensions, allow for
obtaining thermal response much exceeding that obtained in
bulk materials [6]. In this regard, a special role is played
by zero-dimensional systems, such as molecules or quantum
dots, in which discrete energy spectrum is relevant for efficient
energy filtering and obtaining considerable figure of merit.
Thermopower of such systems has already been explored
theoretically [7–14], both in the weak- and strong-coupling
regimes, as well as experimentally [15–19]. A special at-
tention has been paid to strong electron correlation regime,
where the Kondo effect can emerge at sufficiently low tem-
peratures [20,21]. This is due to the fact that the analysis of
the temperature dependence of the Seebeck effect can provide
additional information about the Kondo correlations in the
system [10,16,17]. In particular, sign changes of linear ther-
mopower as a function of temperature were shown to indicate
the onset of the Kondo correlations in the system [16,17].
From theoretical side, accurate description of thermoelectric
phenomena in the strong correlation regime requires using
sophisticated numerical methods, therefore such considera-
tions have been mostly limited to the linear response regime
[10,22–26], while much less attention has been paid to the
far-from-equilibrium regime [12,14,27].

The goal of this paper is therefore to shed more light
on the nonequilibrium thermoelectric characteristics in sys-
tems where Kondo correlations are crucial. For that, we

*anaman@amu.edu.pl

consider a molecule (or a quantum dot) asymmetrically at-
tached to external contacts. Such system’s geometry allows
us to incorporate strong electron correlation effects in far-
from-equilibrium conditions in a very accurate manner. The
electronic correlations give rise to the development of the
Kondo phenomenon, which arises due to the strong coupling
to one of the contacts, whereas the second contact, serves
as a weakly coupled probe. In such scenario, we can make
use of the numerical renormalization group (NRG) method
[28–30] to solve the strongly-coupled subsystem, while the
nonequilibrium current flowing through the whole system,
triggered by voltage and/or temperature gradients, is eval-
uated based on the perturbation theory with respect to the
weakly attached electrode. We show that with this method
we can determine the thermoelectric effects at large and finite
temperature and potential gradient without losing the Kondo
correlations. We also note that accurate quantitative calcula-
tion of nonequilibrium thermoelectric transport in the case of
symmetrically-coupled systems poses a great challenge that
could be addressed by recently developed hybrid approach in-
volving time-dependent density matrix renormalization group
and NRG [31,32].

For the system considered here, we first study the voltage
dependence of the differential conductance, demonstrating
suppression of the zero-bias Kondo peak with increasing
the temperature gradient. We then focus on the analysis of
nonequilibrium and differential Seebeck effects, analyzing at
the beginning the case of finite temperature gradient within
linear response in applied voltage. Furthermore, we examine
the behavior of the thermopower in the nonlinear voltage
and temperature gradient regime, predicting new sign changes
associated with Kondo correlations. We also calculate the heat
currents and the power generated by the device as well as
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FIG. 1. The schematic of the considered system. It consists of
a molecule (or a quantum dot) characterized by an orbital level of
energy εd and Coulombic repulsion U . The molecule is strongly
coupled to the left lead with coupling strength �L , while the coupling
to the right contact �R is much weaker. Vg stands for the gate voltage,
which can be used to tune the position of the orbital level. μL (μR)
and TL (TR) denote the chemical potential and temperature of the left
(right) lead, respectively. The left contact is grounded and kept at
a constant temperature TL = 0, while the right contact is subject to
voltage bias V and temperature gradient �T .

the corresponding thermoelectric efficiency, revealing regimes
of large efficiency depending on the transport regime. Fi-
nally, assuming realistic junction parameters, we consider the
thermoelectric transport properties including the voltage de-
pendence of the molecule’s orbital level.

The paper is organized as follows. In Sec. II, we dis-
cuss the model and method used in the calculations along
with the definitions for thermopower in out-of-equilibrium
settings. The main results and discussions are presented in
Sec. III, which begins with the analysis of the electronic trans-
port under a finite potential bias and temperature gradient. The
nonequilibrium thermoelectric coefficients are then studied,
first at zero bias, and then generalized to the finite bias and
temperature conditions. We also determine the behavior of the
nonequilibrium heat current and the thermoelectric efficiency
of the system under various parameter regimes. Finally, the
paper is summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Model and Hamiltonian

The considered system consists of a molecule (or a quan-
tum dot) asymmetrically coupled to two metallic leads, as
schematically shown in Fig. 1. The molecule is described
by an orbital level of energy εd and Coulomb correlations
denoted by U . This orbital level may correspond to the low-
est unoccupied orbital level (LUMO level) of the molecule.
Transport through the system can be induced and controlled
by applying a finite bias voltage V and/or a temperature gra-
dient �T across the leads. We assume that the left contact is
grounded and kept at a constant temperature T , while the right
contact is subject to V and �T , see Fig. 1. The temperature T
is assumed to be much smaller than the characteristic energy
scale of the Kondo effect, i.e., in practical calculations we
set T → 0. Moreover, it is assumed that the coupling to the
left lead (�L) is much stronger than the coupling to the right

electrode (�R). Such an asymmetry is frequently present in
various molecular junctions [33–37], it can be also generated
in artificial heterostructures comprising, e.g., a quantum dot
[38–40]. Furthermore, it can be also encountered in studies
of adatoms with scanning tunneling spectroscopy. Under this
assumption, we determine the current flowing through the sys-
tem using the perturbation theory in �R, while the subsystem
consisting of molecule strongly coupled to the left lead is
treated exactly with the aid of the numerical renormalization
group method [28–30]. In other words, we include the lowest-
order processes between the molecule and the right electrode,
while the tunneling processes between the molecule and the
left lead are taken into account in an exact manner.

The Hamiltonian of the molecule coupled to the left lead
can be expressed as [41]

HL = εd n + Un↑n↓ +
∑
kσ

εLkσ c†
Lkσ

cLkσ

+
√

�L

πρL

∑
kσ

(d†
σ cLkσ + c†

Lkσ
dσ ), (1)

where the first two terms model the orbital level with en-
ergy εd and Coulomb correlations U , with n = n↑ + n↓, nσ =
d†

σ dσ , and d†
σ (dσ ) being the creation (annihilation) opera-

tor for spin-σ electrons on the orbital level. The creation
(annihilation) operator for an electron of spin σ , momen-
tum k, and energy εαkσ in the lead α is denoted by c†

αkσ

(cαkσ ). The third term in Eq. (1) describes the left lead in the
free quasiparticle approximation, while the last term models
the tunneling processes between the molecule and left lead.
The density of states of the lead α is described by ρα . Here we
use the wide-band approximation under which the couplings
are energy independent. On the other hand, the Hamiltonian
of the right contact can be written as [42]

HR =
∑
kσ

εRkσ c†
Rkσ

cRkσ − eV
∑
kσ

c†
Rkσ

cRkσ , (2)

where V is the applied bias voltage and e stands for the
elementary charge. Then, the tunneling processes between
the left and right part of the system can be described by the
following tunneling Hamiltonian [42]:

HT =
√

�R

πρR

∑
kσ

(d†
σ cRkσ + c†

Rkσ
dσ ). (3)

Thus, the total Hamiltonian is given by a sum of three terms,
the strongly coupled left part HL, the weakly coupled right
lead HR, and the term accounting for tunneling between both
parts, HT , H = HL + HR + HT . In what follows, to determine
the thermoelectric transport properties, we perform a pertur-
bation expansion in HT .

B. Nonequilibrium transport coefficients

1. Electric current

The assumption of the weak coupling �R to the right sub-
system allows us to perform a perturbative expansion in HT .
In the lowest-order perturbation theory, the electric current
I (V,�T ) at voltage bias V and temperature gradient �T can
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be expressed as [38,40]

I (V,�T ) = −2e�R

h̄

∫ ∞

−∞
dωAL(ω)

× [ fL(ω) − fR(ω − eV )], (4)

where AL(ω) is the local density of states (spectral function)
of the left subsystem and fα (ω) denotes the Fermi-Dirac dis-
tribution function of the lead α, fα (ω) = [1 + exp(ω/Tα )]−1,
with TL = 0 and TR = �T , cf. Fig. 1, and kB ≡ 1. The factor
of 2 in Eq. (4) results from the spin degrees of freedom.

The spectral function AL(ω) of the left subsystem is cal-
culated by using the numerical renormalization group method
[28–30]. This method is well suited to account for electron
correlations in a very accurate manner, and especially those
giving rise to the Kondo effect [21]. The spectral function can
be related to the imaginary part of the molecule’s orbital level
retarded Green’s function Gr

σ (ω), AL(ω) = ∑
σ ALσ (ω), with

ALσ (ω) = −ImGr
σ (ω)/π , where Gr

σ (ω) is the Fourier trans-
form of Gr

σ (t ) = −i
(t )〈{dσ (t ), d†
σ (0)}〉. Within the NRG,

we first determine the eigenspectrum of HL and then calculate
AL(ω) in the Lehmann representation.

2. Seebeck coefficient

A special emphasis in this paper is put on the nonequilib-
rium behavior triggered by a large temperature and/or voltage
gradient. The Seebeck coefficient (or thermopower) is the
thermoelectric property that quantifies the voltage induced by
a thermal gradient across a conductor, and is defined as

S = −
(

V

�T

)
I=0

, (5)

under the assumption that the current I through the system
vanishes, I = 0.

In the linear response regime, the Seebeck coefficient Slin

can be reliably described by using the Onsager integrals,
Ln = − 1

h

∫
dω ωn f ′(ω)T (ω), involving the transmission co-

efficient, T (ω) ∝ �R AL(ω), where f ′(ω) is the derivative of
the Fermi function [43],

Slin = − 1

eT

L1

L0
. (6)

This basic definition of the Seebeck coefficient can be directly
extended to the nonequilibrium case by considering that only
the current generated by the thermal gradient must vanish.
Assume, for example, that a system with potential bias V
exhibits a current I flowing through it. When an additional
temperature gradient �T is applied, a new current Itot = I +
Ith will flow through the system, where Ith is the additional
current induced by the thermal gradient. One can then define
a nonequilibrium (nonlinear) Seebeck coefficient Sn(V,�T )
as [12,39,44–48]

Sn(V,�T ) = −
(

�V

�T

)
I (V +�V,�T )=I (V,0)

, (7)

where �V is the change in potential bias required to suppress
the current induced by the thermal gradient �T .

Additionally, in the nonlinear response regime, one can
also define a differential Seebeck coefficient Sd(V,�T )

as [49]

Sd(V,�T ) = −
(

dV

d�T

)
I

= −
(

∂I

∂�T

)
V

/(
∂I

∂V

)
�T

, (8)

where ( ∂X
∂Y )Z describes the partial derivative of X with respect

to Y , while keeping Z constant. The differential Seebeck effect
is related to the ratio of the thermal response at finite volt-
age to differential conductance at finite temperature gradient.
We note that in the linear response regime with respect to the
bias voltage, Sd becomes comparable to the linear response
Seebeck coefficient given by Eq. (6).

3. Heat current and thermoelectric efficiency

We are also interested in the behavior of the nonequilib-
rium heat current and the thermoelectric efficiency η [50–55].
The formula for the heat current can be derived from the
first law of thermodynamics, which for subsystem α = L, R
reads dUα = dWα + dQα . Here, dUα is the energy flowing
into the subsystem α, while dQα denotes the corresponding
heat. The work done to the subsystem α is generally given
by, dWα = μαdNα , where dNα is the corresponding particle
number change. The heat current associated with the left and
right subsystem can be then defined as [51]

IQ
L (V,�T ) = IE (V,�T ) − μLI (V,�T )/e, (9)

IQ
R (V,�T ) = IE (V,�T ) − μRI (V,�T )/e, (10)

where IE (V,�T ) denotes the energy current given by

IE (V,�T ) = −2�R

h̄

∫ ∞

−∞
dω ω AL(ω)

× [ fL(ω) − fR(ω − eV )]. (11)

In our setup, TR > TL, see Fig. 1, such that the electrons flow
from the hot reservoir to the cold one performing the work
Ẇ (V,�T ) per unit time. Such power output can be related to
the heat currents through

P ≡ Ẇ (V,�T ) = IQ
R (V,�T ) − IQ

L (V,�T ). (12)

Then, the thermoelectric efficiency of such a heat engine can
be defined as the ratio of the power to the heat extracted from
the hot reservoir,

η(V,�T ) = Ẇ (V,�T )

IQ
R (V,�T )

= 1 − IQ
L (V,�T )

IQ
R (V,�T )

. (13)

III. RESULTS AND DISCUSSION

In this section we present and discuss the numerical
results obtained for the differential conductance, Seebeck
effect, heat current and thermoelectric efficiency in far-from-
equilibrium conditions. For the considered system we assume
the Coulomb correlations U = 0.2, the coupling to the left
lead �L = 0.02 in units of half bandwidth, while the weak
coupling to the right lead is assumed to be �R = �L/10. In
NRG calculations we keep at least 45 states in the iterative
procedure [56].

We note that in experimentally relevant scenarios, a voltage
drop imposed across the junction would result in a change
of the orbital level, depending on capacitive couplings to the
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FIG. 2. The differential conductance plotted as a function of the
bias voltage V for different values of the temperature gradient �T ,
as indicated. The inset shows the evolution of the zero-bias conduc-
tance as a function of �T . The parameters are: U = 0.2, �L = 0.02,
�R = 0.002, T = 0, in units of band half-width, and εd = −0.3U .
The Kondo temperature can be estimated from the Haldane’s for-
mula, which for assumed parameters yields TK/U ≈ 8.26 × 10−3.
The Kondo energy scale in the applied bias potential, defined as
the half-width at half-maximum of the G(V ) curve, is found to be
eVK/U ≈ 1.45 × 10−2.

contacts and to the gate voltage. However, to get a better
understanding of the transport properties, we first assume
that the position of the orbital level does not change as the
bias voltage is tuned. This would correspond to immediately
counterbalancing the voltage drop on the molecule by an
appropriate tuning of the gate voltage. Nevertheless, further
on, assuming exemplary parameters of the junctions, we also
present the results for the case when the orbital level depends
on the transport voltage.

A. Electronic transport under finite potential
and temperature gradient

Let us first analyze the behavior of the differential conduc-
tance G ≡ dI (V,�T )/dV as a function of the bias voltage
calculated for different temperature gradients �T . This de-
pendence is presented in Fig. 2. The figure was generated for
εd = −0.3U , i.e., in the local moment regime, where the sys-
tem exhibits the Kondo effect caused by the strong coupling
to the left contact. The relevant Kondo temperature for the left
subsystem can be estimated from the Haldane’s formula [57],
which yields TK ≈ 8.26 × 10−3 U = 8.26 × 10−2 �L. Note
that because �R = �L/10, the Kondo temperature associated
with the right contact is exponentially suppressed and thus
negligible. The presence of Kondo correlations is reflected
in a pronounced zero-bias peak visible in the differential
conductance, see Fig. 2. Note that because of asymmetric
couplings, the maximum of conductance at zero bias is much
reduced compared to 2e2/h. With increasing the bias voltage,
the conductance decreases and shows smaller resonances cor-
responding to eV ≈ εd and eV ≈ εd + U . When the thermal
gradient increases (note that the base system temperature is as-
sumed to be T = 0), one observes a gradual suppression of the
zero-bias anomaly, until the whole bias dependence of G does

not show any Kondo correlation effects for �T � TK . The
evolution of the Kondo peak with increasing �T is explicitly
presented in the inset of Fig. 2. The conductance drops to a
half of its maximum value when �T ≈ 2TK . This reflects the
fact that the actual system temperature, which can be associ-
ated with an average of the left and right contact temperatures,
is equal to �T/2. We also note that for �T 
 TK one can
quantify the Kondo resonance by VK , which characterizes the
Kondo energy scale in the applied bias potential, defined as
the half-width at half-maximum of the G(V ) curve. For VK we
find eVK ≈ 1.45 × 10−2 U = 1.45 × 10−1 �L. These results
are in agreement with the previous works [32,58,59].

B. Nonequilibrium thermopower

In this section we focus on the analysis of the behavior of
thermopower, both Sn and Sd, cf. Eqs. (7) and (8), under finite
temperature and voltage gradients. However, to get a better
understanding of thermoelectric transport, we first start with
the case of V → 0, while nonequilibrium settings are imposed
only by increasing �T . The more general case of having both
finite �T and V will be examined afterwards.

1. Thermopower under finite temperature gradient

The nonequilibrium (Sn) and differential (Sd ) Seebeck
coefficients as a function of temperature gradient �T and
orbital level position εd , for the case when the nonlinear
response regime is triggered by a large temperature gradient,
are presented in Fig. 3. Before analyzing the behavior of the
thermopower in greater detail, let us first briefly discuss differ-
ent regimes for the energy of the orbital level εd , and what it
implies. The local moment regime, −1 � εd/U � 0, denotes
the value of orbital energy, in which the singly occupied level
is held below the Fermi energy (of the left electrode in our
case) and the doubly occupied state is above the Fermi level.
This is the regime where the molecule is occupied by an
unpaired electron and the system can exhibit the Kondo effect.
As can be inferred from the name, the empty/fully occupied
regime, εd/U � 0, εd/U � −1, refers to the case where the
preferred configuration is having the orbital level completely
empty or fully occupied. On the other hand, when εd/U ≈ −1
or εd/U ≈ 0, we reach a mixed valence/resonant tunneling
regime where the orbital level is in the vicinity of the Fermi
level of the electrode (depending on its hybridization �L).

The colormaps for Sn and Sd as presented in Figs. 3(a) and
3(c) show a similar behavior but with interesting deviations.
We note that for V → 0 both thermopowers are odd functions
of εd across the particle-hole symmetry point, εd = −U/2
[see also Fig. 3(b)], and decay to zero when the temperature
gradient �T → 0 [see also Fig. 3(d)]. Moreover, both Sn

and Sd are generally negative (positive) for εd > −U/2
(εd < −U/2), indicating a dominant role of the electron
(hole) processes. When inside the local moment regime, both
Sn and Sd survive to even lower values of temperature gradient
�T/�L ≈ 10−2, compared to �T/�L ≈ −10−1, as in the case
of empty/fully occupied regime. This is due to the presence of
Kondo correlations when the orbital level is singly occupied.
Additionally, in this transport regime both thermopowers
change sign twice as a function of �T . The first sign change
occurs when 1 � �T/�L � 10, whereas the second one
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FIG. 3. (a) The nonequilibrium Seebeck coefficient Sn and (c) the differential Seebeck coefficient Sd calculated as a function of the orbital
energy εd and the temperature gradient �T at potential bias V → 0 for parameters the same as in Fig. 2. Note the logarithmic scale in
temperature gradient. (b) The horizontal cross sections of (a) and (c), i.e., the dependence of Sn (dashed) and Sd (solid) as a function of εd

for various �T , whereas (d) presents the vertical cross sections of (a) and (c), i.e., the dependence of Sn (dashed) and Sd (solid) on �T for
various εd . The colored circles show the linear response thermopower Slin (T = �T ) and the colored dotted lines in (d) show the rescaled
nonequilibrium thermopower Sn(2 �T ).

develops when 1/10 � �T/�L � 1, see Figs. 3(a) and 3(c).
The sign changes of thermopower in the linear response can
be assigned to the corresponding behavior of the transmission
coefficient (in our case the spectral function of the left
subsystem) [10,22]. The Sommerfeld expansion indicates
that it is the slope of T (ω) ∝ AL(ω) at the Fermi level, which
determines the sign of the Seebeck coefficient [10]. Of course,
this strictly holds in the low-temperature regime; however, it
also allows for shedding some light onto the nonequilibrium
behavior where in turn the dependence of S is determined
by the whole integral in Eq. (4). Therefore, for the sake of
completeness, in Fig. 4 we present the energy dependence
of the normalized spectral function of the left subsystem
calculated for different values of the orbital level position,
as indicated. In the local moment regime, a pronounced
Kondo peak can be seen at the Fermi energy accompanied
by two Hubbard resonances at ω = εd and ω = εd + U . On
the other hand, in the mixed valence regime a resonant peak,
with position around ω = 0, renormalized by the coupling
strength, develops, which moves to positive energies when

FIG. 4. The normalized spectral function π�LAL (ω) of the left
subsystem calculated for various orbital energy εd , as indicated. The
other parameters are the same as in Fig. 2.
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raising the orbital level, see the case of εd/U = 0.3 in Fig. 4.
Having that in mind, one can qualitatively understand the
sign changes in the local moment regime. When lowering the
temperature, the first sign change corresponds to change of
slope of AL(ω) around the Hubbard peak, whereas the second
sign change has been found to indicate the onset of the Kondo
effect. Note, however, that the value of temperature gradient
corresponding to the sign change does not correspond to
the Kondo temperature of the system but just indicates the
emergence of Kondo correlations [10].

The differences between Sn and Sd become evident for
higher values of the temperature gradient �T . Specifically,
beyond the local moment regime, Sn starts to saturate above
�T/�L � 1, whereas Sd reaches maximum around �T/�L ≈
1 and then becomes suppressed with increasing �T , decay-
ing to zero for �T/�L � 10. This can be explicitly seen
in Fig. 3(d), which presents the vertical cross-sections of
Figs. 3(a) and 3(c). The difference in the high temperature
behavior of Sn and Sd highlights the fundamental difference
in the definitions of both thermopowers. The differential
Seebeck coefficient Sd corresponds essentially to a response
function and can justifiably show a vanishing response when
the temperature gradient gets high enough. On the other
hand, the nonequilibrium Seebeck coefficient Sn indicates the
magnitude of the potential difference developed across the
junction with a finite �T , which even at high temperature gra-
dient has to remain finite. There is also a noticeable difference
in the 
-like shape visible in Figs. 3(a) and 3(c), drawn by the
points of sign-change for each thermopower, which originates
from the differences in the �T behavior of both Sn and Sd

and can be understood from the below discussion of the cross
sections of the colormaps.

The fact that Sn and Sd for V → 0 and �T → 0 should
recover the linear response thermopower Slin justifies the
comparison of Sn(�T ) and Sd(�T ) to Slin(T ). The cross
sections in Figs. 3(b) and 3(d) compare Sn and Sd as a function
of εd and �T , respectively, along with the linear response
thermopower Slin calculated for the system with global tem-
perature T = �T , denoted as colored circles.

We note that the dependence of the differential Seebeck
coefficient Sd over the temperature gradient �T shows good
agreement with the behavior of the linear response Seebeck
effect Slin with the global temperature T even at large tem-
perature gradients. This is not surprising due to the fact that
for μL = 0 and TL = 0, Eq. (4) gives a formally similar
expression for Slin(T ) and Sd(�T ). It is also interesting to
note that, although Sn deviates from this behavior at large
temperatures, the Sn(�T ) dependence when rescaled by 2 in
�T , i.e., Sn(2�T ) [see the dashed lines in Fig. 3(d)] agrees
well with the linear response behavior for low values of �T ,
see Fig. 3(d).

To further understand the behavior of the Seebeck coeffi-
cients in Fig. 3, one can separately focus on the three regimes.
Since for V → 0 thermopower is an odd function across the
particle-hole symmetry point, we pick representative values of
εd for εd > −U/2. In the local moment regime, see the case
of εd/U = −0.3 in Fig. 3(d), Sn first starts decreasing with
raising �T until �T ≈ TK and then it increases to reach a
sign change occurring around �T/�L ≈ 1. Further increase
of �T , however, gives rise to another sign change and the

thermopower becomes again positive for large temperature
gradients. Such behavior is consistent with the linear-response
considerations of Kondo-correlated systems [10,22]. Here,
however, we demonstrate that it extends to nonlinear response
regime. The above-described behavior is absent when the
orbital level is tuned out of the Kondo regime. For resonant
conditions, i.e., εd = 0, Sn grows only in a monotonic fash-
ion with increasing �T . The same can be observed for the
empty orbital case (εd/U = 0.3), but now the value of Sn gets
enhanced for �T/�L � 1, compared to the case of εd = 0.

2. Thermopower for finite temperature gradient and bias voltage

After analyzing the influence of the nonlinear temperature
gradient on the Seebeck coefficient at linear potential bias, we
will now proceed with the examination of the thermopower
in the presence of both finite bias voltage and temperature
gradient. Figure 5 presents the nonequilibrium and differential
Seebeck coefficients calculated for finite potential and temper-
ature gradients for different values of the orbital level energy,
as indicated.

Let us first focus on the case when at low voltages the
system is in the local moment regime. This is presented
in Figs. 5(a) and 5(b) for the particle-hole symmetry point
(εd/U = −0.5), and in Figs. 5(c) and 5(d) when detuned
out of the symmetry point (εd/U = −0.3). From the linear
response studies, one can expect the thermopower at the
particle-hole symmetry point to vanish, since S can be related
to the slope of the spectral function ∂AL (ω)

∂ (ω) around the Fermi
energy of the left lead in our case. In our system, where the
potential bias is applied asymmetrically (only on the right
lead), we are essentially shifting the system out of the sym-
metry point with an applied bias potential. This results in a
nonzero Seebeck effect for a finite potential bias even in the
case of εd = −U/2, see the first row of Fig. 5. As can be
seen, in the nonlinear response regime for εd = −U/2, both
Sn and Sd become finite and are odd functions of the applied
bias voltage. More specifically, we observe positive Seebeck
coefficients for negative applied bias voltage and vice versa.
When the temperature gradient is of the order of the Kondo
temperature, there is a new region of sign change present
in the thermopower when the potential bias is between the
range 0.2 � |eV/U | � 0.4, i.e., the system is in the Coulomb
blockade. This sign change, visible in both Sn and Sd at
nonequilibrium settings, is due to the Kondo correlations. The
sign changes of the differential Seebeck coefficient Sd(V ) at
low temperature gradient �T can be inferred directly from
the slope of the spectral function. From Eq. (2), when |eV | �
�T , the thermal response ∂I

∂�T does not change considerably,
resulting in the sign of Sd to be entirely dependent on G = ∂I

∂V ,
cf. Eq. (8). This mandates the sign of Sd to roughly fol-
low the sign of the function h(eV ) = −( ∂AL (ω=eV )

∂ω
)−1. When

the bias voltage increases further, the Fermi levels of the
leads are too far apart to show any effect of Kondo corre-
lations on transport. In other words, the system leaves the
Coulomb blockade regime for |eV/U | � 0.5. For the case
of the orbital level detuned out of the p-h symmetry point,
we observe that the dependence of thermopower becomes
generally asymmetric with respect to the bias reversal. For
εd/U = −0.3, the sign changes corresponding to the Kondo
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FIG. 5. (Left column) The nonequilibrium Seebeck coefficient Sn and (right column) the differential Seebeck coefficient Sd calculated as
a function of the temperature gradient �T and the applied bias voltage V . (a) and (b) present the case of the particle-hole symmetry point
εd/U = −0.5, (c) and (d) show the local moment regime with εd/U = −0.3, (e) and (f) display the resonant tunneling regime εd/U = 0,
whereas (g) and (h) present the empty orbital regime with εd/U = 0.3.

correlations are present only for negative bias voltage, where
the regime of sign change moves to slightly more negative
bias voltage, −0.5 � eV/U � −0.25. Interestingly, there is a
new sign change, seen mostly in the temperature dependence
of Sd for small positive bias voltages, which develops around
�T/�L ≈ 1, see Fig. 5(d).

All the features discussed in the case when at low volt-
ages the system is in the local moment regime are nicely
exemplified in Fig. 6, which presents the relevant vertical
cross sections of Fig. 5. One can clearly see the develop-
ment of a finite Seebeck effect with increasing the potential
bias in the case of εd/U = −0.5, where a small sign change
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FIG. 6. The temperature gradient dependence of (left column) the nonequilibrium and (right column) the differential Seebeck coefficients
for different values of the bias voltage applied to the system, as indicated. (a) and (b) present the case of εd/U = −0.5, while (c) and (d) display
the case of εd/U = −0.3, respectively. This figure corresponds to the vertical cross sections of Figs. 5(a)–5(d).

for |eV |/U = 0.3 can be observed. Note also the symme-
try with respect to the bias reversal. On the other hand,
even larger and generally nonzero for any value of V ther-
mopower develops for εd/U = −0.3. Here, one can explicitly
see the sign changes of both Sn and Sd in the low bias
voltage regime, which then disappear when the bias voltage
increases.

The case when at equilibrium the orbital level is outside
the local moment regime is presented in Figs. 5(e) and 5(f)
for εd = 0 and in Figs. 5(g) and 5(h) for the empty orbital
case εd/U = 0.3. Now, we generally observe only one sign
change visible in the Seebeck coefficients Sn and Sd as a
function of the applied bias voltage. Moreover, there is also
a sign change as a function of thermal gradient for selected
value of V . In the case of εd/U = 0, the sign change is close
to zero voltage and the offset from V = 0 can be explained
by renormalization of the orbital level by charge fluctuations
with the strongly coupled lead, which give rise to a resonance
in AL(ω) slightly shifted with respect to the Fermi energy, cf.
Fig. 4. When the potential bias V is positive, both Seebeck
coefficients, Sn and Sd, are found to be negative. Moreover,
in the regions of negative voltages, the magnitude of voltage
required to change the sign of the thermopower increases
with raising the temperature gradient. We observe a similar
behavior in the case of εd/U = 0.3, but the sign change of the
Seebeck effect with respect to the potential bias is offset by the
value of εd in the negative voltage direction, see the last row
of Fig. 5.

C. Nonequilibrium heat current
and the thermoelectric efficiency

Figure 7 presents the bias voltage and temperature gradient
dependence of the heat current IQ

R associated with the right
subsystem, the power P generated by the device together
with the thermoelectric efficiency, cf. Eq. (13), calculated for
several values of the dot level position, as indicated. First of
all, we note the general tendency to increase the heat current
by raising V or �T , which is irrespective of the level position
εd . Moreover, for large bias voltages, there is a saturation and
a slight decrease of IQ

R with increasing �T . The same can
be observed for the power generated by this device. Up to
eV ∼ U/2, the increase of the temperature gradient gives rise
to an enhancement of the power. However, for larger voltages,
there is a nonmonotonic dependence of P with respect to
�T . The efficiency of the system is presented in the right
column of Fig. 7. One can clearly identify an optimal choice
of both �T and V , for which η becomes maximized. The
parameter space with maximum η strongly depends on the
transport regime. Interestingly, in the local moment regime,
see Figs. 7(c) and 7(f), the maximum efficiency is obtained
just around the Kondo regime. On the other hand, out of the
Coulomb blockade and Kondo regime, the maximum effi-
ciency occurs for larger voltages eV/U � 0.5, see the case of
εd = 0 and εd/U = 0.3 in Figs. 7(i) and 7(l). We also note that
the Carnot efficiency for our system where TL → 0 is ηC = 1.
Consequently, we predict that the efficiency of the considered
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FIG. 7. (Left column) The heat current IQ
R , (middle column) the power P ≡ IQ

R − IQ
L , as well as (right column) the thermoelectric efficiency

η calculated as a function of the applied bias voltage V and the temperature gradient �T for different values of orbital energy εd . The first row
is determined for εd/U = −0.5, the second one for εd/U = −0.3, the third row is for εd = 0, while the last one is calculated for εd/U = 0.3.
The other parameters are the same as in Fig. 2.

device can reach up to η/ηC ≈ 0.8, depending on the transport
regime.

D. Realistic junction

To make the discussion of nonequilibrium thermopower
more appealing to experimental realizations, in this section we
relax the condition of voltage-independent orbital level and
include the voltage drops assuming realistic junction parame-
ters. An electrical circuit diagram of the considered system is
shown in Fig. 8. The tunnel junctions are characterized by the
capacitances CL and CR, and the gate capacitance is denoted
by Cg with gate voltage Vg. The formula for the current flowing
through such system can be written as

I (V,�T ) = −2e�R

h̄

∫ ∞

−∞
dωAL(ω, vg − v)

× [ fL(ω) − fR(ω − eV )], (14)

where vg = CgVg/e and v = VCR/e are the dimensionless gate
and bias voltage drops [38]. For the junction capacitances,
we assume CL/CR = 2 and Cg/CR = 0.1, while the charg-
ing energy EC = e2/2C, with C = CL + CR + Cg, is equal to
EC = U/2.

The current, differential conductance, and differential See-
beck effect as a function of the bias voltage V and the
dimensionless gate voltage vg calculated for different temper-
ature gradients are shown in Fig. 9. At low bias voltages, vg

FIG. 8. The schematic shows an equivalent electrical circuit dia-
gram for the asymmetrically coupled molecular junction along with
the implementation of the bias potential V and the gate potential
Vg. The capacitances associated with the left, right, and the gate
electrodes are represented as CL , CR, and Cg, respectively.
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FIG. 9. (First column) The current I in units of I0 = 2e�R/h̄, (second column) the differential conductance G, and (third column) the
differential Seebeck coefficient Sd calculated as a function of the applied bias voltage V and the effective gate voltage vg. For the capacitances
we assume CL/CR = 2 and Cg/CR = 0.1 and the other parameters are the same as in Fig. 2. Each row corresponds to different temperature
gradient �T , as indicated.

sets the corresponding transport regimes: vg � 0.5 (vg � 1.5)
defines the empty (fully occupied) orbital regime, whereas
the local moment regime is realized for 0.5 � vg � 1.5.
Let us first analyze the case of the lowest temperature
gradient, shown in the first row of Fig. 9, which corre-
sponds to the situation when �T < TK . In Fig. 9(a) one
can see a clear Coulomb diamond structure. On the other
hand, the differential conductance exhibits then a pronounced
zero-bias Kondo peak in the singly occupied orbital regime,
i.e., 0.5 � vg � 1.5. Note, that the behavior of the differential

conductance is typical for tunnel junctions with asymmetric
couplings to the contacts. Alternatively, one could also think
of an adatom probed by a scanning tunneling microscope
tip, which would correspond to a weakly coupled lead. At
low temperatures, the differential thermopower is generally
relatively small, however, one can still recognize sign change
at low bias voltage regime, see Fig. 9(c).

When the thermal gradient becomes comparable to the
Kondo temperature, the thermal response gets enhanced. This
is presented in the second row of Fig. 9. Although the current
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is hardly affected, the differential conductance shows a sup-
pression of the Kondo resonance at zero bias voltage. More-
over, the differential Seebeck coefficient is increased at low
bias voltages. In addition, in the Kondo regime one can clearly
see a sign change of Sd as a function of positive bias voltage.

With increasing the temperature gradient even more, see
the case of �T/�L = 1 in Fig. 9, the Coulomb diamond struc-
ture becomes smeared, and so does the conductance, which
now only shows broad resonances due to resonant tunneling
processes. The differential thermopower, on the other hand,
is now much enlarged and it generally displays two regimes
of either negative or positive values. Note, however, that the
wavy line along which Sd changes sign strongly depends on
both V and vg, which is due to the voltage dependence of
the orbital level. Finally, for larger temperature gradients,
�T/�L > 1, see the last row of Fig. 9, most of the features
are smeared. The differential conductance is suppressed by
the thermal fluctuations, whereas the differential Seebeck ef-
fect again shows two regimes with different signs, but now
separated by a line that monotonously depends on vg.

IV. SUMMARY

In this paper we have studied the nonequilibrium ther-
moelectric transport properties of a molecular junction
comprising a single-orbital molecule (or a quantum dot)
asymmetrically attached to external electrodes. For such
setup, we have determined the nonequilibrium electric and
heat currents flowing through the system by using the per-
turbation theory with respect to the weakly coupled contact,
while the strongly coupled subsystem was solved by using

the numerical renormalization group method. This allowed
us to accurately take into account the electronic correlations
that result in the development of the Kondo effect between
the molecule and strongly coupled lead. In particular, we
have determined the temperature gradient and bias voltage
dependence of the nonlinear Sn and differential Sd Seebeck
coefficients. First, we have performed the calculations as-
suming that the orbital level position is independent of the
applied bias. Then, assuming realistic junction parameters,
we have also considered the case when this condition is
relaxed. In particular, we have shown that both Sn and Sd

exhibit sign changes at nonequilibrium conditions, which are
due to Kondo correlations. Up to now, such Kondo-related
sign changes have been mostly observed in the linear re-
sponse regime [10]. In addition, we have also determined
the nonequilibrium heat currents, the power generated by the
device, when it works as a heat engine, and the corresponding
thermoelectric efficiency. We have found transport regimes
characterized by a considerable efficiency of up to 80% of
the Carnot efficiency. We believe that our results shed light on
the thermopower of strongly-correlated molecular junctions
in out-of-equilibrium settings and will foster further efforts in
the examination of such systems.
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The spin-resolved thermoelectric transport properties of correlated nanoscale junctions, consisting of a
quantum dot/molecule asymmetrically coupled to external ferromagnetic contacts, are studied theoretically in
the far-from-equilibrium regime. One of the leads is assumed to be strongly coupled to the quantum dot resulting
in the development of the Kondo effect. The spin-dependent current flowing through the system, as well as
the thermoelectric properties, are calculated by performing a perturbation expansion with respect to the weakly
coupled electrode, while the Kondo correlations are captured accurately by using the numerical renormalization
group method. In particular, we determine the differential and nonequilibrium Seebeck effects of the considered
system in different magnetic configurations and uncover the crucial role of spin-dependent tunneling on the
device performance. Moreover, by allowing for the spin accumulation in the leads, which gives rise to finite spin
bias, we shed light on the behavior of the nonequilibrium spin Seebeck effect. In particular, we predict new sign
changes of the spin-resolved Seebeck effect in the nonlinear response regime, which stem from the interplay of
exchange field and finite voltage and temperature gradients.

DOI: 10.1103/PhysRevB.109.115402

I. INTRODUCTION

Quantum transport through nanojunctions containing
quantum dots or molecules has been under tremendous
research interest due to promising applications of such nanos-
tructures in nanoelectronics, spintronics, and spin caloritron-
ics [1–4]. Due to the strong electron-electron interactions and
a characteristic discrete density of states, these systems can
exhibit large thermoelectric figure-of-merit and are excellent
candidates for nanoscale heat engines [5–10]. As far as more
fundamental aspects are concerned, correlated nanoscale sys-
tems enable exploration of fascinating many-body phenomena
in a controllable fashion, which is hardly possible in bulk
materials. One such phenomena is the Kondo effect [11,12],
which can drastically change the system’s transport properties
at low temperatures by giving rise to a universal enhancement
of the conductance to its maximum [13,14]. In addition to
voltage-biased setups’ investigations, the emergence of Kondo
correlations can be also probed in the presence of a tempera-
ture gradient, where thermoelectric transport properties reveal
the important physics [6–8]. In fact, the thermopower of quan-
tum dot and molecular systems has been shown to contain the
signatures of the Kondo phenomenon. More specifically, the
sign changes in the temperature dependence of the Seebeck
coefficient with the onset of Kondo correlations have been
identified in both theoretical [15] and experimental [16–18]
studies.

Further interesting properties arise when the junction’s
electrodes are ferromagnetic and the tunneling processes
become spin-dependent [1,3,4,19]. In the presence of a

*anaman@amu.edu.pl

finite temperature gradient, one can then observe an intri-
cate interplay of heat, charge, and spin, which gives rise to
the emergence of the spin Seebeck effect [20,21]. Besides
this fundamental phenomenon, which is of interest for spin
caloritronics [2], ferromagnetic nanojunctions allow for the
exploration of competition between the Kondo correlations
and the so-called ferromagnet-induced exchange field, which
acts as a local magnetic field that can suppress the Kondo
effect [22–25]. Such competition has already been revealed
in theoretical studies on thermoelectric properties of various
strongly correlated molecular and quantum dot systems with
ferromagnetic contacts [26–34]. Most of these investigations,
however, concerned the case of the linear response regime.
As far as fully out-of-equilibrium settings are concerned,
there have already been some efforts to understand nonlin-
ear thermopower of nonmagnetic junctions [35–40], while
the spin-dependent thermoelectric properties of ferromagnetic
nanojunctions remain to a large extent unexplored.

The primary goal of this work is therefore to analyze
the spin-resolved nonequilibrium thermopower of correlated
nanoscale junctions, in which the interplay between the
Kondo and exchange field is relevant. In particular, we study
thermoelectric characteristics of nanojunctions that exhibit
asymmetry in the couplings to ferromagnetic metallic leads.
Such asymmetric couplings can be encountered especially
in molecular junctions [41–46], and can be also present in
artificial heterostructures with quantum dots by appropri-
ately adjusting the gate voltages [47–49]. We thus consider
a quantum dot/molecule strongly coupled to one ferromag-
netic lead and weakly coupled to the other nonmagnetic
or ferromagnetic lead kept at different potentials and tem-
peratures, as displayed in Fig. 1. To determine the current
flowing through such system, we perform a perturbation
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FIG. 1. The schematic of the considered asymmetric tunnel junc-
tion with embedded quantum dot/molecule strongly coupled to a
cold ferromagnetic left lead and weakly coupled to a hot (a) non-
magnetic or (b) ferromagnetic right lead. The right lead is subject to
voltage and temperature gradients, while the left lead is grounded and
kept at zero temperature. The device in (b) can be in two magnetic
configurations: the parallel (P) and antiparallel (AP) one, as indicated
by the arrows.

expansion with respect to the weak coupling, while the prop-
erties of the strongly coupled subsystem, in which the Kondo
correlations may arise, are obtained with the aid of the nu-
merical renormalization group (NRG) method [50,51]. This
allows us to accurately explore the signatures of the interplay
between the spin-resolved transport and the Kondo correla-
tions in the Seebeck coefficient. Furthermore, we study how
different magnetic configurations of the system affect the dif-
ferential and nonequilibrium Seebeck effects of the system. In
particular, we show that the Seebeck coefficient exhibits new
sign changes as a function of the bias voltage, which can be
associated with the Kondo resonance split by exchange field.
These sign changes are found to extend to the temperature
gradients on the order of the Kondo temperature. Moreover,
we provide a detailed analysis of the nonequilibrium spin
Seebeck coefficient and demonstrate that it exhibits new sign
changes in the nonlinear response regime, which stem from
the interplay of spin-resolved tunneling and finite voltage and
temperature gradients.

The paper is organized as follows: The system Hamilto-
nian and the theoretical framework are described in Sec. II.
The numerical results and their discussion are presented in
Sec. III, where we first analyze the exchange field effects on
nonequilibrium thermopower, then, we consider the role of
different magnetic configurations and, finally, we present the
behavior of the nonlinear spin Seebeck effect. The summary
and concluding remarks can be found in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model and Hamiltonian of the system

We consider a nanoscale junction with an embedded quan-
tum dot/molecule, which is schematically shown in Fig. 1.
The quantum dot is assumed to be strongly coupled to the
left ferromagnetic lead and weakly coupled to the right lead,
which can be either nonmagnetic [Fig. 1(a)] or ferromagnetic
[Fig. 1(b)]. In the case of two ferromagnetic electrodes, we
will distinguish two magnetic configurations: the parallel (P)
one when the leads magnetic moments point in the same
direction and the antiparallel (AP) one, when the orientation

of magnetic moments is opposite, see Fig. 1(b). It is assumed
that there are finite temperature and voltage gradients applied
to the system, with TL = 0 and μL = 0, whereas TR = �T
and μR = −eV , as shown in Fig. 1, where Tα and μα are the
temperature (kB ≡ 1) and the chemical potential of lead α.

With the assumption of weak coupling between the quan-
tum dot and right contact the system Hamiltonian can be
simply written as

H = HL + HR + HT . (1)

HL describes the strongly coupled left subsystem, consisting
of the quantum dot and the left lead, and it is given by

HL = εd

∑
σ

nσ + Un↑n↓ +
∑
kσ

εLkσ c†
Lkσ

cLkσ

+
∑
kσ

tLkσ (d†
σ cLkσ + c†

Lkσ
dσ ), (2)

where nσ = d†
σ dσ , with d†

σ (dσ ) being the creation (annihi-
lation) operator on the quantum dot for an electron of spin
σ , cαkσ (c†

αkσ
) annihilates (creates) an electron in the lead

α with momentum k, spin σ and energy εαkσ . The quantum
dot is modeled by a single orbital of energy εd and Coulomb
correlations U . The hopping matrix elements between the
quantum dot and lead α are denoted by tαkσ and give rise to
the level broadening �ασ = πρασ |tαkσ |2, which is assumed to
be momentum independent, where ρασ is the density of states
of lead α for spin σ .

The second part of the Hamiltonian describes the right lead
and is given by

HR =
∑
kσ

(εRkσ − μR)c†
Rkσ

cRkσ , (3)

while the last term of H accounts for the hopping between the
left and right subsystems

HT =
∑
kσ

tRkσ (d†
σ cRkσ + c†

Rkσ
dσ ). (4)

In the following, we use the lowest-order perturbation theory
in HT to study the spin-dependent electric and thermoelectric
properties of the system.

B. Method and nonlinear transport coefficients

The electric current flowing through the system in the spin
channel σ in the lowest-order perturbation with respect to the
coupling to the right lead can be expressed as [52,53]

Iσ (V,�T ) = −e�Rσ

h̄

∫ ∞

−∞
dω ALσ (ω)

× [ fL(ω) − fR(ω − eV )], (5)

where fα (ω) = [1 + exp(ω/Tα )]−1 is the Fermi-Dirac dis-
tribution function, while ALσ (ω) denotes the spin-resolved
spectral function of the left subsystem. The total current flow-
ing through the system under potential bias V and temperature
gradient �T is thus I (V,�T ) = ∑

σ Iσ (V,�T ). Since we
treat the coupling to the right lead as a perturbation, we ex-
pect the next-order contributions, e.g., Iσ ∼ �2

Rσ , to be much
smaller, and assume that these do not affect the main behavior
of the system.
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The spectral function of the left subsystem ALσ (ω) is
calculated by means of the NRG method [50,51,54], which
allows us to include all the correlation effects between the
quantum dot strongly coupled to the left contact in a fully
nonperturbative manner. The spectral function ALσ (ω) is de-
termined as the imaginary part of the Fourier transform of
the retarded Green’s function of the left subsystem Hamilto-
nian, HL, Gσ (t ) = −i
(t )〈{dσ (t ), d†

σ (0)}〉. For the purpose of
NRG calculations, the conduction band of the left lead can
be discretized logarithmically with discretization parameter �

and mapped onto a tight binding chain (Wilson chain) with
couplings that decay as �−n/2, where n is the site number in
the chain. This mapping transforms HL into a tight-binding
Hamiltonian with each quantum dot spin σ coupled to the
first site of the chain with an effective coupling

√
2�Lσ /π .

The new Hamiltonian is then solved iteratively, while keeping
a relevant number of the lowest energy eigenstates NK . In
our calculations, we use � = 2, the iteration number N = 60
and the kept states NK at least 210. To obtain the spectral
function, the data is collected in logarithmic bins that are then
appropriately broadened to obtain a smooth function [55]. We
note that in general the spectral function also depends on tem-
perature, however, to shed light on the Kondo correlations in
thermoelectric transport behavior, we assume that the left lead
temperature is well below the Kondo temperature, TK . Hence,
the spectral function for TL 
 TK is essentially equivalent to
the zero-temperature spectral function.

For the further analysis, it is convenient to express the cou-
pling constants �ασ by using the spin polarization of the lead
α, pα , as �Lσ = (1 + σ pL )�L and �Rσ = (1 + σ pR)�R for the
parallel magnetic configuration, with �Rσ = (1 − σ pR)�R in
the case of the antiparallel configuration of the system. Here,
�α = (�α↑ + �α↓)/2. Furthermore, in the case when the right
lead is nonmagnetic, pR = 0, while for both ferromagnetic
leads we for simplicity assume pL = pR ≡ p.

As far as thermoelectric coefficients are concerned, the
differential Seebeck coefficient can be expressed as [56]

Sd = −
(

dV

d�T

)
I

= −
(

∂I

∂�T

)
V

/(
∂I

∂V

)
�T

. (6)

Furthermore, the extension of the conventional Seebeck coef-
ficient to the nonlinear response regime is referred to as the
nonequilibrium Seebeck coefficient Sn, and it can be defined
as [39,47,49,57–59]

Sn = −
(

�V

�T

)
I (V +�V,�T )=I (V,0)

. (7)

The above definitions will be used to describe thermo-
electric transport in different configurations of the system,
respectively.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present the main numerical results and
their discussion. In our considerations we assume that the
left lead is always ferromagnetic, while the right electrode
can be either nonmagnetic or ferromagnetic, cf. Fig. 1. For
the studied setup, the strong coupling to the left contact may
give rise to the Kondo effect [12,13]. However, it is crucial to
realize that the presence of the spin-dependent hybridization

results in a local exchange field on the quantum dot, which can
split the dot orbital level when detuned from the particle-hole
symmetry point, and thus suppress the Kondo resonance. The
magnitude of such exchange field can be estimated from the
perturbation theory, which at zero temperature gives [60],

�εexch = 2pL�L

π
ln

∣∣∣∣ εd

εd + U

∣∣∣∣. (8)

The presence of the exchange field and its detrimental effect
on the Kondo phenomenon has been confirmed by various
experiments on electronic transport measurements in quantum
dot and molecular systems [23,24,61,62].

We start our considerations with the analysis of electric
transport properties, revealing the effects of the exchange
field. Further on, we study the nonlinear thermoelectric re-
sponse, first for the case of nonmagnetic right lead and then
for the case of two ferromagnetic leads. In numerical calcula-
tions, we use the following parameters: U = 0.2, �L = 0.02,
�R = 0.002, in units of band halfwidth, and p = 0.4 for the
ferromagnetic leads. For the assumed parameters, the Kondo
temperature of the left subsystem for εd = −U/2 is equal to
[60,63], TK ≈ 0.035�L. We notice that one could, in principle,
expect that the coupling to the right contact should also give
rise to the Kondo correlations. However, due to exponential
dependence of TK on the ratio of Coulomb correlations and
coupling strength, the estimated right-lead Kondo temperature
is completely negligible. Thus, it is fully justifiable to assume
that the Kondo correlations result only from the coupling to
the left lead.

To begin with, it is instructive to analyze the properties
of the left subsystem itself as described by its local den-
sity of states. The spectral function for each individual spin
channel is shown in Fig. 2. First of all, one can see that
for εd = −U/2, there is a pronounced Kondo peak at the
Fermi level for each spin component. However, when detuned
from the particle-hole symmetry, a finite exchange-induced
splitting emerges, cf. Eq. (8), which suppresses the Kondo
effect when |�εexch| � TK . Because of that, each spin com-
ponent of the spectral function displays a slightly detuned
from Fermi energy side peak, constituting the split Kondo
resonance. In addition, the Hubbard resonances at ω ≈ εd and
ω ≈ εd + U become affected as well: although their position
is only slightly modified, their magnitude gets strongly spin-
dependent.

The splitting of the Kondo resonance is directly visible in
the differential conductance of the system, which is displayed
in Fig. 3. This figure presents the bias voltage dependence of
the differential conductance in different magnetic configura-
tions for various temperature gradients, as indicated. More
specifically, G corresponds to the case when the right lead
is nonmagnetic [cf. Fig. 1(a)], while GP (GAP) presents the
case of both ferromagnetic leads in the parallel (antiparallel)
alignment [cf. Figs. 1(b)–1(c)]. When the orbital level is de-
tuned out of the particle-hole symmetry point, the splitting of
the Kondo resonance may emerge depending on the magnetic
configuration of the system. The behavior of the differential
conductance at low bias voltage is displayed in the insets of
Fig. 3.

Let us begin the discussion with the case of nonmagnetic
right lead, presented in Fig. 3(a). First of all, one can note a
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FIG. 2. The energy dependence of the spectral functions for the
individual spin channels, (a) AL↑(ω) and (b) AL↓(ω) calculated for the
strongly coupled left subsystem with orbital energies as indicated.
The zoomed Kondo and split-Kondo peaks are shown in the insets.
The other parameters are: U = 0.2, �L = 0.02, in units of band half
width, and p = 0.4.

large asymmetry of the differential conductance with respect
to the bias reversal. Moreover, for small temperature gradi-
ents, �T � TK , the split zero-bias anomaly due to the Kondo
effect is visible. To qualitatively understand this behavior, it is
helpful to inspect the behavior of the spectral function around
the Fermi energy, see the insets of Fig. 2. One can note that
the split Kondo peak in AL↑(ω < 0) has a smaller weight
compared to the split Kondo peak in AL↓(ω > 0). Because, for
low temperature gradients, for eV > 0 (eV < 0), we probe the
density of states of the left subsystem for negative (positive)
energies, the above-mentioned asymmetry in ALσ (ω) gives
rise to highly asymmetric behavior of the differential con-
ductance, see Fig. 3(a), with the peak in the negative voltage
regime more pronounced than the other. Interestingly, when
the tunneling to the right lead becomes spin dependent, in the
case of parallel configuration one observes a rather symmetric
behavior of GP, with nicely visible split zero-bias anomaly,
see Fig. 3(b). This is due to the fact that the increased tun-
neling rate of spin-down electrons due to larger density of
states becomes now reduced since the spin-down electrons
are the minority ones in the right lead. On the other hand,
the tunneling of spin-up electrons to the right is enlarged. As
a consequence, the unequal contributions of the currents in
each spin channel become now equalized and the differential
conductance in the parallel configuration exhibits split-Kondo
resonance with the side peaks of comparable height. On the
other hand, when the magnetization of the right lead is flipped,
the asymmetric behavior visible in Fig. 3(a) is even further

x

x

FIG. 3. The differential conductance for the quantum dot
strongly coupled to ferromagnetic left lead and weakly coupled to
(a) nonmagnetic right lead, ferromagnetic right lead in (b) the par-
allel, and (c) antiparallel magnetic configuration. The insets show
the closeup of the differential conductance behavior for respec-
tive configurations. The parameters are the same as in Fig. 2 with
εd = −U/3, �R = 0.002, and different temperature gradients, as
indicated.

magnified, see Fig. 3(c). This can be understood by invoking
similar arguments as above, keeping in mind that now the
rate of spin-up tunneling to the right lead is smaller than that
for the spin-down electrons. With increase in the temperature
gradient, the Kondo-related behavior gets smeared and finally
disappears when �T � TK, |�εexch|.

A. Effects of exchange field on nonequilibrium thermopower

In this section, we focus on the case where the right lead
is nonmagnetic, see Fig. 1(a). In such a setup it will be
possible to observe clear signatures of ferromagnet-induced
exchange field on the thermoelectric properties of the system
subject to temperature and voltage gradients. We first study
the case of the linear response in potential bias with nonlinear
temperature gradient in Sec. III A 1, while in Sec. III A 2
the discussion is extended to the case of nonlinear response
regime in both �T and V .

1. Zero-bias thermoelectrics with finite temperature gradient

Figure 4 displays the zero-bias differential conductance
G, the differential Seebeck coefficient Sd and the nonlinear
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FIG. 4. (a) The differential conductance G, (b) the differential
Seebeck coefficient Sd , and (c) the nonequilibrium Seebeck coeffi-
cient Sn of the quantum dot strongly coupled to left ferromagnetic
lead and weakly attached to the right nonmagnetic lead plotted as a
function of the orbital energy εd and the temperature gradient �T .
The dashed lines show the Kondo temperature for the corresponding
parameters. The system is assumed to be in the linear response
regime with respect to the bias voltage. The other parameters are the
same as in Fig. 3.

Seebeck coefficient Sn calculated as a function of orbital level
εd and finite temperature gradient �T . For low temperature
gradients, the conductance shows considerable increase near
three values of εd . The peaks for εd ≈ 0 and εd ≈ −U cor-
respond to the Hubbard resonances, whereas the maximum
at εd = −U/2 is due to the Kondo effect. In fact, in the
local moment regime, −1 � εd/U � 0, the Kondo resonance
is suppressed by the exchange field once |�εexch| � TK , i.e.,
for values of εd away from the particle-hole symmetry point,
cf. Eq. (8). With the increase in the temperature gradient, the
Kondo resonance dies out when �T > TK , see the dashed line

in the figure, and the Hubbard peaks get suppressed when
�T > �L, see Fig. 4(a).

In the case of differential and nonlinear Seebeck coeffi-
cients presented in Figs. 4(b) and 4(c), respectively, we can
see an overall antisymmetric behavior across the particle-hole
symmetry point εd = −U/2. The sign of the Seebeck coef-
ficient here corresponds to the dominant charge carriers in
transport, holes for εd < −U/2 and particles for εd > −U/2.
The differential Seebeck coefficient shows two sign changes
in the local moment regime as a function of the temperature
gradient. Typically, in the linear response regime, the sign
change at the lower temperature gradient corresponds to the
Kondo correlations and is seen around the Kondo temperature
TK [15]. However, in our system the exchange field suppresses
and splits the Kondo resonance, such that the signatures of
the Kondo correlations are seen at �T ≈ �L, which is much
larger than �T ≈ TK . In the case of nonlinear Seebeck coeffi-
cient, we do not find the corresponding sign changes because
Sn can deviate considerably from the linear response Seebeck
coefficient at large �T [33]. Additionally, one can see that
both Seebeck coefficients decay with decreasing �T . This
behavior can be captured using the Sommerfeld expansion for
the linear response Seebeck coefficient

S(T ) ∝ T

A(ω = 0, T )

∂A

∂ω

∣∣∣∣
ω=0

. (9)

We also note that both Seebeck coefficients can possess finite
values at even lower �T inside the local moment regime than
outside of it, due to the additional contribution associated with
the Kondo effect.

2. The case of nonlinear potential bias and temperature gradients

Let us now inspect the behavior of the nonequilibrium
thermoelectric coefficients as a function of both potential bias
and temperature gradient shown in Fig. 5, focusing on V and
�T range where Kondo correlations are important. The first
row of the figure corresponds to the case of particle-hole
symmetry, εd = −U/2, while the second row presents the
results for εd = −U/3. Consider the first case. Figure 5(a)
depicts the bias and temperature gradient dependence of the
differential conductance G. There exist a prominent peak at
low �T centered at V = 0, this is the zero-bias conductance
peak characteristic of the Kondo effect. As the temperature
gradient increases, the Kondo peak dies out and becomes
smeared when �T � TK . It is important to note that the
increase in the temperature of the right lead does not sup-
press the Kondo resonance in the strongly correlated left
subsystem. Finite TR rather obscures the characteristics of
the Kondo effect by smearing the transport window defined
by [ fL(ω) − fR(ω − eV )], cf. Eq. (5). The differential and
nonlinear Seebeck coefficients, shown in Figs. 5(b) and 5(c),
exhibit a sign change with respect to the bias voltage reversal.
Moreover, while Sd exhibits considerable values around the
Kondo peak and becomes suppressed as �T grows, Sn gets
enhanced when �T � (�L/U )|eV |.

When the orbital level is detuned out of the particle-hole
symmetry point, one can observe an interesting interplay be-
tween the exchange field and Kondo effect, and its signatures
present in the nonlinear thermoelectric coefficients. First,
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FIG. 5. (a), (d) The differential conductance G, (b), (e) the differential Seebeck coefficient Sd and (c), (f) the nonequilibrium Seebeck
coefficient Sn as a function of the potential bias V and the temperature gradient �T . The first row corresponds to the particle-hole symmetry
point εd = −U/2, while the second row shows the case of εd = −U/3. The dashed horizontal lines indicate the Kondo temperature TK for the
corresponding εd . The other parameters are the same as in Fig. 3.

Fig. 5(d) shows the splitting of the Kondo peak due to the ex-
change field present in the strongly correlated subsystem. As
observed in the discussions of Fig. 3(a), the split Kondo peaks
are not symmetric, with the more prominent one in the eV < 0
regime and both dying off at large �T . Interestingly, the
differential and nonlinear Seebeck coefficients also capture
the signatures of the exchange field shown by the split Kondo
peak. In fact, there exist additional sign changes in the non-
linear response regime with respect to V . More specifically, at
low �T , there is a sign change at low bias voltages, followed
by another one, roughly located around the split-Kondo peak,
see Figs. 5(e) and 5(f). These sign changes correspond to the
additional energy scale in the system, namely the exchange
field �εexch. They occur at slightly different absolute values
of eV , which is due to the fact that the Kondo resonance
exhibits an asymmetric splitting, cf. Fig. 2. With increasing
the temperature gradient, we observe that the right split Kondo
peak in the conductance dies out first, accordingly the regime
of positive values of the Seebeck coefficients corresponding
to the right peak disappears around �T ≈ 0.03�L. Moreover,
we also note that the overall sign change of the thermopower
as a function of the bias voltage is now shifted to negative val-
ues of eV , as compared to the case of particle-hole symmetry,
see Fig. 5.

B. Effects of different magnetic configurations
on nonequilibrium thermopower

In this section we study the case where the quantum dot
is coupled to both ferromagnetic leads with spin polarization
p = 0.4. The magnetic moments of the external leads are
assumed to be aligned either in parallel or antiparallel. The

focus is on the effects of different magnetic configurations on
nonequilibrium thermoelectric transport properties.

1. The case of zero bias with nonlinear temperature gradient

The zero-bias thermoelectric properties of the system with
two ferromagnetic leads are shown in Fig. 6. The differential
conductance for the parallel GP and antiparallel GAP con-
figuration of the lead magnetizations is shown in Figs. 6(a)
and 6(b). The qualitative behavior of both conductances is
similar to the case of nonmagnetic lead on the right, where
G shows a region of high conductance around εd = −U/2
due to the Kondo effect. Similarly to the previous case, the
exchange field suppresses the linear response conductance for
values of εd away from the particle-point symmetry point.
Around εd ≈ 0,−U , there is am increase in the conductance
corresponding to the contribution from the Hubbard peaks.
It is interesting to note that the conductance in the case of
parallel configuration is smaller than that in the antiparallel
configuration around the Kondo resonance, cf. the discussion
of Fig. 3, while this situation is reversed for the resonances at
εd ≈ 0,−U .

The Seebeck coefficients SP
d and SP

n shown in Figs. 6(c)
and 6(e) for the parallel configuration display very interest-
ing features corresponding to various energy scales. These
coefficients show antisymmetric behavior across εd = −U/2
and sign changes as a function of temperature gradient in the
local moment regime −1 � εd/U � 0. Let us first consider
the linear response in �T for SP

d . In this regime one can
relate the Seebeck coefficient to the conductance through the
Mott’s formula. Thus, the changes of GP as a function of
orbital level are reflected in the corresponding dependence of
the thermopower, which shows sign changes as εd is detuned
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FIG. 6. (a), (b) The differential conductance G, (c), (d) the differential Seebeck coefficient Sd and (e), (f) the nonequilibrium Seebeck
coefficient Sn in (first column) the parallel (P) and (second column) antiparallel (AP) configuration calculated as a function of �T and εd

assuming linear response in voltage. The spin polarizations of both leads are equal to p = 0.4 and the other parameters are the same as in
Fig. 3.

from the particle-hole symmetry point. The first sign change
occurs when detuning is large enough to induce the exchange
field that suppresses the Kondo effect. Further sign change
occurs at the onset of conductance increase (as function of
εd ) due to the Hubbard resonance. This behavior extends to
higher �T as long as the thermal gradient is smaller than
the Kondo energy scale (or �εexch). Otherwise, another sign
change occurs as a function of �T , see Fig. 6(c). Very similar
dependence can be observed in Fig. 6(e), which shows the
nonequilibrium Seebeck coefficient SP

n . The main difference
can be seen for large �T , where SP

n takes considerable values
while SP

d decreases, as explained earlier.
The situation is completely different in the case of the an-

tiparallel configuration, where one does not see any additional
sign changes, neither in SAP

d nor in SAP
n , other than the ones

present across εd = −U/2, see Figs. 6(d) and 6(f). This can
be understood by realizing that the interplay of exchange field
with spin-dependent tunneling to the right contact hinders the
splitting of the Kondo resonance as a function of the bias
voltage. Consequently, one only observes a single resonance
displaced from V = 0, cf. Fig. 3(c), which results in much

more regular dependence of the differential and nonequilib-
rium Seebeck coefficients.

2. The case of nonlinear potential bias and temperature gradient

The nonequilibrium thermoelectric properties of the quan-
tum dot coupled to both ferromagnetic leads are shown in
Fig. 7. The first row corresponds to the case of parallel
configuration of the leads’ magnetizations. The differential
conductance depicted in Fig. 7(a) exhibits the split Kondo
anomaly, with side peaks of similar magnitude located at
roughly the same distance from the zero bias. Both peaks die
off with the temperature gradient around �T ≈ 0.05�L, i.e.
when thermal gradient exceeds the Kondo temperature.

At low �T the differential and nonequilibrium Seebeck
coefficients exhibit similar bias voltage dependence to the
case presented in Figs. 5(e) and 5(f), see Figs. 7(b) and 7(c).
Now, however, the region of negative Seebeck coefficient is
smaller. This can be attributed to the fact that the split Kondo
resonance is more symmetric across the bias reversal in the
case of parallel magnetic configuration, cf. Fig. 3(b). Unlike
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FIG. 7. (a), (d) The differential conductance G, (b), (e) the differential Seebeck coefficient Sd and (c), (f) the nonequilibrium Seebeck
coefficient Sn as a function of the bias voltage and temperature gradient in the case of εd = −U/3. The first (second) row corresponds to the
parallel (antiparallel) magnetic configuration of the system. The other parameters are the same as in Fig. 6.

in the case of nonmagnetic right lead, the sign changes at finite
bias corresponding to the split Kondo peak persist as long
as �T � TK and disappear around comparable temperature
gradient.

The case of antiparallel magnetic configuration of the sys-
tem is presented in the second row of Fig. 7. Consistent
with the discussion of Fig. 3(c), the differential conductance
exhibits two conductance peaks but with a large difference in
their magnitudes. The peak in the negative bias regime is far
more pronounced than the miniscule peak one can observe
in the positive regime. Just as in the case of other config-
urations, the peaks die out with increasing the temperature
gradient but the negative bias peak survives till larger temper-
ature gradients �T ≈ 0.2�L, whereas the positive bias peak
vanishes at temperature gradients as low as �T ≈ 0.02�L.

The Seebeck coefficients SAP
d and SAP

n , shown in Figs. 7(e)
and 7(f), respectively, demonstrate a similar behavior to the
other configurations only at very low temperature gradients.
However, now, instead of sign changes, one only observes
suppression of the Seebeck coefficients at the corresponding
values of the bias voltage associated with the exchange field.
These suppressions extend to temperature gradients of the
order of �T ≈ 0.03�L, see Figs. 7(e) and 7(f).

C. Finite spin accumulation and the associated nonequilibrium
spin Seebeck effect

In this section we consider the case when ferromagnetic
contacts are characterized by slow spin relaxation, which can
result in a finite spin accumulation [64,65]. Such a spin ac-
cumulation will induce a spin bias across the quantum dot.
Here, we assume that the spin accumulation and the resulting
spin-dependent chemical potential occurs only in the right

lead. Thus, we define the induced spin bias as, eVs/2 = μR↑ =
−μR↓ (keeping μL = 0). The nonequilibrium spin bias across
the quantum dot enables the spin chemical potentials to be
tuned separately and thus the thermal bias induced transport
can be different in the separate spin channels. The system
can then exhibit interesting spin caloritronic properties, such
as the spin Seebeck effect. The spin Seebeck coefficient Ss

quantifies the magnitude and the direction of the spin current
induced in the presence of a thermal bias [20]. Analogous to
the differential Seebeck effect Sd , the differential spin Seebeck
coefficient Ss in the nonlinear response regime can be defined
as

Ss = −
(

dVs

d�T

)
Is

= −
(

∂Is

∂�T

)
Vs

/(
∂Is

∂Vs

)
�T

, (10)

where Is = I↑(μR↑,�T ) − I↓(μR↓,�T ) is the net spin cur-
rent flowing through the system. This quantity acts as a
response over the spin current as a function of both the spin
bias Vs and the temperature gradient �T . In addition to the
net spin current, there can also exist a charge current I =∑

σ Iσ (μRσ ,�T ) flowing across the system originating solely
from the thermal and the spin biases. We define the Seebeck
coefficient that estimates the charge current in the presence
of the spin bias as the charge Seebeck coefficient S [64]. The
charge Seebeck coefficient S can thus be defined based on the
response of charge current I as

S = −
(

dVs

d�T

)
I

= −
(

∂I

∂�T

)
Vs

/(
∂I

∂Vs

)
�T

. (11)

We first discuss the case of linear response in the spin
bias Vs with large and finite temperature gradient �T , fo-
cusing on the differential spin Seebeck coefficient Ss and the
charge Seebeck coefficient S. It is pertinent to note that the
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FIG. 8. The charge Seebeck (first column) and the spin Seebeck (second column) coefficients under nonlinear temperature gradient �T
and linear response spin bias Vs as a function of the orbital level energy εd and �T . The first row corresponds to the case of nonmagnetic
right lead, while the second (third) row presents the case of ferromagnetic right lead in the parallel (antiparallel) magnetic configuration of the
system. The other parameters are the same as in Fig. 6.

nonequilibrium equivalent of the spin Seebeck coefficient
Ss,n tends to remain undefined in our considerations, since
the magnitude of the spin bias fails to compensate for the
thermally induced spin current in (parts of) the regimes con-
sidered. Hence in this paper, we limit our discussions to the
differential spin Seebeck coefficient Ss ≡ Ss,d in the case of
different configurations. We further investigate the depen-
dence of Ss and S on large and finite spin bias under applied
temperature gradient.

1. The case of zero spin bias with nonlinear temperature gradient

Figure 8 shows the behavior of the charge Seebeck co-
efficients S, SP, SAP and the spin Seebeck coefficients Ss,
SP

s , SAP
s for the case of nonmagnetic right lead, as well as

the case of ferromagnetic lead in the parallel and antiparallel
magnetic configurations, respectively. The first row of Fig. 8
shows the case of right lead with spin polarization p = 0, but
with finite spin accumulation occurring from the spin-resolved
transport through the quantum dot. Figure 8(a) displays the
charge Seebeck S coefficient, which behaves similarly to the

differential Seebeck effect Sd presented in Fig. 4 except some
points of divergences. At temperature gradients smaller than
�L, there exist two additional sign changes, both in the local
moment regime symmetric across the particle-hole symmetry
point. The points of sign change spread out of the local mo-
ment regime for thermal biases �T � 3�L. The sign changes
of the Seebeck effect are also accompanied by large diver-
gences in the magnitude of S. The additional sign changes
and divergences originate from the behavior of the denom-
inator in the definition of S, cf. Eq. (11). The denominator
in Eq. (11), which can be represented as, Gcs = (∂I/∂Vs)�T ,
is the differential mixed conductance [64] that estimates the
charge current in the presence of a spin bias, which can be
either negative or positive, resulting in its zero crossing points
causing the divergence. From a physical perspective, tuning
the temperature gradient in these specific regimes will result
in extraordinary changes in the induced charge current. Note
that the colormaps in Figs. 8(a) and 8(e) have been truncated
for readability.

The charge Seebeck coefficient for the parallel configu-
ration [see Fig. 8(c)] nicely recreates the behavior seen in
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FIG. 9. The charge Seebeck (first column) and the spin Seebeck (second column) coefficients for the orbital level εd = −U/3 as a function
of the applied spin bias Vs and �T . The first row corresponds to the case of nonmagnetic right lead, while the second (third) row presents the
case of ferromagnetic right lead in the parallel (antiparallel) magnetic configuration of the system. The other parameters are the same as in
Fig. 6.

Fig. 6(c). In the case of the parallel configuration, the relative
scaling of the couplings in each spin channel on the right
and left is the same, resulting in a non-negative Gcs and,
thus, no divergences. Similarly, the charge Seebeck effect
in the antiparallel configuration shown in Fig. 8(e) presents
the behavior resembling the Seebeck coefficient discussed in
Fig. 6(d), but overlaid by the divergences associated with Gcs.
In this case, the additional sign changes start from inside the
local moment regime at very low temperature gradients and
move out of the local moment regime monotonously around
�T ≈ 10−1�L.

The differential spin Seebeck coefficient Ss shown in
Figs. 8(b), 8(d), and 8(f) for different lead configurations
behave antisymmetrically across the particle-hole symmetry
point (εd = −U/2). As can be seen, there exists a pronounced
spin Seebeck coefficient in the local moment regime for all
the configurations that dies off at �T � 10�L. Such regions
of considerable spin Seebeck effect have been observed in
the linear response studies of symmetrically coupled quantum
dots as a function of the global temperature T [27,33]. In
addition to the sign change at the particle-hole symmetry

point, at very low �T , Ss changes sign when moving out of
the local moment regime (i.e., at εd ≈ −U, 0). In the case
of the nonmagnetic right lead, the region of sign change
outside the local moment regime extends up to �T ≈ �L,
whereas for the antiparallel configuration the sign change
extends only up to �T ≈ 0.2�L. On the other hand, the sign
change of the spin Seebeck coefficient in the local moment
regime survives at thermal gradients even greater than �T ≈
102�L for the parallel configuration.

2. The case of nonlinear spin bias and temperature gradient

The dependence of the nonlinear charge and spin Seebeck
effects is shown in Fig. 9 for the case of orbital energy
level εd = −U/3. The first column in Fig. 9 focuses on the
charge Seebeck effect for various magnetic configurations
of the system. For the case of nonmagnetic right lead, the
charge Seebeck coefficient S changes sign multiple times as a
function of eVs at temperature gradients below �T ≈ 0.5�L,
see Fig. 9(a). Two among these sign changes (around eVs ≈
0.001U and eVs ≈ 0.15U ) correspond to the zeros in the
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mixed conductance Gcs, which can be identified from the
divergence in S around the sign changes. The other two sign
changes (around eVs ≈ −0.05U and eVs ≈ 0.03U ) originate
from the zeros of the thermal response −(∂I/∂�T )Vs , i.e., the
numerator in the definition of the charge Seebeck coefficient,
cf. Eq. (10). As the temperature gradient increases, the regions
of sign change introduced by Gcs and the thermal response be-
come larger in the spin bias regime until around �T ≈ �L/3
for the sign change associated with the mixed conductance,
and until �T ≈ �L/2 for the sign change associated with the
thermal response. With further increase in the temperature
gradient, the regions of sign change disappear. This happens
around �T � �L/2 for the sign change caused by the mixed
conductance, and for �T � 0.8�L in the case of the sign
change due to the thermal response. The remaining two sign
changes at eVs ≈ −U/2 and eVs ≈ U/2 can be associated with
the Hubbard resonances. The region of these sign changes
disappears above temperature gradient �T � 4�L. On the
other hand, at eVs ≈ 0 and very large temperature gradients
(around �T � 10�L), there exists another sign change that
originates from the zeros of Gcs. For positive eVs, this sign
change moves to lower �T , while for negative eVs, the sign
change moves to higher �T , see Fig. 9(a).

Figure 9(c) shows the charge Seebeck coefficient SP corre-
sponding to the system in the parallel magnetic configuration
of ferromagnetic leads. We observe that there are two sign
changes as a function of the spin bias eVs. At low tem-
peratures, �T � 0.01�L, the region of sign change appears
between eVs ≈ 0.005U and eVs ≈ 0.5U . One can identify
that these sign changes originate solely from the thermal
response of the current under spin bias. As can be seen in
Fig. 9(c), the position of the sign changes in eVs hardly de-
pends on temperature gradient as long as it is lower than
�T ≈ 0.5�L. On the other hand, once �T � 0.5�L, the nega-
tive region of SP around eVs ≈ 0.005U disappears. However,
unlike in the previous case of S, the sign change around
eVs ≈ U/2, which is due to the contribution from the Hubbard
resonance, survives for large temperature gradients �T . This
sign change moves closer to Vs ≈ 0 when the temperature
gradient �T is increased �T � �L, see Fig. 9(c).

The charge Seebeck coefficient for the antiparallel con-
figuration SAP does not exhibit any sign change in the local
moment regime apart from the particle-hole symmetry point
εd = −U/2, as shown in Fig. 8(e). However, as a function of
the spin bias eVs, two new regions of sign change form in the
dependence of SAP. More specifically, one sign change occurs
in the negative spin bias regime around eVs ≈ −0.15U , and
the other one in the positive regime for eVs ≈ 0.03U . As can
be seen in the figure, the negative values of the charge Seebeck
effect extend until |eVs| � U/2. Furthermore, with increasing
�T , the corresponding sign changes move further apart into
the negative and positive spin bias regimes, respectively. On
the other hand, for �T � �L, SAP becomes positive for all
values of eVs considered, see Fig. 8(e).

It is important to emphasize that the sign changes observed
in the charge Seebeck coefficient as a function of spin bias
eVs do not correspond to the sign changes seen in the Seebeck
coefficient as a function of eV , as discussed and presented in
Figs. 5 and 7. This is associated with the fact that the gener-
ated current as a function of voltage V scans through each of

the split Kondo resonances shown in Fig. 2 separately, result-
ing in the split peaks seen in the differential conductance and
the corresponding sign changes in the Seebeck coefficients.
However, as a function of the spin bias eVs, the signatures
from the split Kondo resonance cannot be identified directly
in the generated current I . This is because for finite spin
bias, μR↑ − μR↓ = eVs, both split Kondo peaks contribute
simultaneously, and the total current I is rescaled by relative
couplings of the separate spin channels �Rσ . Hence, the sign
changes in the charge Seebeck coefficient are solely resulting
from the sign changes in the thermal response and the mixed
charge conductance.

The spin Seebeck coefficient in the nonlinear spin bias
regime is presented in the second column of Fig. 9. Fig-
ures 9(b), 9(d), and 9(f) show the case of the nonmagnetic
right lead as well as ferromagnetic right lead in the parallel
and antiparallel magnetic configuration of the nanojunction,
respectively. As can be seen, the behavior of the spin Seebeck
coefficient is qualitatively comparable for almost all config-
urations. From the discussion of the linear Vs case shown in
Fig. 8, we observe that the differential spin Seebeck coeffi-
cient for eVs ≈ 0 does not change sign as a function of thermal
gradient for all three configurations. Thus, for negative eVs, Ss

is positive irrespective of magnetic arrangement, see the right
column of Fig. 9. On the other hand, for positive spin bias
eVs, one observes a sign change around eVs ≈ 0.02 U , which
moves to higher eVs with increasing �T above �T ≈ �L.
Moreover, with further increasing eVs, there is a region of sup-
pressed Ss around eVs ≈ 0.2U , which extends to eVs ≈ U/2.
Interestingly, one can note that the spin Seebeck effect in this
region changes sign in the case of parallel configuration, thus
introducing another sign change as a function of spin bias, see
Fig. 9(d). This region disappears once �T � 0.2�L.

IV. CONCLUDING REMARKS

In this paper we have analyzed the nonequilibrium
spin-resolved thermoelectric properties of a ferromagnetic
nanojunction consisting of a quantum dot/molecule asym-
metrically coupled to external ferromagnetic leads. The
considerations have been carried out by performing perturba-
tive expansion with respect to the weakly coupled electrode,
while the properties of quantum dot strongly coupled to fer-
romagnetic lead were extracted by numerical renormalization
group method. The emphasis has been put on the signatures
of the interplay between spin-resolved tunneling and strong
electron correlations in the nonequilibrium spin-dependent
thermopower of the system. In particular, we have deter-
mined the bias voltage and temperature gradient dependence
of the differential and nonequilibrium Seebeck coefficients
in different magnetic configurations of the system. We have
observed new signatures in the Seebeck effect corresponding
to the Kondo resonance and the regions where the ferromag-
netic contact induced exchange field suppresses the Kondo
effect, both in the potential bias and the temperature gradient.
More specifically, we have demonstrated that the Seebeck
coefficient exhibits new sign changes as a function of bias
voltage, which are associated with the split Kondo resonance.
These sign changes, depending on the transport region, ex-
tend to the temperature gradients on the order of the Kondo
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temperature or of the temperature associated with the energy
scale of the exchange field. Furthermore, we have investigated
the influence of the spin accumulation in the leads, that gives
rise to finite spin bias, on the Seebeck and spin Seebeck
coefficients. The nonlinear charge Seebeck coefficient and the
spin Seebeck coefficient showed points of sign changes in the
presence of finite spin and thermal bias, indicating an intricate
interplay of Kondo correlations with spin-resolved tunneling
processes at nonequilibrium settings.

We believe that our work sheds new light on the spin-
resolved nonequilibrium thermopower of correlated nanoscale
junctions and, thus, provides a better understanding of ther-
moelectrics under finite temperature and voltage gradients.
We also hope that our findings will foster further theoretical
and experimental investigations of spin thermoelectric prop-
erties in fully nonequilibrium conditions.

As an outlook, we would like to notice that it would be
of importance to explore the nonequilibrium thermoelectric

transport properties of nanoscale systems strongly coupled
to both left and right leads. Accurate treatment of corre-
lations in such setups would however require resorting to
more sophisticated numerical techniques, such as recently
developed hybrid method of NRG and time-dependent density
matrix renormalization group [66,67]. While addressing such
a problem goes beyond the scope of the present paper, it
definitely provides an important objective for future research
endeavor.
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Schön, and J. von Delft, Kondo effect in the presence of
itinerant-electron ferromagnetism studied with the numerical
renormalization group method, Phys. Rev. Lett. 91, 247202
(2003).

[23] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose,
L. A. K. Donev, P. L. McEuen, and D. C. Ralph, The Kondo
effect in the presence of ferromagnetism, Science 306, 86
(2004).

115402-12

130



Anand Manaparambil & Ireneusz Weymann

SPIN-RESOLVED NONEQUILIBRIUM THERMOPOWER OF … PHYSICAL REVIEW B 109, 115402 (2024)

[24] K. Hamaya, M. Kitabatake, K. Shibata, M. Jung, M. Kawamura,
K. Hirakawa, T. Machida, T. Taniyama, S. Ishida, and Y.
Arakawa, Kondo effect in a semiconductor quantum dot cou-
pled to ferromagnetic electrodes, Appl. Phys. Lett. 91, 232105
(2007).

[25] I. Weymann, Finite-temperature spintronic transport through
Kondo quantum dots: Numerical renormalization group study,
Phys. Rev. B 83, 113306 (2011).

[26] M. Krawiec and K. I. Wysokiński, Thermoelectric effects in
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A B S T R A C T

We analyze the spin-resolved transport and, in particular, the tunnel magnetoresistance of an asymmetric
ferromagnetic tunnel junction with an embedded quantum dot or molecule subject to thermal and voltage bias
in the nonlinear response regime. We demonstrate that such system exhibits a giant tunnel magnetoresistance
effect that can be tuned by gate and bias voltages. Large values of magnetoresistance are associated with the
interplay between the Kondo correlations and the ferromagnetic-contact-induced exchange field. In particular,
we show that the nonequilibrium current in the parallel and antiparallel magnetic configuration of the
system changes sign at different values of the voltage and thermal bias. This gives rise to giant values of
magnetoresistance, the sign of which can be controlled by the applied sources.

1. Introduction

Quantum dots, due to their charge quantization and strong elec-
tronic interactions, provide a reliable and tunable platform for manip-
ulation and control of single electron charges and spins [1–3]. A single
or coupled quantum dots separating two ferromagnetic leads constitute
the so-called quantum dot spin valve, the transport properties of which
can be controlled by changing the alignment of magnetic moments
of external ferromagnetic electrodes [4]. In fact, this is a grass-root
device for single-spin electronics, bringing interesting possibilities for
spintronic applications [5–10]. Moreover, the interplay of the Kondo
effect [11–13], a many-body screening phenomenon, along with the
exchange field induced by the spin-resolved tunneling from the fer-
romagnetic leads [14–16], enables an additional tunability exhibited
by such nanoscale spin valves [17–24]. Although the electrical control
of the transport properties of quantum dot spin valves has been under
rigorous studies [21–23], the transport induced by a finite temperature
gradient and the extra control offered by the thermal bias remains to
be explored [25], especially, as far as strong electron correlations are
concerned [10,26].

In this paper we therefore study the behavior of the spin-resolved
transport and, especially, the tunnel magnetoresistance of a strongly-
correlated quantum dot spin valve, which is subject to nonlinear volt-
age and temperature gradients. In particular, we consider an asymmet-
ric junction, in which the coupling of the quantum dot to one of the
leads is much stronger than the other coupling. At low temperature
gradients this gives rise to strong electron correlations effects, such
as the Kondo effect and its interplay with the ferromagnet-induced
exchange field. To capture those effects we make use of the versatile

∗ Corresponding author.
E-mail address: anaman@amu.edu.pl (A. Manaparambil).

numerical renormalization group (NRG) method [27,28]. In particular,
while the quantum dot strongly coupled to one of the leads is treated
nonperturbatively, we perform the perturbation expansion with respect
to tunneling processes to the weakly coupled electrode. By calculating
the spin-resolved currents in the nonlinear response regime, we demon-
strate that an appropriate choice of the bias voltage and temperature
gradient gives rise to a giant tunnel magnetoresistance effect that can
also be tuned by the gate voltage. More specifically, we show that
the thermally induced currents change sign at different bias voltage
depending on the magnetic configuration of the system. Thus, our study
demonstrates that the combination of applied voltage and temperature
gradient can provide an extra nob to tune the spin-dependent tunnel-
ing processes in the system. This is of great importance for possible
spintronics applications.

2. Theoretical description

The Hamiltonian 𝐻 of the system consists of the strongly coupled
left lead and the quantum dot, described by 𝐻𝐿, the weakly coupled
right lead, 𝐻𝑅, and the term describing tunnel coupling between the
left and right parts, 𝐻𝑇 . The Hamiltonian of the left part is given
by [29]

𝐻𝐿 = 𝜀𝑑 (𝑛↑ + 𝑛↓) + 𝑈 𝑛↑𝑛↓ +
∑
𝑘𝜎

𝜀𝑘𝜎𝑐
†
𝐿𝑘𝜎𝑐𝐿𝑘𝜎

+
∑
𝑘𝜎

𝑡𝐿𝑘𝜎 (𝑑†𝜎𝑐𝐿𝑘𝜎 + 𝑑𝜎𝑐
†
𝐿𝑘𝜎 ), (1)

where 𝑛𝜎 = 𝑑†𝜎𝑑𝜎 is the number operator for an electron on the quantum
dot with spin 𝜎, with 𝑑𝜎(𝑑†𝜎) being the annihilation (creation) operator
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Fig. 1. The schematic of a quantum dot strongly coupled to a cold ferromagnetic
lead (𝑇𝐿 = 0, 𝜇𝐿 = 0) on the left and weakly coupled to a hot ferromagnetic lead
(𝑇𝑅 = 𝛥𝑇 , 𝜇𝑅 = −𝑒𝑉 ) via the spin-dependent hybridization functions 𝛤𝐿𝜎 and 𝛤𝑅𝜎 ,
respectively. The quantum dot energy level is tuned by the gate voltage 𝑣𝑔 .

for the same. The annihilation (creation) operator for an electron in
the lead 𝛼 ∈ {𝐿,𝑅} with spin 𝜎 and momentum 𝑘 is represented as 𝑐𝛼𝑘𝜎
(𝑐†𝛼𝑘𝜎). The 𝑡𝐿𝑘𝜎 are the tunneling matrix elements between the quantum
dot and the left lead.

The potential bias across the quantum dot is achieved solely by
changing the chemical potential of the right lead 𝜇𝑅 = −𝑒𝑉 . Thus, the
Hamiltonian of the right lead can be expressed as

𝐻𝑅 =
∑
𝑘𝜎

𝜀𝑘𝜎𝑐
†
𝑅𝑘𝜎𝑐𝑅𝑘𝜎 − 𝑒𝑉

∑
𝑘𝜎

𝑐†𝑅𝑘𝜎𝑐𝑅𝑘𝜎 . (2)

The tunneling processes between the left (quantum dot strongly cou-
pled to left lead) and right part (weakly coupled right lead) are de-
scribed using the tunneling Hamiltonian 𝐻𝑇

𝐻𝑇 =
∑
𝑘𝜎

𝑡𝑅𝑘𝜎 (𝑑†𝜎𝑐𝑅𝑘𝜎 + 𝑑𝜎𝑐
†
𝑅𝑘𝜎 ), (3)

where 𝑡𝑅𝑘𝜎 are the tunneling matrix elements between the quantum dot
and the right lead. The total Hamiltonian is thus 𝐻 = 𝐻𝐿 +𝐻𝑅 +𝐻𝑇 .
The tunnel matrix elements give rise to the broadening of the quantum
dot energy levels, which can be expressed as, 𝛤𝛼𝜎 = 𝜋𝜌𝛼𝜎 |𝑡𝛼|2, where
𝜌𝛼𝜎 is the spin-dependent density of states of lead 𝛼 and we assumed
momentum and spin independent tunnel matrix elements 𝑡𝛼𝑘𝜎 ≡ 𝑡𝛼 .

The current flowing through the system in the lowest-order pertur-
bation with respect to 𝛤𝑅, i.e. the total coupling to the right lead, is
given by 𝐼 = 𝐼↑ + 𝐼↓, with [21,23,26,30]

𝐼𝜎 = −
𝑒𝛤𝑅𝜎
ℏ ∫

∞

−∞
𝑑𝜔 𝐴𝐿𝜎 (𝜔)[𝑓𝐿(𝜔) − 𝑓𝑅(𝜔 − 𝑒𝑉 )]. (4)

Here, 𝑓𝛼(𝜔) = [1+e𝜔∕𝑇𝛼 ]−1 denotes the Fermi-Dirac distribution function
with 𝑘𝐵 ≡ 1, whereas 𝐴𝐿𝜎 (𝜔) is the spin-resolved spectral function of
the left subsystem. We assume a bias independent dot energy level 𝜀𝑑 ,
this setup can be experimentally realized by immediately tuning the
gate voltage 𝑣𝑔 according to the applied bias. The transport through
each spin channel depends on the magnetic configuration of the system,
for the parallel configuration the coupling strength is given by, 𝛤𝛼𝜎 =
(1+𝜎𝑝𝛼)𝛤𝛼 , while for the antiparallel configuration one has, 𝛤𝑅𝜎 = (1−
𝜎𝑝𝑅)𝛤𝑅, with 𝛤𝛼 = (𝛤𝛼↑+𝛤𝛼↓)∕2 and we introduced the spin polarization
of lead 𝛼, 𝑝𝛼 . Thus, we assume that the magnetization of the left lead is
fixed, while the system changes the magnetic configuration by flipping
the magnetic moment of the right lead, see Fig. 1. The difference in the
resistance of the junction while changing the magnetic configuration
can be described by the tunnel magnetoresistance (TMR), which is
defined as [31]

TMR = 𝐼P − 𝐼AP

𝐼AP
, (5)

where 𝐼P (𝐼AP) is the current flowing through system in the case of
parallel (antiparallel) magnetic configuration.

3. Numerical results and discussion

In the calculations, we use the following parameters: 𝛤𝐿 = 0.02,
𝛤𝑅 = 0.002, 𝑈 = 0.2, in units of band halfwidth, and 𝑝 = 𝑝𝐿 = 𝑝𝑅 = 0.4.

Fig. 2. The spin-resolved spectral function 𝐴𝐿𝜎 (𝜔) for 𝜎 =↑ [𝜎 =↓] is shown in panel
(a) [panel (b)] for the representative energy levels 𝜀𝑑 . The insets show the behavior of
the spectral function around 𝜔 = 0.

The spectral functions are determined by NRG calculations with 210
kept states [32]. The corresponding results are shown in Fig. 2. In
particular, we focus on the local moment regime with particle-hole
symmetry 𝜀𝑑 = −𝑈∕2 (green curves in Fig. 2), detuned out of the
symmetry point 𝜀𝑑 = −𝑈∕3 (red curves in Fig. 2) and the resonant
tunneling regime 𝜀𝑑 = 0 (blue curves in Fig. 2). We observe the
Kondo resonance formed around 𝜔 ≈ 0 for both the energy levels
𝜀𝑑 = −𝑈∕2,−𝑈∕3 in the local moment regime. For the particle-hole
symmetry point, the Kondo peak can be observed exactly at 𝜔 = 0 in
the spectral functions for both spin components. On the other hand,
for the case of 𝜀𝑑 = −𝑈∕3, the Kondo peak moves into the negative
regime for the spin-↑ and towards the positive frequencies for the spin-↓
spectral function. Finally, the 𝜀𝑑 = 0 case shows no Kondo peak, but just
hybridized peak with broadening approximately given by 𝛤𝐿 around
the orbital energy level.

We begin our analysis by studying the current in the parallel and
antiparallel magnetic configurations as well as the TMR in the case
of finite temperature gradient, while keeping 𝑉 → 0. These transport
coefficients are presented in Fig. 3. Note that we use the logarithmic
colormap scale to show the currents in the full parameter space, since
the current for small 𝛥𝑇 is very low. Moreover, it is important to
emphasize that in the considered case, the nonlinear current flows
exclusively due to the thermal gradient applied to the system. As one
can see in the figure, the current is antisymmetric across the particle-
hole symmetry point 𝜀𝑑 = −𝑈∕2. For the antiparallel configuration,
𝐼AP is positive (negative) for 𝜀𝑑 > −𝑈∕2 (𝜀𝑑 < −𝑈∕2), see Fig. 3(b),
which is associated with the type of the charge carriers (either electrons
or holes) for finite 𝛥𝑇 . Interestingly, in the parallel configuration the
above rule is not strictly obeyed and we observe sign changes of the
current as a function of temperature gradient for a fixed value of
the orbital level position. These sign changes are present in the local
moment regime, see Fig. 3(a), and are associated with the presence
of the exchange field. Such a field can suppress the Kondo effect and
strongly influence the local density of states of the left subsystem.
Consequently, the temperature gradient dependence of the current
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Fig. 3. The current in (a) the parallel configuration 𝐼P, (b) the antiparallel configu-
ration 𝐼AP as well as (c) the tunnel magnetoresistance of a quantum dot in the linear
response potential bias regime 𝑉 → 0 as a function of the orbital energy 𝜀𝑑 and the
temperature gradient 𝛥𝑇 . The other parameters are: 𝛤𝐿 = 0.02, 𝛤𝑅 = 0.002, 𝑈 = 0.2, in
units of band halfwidth, and 𝑝 = 𝑝𝐿 = 𝑝𝑅 = 0.4.

may then become nonmonotonic. Thus, the observed large difference
between the two magnetic configurations is related to the effects of the
exchange field and its competition with Kondo correlations. In fact, it
has already been demonstrated experimentally that the exchange field
can be switched off by flipping the system’s magnetic configuration
from the parallel to the antiparallel one [16]. Here, we observe a similar
behavior but in the presence of nonlinear temperature gradient. The
difference between the two magnetic configurations is directly reflected
in the behavior of the TMR, which is shown in Fig. 3(c). As can be
seen, tunnel magnetoresistance can take both positive and negative
values, depending on the transport regime and the value of 𝛥𝑇 . More
specifically, in the local moment regime, −1 ≲ 𝜀𝑑∕𝑈 ≲ 0, where for
low temperature gradients the interplay of exchange field and Kondo
correlations is relevant, the current in the parallel configuration is
smaller than that in the antiparallel configuration and the TMR takes
negative values. The negative TMR becomes magnified even more when
𝛥𝑇 ≳ 𝛤𝐿. On the other hand, in the empty (or doubly-occupied)

Fig. 4. (a) The current 𝐼P in the parallel configuration, (b) the current 𝐼AP in the
antiparallel configuration and (c) the TMR for a quantum dot with orbital energy
𝜀𝑑 = −𝑈∕2 plotted as a function of the applied potential bias 𝑉 and temperature
gradient 𝛥𝑇 . The other parameters are the same as in Fig. 3.

orbital regime the TMR is positive for 𝛥𝑇 ≲ 𝛤𝐿, which is characteristic
of elastic cotunneling regime [33,34]. However, once 𝛥𝑇 ≳ 𝛤𝐿, one
finds suppressed TMR and the difference between the two magnetic
configurations becomes hardly visible, see Fig. 3(c).

The spin-resolved transport behavior is even more interesting in
the presence of both temperature and voltage gradients. Below, we
present and discuss the corresponding dependence of the currents in the
parallel and antiparallel configurations and the resulting TMR for three
different values of the orbital level position. The linear bias voltage
regime corresponds thus to the cross-sections of Fig. 3. Let us first
analyze the case of quantum dot at the particle-hole symmetry point
(𝜀𝑑 = −𝑈∕2), which is presented in Fig. 4. Due to the absence of
the exchange field in this situation, we do not observe remarkable
features of the TMR. The TMR shows an overall negative value in
this regime, which decays out with increasing the bias voltage |𝑉 |
and temperature gradient 𝛥𝑇 . Remarkable features of the TMR arise
in the local moment regime when detuned out of the particle-hole
symmetry point, as shown in Fig. 5. This figure was generated assuming
𝜀𝑑 = −𝑈∕3, such that the effects of exchange field are present in the
system. As can be seen in Fig. 5(c), the TMR changes sign when crossing
𝑉 = 0 at very low temperature gradients, and the sign change moves to
the positive potential regime with increasing 𝛥𝑇 . This behavior is due
to the sign change of 𝐼AP as a function of 𝑉 and 𝛥𝑇 , see Fig. 5(b). Near
the points of sign change, due to the suppression of 𝐼AP, we observe
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Fig. 5. (a) The current 𝐼P in the parallel configuration, (b) the current 𝐼AP in the
antiparallel configuration and (c) the TMR for a quantum dot with orbital energy
𝜀𝑑 = −𝑈∕3 plotted as a function of the applied potential bias 𝑉 and temperature
gradient 𝛥𝑇 . The other parameters are the same as in Fig. 3.

very large values of the TMR. Such giant tunnel magnetoresistance
can be easily tuned by either changing the temperature gradient or
the bias voltage. It could be also tuned by shifting the position of the
quantum dot orbital level with a gate voltage, since this would affect
the exchange field and the corresponding sign change in the current.
Moreover, it is important to note that small changes in the parameter
space result in huge changes in the TMR, since in the vicinity of the
sign change of 𝐼AP one can obtain either positive giant TMR or inverted
giant TMR, see Fig. 5(c). We would like to emphasize that this is a
fully nonequilibrium effect that requires a finite temperature gradient
applied to the system. However, once finite 𝛥𝑇 is generated, the TMR
could be then controlled purely by electrical means. An additional
regime of inverted TMR is observed for the empty orbital case 𝜀𝑑 = 0,
which is shown in Fig. 6(c). This region exists in the negative bias
regime and increases with increasing temperature gradient to become
positive around 𝛥𝑇 ≈ 0.5𝛤𝐿. This sign change of TMR in the negative
bias regime is not accompanied by a giant values of the TMR, since
the current in the antiparallel configuration does not change sign then,
see Fig. 6(b). However, for positive bias voltage, both currents change
sign with increasing 𝛥𝑇 (see Fig. 6), and this happens for different
values of the temperature gradient, such that again giant values of TMR
are observed, similar to the case of 𝜀𝑑 = −𝑈∕3 presented in Fig. 5.

Fig. 6. (a) The current 𝐼P in the parallel configuration, (b) the current 𝐼AP in the
antiparallel configuration and (c) the TMR for a quantum dot with orbital energy 𝜀𝑑 = 0
plotted as a function of the applied potential bias 𝑉 and temperature gradient 𝛥𝑇 . The
other parameters are the same as in Fig. 3.

4. Summary

We have studied the spin-resolved transport through a quantum
dot/molecule asymmetrically coupled to the ferromagnetic leads under
finite potential and thermal biases. In our studies we accurately took
into account the interplay between the exchange field and the Kondo
effect, while performing a perturbation expansion in the weakly cou-
pled lead. We determined the nonequilibrium currents in the parallel
and antiparallel configurations of the system, which allowed us to find
the corresponding TMR. In the considered device, we have predicted
a giant TMR effect of both signs, depending on the parameter space,
in the out-of-equilibrium settings. This is in particular associated with
a sign change of the current in the antiparallel configuration at finite
bias voltage and temperature gradient. Moreover, we have shown that
the TMR is tunable with respect to the orbital energy level, applied
potential and thermal biases. Our system can be thus considered as a
highly tunable magnetoresistive device with high values of the TMR,
which should be of importance for spintronics applications.
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