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1. Introduction

In  scientific  research,  the  transparency  of  the  data  processing  is  crucial,  both  for  the 

interpretation of the results and the comparability of the results achieved using different methods. 

Numerical methods used in geographic information systems are mainly based on geoprocessing 

algorithms. If the sequence of algorithms is well-documented – from the acquisition of the data to 

the  obtaining  of  the  result,  the  analytical  process  is  transparent  to  the  user;  thus  allowing  for 

repetition, but also for critical analysis. This approach reflects the knowledge of the researcher, 

understanding of  the  input  data  and knowing the  analytical  procedures  that  lead  to  the  result.  

However, models created solely on the basis of expert knowledge are usually characterized by a 

certain approximation of the modeled process, i.e. they are its simplification.

The rapid development of geoinformatics technologies is closely linked to the tremendous 

growth of spatial data, which is a mutual process. Data growth requires new efficient and effective  

analytical techniques, which contributes to the increased demand for data and investment in new 

sensors.  These  data  are  acquired  from  various  sensors,  including  multispectral  imagery  and 

geographical coordinates from satellites, point clouds from laser scanning, as well as field surveys 

and digitization of archival data (Chiang et al., 2014; Gotway & Young, 2002). In the face of such 

large  datasets,  the  expert-based  methods  used  so  far  turn  out  to  be  insufficient,  especially  for 

complex and non-linear problems occurring in the natural sciences. For this reason, researchers are 

turning to the use of advanced machine learning methods to analyze spatial data (Bergen et al., 

2019; Casali et al., 2022; Du et al., 2020; Karpatne et al., 2019; Lary et al., 2016; Nikparvar & 

Thill, 2021).

Machine learning is a subfield of artificial intelligence that involves creating regression or 

classification models based on self-learning algorithms and training data. The main goal of machine 

learning is the development of models that effectively recognize patterns and relationships on new 

datasets, resulting in easier and more automated work. The machine learning process is intended to 

produce useful tools whose effectiveness has been verified on an independent test set. According to 

the  nature  of  the  learning  process,  the  following  can  be  distinguished:  1)  supervised  learning 

(depending  on  the  type  of  predicted  variable,  it  involves  classification  or  regression);  2) 

unsupervised learning. The main difference between supervised and unsupervised classification is 

the  a  priori presence  of  the  dependent  (reference)  variable  in  supervised  classification,  while 

unsupervised  classification  uses  only  independent  variables  (features)  without  any  assumptions 

about the expected outcome. It also requires an additional step in the a posteriori analytical process, 

in which the groups resulting from clustering are interpreted and then labeled.
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Another  division  is  related  to  the  interpretability  of  the  models  and  two  types  can  be 

distinguished, i.e.  black-box and white-box models.  Black-box models such as neural  networks 

(Anderson, 1995), random forests (Breiman, 2001), and support vector machines (Cortes & Vapnik, 

1995) have high prediction accuracy, but their rationale is not overt. In contrast, white-box models 

such as linear regression  (Seber & Lee, 2003), logistic regression  (Menard, 2008), decision trees 

(Quinlan, 1986), generalized linear models (Nelder & Wedderburn, 1972) have lower accuracy due 

to the greater requirements of feature engineering, but the mechanisms behind their operation are 

understood  through  explicit  interactions  between  the  explanatory  variables  and  the  dependent 

variable (Figure 1). These interactions are defined by the values of regression coefficients in linear  

models  or  the  threshold  values  of  divisions  in  decision-regression  trees.  Currently,  in  research 

practice, black-box models are increasingly being used due to their high efficiency.

Figure 1. Relationship between accuracy and explainability of white-box and black-box models.

Naturally, in the case of black-box models, questions arise: Which factors led to the outcome 

and how did they affect it? Emerging work related to explainable machine learning attempts to  

answer these questions (Belle & Papantonis, 2021; Biecek & Burzykowski, 2021; Linardatos et al., 

2020;  Molnar,  2022;  Roscher  et  al.,  2020) by providing indirect  methods that  approximate the 
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operation of these models, making the process of creating decision rules more understandable to the 

user (Figure 2).

Figure 2. The role of explainable machine learning in black-box model analysis.

A current research gap is the lack of interpretation of the impact of explanatory variables 

(for example, spectral bands or geomorphometric variables) on the results of modeling spatial data 

using  machine  learning.  Another  major  issue  is  the  effectiveness  of  such  solutions  and,  more 

specifically, the compatibility with domain knowledge – does the model consider factors in the 

same way as experts, or are decision rules constructed in a completely different way? The modeling 

result must be reproducible, useful and understandable to potential users (Fayyad et al., 1996). It 

can be hypothesized that interpretable machine learning can be a tool to support the process of  

interpreting spatial data.

Despite a significant number of publications using machine learning to solve problems in 

remote sensing (Chang & Bai, 2018; Hänsch et al., 2018; Maxwell et al., 2018), soil science (Heung 

et  al.,  2016;  Heuvelink  et  al.,  2021;  Padarian  et  al.,  2020;  Wadoux et  al.,  2020),  archaeology 

(Bickler, 2021; Cacciari & Pocobelli, 2022), or ecology  (Crisci et al., 2012; Lorena et al., 2011; 

Rubbens et al., 2023; Shan et al., 2006; Stupariu et al., 2022), the interpretive approach in machine 

learning have not been widely used. Moreover, there is an overload of studies that only compare the 

effectiveness of complex models without understanding how they actually work (Linardatos et al., 

2020).

Nevertheless,  researchers  are  paying  attention  to  the  problem  of  interpretability  of  the 

modeling process  in  Earth  and environmental  sciences. The first  work is  considered to  be  the 

visualization  of  regression  trees  on  a  map for  the  problem of  bird  species  richness (White  & 

Sifneos,  2002).  However,  in  subsequent  years,  greater  emphasis  was  placed  on  research  that 

included: the analysis of factors influencing settlement (Jasiewicz & Hildebrandt-Radke, 2009), 
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analysis  of  the  relationship  between  human  activities  in  the  past  and  the  natural  environment 

(Jasiewicz  &  Sobkowiak-Tabaka,  2015),  analysis  of  the  usefulness  of  meteorological  data  for 

predicting high pollen concentrations (Nowosad, 2016),  analysis of the influence of landscape on 

the attractiveness of a residence (Dąbrowski, 2018),  analysis of the usefulness of meteorological 

and remote sensing data for monitoring phenological phases of plants (Czernecki et al., 2018),  or 

analysis  of  the  environmental  variables  to  determine  indicators  of  the  trophic  state  of  lakes 

(Jasiewicz et al., 2022; Zawiska et al., 2023). The current state of research requires intensified work 

on the interpretive approach in machine learning, to answer the question whether the discussed 

methods will actually bring benefits in the process of acquiring new knowledge.
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1.1 Objective

The purpose of this dissertation is to reveal whether explainable machine learning methods 

can be a tool supporting the process of modeling geospatial data, where the measure of success is  

not training an effective model, but the ability to obtain additional knowledge about the factors 

leading to the result. Thus, the aim of the dissertation shifts the issue of exclusively assessing the 

accuracy of machine learning models towards understanding their operation and connection with 

other data processing methods.

The above objective  was  achieved through three  research  experiments  covering  various 

machine  learning  paradigms,  including  regression  analysis,  supervised  classification  and 

unsupervised classification, and selected explainable machine learning methods for global model 

interpretation (Figure 3):

1) Dyba, K., Ermida, S., Ptak, M., Piekarczyk, J., & Sojka, M. (2022). Evaluation of methods 

for  estimating lake surface water  temperature using Landsat  8.  Remote Sensing, 14(15), 

3839. https://doi.org/10.3390/rs14153839

2) Dyba,  K.,  &  Jasiewicz,  J.  (2022).  Toward  geomorphometry  of  plains  -  Country-level 

unsupervised  classification  of  low-relief  areas  (Poland).  Geomorphology, 413,  108373. 

https://doi.org/10.1016/j.geomorph.2022.108373

3) Dyba,  K. (2024).  Explanation  of  the  influence  of  geomorphometric  variables  on  the 

landform classification based on selected areas in Poland.  Scientific Reports, 14(1), 5447. 

https://doi.org/10.1038/s41598-024-56066-6
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2. Materials and methods

Machine learning encompasses a diverse range of models, each designed to solve specific 

types of problems and data characteristics. There are many algorithms, each with its own strengths, 

weaknesses and applications (Sarker, 2021). Moreover, progress in research is constantly leading to 

the development of existing models as well as the creation of new ones, further expanding the 

capabilities of machine learning.

Multiple linear regression is an extension of simple linear regression and is used to analyze 

the relationship between many independent variables (features) and a single dependent (modeled) 

variable.  This  model  assumes  that  the  relationship  between  the  dependent  variable  and  each 

independent variable is linear. Other assumptions concern a constant variance of the error terms for 

independent variables (homoscedasticity), a distribution of residuals close to the normal distribution 

and the lack of multicollinearity of predictors. The model is defined by the following formula:

Y = β1X1 + β2X2 + … + βnXn + ϵ                                               (1)

where:

  Y is the dependent variable.

  X1, X2, ..., Xn are the independent variables.

  β1, β2, ..., βn are the coefficients (slopes) associated with each independent variable.

  ϵ is the error, representing the difference between the actual and predicted values of Y (includes 

the effect of all unexplained factors on Y).

While linear regression is exclusively used for regression, random forests are also used for 

classification (Breiman, 2001). Its operation is based on creating many regression or classification 

trees.  In the case of classification, the final prediction is the class that receives the most votes 

among all trees in a majority vote. For regression, the predictions of individual trees are averaged. 

Tree  construction uses  a  technique called bagging (bootstrap aggregating),  so  that  each tree  is 

trained on a different subset of data using random sampling with replacement. In addition, a random 

subset of the features is drawn during tree construction, so that the trees are not correlated with each 

other. This approach helps reduce the variance of the model, making it less prone to overfitting.

XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) are currently state-of-

the-art algorithms using gradient boosting. While random forests reduce the variance of a large 

number of complex trees, gradient boosting reduces the error of simple trees with low variance in a 

sequential manner (this is known as weak learner). Each tree is trained on the prediction errors from 
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the  previous  tree,  focusing  on  its  improvement  in  subsequent  iterations.  The  main  difference 

between these algorithms is how the trees are built – XGBoost uses a level-wise (horizontally) tree 

growth strategy, while LightGBM utilizes a leaf-wise (vertically) strategy. The leaf-wise approach 

allows tree growth to be stopped earlier when sufficient improvement has been achieved, thereby 

increasing the speed of computing. However, it can increase the risk of overfitting.

U-Net is a convolutional neural network designed for semantic segmentation (Ronneberger 

et al., 2015). That is, it is trained to classify each image pixel into a specific category. Basically, the  

U-Net architecture consists of two paths, i.e. a contracting path (encoder) and an expansive path 

(decoder). The former extracts features from the input image while reducing its spatial resolution, 

whereas the latter does the opposite, i.e. upsamples the feature maps back to the original input 

resolution while incorporating information from the encoding path to enhance the segmentation 

results.

There  are  two  main  divisions  of  explainability  methods  for  machine  learning  models 

(Guidotti et al., 2019; Molnar, 2022), i.e. the first one according to the level (local or global) and the 

second one according to the inclusiveness (agnostic and specific models). Agnostic methods can be 

applied  to  any  machine  learning  model  because  they  are  independent  of  the  model  structure. 

Otherwise, specific models are used that are tailored to particular types of models or architectures  

(e.g. only for decision trees). The global approach explains the general functioning of the model, the 

relevance of the explanatory variables and the interactions between them, while the local approach 

explains how the model makes a prediction for a specific example,  i.e.  how it  works in given 

conditions.

The most popular global methods include partial dependence plot (Greenwell et al., 2018), 

accumulated  local  effect (Apley  & Zhu,  2020),  and  permutation  feature  importance (Breiman, 

2001; Fisher et al., 2018). While to local methods individual conditional expectation (Goldstein et 

al., 2015), local interpretable model-agnostic explanations (Ribeiro et al., 2016), anchors (Ribeiro 

et al., 2018),  shapley values (Shapley, 1953;  Štrumbelj & Kononenko, 2014), and  counterfactual 

explanations (Dandl et al.,  2020; Wachter et al.,  2017).  This dissertation focuses on the use of 

global interpretations, since the local approach (i.e., explaining individual cases) has already been 

examined by Jasiewicz et al. (2022) and Zawiska et al. (2023). Moreover, for huge datasets, such as 

multi-temporal satellite imagery with billions of cells (observations), a local interpretation approach 

is not justified.

The first experiment employed thermal optical images from the Landsat 8 satellite (National 

Aeronautics  and Space  Administration,  United  States  Geological  Survey)  to  model  the  surface 

temperature of lakes. Archived in-situ measurements conducted by the Institute of Meteorology and 
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Water Management for 38 lakes from 2013 to 2020 were used as reference data. Both datasets are 

publicly  available  (the  former  was accessed from  https://earthengine.google.com/ and the  latter 

from  https://danepubliczne.imgw.pl/).  To  compare  the  effectiveness  of  prediction  and 

interpretability of the modeling results, two different regression models were developed. The first 

was a simple multiple regression model representing a white-box model, and the second was a 

regression tree model based on random forests representing a black-box model. The t-statistic and 

Pearson's linear correlation coefficient were used to determine the significance of the predictors for 

the linear model, while the impurity algorithm was used for random forests.

The  supervised  classification  experiment  employed  available  sheets  of  the  Digital 

Geomorphological Map of Poland at  a scale of 1:100,000 representing different morphogenetic 

zones  (Rączkowska & Zwoliński, 2015), including the coastal area (Świnoujście), the young and 

old glacial areas (Toruń and Kutno), the upland areas (Katowice, Kraków Zachodni and Tomaszów 

Lubelski), and the areas of young and old mountains (Jelenia Góra and  Nowy Targ), while post-

processed Digital Terrain Elevation Data Level 2 (DTED L2) was used as a source of topographic 

data (Jasiewicz et al., 2014). In the process of exploratory data analysis, the suitability of potential 

15 geomorphometric variables for landform classification was considered using model performance 

metrics, visual inspection of the results, and model information gain metrics. In addition, Pearson's 

linear correlation between explanatory variables was examined to minimize redundancy. Above all, 

an  attempt  was  made  to  explain  how  the  geomorphometric  variables  used  affect  the  model's 

classification decisions. For this purpose, accumulated local effects (Apley & Zhu, 2020) were used 

to assess the relationship between model features and prediction. The impact of a feature on the 

prediction is analyzed, while keeping all other features constant. The result comes from aggregating 

values over small feature intervals, showing how changing a specific feature affects the model's 

prediction on average.

In  the  last  experiment,  unsupervised  classification  (clustering)  was  used  to  analyze  the 

diversity of land surface types and classification uncertainty based on the same digital terrain model 

employed  in  the  previous  experiment.  Expert  knowledge  was  used  to  appropriately  select 

geomorphometric variables focusing on reflecting the vertical and horizontal variability of lowland 

areas, and visual inspection was used for verification. Some of the geomorphometric variables were 

highly correlated, conveying the same information, so as in the previous experiment, preselection of 

variables was applied using Pearson's linear correlation coefficient. For this purpose, the Bayesian 

information criterion was used to reduce overly complex models with a large number of clusters.  

The final stage of the analysis was related to the interpretation of the results, in which principal 

components analysis was used to identify and name the clusters.

9
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3. Summary of articles

3.1. Regression analysis

The experiment presented in the article „Evaluation of Methods for Estimating Lake Surface 

Water  Temperature  Using  Landsat  8” compared  four  models  for  estimating  water  surface 

temperature based on satellite thermal data, considering two atmospheric models and two empirical 

models (multiple linear regression and random forests). The first empirical model represented the 

white-box type, while the second represented the black-box type. The best results were achieved for 

the random forests model, while systematic errors were found for atmospheric models in the coastal 

zone.

In  the  context  of  analyzing  the  influence  of  explanatory  variables,  12  variables  were 

evaluated considering 9 spectral bands, 2 spectral indices (Normalized Difference Vegetation Index 

and Normalized Difference Water Index) and the month of the year. Thermal band B10  (10.6 - 

11.19 µm) was found to result in a smaller prediction error of surface water temperature than band 

B11 (11.5 - 12.51 µm). This may be related to the calibration of the thermal infrared sensor, which 

is  susceptible  to  scattered  light,  which  may  cause  measurement  instability.  Another  important 

variable was the month of the year due to the seasonality of water temperature (water temperature is  

significantly higher in summer than in spring and autumn months). There was also a slight effect of 

the green band B3 (0.53 - 0.59 µm), which may be related to the depth of penetration in this range 

of electromagnetic radiation depending on water clarity. The remaining spectral variables were not 

found to be significant. In addition, the relationship between the magnitude of the prediction error 

and morphometric parameters of the lakes (area, volume and average depth) was analyzed, but no 

significant relationship was found.

Although the random forests model provided greater efficiency, its interpretation is limited 

to identifying the role of variables only, without indicating the relationship how they influenced the 

modeled  value.  This  gap  is  filled  by  the  linear  model,  as  it  precisely  defines  the  relationship 

between the dependent variable and the explanatory variables:

WST = 2.9 * B10 − 2.07 * B11 + 48.48                                            (2)

where:

  WST is Water Surface Temperature in Kelvin.

  B10, B11 are thermal bands in Kelvin.
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The biggest  advantage of the linear model is  its  mathematical  simplicity,  since it  consists  of a  

simple equation in which the regression coefficients determine how the prediction was made. In 

addition,  from  a  technical  point  of  view,  greater  simplicity  is  associated  with  lower  memory 

requirements and greater computational performance compared to the random forests model.

The study fills a research gap in the topic of using satellite thermal data to monitor lake 

temperatures in Poland. This issue is poorly understood, and the presented article is the first such 

extensive study on modeling the surface temperature of lakes in Poland.
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3.2. Supervised classification

The experiment presented in the article  „Explanation of the influence of geomorphometric 

variables on the landform classification based on selected areas in Poland” included a comparison 

of three algorithms based on machine learning (random forests and gradient boosting) and deep 

learning (convolutional neural networks) for automatic geomorphological mapping. The best result 

was achieved for the XGBoost model relying on gradient boosting, while the lowest result was 

recorded for convolutional neural networks represented by the U-Net model. The main reason for 

the difference in the performance of these models was the relatively small input dataset and the  

unbalanced representativeness of landforms. Deep learning models have hundreds of thousands of 

parameters to tune compared to machine learning models,  which typically have just  a few and 

therefore require much more input data.

The interpretation of the decisions made by the most effective XGBoost model consisted of 

two steps: 1) identification of the most relevant geomorphometric variables for classification using 

the information gain metric; 2) detailed examination of the influence of explanatory variables on the 

classification result.

Regarding the first stage, the most useful were entropy, aggregated median elevation in the 

1000  and  500  m  cell,  absolute  elevation,  standard  deviation  of  elevation,  surface  convexity, 

topographic openness, slope and multi-scale topographic position index. The convergence index, 

surface texture, tangential and profile curvatures and multidirectional hillshade turned out to be less 

significant.  The  exclusion  of  less  significant  explanatory  variables  allowed  the  model  to  be 

simplified in terms of interpreting the results, as well as to be computationally faster.

In the second stage of the analysis,  the non-linear effect  of individual geomorphometric 

variables  on  the  probability  of  classifying  geomorphological  units  was  examined  by  applying 

accumulated  local  effects.  To the  best  of  the  author's  knowledge,  the  referred  method has  not 

previously been used to interpret the results of automatic mapping in geomorphology. The analysis  

was  conducted  for  all  landforms for  the  morphogenetic  zones  considered.  Furthermore,  it  was 

investigated how the area of geomorphological units affects the probability of correct classification 

of these units. The existence of such a positive relationship was confirmed, and it was found that the 

threshold value for the dataset used is approximately 45 km2. This means that above this threshold, 

the magnitude of the influence of geomorphometric variables became significant. Otherwise, the 

impact was negligible.

Another notable observation is  the varying impact  of  geomorphometric variables on the 

classification depending on the morphogenetic zone.  The probable reason is  the morphogenetic 
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diversity  of  the  studied  areas  and  different  levels  of  geomorphological  features,  thus 

geomorphometric variables are useful to varying extents for characterizing the landforms occurring 

there,  depending  on  the  research  area.  This  means  that  while  the  slope  surface  can  be  easily  

classified in a young glacial area using the slope, this may not be possible in an area of young 

mountains due to the completely different structure and characteristics of this morphogenetic zone. 

This also indicates that the same landforms in various morphogenetic areas can be characterized 

differently by the same geomorphometric variables.

Ultimately,  accumulated  local  effects  allowed  for  a  thorough  examination  of  how  the 

explanatory  variables  affect  the  model's  classification  decisions,  which  helped  interpret  the 

functioning of the black-box model.

13



3.3. Unsupervised classification

While supervised classification in the modeling process requires reference data, in contrast, 

unsupervised classification has no such requirement. The clustering process uses the input data to 

discover patterns or clusters within it. The experiment described in the previous subsection focused 

on the best possible representation of reference data derived from the Digital Geomorphological 

Map of Poland, while the experiment conducted in the article „Toward geomorphometry of plains - 

Country-level unsupervised classification of low-relief areas (Poland)” was based primarily on the 

procedure for interpreting the obtained clusters. Iwahashi et al. (2021) noted that research on cluster 

analysis in geomorphological studies is mainly based on comparing clustering results with other 

existing  reference  maps,  which  limits  unsupervised  methods  to  only  a  subset  of  supervised 

classification. This experiment proposes a different approach based on discovering new knowledge 

in the data by finding useful patterns (Fayyad et al., 1996). In other words, the verification of the 

result of the analysis was not mainly the consistency with other geomorphological maps, but mainly 

the possibility of interpreting the results using a semi-formal procedure. The matching of the spatial  

patterns of the obtained clusters with the physical-geographic division of the country confirms the 

usefulness of this method.

One of  the crucial  issues in unsupervised classification is  choosing the right  number of 

clusters to produce meaningful and interpretable results. However, determining the optimal number 

of clusters is a difficult challenge, as it requires a balance between model complexity and the ability 

to reflect useful patterns. The choice depends primarily on the structure of the input data - selecting 

too few clusters may lead to the merger of separate heterogeneous groups, while too many clusters 

make them impossible to interpret. The number of clusters considered ranged from 4 to 24, and they 

were compared with the extent of morphogenetic zones and the spatial pattern of geomorphometric  

variables. The Bayesian information criterion indicated 20 clusters as the optimal choice. A larger  

number of clusters was questionable in terms of homogeneity and caused significant problems in 

interpretation, while a smaller number did not reveal important landforms such as bottoms of river  

valley.

The most important stage in unsupervised classification is the interpretation of clusters, i.e. 

finding the answer to the question of what they actually represent. This stage involves discovering 

the  classification  rules  that  cause  the  creation  of  individual  land  surface  divisions.  The 

aforementioned procedure was based mainly on principal component analysis supported by analysis 

of spatial patterns of individual geomorphometric variables. The first three principal components 

explained almost 70% of the data variability, including the first principal component (39.7%) and 
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was negatively related to absolute elevation, roughness and elevation above erosional base, while it  

was positively related to the terrain flatness. The second principal component explained 15.9% of 

the data variability and was negatively related to variables representing textural properties including 

mean convergence, surface noise, local topographic position and slope position. The third principal 

component  represented 14.1% of  the  variance and was positively  related to  textural  properties  

(mean convergence, surface noise) and negatively to the local topographic position. Additionally, 

four geomorphometric variables were used for interpretation, i.e. mean convergence, flatness, slope 

position,  and relief,  which had the greatest  potential  to distinguish landforms in lowland areas. 

Finally, 15 lowland units in 4 subgroups and 5 upland units were described. The obtained results  

showed strong convergence with the physical-geographic division on the scale of mesoregions. The 

developed map of land surface types on a national scale is a valuable product and can be used as a  

supplement to existing geomorphological studies.
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4. Discussion

Explainable machine learning is a new but rapidly developing field. For this reason, it is not 

yet well established in science. There are currently ongoing discussions on the scope (Arrieta et al., 

2020) and the distinction between the definitions of model explainability and interpretability, which 

were previously used as synonyms. Broniatowski (2021) proposes to distinguish these terms based 

on experimental psychology, where interpretation refers to the ability to contextualize the model 

results by linking them to the designed functional purpose of the system and user preferences, while  

explanation refers to the ability to precisely describe the mechanism or implementation of the model 

that led to the result. A simpler division is proposed by Rudin (2019), in which interpretation refers 

to  white-box models,  while  explanation refers  to  black-box models  as  an  a posteriori process, 

which requires the creation of a second model to explain the modeling method.

Therefore, the question arises about the validity of using black-box models in the context of 

explaining  their  operation.  White-box  models  are  inherently  interpretable,  which  allows  to 

accurately reproduce their operation and understand how the result was obtained. Some researchers 

recommend avoiding black-box models in favor of white-box models due to their transparency, and 

point out problematic issues with a posteriori explanations considering: 1) the explanation is only 

an approximation of what the model calculates; 2) the explanation may be an oversimplification of 

a complex model decision; 3) the explanation is susceptible to errors in the input data (Rudin, 

2019). Moreover, the researchers point out that the performance of white-box models can be similar  

to  black-box  models,  provided  the  explanatory  variables  are  properly  selected  and  prepared 

(Affenzeller  et  al.,  2020;  Loyola-Gonzalez,  2019). Further  issues  related  to  the  concept  of 

explainable  machine  learning  itself  are  raised  by Watson  (2022),  who  highlights  three  current 

problems: 1) ambiguity (the impact of pragmatic assumptions such as context, level of abstraction, 

or purpose of analysis); 2) lack of rigorous testing; and 3) emphasis on the product instead of the  

iterative process.

Nevertheless,  in  light  of  the  results  obtained,  we  can  point  to  the  relevance  of  using 

explanatory machine learning methods to interpret spatial data, resulting in increased knowledge 

about geospatial processes. The first study identified the most important explanatory variables for 

the estimation of water surface temperature using remote sensing data, with the main limitation 

being the lack of consideration of how the examined variables affect the temperature prediction, i.e.  

we do not know neither the direction (positive or negative influence) nor the course of change (for 

which range of feature values it is increasing, and for which it is decreasing). Information on the 

significance of the explanatory variables alone is not sufficient, as it does not make it clear which 
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ranges  of  variable  values  are  significant.  However,  the  subsequent  study  on  automated 

geomorphological mapping provided a detailed understanding of how geomorphometric variables 

affect the probability of landform classification by applying the accumulated local effects method. 

The  method  used  revealed  interactions  between  the  model's  prediction  and  the  explanatory 

variables, showing the ranges of values to which the model responded and in what way. A separate, 

and  very  important,  issue  is  the  interpretation  of  unsupervised  classification  results  often 

overlooked in research work. The limitations are related to the subjective selection of the optimal  

number of clusters without statistical justification, and ending the interpretation of clustering results 

on labeling the clusters with the letters of the alphabet and presenting their characteristics with 

descriptive statistics (minimum, maximum, mean, standard deviation). In the case of huge spatial  

datasets consisting of numerous objects, features and clusters, this approach makes interpretation 

almost  impossible,  thus  preventing  valuable  conclusions  from  the  analysis.  The  third  study 

addresses the aforementioned problems by using the Bayesian information criterion to select the 

optimal number of clusters in a formalized way (nevertheless, this is one of many metrics that can  

be used for this purpose) and principal component analysis to interpret and finally label 20 clusters 

based  on  10  complex  geomorphometric  variables.  This  approach  facilitated  understanding  the 

clustering results of a large dataset covering the entire country, which would be more challenging in 

the case of descriptive statistics.
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5. Conclusion

Based on the obtained results, we can conclude that the explainable methods employed to 

analyze spatial data provide added value in the context of interpreting black-box models used to 

solve classification and regression problems. They enable a better understanding of the decisions 

made by the models and examination of the impact of the features used on the prediction, which 

thus contributes to increasing knowledge about the existing patterns and relationships in spatial 

processes.  The  involvement  of  interpretation  techniques  also  increases  the  transparency  and 

accessibility of the modeling process, making audiences more likely to trust the results. Moreover, 

the  way  the  predictions  are  explained  can  be  confronted  with  domain  knowledge  and  expert 

expectations, which allows to detect bias or incorrect model assumptions. In view of this,  it  is  

possible to improve the model, which may ultimately improve the accuracy of predictions.

Nevertheless, even despite the prominent benefits of explaining the behavior of machine 

learning models, it is necessary to take into account the limitations that are primarily related to the 

input  data  used  to  train  the  model.  Data  errors,  outliers,  unreliable  representativeness  or 

inappropriate  selection  of  explanatory  variables  may  lead  to  incorrect  interpretations  and 

conclusions. Another source of problems may be the model itself, i.e. using an inappropriate model 

for the task, resulting in low prediction accuracy and low sensitivity to features. We can infer that 

insufficient model performance will result in incorrect interpretations. Therefore, the quality of the 

input  data  and  the  accuracy  of  the  model  should  be  carefully  considered  before  drawing 

conclusions.

The field of explainable artificial intelligence is new and has not yet found wide application 

in Earth and environmental sciences. Geospatial data, due to their specificity (spatial context), pose 

an  additional  challenge  in  interpretation  resulting  from  spatial  autocorrelation  or  spatial 

heterogeneity, which significantly complicates the modeling and interpretation process. As a final 

conclusion, the author recommends wider use of explanatory methods in research using machine 

learning and further development of methods for explaining model decisions, taking into account 

the spatial context.
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Abstract: Changes in lake water temperature, observed with the greatest intensity during the last two

decades, may significantly affect the functioning of these unique ecosystems. Currently, in situ studies

in Poland are conducted only for 38 lakes using the single-point method. The aim of this study was

to develop a method for remote sensing monitoring of lake water temperature in a spatio-temporal

context based on Landsat 8 imagery. For this purpose, using data obtained for 28 lakes from the period

2013–2020, linear regression (LM) and random forest (RF) models were developed to estimate surface

water temperature. In addition, analysis of Landsat Level-2 Surface Temperature Science Product

(LST-L2) data provided by United States Geological Survey (USGS) and the National Aeronautics

and Space Administration (NASA) was performed. The remaining 10 lakes not previously used

in the model development stage were used to validate model performance. The results showed

that the most accurate estimation is possible using the RF method for which RMSE = 1.83 ◦C and

R2 = 0.89, while RMSE = 3.68 ◦C and R2 = 0.8 for the LST-L2 method. We found that LST-L2 contains

a systematic error in the coastal zone, which can be corrected and eventually improve the quality of

estimation. The satellite-based method makes it possible to determine water temperature for all lakes

in Poland at different times and to understand the influence of climatic factors affecting temperature

at the regional scale. On the other hand, spatial presentation of thermics within individual lakes

enables understanding the influence of local factors and morphometric conditions.

Keywords: lakes; water temperature; Landsat; thermal images; Poland

1. Introduction

Water ecosystems are characterized by considerable dynamics of energy and matter ex-
change, and therefore reflect modern transformations of the natural environment. Among
the key properties of rivers and lakes is water temperature. Its course and distribution
strongly determine a number of other processes [1]. It is therefore not surprising that
the first water temperature measurements in lakes date back to the 18th century, and the
frequency and accuracy of such measurements have been successively improving since.
Traditional methods of temperature records based on in situ measurements are of point
character, and are often not representative for complex and dynamic ecosystems such as
lakes. The methods also have logistic limitations, and are costly and time consuming [2].
Moreover, the measurements are performed at various time intervals and at different
depths, leading to high heterogeneity of the available data [3]. A complex understanding
of the functioning of lake ecosystems requires collecting credible data on the state of water
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at the global scale, over long time periods, with high spatial and temporal resolution [2,4].
Data regarding the surface temperature of lakes have been collected using remote sens-
ing for many years [5]. Satellite image data have been recorded at the global scale since
1972, when the first civil Earth observation mission commenced under the name Landsat
(formerly known as the Earth Resources Technological Satellite). For the first time in the
Landsat program, a sensor with a thermal band was installed on the Landsat 3 satellite
(launched in 1978), but it quickly failed. Each of the following satellites of this program was
equipped with sensors that recorded thermal radiation emitted from the Earth’s surface.
An increase in water temperature in lakes shows a rate approximate to that of the growth of
regional air temperature [6,7], although in the region of the Great Lakes and in northern Eu-
rope, a faster increase in lake water temperature was recorded than that of the surrounding
air [7,8]. Satellite sensors used for the observation of the temperature of the surface water
layer record emitted radiation at a range of 7–13 µm. The temperature of a very thin water
layer is measured that can be referred to the temperature of the epilimnion in the conditions
of lack of wind, although the external water layer is usually cooler than the 50 cm layer of
sub-surface water [9]. Thermal scanners mounted on planes measure the temperature of
the water layer on the interface of air and water with a thickness of 10–20 µm, but it can be
several tenths of a degree warmer than temperature measured by a conventional sensor [10].
The difference between the temperature of the surface water layer and temperature in water
depths is determined by factors such as the time of day, cloudiness, and wind speed [11,12].
To estimate the surface water temperature, data from one (“mono-window method”) or
two (“split-window method”) thermal bands of the Landsat satellite can be used. The
latter method is based on the difference in energy intensity in two thermal bands, which
has the potential to improve temperature estimation [13]. In research determining the
correlation between water temperature measured in situ and estimated from satellite data,
thermal bands with low spatial resolution (i.e., Advanced Very High Resolution Radiome-
ter) obtained very high values of determination coefficients (R2 > 0.9) [14]. Similar results
were obtained using data from Landsat satellites with higher spatial resolution, although
with lower temporal resolution. Tavares et al. [15] recommends the use of thermal data
from the Landsat 7 ETM+ sensor for the observation of small lakes because at a relatively
high spatial resolution the temperature estimation error is very close to the error obtained
from the MODIS sensor (RMSE 1.07 and 1.05 ◦C, respectively). The usefulness of other
medium-resolution thermal satellite sensors for water surface temperature assessment,
such as Landsat TM, ETM+, TIRS [16–20] and Terra ASTER [21–23], was also investigated.
Lake temperature is primarily determined by meteorological factors (insolation, cloudiness,
air temperature, and wind speed), and to a lower degree by geomorphometric factors
(surface area and depth) [24]. The temperature of the surface layer of the lake increases
with its insolation, although an increase in temperature also causes cloudiness, because the
amount of long-wave radiation reaching the surface increases [25]. A negative correlation
occurs between water temperature and mean lake depth, i.e., shallow lakes warm up faster
and to higher temperatures [26,27].

In the case of the territory of Poland, a lot of research has been recently conducted
on lake water temperature, in reference to both measurement techniques [28,29] and
improvement of methods of its modelling [30]. Polish lakes (approximately 7000 natural
lakes in total) with multiannual in situ datasets are suitable for searching solutions in both
of the aforementioned aspects of research. Water temperature measurements in Polish
lakes have a history of several decades, and systematic observations commenced at the end
of the 1950s. Over the years, the population of lakes covered by field measurements has
changed, and today it concerns several tens of objects. No comprehensive research with
the application of satellite images in reference to lake water temperature in Poland has
been undertaken to date, although studies in the scope dynamically develop in different
regions of the globe [31–34]. Polish research so far covers three lakes, and the obtained
results revealed high cohesion with in situ measurements [35], encouraging a broader
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approach to the issue. Polish lakes already currently show a considerable increase in water
temperature [29,36] that will continue to progress in the future [37,38].

The objective of this article is the comparison of four methods of estimation of water
surface temperature in lakes in Poland based on thermal images from Landsat 8. Other
detailed objectives include identification of limitations of the applied methods, and deter-
mination of the spatial variability of water temperature within the selected lakes and in a
broader regional approach.

2. Materials and Methods

To organize the presentation of the results obtained in the subsequent stages, the fol-
lowing subsections were distinguished in this paper. Section 2.1 describes the study lakes,
while Section 2.2 presents methods for conducting daily water temperature measurements.
Sections 2.3 and 2.4 describe the acquisition of Landsat 8 Collection 2 Level 1 (L8L1) data
and Landsat Level-2 Surface Temperature Science Product data (LST-L2). Sections 2.5–2.7
describe the method of calculating lake water temperature using linear regression model
(LM), random forest regression (RF), and Ermida et al. (2020) [39] method (LST), respec-
tively. Section 2.8 describes the validation process. Finally, Section 2.9 shows the possibility
of using results to present the spatial variability of water temperature at the scale of a single
lake and at the regional scale for multiple lakes. The flowchart of this study is shown in
Figure 1.

 

Figure 1. Flowchart of lake water temperature prediction. One method was developed by Ermida

et al. (2020) [39].
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2.1. Study Sites Description

The analysis of the quality of water temperature determination based on satellite
images from Landsat 8 covered 38 lakes in north Poland (Figure 2). All lakes selected for
the analysis are natural water bodies. Their genesis is primarily related to the course of
geomorphological processes during the Weichselian glaciation. The maximum extent of the
ice during the Weichselian in north Poland is marked with a dotted line in Figure 2. It also
constitutes the boundary of three main lakelands. The northern area of Poland is the richest
in lakes, covering more than 500 lakes with a surface area larger than 1 km2. Lakes selected
for the study have a variable surface area from 1.6 to 111.9 km2, and mean depths from 1.3
to 38.7 m. In genetic terms, postglacial lakes are largely dominant (channel, moraine, and
kettle) related both to the erosional and accumulation activity of the Scandinavian ice sheet.
Lakes developed in the Holocene also occur, namely Jamno (No. 28), Gardno (No. 29) and
Łebsko (No. 30) which are also the northernmost study objects. Lake Sławskie (No. 1) is the
southernmost one. Lake Morzycko (No. 2) is the westernmost lake, and Lake Studzieniczne
(No. 27) has the easternmost location. Details of the morphometric parameters of lakes are
presented in Supplementary Table S1. Mean annual temperatures of the analyzed lakes are
at a level from 8.6 to 11.4 ◦C. In the regional approach, evident differences are observed
in the period of winter–spring, when ice cover is still present on the lakes in the eastern
part of Poland, but already absent in the lakes of west Poland. It is due to the features of
transitional climate of the analyzed region, when a longer effect of cold continental air is
recorded in the east.

29) and Łebsko (No. 30) which are also the northernmost study objects. Lake 
Sławskie (No. 1) is the southernmost one. Lake Morzycko (No. 2) is the westernmost lake, 

 

Figure 2. Location of the studied lakes with average water temperature from April to October.

Numbering of lakes (1–38) according to Supplementary Table S1.
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2.2. In Situ Data

In this study, the results of daily water temperature measurements conducted between
2013 and 2020 by the Institute of Meteorology and Water Management—National Research
Institute (IMWM) were used. The period from April to October, when there is generally
no ice cover on the analyzed lakes, was selected for the analysis. Water temperature
measurements by the IMWM are performed with a frequency of once a day at 6 UTC. The
measurement points are located in the coastal zone and the sensor is placed approximately
0.4 m under the water level. Temperature measurements are performed both automatically
and manually (especially for previous years), and their accuracy is 0.1 ◦C. Based on earlier
hourly measurements of lake water temperature in Poland [40], it was evidenced that the
difference between water temperature measurements at 6 UTC (in accordance with the
IMWM standard) and ~9 UTC (overpass time of Landsat) in the summer half-year averages
0.1 ◦C, reflecting high thermal stability of water. Moreover, it should be emphasized that
water temperature variability in the near-surface water layer (from the surface to a depth
of 1 m) is inconsiderable, and as shown by earlier studies in the case of lakes in Poland [41],
it averages 0.2 ◦C.

2.3. Landsat 8 TOA Data

In this paper, Landsat 8 data provided by the United States Geological Survey (USGS)
was used. The data from April 2013 to October 2020 over north Poland were analyzed. The
Landsat 8 Collection 2 Level 1 Tier 1 (L8L1) data were obtained using the Google Earth
Engine (GEE; accessed on 24 February 2022) [42]. The L8L1 dataset contains calibrated
top-of-atmosphere (TOA) reflectance derived from the data produced by the Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS). These L8L1 products contain
5 visible and near-infrared (VNIR) bands, 2 short-wave infrared (SWIR) bands with spatial
resolution 30 m and 2 thermal infrared (TIR) bands resampled from 100 m to 30 m. Only
scenes covering positions in the reference in situ data were considered (Figure 3). Due to the
fact that in situ lake water temperature measurement sites are located within the shoreline
range, it is not possible to obtain L8L1 data for these locations specifically. That results in
the pixels (resolution 30 m) that extend over land or shoreline vegetation as well. Therefore,
L8L1 data were collected from a point located 60 m inside the lake in relation to the in situ
lake water temperature measurement sites. The water difference in this neighborhood is
negligible, and we have the confidence to exclude pixels that are land. For the analysis all
scenes with cloud cover less than 60% were taken. Moreover, we excluded data marked
as clouds and cloud shadows based on the CFMask algorithm [43]. CFMask derives from
the Function of Mask (FMask) developed by Zhu and Woodcock [44] and Zhu et al. [45].
Additionally, we removed data with reflectance values below 0, temperature values below
0 ◦C in thermal band B10, and outliers based on the ultra-blue band (B1 values ≥ 0.14).
Additionally, some observations were made on two scenes on the same day—we treated
them as duplicates and removed them.

Due to cloud cover patterns in Poland, for each of the analyzed lakes a slightly
different imagery dataset was obtained. The least, 38 L8L1 images were acquired for Białe
Augustowskie Lake (No. 26), while 83 images were acquired for Niesłysz Lake (No. 3).
The dates for Niesłysz Lake (No. 3) are shown in Figure 4. The red dots indicate imageries
that were rejected from the analysis and did not meet previously defined criteria, while
the green dots indicate imageries that were used for estimating water temperature in the
lake. Only 43% of all available scenes were suitable for analysis. Supplementary Figure S1
shows the exact availability of satellite scenes by lake, month, year and water temperature.
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Figure 4. Data availability of Landsat 8 Collection 2 Level 1 in the background of the daily water

temperatures of the Niesłysz Lake—the dark blue line presents the water temperatures in the period

from April to October, the light blue line presents the water temperatures in the period from November

to March, green and red dots present the dates of the imageries applied and excluded from the

analysis, respectively.

2.4. Landsat Level-2 Surface Temperature Science Product

In this paper, the results of Landsat Level-2 Surface Temperature Science Product
provided by the USGS were used [46]. The LST-L2 product contains the temperature of the
Earth’s surface in Kelvin (K). This product is generated mainly from the top-of-atmosphere
thermal infrared data using a single-channel algorithm. Nevertheless, the algorithm is very
extensive and uses auxiliary data, including data from the ASTER satellite and atmospheric
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data from reanalysis. The product is available in a resolution of 30 m as georeferenced
rasters (.tif format) in the Universal Transverse Mercator coordinate system. Information
on the applied techniques related to atmospheric compensation, calibration methodology,
and validation are widely presented and discussed by Cook [47], Cook et al. [48], Malakar
et al. [18], Schaeffer et al. [49]. In the case of LST-L2, the data availability differed for all
analyzed lakes due to cloud cover pattern in Poland. From among all analyzed lakes, the
least number of LST-L2 images, i.e., 38, was acquired for Biale Augustowskie Lake (No. 26),
while the most number of 88 was acquired for Jamno Lake (No. 28).

2.5. Simple Linear Model

We used multiple linear regression as the first choice method because of its simplicity.
The purpose of this model is to determine the relationship between multiple explanatory
variables and the modelled (response) variable. In other words, we want to predict the
unknown values of one variable based on the known values of other variables using the
following formula:

f (x) = b1x1 + b2x2 + . . . + bnxn + a (1)

where

f (x)—is the response variable;
b1, b2, bn—are regression coefficients calculated for individual explanatory variables;
x1, x2, xn—are the values of the explanatory variables;
a—is the intercept.

Therefore, our modelled variable is water temperature and our explanatory variables
are the two thermal bands B10 and B11. The main assumption of linear regression is the
linear relationship between the modelled variable and the predictors, which is obviously not
clear in the case of complex natural processes. However, this is not the only assumption—
further limitations are related to the lack of multicollinearity, independence and normal
distribution of errors, and a limited number of explanatory variables. For this reason, a
more robust machine learning model may be a better solution.

2.6. Random Forest Model

Random Forest (RF) is a method that enables the estimation of searched values based
on a large set of uncorrelated and random trees [50]. In our work, we used it for regression
analysis. RF is based on bagging and random subspace methods. Bagging is related
to the creation of regression trees, which are then combined into ensembles to obtain
an overall prediction. To design regression trees, a number of independent bootstrap
samples are created from the original training dataset. Each bootstrap sample (Db) is
created by randomly sampling n subsamples from the original training data D, containing
N subsamples. The bootstrap sample (Db) usually consists of 2/3 of D and contains no
duplicate subsamples. Then, K independent regression trees are created for bootstrap
samples with input vector x. In the regression analyses, the average prediction of the K
regression trees, hk(x), is calculated to obtain an overall prediction [51,52] as follow,

y =
1

K ∑
K

k=1
hk(x) (2)

Since the regression trees have high variance, the bagging is designed to reduce the
variance and to prevent overfitting the complex RF model. Therefore, the learning trees
cannot be correlated. Samples derived from the dataset that were not selected to train the
k-th regression tree during the bagging process are compiled into an out-of-bag (OOB)
subdataset. The OOB subdataset contains the remainder of D dataset (1/3 samples). Based
on OOB subdataset, the performance of the k-th regression tree is calculated by the mean
squared error (MSEOOB) as,

MSEOOB =
1

n ∑
n

i=1
(yi − yi)

2 (3)
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where yi and yi are the prediction and the mean of the i-th prediction from all regression
trees. The determination coefficient R2

OOB of the OOB subdataset, can be calculated based
on MSEOOB and the total variance Vary, of the output parameter, using the following
formula,

R2
OOB =

MSEOOB

Vary
(4)

The input data during the RF analyses were TOA reflectance values (B1, B2, B3, B4, B5,
B6, B7, B10, and B11). Moreover, the spectral indices the Normalized Difference Vegetation
Index (NDVI) [53] and the Normalized Difference Water Index (NDWI) [54], the month
index as auxiliary variables to maximize prediction performance were used. All calculations
related to the RF were accomplished using the ranger [55] package within the statistical
software R 4.1.2 [56].

2.7. Land Surface Temperature Model

Ermida et al. (2020) [39] provides a code on GEE to derive LST from Landsat Collec-
tion 1 Level-1 thermal infrared bands. The method, referred to hereafter as LST, is based
on the Statistical Mono-Window (SMW) algorithm developed by the Climate Monitoring
Satellite Application Facility (CM-SAF) for deriving LST climate data records from Me-
teosat First and Second Generation [57]. The algorithm uses a single thermal infrared band
(band 10 in the case of the Landsat 8) for consistency across all Landsat series. This method
also uses the ASTER Global Emissivity Dataset (GED) database and applies vegetation
cover correction based on Landsat NDVI. Since not all lakes considered in this study were
correctly identified by the ASTER GED dataset, we have updated the code to use the
Landsat water mask (available through the quality flag). For water bodies, the emissivity
was set to 0.99.

2.8. Model Validation Procedure

To assess the accuracy of the LM, RF, LST and LST-L2 model predictions, we randomly
selected 10 of the 38 lakes studied. In total, we used 538 in situ lake water temperature
measurements to validate the temperature prediction results, which is approximately 23%
of the input dataset. The root mean square error (RMSE), mean bias error (MBE), coefficient
of Pearson correlation (R), between measured and predicted values were used for validation.
Additionally, we calculated the standard deviation (SD) of the predicted values.

2.9. Model Application

Results obtained from the best model were used for the presentation of the spatial
distribution of water temperature in lakes in the studied area at the local and regional scale.
The objective of the presentation of the spatial variability of water temperature in single
lakes was to show the role of local factors, i.e., the morphometry of the lake basin, range
of impact of river waters, groundwater supply, and effect of wind on the distribution of
water temperatures in the lake. The presentation of the thermal regime of lake waters at the
regional scale aimed at illustrating the effect of climatic factors on the spatial distribution
of water temperature in the lakes of north Poland in different time periods from April to
October.

We tested the applicability of the developed RF model for the entire example scene
of 28 April 2021 (ID: LC08_191023_20210428) and made the temperature prediction for
1568 lakes located in the north-western part of Poland with an area larger than 3 ha (ap-
proximately 30 pixels). On a local scale, we chose 4 lakes on different dates—Gopło, Łebsko,
Drawsko, Ełckie (IDs: LC08_190023_20210608, LC08_191022_20150818, LC08_192023_20180529,
and LC08_187022_20211025). We used the terra [58] package to process spatial data (both
raster and vector) and perform spatial predictions.
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3. Results

3.1. Comparison of Methods

At the first stage of work, based on a training sample covering measurement data
from 28 lakes (1828 measurements) and the corresponding data from Landsat 8 Collection 2
Level 1 (L8L1) meeting the criteria described in the methodology, a multiple linear regres-
sion model (LM) was developed, as well as a random forest model (RF). The following
equation parameters were obtained for the linear model:

Water temperature = 2.9 × B10 − 2.07 × B11 + 48.48 (5)

where bands B10 and B11 represent Top of Atmosphere Reflectance in Kelvins.
For model LM at the stage of development, the following statistics were obtained:

R = 0.91, MBE = 0 ◦C, and RMSE = 2.28 ◦C. Considerably better statistics were obtained
for the RF model, where the values were R = 0.95, MBE = 0.01 ◦C, and RMSE = 1.66 ◦C.
Notice, however, that the RF algorithm strongly fits the training data. The analysis of the
effectiveness of the RF model at the stage of its development within particular lakes showed
very high results of correlation coefficients at a range from 0.98 to 1.0. MBE values were
at a level from −0.52 to 0.58 ◦C, and RMSE values from 0.44 to 1.24 ◦C. The best results
of temperature prediction at the stage of development of the RF model were obtained
for Lake Ińsko (No. 6), and the worst for Lake Gopło (No. 5). Considering model LM,
results obtained for particular lakes were as follows: R from 0.84 to 0.97, MBE from −1.48
to 1.86 ◦C, RMSE from 1.22 to 3.54 ◦C. The best results of temperature prediction at the
stage of development of model LM were obtained for Lake Roś (No. 22), and the worst for
Lake Gopło (No. 5). See Supplementary Table S2 for detailed results.

Considerably more credible from the point of view of further application of the model
are results of the validation of statistical models on independent data not used at the
stage of model development. The results are obviously worse than those obtained at the
stage of model development. In this study, for LM, the obtained values R and RMSE were
lower than in the case of RF model (Table 1). In the case of the LST model, RMSE values
were almost twice higher than for results obtained from the RF model. The worst results
of the estimation of lake water temperature were obtained for Landsat Level-2 Surface
Temperature Science Product (LST-L2). In this case, MBE and RMSE values were 2.55 and
3.68 ◦C, respectively.

Table 1. Statistics comparing model performance on a test set. The last row with band 10 Top of

Atmosphere Reflectance (uncalibrated) is given as a reference.

Method MBE [◦C] RMSE [◦C] COR SD [◦C]

LM −0.01 2.29 0.91 4.98
RF −0.06 1.83 0.94 4.92

LST 2.04 3.35 0.88 5.52
LST-L2 2.55 3.68 0.9 5.94

B10 TOA −2.11 2.70 0.88 4.83

Considering the fact that next to values of global statistics obtained for the entire
dataset, the selection of the appropriate model for the estimation of water temperature in
lakes requires broader analysis, at least in the temporal approach—of particular months.
In the period from April to October, a substantial change in water temperature occurs in
particular lakes (from 0.3 ◦C to 28.3 ◦C), and a thermal gradient occurs from the east to
the west of Poland modified between lakes by the impact of the Baltic Sea. The analysis
of results obtained from the validation of LM and RF models evidently shows that RMSE
results are lower than those obtained from finished products LST-L2 and LST (Table 2).
An advantage of LST-L2 and LST models is their global cover and no requirement for
measurement data for their calibration. The comparison of RMSE values between LM and
RF models using the Wilcoxon signed-rank test showed a significant difference between
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them (p-value < 0.05). It suggested that RMSE values are lower for RF model than for LM.
Differences between the estimation of water temperature are particularly evident in April
(more than 1 ◦C), and the smallest differences occur in August (0.13 ◦C). Considering all
models, the lowest RMSE values occur in October, and the highest in May. The analysis of
the values of correlation coefficients for all methods showed that they are at a similar level,
and the occurring differences are not statistically significant.

Table 2. Model performance per month on a test set. Note that the month index was used as a

predictor in the random forest model.

Month
RMSE Correlation

LM [◦C] RF [◦C] LST [◦C] LST-L2 [◦C] LM RF LST LST-L2

April 2.91 1.84 4.39 4.28 0.71 0.75 0.7 0.69
May 2.97 2.43 4.42 4.87 0.69 0.66 0.68 0.67
June 1.81 1.48 2.84 3.39 0.76 0.82 0.74 0.76
July 1.8 1.46 2.68 3.59 0.68 0.71 0.66 0.71

August 2 1.87 3.13 3.42 0.72 0.67 0.63 0.69
September 1.93 1.45 2.2 2.4 0.81 0.8 0.75 0.77

October 1.75 1.58 1.8 1.62 0.88 0.79 0.8 0.84

Results of the validation of the LM, RF, LST, and LST-L2 models are presented in
Figure 5. The greatest dispersion of points presenting the comparison of measured and
estimated values evidently occurs for April and May. According to Skowron [59], in
that period water temperature shows high dynamics due to water mixing related to the
development of stratification. Moreover, water temperatures estimated by means of the LST
and LST-L2 models are evidently higher than the measured ones, suggesting the occurrence
of a systematic error. For models RF and LM, the dispersion of points focuses within a
straight line of y = x, suggesting the occurrence of only incidental/random errors.

Figure 5. Scatterplots for the models tested. The black dashed line indicates the ideal prediction. A

systematic error can be noticed for the LST and LST-L2 models.

Differences between measured water temperatures and those estimated by means
of particular models are presented in Figure 6. Distributions of deviations obtained for
the LST and LST-L2 models are evidently shifted right from the value of 0, pointing to
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the occurrence of systematic errors of 2.0 and 2.6 ◦C, respectively (for a testing sample
of 10 lakes, 538 measurements). Due to this, improvement of the estimation of water
temperatures can be relatively easily obtained by means of LST and LST-L2 by introducing
a correction factor. Results of such analyses are presented in the next sub-chapter. In the
case of the remaining LM and RF models, the average deviation between the measured
and forecasted value is 0.0 and 0.1 ◦C, respectively. This points to the lack of occurrence of
systematic errors. Histograms between actual and predicted values by all models indicate
that they are normally distributed, although this is not apparent from the Shapiro–Wilk
tests (p-value < 0.05). This is mainly due to single outliers.

 

Figure 6. Differences between measured water temperatures and water temperatures estimated by

models. The red dashed line marks the error equal to 0 K.

The results obtained both globally and for individual months suggest that the best
estimate of lake water temperature is possible using the RF model. This probably results,
among others, from the fact that the collection of explanatory (independent) variables
covers as many as 12 parameters (B1, B2, B3, B4, B5, B6, B7, B10, B11, the NDVI, the NDWI
and the month index), and in LM only 2 parameters are used (B10 and B11). Therefore, an
analysis of the suitability of the explanatory variables for estimating water temperature
using the impurity algorithm from the random forest model was conducted (Figure 7). We
found that B10 was more significant than B11, which is consistent with other publications.
This is also confirmed by the result obtained for the linear model—a slightly higher Pearson
correlation coefficient was noted for band B10 (R = 0.88) than for band B11 (R = 0.84). The
results of the study by Barsi et al. [60] showed that due to the occurrence of out-of-field stray
light, the calibration system of the TIR sensor is unstable, and the recorded thermal data
may carry a substantial error. The effect of dispersed light on data recorded in band B10 is
relatively small and therefore should be preferred. Considerably greater errors can occur
in the case of data in band B11, they should be subject to additional external calibration.
Another important variable is the month index—this is related to the seasonality of water
temperature. Specifying the month significantly reduces errors resulting from incorrect
satellite measurements. For example, in the warm months, we expect statistically higher
temperatures than in the cold months. Thus, excluding weather anomalies, it can be
expected that the water temperature range in June will be approximately from 18 ◦C (lower
quartile) to 21.6 ◦C (upper quartile). The other variables are of little importance. Of the
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remaining spectral bands, the green band (B3) is the most significant. Green radiation that
carries a lot of energy easily penetrates water. The depth of such penetration determines
the magnitude of changes in water temperature, and depends on, among others, water
transparency. Therefore, the amount of radiation reflected from water recorded in the green
band can be related to water temperature [61–63].

Figure 7. Feature importance using impurity algorithm.

We also evaluated the usefulness of spectral indices, the NDVI (used to calculate emis-
sivity) and the NDWI (used to distinguish water from land), but they did not significantly
affect the results.

Although the LM provides somewhat worse prediction results than the RF model,
it has its evident advantages. Predictions of RF model employ 12 independent variables,
which in the case of the analysis of the entire Landsat scene requires a total of approximately
5.4 GB RAM. In the case of LM, it will be only approximately 900 MB (2 variables). Next
to the number of variables, the complexity of the model is also important—the linear
model is much simpler, allowing for considerably faster prediction in terms of calculations.
The last difference is related to the application of the month index—in the case of RF, it
substantially improves prediction results, although it results in limiting the applicability of
the model only to the geographic area of Poland (approximate latitudes and longitudes
related to climate). In LM, no such assumptions were adopted; therefore, the potential of
its applications is greater. Nonetheless, part of predictors can also be excluded post hoc in
RF with no loss of effectiveness.

The spatial analysis of values of RMSE characteristics for the best RF model shows
better adjustment of the model to the training sample of lakes (orange color) than for the
test sample (points marked with red color) (Figure 8). The spatial analysis of RMSE values
within the training sample showed no occurrence of spatial autocorrelation, i.e., grouping
of lakes with evidently lower or higher RMSE values. Among the lakes used for testing
the model, the lowest RMSE values were obtained for Lake Ełckie (No. 23): 1.40 ◦C. The
highest RMSE values were obtained for Lake Hańcza (No. 37): 2.83 ◦C. Both Lakes Hańcza
and Ełckie are located in east Poland. The correlation analysis between RMSE values and
lakes’ areas, depths and volumes showed no significant relationship for both the training
set and the test set.
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testing the model, the lowest RMSE values were obtained for Lake Ełckie (No. 23): 1.40
°C. The highest RMSE values were obtained for Lake Hańcza (No. 37): 2.83
Lakes Hańcza and Ełckie are located in east Poland. The correlation analysis between 

 

Figure 8. Spatial variability of RMSE values for the training sample and test sample in the random

forest model. Orange color signifies training lakes, and red color marks test lakes. Numbering of

lakes (1–38) according to Supplementary Table S1.

3.2. LST-L2 Calibration

Because LST-L2 data are a finished product that can be practically applied by a large
group of scientists, including hydrologists, limnologists, and water ecologists with no
knowledge of specialized tools for obtaining and processing satellite data or development
of statistical models (such as LM or RF), a decision was made to develop a calibration
system for Poland for the estimation of water temperatures in lakes based on LST-L2
data provided by USGS. The analysis employed an identical method of determination of
calibration parameters (based on 1828 measurements) and validation (538 measurements)
as described in Section 2. The comparison of LST-L2 values with values of temperature
measured in situ showed the occurrence of a systematic error of approximately 2.42 ◦C
(Figure 9).

 

and Landsat 8 data regarding surface water temperature in Lake Raduńskie Górne, 

Figure 9. The difference between in situ temperature and LST-L2 in the scatter plot (first column) and

histogram (second column). The first row represents uncalibrated training data, while the second

row represents calibrated testing data. The blue dashed line indicates the mean systematic error of

approximately 2.42 K. After the calibration, the systematic error was corrected.
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We tested three ways of correcting it using a linear equation (with and without an
intercept) and adding the mean value of this error. We obtained successively RMSE values
on the test set: 2.59, 2.86, and 2.88 ◦C (the initial RMSE value of LST-L2 was 3.68 ◦C).
We strongly recommend calibrating the LST-L2 data for estimating the water surface
temperature by using the formula below:

LST-L2 corrected = 0.806 × LST-L2 + 54.37 (6)

4. Discussion

Satellite images are an important tool in the case of research on water ecosystems,
and find application in reference to many issues concerning both biotic [64–66] and abiotic
processes [67–69]. A number of papers refer to the elementary feature, namely water
temperature, and the applied methods analyze the issue at various temporal and spatial
scales [15,70–74]. As mentioned in the introduction to this paper, research on lake water
temperature in Poland with the application of satellite images has found no broader
application to date, as confirmed by scarce papers in the scope. Ptak et al. [35] compared in
situ water measurements with Landsat images (4, 5 and 7) for three coastal lakes, obtaining
high coefficients of determination R2 (0.87–0.95). Based on in situ measurements and
Landsat 8 data regarding surface water temperature in Lake Raduńskie Górne, Szkwarek
and Wochna [75] obtained credible results allowing for detailed presentation of its spatial
distribution. Monitoring programs are often based on a limited spatial and temporal
range. Remote sensing offers promising tools for large-scale observation, improving our
possibilities of comprehensive research of the indices of lake properties [32]. Therefore,
in the context of dynamically progressing remote sensing technology, its limited scope of
applicability in the analysis of lake water temperature in Poland constitutes a research gap
that is attempted to be filled based on Landsat 8.

The application of Landsat images in this paper corresponds with the intensively
addressed global research trend regarding lake water temperature. The applied methodical
approach showed an RMSE error at a level of 1.8 ◦C, a result approximate to that in other
studies using Landsat images. Simon et al. (2014), analyzing two freshwater lakes in
France, determined the relationship between Landsat thermal data and water temperature
by measuring the temperature in situ at various depths, from 0 to 0.5 m [20]. The authors
concluded that the obtained results (R2 ranging from 0.90 to 0.94 and RMSE ranging from
1.753 to 2.397 ◦C) were satisfactory and coherent with literature data, where the values
of mean square error are within a range from 1 to 2 ◦C. Giardino et al. [17] presented
the Landsat TM-derived surface temperature of the sub-alpine lake with the RMSE of
0.328 ◦C; however, the procedure they used was not based on empirical relationships
between satellite data and in situ measurements. For several hundred lakes analyzed
based on data from the period 1999–2016 (Landsat 5 and 7), the total RMSE of temperature
measurements obtained from the satellite was approximately 1.2 ◦C [19].

Mean absolute error for the analyzed lakes averaging from 1.38 to 2.39 ◦C (depending
on the applied method) was approximate to the results of research conducted by Schaeffer
et al. (2018) for lake waters in the United States, and reached 1.34 and 4.89 ◦C [49]. Results
obtained in the study were also very approximate to those obtained by Tavares et al.
(2019), who compared different methods of temperature estimation based on data from
Landsat 7 and MODIS satellite [15]. In the estimation of water temperature (LSWT), the
authors applied the single-channel algorithm method and two databases, SAFREE and
TIGR3, obtaining similar R2 values (0.936 and 0.938, respectively) as in this study. A weaker
correlation with in situ water temperature was also shown by MOD28 data from the MODIS
satellite (R2 = 0.906), and a stronger one by MOD11 data (R2 = 0.962). The most useful
for the estimation of temperature (R2 = 0.964) proved to be data from Landsat 7 satellite
with the application of radiative transfer equation applied with atmospheric correction
parameters from AtmCorr.
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Considering the lack of possibility of conducting regular field observations, satellite
remote sensing was recognized as a cost-effective way of monitoring water surface tem-
perature at large spatial and temporal scales [76]. This statement is confirmed by results
obtained in this paper, as exemplified by Figure 10, presenting a set of thermal data regard-
ing three hundred lakes—including only several monitored through field observations. It
should be emphasized that it is the first elaboration of the type for a fragment of the Polish
territory, providing a promising basis for conducting monitoring of water temperature in
lakes for a population of objects not achievable so far. Because water temperature is an
elementary property of lake ecosystems [77,78] directly determining a number of processes
and phenomena (biotic and abiotic), detailed information in the scope is necessary in refer-
ence to each lake. The obtained spatial image presented in Figure 10 points to the thermal
variability of the analyzed lakes. The distribution in the orientation from the north (middle
fragment) to the south is generally relatively clear, with occurrence of, respectively, cooler
and warmer lakes. The situation illustrates the effect of a combination of environmental
factors responsible for the thermal conditions of lakes. They include the surface area of the
lake, land use structure around the lake, length, location (coordinates), and elevation above
sea level [36]. According to the conducted research, multiple regression results showed
that the recorded spatial distribution was significantly determined by, among others, the
latitude, surface area, distance from the sea, presence of forests, and elevation above sea
level. Similar research conducted for lakes on the Arctic coastal plain showed that, among
others, parameters such as geographic location and morphometry of the lakes control their
temperature at the regional scale [79].

 

areas. A different situation is recorded in the case of polymictic Lake Łebsko (Figure 11b), 

eastern part (mouth of the Łeba River with average water flow), and in the 

Figure 10. Median surface temperatures of non-monitored lakes as of 28 April 2021.
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The analyzed lakes with cooler water temperature occurred with greater density in
the catchments of the Gwda and Drawa Rivers, on postglacial outwash plains built of
highly permeable formations, i.e., gravels and sands. The situation is evident in the case
of runoff, where the groundwater component is dominant in both of the aforementioned
catchments [80], causing greater supply of cooler waters to the lakes.

Detailed distribution of water temperature is presented for two lakes with variable
morphometric parameters (Figure 11). In both cases, certain patterns were recorded also
observed in other studies of the type, i.e., distribution of water temperature referring to
the depth of particular sectors of the lake and changes in water temperature in estuarial
zones of rivers. According to Cao et al. [81], temperature in the center of the East Lake
(Wuhan, China) is higher than in the surrounding area. Maps of surface temperature
obtained by means of Landsat 8 satellite for three lakes (Maggiore, Lugano, and Como)
showed variability reaching two or three degrees between different areas, i.e., between
centers of lakes and coastal zones where inlets of rivers are located [82]. Based on data from
Landsat 8 satellite, Sener and Sener [83] determined surface water temperature for Lake
Beysehir (Turkey), recording a range of water temperature from 20.1 to 26.8 ◦C. They also
determined that it was the highest in shallower sectors of the analyzed lake. Aïtelghazi
et al. [84] emphasise that important parameters to be considered in the context of thermal
changes include depth and suspended particles transported by the river. In the case of
dimictic Lake Drawsko (Figure 11a), the distribution of water temperature in reference
to depth is evident—the warmest in the coastal zone, and coldest in the deepest areas. A
different situation is recorded in the case of polymictic Lake Łebsko (Figure 11b), where
water temperature is uniform throughout the water column, and its variability on the
surface is determined by inflows of surface waters—the coldest zone occurs in the south-
eastern part (mouth of the Łeba River with average water flow), and in the north-eastern
part (inflow of marine water), as well as in the north-western part, where a cooler water
mass was pushed to an isolated bay with limited circulation.

 

) Łebsko Lake on Figure 11. The surface temperature of (a) Drawsko Lake on 28 May 2018; (b) Łebsko Lake on 18 August

2015. The black lines labeled AB show a temperature profile from north-west (A) to south-east (B).
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The potential of Landsat images for monitoring small water bodies can be used for
forecasting their evolution, and will be useful in the future [85]. It is important in the
context of the progressing climate change and the related threat in reference to, among
others, water quality or species composition of the fauna and flora of lake ecosystems.

5. Conclusions

This study concerned the comparison of the effectiveness of four methods of estimation
of lake temperature based on satellite data. Two empirical models were developed (linear
regression and random forest), and compared with two state of the art approaches employ-
ing atmospheric calibration. The comparative analysis shows the best performance of the
random forest method, providing the highest correlation coefficient and the lowest RMSE.

Many papers recommend the application of atmospheric correction before using satel-
lite data for the estimation of lake water temperature. It should be remembered, however,
that the accuracy of these correction methods can be considerably reduced under certain
conditions, e.g., with high content of water vapor in the atmosphere, and atmospheric mod-
els themselves show substantial limitations in spatial and temporal resolution. Therefore,
continuous work on the improvement of correction algorithms should be accompanied by
research on the possibility of application of new methods of data analysis (e.g., machine
learning) and consideration of empirical data in the improvement of prediction results.
This paper proposes an appropriate calibration correction for data from Landsat Level-2
Surface Temperature Science Product (LST-L2) that considerably improves results (root
mean square error reduced by 30%) of estimation of lake temperature in the territory
of Poland. Nevertheless, despite the correction, the random forest model provided the
best results.

Future works should focus on determining the pixel based temperature uncertainty,
analyzing the potential of using low-resolution data from the MODIS sensor for small
surface lakes in Poland and determining the effectiveness of other water and vegetation
indices. As of 31 October 2021, imagery is available from the next Landsat series satellite
with the improved TIRS-2 sensor. Along with the increase in data availability, it should
also be used for analysis to maintain continuous monitoring.
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Explanation of the in昀؀uence 
of geomorphometric variables 
on the landform classi昀؀cation 
based on selected areas in Poland
Krzysztof Dyba 

In recent years, automatic image classi昀؀cation methods have signi昀؀cantly progressed, notably black 
box algorithms such as machine learning and deep learning. Unfortunately, such e昀؀orts only focused 
on improving performance, rather than attempting to explain and interpret how classi昀؀cation models 
actually operate. This article compares three state-of-the-art algorithms incorporating random 
forests, gradient boosting and convolutional neural networks for geomorphological mapping. It 
also attempts to explain how the most e昀؀ective classi昀؀er makes decisions by evaluating which of 
the geomorphometric variables are most important for automatic mapping and how they a昀؀ect 
the classi昀؀cation results using one of the explainable arti昀؀cial intelligence techniques, namely 
accumulated local e昀؀ects (ALE). This method allows us to understand the relationship between 
predictors and the model’s outcome. For these purposes, eight sheets of the digital geomorphological 
map of Poland on the scale of 1:100,000 were used as the reference material. The classi昀؀cation results 
were validated using the holdout method and cross-validation for individual sheets representing 
di昀؀erent morphogenetic zones. The terrain elevation entropy, absolute elevation, aggregated 
median elevation and standard deviation of elevation had the greatest impact on the classi昀؀cation 
results among the 15 geomorphometric variables considered. The ALE analysis was conducted for 
the XGBoost classi昀؀er, which achieved the highest accuracy of 92.8%, ahead of Random Forests at 
84% and LightGBM at 73.7% and U-Net at 59.8%. We conclude that automatic classi昀؀cation can 
support geomorphological mapping only if the geomorphological characteristics in the predicted 
area are similar to those in the training dataset. The ALE plots allow us to analyze the relationship 
between geomorphometric variables and landform membership, which helps clarify their role in the 
classi昀؀cation process.

Geomorphology is a scienti�c discipline that studies landforms, their features and the processes that shape  them1. 
One of the key aspects of geomorphology is the mapping process, which involves identifying landforms and 
determining their spatial distribution in the context of processes occurring on the Earth’s  surface2. Traditional 
and automatic mapping are two di�erent approaches to mapping landforms based on their features, shape, and 
spatial distribution.

Traditional geomorphological mapping is based on �eldwork and manual interpretation of various data 
sources (for example, digital elevation models, topographic maps, aerial or satellite imagery), which requires 
a high level of expertise and experience. �erefore, this approach is time consuming and expensive. Another 
debatable issue is the repeatability of mapping results related to the subjective nature of interpretation, which 
can consequently lead to di�erent divisions and ranges of landforms or soil  units3.

On the other hand, automatic geomorphological mapping can be more e�cient and cheaper, and most 
importantly, can provide reproducible results by removing the aspect of subjectivity. Basically, three di�erent 
approaches to automatic classi�cation can be distinguished, i.e., the pixel-based4–8, object-based9,10 and pattern-
based. �e �rst two are currently used as state-of-the-art, but the last one is new and requires further research.

�e pattern approach mainly relies on convolutional neural networks (CNNs), which involve a multi-step 
learning process using convolutional layers to create a feature map that extracts certain image patterns. CNNs 
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have become very popular in computer vision due to their high e�ciency in identifying low-level features and 
patterns, making them very e�ective for data  classi�cation11,12.

Recent research on the application of convolutional neural networks in geomorphology includes the use of 
a multi-channel deep neural network architecture to classify  landforms13, a comparison of Random Forests and 
U-Net models to classify loess  formations14, a comparison between traditional and automated U-Net-based 
 approaches15, and classi�cation using textural properties of the  terrain16.

So far, several initiatives have been undertaken to develop high-resolution digital geomorphological maps 
of selected areas in Poland based on traditional mapping, including Roztocze  Upland17, Pomeranian and War-
mian–Masurian  voivodeships18,  Mazovia19,  Carpathians20, Narew National  Park21, Wielkopolska–Kujawy Low-
land, Mysliborsk Lakeland and Szczecin  Lowland22,  Podlasie23, and  Tykocin24. Nevertheless, the mentioned 
studies were conducted by independent research teams and are not uni�ed, thus they have di�erent catalogs of 
landforms, mapping principles and spatial scales.

However, research on automatic classi�cation of the geomorphological landforms in Poland remains at an 
early stage. �e �rst study compares unsupervised automatic classi�cation with the traditional mapping for 
the  Sudetes25. �e second study also concerns unsupervised classi�cation for the area of the Silesian  Upland26. 
Another study on supervised classi�cation was conducted by Janowski et al.27, in which the authors compared 
machine learning algorithms for classifying glacial landforms in the Lubawa Upland and Gardno–Leba Plain 
areas using ground truth dataset. In a previous article co-written by the present author, we clustered the land-
forms of the entire country using an unsupervised  method28. �is means that we made no prior assumptions 
about geomorphological units. Finally, we separated 20 land surface types in the process of interpreting and 
labeling clusters.

�e �rst objective of this article is to perform a supervised classi�cation using machine learning based on 
the available sheets of the digital geomorphological map of Poland. Unlike the unsupervised approach, the 
catalog of geomorphological units is known in advance, but the problem is to map it as best as possible using 
an automatic classi�cation method. �e second objective is to interpret the classi�cation decisions made by the 
model, in particular to explain which geomorphometric variables are most relevant and how they a�ect the 
classi�cation results.

Materials and methods
We divided this section into several subsections to clearly present the extensively used materials and methods. 
Section “Digital geomorphological map” describes the digital geomorphological map of Poland. Section “Mor-
phometric variables” provides information on geomorphometric explanatory variables and how they are pro-
cessed. Section “Selection of a classi�cation model” presents the machine learning and neural network models 
employed, while Section “Validation” presents the methods and metrics for their validation. Section “Model 
explanation” describes the method to explain the classi�er’s decision. Finally, Section “So�ware” contains techni-
cal information about the so�ware used.

Digital geomorphological map
�e digital geomorphological map of Poland on the scale of 1:100,000 is a vector map showing the forms of relief 
and the genesis of the Earth’s surface alongside information about its  formation29. �e color scheme is based on 
the Gustavsson et al.30 concept with modi�cations. Eight available sheets with a total area of 9072  km2 were used 
as a reference dataset (Fig. 1). Currently, it is the only such detailed and up-to-date source on a national scale 

Figure 1.  Sheet coverage of the digital geomorphological map of Poland.
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with uniform principles of development. �e landforms presented are from all morphogenetic zones, including 
the coastal area (Świnoujście), the young and old glacial areas (Toruń and Kutno), the upland areas (Katowice, 
Kraków Zachodni and Tomaszów Lubelski), and the areas of young and old mountains (Jelenia Góra and Nowy 
Targ). In the technical manual there are 77 surface divisions in 10 morphogenetic groups; however, only 54 divi-
sions can be found on the available sheets. �e landforms are listed in Supplementary Fig. S1.

�e representativeness of the morphological forms is strongly unbalanced; for instance, the slope surface 
landform accounts for more than 23% of the total dataset, while the other 43 landforms represent less than 15% 
(Fig. 2). �is issue is a major problem in automatic classi�cation methods. �is means that the algorithm is unable 
to learn how to correctly classify forms that are a signi�cant minority (permille) in the dataset. To address this 
problem, we reduced the size of the 14 largest classes to 150,000 observations using the data under-sampling 
 procedure31 and removed the two least numerous classes (beach and dune plain). �e second issue relates to 
missing values (NA) that result from areas not covered by mapping or water surfaces (Fig. 2). In the case of 
machine learning algorithms, typically missing values can be omitted (they will not be included in the training 
set), while neural networks use them in the learning process, and then they are masked (excluded). �e �nal 
dataset consisted of over 3.3 million observations (pixels).

Machine learning algorithms require a discrete representation of data, for this reason we rasterized vector 
maps to a resolution of 30 m in the Polish geodetic coordinate system 1992 (EPSG: 2180). For this purpose, we 
created a classi�cation table that contained the original category names encoded as text and their corresponding 
IDs in numerical form. We coded missing data (NA), water reservoirs, and areas not surveyed with a value of 0.

Morphometric variables
As the main data source, we used a digital terrain model with a resolution of 30 m adapted from Digital Terrain 
Elevation Data Level 2 (Fig. 3). �e data has been smoothed and resampled, so the artifacts (noise strips) seen 
in the original do not  appear32. �en we generated a number of derivative products based on it.

More than 100 di�erent geomorphometric variables can be found in popular applications for geomorpho-
metric analysis. It is impossible to include all of them for technical reasons (hardware limitations, processing 
time) and analytical reasons (some are strongly correlated). �erefore, we considered the 15 most commonly 
used and made a �nal selection of the most important features for classi�cation using model performance met-
rics, visual inspection and model information gain (Fig. 4). Eventually, we reduced their number to 9 (Table 1), 
which increased the performance of the classi�er (i.e., faster training and prediction, and reduced memory 
consumption) and, most importantly, simpli�ed the structure of the model, thus making its decisions easier 
to interpret. We initially tested absolute elevation, multidirectional  hillshade33,  slope34, topographic position 
 index35, multi-scale topographic position index, tangential and pro�le  curvatures34, convergence index with 
 radius36, terrain surface  texture6, terrain surface  convexity6, topographic  openness37, aggregated elevation, local 
standard deviation, and textural features including contrast, energy and  entropy38.

�e aggregated elevation was calculated using a statistic (in this case, the median) from neighboring pixels at 
a lower spatial resolution (500 and 1000 m respectively), and then the aggregated cell was divided into smaller 
blocks corresponding to a resolution of 30 m. If it was possible to set the analysis radius, we set it to 16 pixels 
(representing an area of about 0.7  km2). Additionally, we removed the variables above a linear correlation of 
0.9 because they essentially convey the same information except for aggregated elevation and entropy (they are 
perfectly correlated with absolute elevation but contain information on a larger spatial scale), which allows for 

Figure 2.  Distribution of the geomorphological forms from the used sheets. All forms with a total area of less 
than 166  km2 (i.e., the 80th percentile) are combined into one category in the �gure: Other.
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mapping morphological objects with continuity. �e geomorphometric variables used in this study are presented 
in Fig. 5.

Selection of a classi昀؀cation model
We compared the three most popular models based on machine learning—Random  Forests39 and gradient 
boosting including  XGBoost40 and  LightGBM41, and the convolutional neural network (CNN) model—U-Net42. 
�e main di�erence between random forests and gradient boosting is that the former reduces the variance of 
a large number of complex models with low bias (the models are built independently and parallelly), while the 
gradient boosting reduces the bias of a large number of simple models with low variance (the models depend 
on each other because each is based on all previous small models with the appropriate weight, hence the name 
“boosting”). Both XGBoost and LightGBM models are based on gradient boosting, but the former uses an “exact” 
algorithm, while the latter uses an “approximate” algorithm (observations with similar values are aggregated into 
bins). �is acts as a compromise between performance and accuracy of trained models.

In contrast, convolutional neural networks are primarily dedicated to computer vision, whereas machine 
learning models focus on modeling tabular data. �ey consist of multiple layers that can extract vital image 
features (such as edges) and reduce the spatial resolution while retaining the important information. �us, it 
can be expected that the recognition of spatial patterns will be independent of the shi� (i.e., the model will be 
able to recognize the same pattern in a di�erent place) and the spatial hierarchy of objects will be considered 
(for example, the �rst layer of the network will learn to recognize small local patterns, and the next layer will 
aggregate them into larger structures). In the case of machine learning, this is not directly possible, and the data 
must be prepared in an appropriate way (feature engineering).

Model hyperparameters tuning
Machine learning models require a predeterminating of the hyperparameters such as maximum tree depth, 
number of leaves (nodes), learning rate, etc. to be e�ective. �is procedure is called tuning. In order to �nd the 
most e�ective hyperparameters, we used a random search procedure, which involves de�ning a search space 

Figure 3.  Elevation map of Poland with hillshading. Histograms with average elevation values calculated for 
latitudes and longitudes are seen on the sides.
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(combination) of hyperparameters and random sampling. �en, using the drawn combination, the model is 
trained, and its performance is evaluated on an independent dataset.

We considered the following hyperparameters in this procedure: eta (step size shrinkage used to prevent 
over�tting), max_depth (maximal tree depth), nrounds (number of iterations), subsample (subsample ratio of the 
training data) in XGBoost; num.trees (number of trees to grow), mtry (number of variables randomly sampled as 
candidates at each node split), min.node.size (minimal node size), max.depth in Random Forests; learning_rate 
(performs the same function as eta in XGBoost), max_bin (maximum number of bins that feature values will 
be bucketed in), num_leaves (maximum number of leaves in one tree), nrounds, max_depth, bagging_fraction 
(performs the same function as subsample in XGBoost), feature_fraction (ratio of variables randomly sampled 
for each tree) in LightGBM. Appropriate selection of these hyperparameters prevents the model from over�t-
ting the training data.

It should be emphasized that the applied machine learning algorithms do not use the pixel neighborhood, 
so information about the shape and continuity of geomorphological forms is not included. In fact, information 
about the values of the geomorphometric variables is only used for individual pixels. We used feature engineering, 
to address this problem, which is based on three elements: 1) calculation of the geomorphometric variables in 
the local window (if it was possible); 2) use of selected geomorphometric variables at lower spatial resolution to 
detect larger landforms; 3) use image textural features. See Section “Morphometric variables” for more details.

Convolutional neural network
We evaluated the convolutional neural networks using the U-Net model in  Tensor�ow43. �is architecture con-
sists of two main components, i.e., a contracting path (encoder) and an expansive path (decoder). �e former 

Figure 4.  Importance of the geomorphometric variables for the geomorphological classi�cation using the 
XGBoost model. �e higher the value, the greater the suitability. �e red dashed line indicates discarded low-
signi�cance variables.

Table 1.  Morphometric variables used in this study.

# Variable Range Mean value Unit

1 Absolute elevation − 0.03, 2483 171 ± 129.2 m

2 Slope 0, 76.1 1.75 ± 3.08 deg

3 Local standard deviation 1000 m 0, 262.7 5 ± 8.3 m

4 Multi-scale topographic position index − 53.1, 44.6 0 ± 0.7 m

5 Terrain surface convexity 0, 88.6 48.7 ± 7.5 –

6 Entropy 7, 940318 52,441 ± 44,508 –

7 Topographic openness 0.61, 1.7 1.55 ± 0.03 –

8 Median elevation 500 m 0, 2335 171 ± 128.9 m

9 Median elevation 1000 m 0, 2238 170 ± 128.5 m
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progressively reduces the spatial resolution of the input image while increasing the number of features. �e 
expansive path is the inverse of the contracting path and involves upsampling operations to restore the spatial 
resolution and reduce the number of features. �e �nal layer consists of a convolutional layer with a so�max 
activation function, producing pixel-wise class predictions. �e detailed architecture is shown in the original 
article by Ronneberger et al. in Fig. 142.

Several tile sizes were tested as input, i.e., 32 × 32, 64 × 64, 128 × 128 and 256 × 256 pixels. Finally, the most 
satisfactory results were obtained for blocks of 128 × 128 pixels due to the compromise between capturing spatial 
patterns by the model and the number of missing values in the tiles. To solve the problem of a large percentage of 
missing data, we removed those blocks for which the number of missing values was more than 70%, ultimately 
resulting in a total of 685 raster blocks. In order to increase the amount of input data, data augmentation was 
applied by �ipping images in the vertical and horizontal planes. Adam’s algorithm was used as the optimization 
 function44. It should be noted that deep learning models have hundreds of thousands of parameters for tuning 
and, therefore, require much more input data compared to machine learning models. In this study, U-Net was 
used only as a reference method and its lower performance is expected compared to the other models tested.

Validation
We used holdout validation to validate the results—30% of the randomly selected input dataset was used as a 
test set to calculate the models’ performance metrics, i.e., accuracy, Cohen’s kappa coe�cient (κ) and Matthews 
correlation coe�cient (φ). �e former provides overly optimistic results for unbalanced datasets, but the sec-
ond and third are corrected for this e�ect and o�er more reliable results. However, because we under-sampled 
classes to balance our dataset, the di�erence between these metrics is insigni�cant. Moreover, we used �vefold 
cross-validation to test the accuracy of the most e�cient classi�er (i.e., XGBoost) in this study for individual 
areas. Note that non-spatial validation can produce somewhat biased  results45,46, and in order to evaluate the 
performance completely independently, new geomorphological sheets (i.e., those that have not been used to 
train the models) should be used.

Model explanation
�e models used in this study are black box models. �is means that the predictions and decisions they generate 
are not interpretable in a simple way. In other words, the high complexity of the algorithms causes di�culties in 
explaining how it actually  works47,48. In order to understand which geomorphometric features the model uses 
to make decisions, we used the XGBoost gain metric (Fig. 4), which determines the improvement in model per-
formance by adding a speci�c feature to the decision tree. Moreover, in addition to examining which variables 

Figure 5.  Geomorphometric variables used in this study. �e absolute elevation is shown in Fig. 3 with the 
topographic color scale. �e aggregated by median elevations of 500 and 1000 m look almost identical, but 
actually represent di�erent spatial scales. �e slope, standard deviation, convexity, entropy, openness variables 
are scaled by the square root, and the multi-scale TPI by the sine to better represent spatial variability.
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are most useful for mapping, we also evaluated the interactions between the classi�cation results and each geo-
morphometric variable using accumulated local e�ects  plots49.

�e accumulated local e�ect (ALE) is a machine learning interpretability method that allows gain insights 
into the model’s behavior, identifying how features a�ect predictions. �e ALE method is similar to the partial 
dependence  plot50, but is faster and more robust (i.e., it enables an analysis of the correlated variables). �e for-
mer focuses on local e�ects that are calculated in small windows, while the PDP calculates average values. �e 
resulting ALE plot shows how the model prediction changes as the particular feature value increases (assuming 
that the other features are �xed), enabling an examination of the relationship between a feature and the model’s 
prediction. In practice, this helps identify interactions that are not evident by simply assessing the signi�cance 
of the features like using XGBoost gain metric. To the best of the author’s knowledge, this method has not been 
previously used to explain the decision making of the classi�cation models in geomorphological mapping.

Software
�e geomorphometric variables were generated in GRASS GIS 7.8.051 with default function parameters. �e data 
analysis and machine learning parts were completed in  R52, while the neural networks were used in Python. In 
particular, the stars package was utilized for processing the raster  data53, and sf for the vector  data53. Statistical 
metrics were implemented in the yardstick54 package. �e ranger package was used to train Random  Forests55. 
Accumulated local e�ects plots were generated by the ALEPlot  package49.

�e development of the models was very time-consuming. It took nearly two weeks of continuous computa-
tions to train all 1180 models on an AMD Ryzen 9 5900X with 128 GB RAM. �e models were trained in parallel 
on 12 physical CPU cores. �e largest part of the trained models were models based on LightGBM algorithm, 
because of the largest number of hyperparameters to be tuned compared to other machine learning models.

Results
Classi昀؀cation
As a result of the evaluation on an independent test dataset, the XGBoost model proved to be the best with an 
accuracy of 92.8%. It was followed by Random Forests with an accuracy of 80.4% and LightGBM with an accuracy 
of 73.7%. �e worst performance was achieved by the U-Net model due to insu�cient training data (Table 2). 
During model tuning, the highest performance of the classi�ers was obtained for the following hyperparameters:

1. XGBoost: eta = 0.2; max_depth = 20; nrounds = 150; subsample = 0.6
2. Random Forests: num.trees = 1000; mtry = 5; min.node.size = 1; max.depth = 20
3. LightGBM: learning_rate = 0.05; max_bin = 2048; num_leaves = 70; nrounds = 150; max_depth = 15; bag-

ging_fraction = 1; feature_fraction = 1

Further performance of the models can be improved by using larger values for the max_depth and max_bin 
hyperparameters, but this actually results in over�tting on the test dataset.

�e potential application of model fusion may be intriguing. �is technique typically results in an overall 
improvement in classi�cation performance using aggregated results from several di�erent models. However, 
this is provided that all models o�er similar and high prediction e�ciency, which is not case in this study. Ulti-
mately, this would reduce the quality of the prediction and, moreover, it would become impossible to explain 
the performance of the combined models.

From this point on, only the XGBoost classi�er is subjected to further analysis because it achieved the best 
result compared to the other models. �e analysis of models with lower performance is unjusti�ed, especially 
in the context of explaining how geomorphometric variables in�uence landform classi�cations (i.e., misclassi-
�cations mean misinterpretations). In the evaluation of the predicted landforms on individual sheets, XGBoost 
recorded the best accuracy for Jelenia Góra at 96.2%, and the lowest for Tomaszów Lubelski at 88% (Table 3). 
�e average accuracy value using cross-validation was over 93%, while the Kappa coe�cient and Matthews 
correlation coe�cient values were slightly lower. �is demonstrates the high potential application, provided 
that the predicted landforms and distributions of geomorphometric variables are similar in both the test and 
training datasets. However, it is not possible to conclude that there is a strong correlation between the number 
of landforms and model accuracy—classi�cation performance is rather related to the representativeness of the 
forms and the complexity of the spatial patterns associated with the geomorphological characteristics of the areas. 
Examples of the classi�er’s application are shown in Fig. 6. It is noteworthy that small landforms appear on the 

Table 2.  Evaluation of the model classi�cation performance. �e higher the metric values, the better the 
model.

Model Accuracy Kappa coe�cient Matthews correlation coe�cient

Random Forests 0.840 0.830 0.830

XGBoost 0.928 0.917 0.917

LightGBM 0.737 0.724 0.725

U-Net 0.598 0.576 0.576
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predicted rasters that are not visible on the geomorphological map. �is may be due to the higher spatial resolu-
tion of the geomorphometric variables compared to the reference map (not necessarily the prediction errors).

Model explanation
We �rst assessed the overall relevance of each geomorphometric variable for mapping. Among the tested vari-
ables, entropy, median elevation and absolute elevation turned out to be the most signi�cant for classi�cation. 
Next ranked were standard deviation, convexity and openness, slope and multi-scale TPI. �e least useful for 
mapping were texture, pro�le and tangential curvatures, TPI, and hillshade (Fig. 4). �e last group of variables 
with the lowest importance was excluded from the �nal classi�cation since they do not actually improve map-
ping results, but signi�cantly increase processing time, require additional memory and cause greater model 
complexity.

In the next step, we deepened the analysis of the relationship between the used geomorphometric variables, 
and the probability of the landform speci�ed with accumulated local e�ects. As an example, we chose the four 
well-representative landforms, for instance: (a) proluvial plain; (b) plateau; (c) rock wall/rock slope; (d) depo-
sitional scree slope (Fig. 7). All other geomorphological landforms are presented in Supplementary Fig. S2.

Figure 7 shows how the probability of landform a�liation changes depending on geomorphometric variables. 
�e �rst landform proluvial plain (Fig. 7a) is an extensive sandy �at surface created as a result of the periglacial-
�uvial accumulation process. It is noticeable, in this case, the greatest impact on the detection of this form is the 
openness feature, whose high values (above 1.55) indicate an open and �at surface. �e other geomorphometric 
variables are not very signi�cant. �e second example is the plateau (Fig. 7b), which is usually characterized by 
an irregular surface and explicit hillsides. In this case, low values of two features, i.e., entropy (below 85,000) and 
openness (below 1.58), reduce the probability of classifying this form, while an increase in the value of the slope 
increases this probability (in particular, a slope above 10°). �e last example is rock wall/rock slope (Fig. 7c) and 
depositional scree slope (Fig. 7d). �e former is a very steep or rugged fragment of the surface with a high slope, 
in which the process of weathering and falling rock materials occurs, creating an accumulated rubble slope at the 
foot of the slope. �e latter usually takes the form of a mound or heap that is composed of rock rubble from a rock 
wall/rock slope. To detect the rock wall/rock slope, the slope, standard deviation and multi-scale TPI variables 
are important, high values of which increase the probability of classifying this landform. However, in the case 
of the depositional scree slope, high values of slope (above 30°) and standard deviation (above 150 m) reduce 
the probability of classifying this landform. �e probability of classifying this landform by the model increases 
with high entropy (above 750,000) and low values of openness (below 1.3), which is probably related to the size 
of the rock material that creates irregular (undulated) surfaces. �ese examples demonstrate the convergence of 
classi�cation decisions made by the model and geomorphological knowledge.

We also considered how the landform area represented in the dataset relates to the variability of the impact 
on the classi�cation probability calculated from accumulated local e�ects. For this purpose, we de�ned the 
amplitude as the di�erence between the in�uence that increases the probability of being classi�ed in a given 
class (the maximum is 1) and the in�uence that reduces this probability (the minimum is − 1), so the maximum 
amplitude can be 2. We noticed a positive relationship between this amplitude and the area of the landforms 
(Fig. 8). �is means that it is easier for the model to provide a classi�cation decision when the sample is larger. 
�e largest amplitude occurs for the elevation, entropy and standard deviation, and this is consistent with the 
variable importance results from the XGBoost model. Moreover, it should be emphasized that the range of impact 
between sheets is di�erent. �is is because the sheets present areas of varying morphogenesis with di�erent 
levels of geomorphological features (marking); therefore, some geomorphometric variables are more (or less) 
useful for characterizing the forms occurring there. In practice, this means that if the slope surface class can be 
easily classi�ed on the Toruń sheet (i.e., a young glacial area) using the slope variable, it may be impossible on 
the Nowy Targ sheet (i.e., a young mountains area) due to the completely di�erent structure and characteristics 
of the Tatra Mountains range.

Table 3.  Performance of the XGBoost models for individual sheets based on �vefold cross-validation. �e 
physico-geographical mesoregions are de�ned based on Solon et al.56 classi�cation.

Sheet Mesoregion Number of landforms Accuracy Kappa coe�cient

Świnoujście Szczecin Coastland 19 0.961 0.957

Toruń Chełmno–Dobrzyń Lakeland, Toruń–Eberswalde Ice Marginal 
Valley 25 0.913 0.908

Kutno Central Masovia Lowland, Southern Wielkopolska Lowland 15 0.958 0.952

Jelenia Góra Western Sudety, Mountains 19 0.962 0.958

Tomaszów Lubelski Roztocze Upland, Sandomierz Basin 15 0.880 0.866

Katowice Silesia Upland, Woźniki–Wieluń Upland 13 0.943 0.936

Kraków Krakow–Częstochowa Upland, Kraków Gate 17 0.949 0.945

Nowy Targ Orawa–Podhale Basin, Tatra Range 16 0.940 0.934
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Discussion
As demonstrated, the accumulated local e�ect plot is a valuable tool for interpreting the classi�cation decisions 
made by the machine learning model. Surprisingly, to the best of the author’s knowledge, this technique has 
not yet been used in geomorphological mapping. Fundamentally, it allows us to check why the classi�er has 
distinguished a given landform, which is especially important in the case of incorrect classi�cations (we can 
interpret on the basis of explanatory variables what causes the error). Moreover, this method can be used even 
in traditional mapping; if a geomorphologist is not sure about recognizing a certain landform in the �eld, he can 
assist with ALE plots. Its main advantage is the relative ease of interpretation since it provides a clear visualization 
of how each geomorphometric feature in�uences the model’s predictions. In this study, it was used to interpret 
the classi�cation decisions based on the gradient boosting model (XGBoost), but actually it can be applied to a 

Figure 6.  Comparison of the reference data (le�) with predicted landforms (right) in the area of: (a) Wolin 
Island; (b) Chełmno-Dobrzyń Lakeland; (c) Jelenia Góra Basin; (d) Tatra Mountains. �e predicted raster was 
smoothed with a modal �lter of 5 pixels and landforms smaller than 21 pixels (~ 18,000  m2) were removed using 
a sieve �lter. �e legend is available in Supplementary Fig. S1.
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wide range of di�erent models (for example, linear models, tree-based models, neural networks). While ALE is 
certainly a useful tool, it also has some drawbacks. �e main limitations are related to small datasets, low feature 
variability and the sensitivity of the model itself. �e quality of the input dataset and the accuracy of the model 
should be carefully considered before conclusions are drawn.

Comparing the obtained results for convolutional neural networks, we can see di�erences in the accuracy 
of the classi�ers between those provided by Du et al.13: 83–98%, Li et al.14: 78–87%, Meij et al.15: 44–94%, Xu 

Figure 7.  Accumulated local e�ects plot showing how geomorphometric variables a�ect the probability of 
classifying: (a) proluvial plain; (b) plateau; (c) rock wall/rock slope; (d) depositional scree slope. Entropy is 
expressed in thousands.

Figure 8.  Amplitude of the impact change on the landform classi�cation depending on its area and 
geomorphometric variables. Each set of points represents a di�erent landform. 0.5% is the threshold value 
(marked with a dashed gray line) at which there is a signi�cant increase in amplitude. �e values on the X-axis 
are presented on a logarithmic scale. �e total area is 9072  km2.
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et al.16: 84% and 70%, and in this study (59.8%). �ese di�erences are due to two reasons. �e �rst is that in the 
mentioned studies, classi�cations were carried out only for a few geomorphological units, while in this study, 
54 di�erent landforms were classi�ed. Naturally, this means obtaining such high-performance values is more 
complicated. �e second reason is the selection of the research area. �e areas chosen by the cited authors are 
very diverse and relatively easy to distinguish, which does not entirely illustrate the scale of the problem. �e 
largest challenge is the analysis of the areas of complex genesis with poorly marked geomorphological features. 
In this case, the lower e�ciency of the classi�er is expected for the Polish sheets used, which consist mainly of 
lowlands shaped by the glacial and denudative processes.

In this study, U-Net was used as a well-established reference model representing the convolutional neural 
network approach. Although it is widely used for image segmentation, it has some limitations related to the 
optimization of a huge number of parameters. Since its publication, an improved version has been proposed 
by Dinh et al.57, namely U-Lite, which requires fewer parameters (but still hundreds of thousands). �ere are 
also alternative CNN architectures with relatively fewer parameters, for example LeNet-5, requiring 60,000 
 parameters58 or its improved version (3DLeNet) recently proposed by Fırat et al.59 for classifying hyperspectral 
images. However, simplifying the architecture and reducing the number of parameters can make the model 
unable to recognize complex spatial patterns and structures, and therefore its e�ectiveness will still be low. �e 
better performance of tree-based algorithms compared to CNNs in the study can be explained by the fact that 
they can perform better when handling few data observations. In a digital soil mapping experiment utilizing 
Random Forests, Bouslihim et al.60 showed that it could provide good performance by selecting only a few of 
the most relevant explanatory variables.

While this article focuses on the mapping of existing digital geomorphological maps using automatic clas-
si�cation on a regional scale, a further question arises: Do the methods and dataset used allow extrapolation 
of results for the entire country? In order to answer the question, we attempted to use the XGBoost classi�er, 
which was trained on a large sample of over 3 million observations and has previously provided promising results 
(Table 2). Based on the experiment, we conclude that at this point the results are unsatisfactory and do not meet 
mapping standards. �e main limitation in this case is the insu�cient amount of reference materials, as they 
constitute approximately 3% of the country’s coverage (over 9,000  km2), thus causing the trained model to be 
unable to recognize the same landforms in areas with di�erent geomorphological characteristics. �is issue was 
discussed more extensively by Bouasria et al.61 in the context of spatial extrapolation, where authors concluded 
that increasing the size of the spatial extent of the survey reduces the accuracy of the model. �erefore, we recom-
mend further work to increase coverage by digital geomorphological maps at a scale of 1:100,000.

Conclusions
In this article, we evaluated the potential of applying machine learning models and convolutional neural network 
to automatic geomorphological mapping and examined the usefulness and impact of selected geomorphomet-
ric variables on the results of landform classi�cations. Based on the results of this study, we can conclude that 
supervised learning methods are e�ective for mapping known sheets (Fig. 6), but ine�ective for extrapolation to 
new areas, especially when the catalog of landforms is very extensive. �erefore, at this point, we can state that 
automatic methods cannot replace the traditional approach, but they can support mapping if the geomorpho-
logical characteristics in the predicted area are similar to those in the training dataset.

We used diagnostic techniques based on the analysis of the importance of geomorphometric variables to 
indicate the most useful variables for geomorphological mapping, and accumulated local e�ects plots to precisely 
examine how their values in�uence the model’s classi�cation decisions. �is made the obscure and complicated 
classi�cation mechanisms of the black box model more explicit and open to human interpretation.

�e topic of automatic mapping remains unsolved, and further research is required. Further work should 
primarily focus on developing better geomorphometric variables for machine learning models and improving the 
architecture of the convolutional neural network to detect rarer landforms. In addition, future work should also 
address the issue of spatial validation at the model training and testing stages. Regarding the issue of explaining 
the decisions made by classi�cation models, it would be useful to check the di�erences and similarities in the 
method inspired by game theory, i.e., shapley additive explanation proposed by Lundberg et al.62.

Data availability
�e programming scripts used for this analysis and to generate the �gures are available in the following GitHub 
repository: https:// github. com/ kadyb/ geomo rph_ class i�ca tion. �e reference geomorphological maps are avail-
able from the Head O�ce of Geodesy and Cartography in Poland, but restrictions apply to the availability of 
these data, which were used under license for the current study, and so are not publicly available.

Received: 25 November 2023; Accepted: 1 March 2024

References
 1. Oldroyd, D. R. & Grapes, R. H. Contributions to the history of geomorphology and quaternary geology: An introduction. Geol. 

Soc. 301(1), 1–17. https:// doi. org/ 10. 1144/ SP301.1 (2008).
 2. Knight, J., Mitchell, W. A. & Rose, J. Geomorphological �eld mapping. In Developments in Earth Surface Processes, Vol. 15, 151–187 

(Elsevier, 2011). https:// doi. org/ 10. 1016/ B978-0- 444- 53446-0. 00006-9.
 3. Bazaglia Filho, O. et al. Comparison between detailed digital and conventional soil maps of an area with complex geology. Rev. 

Bras. Ciênc. Solo 37(5), 1136–1148. https:// doi. org/ 10. 1590/ S0100- 06832 01300 05000 03 (2013).
 4. Dikau, R., Brabb, E. E. & Mark, R. M. Landform classi�cation of New Mexico by computer. Report 91–634 (1991). https:// doi. org/ 

10. 3133/ ofr91 634.

https://github.com/kadyb/geomorph_classification
https://doi.org/10.1144/SP301.1
https://doi.org/10.1016/B978-0-444-53446-0.00006-9
https://doi.org/10.1590/S0100-06832013000500003
https://doi.org/10.3133/ofr91634
https://doi.org/10.3133/ofr91634


12

Vol:.(1234567890)

Scienti昀؀c Reports |         (2024) 14:5447  | https://doi.org/10.1038/s41598-024-56066-6

www.nature.com/scientificreports/

 5. Irvin, B. J., Ventura, S. J. & Slater, B. K. Fuzzy and isodata classi�cation of landform elements from digital terrain data in Pleasant 
Valley, Wisconsin. Geoderma 77(2–4), 137–154. https:// doi. org/ 10. 1016/ S0016- 7061(97) 00019-0 (1997).

 6. Iwahashi, J. & Pike, R. J. Automated classi�cations of topography from DEMs by an unsupervised nested-means algorithm and a 
three-part geometric signature. Geomorphology 86(3–4), 409–440. https:// doi. org/ 10. 1016/j. geomo rph. 2006. 09. 012 (2007).

 7. Jasiewicz, J. & Stepinski, T. F. Geomorphons: A pattern recognition approach to classi�cation and mapping of landforms. Geomor-
phology 182, 147–156. https:// doi. org/ 10. 1016/j. geomo rph. 2012. 11. 005 (2013).

 8. MacMillan, R. A., Pettapiece, W. W., Nolan, S. C. & Goddard, T. W. A generic procedure for automatically segmenting landforms 
into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst. 113(1), 81–109. https:// doi. org/ 10. 1016/ 
S0165- 0114(99) 00014-7 (2000).

 9. Drăguţ, L. & Blaschke, T. Automated classi�cation of landform elements using object-based image analysis. Geomorphology 81(3–4), 
330–344. https:// doi. org/ 10. 1016/j. geomo rph. 2006. 04. 013 (2006).

 10. Drăguţ, L. & Eisank, C. Automated object-based classi�cation of topography from SRTM data. Geomorphology 141–142, 21–33. 
https:// doi. org/ 10. 1016/j. geomo rph. 2011. 12. 001 (2012).

 11. Chollet, F. Deep Learning with Python (Manning Publications Co, 2017).
 12. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444. https:// doi. org/ 10. 1038/ natur e14539 (2015).
 13. Du, L. et al. Multi-modal deep learning for landform recognition. ISPRS J. Photogramm. Remote Sens. 158, 63–75. https:// doi. org/ 

10. 1016/j. isprs jprs. 2019. 09. 018 (2019).
 14. Li, S., Xiong, L., Tang, G. & Strobl, J. Deep learning-based approach for landform classi�cation from integrated data sources of 

digital elevation model and imagery. Geomorphology 354, 107045. https:// doi. org/ 10. 1016/j. geomo rph. 2020. 107045 (2020).
 15. Meij, W. M. et al. Comparing geomorphological maps made manually and by deep learning. Earth Surf. Process. Landf. 47(4), 

1089–1107. https:// doi. org/ 10. 1002/ esp. 5305 (2022).
 16. Xu, Y., Zhu, H., Hu, C., Liu, H. & Cheng, Y. Deep learning of DEM image texture for landform classi�cation in the Shandong area, 

China. Front. Earth Sci. 16(2), 352–367. https:// doi. org/ 10. 1007/ s11707- 021- 0884-y (2022).
 17. Buraczyński, J. Development of the relief of Roztocze Upland (with electronic geomorphological map 1:50 000, elaborated by J. 

Buraczyński and Ł.Chabudziński). Landf. Anal. 27, 67–89. https:// doi. org/ 10. 12657/ landf ana. 027. 006 (2014).
 18. Marcinkowska, A., Ochtyra, A., Olędzki, J. R., Wołk-Musiał, E. & Zagajewski, B. Mapa geomorfologiczna województw pomorskiego 

i warmińsko-mazurskiego z wykorzystaniem metod geoinformatycznych. Teledetekcja Śr. 49, 43–79 (2013).
 19. Napiórkowska, M. Cyfrowa mapa geomorfologiczna Mazowsza. Teledetekcja śr. 45, 23–39 (2011).
 20. Borzuchowski, J. & Olędzki, J. R. Cyfrowa mapa geomorfologiczna Karpat. Teledetekcja Śr. 46, 52–71 (2011).
 21. Wołk-Musiał, E. & Gatkowska, M. Mapa geomorfologiczna narwiańskiego Parku Narodowego wraz z otuliną w skali 1: 25000. 

Teledetekcja śr. 45, 40–50 (2011).
 22. Dmowska, A., Gudowicz, J. & Zwoliński, Z. Cyfrowa adaptacja analogowych map geomorfologicznych. Landf. Anal. 12, 35–47 

(2010).
 23. Krzemiński, J. Przeglądowa Mapa Geomorfologiczna Podlasia, w skali 1: 300 000. Teledetekcja śr. 42, 43–58 (2009).
 24. Wołk-Musiał, W., Lewiński, S. & Zagajewski, B. Geomorphological map (Tykocin sheet). Methodology. In Observing Our Environ-

ment from Space 385–390 (CRC Press, 2002).
 25. Wieczorek, M. & Migoń, P. Automatic relief classi�cation versus expert and �eld based landform classi�cation for the medium-

altitude mountain range, the Sudetes, SW Poland. Geomorphology 206, 133–146. https:// doi. org/ 10. 1016/j. geomo rph. 2013. 10. 005 
(2014).

 26. Szypuła, B. & Wieczorek, M. Geomorphometric relief classi�cation with the k-median method in the Silesian Upland, southern 
Poland. Front. Earth Sci. 14(1), 152–170. https:// doi. org/ 10. 1007/ s11707- 019- 0765-9 (2020).

 27. Janowski, L., Tylmann, K., Trzcinska, K., Rudowski, S. & Tegowski, J. Exploration of glacial landforms by object-based image 
analysis and spectral parameters of digital elevation model. IEEE Trans. Geosci. Remote Sens. 60, 1–17. https:// doi. org/ 10. 1109/ 
TGRS. 2021. 30917 71 (2022).

 28. Dyba, K. & Jasiewicz, J. Toward geomorphometry of plains: Country-level unsupervised classi�cation of low-relief areas (Poland). 
Geomorphology 413, 108373. https:// doi. org/ 10. 1016/j. geomo rph. 2022. 108373 (2022).

 29. Rączkowska, Z. & Zwoliński, Z. Digital geomorphological map of Poland. Geogr. Pol. 88(2), 205–210. https:// doi. org/ 10. 7163/ 
GPol. 0025 (2015).

 30. Gustavsson, M., Kolstrup, E. & Seijmonsbergen, A. C. A new symbol-and-GIS based detailed geomorphological mapping system: 
Renewal of a scienti�c discipline for understanding landscape development. Geomorphology 77(1–2), 90–111. https:// doi. org/ 10. 
1016/j. geomo rph. 2006. 01. 026 (2006).

 31. Yap, B. W., Rani, K. A., Rahman, K. A., Fong, S., Khairudin, Z. & Abdullah, N. N. An application of oversampling, undersampling, 
bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data 
and Information Engineering (DaEng-2013), in Lecture Notes in Electrical Engineering, Vol. 285 (eds Herawan, T., Deris, M. M. & 
Abawajy, J.) 13–22 (Springer Singapore, 2014). https:// doi. org/ 10. 1007/ 978- 981- 4585- 18-7_2.

 32. Jasiewicz, J., Netzel, P. & Stepinski, T. F. Landscape similarity, retrieval, and machine mapping of physiographic units. Geomorphol-
ogy 221, 104–112. https:// doi. org/ 10. 1016/j. geomo rph. 2014. 06. 011 (2014).

 33. Mark, R. K. Multidirectional, oblique-weighted, shaded-relief image of the Island of Hawaii. Report 92–422 (1992). https:// doi. 
org/ 10. 3133/ ofr92 422.

 34. Zevenbergen, L. W. & �orne, C. R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 12(1), 47–56. 
https:// doi. org/ 10. 1002/ esp. 32901 20107 (1987).

 35. Guisan, A., Weiss, S. B. & Weiss, A. D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 143(1), 107–122. 
https:// doi. org/ 10. 1023/A: 10098 41519 580 (1999).

 36. Köthe, R. & Lehmeier, F. SARA—system zur automatischen relief-analyse (User Manual, 1996).
 37. Yokoyama, R., Shirasawa, M. & Pike, R. J. Visualizing topography by openness: A new application of image processing to digital 

elevation models. Photogramm. Eng. Remote Sens. 68(3), 257–266 (2002).
 38. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classi�cation. IEEE Trans. Syst. Man Cybern. 3(6), 

610–621. https:// doi. org/ 10. 1109/ TSMC. 1973. 43093 14 (1973).
 39. Breiman, L. Random forests. Mach. Learn. 45(1), 5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324 (2001).
 40. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 785–794 (ACM, 2016). https:// doi. org/ 10. 1145/ 29396 72. 29397 85.
 41. Ke, G. et al. LightGBM: A highly e�cient gradient boosting decision tree. In Proceedings of the 31st International Conference on 

Neural Information Processing Systems, in NIPS’17 3149–3157 (Curran Associates Inc., 2017).
 42. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image 

Computing and Computer-Assisted Intervention: MICCAI 2015, in Lecture Notes in Computer Science Vol. 9351 (eds Navab, N., 
Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 (Springer, 2015). https:// doi. org/ 10. 1007/ 978-3- 319- 24574-4_ 28.

 43. Abadi, M. et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating 
Systems Design and Implementation, in OSDI’16, 265–283 (USENIX Association, 2016).

 44. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv, 29, 2017. Accessed Mar 27, 2023. [Online]. http:// arxiv. 
org/ abs/ 1412. 6980.

https://doi.org/10.1016/S0016-7061(97)00019-0
https://doi.org/10.1016/j.geomorph.2006.09.012
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/S0165-0114(99)00014-7
https://doi.org/10.1016/S0165-0114(99)00014-7
https://doi.org/10.1016/j.geomorph.2006.04.013
https://doi.org/10.1016/j.geomorph.2011.12.001
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.isprsjprs.2019.09.018
https://doi.org/10.1016/j.isprsjprs.2019.09.018
https://doi.org/10.1016/j.geomorph.2020.107045
https://doi.org/10.1002/esp.5305
https://doi.org/10.1007/s11707-021-0884-y
https://doi.org/10.12657/landfana.027.006
https://doi.org/10.1016/j.geomorph.2013.10.005
https://doi.org/10.1007/s11707-019-0765-9
https://doi.org/10.1109/TGRS.2021.3091771
https://doi.org/10.1109/TGRS.2021.3091771
https://doi.org/10.1016/j.geomorph.2022.108373
https://doi.org/10.7163/GPol.0025
https://doi.org/10.7163/GPol.0025
https://doi.org/10.1016/j.geomorph.2006.01.026
https://doi.org/10.1016/j.geomorph.2006.01.026
https://doi.org/10.1007/978-981-4585-18-7_2
https://doi.org/10.1016/j.geomorph.2014.06.011
https://doi.org/10.3133/ofr92422
https://doi.org/10.3133/ofr92422
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1023/A:1009841519580
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


13

Vol.:(0123456789)

Scienti昀؀c Reports |         (2024) 14:5447  | https://doi.org/10.1038/s41598-024-56066-6

www.nature.com/scientificreports/

 45. Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 
11(1), 4540. https:// doi. org/ 10. 1038/ s41467- 020- 18321-y (2020).

 46. Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. 
Commun. 13(1), 2208. https:// doi. org/ 10. 1038/ s41467- 022- 29838-9 (2022).

 47. Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable 2nd edn. (Christoph Molnar, 2022).
 48. Biecek, P. & Burzykowski, T. Explanatory model analysis: Explore, explain, and examine predictive models 1st edn. In Chapman & 

Hall/CRC Data Science Series (CRC Press, 2021).
 49. Apley, D. W. & Zhu, J. Visualizing the e�ects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B 

Stat. Methodol. 82(4), 1059–1086. https:// doi. org/ 10. 1111/ rssb. 12377 (2020).
 50. Greenwell, B. M., Boehmke, B. C. & McCarthy, A. J. A simple and e�ective model-based variable importance measure. arXiv, May 

12, 2018. Accessed Nov 05, 2023. [Online]. http:// arxiv. org/ abs/ 1805. 04755.
 51. Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: A multi-purpose open source GIS. Environ. Model. So�w. 31, 

124–130. https:// doi. org/ 10. 1016/j. envso �. 2011. 11. 014 (2012).
 52. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022). [Online]. 

https:// www.R- proje ct. org/.
 53. Pebesma, E. J. & Bivand, R. Spatial data science: With applications in R 1st edn. In Chapman & Hall/CRC Press the R Series (CRC 

Press, 2023).
 54. Kuhn, M., Vaughan, D. & Hvitfeldt, E. yardstick: Tidy characterizations of model performance (2022). [Online]. https:// CRAN.R- 

proje ct. org/ packa ge= yards tick.
 55. Wright, M. N. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. So�. 

https:// doi. org/ 10. 18637/ jss. v077. i01 (2017).
 56. Solon, J. et al. Physico-geographical mesoregions of Poland: Veri�cation and adjustment of boundaries on the basis of contemporary 

spatial data. Geogr. Pol. 91(2), 143–170. https:// doi. org/ 10. 7163/ GPol. 0115 (2018).
 57. Dinh, B.-D., Nguyen, T.-T., Tran, T.-T. & Pham, V.-T. 1M parameters are enough? A lightweight CNN-based model for medical 

image segmentation. In 2023 Asia Paci�c Signal and Information Processing Association Annual Summit and Conference (APSIPA 
ASC) , 1279–1284 (IEEE, 2023). https:// doi. org/ 10. 1109/ APSIP AASC5 8517. 2023. 10317 244.

 58. LeCun, Y., Bottou, L., Bengio, Y. & Ha�ner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 
2278–2324. https:// doi. org/ 10. 1109/5. 726791 (1998).

 59. Fırat, H., Asker, M. E., Bayindir, M. İ & Hanbay, D. Spatial-spectral classi�cation of hyperspectral remote sensing images using 
3D CNN based LeNet-5 architecture. Infrared Phys. Technol. 127, 104470. https:// doi. org/ 10. 1016/j. infra red. 2022. 104470 (2022).

 60. Bouslihim, Y. et al. �e e�ect of covariates on Soil Organic Matter and pH variability: A digital soil mapping approach using 
random forest model. Ann. GIS https:// doi. org/ 10. 1080/ 19475 683. 2024. 23098 68 (2024).

 61. Bouasria, A., Bouslihim, Y., Gupta, S., Taghizadeh-Mehrjardi, R. & Hengl, T. Predictive performance of machine learning model 
with varying sampling designs, sample sizes, and spatial extents. Ecol. Inform. 78, 102294. https:// doi. org/ 10. 1016/j. ecoinf. 2023. 
102294 (2023).

 62. Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent individualized feature attribution for tree ensembles. arXiv, Mar 06, 2019. 
Accessed Sep 21, 2023. [Online]. http:// arxiv. org/ abs/ 1802. 03888.

Acknowledgements
�is research was funded in part by the National Science Centre, Poland 2021/41/N/ST10/00347. For the purpose 
of Open Access, the author has applied a CC–BY public copyright license to any Author Accepted Manuscript 
(AAM) version arising from this submission. �e digital geomorphological maps were used in this study under 
license number DIO.7211.342.2021_PL_N issued by the Head O�ce of Geodesy and Cartography in Poland. 
�e author especially thanks his thesis and grant supervisor Professor Jarosław Jasiewicz. �e author also thanks 
Professors Zbigniew Zwoliński and Małgorzata Mazurek for consulting on the project’s results in the context of 
geomorphology mapping.

Author contributions
K.D.: conceptualization, methodology, investigation, so�ware, validation, formal analysis, data curation, visu-
alization, writing-original dra�, writing—review and editing, funding acquisition.

Competing interests 
�e authors declare no competing interests.

Additional information
Supplementary Information �e online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 56066-6.

Correspondence and requests for materials should be addressed to K.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access  �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© �e Author(s) 2024

https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-022-29838-9
https://doi.org/10.1111/rssb.12377
http://arxiv.org/abs/1805.04755
https://doi.org/10.1016/j.envsoft.2011.11.014
https://www.R-project.org/
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=yardstick
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.7163/GPol.0115
https://doi.org/10.1109/APSIPAASC58517.2023.10317244
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.infrared.2022.104470
https://doi.org/10.1080/19475683.2024.2309868
https://doi.org/10.1016/j.ecoinf.2023.102294
https://doi.org/10.1016/j.ecoinf.2023.102294
http://arxiv.org/abs/1802.03888
https://doi.org/10.1038/s41598-024-56066-6
https://doi.org/10.1038/s41598-024-56066-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


Geomorphology 413 (2022) 108373

Available online 16 July 2022
0169-555X/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Toward geomorphometry of plains - Country-level unsupervised 
classi昀椀cation of low-relief areas (Poland) 
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A B S T R A C T   

Low-relief areas are not fully the main subject of geomorphometric analyses. The development of the automatic 
classi昀椀cation of landforms mainly focuses on landforms related to the 昀氀uvial morphogenetic cycle. Thus, the 
morphogenetic diversity of the plains is not re昀氀ected in the existing classi昀椀cation systems. The area of Poland 
where the low relief area exceeds 80 % of the country's territory and results in various morphogenetic processes 
was selected for the analysis. The purpose of the analysis was recognition of the differentiation of surface types. 
The 昀椀rst step includes selecting appropriate morphogenetic variables, the second unsupervised classi昀椀cation 
using the Gaussian Mixture Model, and the third one encompassing the interpretation, namely the labeling 
process. Twenty Land Surface Types were distinguished, 昀椀ve belonging to uplands, and the remaining 15 types of 
plains were divided into four subgroups: rolling plains, dissection plains, smooth plains, and near-昀氀at plains. 
Compared with other classi昀椀cation systems, terrain forms, morphogenetic strides, and physiographic division. 
The comparison showed a strong correspondence between the morphogenesis of the area and the inventory of 
surface types, and the high consistency of the Land Surface Types patterns within physiographic units.   

1. Introduction 

Plains of various origins cover over 30 % of the Earth's surface and, 
depending on the morphoclimatic zone, are shaped by various pro-
cesses: glacial, periglacial, 昀氀uvial, aeolian, to indicate only the most 
important. In low-relief areas, methods offered by automatic landform 
classi昀椀cation poorly re昀氀ect existing cartographic studies provided by 
classic geomorphology. Geomorphological studies developed various 
classi昀椀cation systems that are a compilation of information from many 
sources, including topography, lithology, aerial or satellite imagery, and 
spatio-temporal context and follow the morphogenic and chronological 
principles (Fenneman, 1917; Klimaszewski, 1956; Rączkowska and 
Zwoliński, 2015), which are not recorded in the topography itself. 

Early works of Hammond (1954, 1964) or Wood and Snell (1960) 
introduced methods of terrain classi昀椀cation through a spatial taxonomy, 
where decisions resulting from observation and personal knowledge 
have been replaced by rigorous rules applied over the entire study area 
in the same way. The increasing availability of Digital Elevation Models 
(DEMs) and growing computational power replaced manual calculations 
with much faster computer routines (Evans, 1972). Subsequent works 
led to the classi昀椀cation of landforms directly from DEM, based on 

neighboring relation between cells (Peucker and Douglas, 1975); 昀椀rst 
and second terrain derivatives (Dikau, 1989; Shary, 1995; Wood, 1996; 
Schmidt and Hewitt, 2004); the topographic position of a cell in the 
close and distant neighborhood (Weiss, 2001); or by employing a 
computer-vision system (Jasiewicz and Stepinski, 2013). All those 
methods allow recognizing the limited number of fundamental land-
forms, typical of normal (昀氀uvial) morphogenetic cycle (Mark, 1975), 
leaving variability of plains on the margin of classi昀椀cation systems. 

MacMillan et al. (2000) proposed a classi昀椀cation system addressed to 
both low- and high-relief areas based on the combination of compound 
terrain variables relative to local surface-speci昀椀c points (Peucker and 
Douglas, 1975). Such adaptation was possible by con昀椀rmation of pa-
rameters to the input data; however, the form inventory proposed by 
MacMillan et al. (2000) did not go beyond recognizing different parts of 
the watershed pro昀椀le. A terrain signature (Pike, 1988) including widely 
understood textural properties was the 昀椀rst step to landscape-oriented 
analysis introduced later by Iwahashi and Pike (2007) in the form of a 
self-adapting hierarchical classi昀椀cation scheme. An system of Iwahashi 
and Pike (2007) includes 16 origin-agnostic forms de昀椀ned by descrip-
tion rather than by names and similar to that proposed by MacMillan 
et al. (2000), capturing the variability of both low- and high-relief areas. 
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Automatic landform classi昀椀cations merely relate to the form's origin 
or age. Several attempts toward origin-oriented surface classi昀椀cation 
used a supervised approach (Brown et al., 1998; Hengl and Rossiter, 
2003; Prima et al., 2006). Those classi昀椀cations require training areas 
where the surface genesis is inevitable and then use those areas to train 
an intrinsically complex classi昀椀er. Brown et al. (1998) explored super-
vised classi昀椀cation of different types of post- and pro-glacial plains, but 
the performance of their method was not con昀椀rmed on a larger, over- 
regional scale. Jasiewicz et al. (2014) proposed a new method of land-
scape classi昀椀cation based on the category co-occurrence matrix (Har-
alick et al., 1973) and captured a regional diversity of post-glacial plains, 
obtaining a performance of 70 % over the entire territory of Poland. 
However, the most signi昀椀cant limitation of supervised methods is that 
they cannot reveal new patterns in the data (Iwahashi et al., 2021), and 
the measure of success is the degree of compliance with existing, usually 
manually created maps. For that reason, supervised methods, including 
deep learning (Torres et al., 2019; Shumack et al., 2020; Xie et al., 2020) 
focus on the search for most effective classi昀椀cation methods recon-
structing the complicated ground-truth (Du et al., 2019; Li et al., 2020; 
Janowski et al., 2022) rather than searching for alternative designs. 

Unlike rule-based systems and supervised learning, unsupervised 
methods do not presuppose a closed inventory of landforms (Brändli, 
1996; Irvin et al., 1997; Burrough et al., 2000; Adediran et al., 2004). So 
clustering works best in searching for new patterns leading to better 
classi昀椀cation schemes. For this reason, unsupervised methods have 
gained some popularity primarily in the study of extraterrestrial 
morphometric systems (Stepinski et al., 2006; Bue and Stepinski, 2006; 
Stepinski et al., 2007; Dan Capitan and Van De Wiel, 2012; Wang et al., 
2017) and soil science (De Bruin and Stein, 1998). The weakest point of 
clustering is the dependency of results on numerous algorithms, free 
parameters, and variable selection, which makes unsupervised methods 
unsuitable for creating target cartographic works (Minar and Evans, 
2008). However, recent studies proved the usefulness of clustering in 
optimizing mapping procedures (Wieczorek and Migoń, 2014; Szypuła 
and Wieczorek, 2020) and spatial analysis of complex geomorphological 
processes (Szymanowski et al., 2019). 

The overview of previous studies concludes that despite the wide 
variety of plains, especially in post-glacial areas, no general methods 
have been made to consider the diversity of low-relief areas. In this 
article, we aim to present the quantitative variation of the geo-
morphometric features of the plains including several morphogenetic 
zones as a step toward developing assumptions for the automatic clas-
si昀椀cation of plains. There is no clear de昀椀nition of plains; therefore, we 
decided to use an area containing different surface types, expecting the 
plains to be separated in the analysis process as distinct from non-plain 
areas. As a study area, we selected the entire area of Poland as a lowland 
country dominated by plains of different origins (glacial, periglacial, 
昀氀uvial, and locally coastal and aeolian), but also includes highlands and 
mountainous areas, which makes Poland a key area for such study 
(Jasiewicz et al., 2014; Szuman et al., 2021). 

We do not make any assumptions about the range of plains, 
morphogenetic zones, or genetic-stratigraphic separations in the anal-
ysis process. The extent of the morphogenetic zones will be used only to 
assess the compliance of the proposed system with the existing concepts 
of relief development in Poland. We selected the unsupervised, uncon-
strained approach and Gaussian Mixture Model (GMM) (Day, 1969; 
Dempster et al., 1977) as a central part of the analysis. The GMM is a 
clustering system that provides so-called soft clusters, dividing an area 
into discrete units and determining the probability of belonging to each 
cluster. The clustering results were subjected to heuristic categorization 
and allowed to propose an unsupervised, non-genetic system that relates 
to the main morphogenetic zones occurring in Poland. The results were 
compared with other automatic methods and with existing expert- 
driven geomorphological maps in selected areas. 

2. Materials and methods 

2.1. Study area 

Poland is a country in Central Europe, located between latitudes 
49ç

–55çN and longitudes 14ç
–25çE (Fig. 1A). Over 80 % of the area does 

not exceed 200 m a.s.l. and areas above 600 m a.s.l. occupy no more than 
4 % of the country's territory (Fig. 1B). The relief of Polish plains results 
from the repeatedly advancing the Pleistocene ice sheets and subsequent 
erosion and deposit processes (Galon, 1972; Starkel, 1980; Mojski, 
2005) resulting in a continuous cover of Quaternary deposits (Fig. 1C). 
Morphogenetic zones of Poland (Gilewska, 1991; Kondracki, 2002; 
Solon et al., 2018) form latitudinal strips (Lencewicz, 1937). Starting 
from the north extends Coastland, including a narrow strip of coastal 
plains, shaped by the transformation of post-glacial areas as a result of 
changes in the extent of the southern Baltic coastline (Mojski, 1995). 
Northern Poland is occupied by Postglacial Lakelands, formed during 
the last ice advance (Kozarski, 1986; Szuman et al., 2021) built of glacial 
and 昀氀uvioglacial deposits (Fig. 1C), slightly transformed during the 
Holocene. The southern range of the lake districts marks the Last Glacial 
Maximum line (Fig. 1D), the most important geomorphological bound-
ary in the Polish Lowlands (Galon, 1972). To the south of the Last Glacial 
Maximum extend post-glacial Denudated Plains; a surface where 
denudation processes have heavily transformed older glacial deposits 
and the original post-glacial relief has been partially or completely 
removed (Dylik, 1969). The three northern stripes are entirely classi昀椀ed 
as lowlands, but plains, covered by quaternary glacial deposits and loess, 
still constitute a signi昀椀cant part of the surface in the Upland and Fore-
land zones. Regardless of the latitudinal structure, plains areas (Fig. 1C) 
also include prevailing longitudinal river valleys shaped during the 
Pleistocene and Holocene, but often on older Tertiary assumptions 
(Starkel, 2001). Aeolian deposits include Holocene dunes that form 
narrow areas at the coastline. Older dune 昀椀elds and single dunes appear 
in many places of Middle Poland formed at the end of the last glaciation 
outside the impact of the ice sheet (Nowaczyk, 1995). The loess covers in 
southern Poland, occurring in the uplands and foothills, are of a similar 
age (Badura et al., 2013). Regardless of inter-zonal differences, the relief 
inside the morphometric zones is also varied, resulting in various glacial 
denudation and 昀氀uvial processes. 

The topographic dataset for analysis is 30 m 昀氀oating-point DEM, 
created from original integer-based Digital Terrain Elevation Data 
(DTED L2) by adaptive smoothing and resampling (Jasiewicz et al., 
2014). The DEM is projected to the PUWG92 coordinate system 
(EPSG:2180) and consists of 23,007 × 21,393 cells. The DEM is limited 
to the borders of Poland to avoid data inconsistencies caused by different 
techniques of DEM development and different original cartographic 
sources provided by other cartographic surveys. 

2.2. Selection and description of morphometric variables 

Even though several dozen geomorphometric variables have been 
proposed (Pike, 1988; Florinsky, 2017; Franklin, 2020) in the last 昀椀fty 
years, the complexity of the terrain surface is merely a composite of 
vertical and horizontal differentiation (Mark, 1975). The former is 
included in the term relief, the latter - texture, and the relation between 
vertical and horizontal irregularities are expressed in terms of relief 
distribution and inclination. The selection of variables is an essential 
step in geomorphometric analysis (Minar and Evans, 2008), but this step 
is not always analyzed in detail. In this study, variables were selected to 
represent the full spectrum of the morphometric diversity of plains 
dominating in Poland. The spatial pattern of variables was compared 
visually with our knowledge of the factors in昀氀uencing the relief of the 
plains. We assumed that in low-relief areas, an important role plays the 
vertical and horizontal variability together with relief distribution. 
Based on the analysis of the occurrence frequency of landforms, we have 
designated two neighborhood scales applied in the variable calculation: 
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a regional scale, with an extension of about 54 km, including the trend of 
plateaus and large valleys, and a local scale with a size of 900 m (31 
pixels), adjusted to the width of medium valley forms. In the analysis, we 
omitted variables intended for modeling selected natural phenomena, 
such as solar radiation or hydrological processes, and variables that 
could not be correctly calculated for the entire study area. Finally, from 
more than 20 analyzed variables, we selected 10, presented in Table 1 
and Fig. 2, that, in our opinion, represent best the variability of factors 
describing the relief of postglacial plains and carry different 
information. 

The relative height of the terrain is expressed by Residual Elevation 
(RESE), Local Topographic Position (LTPI), Elevation above the 
erosional Base (EBAS), and Relief (RELF) supplemented by Absolute 
Elevation (ELEV). RESE and LTPI describe the position of a pixel against 
trends (Maxwell and Warner, 2015) calculated at the regional and local 
scale. The RELF variable is also calculated on the local scale and 

Morphometric zones 
Coaslands (plains)
Lakelands - last glaciation (plains)
Denudated plains - older glaciations
Highlands
Forelands
Mountains

Surface deposits
Holocene - fluvial
Holocene -  marine
Holocene and last glaciation - dunes
Last glaciation - loess
Last glaciation - fluvial
Last glaciation - glacial
Last glaciation - glaciofluvial
Older glaciations - fluvial
Older glaciations - glacial
Older glaciations - glaciofluvial
Quaternary - colluvial
Tetriary unconsolidated
Tetriary consolidated sedimentary rocks
Mesosoic and paleosoic sedimentary rocks
Paleosoic and older ignous and metamorphic rocks
Waters

Fig. 1. A) Location of Polish borders superimposed on the Europe relief; B) Relief of Poland; C) Geology of Poland - origin of surface sediments, based on Geological 
Map of Poland 1:500,000 (Marks et al., 2006), simpli昀椀ed; D) Main morphogenetic zones (after Gilewska (1991)), boundaries adopted to physio-geographic 
boundaries (Solon et al., 2018). 

Table 1 
Morphometric variables used in the study. See details in the text.  

Variable Symbol Range Mean value Unit 
Absolute Elevation ELEV −0.3, 2483 170.9 ±

129.1 
m. 

Residual Elevation RESE −328.2, 
1564.4 

−0.24 ±
47.5 

m. 

Elevation above erosional 
base 

EBAS −71.6, 2168.1 85.2 ± 94.6 m. 

Relief RELF 0, 1091.8 32.4 ± 50.1 m. 
Local Topographic Position LTPI −349.2, 458.6 −0.68 ±

11.5 
m. 

Ruggedness RUGN 0, 321.2 6.3 ± 10.3 m. 
Slope position SPOS −0.5, 0.47 0 ± 0.13 norm 
Flatness FLAT 0, 1 0.61 ± 0.36 norm 
Surface noise SNIS 0, 1 0.03 ± 0.02 norm 
Mean convergence MCON 0, 72.2 12.6 ± 3.67 deg.  
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substitutes the slope inclination in low-relief areas. EBAS shows the 
relative height of each pixel above the hypothetical hydrologic surface, 
also known as isobase. It plays a similar role as HAND – Height Above 
Nearest Drainage (Rennó et al., 2008) but is not affected by watershed 
boundaries. That surface was interpolated from the 3rd and 2nd Strah-
ler's order streams (Grohmann, 2005) for the stream network generated 
with r.stream package (Jasiewicz and Metz, 2011). The minimal basin 
size required to start the 昀椀rst-order stream was set to 1 km2. ELEV is 
rarely used in classi昀椀cation systems, mainly because its role in recog-
nizing elementary forms is marginal. Only Brown et al. (1998) and 
Burrough et al. (2000) used this variable in supervised classi昀椀cations. 
We include ELEV because it closely relates to the variation in the 
elevation and morphogenetic zones (Gilewska, 1991; Solon et al., 2018). 

The horizontal variability is a compound parameter of an elevation 
and distance (Pike, 1988) and is expressed in many forms, usually as a 
frequency of forms (Iwahashi and Pike, 2007). Due to the low frequency 
of forms in the plains, we use three variables to describe the texture 

features: Flatness (FLAT), Mean Convergence (MCON), and Surface 
Noise (SNIS). FLAT represents the percentage of near-昀氀at cells in the 
local neighborhood and is closely related to the portion of near-level 
previously proposed by Hammond (1954). We assume the cell as near- 
昀氀at if its slope inclination is below 1ç, which, for 30 m DEM, corre-
sponds to 2ç in actual surface (Schmidt and Hewitt, 2004). MCON and 
SNIS have not been used so far and represent minor variability of the 
terrain surface. The 昀椀rst is calculated as a mean convergence index 
(Böhner et al., 2008) in the local neighborhood, and the second is a 
density of isolated pits and peaks calculated at the same scale. Both 
variables are especially useful for distinguishing between areas of 
different morphogenesis, i.e., surfaces covered during the last glaciation 
and those extensively denuded during the last glacial period (Dylik, 
1969; Rotnicki, 1974). 

Two other variables illustrate relief distribution (Etzelmüller et al., 
2007). The Ruggedness (RUGN) is a mean difference between the central 
cell and each cell in the neighborhood of the local neighborhood (Riley 
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Fig. 2. Nine morphometric variables (ELEV is presented in Fig. 1), used in the analysis.  
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et al., 1999). Slope Position (SPOS) is the variable calculated as (ELEV) 
− (min(ELEV) + (max(ELEV)) / 2 and shows the position of the cell 
relative to the midpoint of the range and was used to describe dissection 
(Nir, 1957; Pike and Wilson, 1971) of the terrain. 

Finally, we discuss the departure from using popular variables based 
on the 昀椀rst (slope, aspect) and the second derivative of terrain, namely 
different types of curvatures (Evans, 1972). In lowland areas, the values 
of these variables are minimal. Schmidt and Hewitt (2004) and Vaze 
et al. (2010) discussed the impact of DEM scale on terrain derivatives 
and noticed that low resolution of DEM may lead to high uncertainty and 
incorrect estimation of these variables, especially in 昀氀at areas. To 
minimize the impact of DEM resolution, variables based on terrain de-
rivatives were excluded in favor of the variables operating on height 
differences. We noticed that relief is correlated with slope, and slope 
position (SPOS) is correlated with pro昀椀le curvature, both at least R2 

>

0.96. Since both pairs of variables carry the same information, we used 
those with less uncertainty (Fig. 3). 

2.3. Clustering process 

Cluster analysis aims to simplify the complexity of a dataset by 
breaking the set into smaller units. The clusters obtained as a result of 
the analysis should be characterized by maximum internal cohesiveness 
and distinctiveness from other groups. This goal is easy to achieve when 
each of the variables describing the dataset has a regular distribution 
around the centers of the clusters, and the variables are not correlated. 
When these assumptions are met, simple and quick methods of hard 
clusterings, such as the popular k-means, are the best choice. However, 
such assumptions are dif昀椀cult to meet in geomorphometric analysis. The 
terrain surface is a continuous phenomenon. It is dif昀椀cult to expect the 
data structure to contain distinguished natural clusters, especially in 
lowland areas, where single forms smoothly pass into each other. In such 
a situation, the data structure manifests itself only in changes in density, 
and hard clustering cannot 昀椀nd natural clusters. K-means, for example, 
divide such the dataset into more or less regular units, which often 
provides abstracted information (Patel and Kushwaha, 2020). 

When the dataset is complex without clear clusters, methods based 
on the Gaussian process are recommended (Qiu, 2010). The GMM (Day, 
1969; Dempster et al., 1977) is the most popular variant of Gaussian 
clustering and is robust against the limitations mentioned above. GMM 
assumes that data structure is a mixture of normal distributions. This 
assumption is not fundamental but common in such a methodology 
(Day, 1969). When the number of variables is more than one, such a 
mixture becomes multivariate normal. A model-based clustering as-
sumes that each observation (case) belongs to one of the components 
with a given weight, where each component is the density function of 
normal distribution, expressed by different mean and standard devia-
tion. This algorithm allows the discovery of complex patterns by 
unmixing them into cohesive components that represent real patterns 
within the dataset. Weights assigned to each observation categorize 
GMM as so-called “soft clustering”. The minimum weight will occur 
when the observation belongs to each component with equal probabil-
ity. The 1 − weight determines the uncertainty of this assignment; thus, 
the best situation occurs when observation belongs to one cluster with 
weight = 1. 

The GMM algorithm starts with randomly allocated Gaussian dis-
tributions for each separate variable in multidimensional space. At each 
iteration, the data likelihood is maximized via the two steps, an expec-
tation and maximization (Dempster et al., 1977). During the 昀椀rst step, 
the algorithm estimates the probability that observation belongs to a 
given component, and in the second step, each component is updated to 
昀椀t best all the assigned observations. The soft clustering is more robust 
than the hard one, so when the data comes from the dataset where 
“clusters” are more changes in density than separate subspaces, the lack 
of clear boundaries is masked by “soft” assignment to individual groups. 
It means that the size of clusters adopts given variables, the method does 

not require prior data transformations, and clusters follow the local 
densities in the data. 

Despite strengths such as 昀氀exibility and the ability to handle un-
certainty in data, selecting the optimal number of clusters is still a 
heuristic, supported by more or less formal criteria. The GMM supports 
Bayesian Information Criterion (BIC) (Schwarz, 1978) as formal support 
for determining the optimal number of clusters. The BIC limits the 
number of clusters by applying the penalty to too complex models. When 
data structure creates separate groups, the BIC allows 昀椀nding the 
optimal number at the local minimum. However, when the dataset forms 
a continuous cloud with changes in density, the BIC values decrease 
monotonically, and the optimal number is somewhere where the BIC 
value becomes constant. An analysis of the differences in the BIC values 
between 2 and 30 clusters (Fig. 4) indicates that the data structure forms 
a cloud with densities rather than a series of clusters, and the optimal 
value is somewhere between 8 and 24. Thus, the formal criterion plays 
an auxiliary role, and the main factor becomes the understandability of 
the obtained patterns. The latter means that selecting the optimal 
number of clusters requires manual analysis of a series of maps, and the 
researcher's knowledge in昀氀uences the result. 

2.4. Software and data processing 

We used the R programming language (R Core Team, 2021) for the 
analysis, in particular the following packages: sf (Pebesma, 2018) to 
manage vector data, stars (Pebesma, 2021) to manage raster data, mclust 
(Scrucca et al., 2016) to train the Gaussian mixture models, future 
(Bengtsson, 2021) to parallelize models training, and recipes (Kuhn and 
Wickham, 2021) to prepare a pipeline for data pre-processing. Addi-
tionally, GRASS GIS (GRASS Development Team, 2020) was used to 
generate derivative products from the DEM. 

To avoid possible problems with non-normal distributions, all input 
data were standardized using Yeo-Johnson power transformation. Since 
it was impossible to perform the entire 5 billion cells, a representative 
sample of 3 million cells from the entire study area was selected, and 
GMM was 昀椀tted for this sample (Fig. 3). The model was then predicted 
over the entire area resulting in cluster and uncertainty maps with the 
same resolution as the input data. 

3. Results 

3.1. Number of clusters 

In order to de昀椀ne the optimal number of clusters, we analyzed maps 
from 4 to 24 clusters. Each map was compared with the extent of 
morphogenetic zones (Fig. 1) and the patterns of geomorphometric 
variables (Fig. 2) in terms of knowledge retrieved by the given pattern. A 
visual comparison between individual cluster patterns and variables 
(Figs. 2 and 5) shows that the 4-cluster model follows the variability of 
FLAT and, to a lesser extent of RELF. The 8- and 12-cluster models are 
related to MCON, while 16 and 20 clusters (Fig. 6A) disclose the role of 
SPOS and RUGN. The simplest 4-cluster model does not yet show the 
division into morphogenetic zones; this differentiation becomes 
apparent with an increasing number of variables. The 8-cluster pattern 
uncovers differences between Lakelands and Denudated plains, while 
the 12-cluster model also reveals the distinctiveness of Coastal plains. 
The 16-clusters model is close to the 昀椀nal, 20-cluster version of the 
clustering and marks off the bottoms of broad river valleys. The differ-
ences between 16- and 20-cluster models concern mainly the presence of 
clusters that appear on edges between plateaus and valleys. Further 
increasing the number of clusters creates units whose distinctiveness is 
questionable and dif昀椀cult to interpret. For this reason, further divisions 
have been omitted. 

The results presented in this way indicate that the optimal number of 
clusters is between 16 and 20. The smaller number does not reveal the 
distinctiveness of an important type of plains, which are the bottoms of 
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river valleys, while the larger number creates units that are dif昀椀cult to 
interpret. The 20-cluster version reveals the next type of surface - 
associated with the edges between valleys and plateaus and narrow 
valleys cutting through the latter. Dissections are important types of 
terrain forms, the removal of which reduces the value of the classi昀椀ca-
tion. Thus, we considered the number of 20 clusters optimal from the 
point of view of the problem of the paper. Fig. 6A presents the 昀椀nally 
accepted result. It also should be emphasized that the increment of 
clusters is not hierarchical, i.e., clusters of the higher tier are not just 
sub-clusters of lower-tier divisions. This is primarily the result of the 

“soft” nature of the GMM clustering, namely the overlapping of Gaussian 
components. 

3.2. Cluster labeling 

The second step of the unsupervised analysis is labeling, a posterior 
heuristic process intended to give meaning to clusters. We already 
noticed that the spatial distribution of clusters is not even, and surface 
types of the same class are spatially related to the surfaces with a similar 
genesis. Such an observation tempts us to label units according to their 
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Fig. 3. Graphical summary of the data processing. For variable abbreviation, see Table 1.  
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dominant genesis to refer to the earlier cartographic concepts; however, 
we want to avoid situations where the result is only an imperfect 
approximation of the already existing expert-driven maps (Iwahashi 
et al., 2021). Thus, the labeling aims to 昀椀nd an origin-agnostic classi昀椀-
cation scheme by discovering the divisive rules and then using these 
rules for 昀椀nal labeling. The remaining question is, what is represented 
by clusters? Clusters are intentionally delineated solely on the hard data, 
namely elevation and its transformations, and not taking into account 
the morphogenesis or chronology because there is either an interpreta-
tion or exists in the form of sparse data (Szuman et al., 2021). We 
observe that cells belonging to the same clusters create relatively ho-
mogeneous groups (Fig. 6), often containing an agglomeration of minor 
units, and are bounded by areas where the homogeneity is disrupted 
(Minar and Evans, 2008). Such entities de昀椀nitely do not correspond to 
the term “landform” sensu Mark and Smith (2004) or Evans (2012), so 
we de昀椀ne the units on a more general level as “Land Surface Types”. 
Following these assumptions, the labeling process (Fig. 7) includes the 
analysis of cluster variability in the principal components space and is 
supported by analyzing the relationship between individual morpho-
metric variables. 

3.2.1. Surface variability inside the principal components space 
We applied Principal Component Analysis – PCA (Hotelling, 1933; 

Jolliffe, 2002) in the 昀椀rst step, reducing data complexity to a few gra-
dients describing a signi昀椀cant part of variable space. Three 昀椀rst prin-
cipal components (PC) applied to the scaled data explain almost 70 % of 
the data variability (Fig. 8A). The 昀椀rst PC explains that 39.7 % is 
negatively related to ELEV, RUGN, and EBAS and positively related to 
FLAT. It describes the gradient explained by local and regional vertical 
elevation variability, from most diverse (negative) to completely 昀氀at 
(positive). The second PC represents 15.9 % which is less than half of the 
昀椀rst PC and is negatively related to all remaining variables representing 
both vertical and horizontal variability. The third PC represents 14.1 % 
of the variance (Fig. 8B), which is close to the second PC and is positively 
related to textural properties (MCON, SNIS) and negatively to local 
topographic position (RESE, LTPI, and SPOS). It means that areas with 
the highest positive third PC indicate high horizontal variation, while 
negative values represent low-lying, thus poorly textured areas. 

The relationships between PC and variables show an interesting 
situation. While the 昀椀rst gradient divides the study area into uplands 
and plains, the second PC reveals only local variability; the third 
gradient relates to the textural features and shows that those features 
depend on the local relief (second PC). The 昀椀rst PC can divide the study 
area into uplands and lowlands and the second one into rough and 
smooth surfaces. The remaining 30 % of the variability requires deeper 
insight and heuristic use of selected variables. Based on the analysis of 

the mutual relationship between all applied morphometric features, we 
found four variables that best describe the differentiation of Land Sur-
face Types. The 昀椀rst pair includes RELF and SPOS (Fig. 8C), both vari-
ables are parallel to the 昀椀rst PC and describe the vertical variability of 
the surface. The second pair (FLAT, MCON) is parallel to the second PC – 

and describes the details of the horizontal variance. It 昀椀nally led to the 4- 
level classi昀椀cation scheme, where a surface type is a target unit, and the 
fourth level has only been applied to a few divisions (Fig. 6B). The labels 
are descriptive and hierarchical; the 昀椀rst capital letter refers to the 
group, the second to the subgroup, and the third to the land surface type. 
The fourth, optional lowercase letter, describes land surface subtypes. 

Five clusters with negative 昀椀rst PC and local relief above 50 m were 
labeled as Uplands (U), and the remaining 15 clusters were tagged as 
Plains (P). Four clusters with the highest values of the 昀椀rst PC and FLAT 
close to 1 were labeled as Near-Flat Plains (PF). Although the latter 
category is distinguished solely inside the 昀椀rst PC gradient, for the se-
mantic reason, we decided to narrow its role as a subgroup of Plains 
rather than a third distinct group separated from both Plains and 
Uplands. 

3.2.2. Uplands group 
Inside the Uplands group, three clusters with relief above 100 m form 

a subgroup of mountains (UM). The further division within Uplands 
solely based on the SPOS variable is relatively straightforward. Positive 
values of SPOS identify the highest parts of the mountains and high-
lands, mostly elevated parts or ridges (UME and UHE), while negative 
values indicate the inner part of the mountain (UMI) or, in particular, 
inter-mountain valleys (UMV) lower mountains and highlands (UMS). 

3.2.3. Plains group 
After separating the PF subgroup, and the remaining 11 clusters 

belonging to the Plains, we can distinguish two subgroups using the 
PCON variable: rolling (PR) and smooth (PS). We decided on the term 
“rolling” as an intermediate between “hilly” and “plain” (Pike and 
Wilson, 1971). Such division follows the second PC's gradient, but 
Fig. 8C reveals the existence of a transitional subgroup, which combines 
the features of both previous surfaces. Detailed analysis of spatial dis-
tribution shows that the given subgroup connects with slope edges and 
deeply incised valleys. Thus, we labeled this as Dissections (on) Plains 
(PD). 

3.2.3.1. Rolling plains. The PR subgroup can be divided by the density 
of secondary landforms forming a surface noise into three Land Surface 
Types: high (density) (PRH), moderate (PRM), and low (PRL). This 
attribute is expressed by the pair FLAT-MCON (Fig. 8C), where the mean 
value of the convergence index increases within the LR group with the 
decreasing percentage of 昀氀at areas. Finally, the SPOS variable allows 
dividing the PMR and PRL type into upper (PRMu, PRLu) and lower 
(PMRl, PRLl) subtypes. 

3.2.3.2. Dissections on plains. The PD is a subgroup representing mostly 
elongated landform elements connected with valleys. The subgroup di-
vides further into three types that correspond to deeply cut valleys 
(PDV) or represent upper edges (PDEu), more inclined and partially 
eroded, and lower parts (PDEl), of narrow slopes, usually almost 昀氀at. 

3.2.3.3. Smooth plains. Clusters belonging to PS arrange along FLAT- 
PCON gradients similar to PR and PD groups, but values of the MCON 
are signi昀椀cantly lower. All three clusters in this subgroup have very 
similar relief but vary with FLAT and SPOS. It allows for labeling them as 
inclined (PSI) and gentle (PSG). The third remaining cluster is very close 
to near-昀氀at surfaces and was marked as PSF. 

3.2.3.4. Near-昀氀at plains. The PF subgroup shows the variation primar-
ily by MCON variable and includes the following Land Surface Types: 

Fig. 4. The changes of Bayesian Information Criterion between 2 and 30 
clusters. The red dashed line shows the 昀椀nal number of clusters. (For inter-
pretation of the references to color in this 昀椀gure legend, the reader is referred to 
the web version of this article.) 
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rough (PFR) with little secondary relief, dissected (PFD), and smooth 
(PFS) or completely 昀氀at. The latter divides further into upper (PFSu) and 
lower (PFSl) subgroups by the SPOS variable. 

3.3. Uncertainty of the clustering 

The GMM assesses the probability that the observation comes from 
the given cluster and thus assesses the uncertainty to what extent a given 
type of surface describes the actual terrain. Fig. 9 presents the spatial 
distribution of uncertainty and its relation to the Land Surface Types; 
namely, the pattern of uncertainty follows the spatial distribution of the 
classes. We observed that Land Surface Types have different un-
certainties, and these differences affect the spatial distribution of un-
certainty. A detailed analysis of these differences is beyond the scope of 
this paper; however, we notice that upland classes (UME, UMI, UMS, 

UMV) have uncertainty signi昀椀cantly lower than plains, except for the 
complete 昀氀at PFSl. Other classes have skewed distributions (Fig. 9C), 
with a minimum close to 0, or even uniform (PRMu and PRLl), which 
means that belonging to these classes is vague. This situation is not 
surprising and results from a low variation of geomorphometric vari-
ables in lowland areas. 

For the same reason, the spatial distribution of uncertainties (Fig. 9B) 
at the surface type-level shows that the uncertainty increases at the 
boundaries between patches of Land Surface Types. The low uncertainty 
in the elevated areas results primarily from the high height variability 
and thus minimizes transition areas between land surface classes. In 
lowland areas, on the other hand, slight differences in altitude make the 
transition zones extensive and the boundaries between the forms fuzzy. 
This is particularly evident in rolling plains, where landforms inherent in 
the normal morphogenetic cycle have not developed, and thus 
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“transition zones” are the dominant element in the relief classi昀椀cation. 

4. Discussion 

The quality assessment of the unsupervised classi昀椀cation is a com-
bination of understandability, usefulness, and novelty (Fayyad and 
Uthurusamy, 1996) that belong to the domain of subjective evaluation. 
The successful labeling (Fig. 6) ful昀椀lls the understandability test, and the 
next two will be evaluated by discussing the spatial distribution of 
surface types, especially concerning morphogenetic zones, and 
comparing the results with other mosaics. 

4.1. Spatial distribution of land surface types 

Fig. 10 shows that there is a strong correspondence between 
morphogenetic zones and land surface types, but it does not allow for the 
conclusion that Land Surface Types are assigned to particular zones. The 
correspondence is a matter of quantitative differences rather than a 
simple relationship between Land Surface Types and morphogenetic 
zones. The detailed regional analysis goes beyond the aims of this work; 

therefore, in the discussion, we will analyze to what extent the spatial 
distribution of surface types is related to the geomorphological processes 
and landforms taking place in a given zone. 

Table 2 contains a list of the distinguished Land Surface Types 
compiled with the landforms and morphogenetic zones. Only the 
Mountains have a distinct set of Land Surface Types (U) which are only 
partially present in the highest parts of the Highlands. The variability of 
the Plains to the north and south of the Last Glacial Maximum corre-
sponds well to the concept of the morphogenesis of the Central European 
plains (Dylik, 1969; Mojski, 1995; Hughes and Woodward, 2009; Mur-
ton, 2021) with the division into two zones, young post-glacial and older 
post-glacial, denudated under periglacial conditions. Plains belonging to 
the rolling subgroup, especially those with the highest density of irreg-
ularities, represent very young surfaces related to the activity of the last 
ice sheet with a shallow impact of denudation. On the other hand, 
smooth (PS) and near-昀氀at (PF) subgroups cannot be considered explic-
itly as areas denudated in periglacial conditions (Dylik, 1969) because 
they appear both north and south of the Last Glacial Maximum. The 
Land Surface Types belonging to the PS subgroup north of the Last 
Glacial Maximum indicate various processes, including subglacial 
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Fig. 6. Result of clustering with 20 clusters. See the Fig. 7 for detail classi昀椀cation and Table 2 for full land surface types names.  
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exaggeration and ice sheet sideslips (Szuman et al., 2021). On the con-
trary PR subgroup south of Last Glacial Maximum appears mainly on 
highly carved valley edges and indicates intense erosional processes. 

All classes belonging to the dissection plains (PD) subgroup appear 
both north and south of the line of PGM. Surfaces belonging to this 
subgroup form mostly relatively linear forms. Near-昀氀at (PF) surfaces 
include terrains where areas inclined more than 1ç appear across all 
plains. The most unusual appears in 昀氀at areas named rolling (PFR). Its 
extent coincides with boggy surfaces in river valleys and higher plains. 
The PFD (dissected) class encompasses 昀氀at but deep valley bottoms, and 
in practice, the class is limited only to the Forelands. Near-昀氀at areas 
occur throughout Poland and are mainly associated with the bottoms of 
river valleys or boggy plains dominated by organic deposits developed 
during the Holocene. Surfaces PDSl and PRLl dominate in broad valleys 

in the Lakelands area, while smaller watercourses exist as deeply 
indented forms (PLDF). The PFS and PFR surface types dominate in wide 
river valleys cutting periglacial plains. The rough near-昀氀at plains result 
from its frequent renewal during Holocene 昀氀oods and the presence of 
numerous oxbow lakes. 

Regardless of compliance with the extent of morphogenetic zones, 
we also observe a strong relation to the physico-geographical units 
(Solon et al., 2018) at the mezo-region level (Fig. 10). The physico- 
geographical division of Poland is an implementation of the European 
Landscape Convention. Mesoregions are the basic division unit 
belonging to higher-order units: macroregions, provinces, and mega-
regions. The division is an update of the original division by Kondracki 
and Rychling (1994), adjusted to the new geological and geomorpho-
logical data. The course of the borders was made by hand on a scale of 
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1:50,000 and took Poland's topographic geological, geomorphological, 
and hydrological diversity. Thus, it becomes the best source for 
comparing the convergence of the classi昀椀cation results with the expert 
understanding of this phenomenon. Such a comparison con昀椀rms that the 
concept of classi昀椀cation, including the selection of variables and the 
method of grouping and labeling the variables, creates a pattern 
recognizable to those familiar with the geographic division of the 
country. 

Within the Lakelands zone, there is a visible difference between the 
northern and southern parts. The PRH surface type dominates north, and 
to the south, it passes into rolling plains but with minor texture (PRM, 
PRL) mixed with smooth (PS) and near-昀氀at (PF) plains. The diversity of 
Land Surface Types is mainly an effect of the differences in the dynamics 
of the Weichselian ice sheet, associated with the activity of the Baltic Ice 
Stream Complex (Punkari, 1997) with branches operating over a soft 
substratum of relatively gentle topography. The northern part was 
shaped during the Pomeranian phase, a regular part of the Baltic ice 
sheet (Punkari, 1997), and was subject to glacial thrusting and 

accumulation processes. The southern part is a zone of the in昀氀uence of 
numerous but short-term and reduced advances of ice lobes that left a 
thin cover of glacial deposits (Szuman et al., 2021). 

A variety of patterns also characterizes the denudated plains, and the 
lowest part of the Highlands zone. There is a difference between the 
western and central parts, which are dominated by smoother surfaces 
(PSF, PSG), and areas that dominate the eastern part with more textural 
features (PSI, PDV). The quantitative differences between the surface 
types in the western and eastern parts have a complex genesis, resulting 
from regional climatic differences affecting the intensity of denudation 
during the Plenivistulian and differences in the older, post-glacial relief 
(Rotnicki, 1974). The locally occurring inland dune 昀椀elds are not asso-
ciated with any distinctive Land Surface Type but are a mixture of 
different types of PD and PR, mostly PDV and PRH. 

4.2. Comparison with other mosaics 

The validity of spatial patterns resulting from clustering is usually 

Fig. 8. Cluster distribution: A–B) against principal components (red arrows indicate variable's loadings); C–D) relief variables representing vertical variability (RELF 
and SPOS) and textural variables representing horizontal 昀氀uctuations (FLAT and MCON). Arrows on chart D show the position relation between lower (l) and upper 
(u) subtypes. Dots represent centers of clusters. (For interpretation of the references to color in this 昀椀gure legend, the reader is referred to the web version of 
this article.) 
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determined by comparison with previous concepts, namely existing 
geomorphological or geological maps (Iwahashi et al., 2018, 2021). 
Although this approach does not assess the quality of clusters, such 
comparison gives an indirect answer to which of the existing divisions 
can be approximated by the morphometric parameters used in the 
clustering process. We compare the results of clustering with other 
mosaics (Fig. 11), including the classi昀椀cation made by the Hammond 
(1964), Terrain Position Index (Weiss, 2001), Iwahashi and Pike (2007) 
and geomorphons (Jasiewicz and Stepinski, 2013). Each of the auto-
matic classi昀椀cations was made in one step for the entire country based 
on the default set of input parameters, using the same elevation model 
that was used in the project. The classi昀椀cation results for the Hammond 
system and Terrain Position Index are not compared with the test areas, 
as their inventory of forms other than plains is minimal. 

Additionally, as an expert-driven map, we use four test areas from a 
pilot project of a digital geomorphological map of Poland (Rączkowska 
and Zwoliński, 2015). Those testing areas include 1) Coastal plain 
(Wolin Island), 2) Lakelands (Chełmno-Dobrzyń Lakeland), 3) Peri-
glacial plains (Kutno plain), and 4) Highlands (Roztocze) (Fig. 12, Ap-
pendix A). 

A detailed comparison of mosaics shows that all surface patterns, 
regardless of the different number of classes, are similar and relate to 
expert-driven maps, but the extent of forms and exposed details differ in 
each case. The differences result primarily from a different approach to 

de昀椀ning the boundaries in manual and automatic approaches. Manual 
delineation usually starts with setting main boundaries and iterative 
division into successive units. In an automatic case, each cell is labeled 
separately, and the spatial coherence of units results from the contin-
uous nature of the Earth's surface. Moreover, the different extent of 
exposed forms is a consequence of calculating variables, such as textural 
parameters or relief by focal analysis that leads to the averaging of 
values in the neighborhood de昀椀ned by the size of the window is one of 
the factors in昀氀uencing the granulation of the distinguished classes 
(DrÚaguţ and Eisank, 2011). 

Each of the presented in Fig. 12 has strengths and weaknesses. 
Expert-driven maps use complex chronological and morphogenetic units 
to differentiate surfaces containing similar landforms. For that reason, 
our method preserves different surface types, for example, various types 
of near-昀氀at surfaces on Wolin Island (row 1). On the other hand, the 
proposed approach does not allow easy identi昀椀cation of ridge-valley 
systems, especially in upland areas (row 4), which is very easy for 
geomorphons, designed initially for such landscape types. Immature 
surfaces of postglacial areas (Lakelands, row 2) are the most signi昀椀cant 
challenge for automatic methods, especially those that use only 昀氀uvial 
landforms. Our approach distinguishes the surface of the valley bottom 
(green on the geomorphological map) from the Lakeland plateau (pur-
ple) and partially the variability of the plateau; the remaining methods 
recognized only river channels and valley slopes. In the periglacial 
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Fig. 9. The distribution of uncertainty: A) over entire study area; B) detailed, inside selected areas (location are marked on plate A); C) inside land surface types 
(violin plot). 
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plains (row 3), all three automatic methods recognize simple landforms, 
but only our method can distinguish between three types of planar 
surfaces, Except the size of slopes, which are more extensive compared 
to reality. 

5. Conclusions and future works 

The paper presents an unsupervised classi昀椀cation of surface types in 
low-relief areas, using Poland as a key test area. The procedure aims to 
de昀椀ne rules valid for the geomorphometric analysis of plains by various 
morphogenetic processes. As part of the procedure, we analyzed 

Morphogenetic zones

Mesoregions

Fig. 10. Results of classi昀椀cation, compared with the extent of morphogenetic zones (see Fig. 1). A) Cluster distribution on the background of morphogenetic zones 
and physico-geographical mesoregions of Poland (Solon et al., 2018); B) Correspondence between morphogenetic zones and designated land surface types. LGM - Last 
Glacial Maximum. 
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geomorphometric variables with great potential to differentiate between 
different types of plains. During the analytical process, we did not 
introduce any morphogenetic constraints leaving the determination of 
the extent of the plains and the surface types to the algorithm. We 
showed that the basis of an adequate classi昀椀cation is the balance be-
tween the variables describing the vertical and horizontal variability of 
the terrain. New variables describing secondary surface features (MCON 
and SNIS) have been proposed and shown to play an important role in 
distinguishing between different plains of glacial, periglacial, or 昀氀uvial 
origin. The Gaussian Mixture Model was used as a clustering algorithm. 
The Gaussian Mixture Model unmixes natural clusters and provides a 
soft clustering coupled with an assessment of the uncertainty of 
assignment to a given cluster. The obtained clusters were successfully 
labeled, recognizing four types of plains: rolling, smooth, near-昀氀at, and 
dissections. Despite the application of the unsupervised classi昀椀cation 
and the use of different variables, the result refers to the Hammond 

(1954) rule system but is adapted to the postglacial plains of the Euro-
pean Lowlands. 

The map of Land Surface Types is an additional effect of the research 
and was made using the limited cell-oriented method, but it proved to be 
very effective. The designated groups of surface types correspond 
partially to the range of the main morphogenetic zones; however, sur-
face types cannot be used as direct indicators of morphogenesis. The 
relation is rather quantitative than qualitative and limited by the equi-
昀椀nality principle (Haines-Young and Petch, 1983; Beven, 1996), espe-
cially when the number of descriptors is limited. Nevertheless, our 
analyses open the way to detailed geomorphometric analyses of the 
plains, primarily carried out on a large spatial scale. Future work will 
include the implementation of recognized principles in cartographic- 
oriented research using object-oriented analyses (DrÚaguţ and Blaschke, 
2006) and computer vision approach (Jasiewicz and Stepinski, 2013). 

Fig. 11. Morphometric mosaics obtained with different methods. A) Hammond (1964) system; B) Topographic Position Index (Weiss, 2001); C) Iwahashi and Pike 
(2007); D) Geomorphons (Jasiewicz and Stepinski, 2013). Rectangles on Plate B marks location of testing areas presented on Fig. 12. 
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Acronyms 

General 

DEM Digital Elevation Model 
DTED L2 Digital Terrain Elevation Data Level 2 
GMM Gaussian Mixture Model 
BIC Bayesian Information Criterion 
PCA Principal Component Analysis 
PC Principal Component 

Morphometric variables 

ELEV Absolute Elevation 
RESE Residual Elevation 
EBAS Elevation above erosional base 
RELF Relief 
LTPI Local Topographic Position 
RUGN Ruggedness 
SPOS Slope Position 
FLAT Flatness 
SNIS Surface Noise 

MCON Mean Convergence 

Land Surface Types 

UME Uplands, medium Mountains, Elevated 
UMI Uplands, medium Mountains, Inner parts 
UMV Uplands, Mountains, Valleys 
UMS Uplands, low Mountains, Slopes/highlands 
UHE Uplands, Highlands, Elevated 
PRH Plain, Rolling, High density 
PRMu Plain, Rolling, Medium density, upper 
PRMl Plain, Rolling, Medium density, lower/dissected 
PRLu Plain, Rolling, Low density, upper 
PRLl Plain, Rolling, Low density, lower 
PDV Plain, Dissection, Valleys 
PDEu Plain, Dissection, Edges, upper 
PDEl Plain, Dissection, Edges, lower 
PSI Plain, Smooth, Inclined 
PSG Plain, Smooth, Gently inclined 
PSF Plain, Smooth, near-Flat 
PFR Plain, near-Flat, Rough 
PFD Plain, near-Flat, Dissections 

Fig. 12. Detailed comparison of expert-driven maps (Column A) with geomorphometric mosaics. Column B – our classi昀椀cation; Column C – Iwahashi and Pike 
(2007); column D – Geomorphons. Location of testing areas 1–4 is presented on Fig. 11, plate B. For expert-driven maps legend see Appendix A. 
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PFSu Plain, near-Flat, Smooth, upper 
PFSl Plain, near-Flat, Smooth, lower 
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Rączkowska, Z., Zwoliński, Z., 2015. Digital geomorphological map of Poland. Geogr. 
Pol. 88, 205–210. https://doi.org/10.7163/GPol.0025. 
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