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Streszczenie

Niniejsza rozprawa opisuje obecnie kluczowe dla spintroniki zjawiska transportowe, kon-
centrując się na biliniowym magnetooporze i planarnym efekcie Halla w izolatorach topolog-
icznych. Na początku rozprawy wprowadzono podstawowe koncepcje dotyczące izolatorów
topologicznych, w tym charakter ich stanów powierzchniowych, efekt przyszpilenia spin-pęd
(ang. ‘spin-momentum locking’) oraz efekt Rashby, który jest związany z spinowo-zależnym
rozszczepieniem pasm, w wyniku złamania symetrii inwersji przestrzennej. Następnie opisana
została indukowana prądem polaryzacja spinowa, znana również jako efekt Edelsteina, oraz
indukowane sprzężeniem spin-orbita efekty Halla.

W kolejnych rozdziałach wprowadzono magnetoopór i planarny efekt Halla. Rozdział 3
omawia różne typy magnetooporu i wprowadza do tematyki biliniowego magnetooporu, a
więc efektu w którym magnetoopór skaluje się liniowo z polem magnetycznym i z gęstością
prądu elektrycznego. W rozdziale 4 omówiony jest planarny efekt Halla, który obserwujemy w
obecności pola magnetycznego zorientowanego w płaszczyźnie układu, w przeciwieństwie do
zwykłego efektu Halla, w którym napięcie poprzeczne jest generowane w obecności pola magne-
tycznego zorientowanego prostopadle do powierzchni układu. Omówione zostały pochodzenie i
mechanizmy tego zjawiska. W rozprawie omówiono także kluczowe wyniki eksperymentalne
oraz przedstawiono szczegółową teoretyczną analizę nieliniowego planarnego efektu Halla,
wskazując jak ten efekt można wykorzystać w przyszłych aplikacjach spintronicznych.

Następnie, stosując zaawansowane techniki teoretyczne, takie jak metoda funkcji Greena
i diagramowy rachunek zaburzeń, wyjaśniono podstawowy fizyczny mechanizm biliniowego
magnetooporu i nieliniowego planarnego efektu Halla dla stanów powierzchnionych w trójwymi-
arowych izolatorach topologicznych. Rozprawa opiera się na sformułowaniu opisu teoretycznego
prowadzącego zarówno do biliniowego magnetooporu jak i nieliniowego planarnego efektu Halla
w przypadku, gdy w układzie znajdują się domieszki, defekty, które z natury zawierają sprzęże-
nie spin-orbita. Zbadano zależność tych zjawisk od parametrów charakteryzujących materiał.
W ramach tej teorii wyprowadzone zostały analityczne formuły dla przewodności podłużnej
i poprzecznej, współczynniki magnetooporowe (biliniowy i kwadratowy magnetoopór) oraz
symetryczny i antysymetryczny kąt w planarnym efekcie Halla. Otrzymane wyniki anality-
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czne i numeryczne biliniowego magnetooporu i nieliniowego planarnego efektu Halla wskazują
na możliwość wyznaczenia z danych pomiarowych pewnych parametrów charakteryzujących
badany układ, takich jak wektor Fermiego (energia Fermiego) i parametr sprzężenia spin-orbita.
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Abstract

This thesis is focused on transport phenomena that are currently important for spintronics.
It focuses on the bilinear magnetoresistance and nonlinear planar Hall effect in topological
insulators. In the beginning, the fundamental concepts of topological insulators are introduced,
including their unique properties like surface states, spin-momentum locking, spin-orbit cou-
pling, and the Rashba effect that refers to the spin splitting of electronic bands due to structural
inversion asymmetry. Next, the current-induced spin polarization (also known as the Edelstein
effect) and spin-orbit-driven Hall effects are introduced.

The magnetoresistance and planar Hall effect are discussed in the next two chapters. Chapter
3 describes the general theory of magnetoresistance and reviews various types of magnetore-
sistance. Here, the bilinear magnetoresistance, i.e., the magnetoresistance effect that scales
linearly with both external magnetic field and charge current density, is introduced. Chapter 4
discusses the planar Hall effect arising due to an in-plane magnetic field, unlike the ordinary
Hall effect that arises in the presence of a magnetic field perpendicular to the plane of the system.
The origins and mechanisms of this phenomenon, as well as key experimental findings, are
provided. Chapter 4 also presents a detailed theoretical analysis of the nonlinear planar Hall
effect, providing some insights into how this effect can be applied to future spintronic devices.

Then, by employing advanced theoretical techniques based on Green’s functions and diagram-
matic perturbation theory, the bilinear magnetoresistance and nonlinear planar Hall effect in the
surface states of three-dimensional topological insulators are described. The thesis also describes
a new mechanism that leads to these phenomena and is related to scattering on spin-orbital impu-
rities. The derivation of analytical results for magnetoresistance and planar Hall effect allows for
a deeper understanding of these phenomena and their dependence on material parameters. The
analytical and numerical results obtained for the bilinear magnetoresistance and nonlinear planar
Hall effect indicate the possibility of determining material constants, such as the Fermi wave
vector and spin-orbit coupling parameter, by simple magnetotransport measurements.
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Chapter 1

Introduction

In recent years, spintronics has become one of the most promising areas of condensed matter
physics, representing a transformational shift in how information is processed, stored, and trans-
mitted in electronic devices. Spintronics goes beyond the traditional reliance on an electron’s
charge by incorporating its own angular momentum – spin [1]. This new approach opens up a
new dimension of possibilities for improving the functionality, efficiency and power consumption
of electronic devices. Spintronics is ready to revolutionize areas such as data storage, memory
technology, and quantum computing, offering new opportunities for the development of devices
with higher speed, greater storage capacity, and reduced power consumption.

One of the most significant class of materials in future spintronics seem to be topological
insulators. Topological insulators are unique materials because they behave as insulators in their
bulk, but support conductive surface states that are protected by topological invariants. Surface
states in topological insulators exhibit a unique phenomenon called spin-momentum locking.
This means that the direction of an electron’s spin is closely connected with its momentum [2–4].
These feature makes these materials very attractive for spintronic applications, as they provide
reliable and stable channels for spin transport, even if impurities or defects are present. While
early researches have mainly investigated two-dimensional topological insulators, recent break-
throughs have shifted attention to three-dimensional topological insulators, revealing even more
promising applications. In these three-dimensional materials, surface states display a Dirac-like
energy spectrum. This allows for precise control of spin currents, paving the way for advanced
spintronic devices with outstanding capabilities.

This thesis delves into magnetoresistance, a phenomenon when the electrical resistance of
a material changes when exposed to a magnetic field. Magnetoresistance is fundamental to
advanced technologies such as magnetic sensors, memory storage and spintronic devices. There
are different types of magnetoresistance, each driven by unique mechanisms and suitable for
specific applications. A particular focus of this research is bilinear magnetoresistance – a new
and intriguing effect found in materials with strong spin-orbit coupling, such as topological insu-
lators [5–8]. Bilinear magnetoresistance is described by a second-order nonlinear response to the
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applied electric and magnetic fields. This behavior gives new understanding of the interactions
between spin and charge, offering exciting opportunities for spintronics, which can enable more
efficient control of spin currents and drive innovations in next-generation spin technologies.

Another key phenomenon explored in this thesis is the planar Hall effect. Unlike the ordinary
Hall effect, which generates a transverse voltage when a magnetic filed is applied perpendicular
to a material, the planar Hall effect occurs when the magnetic filed is in the plane of the material.
The planar Hall effect is especially intriguing in systems with strong spin-orbit coupling, such as
topological insulators, making it a center of research interest due to its unique and remarkable
characteristics [9–11]. Understanding the mechanisms behind this phenomenon could have
profound implications for future spintronic technologies, where control over both linear and
nonlinear transport properties could enhance device performance and functionality.

The main purpose of this PhD thesis is to conduct a detailed theoretical research of bilinear
magnetoresistance and nonlinear planar Hall effect in three-dimensional topological insulators.
At the beginning, the basic effects that can be associated with the manifestation of bilinear
magnetoresistance and nonlinear planar Hall effect were studied. Next, the origin and mecha-
nisms of recently discovered effects, namely various magnetoresistance effects and Hall effects
were introduced. Attention was also paid to the investigation of the nature and properties of
topological insulators. The main aim of the thesis was understanding the origin and microscopic
mechanisms that are involved in bilinear magnetoresistance and planar Hall effect in topological
insulators revealing isotropic Fermi contours. As a result, using Green’s function formalism and
diagrammatic methods, analytical expressions were obtained. This theoretical work aims to lay
the foundation for future experimental research and applications in spintronics, helping to move
the field forward into new territory.
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Chapter 2

Theoretical Outline

This chapter examines the fundamental principles underlying topological insulators (TIs) and
their unique properties. The detailed discussion provides understanding of the formation of
topologically protected surface states in TIs and appearing of the spin-momentum locking in
them. In addition, here is explored the effect of the spin-orbit coupling (SOC), delving into the
origins and key mechanisms of the Rashba effect, a specific type of SOC, and its role in TIs.

Also, in this chapter, we will consider the origins and mechanisms underlying phenomena that
arise from the interaction between the charge, spin and their transport properties. Among these
phenomena, the most prominent are current-induced spin polarization (CISP), also called the
Edelstein effect (EE), and the various Hall effects induced by SOC. By studying the interactions
between spin, charge transport and SOC, we shed the light on their potential applications in the
advancement of spintronic technologies.

2.1 Topological Insulators

Topological insulators (TIs) are a fascinating class of materials that have revolutionized the field
of condensed matter physics and hold great promise for future technological applications. The
state of the TI was theoretically predicted in 2005 by Kane and Mele in graphene [3, 12] and
two-dimensional (2D) semiconductor system with a uniform strain [3, 13]. In three-dimensional
(3D) systems, it was discovered by few groups independently in 2006 [3, 14, 15]. The first
experimental confirmation came in 2007 when these states were observed in HgCdTe quantum
well structures. [16] Also, then, was proposed the term "topological insulator" to describe this
electronic phase [15].

A typical normal insulator consists of the two bands. A valence band is fully packed with
electrons, while a conduction band remains completely empty. These two bands are divided by
a band gap. In this insulator, the conduction of electrons becomes possible only through the
surface states, as illustrated in Fig. 2.1(a). On the other hand, TI, also falling under the category
of insulators, shares the feature of electron conduction being limited to its surface states, acting
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(e)

(c) (d)(a)

(b)

Figure 2.1: (a) Schematic of a trivial (normal) insulator [2]. (b) Schematic of a topological
insulator (TI) [2]. (c) Fermi circle in the surface Brillouin zone for a strong TI [3]. (d) A Dirac
cone of the TSS with the one Dirac point, Fermi level and spin-momentum locking in momentum
space [17]. (e) Electrons spins on the surface of a TI in real space are polarized and orthogonal
to the charge currents flow on the TSS [17].
(a)-(b) Reprinted from Y. Chen, Y. Xie, X. Yan, M. L. Cohen, S. Zhang. Topological carbon materials: A new perspective. Phys. Rep. 868, 1-32

(2020). Copyright (2020), with permission from Elsevier. (c) Reprinted with permission from M. Z. Hasan, C. L. Kane: Rev. Mod. Phys. 82,

3045 (2010). Copyright (2010) by the American Physical Society. (d)-(e) Used with permission of H. Yang, from FMR-related phenomena in

spintronic devices, Y. Wang, R. Ramaswamy, H. Yang, J. Phys. D: Appl. Phys. 51, 273002 (2018); permission conveyed through Copyright

Clearance Center, Inc.

like a normal insulator. Despite these similarities, a crucial distinction arises in a fact, that the
conductive surface or edge states in a TI are topologically protected by time-reversal symmetry
(TRS) [4], leading to the emergence of distinct surface bands that link the bulk conduction and
valence bands, as depicted in Fig. 2.1(b). These unique connections ensure that the surface
states of the TI remain conductive all the time, consistently crossing the Fermi level. In contrast,
within a normal insulator, conductive surface states can often be eliminated by adequate surface
modifications, thereby suppressing the conductivity of electrons in such materials [2, 4]. Such
TIs are known as 2D TIs or a quantum spin Hall insulator. Their edge states are robust against
magnetic and disorder perturbations, a property that results from the nontrivial topological order
of the material and is often described using the Chern number, also called the TKNN (Thouless,
Kohmoto, Nightingale, and den Nijs) invariant, and the Z2 topological invariant [3, 4, 18].

Later was shown, that it is possible to extend such classification of materials to 3D systems.
3D TIs are characterized by four Z2 topological invariants. These materials, for example as
Bi2Te3, Bi2Se3, and Sb2Te3, can be predicted and identified by angle resolved photoemission
spectroscopy (ARPES) experiments [19]. Topological surface states (TSSs) of 3D TIs due to
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TRS protection are characterized by perpendicular locking of the electron’s spin to its momentum,
known as spin-momentum locking. While these states are present in the surface Brillouin zone
and degenerated, TRS invariant creates four points Γ1,2,3,4, as shown in Fig. 2.1(c). Far from
these points, the spin-orbit interaction will lift degeneracy. Then these TRS invariant points
make a 2D Dirac point in the surface band structure, as presented in Fig. 2.1(d), which can be
described by the Dirac Hamiltonian [3, 4, 20]

Hk = vF (ẑ× σ) · k, (2.1)

where vF denotes the Fermi velocity, ẑ is a unit vector perpendicular to the TI and k is an electron
momentum. This Hamiltonian shows a strong correlation between the electron momentum and
the spin polarization directions on the TSSs, which is illustrated in Fig. 2.1(d). Furthermore,
as shown in Fig. 2.1(e), because of the topological protection, in a real space all electron spins
become completely polarized in a direction orthogonal to the electron’s motion while charge
currents flow on the TSSs. In other words, spin-polarized currents appear in the material [3,4,17].

The unique properties of TIs, arising from topological invariants, offer exciting possibilities
for both fundamental research and practical applications. The spin-momentum locking and
robustness of TSSs make TIs ideal for spintronic devices, quantum computing, etc. Due to
their ability to support spin-polarized currents and respond to magnetic fields, TIs can be used
for development of highly sensitive magnetic sensors and low-power electronic components
[3, 18, 20].

2.2 Spin-Orbit Coupling in Solids

Spin-orbit coupling (SOC) is a fundamental interaction in solids that plays a crucial role in
various physical phenomena and has significant implications for modern technology, particularly
in the field of spintronics.

SOC has its roots in relativistic quantum mechanics and is explained through the Dirac
equation. It occurs when electron spins move through an electric field, producing an effective
magnetic field that depends on the momentum and affects the spin. This interaction links spin
angular momentum with orbital motion of electrons, creating a coupling effect, and can be
expressed in the form [21]

HSO = − ℏ
4m2c2

(∇V0) · (σ × p) , (2.2)

where ℏ is a Planck constant, m indicates the electron’s mass, c is the light velocity, p denotes
the momentum operator, σ = (σx, σy, σz) – the vector of Pauli spin matrices, V0 represents
the potential that creates the electric field, that the electron experiences, which typically comes
from atomic nuclei. When considering angular motion in the potential V0, the interaction can
be described as the relationship between the electron’s orbital angular momentum L and its
spin angular momentum S = ℏ/2σ. Because the microscopic origin of SOC comes from the
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(a) (b) (c)

Figure 2.2: (a) Spin texture at the Fermi surface due to the Dresselhaus effect. (b) Spin texture
at the Fermi surface due to the Rashbas effect. (c) When both effect are present with equal
magnitude [5]. Reproduced with permission from Springer Nature.

potential of the atomic nucleus, the strength of this interaction depends on the atomic number
of the elements in the material. Heavier elements with higher atomic numbers have stronger
SOC [21].

The spin orientation pattern, determined by the wave vector, plays a crucial role in defining
the spin texture of the material, which serves as a unique feature that distinguishes different SOC
mechanisms. The spin texture is influenced by both space inversion symmetry and time inversion
symmetry. When space inversion symmetry is broken, it causes the twofold spin degeneracy to
lift, in other words, spins split. This manifests itself as bulk inversion asymmetry (BIA), that is
the origin for Dresselhaus effect, shown in Fig. 2.2(a). In addition, it can shows up as structural
inversion asymmetry (SIA), which leads to the Rashba effect, shown in Fig. 2.2(b) [21, 22].

Dresselhaus Effect

The concept of the Dresselhaus effect was introduced by Dresselhaus in his work about electronic
properties of zinc-blende crystals [23]. The Dresselhaus SOC arises in materials, in which the
inversion symmetry does not have a center, such as GaAs and InSb, and results in a spin splitting
that is influenced by the crystallographic direction (see Fig. 2.2(a)). Mathematically, this effect
can be described as an additional term in the system Hamiltonian [24]

HD = γ
[
σxkx

(
k2y − k2z

)
+ σyky

(
k2z − k2x + σzkz

(
k2x − k2y

))]
. (2.3)

Here γ indicates a bulk Dresselhaus SOC coefficient which is a material constant, kx, ky, kz are
electron wavenumbers [5, 24]. In a zinc-blende semiconductor quantum well in the case of strain
in (001) crystallographic direction, one can pass from the cubic Dresselhaus effect, represented
by Eq. (2.3), to the linear Dresselhaus SOC [24]

HD1 = β1 (kxσx − kyσy) , (2.4)

where was used the fact that the wave vector component is quantized (kz = 0, k2z → ⟨k2z⟩ →
const) and β1 = −γ⟨k2z⟩ represents a linear Dresselhaus coefficient. The coefficient of the
cubic Dresselhaus SOC γ is difficult to control, but it can be possible for the case of the linear
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(a) (b)

Figure 2.3: (a) Energy levels of 2DEG has a spin degeneracy in the presence of inversion
symmetry (left). An external electrostatic potential V breaks the inversion symmetry that results
into the Rashba splitting of levels (right) [28]. (b) Rashba spin splitting in TI quantum well.
F1,2 indicates the position of the Fermi level, the gap parameter M0 = 0.28eV, the gate voltage
Vg = 0.3eV [29].
(a) Reprinted from K. V. Shanavas. Overview of theoretical studies of Rashba effect in polar perovskite surfaces. J. Electron Spectrosc. Relat.

Phenom. 201, 121-126 (2015). Copyright (2015), with permission from Elsevier. (b) Reproduced with permission from Springer Nature.

Dresselhaus SOC through its coefficient β1 by the thickness of the quantum well. Also, the
strength of the spin splitting due to the Dresselhaus effect can be regulated by the density of
carriers.

Rashba Effect

The idea of Rashba SOC was proposed by Sheka and Rashba [25] (after whom it was later named)
in 1959 for 3D systems and then was discovered by Vas’ko [26], Bychkov and Rashba [27] for
2D systems (Fig. 2.2(b)).

The Rashba effect arises when an electric filed, perpendicular to the plane of the material
interacts with the electron’s spin, leading to a linear spin splitting in momentum space, as
shown in Fig. 2.3(a) [5]. In other words, the carrier’s spin angular momentum σ and its linear
momentum k become linearly coupled. This interaction can be written as [30]

HR = αRσ · (k× ẑ) , (2.5)

where ẑ is a normal to the interface, αR indicates the Rashba constant including all parameters
characterizing the material. There is also another name of this model – Bychkov-Rashba model.
This model clearly demonstrates that materials that have heavy elements, like Pt, Bi, Pb, Au,
shows greater spin splitting owing to their significant atomic spin-orbit connection.

The Rashba effect follows from the coexistence of the inversion symmetry breaking (ISB)
and atomic SOC. In addition to this, ISB induces the orbital angular momentum, which becomes
momentum-dependent that results in the Rashba spin-momentum locking. For the maximization
of the Rashba effect, it is needed to find the compromise between atomic SOC and ISB crystal
field [30].

A variety of materials and systems can exhibit Rashba SOC. It was observed in semiconductor
heterostructures, such as GaAs/AlGaAs, InGaAs/InAlAs, and similar combinations that are
classic examples of the prominent Rashba effect. Also, transition metal dichalcogenides (TMDs),
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such as MoS2 and WSe2, ferromagnetic materials, cold-atom systems and graphene demonstrate
significant Rashba effects [5, 24, 30–32].

Topological insulators (TIs) and Rashba systems share a lot of similarities, such as their
behavior in response to magnetic fields oriented differently, direct and inverse Edelstein effects,
charge-to-spin conversion, as well as the anomalous Hall effect, the spin Hall effect, the quantum
spin Hall effect, the quantum anomalous Hall effect. Nevertheless, in comparison to Rashba
systems, surface states of TIs have the advantage of topological protection for their electronic
states [30]. The underlying physics at the surface/interfaces of TIs can be elucidated by employing
a Rashba-like Hamiltonian, where the parameter αR is replaced by the electron’s velocity v
within the Dirac cone [20, 30]

H0 = v (kxσy − kyσx) . (2.6)

Consequently, the phenomenon of spin-momentum locking within the surface states of the Dirac
cone reflects that of the Rashba surface states, leading to numerous shared physical characteristics
between these two classes of states. Certain TIs with protected time-reversal symmetry (TRS)
exhibit even complex behavior of their topological surface states (TSSs). As an example of the
Rashba spin splitting in TIs, it can be mentioned the spin-resolved spectrum, shown in Fig. 2.3(b),
where band inversion and the momentum dependent Rashba coefficient affects the symmetry
in momentum space in the TI quantum well [29]. The magnitude of this spin separation is
consistent with what is observed experimentally in TI Bi2Se3 [33].

The unique properties of SOC have led to various applications in modern technologies,
especially in the field of spintronics. SOC allows manipulation of electrons spins by electric
fields, leading the development of spin transistors, spin valves and other spin-based devices.
Materials with strong SOC, such as TIs, offer reliable quantum computing. SOC-induced
phenomena can be used in next generation magnetic memories and logic devices [5, 24, 30].

2.3 Current-Induced Spin Polarization

The ability to control the spin orientation with an electric current offers possibilities for the
development of efficient spin-based technologies. Because of this, the effect of current-induced
spin polarization (CISP) attracted significant attention in the fields of spintronics and condensed
matter physics. As a consequence of the large number of studies of this effect, CISP has several
names that are used in the literature: the (direct) Edelstein effect (DEE), current-induced spin
accumulation, charge-to-spin current conversion, inverse spin-galvanic effect, magneto-electric
effect, etc [36].

The concept of CISP was first theoretically proposed in 1990 by Edelstein, after whom this
effect has also another name – the Edelstein effect [37]. In addition, it was predicted by Aronov
and others that this effect can appear in systems with Rashba SOC [38]. Also, in that time a
close relationship between DEE and spin Hall effect (SHE) was demonstrated by D’yakonov
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(a) (c)(b)

Figure 2.4: (a) Fermi contour with DEE. A momentum scattering at the interface is denoted by
blue arrows, while magenta arrows show the spin transmission across the interface and red cross
indicates spin flip [34]. (b) Spintronic device with the generated in TI (Bi2Te2Se) spin current
which is injected into graphene. Au electrodes make the polarity of the applied bias current,
while Co electrodes are used for detecting the spin current [35]. (c) Nonlocal electrical resistance
change when the magnetization direction of the magnetic detector electrode is reversed relative
to the incoming spin current. The measurement is taken at a bias current of Idc = +5µA when
the maximum signal was observed [35].
(a) Reprinted with permission from H. Isshiki, P. Muduli, J. Kim, K. Kondou, Y. Otani: Phys. Rev. B 102, 184411 (2020). Copyright (2020) by

the American Physical Society. (b)-(c) Reprinted with permission from K. Vaklinova, A. Hoyer, M. Burghard, K. Kern: Nano Lett. 16, 2595

(2016). Copyright (2016) American Chemical Society.

and Perel’ [39].
CISP is the effect where an external electric field generates a net polarization via SOC in a

non-magnetic system in which inversion symmetry is broken, as shown in Fig. 2.4(a). In this
system, both bulk and interface states are involved. The DEE effect converts the 2D charge
current j2D

c , that applied along the x-direction, into a 3D spin current j3D
s in the bulk, with spins

polarized perpendicular to the charge current in the y-direction. This also leads to the spin
accumulation at the interface. In addition, this spin accumulation is influenced by two processes
that do not depend on each other – momentum scattering in the interface state and spin leakage
from the interface to the bulk state, as illustrated in Fig. 2.4(a). To characterize CISP, a coefficient
is used, which is defined as qDEE = j3D

s /j2D
c [30, 34].

CISP can be observed across a variety of materials and systems, typically those with strong
SOC and without inversion symmetry. These are the systems that ranging from Rashba systems,
such as non-centrosymmetric semiconductors and systems with two-dimensional electron gas
(2DEG) to metallic heterostructures, ferromagnetic materials [40, 41]. It is also found in
topological insulators (TIs) and Weyl semimetals [42–44]. In TIs, CISP is particularly effective
due to spin-momentum locking [35, 45, 46]. This makes TIs more efficient for CISP than other
materials. When TIs are combined with materials like graphene – known for its hexagonal
lattice structure and weak SOC – spin manipulation can be significantly improved. An example
device is shown in Fig. 2.4(b), consisting of two main components: a spin injector and a spin
generator. Graphene, with its weak SOC, serves as ideal spin injector, while TIs, with their
ability to generate spin currents due to spin-momentum locking of surface states, are excellent as
spin generator. Due to the injection of spin-polarized current from the Bi2Te2Se surface states
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Ordinary Hall Effect

Anomalous Hall Effect

Figure 2.5: (a) Schematic of the ordinary Hall effect [49]. (b) Schematic of AHE [49]. (c)
Illustration of the three main mechanisms that lead to AHE [50].
(a)-(b) An open access the Creative Common CC BY License. (c) Reprinted with permission from N. Nagaosa, J. Sinova, S. Onoda, A. H.

MacDonald, N. P. Ong: Rev. Mod. Phys. 82, 1539 (2010). Copyright (2020) by the American Physical Society.

into the graphene, it can be observed in Fig. 2.4(c) the nonlocal resistance change in accordance
with change of direction of magnetic detector electrode magnetization relative to the incoming
spin current [35, 47].

CISP has opened new avenues in the field of spintronics, providing a path to advanced
devices, such as magnetic sensors and spin-torque oscillators. This effect also offers advantages
over traditional charge-based electronics as spin-based transistors, memory devices with higher
efficiency and faster processing speeds [35, 48].

2.4 Hall Effects Induced by Spin-Orbit Coupling

The Hall effect, sometimes called the ordinary, original or conventional Hall effect, is a key
concept in condensed matter physics. It describes as the generation of a voltage difference
(known as the Hall voltage) in a conductor or semiconductor. This takes place when a magnetic
filed is applied perpendicular to the direction of the electric current flow in the material, as shown
in Fig. 2.5(a). This phenomenon was first discovered by Edwin Hall in 1879 [51, 52]. Over
time, several variations of the Hall effect have been discovered, each of which provides a unique
insight into how electrons behave in materials [9, 49]. These discoveries have found applications
ranging from precise measurements in metrology to advanced technologies in spintronics. The
Hall effect remains bright and significant area of research in both condensed matter physics and
materials science.
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(c)

(b)

Figure 2.6: (a) AHE in magnetic TIs MnBi2Te4 at different the back gate Vback when the top gate
Vtop = −12 V and T = 2 K, offset by 0.8 kΩ [54]. (b) The anomalous Hall resistivity (ρyx) at 2 K
in TIs with ferromagnetic insulators [55]. (c) AHE of the graphene/magnetic semiconductor [56].
(a) Reprinted with permission from S. Zhang, R. Wang, X. Wang, B. Wei, B. Chen et al.: Nano Lett. 20, 709 (2020). Copyright (2020) American

Chemical Society. (b) Reprinted with permission from M. Mogi, T. Nakajima, V. Ukleev, A. Tsukazaki, R. Yoshimi, M. Kawamura, K. S.

Takahashi, T. Hanashima, K. Kakurai, T.-h. Arima, M. Kawasaki, Y. Tokura: Phys. Rev. Lett. 123, 016804 (2019). Copyright (2019) by the

American Physical Society. (c) Reprinted with permission from H.-D. Song, P.-F. Zhu, J. Fang, Z. Zhou, H. Yang, K. Wang, J. Li, D. Yu, Z. Wei,

Z.-M. Liao: Phys. Rev. B 103, 125304 (2021). Copyright (2021) by the American Physical Society.

2.4.1 Anomalous Hall Effect

To create the anomalous Hall effect (AHE), one needs materials with magnetic characteristics.
Also, the necessary components of this effect are strong SOC and an electric current that will flow
through the material. This phenomenon does not require the application of an external magnetic
field. It results in a transverse Hall voltage that depends on the material’s magnetization, which
is oriented out of the material’s plane, as shown in Fig. 2.5(b), in contrast to the ordinary Hall
voltage which is proportional to the applied magnetic field [49, 53].

AHE was first observed by Edwin Hall in the 1880s, soon after his discovery of the ordinary
Hall effect. While studying ferromagnetic materials, Hall noticed an additional contribution to
the Hall voltage that was not accounted for by the Lorentz force alone. For a long time, AHE
posed a difficult problem for explanation due to its complex relationship with the principles of
topology and geometry, which were developed only in recent years. Only after the adoption of
Berry’s phase approach, a significant breakthrough was achieved in establishing a correlation
between the topological characteristics of Hall currents and AHE [50].

The origin of AHE is fundamentally different from the ordinary Hall effect. As the ordinary
Hall effect is the result of the Lorentz force, AHE is caused by spin-orbit interaction in the
material. The key mechanisms leading to AHE include intrinsic mechanism σAH-int

xy , skew
scattering σAH-skew

xy and side-jump mechanism σAH-sj
xy (Figs. 2.5(c)-(e)) that can be provided by

the equation [50]

σAH
xy = σAH-int

xy + σAH-skew
xy + σAH-sj

xy . (2.7)
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The intrinsic mechanism is related to the topological properties of the Bloch states which
arises from the electronic structure with SOC [57]. The contribution of this mechanism depends
only on the band structure of the material, hence it is called "intrinsic" (Fig. 2.5(c)). Micro-
scopically, the intrinsic contribution can be defined as the dc limit to the interband conductivity
and can be connected with semiclassical theory through a momentum-space Berry-phase re-
lated contribution to the anomalous velocity [50]. In the result, the intrinsic contribution to the
conductivity can be calculated from the Kubo formula for the Hall conductivity for an ideal
lattice [50]

σAH-int
xy = −εijl

e2

ℏ
∑
n

∫
dk

(2π)d
f (εn (k)) bln (k) , (2.8)

where εijl is the antisymmetric tensor, an (k) = i⟨n,k|∇k|n,k⟩ is the Berry phase connection,
bn (k) = ∇k × an (k) is the Berry-phase curvature, corresponding to the states {|n,k⟩} [50, 58].

The skew-scattering mechanism of AHE (Fig. 2.5(d)) can be revealed when impurities in the
material scatters asymmetrically the conduction electrons [59]. To define this contribution, it
can be used the traditional Boltzmann transport theory with a negligence of interband coherence
effects. In the result, the contribution of this mechanism will be proportional to the Bloch state
transport lifetime τ [50, 58].

The side-jump mechanism appears because of a side-step scattering when impurities are
present in the material (Fig. 2.5(e)). For defining the contribution of this mechanism, the tra-
ditional Boltzmann transport theory does not suit because there are no microscopic details
of the scattering process [60]. It is difficult to separate contributions from intrinsic and side-
jump mechanisms during dc measurements, because both are independent of τ , but they can
be separated experimentally (and also theoretically) if, firstly, to define the intrinsic contri-
bution σAH-int

xy during the extrapolation of the ac interband conductivity. After this, it can
be used the specific definition for the contribution of the side-jump mechanism in a form of
σAH-sj
xy = σAH

xy − σAH-skew
xy − σAH-int

xy [50].
AHE can be observed in a wide range of materials, particularly those with strong ferro-

magnetism or significant SOC, including transition metal dichalcogenides (TMDs) [61], ferro-
magnetic semiconductors [62, 63], Heusler alloys [64, 65], metallic ferromagnets [66], metallic
spin-glass systems [50], topological insulators (TIs) [54, 55] (Figs. 2.6(a)-(b)), graphene (in the
combination with other materials due to weak SOC) [56] (Fig. 2.6(c)) and many others.

AHE is a fundamental physical phenomenon that has a wide range of applications. It is a
powerful tool for studying magnetic effects and material characterization [49, 53]. AHE has
several important applications in spintronics and magnetic sensing. This effect can improve
the energy efficiency and writing speed of magnetoresistive random access memory (MRAM)
devices, resulting in low-power and high-performance data storage solutions [50,67]. AHE plays
a key role in developing spin-based transistors through the control over spin polarization and
charge currents. This paves the way for spintronic logic devices, which can lead to faster and
more energy-efficient computing components. Also, AHE can be implemented in devices that
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Spin Hall Effect Inverse Spin Hall Effect

Figure 2.7: (a) SHE scheme. (b) ISHE scheme [49]. (a), (b) An open access the Creative Common CC BY License.

applies in industries aerospace and automotive purposes [49].

2.4.2 Spin Hall Effect

The spin Hall effect (SHE) is a fundamental concept in condensed matter physics. This phe-
nomenon begins its history in 1971 from the work of D’yakonov and Perel’ [39, 68, 69]. Experi-
mental confirmation were performed in the early 2000s. The main process of SHE lies in the
conversion of a 3D longitudinal charge current into a 3D transverse spin current, as shown in
Fig. 2.7(a), in materials without magnetic properties.

As for AHE, spin-orbit interaction is also important for SHE, but it can arise without the mag-
netic field and magnetization. This means that for SHE the breaking of time-reversal symmetry
(TRS) is not necessary [70, 71]. Despite this distinction, SHE and AHE share similar underlying
mechanisms. There are two primary types of SHE mechanisms – intrinsic and extrinsic, which in
turn lead to an intrinsic SHE and an extrinsic SHE. The intrinsic SHE appears without impurities
and scattering from outside the system, and needs only spin-orbit interaction in the material.
This type is often studied using the Berry phase formalism. In contrast, scattering processes,
such as skew scattering and side-jump, can produce the extrinsic SHE due to distortions in the
system [71, 72].

Materials with strong spin-orbit interaction, such as heavy metals [73] and TIs [74, 75] can
exhibit SHE. However, it has also been explored in graphene [72, 76, 77], semiconductors [78],
TMDs, oxides, alloys and many others [42, 71].

SHE is utilized in many areas, in particular quantum computing, biomolecular and magnetic
sensing, and metrology of materials physical parameters. Due to the fact that SHE does not
need ferromagnetic materials, SHE is a valuable tool for advancing spintronic devices, magnetic
memory technologies and spin-based transistors [49, 75].

Inverse Spin Hall Effect

The first discovery of the inverse spin Hall effect (ISHE) was in 1984 by Bakun et al. They provide
the investigation of photocurrents that caused by spin-orbit interaction in semiconductor [79, 80].
This phenomenon involves the conversion of an injected spin current into a transverse charge
current or voltage in materials with strong SOC, as shown in Fig. 2.7(b). ISHE can be observed
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Quantum Hall Effect Quantum Anomalous Hall Effect

Quantum Spin Hall Effect

Figure 2.8: (a) QHE scheme [49]. (b) QAHE scheme [49]. (c) Experimentally measured the Hall
resistance ρyx during QAHE as a function of magnetic field µ0H in Cr-doped (Bi0.1,Sb0.9)1.85Te3
films at T = 1.5 K for various bottom gate biases Vg. [81] (d) QSHE scheme [49].
(a), (b), (d) An open access the Creative Common CC BY License. (c) Used with permission of C.-Z. Chang, from Quantum anomalous Hall

effect in time-reversal-symmetry breaking topological insulators, C.-Z. Chang, M. Li, J. Phys.: Condens. Matter 28, 123002 (2016); permission

conveyed through Copyright Clearance Center, Inc.

in heavy metals, semiconductors and other materials. Its unique characteristics have opened up a
range of applications in spintronics, quantum computing and other technological areas [42, 49].

2.4.3 Quantum Hall Effects

The quantum Hall effect (QHE) was firstly observed by von Klitzing with colleagues in 1980 [82]
measuring the Hall resistance of a two-dimensional electron gas (2DEG) created by electrons in
the inversion layer of a semiconductor with uncontrolled impurities under the large perpendicular
magnetic field at low temperatures. Because of a magnetic field, the electronic states of the
system form Landau levels, where electrons move along circular orbits, which become small
and closed for large enough magnetic fields. On the other hand, electrons near to the edge of
structure has wide, open orbits. The low temperature makes quantum effects important, that
leads to a quantization of the area of closed orbits in the bulk, a localization of bulk electrons
and a conversion of the bulk into an insulator (Fig. 2.8(a)). In addition, it was found that the
Hall resistance is quantized in multiples of a fundamental constant h/e2, where h is the Planck
constant, e is the electron charge [83, 84]. For this discovery, von Klitzing was awarded the
Nobel Prize in Physics in 1985.

Quantum Anomalous Hall Effect

The quantum anomalous Hall effect (QAHE) was theoretically proposed in 1988 by Haldane [85],
who suggested that certain materials could exhibit QHE without an external magnetic field
due to intrinsic magnetic properties, what led to the model for QHE without Landau levels.
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Experimentally, this effect was finally observed in 2013 by Xue’s team in Cr-doped (Bi, Sb)2Te3
thin films [86].

QAHE, similar to QHE, requires a breaking of TRS, but unlike QHE, it does not need an
external magnetic field for this. QAHE creates chiral edge states by the intrinsic magnetization.
In addition to this, the manifestation of QAHE requires insulating bulk properties, strong SOC
and Berry curvature. It results in the quantization of the Hall conductance in units of e2/h
(Fig. 2.8(b)) [87].

QAHE has been observed in materials with strong SOC and intrinsic magnetization, such as
magnetically doped TIs (e.g., Cr-doped (Bi, Sb)2Te3 and V-doped (Bi, Sb)2Te3) (Fig. 2.8(c)),
intrinsic magnetic TIs (e.g., MnBi2Te4), moiré materials formed from graphene, and moiré
materials formed from TMDs [81, 87, 88]. The unique properties of QAHE allow applications
in low-power electronics, topological quantum computing, highly sensitive magnetic sensors
and spintronic devices, offering new opportunities for efficient, stable and reliable technological
advances in these fields [49, 87].

Quantum Spin Hall Effect

The quantum spin Hall effect (QSHE) was first theoretically predicted by Kane and Mele in
2005 generalizing the Haldane model for graphene [12]. Experimentally this effect was observed
only in 2007 by Molenkamp’s group for HgTe/(Hg,Cd)Te quantum wells [16]. QSHE occurs
in materials with strong SOC, where electrons with opposite spins move in opposite directions
along the edges, leading to spin-polarized edge currents without an external magnetic field
(Fig. 2.8(d)). This effect is defined by its dependence on TRS and topologically protected edge
states, which makes it different from QHE [84].

QSHE is mainly observed in TIs such as HgTe/CdTe and InAs/GaSb quantum wells, as well
as materials such as TMDs and Bi2Se3 compounds [89]. The important mechanisms behind
QSHE are strong SOC, band inversion and Berry curvature in moment space, which collectively
lead to the robust helical edge states characteristic of this effect. These edge states are protected
against backscattering from non-magnetic impurities due to TRS, providing stable spin-polarized
currents [84].

Applications of QSHE are promising in a variety of fields, including electronics, spintronics
and quantum computing. This allows to develop spintronic devices, low-power electronic
components and high sensitivity sensors [49, 89].
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Chapter 3

Magnetoresistance

This chapter explores the theory behind magnetoresistance (MR) which is one of the most
important phenomena in condensed matter physics and material science, characterized by a
change in the electrical resistance of a material in response to an external magnetic field. One
can distinguish various types of MR, that varies by their origin and underlying mechanisms. In
this chapter, we will discuss the principles and material-specific observations of various type of
MR [6, 90]. Understanding of the mechanisms leading to MR allows for the wide usage of this
effect as a tool in modern electronics.

3.1 Introduction to the Magnetoresistance Effect

Magnetoresistance (MR) is a fascinating phenomenon that has intrigued scientists for many
years. It refers to the resistance change of a material that occurs when a magnetic field is applied
to a material and can be denoted by [6, 91]

∆ρ/ρ0 =
ρ (B)− ρ0

ρ0
=
R (B)−R0

R0

, (3.1)

where ρ (B) (R (B)) and ρ0 (R0) are electrical resistivities (resistances) in magnetic fields of a
magnitude B and zero, respectively. ∆ρ/ρ0 depends on the magnetic field B, i.e., its magnitude
and direction as well. When the external field aligns with the current (I), MR is referred to as
longitudinal MR. Conversely, when the magnetic field (B) is perpendicular to the current, the
MR is termed as transverse MR [90].

In the mid-2010s, it was discovered a magnetoresistance family that appears from the
generation of spin current in ferromagnet/nonmagnetic heavy metal bilayers, and was called
unidirectional magnetoresistance (UMR) [92, 93]. UMR shows an asymmetric response that
depends on the direction of the electric current or external magnetic field (see Fig. 3.1(a)). Two
main mechanisms have been proposed to explain UMR in such systems. The first one shows
UMR as a result of the spin-accumulation mechanism at the ferromagnet/heavy metal interface
due to the interfacial spin chemical potential induced by the spin Hall effect (SHE) in the heavy
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Figure 3.1: (a) Dependence of UMR ∆Rxx on the current J at 2 K under B = 0.7 T for the
normal magnetic/nonmagnetic TIs. The black dotted line shows a linear relationship in a low
current region [93]. (b) Electric field-controlled MR measurements at 40 K, clearly showing a
transition from a negative to a positive value when the gate voltage changes from a negative to a
positive bias [97]. (c) A magnetoresistance element with short bar electrodes [100].
(a) Reprinted with permission from K. Yasuda, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, Y. Tokura: Phys. Rev. Lett. 117,

127202 (2016). Copyright (2016) by the American Physical Society. (b) Reprinted from T. Nie, J. Tang, X. Kou, F. Xiu, K. L. Wang. Nanoscale

Engineering of Ge-based Diluted Magnetic Semiconductors for Room-Temperature Spintronics Application. Molecular Beam Epitaxy (Second

Edition), 403-419 (2018). Copyright (2018), with permission from Elsevier. (c) Reprinted from I. Shibasaki, N. Kuze. Mass production of

sensors grown by MBE. Molecular Beam Epitaxy, 697-720 (2013). Copyright (2013), with permission from Elsevier.

metal layer [94, 95]. In the case of the second one, UMR is linked to electron-magnon scattering
in the ferromagnetic layer originating from magnon excitations at high energies in the terahertz
frequency range via spin-flip process [93].

The increasing of the electric resistivity of a material under the applied magnetic field refers
to positive magnetoresistance, whereas the decreasing indicates negative magnetoresistance
(Fig. 3.1(b)) [91, 96]. Positive magnetoresistance can be explained by such phenomena as,
for example, the spatial fluctuations of magnetic polarons [97] or the suppression of hopping
processes by the magnetic field [98]. Negative magnetoresistance can arise from electron-electron
interactions, the spin-dependent scattering by magnetic polarons [97], increase of the carrier
density with an application of a magnetic field, spin injection and spin detection [99] etc. A
weak localization effect can lead to both positive and negative magnetoresistance [53, 91].

Since the groundbreaking discovery of the MR effect by William Thomson (Lord Kelvin)
in 1857 [101], the interest in this phenomenon has experienced a significant surge in popularity
owing to its vast array of applications in the magnetic recording system over the course of the last
few decades. This increase in interest can be attributed to the profound impact that the MR effect
has had on computer memory and storage technology [6]. Also, there was paved the way for
MR-based sensor systems for biosensing and biochip systems. For example, for magnetic field
sensing, magnetic memory, and magnetic recording can be used a MR element with short bar
electrodes, shown in Fig. 3.1(c). It consists of a thin film or layer of a magnetoresistive material.
The material is patterned into a narrow strip or bar shape. Electrode contacts, usually made of a
conductive material, are placed at the ends of the strip to provide electrical connections [100].
The specific material choice depends on the desired sensitivity, operating conditions, and targeted
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application.

3.2 Classification

There are various types of magnetoresistance, each with its own distinct mechanisms and
characteristics. Ordinary magnetoresistance (OMR), anisotropic magnetoresistance (AMR), giant
magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance
(CMR), spin Hall magnetoresistance (SMR) are some of the prominent classifications that have
been extensively studied and utilized in different scientific and technological applications [6].
The materials and mechanisms responsible for these particular types of magnetoresistance exhibit
significant distinctions.

3.2.1 Ordinary Magnetoresistance

Ordinary magnetoresistance (OMR), which is generally observed in bulk materials, such as
metals or semiconductors, arises from the deflection of electrons away from the direction of the
electric field due to the influence of the Lorentz force. This is manifested by the high electrical
resistance as the magnetic field becomes stronger [102]. This type of magnetoresistance always
has positive values regardless of how the magnetic field is aligned with the electric current. OMR
can be represented as [6, 103]

MR ∝ H2 (ωcτ ≪ 1) , (3.2)

MR ∝ const (ωcτ ≫ 1) , n ̸= p, (3.3)

where ωc = eH/2πme denotes the cyclotron frequency, which describes the motion of an
electron under a magnetic field H and depends also on the electron charge e and mass me, τ is
the relaxation time. Eq. (3.2) is for the case of small magnetic fields or for the stoichiometric
semiconductors with the equal concentrations of electrons n and holes p. Eq. (3.3) corresponds
to nonstoichiometric materials that reach the saturation with strong magnetic fields.

Because of high sensitivity of OMR to magnetic fields and its easy implementation OMR is
effective for a wide range of application [6,104,105]. This effect is often employed in the area of
sensors. For magnetic sensors, it performs the function of detecting and measuring the intensity
of magnetic fields. Additionally, OMR finds utility in current sensors designed to accurately
gauge electric currents flowing through materials. Also, it can be applied in systems that enable
the tracking of position and movement by catching the response to variations in magnetic fields
when objects move.
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Figure 3.2: The AMR effect scheme. (a) The magnetic field and magnetization are perpendicular
to the electrical current [6]. (b) The magnetic field and magnetization are parallel to the electrical
current. M denotes a magnetic moment [6]. (c) AMR in multilayer graphene doped on SiO2 as
a function of θ at 390 K (top) and 10 K (bottom) under various magnetic fields [107].
(a)-(b) Used with permission of Z. Guo, from An overview of the magnetoresistance phenomenon in molecular systems, H. Gu, X. Zhang, H.

Wei, Y. Huang, S. Wei, Z. Guo: Chem. Soc. Rev. 42, 5907 (2013); permission conveyed through Copyright Clearance Center, Inc. (c) An open

access the Creative Common CC BY License.

3.2.2 Anisotropic Magnetoresistance

Anisotropic magnetoresistance (AMR) represents an intriguing and complex physical phe-
nomenon that has significant prospects for applications in cutting-edge technological areas such
as spintronics and quantum computing. This effect manifests itself as a variation in the electrical
resistance which affected by the interplay between the orientation of the current flow axis and
the specific direction of magnetization or the applied magnetic field. This can be described by
Voigt-Thompson formula [106]

ρAMR (φ) =
1

2

(
ρ∥ + ρ⊥

)
+

1

2

(
ρ∥ − ρ⊥

)
cos 2φ, (3.4)

where ρ∥ is an electrical resistivity measured for parallel configuration between the magnetic
filed (or magnetization) and an electrical current, ρ⊥ is an electrical resistivity measured during
perpendicular configuration, φ indicates the angle between the electric and magnetic fields.

The underlying physical mechanisms that give rise to the AMR effect can be ascribed to
phenomenon of spin-orbit coupling (SOC) [108, 109]. The rotational change of the applied
magnetic filed or magnetization leads to the deformation of the electron cloud that wraps each
atomic nucleus, which in turn affects scattering processes of the conduction electrons during
their travel through the material lattice structure. This takes place due to the rotation in the
orientation of the closed electron orbits with respect to the direction of the electric current flow
in the result of the rotation of the external magnetic field or magnetization (Figs. 3.2(a)-(b)).
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When orientations of the magnetic field and magnetization are positioned perpendicular to the
trajectory of the current, the electronic orbits tend to align within the plane of the electric field.
This diminishes scattering and is characterized by low resistance. Conversely, in the cases where
is a parallel alignment between the magnetic filed (magnetization) and the current flow, the
orientation of the electronic orbits shifts to the position, perpendicular to the current. These
states experience the high resistance.

AMR is observed in a wide range of materials, including ferromagnets [110, 111], Dirac
and Weyl semimetals [112–114], etc. Recently, AMR has been observed in graphene, what
is remarkable because it has demonstrated the potential of graphene in spintronic application,
extending its usefulness beyond its known charge transport capabilities. Due to the low SOC in
graphene, AMR can be detected when graphene is interfaced to the proper substrate or using
cover layers, gate voltages, electric fields, etc [115]. The graphene structure and specific external
conditions can have an influence on AMR in this material. For instance, the absolute value
of AMR for graphene doped on SiO2 at the angle θ = 180◦ between the magnetic field and
the normal direction of the sample’s plane increases with decreasing the temperature and can
reach the maximum under the magnetic field H = 7 T at 10 K, as presented on bottom of the
Fig. 3.2(c) [107]. Also, with increasing of the magnetic field H AMR has a two-fold symmetry
for different θ at 390 K, but at 10 K it demonstrates a one-fold symmetry (see Fig. 3.2(c) (top
and bottom)). It can be caused by the anisotropic scattering of carriers in the system.

AMR in topological insulators (TIs) is an interesting phenomenon that arises due to the combi-
nation of the unique properties of TIs (Section 2.1) and the interaction with an external magnetic
field [116–118]. Recent studies have revealed that the emergence of AMR can be attributed to
the chiral anomaly and nonvanishing Berry curvatures in TIs, wherein the existence of nontrivial
topology leads to the emergence of an interband contribution to conductivity [119–124].

AMR in TIs also can be related to some anisotropic scattering mechanisms [22, 125–127].
For example, in the case of magnetic proximity mechanism, a TI should be placed in contact with
a ferromagnetic material. Then the magnetic proximity effect induces an exchange interaction at
the interface to the surface states of the TI and opens an energy gap at the conducting surface
states giving rise to AMR [116, 128]. In case of the formation of magnetic clusters through
exchange interactions between impurities in TI doped with magnetic atoms, AMR appears due
to the combination of spin-momentum locking and scattering of the surface electrons in the
TI influenced by the magnetic moment direction of the clusters [129]. Also, nonlinear lattice
effects, like structural distortions and deformations, can affect AMR in TIs by changing the
scattering potentials. Such distortions result in directional differences in electron scattering and
thus resistance [130]. In addition to these mechanisms, AMR can be caused by breaking TRS due
to the applied magnetic field. In that case, broken TRS results in elimination of backscattering
prohibition for surface Dirac fermions whose spins are perpendicular to the applied magnetic
field. For the remaining spins, backscattering is still forbidden. This anisotropy in the scattering
gives rise to AMR [7, 10, 131, 132]. Besides, AMR can appear due to coupling between surface
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Figure 3.3: (a) AMR ∆ρxx of Bi85Sb15 TI films as a function of the angle φ between the current
and the applied magnetic filed (9 T) for different temperatures from 10 K to 200 K. Here was done
the symmetrization of the plus and minus field response [120]. (b) and (c) Angular dependence
of the in-plane AMR ratio at temperature 2 K in BiSbTeSe2 flakes for various values of the
magnetic field under +10 V (b) and -50 V (c) gate voltages [134].
(a) An open access the Creative Common CC BY License. (b)-(c) Reprinted with permission from A. Sulaev, M. Zeng, S.-Q. Shen, S. K. Cho, W.

G. Zhu et al.: Nano Lett. 15, 2061 (2015). Copyright (2015) American Chemical Society.

states in the presence of the magnetic field that shifts the Dirac point in momentum space. During
this, spin polarization is generated, which results in the anisotropic spin scattering [131, 133]. In
the latter cases, it was found that AMR can change the sign as the temperature increases to the
critical resistivity anomaly temperature around 150 K, as shown in Fig. 3.3(a)) [120, 124, 131].

Due to the presence of spin-momentum locking of the surface states in TIs, the electric field
can be used to manipulate the AMR [134,135]. In Figs. 3.3(b)-(c) it is illustrated the dependence
of the in-plane AMR ratio on the angle between the magnetic field and the current in BiSbTeSe2
flakes for different values of the magnetic field with +10V and -50V gate voltages. The difference
in the sign of the AMR oscillation for these two gate voltages can be determined by the sign
of the spin polarization. The net spin polarization is induced by the splitting of topological
surface states (TSSs), similar to the Rashba effect, due to the applied in-plane magnetic field and
spin-momentum locking. As Dirac electrons and holes in TSSs have opposite spin helicities, the
net spin polarization changes the sign when the Fermi level goes across the Dirac point. As a
consequence of this reversal, AMR also undergoes a reversal in sign.

The deep-seated understanding of the origins of AMR in TIs and other materials holds
immense promise for the development of advanced electronic and spintronic devices. The
orientation-dependent nature of AMR in these materials offers opportunities for the creation of
highly sensitive magnetic field sensors, information processing technologies, and novel quantum
devices. [124] Because AMR is sensitive to various control parameters and easy to measure, it
can be used as a probe for different spin phenomena, such as spin-polarized edge states [136],
spin injection and pumping [137, 138], spin wave and magnon states [139], spin torque [140],
spin tunneling [141], spin Hall effect (SHE) [78, 142, 143], and others.
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3.2.3 Magnetoresistance in Multilayer Systems

MR is a leading phenomenon observed in magnetic multilayers. In these multilayers, the orienta-
tion of the magnetization of ferromagnetic layers can be manipulated by an external magnetic
field, leading to changes in electrical resistivity (or resistance). Specifically, when the magneti-
zations are aligned parallelly, the electrical resistivity is low, whereas it increases significantly
when the magnetization aligns antiparallel. There are two types of MR, which is influenced
by the relative alignment of magnetizations rather than the angle between magnetization and
current flow. The distinction between them arises from the nature of the non-magnetic layers
present within the multilayers, with metallic layers leading to giant magnetoresistance (GMR)
and insulating layers giving rise to the tunneling magnetoresistance (TMR) effect. In the case
of TMR, the current passes through the insulator using tunneling mechanisms, which leads to
the creation of a magnetic tunnel junction (MTJ). In addition, it is important to notice another
prominent MR phenomenon that is observed in multilayer systems and is known as colossal
magnetoresistance (CMR). A significant difference between CMR and GMR lies in the fact that
CMR is preferably observed at low temperatures with the applied external magnetic fields that
are still significantly larger than those necessary for practical applications [144, 145].

Giant Magnetoresistance

Giant magnetoresistance (GMR) is a fascinating effect that has a big influence on various
areas, including spintronics, magnetic sensors and data storage devices. This effect was first
discovered in the late 1980s by Albert Fert and Peter Grünberg [146, 147] (Fig. 3.4(a)), who
were awarded the Nobel Prize in Physics in 2007 for their groundbreaking work. This stimulated
big research efforts, aimed at comprehending the fundamental physics responsible for GMR,
and its technological possibilities. GMR is observed in a wide range of magnetic materials,
from nanoparticles to permanent magnets and multilayered structures [148]. These structures
are composed of combinations of ferromagnetic and either antiferromagnetic or non-magnetic
metals [149–151]. This phenomenon also has been found in granular systems [152, 153], that
can contain carbon-based materials like carbon nanotubes and graphene [154, 155]. Furthermore,
GMR has been observed in organic materials [156] and spin-valve sandwich structures [157].

The GMR effect refers to the significant change in the electrical resistance observed in
metallic layered systems when the magnetizations of the ferromagnetic layers are altered by
an external magnetic field. GMR was characterized as the ratio ∆R

R
= RAP−RP

RP
, where RP and

RAP are the resistances of the materials for parallel and antiparallel alignments of two magnetic
electrodes, depending on the magnetization state of the materials under an applied magnetic field
(Fig. 3.4(b)). In the context of a parallel magnetic configuration (Fig. 3.4(b) (top)), electrons
with a specific spin direction can pass all magnetic layers with minimal resistance, which leads to
a decreasing of the resistance. Conversely, in the antiparallel configuration (Fig. 3.4(b) (bottom)),
electrons within each channel experience deceleration at each subsequent magnetic layer, thereby
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(a) (b)

Figure 3.4: The GMR effect. (a) GMR in the multilayers of Fe-Cr superlattices [146]. (b)
Schematic of the mechanism of GMR double layer in current in-plane configuration for a parallel
alignment of magnetizations M1 and M2 (top), and an antiparallel alignment (bottom). NM
represents non-magnetic layers [158].
(a) Reprinted with permission from M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J.

Chazelas: Phys. Rev. Lett. 61, 2472 (1988). Copyright (1988) by the American Physical Society. (b) An open access the Creative Common CC

BY License.

causing increased resistance. This can be explained by the fact that the effect is generated by the
spin-dependent transport of electrons in magnetic metals [1, 6, 158].

The discovery of GMR has had a profound impact on various technological advances. GMR
has revolutionized the field of magnetic sensors. GMR sensors, based on the principles of GMR,
are widely used in applications such as magnetic field detection, compasses, non-destructive
testing, medical diagnostics, environmental monitoring, and aerospace technology [159–162].
One of the first significant applications of GMR is in data storage devices, particularly hard
disk drives (HDDs) [163–165]. GMR has also paved the way for advancements in the field of
spintronics, which explores the manipulation of electron spin for information processing and
storage [166, 167].

Tunneling Magnetoresistance

Another type of MR occurs when the nonmagnetic metal is substituted with an insulating barrier,
giving rise to the tunneling magnetoresistance (TMR). This particular effect stands as one of the
fundamental phenomena in spintronics, showing possibilities for practical implementations in
sensing and information technologies.

TMR is a phenomenon observed in a magnetic tunnel junction (MTJ), which consists of
two ferromagnetic electrodes separated by a thin insulating layer called the tunnel barrier. The
resistance in this structure depends on the alignment of the magnetic configurations of the
two electrodes – whether they are parallel or antiparallel. When electrons travel between the
ferromagnetic layers, they carry out the tunneling process with preserved spin (Fig. 3.5) [6]. This
tunneling is easier when the magnetizations of the layers are parallel, as shown in Fig. 3.5(a). In
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Figure 3.5: Schematic of the parallel magnetization (a) and the antiparallel magnetization (b) in
the TMR effect [6]. Used with permission of Z. Guo, from An overview of the magnetoresistance phenomenon in molecular systems,

H. Gu, X. Zhang, H. Wei, Y. Huang, S. Wei, Z. Guo: Chem. Soc. Rev. 42, 5907 (2013); permission conveyed through Copyright Clearance

Center, Inc.

contrast, tunneling becomes more difficult when the magnetizations are antiparallel, as illustrated
in Fig. 3.5(b), leading to the higher resistance. This happens because there is spin polarization of
the electronic states on either side of the barrier. This difference in resistance is a key for TMR
and can be described as ∆R

R
= RAP−RP

RP
, where RP and RAP are the resistances of the materials for

parallel and antiparallel alignments, respectively [168].
The discovery of TMR is credited to M. Julliere, who first described it in 1975 [169]. He

explored this effect in the ferromagnetic films, specifically in Fe-Ge-Co tunnel junction system,
and found that TMR depends on the relative orientation of the magnetizations. Furthermore,
TMR was obtained in different tunnel junction systems, such as signal-crystal epitaxial junctions
[170, 171], MTJ systems based on carbon nanotubes [172], and MTJ systems with organic
semiconductor barriers [173, 174]. Additionally, TMR effect has been investigated in systems
incorporating topological insulators [175–177] and graphene [178, 179].

The unique properties of TMR have opened up exciting possibilities for its application
in various fields. TMR has revolutionized the area of magnetic data storage, enabling the
development of magnetic random access memories (MRAM), which offers non-volatile, high-
speed, and low-power data storage [180–182]. TMR is also used in magnetic sensors [183, 184]
and read heads in hard disk drives [185]. In the realm of spintronics, TMR paved the way
for the development of advanced magnetic logic devices [186, 187]. These use the magnetic
state of MTJs to perform logical operations, offering new opportunities for the emergence of
next-generation computing systems and information processing technologies.

Colossal Magnetoresistance

After several years from the discovery of GMR, there were opened up the materials, which
can demonstrate the change of an electric resistance not by several percent, but by orders of
magnitude. A large MR has been called a colossal magnetoresistance (CMR) to distinguish these
materials from GMR compounds.
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CMR is linked to phase transitions like ferromagnet-paramagnet, antiferromagnet-paramagnet,
metal-insulator, etc., that take place at low temperatures and the applied magnetic field. This
effect has been reported in manganite perovskite structures, pyrochlores, spinel compounds
and others [188–192]. The CMR ratio, defined as ∆R/R(H) = (R(0)−R(H))/R(H), where
R(0) and R(H) represent the resistance in the absence and presence of a magnetic field H ,
converted to a percentage, can reach up to 127 000% near 77K, demonstrating a substan-
tial change in the electrical resistivity by over 1000 times [193]. In an alternative definition
∆R/R(0) = (R(0)− R(H))/R(0) the CMR ratio is 99.92%, which is also significant. These
remarkable results have prompted experimental and theoretical studies of manganites and the
CMR effect by numerous research groups around the world.

The exact mechanism behind CMR differs from GMR and is still not well understood, but
several theories have been proposed to explain this phenomenon. They include the double
exchange mechanism, a Jahn-Teller effect, the critical scattering mechanism, the percolation
model, spatial electronic phase separation and the localization model [96, 192, 194].

The ability of certain materials to exhibit a large change in electrical resistance in the
presence of the magnetic field at room temperature opens up a realm of possibilities for techno-
logical advancements. From magnetic memory and recording devices [6, 189, 194] to magnetic
sensors [195] and spintronics [191], the applications of CMR are huge and promising.

3.2.4 Spin Hall Magnetoresistance

Spin Hall magnetoresistance (SMR) is a cutting-edge topic in spintronics research, with signifi-
cant potential for advance spin-based electronic devices and systems. The concept of SMR was
first introduced during the observation of the changes in resistance in a bilayer composed of a
normal metal with strong spin-orbit coupling (SOC) and a ferromagnetic insulator. This discov-
ery revealed that the electrical resistivity of the system can depend directly on the magnetization
direction in the insulator [196–198].

The underlying mechanism of SMR involves the interaction between two key effects – the
spin Hall effect (SHE) and inverse spin Hall effect (ISHE) [94, 95, 199]. When the electric
current is applied in the plane of material with the strong SOC connected with ferromagnet
(or magnetic insulator), due to SHE a transverse spin current is generated. This spin current is
detected via ISHE and aligns with the magnetization of a ferromagnetic layer (Figs. 3.6(a)-(b)).
This affects the electrical resistivity that manifests SMR, which depends on the angle between
the spin polarization and the magnetization direction. The last one can be controlled by the
applied magnetic field.

SMR was observed in a variety of materials and systems. They include heavy metals with fer-
romagnetic bilayers, TIs interfaced with magnetic materials (Fig. 3.6(c)), oxide heterostructures
combined with ferromagnetic layers, graphene and other 2D materials doped on ferromagnetic
layers [42, 94, 200, 201].
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Figure 3.6: Illustration of the SMR effect. (a) Parallel alignment of the magnetization of the
ferromagnetic insulator (FI) with the polarization of the spin current increases the electrical
resistivity of the bilayer. (b) Antiparallel alignment decreases the electrical resistivity. The
arrows in (a), (b) indicate the direction of the spin magnetic moment. NM denotes a normal
metal [94]. (c) Unidirectional SMR ratio as a function of the current density J at various base
temperatures Tbase [200].
(a)-(b) Reproduced with permission from Springer Nature. (c) Reprinted from N. H. Duy Khang, P. N. Hai: J. Appl. Phys. 126, 233903 (2019),

with the permission of AIP Publishing.

The versatile nature of SMR provides many applications in spintronics and beyond. From
magnetic sensors and memory devices to spin logic and spin-based computing, SMR promises
lower power consumption and higher performance. Furthermore, its possibility for the tuning
and controlling makes SMR an attractive candidate for exploring new functionalities in novel
fields such as quantum information processing [201–203].

3.3 Bilinear Magnetoresistance

Bilinear magnetoresistance (BMR), also known as bilinear magnetoelectric resistance (BMER),
was discovered relatively recently in the context of spintronic research. Unlike the SMR
effect observed in bilayers consisting of ferromagnetic and nonmagnetic material with strong
SOC, this nonlinear magnetoresistance does not require a conductive ferromagnetic layer and
shows a linear response with both the applied electric and magnetic fields, hence, it is called
bilinear magnetoresistance. Also, the resulting magnitude and orientation of the BMR effect
is significantly affected by the alignment of the current with respect to the magnetic field and
crystallographic axes [204].

BMR was reported in materials characterized by strong spin-orbit interaction [7, 8]. Unlike
other MR phenomena (such as SMR etc.) that were demonstrated in multilayered systems, the
BMR manifests itself within a single layer material. This effect has been detected in a 3D polar
semiconductor [205], topological insulators (TIs) [8, 11, 206, 207], two-dimensional transition
metal dichalcogenides (TMDCs) with spin-polarized states [208, 209] and in materials with
surface or interface of two-dimensional electron gas (2DEG) with Rashba interactions [210,211].

To understand the origins of BMR in TIs two mechanisms were proposed. One of the
mechanisms relates BMR to hexagonally deformed topological surface states (TSSs) (Figs. 3.7(d)-
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Figure 3.7: Hall bars for measurements with rotating the applied magnetic field H in the x-y
(a), z-y (b) and z-x (c) planes. (d) Hexagonally warped energy dispersion for the surface states
with Fermi surface lying in the conduction band. (e) Hexagonally warped spin texture at the
Fermi contour of the surface states. (f) Second-harmonic resistance for all three scans for
devices with current applied at an angle of 60◦ with respect to the Γ̄K̄ direction, respectively.
The measurements were performed under H = 9 T, T = 60 K and I = 0.55 mA. The Fermi
surface of Bi2Se3 is presented by the blue hexagon. The red line is along the Γ̄K̄ direction, and
the black arrow denotes the current direction in k-space. (g) Theoretically calculated angular
dependences of R2ω for the three cases in (a)-(c), respectively. Parameters for calculations are
α = 5 × 105 m s−1, λ = 165 eV Å

3
, εF = 0.256 eV, g = 2, H = 9 T, E = 100 V cm−1,

l = 100 µm and w = 20 µm. Current (h) and magnetic field (i) dependence of amplitude ∆R2ω

in the z-y scan at T = 60 K for a device with current along Γ̄K̄ line. Solid black lines are fits to
the data [8]. Reproduced with permission from Springer Nature.

(e)). This mechanism was used to explain the experimental observation of BMR signal measured
for Bi2Se3 surface states, capped by MgO/Al2O3 [8, 204]. The measurements were performed
on the Hall bar devices [212] with a rotation of the external magnetic field in different planes,
as presented in Figs. 3.7(a)-(c). For scans in all three planes, the nonlinear resistance R2ω,
shown in Fig. 3.7 (f), demonstrates sinusoidal angular dependences with a period 360◦, but
with different phases in different planes. For further investigation of the physical origin of the
observed magnetoresistance, it was measured the second-harmonic resistance R2ω as a function
of the applied magnetic field H and the current I , that is proportional to the electric field E. In
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Fig. 3.7(h) it is demonstrated that the amplitude ∆R2ω of the angle-dependent R2ω has a linear
response on the current amplitude. And Fig. 3.7(i) presents the linear increasing of ∆R2ω with
the amplitude of the applied magnetic field H and has a negligible value in the absence of the
magnetic field. The linear response on both the electric and magnetic field identifies the observed
magnetoresistance as bilinear. In order to show that BMR is a result of the spin-momentum
locking of TSSs with hexagonal warping, it was obtained an analytical expression for R2ω for
model Hamiltonian of an electron in spin-momentum locked band [8]

HTI = σ ·
[
αℏk × ẑ+ λk × ŷ

′
(
k2
x′ − 3k2

y′

)
+ gµBH

]
, (3.5)

where ŷ
′ and ẑ indicate the unit vectors that show the direction along Γ̄M̄ and normal to the

surface respectively, α is a Dirac velocity, σ denotes the Pauli matrices, and the hexagonal
warping is described by the cubic term in k with the strength λ. The resulting expression for R2ω

has a form [8]

R2ω = E
l

w
(aIPHy + aOPHz cos 3ϕΓK) , (3.6)

where Hy and Hz are the y and z components of the magnetic field, whose directions are shown
in Figs. 3.7(a)-(c), l and w are the length and width of the sample, respectively, ϕΓK is the
angle between the direction of the current and the Γ̄K̄ line with respect to the x axis (that is the
direction of the electric field E), and aIP = 36πλ2εFgµB

eα5ℏ4 and aOP = 6πλgµB

eα2ℏεF
are the coefficients of

the contributions to R2ω from the in-plane and out-of-plane components of the magnetic field,
respectively, with εF denoting the Fermi energy. The theoretical formula for R2ω demonstrates
that the second-harmonic resistance depends linearly on both the electric and magnetic fields
and has perfect agreement with the experimental data, as shown in Fig. 3.7(g). Microscopically
BMR is a result of the conversion of a pure spin current, induced by the second-order correction
(with respect to the external electric field) to the electron distribution, into the charge current in
the presence of an external in-plane magnetic field.

Another proposed mechanism of BMR in TIs can arise as a consequence of the interplay
of the current-induced spin polarization and scattering in the presence of spin-momentum
locking [7]. This interplay is caused by the spin-orbital structural defects, which introduce
the inhomogeneities in the spin-momentum locking within the TSSs. Theoretical study of the
minimal model describing surface states in TIs, taking into account the scattering term allows to
write the total Hamiltonian for the system with applied electric and magnetic fields in k basis in
a form [7]

H tot
kk′ =

(
H0

k +HA
k

)
δkk′ + V sc

kk′ , (3.7)

whereHA
k = −ev̂k ·A shows how the system interacts with the electric field (here e indicates the

electron charge, v̂k = ℏ−1∇kĤ
0
k defines the velocity operator and A denotes the electromagnetic

vector), V̂ sc
k,k′ indicates the scattering term. H0

k = v (k× ẑ) · σ +B · σ + JS · σ shows pure
surface states of TIs, the influence of an applied in-plane magnetic field B = (Bx, By, 0) and
also defines the effective coupling between electrons and spin polarization S that induced by an

39



(a) (b)

(f)(d)(c)

(e)

Figure 3.8: (a) Schematic picture of the system under consideration. The angle θ is defined as
the angle between the orientation of charge current density j and external magnetic field b [7].
(b) BMR as a function of charge current density jx > 0 and jx < 0 [7]. (c)-(d) Amplitude of
BMR induced by CISP ABMR as a function of the applied magnetic field b (c) and current density
jx (d) [7]. (e) Schematic of Hall bars for magnetotransport measurements at 13 K with width
W = 3 µm and length L = 15 µm. The 30 nm thick HgTe layer lies between two HgCdTe
barriers. A dc current is injected along the x-axis [206]. (f) Azimuthal angular dependence of
BMR at B = 0.54 T for different amplitudes of dc current. B field lies in x-y plane, φ = 90◦

corresponding to B along y-axis, ∆RBMR = [R(I)−R(−I)] /2. The experimental data is
presented by dots and follow a sin(φ) dependence that is shown by solid-lines [206].
(a)-(d) Reprinted with permission from A. Dyrdał, J. Barnaś, A. Fert: Phys. Rev. Lett. 124, 046802 (2020). Copyright (2020) by the American

Physical Society. (e)-(f) Reprinted with permission from Y. Fu, J. Li, J. Papin, P. Noël, S. Teresi et al.: Nano Lett. 22, 7867 (2022). Copyright

(2022) American Chemical Society.

external electric field. In this term of total Hamiltonian v = ℏvF (with vF denotes Fermi velocity),
k is a wave vector, ẑ indicates the unit vector normal to the surface, σ = (σx, σy, σz) is the
vector of Pauli matrices in the spin space, J is a constant describing coupling between surface
states electrons and nonequilibrium spin polarization.

For the simplification, the effective field Beff = B + JS that makes only the shifting
of the Dirac cone, can be removed from the first term of Hamiltonian (3.7) using the gauge
transformation k → q− (e/ℏ)Λ with Λ = (ℏ/ve)Beff × ẑ. Assuming that the external electric
field is oriented in the x-direction (Fig. 3.8(a)), the second term of Hamiltonian (3.7) can take
the form HA

k = −ev̂kx ·Ax. After all these transformations the total Hamiltonian of the system
(3.7) takes the form [7]

H tot
qq′ =

(
H0

q +HA
q

)
δqq′ + V sc

qq′ , (3.8)

H0
q = v (q× ẑ) · σ, (3.9)

V sc
qq′ = V i

qq′ + V soc
qq′ , (3.10)
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where V i
qq′ is pure electrostatic potential that describes the scattering on pointlike randomly

distributed defects with the assumption of the white noise distribution ⟨|V i
qq′|2⟩ = niV

2
0 and

V soc
qq′ = niα

2

2

[(
qy + q′y

)
σx − (qx + q′x)σy

]
− niα

2

v
[Bxσx + (By + J Sy)σy] is the part of scat-

tering potential that shows the scattering process due to inhomogeneities of spin-momentum
locking and have SOC (here ni indicates the concentration of scattering centers, α is a parameter
that defines SOC emerging from local defects distributed randomly in the structure).

In the result, the corresponding BMR can be determined as [7]

BMR = ABMR
jx
j
sin θ = 39πgµB

ℏ2

|e|
vF

|εF|3
jb
jx
j
sin θ, (3.11)

where ABMR is the amplitude of BMR, jx is the density of current flowing parallel (jx = j) or
antiparallel (jx = −j) to the x axis, εF is the Fermi energy, θ is an angle between the x axis and
in-plane magnetic field with amplitude b. As shown in Fig. 3.8(b) for different values of positive
and negative current density jx, BMR changes depending on the direction of the magnetic field
as sin θ. Also, in Figs. 3.8(c)-(d) it is presented the linear increasing of the amplitude of BMR
with both b and j, what is the feature of the BMR effect.

For testing this theoretical model, it was made the observation of BMR in strained cubic HgTe
3D TI without hexagonal warping [206]. Magneto-transport measurements were performed at
a low temperature (13 K) on a conventional Hall bar device [212] shown in Fig. 3.8(f). A dc
current I is applied along the x axis together with the external magnetic filed B. BMR is derived
from the measurement of the longitudinal voltage Vxx. Rotating the field in the x-y plane, in
Fig. 3.8(e) it is demonstrated the expected angular dependence of the BMR.

Understanding the origins of BMR is crucial for potential applications in spintronics and
quantum information processing [209]. Because of unique properties, BMR can be exploited
in magnetic random-access memory (MRAM), spintronic devices (spin-based transistors, logic
gates etc.), magnetic sensors for detection of magnetic fields or studying spin textures of novel
materials via magnetotransport measurements without the fabrication of special heterostructures
for spin injection or detection.
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Chapter 4

Planar Hall Effect

This chapter aims to review the recent studies on the planar Hall effect (PHE). Firstly, it is impor-
tant to understand the basic concepts of this intriguing phenomenon, which has demonstrated
its complex and fascinating nature due to its ability to generate a measurable transverse voltage
when a magnetic field is applied in the plane of a sample through which an electric current
flows [9]. Then we explored the proposed microscopic mechanisms contributing to the PHE
and aimed to elucidate its origins in materials, especially in topological insulators (TIs) [123].
The exploration of these mechanisms offers valuable opportunities to deepen our understanding
of the complex interplay between electronic transport and magnetic properties in condensed
matter systems. The investigation of the PHE holds great promise for advancing our knowledge
in this field and potentially enabling the development of novel electronic devices with enhanced
functionalities [213]. This effect has already found applications in various fields, including
spintronics, magnetic sensing, and data storage.

4.1 Basic Concepts

The planar Hall effect (PHE) is a phenomenon that in recent times has attracted great attention
due to its potential applications in various fields and has a rich history dating back to 1954 when
it was first reported by Goldberg and Davis as a new galvanomagnetic effect [214]. This effect
occurs when an electric current flows through the material with an applied external magnetic
field. In contrast to the ordinary Hall effect (Section 2.4), which generates a voltage with electric
and magnetic fields in perpendicular planes, PHE produces a voltage in response to the coplanar
electric and magnetic fields (see Fig. 4.1).

PHE is driven by interactions between the electric and magnetic fields that result in the
transverse voltage. But, unlike the ordinary effect, which is induced by the Lorentz force acting
on moving charges, PHE should operate under entirely different principles. Therefore, various
microscopic mechanisms have been proposed to describe PHE [49, 123]. This interplay between
a magnetic and electric fields change the scattering process in the system, which leads to different
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(a) (b)

Figure 4.1: (a) Ordinary Hall effect scheme, where the black and red arrows indicate magnetic
field B and current density J , respectively. The blue balls and white balls represent electrons and
holes, respectively. (b) PHE scheme, with φ defined as the angle between the in-plane magnetic
field and applied electric field (current density) [9]. Drawn according to the figure from Recent progress on the planar

Hall effect in quantum materials, J. Zhong, J. Zhuang, Y. Du: Chin. Phys. B 32, 047203 (2023)

resistances depending on the direction of the magnetic field – parallel (Rxx) or perpendicular
(Rxy) to the current. For a two-dimensional (2D) system with an electric field, applied along
x-direction, and a magnetic field, applied in the same plane, with the angle φ between them, one
can find the expressions of PHE and longitudinal resistance [9]

Rxx = R⊥ +
(
R∥ −R⊥

)
cos2 φ, (4.1)

RPHE
xy =

(
R∥ −R⊥

)
sinφ cosφ. (4.2)

From Eqs. (4.1) and (4.2) follows that the conventional PHE can be described in terms of
transverse and longitudinal resistance, exhibiting a periodicity of π [123]. However, certain
materials have displayed an unconventional PHE [121, 215], characterized by the periodicity of
2π and π/2. To provide insights into the underlying microscopic mechanisms responsible for
these cases, various explanations have been proposed in addition to the existing understanding of
PHE. For example, the conversion of a nonequilibrium spin current into a charge current explains
the periodicity of 2π [11]. In turn, the π/2-periodic PHE originates from the orbital magnetic
moments (OMMs) of bulk Dirac electrons [216].

PHE can manifest itself differently in various materials, depending on their specific charac-
teristics [217–219]. For example, in some materials, the deflection of charge carriers may be
linearly proportional to the magnetic field strength, while in others, it may exhibit a nonlinear
relationship. Additionally, the presence of impurities, crystal structure, and electron-electron
interactions can influence the behavior of PHE in a given material. PHE has been observed
in ferromagnetic materials [220, 221], topological superconductors [132, 222], nonmagnetic
materials [223], especially topological materials such as Dirac [224, 225] and Weyl semimet-
als [113, 226, 227] and topological insulators (TIs) [120, 228–230].

The broad range of materials and structures highlights the potential for PHE to be utilized
in different technological advancements. One of the key advantages of this effect is its sensi-
tivity to the orientation of the magnetic field. By measuring the transverse voltage, one can
determine the magnitude and direction of the magnetic field with high precision. This makes
PHE a valuable tool for magnetic field mapping and characterization. In addition, this effect
has been a widely studied in the field of Hall sensors [213]. Its relevance in magnetic random
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(a) (b) (c)

Figure 4.2: (a) Schematic of the dual-gate Hall-bar device and the measurement configuration.
Angle-dependent (b) PHE Ryx and (c) AMR Rxx measurement in TI thin film Bi2−xSbxTe3 [10].
An open access the Creative Common CC BY License.

access memory (MRAM) devices has also gained recognition for its potential in memory storage
applications [123, 213]. Also, there are many distorted PHE results, providing additional means
to detect hidden information such as spins, SOC, symmetry of the crystal, and so on. PHE
can operate at room temperature, eliminating the need for cooling systems and making it more
cost-effective [131, 207].

4.2 Experimental Observations

Experimental studies of PHE in topological insulators (TIs) have demonstrated that, due to the
intriguing properties of TIs, many different mechanisms can be involved in PHE.

By magnetotransport measurements in devices based on TIs it was shown that PHE vanishes
in materials without the topological surface states (TSSs) [134, 135]. Furthermore, to investigate
the microscopy of PHE, experiments were evaluated in various conditions and addressed to
different mechanisms – from the anisotropic lifting of topological protection of the surface
states [10] and resistivity anisotropy [132] to the bulk contribution [123] and others [122, 125].

The most remarkable experiment shows PHE, which is a response to anisotropic backscatter-
ing induced by an in-plane magnetic field [10]. Observations were made on dual-gated devices
consisting of bulk-insulating Bi2−xSbxTe3 (BST) thin films grown on sapphire substrates using
the molecular beam epitaxy (MBE) technique. [231] The dual-gate device [212], shown in
Fig. 4.2(a), allows precise control over the charge carrier density on both surfaces, resulting in
the high resistance and the Dirac-point crossing of the Fermi level.

The results of the experiment reveal that the backscattering of Dirac fermions on the TI
surface is forbidden in zero field due to spin-momentum locking. But when time-reversal sym-
metry (TRS) becomes broken by the in-plane magnetic field [9], the topological protection [122]
is selectively lifted. It leads to a magnetic field-induced anisotropy in the electrical resistivity
measured along and perpendicularly to the field, which results in PHE and the anisotropic
magnetoresistance (AMR) (Section 3.2.2). The planar Hall resistance (Ryx) is measured across
the width of the sample, perpendicular to the direction of the electric current. It shows the
∼ cosφ sinφ angular dependence, as illustrated in the Fig. 4.2(b). Additionally, there is ob-
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Figure 4.3: (a) Schematic illustration of the sample structure. (b) Schematic illustration of the
simultaneous measurements of nonlinear PHE (V 2ω

yx ) and nonlinear magnetoresistance (V 2ω
xx ).

(c) Comparison of the angular dependence of R2ω
yx and R2ω

xx while rotating H in plane in a Bi2Se3
film. A linear dependence of the sinusoidal amplitude ∆R2ω

yx on the current I (d) and magnetic
field H (e). The solid lines are linear fits. An asymmetric distortion of the Fermi contour when
H is aligned in the x-direction (f) and when H is aligned in the y-direction (g). The blue (yellow)
curves show the schematic Fermi contours of the surface band under a zero (nonzero) external
magnetic field. The black arrows indicate the spin directions of the four typical TSSs [11].
Reprinted with permission from P. He, S. S.-L. Zhang, D. Zhu, S. Shi, O. G. Heinonen, G. Vignale, H. Yang: Phys. Rev. Lett. 123, 016801

(2019). Copyright (2019) by the American Physical Society.

served the longitudinal resistance (Rxx) with a 180◦ periodic angular dependence, described by
∼ cos2 (2φ), and called the anisotropic magnetoresistance (AMR), shown in Fig. 4.2(c).

Experimental studies have played a crucial role in unraveling the nonlinear PHE in TIs
[134, 232]. PHE is nonlinear if it has nonlinear behavior with respect to the applied electric field.
By employing different measurement techniques, it was observed that PHE in a nonlinear regime
arises from the topological surface band structure of the material [8, 93, 233] as a second-order
response to the external electric field. These observations have provided insights into the potential
microscopic mechanisms that contribute to this phenomenon, such as the asymmetric scattering
of surface electrons by magnons [234], hexagonal warping by the external magnetic field [11],
Berry curvature and chiral anomaly [235], lifting of the Dirac dispersion enhanced by scattering
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off non-magnetic impurities [207] and many others.
One of the prominent experiments demonstrates that the nonlinear PHE can be attributed to

the conversion of a transverse nonlinear spin current to a nonlinear charge Hall current through
the application of an in-plane magnetic field. To conduct the experiment, it was grown high-
quality Bi2Se3 films on Al2O3 (0001) substrates utilizing a sophisticated MBE system. In order
to protect the Bi2Se3 films, a layer of MgO/Al2O3 was deposited on top of them, as depicted in
Fig. 4.3(a). As a result, it was fabricated the Hall bar device [212], shown in Fig. 4.3(b) [11].
To detect the nonlinear PHE in a Bi2Se3 film, there was utilized the second harmonic Hall
voltage technique with an external magnetic field in the film plane forming an angle φ with the
longitudinal current, as illustrated in Fig. 4.3(b). For a specific current I and magnetic field H ,
the second harmonic resistance R2ω

yx

(
≡ V 2ω

yx /I
)

was measured. This experiment demonstrates
a cosine angular dependence as shown in Fig. 4.3(c). Also, R2ω

yx was measured for varying
magnitudes of I and H , as demonstrated in Figs. 4.3(d)-(e). The observed nonlinear Hall effect
in Bi2Se3 films adopts the form of R2ω

yx ≈ E · H, indicating the nonlinear nature of R2ω
yx (E

represents the applied electric field and H denotes the magnetic field applied in the plane of the
films). Further in the same Hall bar [212], shown in Fig. 4.3(b), it was measured the longitudinal
resistance R2ω

xx – the bilinear magnetoresistance (BMR) [8, 211] (Section 3.3). This resistance
also exhibits a linear scaling dependence on both the electric and magnetic fields. A detailed
analysis of angular dependence of the two nonlinear resistances depicted in Fig. 4.3(c) uncovers
a significant shift on the 90◦ angle, in contrast to the ordinary distinction on 45◦ angle that can be
observed between conventional PHE and the longitudinal AMR in thin films of TIs [10] when the
external magnetic field is rotated in the plane of the film. The presence of a 90◦ angle discrepancy
is a result of the different reactions of the surface states electrons to the applied electric and
magnetic fields. While the deformation of the Fermi contour, in response to the second order of
the electric field, is symmetrical in k space, it becomes asymmetrical with an applied magnetic
field. As presented in the Figs. 4.3(f)-(g), the Fermi contour becomes asymmetrically deformed
in the y-direction with an applied magnetic field in the x-direction. This is the result of the action
of two effects – spin-momentum locking [7] and the hexagonal warping effect [8]. Moreover, it
manifests itself in the form of nonlinear transport phenomena, namely, the nonlinear PHE and
the BMR effect.

4.3 Microscopic Mechanisms

Despite the experimental confirmation, the microscopic mechanisms responsible for PHE in TIs
remain enigmatic. There are ongoing investigations of various hypotheses to shed light on these
mechanisms. Some proposed mechanisms include the interplay between surface states and bulk
bands, spin-orbit coupling effects, and the influence of magnetic impurities.

For instance, it was proposed a model of electron scattering off magnetic impurities polarized
by an in-plane magnetic field [10]. And here the magnetization of the scatterers is essential
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which can be explained by how the anisotropic backscattering is induced by magnetic disorders.
The details and experimental observations for this model were presented in the previous section.
However, there was shown that the anisotropic backscattering leading to PHE, is a result of tilting
of the Dirac cone [228] by an in-plane magnetic field, regardless of the magnetic properties of
the scatterers. Also, it was analyzed the role of the nontrivial Berry curvature in the conduction
band [236] in the emergence and manifestation of the planar Hall response. It was shown that
such a phenomenon exists in TIs even in the absence of chiral anomaly and, additionally, the
orbital magnetic moments (OMMs) enhance the magnitude of the planar Hall conductivity.
Recently, it has been shown that the phenomenon of PHE can be attributed to the presence of
spin-momentum locking surface states in TIs [10, 122]. Furthermore, PHE can originate from
the dominant bulk contribution [123]. This assertion is justified by the noticeable augmentation
of PHE signal within temperature in thicker devices.

The nonlinear PHE is a quite new phenomenon that still needs detailed study. Theoretical
models are mostly developed to explain experimental data. The nonlinear PHE due to the
conversion of a nonlinear transverse spin current to a charge current [11] was discussed in the
previous section. Also, an asymmetric magnon scattering model [234] allows to evaluate a
transverse resistance in magnetic TIs under certain configurations. In the case of the combination
of TIs with magnetic insulators, it has been verified that the presence of backscattering due to
out-of-plane spin texture formation, can lead to an enhancement in the nonlinear spin-to-charge
conversion, thereby giving rise to the nonlinear PHE [207]. It was also found that the opening of
the gap caused by the exchange interaction plays the necessary role in generation of the nonlinear
PHE. In addition, some theories focus attention on analyzing the interplay of current-induced
spin polarization (CISP) and scattering processes, which are caused by the inhomogeneities of
spin-momentum locking [7]. These inhomogeneities arise as a consequence of structural defects
present in TIs. The proposed mechanism, derived from this model, results in the occurrence
of nonlinear PHE, even when the electronic band structure is isotropic. Besides, two extra
mechanisms related to the nonlinear PHE [133] were proposed. The first mechanism, referred to
as the tilt effect, is attributed to the tilting of the Dirac cones in response to an in-plane magnetic
field, which leads to anisotropic backscattering caused by the distortion of the spin texture of
the surface states. The second mechanism, known as the relative shift effect, arises from the
presence of a nonzero net spin polarization. Remarkably, it was found that PHE can emerge on
the surfaces of TIs even in the absence of magnetic impurities.
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Chapter 5

Green’s Functions and Diagrammatic
Technique

This chapter discusses the basics and application of the most well-known and universal ap-
proaches to theoretical calculations – Green functions and diagrammatic techniques. It explores
the mathematical formalism of Green’s functions, figuring out their physical interpretation and
their role in describing the systems. In addition, the diagrammatic technique is introduced as
a graphical representation of processes in systems, emphasizing its effectiveness in theoretical
calculations. These methods have important applications in fields such as condensed matter
physics, quantum field theory, and statistical mechanics.

5.1 Introduction

A system consisting of numerous interacting particles inherently exhibits a rather complex and
multifaceted level of behavior. The spectrum of energy levels associated with such a system is
characterized by an almost continuous range, and the eigenfunctions that correspond to these
energy levels are intricate mathematical representations that depend on the spatial coordinates of
the individual particles. The precise formulation of the energy spectrum and the corresponding
wave functions remains unknown, as it is neither fully calculable nor readily measurable. The
most comprehensive understanding of a many-particle system can be achieved by solving
the Schrödinger equation. Nevertheless, obtaining an accurate solution to the Schrödinger
equation is an attempt that turns out to be impossible in most cases, which leads to an appeal to
various approximation methods based on perturbation theory, which are used both for theoretical
calculations and for experimental analysis. In the context of a typical experimental measurement
that investigates a many-particle system, one often observes the cases when a system, that
is already in equilibrium, is subjected to weak perturbation using one or more methods: for
example, adding or removing a particle, applying a weak electromagnetic field, interacting a
beam of electrons or neutrons that strike the system, or setting a thermal gradient across the
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system, and others. Rather than trying to compute the full energy spectrum of a many-particle
system, it is more advantageous to focus on understanding the system’s response to such external
perturbations and influences. The most effective methodology to achieve this understanding
involves the application of Green functions, as well as the use of Feynman diagrams, which
serve as powerful tools for visualizing and calculating the impact of these perturbations on the
many-particle system under investigation [237, 238].

5.2 Green’s Functions at Zero Temperature

Many-body calculations are often carried out for simplified model systems that are specifically
analyzed at absolute zero temperature, which serves as a theoretical limit that helps to understand
complex interactions in different systems. It is important to admit that real experimental
systems, in practice, are never really at zero temperature; however, they often operate under
conditions that can be considered low temperature. It is noteworthy that many physical quantities
demonstrate a remarkable insensitivity to temperature changes, especially when it comes to
low temperature scenarios, which allows for certain simplifications in the analysis. Despite the
apparent gap between zero temperature estimation and actual physical systems, these theoretical
calculations prove to be quite useful in providing insights that relate to the real scenarios
being studied. Moreover, the characteristics of a system at zero temperature are recognized
as an essential quantity that determines the ground state of the interacting system, which is
fundamental to understanding its properties. Generally, a system is described by its ground
state along with its excitations, and the ground state can often be derived from exact zero-
temperature calculations [237, 238]. A significant number of zero temperature calculations have
been performed to establish, for example, the ground state of a homogeneous electron gas or to
elucidate the ground state characteristics of superfluid He4 [239–241]. Thus, zero temperature
formalism arises as an indispensable component of computational strategies and methodologies
used in theoretical and applied physics.

It is usually necessary to solve the Hamiltonian, which is characterized by its complexity and
is often unsolvable using conventional analytical methods. In scenarios where a solution can
be reached in a direct way, the use of Green’s functions becomes unnecessary and superfluous,
since the problem can be solved without resort to such advanced mathematical constructions.
It should be noted that a very limited number of accurate results were obtained using Green’s
functions and which were not first established using more traditional theoretical methodologies.

Typically, it is assumed that it is necessary to find out the basic properties and behavior of a
particular physical system, which is described by the Hamiltonian, denoted as H , which, due to
its complexity, may not have an accurate solution. This Hamiltonian can be separated into two
parts [237, 239, 240]

H = H0 + V, (5.1)
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whereH0 is usually selected as Hamiltonian which can be solved exactly, V denotes the rest parts
of Hamiltonian H . It is good to choose H0 in such way that influence of part V will be small.
H0 shows an unperturbed part, V indicates interactions and additional effects in the system.
The procedure of calculation is started from describing the part H0. Then, after introducing the
part V , one investigates how this part changes the properties. These steps represent the basic
procedure in many-body theory [240].

Next, considering an operator A

A(t) = eiHtAe−iHt (5.2)

and in the same way an operator B, it is possible to define the real-time casual correlation
function [237, 241]

CAB (t, t′) = −i⟨TA (t)B (t′)⟩, (5.3)

where ⟨...⟩ represents the grand canonical ensemble average, T is the time-ordering operator,
and TA (t)B (t′) = A (t)B (t′) for the case when t > t′, TA (t)B (t′) = ∓B (t′)A (t), when
t < t′ (∓ refers to the case when A and B are fermion (boson) operators).

Now it is possible to define the retarded correlation function CR [237, 239]

CR
AB (t, t′) = −iθ (t− t′) ⟨[A (t)B (t′)]±⟩, (5.4)

with upper (lower) sign refers to fermions (bosons), and θ (t− t′) denotes the step function

θ (t− t′) =

0, t < t′,

1, t > t′.
(5.5)

CR
AB (t, t′) is nonzero only in case of t > t′. This is the reason why it is called "retarded".

A common property of correlation functions is that for case when the Hamiltonian is time-
independent, they depend on t− t′, not on t and t′ independently [237].

The real-time Green’s function is a special case of correlation functions for A = Ψσ (r) and
B = Ψ†

σ (r), where Ψσ (r) (Ψ†
σ (r)) denotes the field operator that annihilates (creates) a particle

with spin projection σ at position r. There are different types of real-time Green’s functions –
casual G, retarded GR, advanced GA [237, 239]

G (rσt, r′σ′t′) = −i⟨TΨσ (rt)Ψ
†
σ (r

′t′)⟩, (5.6)

GR (rσt, r′σ′t′) = −iθ (t− t′) ⟨|Ψσ (rt)Ψ
†
σ (r

′t′) |±⟩, (5.7)

GA (rσt, r′σ′t′) = iθ (t− t′) ⟨|Ψσ (rt)Ψ
†
σ (r

′t′) |±⟩, (5.8)

with the upper (lower) sign refers to fermions (bosons). Retarded "R" for Green’s function
means that the appearance of the particle at the position r at time t depends on its position r′ at
earlier time t′, while advanced "A" causes the dependence on the presence of the particle with
the position r′ at future time t′.
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Further, it will be discussed only the retarded Green’s functions. They, which are the most
instrumental among various types of correlation functions, serve a critical role in elucidating
and quantifying the dynamic response of a physical system which is subjected to external
perturbations, such as those induced by electromagnetic fields, incident electrons, or neutrons,
and consequently, these functions are intrinsically linked to quantities that can be directly
observed and measured through experimental methods [238, 239].

Assuming that Hamiltonian (5.1) is time-independent, the retarded Green’s function is a
special case of such correlation functions that depend on the difference t− t′, so it can be set t′

to zero and then the function GR will depend only on t.
In addition, if to consider translationally invariant systems, in which the function of positions

does not change with a simultaneous spontaneous change in the positions of r and r′, then
Green’s functions will depend on the difference in positions r − r′. Then, for the case of a
translationally invariant system with a Hamiltonian independent of time, the retarded Green’s
function will be [237, 240, 241]

GR (r− r′σ, t) = −iθ (t) ⟨|Ψσ (rt)Ψ
†
σ (r

′0) |±⟩. (5.9)

For this case, after determination of a complete set of single-particle momentum states
|kσ> with the corresponding operators [237]

Ψσ (rt) =
1√
V

∑
k

eik·rakσ (t) , Ψ†
σ (rt) =

1√
V

∑
k

e−ik·ra†kσ (t) ,

where a†kσ (akσ) is the operator that creates (annihilates) a particle in state |kσ>, it can be defined
the spatial Fourier transform [237]

GR (kσ, t) = −iθ (t) ⟨|akσ (t) a†kσ (0) |±⟩ (5.10)

with the correspond spectral representation [237, 239]

GR (kσ, ω) =

∫ ∞

−∞
eiωtGR (kσ, t) dt. (5.11)

Also one can generalize the definition (5.7) for the retarded real-time Green’s functions.
These functions can be defined via corresponding annihilation and creation operators for any
complete set of single-particle states |ψ1>, |ψ2>, .... In the result, the retarded Green’s function in
ψλ-representation will be [237, 240]

GR (λ, t− t′) = −iθ (t− t′) ⟨|cλ (t) c†λ (t
′) |⟩. (5.12)

The quantum number λ can have any definition, depending on the problem under consideration.
At zero temperature the state |> is defined as the ground state. Since it is chosen that the
problem is described by the Hamiltonian H (5.1), and therefore |> denotes the ground state of
this Hamiltonian, whence it follows that |> is the eigenstate of the Hamiltonian H . Certainly, at
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the beginning, neither the ground state nor the other eigenstates of the problem’s Hamiltonian H
are known, since this is the final task to be solved by using Green’s functions. Having written
the Hamiltonian H (5.1) in two parts, the unperturbed part H0 should be chosen so that its
eigenstates are known. As noted, cλ is defined through terms of a complete set of states ψλ.
Next, this set of states is chosen as the eigenstates of the unperturbed Hamiltonian H0. Then, in
the final definition of the Green’s function, cλ is responsible for the states of the unperturbed
Hamiltonian H0, and the ground state |> represents an eigenstate of the complete Hamiltonian
H [240].

To solve the problem under consideration, there may be needed a special case of the Green’s
function, when the interaction part of Hamiltonian (5.1) V = 0. This case corresponds to the
unperturbed Green’s function, or free propagator [240]

G0 (λ, t− t′) = −iθ (t− t′) 0⟨|cλ (t) c†λ (t
′) |⟩0, (5.13)

where |>0 is a ground state of the unperturbed Hamiltonian H0.
Any (casual, retarded or advanced) full Green’s function of the system with taking into

account all necessary perturbations can be found from so-called Dyson’s equation, that in general
has a form [239, 240]

G = G0 +G0V G. (5.14)

For this equation, there can be made a lot of different modifications, depending on the problem
under consideration. In addition, for ease of understanding the system, the Dyson’s equation can
be rewritten as Feynman diagrams and can be used not only for the full Green’s function, but
also for any others needed for calculations.

5.3 Linear Response Theory

Linear response theory is a deeply significant and widely used basis in all fields of physics,
demonstrating its universality and applicability in many contexts. This fundamental principle
states that the reaction or response of the system to a slight external perturbation is directly
proportional to the magnitude of this perturbation, thereby indicating that the main focus of the
study should be on determining the constant that defines this proportional relationship. Among
the many potential applications that can be derived from the linear response formula, one can
especially highlight the charge and spin susceptibility observed in various electronic systems
during the action of external electric or magnetic fields. In addition, it can be used to calculate
the responses of materials to external mechanical forces or vibration [237].

At the beginning, one considers a quantum system that is described by the unperturbed
time-independent Hamiltonian H0 in thermodynamic equilibrium. Then, it is assumed that an
external perturbation is applied to the system at some point in time t = t0, what brings the
system out of equilibrium. To describe this perturbation, one needs to add additional term that
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depends on time

H = H0 +H ′ (t) θ (t− t0) . (5.15)

The main goal of calculations is to find an expectation value of a physical quantity, described
by the operator A at the time t, greater then t0. For this, it is needed to find the time evolution
of the density matrix or the time evolution of eigenstates of the unperturbed time-independent
Hamiltonian H0, that describes the system before perturbation. If to take H ′ as a small perturba-
tion, the result is the expectation value of A up to linear order of the perturbation, that gives the
retarded correlation function or retarded response function [239]

δ⟨A(t)⟩ ≡ ⟨A(t)⟩ − ⟨A⟩0
∫ ∞

t0

dt′CR
AH′ (t, t′) , (5.16)

where

CR
AH′ (t, t′) = −iθ (t− t′) ⟨[A (t)H ′ (t′)]⟩0. (5.17)

This is the Kubo formula, which describe the linear response to a perturbation H ′ [237, 239].

5.4 Feynman Diagram Technique

From the linear response theory and method of Green’s functions, it becomes apparent that
carrying out complete calculations of phenomena in the quantum field theory is an extremely
difficult task. Even the basic operators can manifest as an infinite series of terms for all orders
in relation to the perturbations in the system. Consequently, it becomes challenging to choose
which terms are important. In 1948, Feynman solved this problem with the idea of representing
all terms in the form of drawings. These drawings, called Feynman diagrams, are an accurate
mathematical representation of perturbation theory in infinite order and are extremely useful
in clarifying the physical processes that these terms represent. Diagrams can be drawn for
both Green’s function depending on time and Green’s function after Fourier transformation that
depends on the frequency or energy [239, 240].

The first step in drawing diagrams is to choose a so-called graphical vocabulary, that is, it is
necessary to determine how to designate basic quantities – Green’s functions, interactions V and
effects. For example, the full Green’s function of the system can be shown by two solid lines as
in Fig. 5.1(a), while the unperturbed Green’s function can be denoted by one solid line with an
arrow indicating the direction of change in the system, as presented in Fig. 5.1(b). Then, add
lines of interactions, perturbations or other additional effects, showing them with dashed lines.
(Fig. 5.1(c)) It can be, for instance, scattering processes in the system. Next, determine what
information should be invested in the connection points (vertex) of the lines of Green’s functions.
For example, it can be conservation of energy or momentum. The next step is to carry out sums
for all necessary values, such as momentum, energy or spin.
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(d) x x x

x

Figure 5.1: Feynman diagrams. (a) Full Green’s function of the system. (b) Unperturbed Green’s
function. In (a) and (b) a is a point of the beginning of an effect (for example, the creation of
a particle), b is a point of the ending of an effect (for instance, the annihilation of a particle).
(c) Scattering process (perturbation). (d) Self-energy diagrams for scattering from a single
impurity [239, 240]. Drawn according to figures from Many-Body Quantum Theory in Condensed Matter Physics, H. Bruus, K.

Flensberg, (2004) and Many-Particle Physics (Second Edition), G. D. Mahan, (2000).

Impurity Self-Averaging and Self-Energy

For simplification and reduction of fluctuations, in the system with scattering on randomly
positioned impurities, for which the coherent length between impurities is significantly smaller
than the size of the sample in the system at all experimentally realized temperatures, it can be
made a certain averaging on these impurities as on the subsystems. This averaging is defined by
the physical properties of the system itself, therefore this effective averaging is considered as
self-averaging and is called impurity self-averaging. Mathematically, this averaging is carried
out through summation over all subsystems, then divided by the number of these subsystems.
However, taking into account random distribution of impurities, this average corresponds to the
average over the impurity position in one subsystem. Nevertheless, considering that the system
is homogeneous, one can carry out an averaging procedure that incorporates all uncorrelated
positions of the number of impurities distributed throughout the entirety of the system, and
introduce the impurity averaged Green’s function ⟨Gk⟩imp with momentum k [239].

This impurity averaged Green’s function can be determined using Dyson’s equation. However,
deriving this equation is quite complex, involving many steps and the application of various
theorems. To simplify the process, the concept of self-energy Σk is introduced. With this
approach, Dyson’s equation for the impurity averaged Green’s function can be expressed in the
form [239, 240]

⟨Gk⟩imp =
1

(G0
k)

−1 − Σk

. (5.18)

This equation also shows why Σk is called "self-energy". It can be considered as an additive
correction to the unperturbed energy. The problem of finding a function ⟨Gk⟩imp has been
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reduced to calculating only the self-energy, what will be correct only in the limit of low impurity
concentration.

Self-energy is defined as the sum of an infinite series of different diagrams. This method
is best used in the case when the approximations of the lowest terms can be enough for the
final result. As an alternative, there are instances in which it becomes possible to create specific
subsets of diagrams from the extensive series, thereby simplifying the computational process.
Nevertheless, except for a limited number of some cases, achieving an exact value for Σk

remains impossible, therefore it is necessary to accept approximate results [239]. It is essential
to understand that Dyson’s equation gives good insights typically only within the weak coupling
theory, where the involved perturbation is small enough to get an approximation with just a few
terms from Σk [240].

For the case of scattering from a single impurity with the low density concentration, the
diagrams of the self-energy can be depicted as in the Fig. 5.1(d). Each of the diagrams represents
its own level of approximation. The lowest order of the approximation is obtained from the first
diagram from Fig. 5.1(d) and gives the contribution [239, 240]

Σ1
k = ni

∫
drV (r) = niV (0) , (5.19)

where ni denotes impurity densities. This approximation only shows a simple constant shift of
all energy levels with magnitude niV (0).

Further, the second diagram in Fig. 5.1(d), called the "wigwam" diagram, corresponds
to the first non-trivial approximation of the self-energy, which is called the first-order Born
approximation [239, 240]

Σ2
k = ni

∫
d3k′

(2π)3
V (k− k′)G0

k′V (k′ − k) . (5.20)

This result is obtained not just from an assumption, but comes directly from the expansion of the
Green’s function.

An extension of the first-order Born approximation is the full Born approximation, which
is determined by the self-energy, that takes into account any number of scattering on the same
impurity, that is, more dashed lines on the "wigwam" diagram with such an n-th term [240]

Σn
k = ni×

×
∫

d3k1

(2π)3
...
d3kn

(2π)3
V (k− k1)G

0
k1
V (k1 − k2) ...V (kn−1 − kn)G

0
kn
V (kn − k). (5.21)

From the n-th term, it can be seen that the obtained total self-energy will be proportional to the
concentration ni.
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Also, for the accuracy of calculations, additional approaches and approximations can be used
along with their combinations. For example, one can create a set of diagrams called the vertex
correction [240]. This set will contain additional, extended information about the perturbations
in the system. The vertex correction function can be found from the vertex equation. Since this
equation is self-consistent, one can gradually increase the order of diagrams that are taken into
account in the calculations. This approach can greatly facilitate the solution of the problem under
consideration [239].

Another notable example is the ladder diagrams approach [240]. Most often, such diagrams
represent a gradual increase in the number of perturbations. Ladder diagrams usually appear
in higher orders of perturbation theory. Unfortunately, it is necessary to investigate each term-
diagram because the high order of diagram does not necessarily have less influence than from
the low-order diagrams [239].

These approaches can be applied both to finding the full Green’s function and the self-energy
of the system, and to calculating various required quantities, such as polarization, conductivity,
etc [239, 240].
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Chapter 6

Bilinear Magnetoresistance and
Nonlinear Planar Hall Effect in

Topological Insulators with Isotropic
Fermi Contours

In this chapter, we focus on the unidirectional magnetotransport of surface electrons in a three-
dimensional (3D) topological insulator (TI) with isotropic Fermi contour (without hexagonal
warping, tilting, or particle-hole asymmetry), especially on the bilinear magnetoresistance (BMR)
and nonlinear planar Hall effect (NPHE). We study another physical mechanism of BMR and
NPHE related to scattering processes on spin-orbital impurities. Using the Green’s function
formalism and diagramatic method, discussed in Chapter 5, we have derived analytical results
for diagonal and off-diagonal elements of the conductivities and determined nonlinear signals in
two levels of the approximation [242, 243]. Both of these remarkable phenomena, which exhibit
intriguing characteristics and behaviors, can be measured during one transport experiment and
can be a highly effective instrument for the evaluation of material constants.

The content of this chapter is based on the original results that have been published in two
articles [242, 243].

6.1 Model and Method

We consider electronic surface states of 3D topological insulator (TI) (Section 2.1) with applied
in-plane external electric and magnetic fields. This system is described by a minimal model,
which means that we neglect the effect of hexagonal warping, bands tilting, and electron-hole
asymmetry, since they are not related to the mechanism that we propose for the bilinear mag-
netotransport. In addition, we make the assumption that TI is thick enough to neglect the
hybridization between top and bottom surface states [242, 243].
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Strong spin-orbit interaction (Section 2.2) in TIs is responsible for the so-called spin-
momentum locking of surface electrons, that was introduced in Section 2.1. As a result, the net
spin polarization in the electron subsystem is zero in equilibrium. However, under an external
electric field, the Fermi contour is shifted in the momentum space, and a nonzero charge current
and spin polarization of the conduction electrons appear. Accordingly, the current-induced spin
polarization (CISP) (Section 2.3) is oriented in the plane of the system and perpendicular to the
orientation of charge current density. This nonequilibrium spin polarization acts as an effective
spin-orbital (SO) field [7] BSO = JS with J = −8πvF/kF being the effective coupling between
surface electrons and nonequilibrium spin polarization (vF and kF are Fermi velocity and Fermi
wavevector, respectively). This SO field can be added to the external in-plane magnetic field,
B = (Bx, By, 0) = B(cos θ, sin θ, 0) (here θ is an angle between the x-axis and orientation of
magnetic field, and B = gµBb is the magnetic field amplitude given in the energy units, i.e., b is
given in Tesla).

6.1.1 Model Hamiltonian

The Hamiltonian describing surface electrons of 3D TI in the presence of external electric and
magnetic fields can be written in the Bloch basis as follows:

Hkk′ = H0

kδk,k′ +H imp

kk′ +HA

kk′ , (6.1)

where, H0
k has the form

H0

k = v(k× ẑ) · σ +Beff · σ. (6.2)

Here v = ℏvF, k is the wave vector and σ = (σx, σy, σz) is a vector of Pauli matrices acting
in the spin space. The effective magnetic field, Beff , is a superposition of the external in-plane
magnetic field and SO field due to the nonequilibrium CISP, i.e., Beff = B+BSO. In addition,
we note that formal incorporation of the SO field into Hamiltonian (6.2), and thus also calculation
of the conductivity, should be done in a self-consistent way (see also Supplemental Material in
Ref. [7]). However, because the effect of the SO field is a small perturbation (responsible for a
small correction to the longitudinal current), cutting the self-consistent procedure on the lowest
step and also keeping the expression for spin polarization in the zero magnetic field [7] is fully
justified.

The second term in Eq. (6.1) describes scattering on randomly distributed point-like impuri-
ties that are also a source of SO scattering. The corresponding scattering potential is given by
the expression [14, 20, 243]

H imp

kk′ = Vkk′ (σ0 − iλσ · (k× k′)) , (6.3)

which contains the scalar component (proportional to the identity matrix σ0) as well as the SO
term, where λ describes the strength of spin-orbit coupling (SOC). The scattering potential is
modeled here as short-range white noise disorder with only the second-order cumulant being
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nonzero, i.e., ⟨|Vkk′|2⟩ = niV
2
0 (ni is a concentration of impurities and ⟨...⟩ means the configura-

tional average over impurities’ positions).
The last term of Eq. (6.1) describes the coupling of electrons to the external electric field rep-

resented by the vector potential A = (Ax, Ay). This term can be simply obtained by the Peierls
substitution [242,244,245]: k → k− e

ℏA, i.e., H0
kδk,k′ +H imp

kk′−−−−−−→
k→k− e

ℏA
H0

kδk,k′ +H imp

kk′ +HA

kk′ ,

and takes the form

HA

kk′ =
e

ℏ
Ax

(
v σyδkk′ + iλ Vkk′(k′y − ky)σz

)
− e

ℏ
Ay (v σxδkk′ + iλ Vkk′(k′x − kx)σz) . (6.4)

6.1.2 Current-Induced Spin Polarization

The nonequilibrium spin polarization, induced by electric field, applied in y-direction, [7, 45, 46]
for the minimal model describing surface states of a TI can be found from

Sx =
eℏ
2π
EyTr

∫
d2k

(2π)2
ŜxḠ

0R
k (ε) v̂kxḠ

0A
k (ε) , (6.5)

where Ey is a y-component of the electric field, v̂kx is x-component of the velocity opera-
tor that can be found as v̂kx = (1/ℏ)

(
dĤ0

k/dkx

)
and Ḡ

0R/0A
k (ε) is the impurity-averaged

retarded/advanced Green’s function of the Hamiltonian (6.2) in the absence of magnetic field.
The impurity-averaged retarded Green’s function in the absence of magnetic field can be found
from Ḡ0R

k (ε) =
[
(ε+ iΓ0)σ0 −H0

k

]−1 with Γ0 =
1
4
niV

2
0

|ε|
v2

and after algebraic transformations
will have a form

Ḡ0R
k =

εσ0 + v (kyσx − kxσy)

(ε− vk + iΓ0) (ε+ vk + iΓ0)
. (6.6)

Upon substituting Eq.(6.6) into Eq.(6.5) and after the integration, the spin polarization takes
the form

Sx =
e

8π
Ey

|ε|
v
τ0, (6.7)

where τ0 = ℏ
2Γ0

. In turn, the charge current density for the TI with zero magnetic field is given by

jy = −e
2

ℏ
|ε|
4πℏ

Eyτ0. (6.8)

Combining (6.8) with (6.7) one finds the final result

Sx = − ℏ2

2ev
jy. (6.9)

Performing similar steps for the case when the electric current is applied in the x-direction,
we get the spin polarization in the y-direction

Sy =
ℏ2

2ev
jx. (6.10)
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The vector form for the nonequilibrium spin polarization for the minimal model describing
surface states of a TI takes a form

S = − ℏ2

2ev
j× ẑ, (6.11)

where ẑ is a unit vector normal to the surface.

6.1.3 Gauge Transformation

The in-plane effective field Beff included into the unperturbed Hamiltonian (6.2) leads only to
a shift of electronic energy dispersion in the k space (i.e., the Dirac cone is shifted out of the
Brillouin zone center in the presence of Beff). Accordingly, one can define a gauge transformation
that removes the effect of in-plane effective magnetic field from Eq. (6.2): k → q + (e/ℏ)Λ,
with Λ = (ℏ/ve)Beff × ẑ. This transformation technically simplifies our further calculations,
even though the scattering term, Eq. (6.3), is modified. The total Hamiltonian of the system after
the above gauge transformation takes the form

Hqq′ = H0
qδqq′ +H imp

qq′ +HA
qq′ (6.12)

with

H0
q = v(qyσx − qxσy), (6.13)

H imp
qq′ =Vqq′ (σ0 − iλq× q′ · σ)

+ i
e

ℏ
λVqq′Λ× (q− q′) · σ, (6.14)

HA
qq′ = − v

e

ℏ
A× ẑ · σ − i

e

ℏ
λVqq′ A×(q− q′) · σ. (6.15)

For further calculation it is need to define also the charge current density operator that after
the gauge transformation will have a form

ĵqq′ = −∂Ĥqq′

∂A
≡ ev̂qq′ , (6.16)

where v̂qq′ is the velocity operator which, based on Eq. (6.15), has two components

v̂qq′ = v̂0qq′δq,q′ + v̂aqq′ , (6.17)

v̂0

qq′ = −v
ℏ
(σ × ẑ ), (6.18)

v̂aqq′ = i
λ

ℏ
Vqq′ (q− q′)× σ. (6.19)

The first term of the velocity operator is the ordinary part of the velocity operator, whereas the
second term is the so-called anomalous velocity [57] due to SOC associated with impurities.
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6.1.4 Green’s Functions and Self-Energy

To find transport characteristics, it is needed to calculate the self-energy and impurity averaged
Green’s functions. The retarded self-energy in the Born approximation is given by the following
expression

ΣR
q (ε) =

∫
d2q′

(2π)2
H imp

qq′ G
0R
q′ (ε) H

imp
q′q, (6.20)

whereG0R
q′ (ε) denotes the zero-order retarded Green’s function corresponding to the Hamiltonian

(6.13) after the gauge transformation. This function can be found from

G0R
q (ε) =

[
(ε+ i0+)σ0 −H0

q

]−1
. (6.21)

In the result, after performing all the necessary substitutions and various calculations, the
resulting zero-order retarded Green’s function will have a form

G0R
q (ε) = gR0q(ε)σ0 + gRxq(ε)σx + gRy q(ε)σy, (6.22)

where

gR0q(ε) =
1

2
(G0R

q+ +G0R
q−), (6.23a)

gRxq(ε) =
qy
2q

(G0R
q+ −G0R

q−), (6.23b)

gRy q(ε) = − qx
2q

(G0R
q+ −G0R

q−) (6.23c)

with G0R
q±(ε) =

1
ε∓qv+iΓ0

, Γ0 =
1
4
niV

2
0

|ε|
v2

.
To simplify further calculations, after substitutions of Hamiltonian (6.14) and Eq. (6.22) one

can rewrite self-energy (6.20) according to order of the SOC parameter λ for the electric current
applied in the x-direction

ΣR
q (ε) = ΣR

λ0 q(ε) + ΣR
λ1 q(ε) + ΣR

λ2 q(ε), (6.24)

where

ΣR
λ0 q(ε) = niV

2
0

∫
d2q′

(2π)2
(
gR0q′(ε)σ0 + gRxq′(ε)σx + gRy q′(ε)σy

)
(6.25)

and ΣR
λ1 q(ε) can be written as

ΣR
λ1 q(ε) = ΣR

λ1
x q(ε)σx + ΣR

λ1
y q(ε)σy (6.26)

with components

ΣR
λ1
x q(ε) = 2λniV

2
0

∫
d2q′

(2π)2
hq′q g

R
y q′(ε), (6.27)

ΣR
λ1
y q(ε) = −2λniV

2
0

∫
d2q′

(2π)2
hq′q g

R
xq′(ε), (6.28)
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where hq′q = q′xqy − q′yqx − (Bx/v) (q
′
x − qx)− ((By + J Sy) /v)

(
q′y − qy

)
.

The term of the self-energy with second-order of SOC parameter ΣR
λ2 has a form

ΣR
λ2 q(ε) = ΣR

λ2
0 q
(ε)σ0 + ΣR

λ2
x q(ε)σx + ΣR

λ2
y q(ε)σy, (6.29)

where

ΣR
λ2
0 q
(ε) = −λ2niV

2
0

∫
d2q′

(2π)2
hqq′hq′q g

R
0q′(ε), (6.30)

ΣR
λ2
x q(ε) = λ2niV

2
0

∫
d2q′

(2π)2
hqq′hq′q g

R
xq′(ε), (6.31)

ΣR
λ2
y q(ε) = λ2niV

2
0

∫
d2q′

(2π)2
hqq′hq′q g

R
y q′(ε). (6.32)

After integration over q′ components of the self energy (6.25), (6.27) and (6.30) have the
following form

ΣR
λ0 q(ε) = −iniV

2
0

1

4

|ε|
v2
σ0, (6.33)

ΣR
λ1
x q(ε) = ±iλniV

2
0

1

4v2
ε2

v2
(vqy −Bx) , (6.34)

ΣR
λ1
y q(ε) = ∓iλniV

2
0

1

4v2
ε2

v2
(vqx + (By + J Sy)) , (6.35)

ΣR
λ2
0 q
(ε) = − iλ2niV

2
0

1

8v3
|ε|
v

ε2

v2
(
(vqy −Bx)

2 + (vqx +By + J Sy)
2)

− iλ2niV
2
0

1

8v3
|ε|
v
2 (Bxqx + (By + J Sy) qy)

2 ,

(6.36)

ΣR
λ2
x q(ε) = ∓iλ2niV

2
0

1

4v3
ε2

v2
(Bxqx + (By + J Sy) qy) (vqx +By + J Sy) , (6.37)

ΣR
λ2
y q(ε) = ∓iλ2niV

2
0

1

4v3
ε2

v2
(Bxqx + (By + J Sy) qy) (vqy −Bx) . (6.38)

Groping together all terms near each Pauli matrices allows to write (6.20) in the form

ΣR
q (ε) = ΣR

0q(ε)σ0 + ΣR
xq(ε)σx + ΣR

y q(ε)σy. (6.39)

As can be seen from previous calculations, coefficients ΣR
0,x,y will have the form which is

dependent on the orientation of the charge current density (as it determines the orientation of
CISP) that makes the self-energy (6.39) in general a function that depends on the current flow
direction, and also the external magnetic field and nonequilibrium spin polarization.

After algebraic transformations for the charge current density flowing in the x-direction, one

64



finds

ΣR
0 =− iniV

2
0

1

4

|ε|
v2

(
1 +

λ2

2v2
ε2

v2
(vqy −Bx)

2

)
− iniV

2
0

1

4

|ε|
v2

λ2

2v2
ε2

v2
(vqx +By + J Sy)

2

− iniV
2
0

1

4

|ε|
v2
λ2

v2
(Bxqx + (By + J Sy) qy)

2 ,

(6.40)

ΣR
x =± iλniV

2
0

1

4v2
ε2

v2
(vqy −Bx)

∓ iλniV
2
0

1

4v2
ε2

v2
λ

v
(Bxqx + (By + J Sy) qy) (vqx +By + J Sy) ,

(6.41)

ΣR
y =∓ iλniV

2
0

1

4v2
ε2

v2
(vqx +By + J Sy)

∓ iλniV
2
0

1

4v2
ε2

v2
λ

v
(Bxqx + (By + J Sy) qy) (vqy −Bx) .

(6.42)

The signs in front of ΣR
x and ΣR

y correspond to the positive and negative energy branches,
respectively. It should be stressed that the self-energy coefficients given by Eqs. (6.40)-(6.42) is
also expanded up to the second order with respect to parameter λ.

When the charge current density is oriented in the y-direction, we get

ΣR
0 =− iniV

2
0

1

4

|ε|
v2

(
1− λ2

2v2
ε2

v2
(vqy −Bx − J Sx)

2

)
− iniV

2
0

1

4

|ε|
v2

λ2

2v2
ε2

v2
(vqx +By)

2

− iniV
2
0

1

4

|ε|
v2
λ2

v2
((Bx + J Sx) qx +Byqy)

2 ,

(6.43)

ΣR
x =± iλniV

2
0

1

4v2
ε2

v2
(vqy − (Bx + J Sx))

∓ iλniV
2
0

1

4v2
ε2

v2
λ

v
((Bx + J Sx) qx +Byqy) (vqx +By) ,

(6.44)

ΣR
y =∓ iλniV

2
0

1

4v2
ε2

v2
(vqx +By)

∓ iλniV
2
0

1

4v2
ε2

v2
λ

v
((Bx + J Sx) qx +Byqy) (vqy − (Bx + J Sx)) .

(6.45)

The impurity-averaged retarded Green’s function can be found from the Dyson’s equation
(Chapter 5) [

GR
q (ε)

]−1
=
[
G0R

q (ε)
]−1 − ΣR

q (ε). (6.46)

Solving this equation and making all the necessary substitutions of Eq. (6.22) and Eq. (6.39)
and simplifications, after algebraic transformations, the impurity-averaged retarded Green’s
function can be expressed in the following form

GR
q (ε) = GR

0q(ε)σ0 +GR
xq(ε)σx +GR

y q(ε)σy, (6.47)
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where

GR
0q(ε) =

ε

2ε+ i(Γq+ + Γq−)
(GR

q+ +GR
q−), (6.48a)

GR
xq(ε) =

vqy
2ε+ i(Γq+ + Γq−)

(GR
q+ +GR

q−), (6.48b)

GR
y q(ε) = − vqx

2ε+ i(Γq+ + Γq−)
(GR

q+ +GR
q−) (6.48c)

with GR
q±(ε) =

1
ε∓qv+iΓq±

and relaxation rates, Γq± = Γ±(ε), defined as follows

Γq± = Γ0(1 + γq±), (6.49)

where Γ0 = 1
4
niV

2
0

|ε|
v2

and γq± is a correction due to SO part of the scattering potential, and
depends on Beff .

γq+ = −λ 1

|ε|
ε3

v2
+
λ2

2

ε2

v4
(
ε2 + 3

(
B2

x + (By + J Sy)
2))

+ λ2
ε2

v4
(
2Bx (By + J Sy) sin 2ϕ+

(
B2

x − (By + J Sy)
2) cos 2ϕ) (6.50)

− λ
ε2

v2

(
λ
ε

v2
− 1

|ε|

)
(Bx sinϕ− (By + J Sy) cosϕ) ,

γq− = λ
1

|ε|
ε3

v2
+
λ2

2

ε2

v4

(
ε2 +

(
2− |ε|

ε

)(
B2

x + (By + J Sy)
2))

+
λ2

2

ε2

v4

(
1− |ε|

ε

)(
2Bx (By + J Sy) sin 2ϕ+

(
B2

x − (By + J Sy)
2) cos 2ϕ) (6.51)

− λ
ε2

v2

(
λ
ε

v2
+

1

|ε|

)
(Bx sinϕ− (By + J Sy) cosϕ) ,

where used the transition to radial variables qx = q cosϕ, qy = q sinϕ. It should be stressed that
Γq+(εF > 0) = Γq−(εF < 0) = Γ, and Γ = ℏ

2τ
is the relaxation rate at the Fermi level (τ is the

corresponding relaxation time) [7, 242].
With the analogy to the Eqs. (6.47) and (6.48) the impurity-averaged advanced Green’s

function will have the form

GA
q (ε) = GA

0q(ε)σ0 +GA
xq(ε)σx +GA

y q(ε)σy, (6.52)

where

GA
0q(ε) =

ε

2ε− i(Γq+ + Γq−)
(GA

q+ +GA
q−), (6.53a)

GA
xq(ε) =

vqy
2ε− i(Γq+ + Γq−)

(GA
q+ +GA

q−), (6.53b)

GA
y q(ε) = − vqx

2ε− i(Γq+ + Γq−)
(GA

q+ +GA
q−) (6.53c)

with GA
q±(ε) =

1
ε∓qv−iΓq±

.
The above expressions for impurity-averaged Green’s functions and relaxation rate (time)
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Figure 6.1: (a) Ladder approximation. (b) α-th component of renormalised velocity vertex
function Υα. (c) Diagrammatic representation of the conductivity tensor elements σαβ [243].
Reprinted with permission from K. Boboshko, A. Dyrdał: Phys. Rev. B. 109, 155420 (2024). Copyright (2024) by the American Physical

Society.

allow us to obtain diagonal and off-diagonal elements of the conductivity tensor within the
diagrammatic perturbation expansion of the Green’s function in two levels of the approximation,
as presented in Fig. 6.1. For simplicity (without loss of generality), we consider further only
the case when the Fermi energy is positive, i.e., only the conduction band contributes to the
conductivity [243].

6.1.5 Electric Conductivity

As the SO field BSO, that we introduced to the Hamiltonian (6.2), already depends on the electric
field (Section 6.1.1), the nonlinear to external electric field system response can be obtained using
perturbation expansion of Green’s function up to the first order with respect toHA

qq′ . Accordingly,
the corresponding diagrams are depicted in Fig. 6.1. The elements of the conductivity tensor can
be written as follows [243]

σαβ = σ
(1)
αβ + σ

(2)
αβ + σ

(3)
αβ , (6.54)

where

σ
(1)
αβ =

e2ℏ
2π

∫
d2q

(2π)2
Tr⟨ΥαG

R
q v̂

0
β G

A
q ⟩, (6.55)

σ
(2)
αβ =

e2ℏ
2π

∫
d2q

(2π)2

∫
d2q′

(2π)2
Tr
〈
ΥαG

R
q Vqq′ GR

q′ v̂aβ q′qG
A
q

〉
, (6.56)

σ
(3)
αβ =

e2ℏ
2π

∫
d2q

(2π)2

∫
d2q′

(2π)2
Tr
〈
ΥαG

R
q v̂

a
β qq′ GA

q′ Vq′qG
A
q

〉
. (6.57)
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Figure 6.2: Diagrammatic representation of the conductivity tensor elements σαβ in the "bare
bubble" approximation [242]. An open access the Creative Common CC BY License.

The first term corresponds to the first diagram that is the so-called single-loop diagram with the
α-th component of the renormalized velocity vertex function Υα, which contains the information
about the approximation, i.e., this term describes conductivity in the ladder approximation (or
"bare bubble" approximation, as one of the levels of approximation). The contribution related to
the second and third diagrams due to the anomalous velocity describes the side-jump scattering
processes (Fig. 6.1(c)). The skew-scattering diagrams are not considered, as we assumed that the
disorder is described by the Gaussian distribution [7].

6.2 "Bare Bubble" Approximation

For a deeper understanding of the system, we consider first the case of the "bare bubble"
approximation. That is, only one diagram is taken into account from the series, presented in
Fig. 6.1(a), so-called "bare bubble" diagram [242]. This also means that we consider the case
without the vertex correction. Instead of the α-th component of renormalised velocity vertex
function, Υα, only the ordinary part of the velocity operator v̂0

qq′ in a form Eq. (6.18) is taken.
In the result, the diagrammatic representation of the conductivity tensor in the "bare bubble"
approximation will take a form, depicted in Fig. 6.2. The contributions to the conductivity (6.54)
take the following explicit form

σ
(1)
αβ =

e2ℏ
2π

∫
d2q

(2π)2
Tr⟨v̂0αGR

q v̂
0
β G

A
q ⟩, (6.58)

σ
(2)
αβ =

e2ℏ
2π

∫
d2q

(2π)2

∫
d2q′

(2π)2
Tr
〈
v̂0αG

R
q Vqq′ GR

q′ v̂aβ q′qG
A
q

〉
, (6.59)

σ
(3)
αβ =

e2ℏ
2π

∫
d2q

(2π)2

∫
d2q′

(2π)2
Tr
〈
v̂0αG

R
q v̂

a
β qq′ GA

q′ Vq′qG
A
q

〉
. (6.60)

Then we can find the analytical solutions for longitudinal and transverse conductivities in
the "bare bubble" approximation that will be used to define magnetoresistance (MR) and its
components.

The calculations of the longitudinal conductivity one can start from calculations of each
traces T (1), T (2) and T (3) separately. Then, for further simplification of the integration over q
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and q′, it is need to sum traces from Eqs. (6.59) and (6.60). In the result one can get

T (1) =
2v2

ℏ2
(
ε2 + q2v2 cos 2ϕ

) (
GA

q+ +GA
q−
) (
GR

q+ +GR
q−
)

(2ε− i (Γq+ + Γq−)) (2ε+ i (Γq+ + Γq−))
, (6.61)

T (2+3) =
2v2

ℏ2
λniV

2
0 q

′ (q sinϕ− q′ sinϕ′)
(
ε2 sinϕ′ + q2v2 sin (ϕ′ − 2ϕ)

)
×

(
GA

q+ +GA
q−
) (
GR

q+ +GR
q−
)

(2ε− i (Γq+ + Γq−)) (2ε+ i (Γq+ + Γq−))

×

(
GA

q′ + +GA
q−

2ε− i (Γq′ + + Γq′ −)
+

GR
q′ + +GR

q−

2ε+ i (Γq′ + + Γq′ −)

)
.

(6.62)

Making integration over q and q′, after algebraic transformations, the longitudinal conductiv-
ity at Fermi energy for the electric field, applied in the x-direction will have a form

σxx =
e2

8πℏ
εF

Γ0

(
1 + λ

ε2F
v2

(
1 +

Γ2
0

ε2F

)
− λ2

2

ε4F
v4

(
1− 2Γ2

0

ε2F

)
− λ2

ε2F
v4
(
2B2

x + (By + J Sy)
2)) .
(6.63)

Then, in the limit of low-impurity concentration one can further make a simplification
that leads to the analytical representation of the longitudinal conductivity in the "bare bubble"
approximation (with expansion up to the second-order of the SOC parameter λ) [7, 242]

σxx =
e2

8πℏ
εF

Γ0

(
1 + λ

ε2F
v2

− λ2

2

ε4F
v4

− λ2
ε2F
v4
(
B2(1 + cos2 θ) + 2J SyB sin θ

))
. (6.64)

In analogical way to derivation of σxx one can derive analytical expression for σyx

σyx = − e2

8πℏ
εF

Γ0

λ2

2

ε2F
v4
(
B2 sin 2θ + 2J SyB cos θ

)
. (6.65)

Magnetoresistance

Based on the results for the conductivity tensor and taking into account the explicit form of
J and relation between the nonequilibrium spin polarization and charge current density as Eq.
(6.11), we can find the longitudinal resistance, from which we can further determine MR.

According to the definition, the resistivity tensor is inverse to the conductivity tensor. So, for
the diagonal and off-diagonal components of the resistivity tensor one can find

ρxx =
σxx

σxxσyy − σxyσyx
, (6.66)

ρyx = − σyx
σxxσyy − σxyσyx

. (6.67)

After algebraic transformations, the longitudinal and transverse resistivity with the assump-
tion that the electric field (current) is parallel to the x axis and expansion up to the second-order
of the SOC parameter λ, can be written as follows:

ρxx =
4h

e2
Γ0

εF

(
1− λ̃+

3

2
λ̃2
)
+

4h

e2
Γ0

εF
λ̃2
(
B2

ε2F

(
1 + cos2 θ

)
− 4v

h

e

Bjx
ε3F

sin θ

)
, (6.68)

ρyx =
2h

e2
Γ0

εF
λ̃2
(
B2

ε2F
sin 2θ − 4v

h

e

Bjx
ε3F

cos θ

)
, (6.69)
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where λ̃ = λk2F is a dimensionless parameter.
After substitution the expression for the amplitude of the applied magnetic field in the form

B = gµBb, and introducing the following notation ρ0xx = 4 h
e2

Γ0

εF

(
1− λ̃+ 3

2
λ̃2
)

, ρ0yx = 2 h
e2

Γ0

εF
λ̃2,

where ρ0xx, and ρ0yx are respectively the longitudinal and transverse resistivities in the absence
of the external magnetic field, and Fxx (b, jx) = (gµB)

2 b2

ε2F
(1 + cos2 θ) − 4v h

e
gµB

bjx
ε3F

sin θ

and Fyx (b, jx) = (gµB)
2 b2

ε2F
sin 2θ −4v h

e
gµB

bjx
ε3F

cos θ, one can simplify the longitudinal and
transverse resistivities in the "bare bubble" approximation to the form [7, 242]

ρxx = ρ0xx

(
1 +

λ̃2

1− λ̃+ 3
2
λ̃2

Fxx (b, jx)

)
, (6.70)

ρyx = ρ0yxFyx (b, jx) . (6.71)

To describe relative MR we need to use the conventional definition with ρ = ρxx, MR =

[ρ (b)− ρ (b = 0)] /ρ (b = 0), as well as its symmetric and antisymmetric components. Without
loss of generality one can assume that the charge current density is oriented along x-direction. In
such a case, after substitution of Eq. (6.70) in the mentioned definition of MR, one finds:

MR =
λ̃2

1− λ̃+ 3
2
λ̃2

F (b, jx) . (6.72)

The symmetric component of MR, that does not change upon the sign reversal of charge
current density, is called quadratic magnetoresistance. According to the definition QMR =

[MR (jα = j) + MR (jα = −j)] /2 (assuming jα = jx), and after algebraic transformation one
gets

QMR = 2
λ̃2

1− λ̃+ 3
2
λ̃2

(gµB)
2

ε2F
b2
(
1 + cos2 θ

)
. (6.73)

The antisymmetric part of MR is called bilinear magnetoresistance (Section 3.3), as it
behaves linearly with both charge current density and external in-plane magnetic field. BMR
is defined as BMR = [MR (jα = j)− MR (jα = −j)] /2 (where jα = jx), and after algebraic
transformations one finds [7, 242]

BMR = 4
λ̃2

1− λ̃+ 3
2
λ̃2

h

|e|
vgµB

bjx
ε3F

sin θ. (6.74)

From magnetotransport measurement, it is easy to extract amplitudes of QMR and BMR
signals that, based on the above equations, take the following analytical form

ABMR = 4
λ̃2

1− λ̃+ 3
2
λ̃2

h

|e|
vgµB

bjx
ε3F
, (6.75)

AQMR = 2
λ̃2

1− λ̃+ 3
2
λ̃2

(gµB)
2

ε2F
b2, (6.76)

as well as the ratio
ABMR

AQMR
= 2

h

|e|
v

gµB

jx
bεF

. (6.77)
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Figure 6.3: BMR (a) and QMR (b) as a function of the angle between external magnetic field
b and the axis x (the axis x is parallel to the current orientation jx) for indicated values of the
parameter λ̃ proportional to the SOC parameter λ. The solid (dashed) line in the case of BMR
corresponds to positive (negative) current. BMR (c) and QMR (d) as functions of the parameter
λ̃ for various orientations of the magnetic field. Both BMR and QMR reach saturation at the
high λ̃ values. Ratio of the amplitudes of BMR and QMR as a function of the magnetic field b
for different current densities jx (e) and as a function of the Fermi energy εF for different values
of magnetic field (f). niV

2
0 = 1.58× 10−24 eV2m2 and the other parameters as indicated [242].

An open access the Creative Common CC BY License.

This ratio is a quite universal quantity which depends only on the universal constants and
experimentally controlled amplitudes of the magnetic b field and charge current density jx.

From Eqs. (6.75) and (6.76) follows that BMR and QMR drop with increasing Fermi energy
as 1/ε3F and 1/ε2F, respectively. Accordingly, ratio of the amplitudes of BMR and QMR also
drops with increasing εF as 1/εF, see Eq. (6.77). In turn, BMR grows linearly with magnetic
field b while QMR grows with b as b2. Thus, the ratio of the amplitudes of BMR and QMR drops
with increasing b as 1/b.

In Figs. 6.3(a)-(b) we show BMR and QMR as a function of the angle between magnetic field
b and the axis x (parallel to current) for two opposite orientations of charge current density (it can
be positive or negative), and for indicated values of the normalized SOC parameter λ̃. From this
figure follows that BMR changes sign when the direction of current flow is reversed. In addition,
BMR varies periodically with the angle θ between magnetic field and current direction (with
period equal to 2π), and changes sign when the field is rotated to the opposite orientation. Apart
from this, absolute magnitude of BMR appears when magnetic field is oriented perpendicularly
to the current direction, and disappears when magnetic field is parallel to the current. In turn,
QMR has two components, one is independent of the angle θ between magnetic field and current
direction, and another one which varies periodically with θ, with the period equal to π. This
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behaviour of BMR and QMR is in qualitative agreement with that observed in other models of
BMR. From this figure follows that both, BMR and QMR tend to zero in the limit of zero SOC
λ→ 0 [242].

Figs. 6.3(c)-(d) shows BMR and QMR as a function of the normalized SOC parameter λ̃,
and for a constant Fermi energy. Note, both BMR and QMR vanish for λ̃ → 0, and for small
values of λ̃ they increase rapidly with λ̃. Upon reaching a maximum value they slowly decrease
with increasing λ̃ and saturate for large values of λ̃ (according to the prefactors in Eqs. (6.73)
and (6.74)).

Figs. 6.3(e)-(f), in turn, shows the ratio of the amplitude of BMR to that of QMR as a function
of the magnitude of magnetic field b (Fig. 6.3(e)) and also as a function of the Fermi energy εF

(Fig. 6.3(f)), and for indicated other parameters. From this figure follows that the amplitude ratio
falls down with increasing magnetic field b, in agreement with Eq. (6.77), from which follows
that this ratio is proportional to 1/b. This is because amplidude of QMR grows faster with b than
the amplidude of BMR, as already discussed above. Interestingly, this ratio also decreases with
increasing Fermi energy, as follows from Eq. (6.77).

6.3 Ladder Approximation

In this section we consider the ladder approximation which gives more detailed information
about the system and processes in it. As has been mentioned in Section 6.1.5, perturbation
expansion for the Green’s functions leads to a series of diagrams contributing to the longitudinal
and transverse conductivities. Corresponding diagrams for the conductivity tensor (6.54) in
the ladder approximation are shown in Fig. 6.1(c) and their mathematical representations take
the form of Eqs. (6.55)-(6.57). As mentioned earlier, term (6.55) corresponds to the single-
loop diagram in the ladder approximation, σ(1)

αβ := σl
αβ. Terms (6.56)-(6.57) are related to

the contribution due to the anomalous velocity and contains the information about side-jump
processes, σsj

αβ := σ
(2)
αβ + σ

(3)
αβ [7].

6.3.1 Renormalized Vertex Function

The renormalized velocity vertex function Υα in Eqs. (6.55)-(6.57) can be found analytically by
solving the self-consistent equation presented in Fig. 6.1(b) and taking the following mathemati-
cal representation [7, 239, 243, 246]

Υα = v̂0α +

∫
d2q′

(2π)2
H imp

qq′ G
A
q′(ε) Υαq′ GR

q′(ε) H
imp
q′q, (6.78)

where v̂0α is given by Eq. (6.18).
Assuming that the renormalized vertex function has the following form

Υα =
v

ℏ
(Aαqασ0 + Bασx + Cασy +Dασz) , (6.79)
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substituting it into the Eq. (6.78), then, comparing the terms in front of the same Pauli matrices
on the left and right sides of the equation, one gets a system of algebraic equations for coefficients
Aα, Bα, Cα, Dα [243].

Accordingly, after algebraic transformations, the coefficients in Eq. (6.79) take the following
explicit form for the x-component of the renormalized velocity

Ax = λ
ε

v2
1

qx
(By + J Sy) + λ2 ε

v2

(
2qyBx +

ε2

v3
1

q2x
By (By + 2J Sy) + 2

q2y
qx

(By + J Sy)

)
, (6.80)

Bx = −4λ
1

v
(qxBx + qy (By + J Sy))

− λ2 ε
2

v3

(
4
1

v

qy
qx

By (By + 2J Sy) + 5
1

v
Bx (By + J Sy)− qxqyv

)
(6.81)

− 14λ2 ε
2

v3
(qxBx + qy (By + J Sy)) ,

Cx = −2− λ
ε2

v2

(
2 +

1

v

1

qx
(By + J Sy)

)
+ λ2 ε

2

v2

(
q2x
2

+
3q2y
2

− ε2

v2
+

10

ε2
(
q2xB

2
x + q2yB

2
y

)
+

1

2v2
(
9B2

x + 7B2
y

))

+ λ2 ε
2

v2

(
−ε2

v4
1

q2x
B2

y + 7
1

v2
ByJ Sy − 2

ε2

v4
ByJ Sy (6.82)

−2

v
(2qyBx − qx (By + J Sy))− 2

q2y
qx

1

v
(By + J Sy)

)

+ λ2 ε
2

v2

(
−5

2

ε2

v3
1

qx
(By + J Sy) + 20

qxqy
ε2

Bx (By + J Sy) + 20
q2y
ε2

ByJ Sy

)
,

Dx = 0. (6.83)

Renormalized y-component of the velocity operator can be calculated in analogy to the
x-component. In this case the coefficients in equation (6.79) have the following form:

Ay = −λ
ε

v2
1

qy
Bx + λ2 ε

v2

(
ε2

v3
1

q2y
B2

x − 2
q2x
qy

Bx − 2qx (By + J Sy)

)
, (6.84)
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q2y
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2
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7B2
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(qyBx − 2qx (By + J Sy))− 2

q2x
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v
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qy
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− 20λ2 ε

2

v2
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ε2

(qxBx (By + J Sy) + qyByJ Sy) ,

(6.85)

Cy = −4λ
1

v
(qxBx + qy (By + J Sy)) + λ2 ε

2

v3

(
4
1

v

qx
qy

B2
x + 5

1

v
Bx (By + J Sy)

)
− 14λ2 ε

2

v3
(qxBx + qy (By + J Sy)− qxqyv) ,

(6.86)

Dy = 0. (6.87)
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Note, that the coefficients Aα, Bα, Cα, Dα have been derived up to the second order with respect
to the SOC parameter λ.

6.3.2 Electric Conductivity

Longitudinal Conductivity

Calculations of the longitudinal conductivity for the case, when the electric filed is applied
parallel to the x axis, are provided in the similar way to those one, described in Section 6.2. On
the beginning, it is better to calculate traces that in the result will have a form

T (1) =
2v2

ℏ2
(
2A q2vε cos2 ϕ+ B q2v2 sin 2ϕ− C

(
ε2 + q2v2 cos 2ϕ

))
×

(
GA

q+ +GA
q−
) (
GR

q+ +GR
q−
)

(2ε− i (Γq+ + Γq−)) (2ε+ i (Γq+ + Γq−))
,

(6.88)

T (2+3) =
2v2

ℏ2
λniV

2
0 q

′ (q sinϕ− q′ sinϕ′)
(
2A q2vε cosϕ sin (ϕ′ − ϕ)

−B
(
ε2 cosϕ′ − q2v2 cos (ϕ′ − 2ϕ)

)
− C

(
ε2 sinϕ′ + q2v2 sin (ϕ′ − 2ϕ)

))
×

(
GA

q+ +GA
q−
) (
GR

q+ +GR
q−
)

(2ε− i (Γq+ + Γq−)) (2ε+ i (Γq+ + Γq−))

×

(
GA

q′ + +GA
q−

2ε− i (Γq′ + + Γq′ −)
+

GR
q′ + +GR

q−

2ε+ i (Γq′ + + Γq′ −)

)
.

(6.89)

Taking into account expressions for coefficients of the x-component of the renormalized
vertex function from Eqs. (6.80)-(6.82), making integration over q and q′, and evaluation of the
results up to the leading terms with respect to the parameter λ leads to the following analytical
expression for the longitudinal conductivity at Fermi energy in the ladder approximation [243]

σl
xx =

e2

4πℏ
εF

Γ0

(
1 + 2λ

ε2F
v2

+
3

4
λ2
ε4F
v4

− λ3

4

ε6F
v6

)
− e2

4πℏ
εF

Γ0

λ2

2

ε2F
v4
(
B2(7 + 8 cos2 θ) + 14J SyB sin θ

)
− e2

4πℏ
εF

Γ0

3

4
λ3
ε4F
v6
(
B2
(
7 + 3 cos2 θ

)
+ 14J SyB sin θ

)
(6.90)

and the following contribution due to the side-jump scattering mechanism

σsj
xx =

e2

4πℏ
Γ0

εF
λ
ε2F
v2

(
1 + 2λ

ε2F
v2

+
5

4
λ2
ε4F
v4

)
− e2

4πℏ
Γ0

εF

9

4
λ3
ε4F
v6
(
B2
(
1 + 2 cos2 θ

)
+ 3J SyB sin θ

)
.

(6.91)

The contribution from the side-jump scattering to the total conductivity is however negligibly
small, as we show in Figs. 6.4(c)-(d), where the longitudinal conductivity is plotted as a function
of the Fermi energy, εF, and decomposed into the contributions from the ladder term, σl

xx, and
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Figure 6.4: The longitudinal conductivity σxx as a function of the angle θ defining the orientation
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Physical Society.

side-jump term, σsj
xx. Moreover, the terms proportional to λ3 give a negligible contribution to the

total conductivity, as it is clearly seen in Fig. 6.4(b), where the total longitudinal conductivity
plotted as a function of εF is decomposed into the term containing expressions up to λ2, i.e.,
σxx(λ, λ

2), and the term proportional to λ3, σxx(λ3). Accordingly, one can restrict the final
analytical formulas for the longitudinal conductivity up to the second order terms with respect to
SO parameter λ. With these terms, Eqs. (6.90) and (6.91) lead to the following expression for
the dc conductivity

σxx = σ0
xx

(
1− 7

λ̃2

ξ(λ̃)

(
B2

ε2F

(
1

2
+

4

7
cos2 θ

)
+
J SyB

ε2F
sin θ

))
, (6.92)

where λ̃ = λk2F is a dimensionless parameter describing strength of SOC, σ0
xx=

e2

4πℏ
εF
Γ

is the
diagonal conductivity in the absence of external magnetic field, Γ = Γ0/ξ(λ̃) =

ℏ
2τ

is the relax-
ation rate (with τ denoting the relaxation time) in the presence of SO impurity potential, and
ξ(λ̃) = (1 + 2λ̃+ 3

4
λ̃2).

Taking into account the explicit form of the relation between spin polarization and cur-
rent from Eq. (6.10), the above equation can be rewritten in a form that is more useful for
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interpretation

σxx = σ0
xx

(
1− 7

λ̃2

ξ(λ̃)

(
B2

ε2F

(
1

2
+

4

7
cos2 θ

)
− 2

hv

e

jxBy

ε3F

))
. (6.93)

In the above equation, one can easily identify two terms that appear as a consequence of the
in-plane magnetic field: (i) the term which is symmetric with respect to the sign reversal of charge
current density and proportional to B2 and (ii) the term which scales linearly with B as well as
linearly with current density, and therefore it is antisymmetric with respect to the sign reversal
of jx. The symmetric part, σS = (σ(jx = j) + (σ(jx = −j))/2, depends on the orientation of
magnetic field as cos2 θ, whereas the antisymmetric one, σAS = (σ(jx = j)− σ(jx = −j))/2,
scales as sin θ. This behavior is presented in Fig. 6.4(a), where the longitudinal conductivity,
σxx, is plotted as a function of the angle θ for two opposite orientations of the charge current
density. We recall that the angle θ is defined as the angle between the in-plane magnetic field
and the x direction. The asymmetry between θ = π/2 and θ = 3π/2 is well pronounced and
indicates the unidirectional behavior of the system response. In Fig. 6.4(a), the total conductivity
is decomposed into the symmetric and antisymmetric parts. Note that the antisymmetric part
dominates. This is a feature of unidirectional magnetoresistance (UMR) in TIs (Section 3.1),
where the effective SO field, BSO, can be much larger than the strength of the external magnetic
field.

Sometimes, it is convenient to write Eq. (6.93) in a general and compact form as [243]

σ = σ0

(
1− 7

λ̃2

ξ(λ̃)

(
B2

2ε2F
+

4

7

(j ·B)2

ε2F
−2

hv

e

(j×B)

ε3F
· ẑ
))

, (6.94)

where σ0 = σ0
xx = σ0

yy is the isotropic longitudinal conductivity.

Transverse Conductivity

Providing calculations for the transverse conductivity σyx in the analogical way to the longitudinal
conductivity σxx, making the evaluation of the single-loop diagram with the vertex correction
(i.e. ladder approximation) presented in Fig. 6.1(c) for the case, when the currents flows in the
x-direction, leads to the following expression

σl
yx =− e2

4πℏ
3

εFΓ0

λ2
ε4F
v4
(
B2 sin 2θ + 2J SyB cos θ

)
− e2

2πℏ
1

εFΓ0

λ3
ε6F
v6
(
B2 sin 2θ + 2J SyB cos θ

)
.

(6.95)

In turn, diagrams describing the side-jump scattering give the following contribution

σsj
yx = − e2

16πℏ
13Γ0

ε3F
λ3
ε6F
v6
(
B2 sin 2θ + 2J SyB cos θ

)
. (6.96)
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Figure 6.5: The off-diagonal conductivity σyx as a function of the angle θ, defining the orientation
of in-plane magnetic field b with respect to the axis x (a) and Fermi energy εF (b)-(d). The
angular dependence in (a) is plotted for charge current density oriented along to x̂, the symmetric
and antisymmetric parts of the conductivity are also plotted there. The contributions to the
off-diagonal conductivity from the ladder and side-jump diagrams are presented in (c) and (d),
whereas the contributions to conductivity in second and third order with respect to λ are presented
in (b). In (a) λ = 6nm2, whereas in (b)-(d) θ = 0, niV

2
0 = 1.58× 10−24 eV2m2 [243].

Reprinted with permission from K. Boboshko, A. Dyrdał: Phys. Rev. B. 109, 155420 (2024). Copyright (2024) by the American Physical

Society.

The sum of Eqs. (6.95) and (6.96) gives the following formula for the transverse conductivity

σyx =− e2

4πℏ
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εFΓ0

λ̃2
(
B2 sin 2θ + 2J SyB cos θ

)
− e2

2πℏ
1
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8
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− e2
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1

εFΓ0

λ̃3
(
1 +

13

8
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0

ε2F

)
2J SyB cos θ.

(6.97)

As follows from Figs. 6.5(c)-(d), the side-jump contribution is small. Also, the contribution
of the third order in λ is negligible, see Fig. 6.5(b). Thus, the dominant term in the limit of
Γ0/εF ≪ 1 can be written as [243]

σyx = −σ0
κ(λ̃)

ε2F
(By + J Sy)Bx, (6.98)

where κ(λ̃) = 6λ̃2
1+ 2

3
λ̃

ξ(λ̃)
. Taking into account the relation between spin polarization and current

density (6.10), the above equation can be rewritten in a more convenient form as

σyx = −σ0
κ(λ̃)

ε2F

(
By − 2

hv

e

jx
εF

)
Bx, (6.99)
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which in turn can be written as a sum of the symmetric and antisymmetric parts with respect to
the reversal of charge current flow, i.e., σyx = σS

yx + σAS
yx .

The symmetric part, σS
yx ∼ B2 sin 2θ, i.e., it is proportional to B2 and changes with the

orientation of in-plane magnetic field as sin 2θ. Thus, it has the periodicity of π. In turn, the
antisymmetric part of the off-diagonal conductivity is proportional jxBx, i.e., σAS

yx ∼ jB cos θ.
This part of the off-diagonal conductivity changes sign when the orientation of charge current
density is reversed, i.e., σAS

yx (jx) = −σAS
yx (−jx). Thus, this contribution is a purely nonlinear uni-

directional system response to the external electric field. This component reveals the periodicity
of 2π when the in-plane magnetic field rotates with respect to the orientation of the x direction.
This behavior is shown in Fig. 6.5(a), where the symmetric and antisymmetric parts are shown
as a function of θ. This figure also shows the total conductivity σyx.

The component σxy can be derived in a similar way to σyx and one finds [243]

σxy = σ0
κ(λ̃)

ε2F

(
Bx + 2

hv

e

jy
εF

)
By. (6.100)

Accordingly, for describing the planar Hall effect in the system, the planar Hall conductivity
can be presented in general and compact form as

σPH = σ0
κ(λ̃)

ε2F

(
(B× j) · ẑ+ 2

hv

e

j

εF

)
j ·B, (6.101)

where j is an amplitude of charge current density vector j.
The above equation can be written as a sum of the symmetric and antisymmetric parts

with respect to the reversal of charge current flow, i.e., σPH = σS
PH + σAS

PH. The symmetric part,
σS
PH = σS

xy = −σS
yx ∼ (j·B)(j×B), is proportional toB2 and changes with the orientation of the

in-plane magnetic field with respect to the direction of the charge current density, with periodicity
π. The antisymmetric part of the off-diagonal conductivity, σAS

yx = σAS
xy ∼ (j ·B), is proportional

to the nonequilibrium spin polarization as S ∼ j× ẑ. This part of the off-diagonal conductivity
changes the sign when the charge current density is reversed, i.e., σAS

PH(jx) = −σAS
PH(−jx). Thus,

this contribution is a purely nonlinear (unidirectional) system response to the external electric
field. This component reveals the periodicity of 2π when the in-plane magnetic field rotates with
respect to the orientation of the charge current.

6.3.3 Magnetoresistance and Nonlinear Planar Hall Angle

Based on the analytical results, found in the Section 6.3.2, we can derive the expressions for the
components of the resistivity tensor and magnetoresistance (MR) [11, 204, 243].

According to the definition of the resistivity, ρ = [σ]−1, with the assumption that the electric
field (current) is parallel to the x axis, after algebraic transformations, the diagonal Eq. (6.66)
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and off-diagonal Eq. (6.67) components of the resistivity tensor take the following form

ρxx =
2h

e2
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4
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14h
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)
,

(6.102)

ρyx =
6h

e2
Γ0
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λ̃2
(
B2

ε2F
sin 2θ − 4v

h

e

Bjx
ε3F

cos θ

)
. (6.103)

Comparing the obtained equation for the longitudinal resistivity with the previously obtained in
Section 6.2, Eq. (6.70), we see that the behavior of the resistivity in our system in the different
approximations is preserved.

From definitions for the relative MR and its symmetric and antisymmetric components,
quadratic (QMR) and bilinear magnetoresistance (BMR), mentioned in Section 6.2 and results
from Section 6.3.2, after algebraic transformations one finds the resulting expression for MR

MR = 7λ̃2ξ(λ̃)

(
(gµB)

2

ε2F
b2
(
1

2
+ 4 cos2 θ

)
+ 2

h

e
vgµB

bjx
ε3F

sin θ

)
, (6.104)

and its symmetric and antisymmetric components

QMR = 7λ̃2ξ(λ̃)
(gµB)

2

ε2F
b2
(
1

2
+ 4 cos2 θ

)
, (6.105)

BMR = 14λ̃2ξ(λ̃)
h

e
vgµB

bjx
ε3F

sin θ. (6.106)

We can also define the amplitudes of BMR and QMR

AQMR = 28λ̃2ξ(λ̃)(qµB)
2 b

2

ε2F
, (6.107)

ABMR = 14λ̃2ξ(λ̃)vgµB
h

|e|
bjx
ε3F
. (6.108)

The ratio of BMR and QMR amplitudes has a simple form

ABMR

AQMR

:= Λ =
1

2

h

|e|gµB

1

kF

j

b
. (6.109)

This ratio is useful and universal quantity for experiments, because, apart from the experimentally
controlled variables b and j, it depends only on universal constants and the ratio v/εF = 1/kF

that defines the Fermi wavevector kF . As can be seen from the equation, this ratio does not
depend on the relaxation time or λ̃.

To describe the planar Hall effect (PHE) in our system, it is good to define the planar Hall
angle. The planar Hall angle in the lowest order with respect to λ̃ is defined as ΘPH = σPH/σ0

and can be divided by the symmetric and antisymmetric parts, regarding the charge current
flow direction. That is ΘPH = ΘS

PH + ΘAS
PH, where ΘS

PH = (ΘPH(jα) + ΘPH(−jα)) /2 and
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Figure 6.6: (a), (b) Quadratic and bilinear magnetoresistance (QMR, BMR) as well as (c), (d)
symmetric and antisymmetric parts of the planar Hall angle (ΘS

PH, ΘAS
PH) as a function of angle

θ defining the orientation of in-plane magnetic field with respect to x-direction. (e), (f) BMR
and ΘAS

PH as a function of the Fermi energy εF and amplitude of magnetic field b for θ = π/2
and θ = π, respectively. The other parameters, if not indicated, are as follows: jx = 4A/m,
εF = 60meV, λ = 8nm2, niV

2
0 = 1.58× 10−24 eV2m2 [243].

Reprinted with permission from K. Boboshko, A. Dyrdał: Phys. Rev. B. 109, 155420 (2024). Copyright (2024) by the American Physical

Society.

ΘAS
PH = (ΘPH(jα)−ΘPH(−jα)) /2. Thus, the symmetric and antisymmetric parts of the planar

Hall angle take form

ΘS
PH =

κ(λ̃)

ε2F
(j ·B)(B× j) · ẑ, (6.110)

ΘAS
PH = 2

κ(λ̃)

ε3F

vh

e
j ·B. (6.111)

The amplitude of the ratio of the symmetric and antisymmetric parts takes the form

A
ΘAS
PH

A
ΘS

PH

:= R = 4
h

|e|gµB

1

kF

j

b
. (6.112)

Interestingly, the ratio of R/Λ = 8 = const. In turn, comparing expressions for A
ΘAS
PH

and
ABMR one finds

A
ΘAS
PH

ABMR

=
6

7

1 + 2
3
λ̃

(1 + 2λ̃+ 3
4
λ̃2)2

. (6.113)

This relation depends only on λ̃, thus their experimental determination allows for determining
λ̃. When λ̃ and kF (determined, i.e., from Eq. 6.109) are known the SOC constant, λ, can be
determined.

Fig. 6.6 presents the general behaviour of BMR, QMR, ΘS
PH and ΘAS

PH as a function of the
amplitude of the in-plane magnetic field, angle θ (an angle between charge current density
and magnetic field), and Fermi energy, εF. Figs. 6.6(a)-(d) reflects the symmetric with respect
to b dependence of QMR and ΘS

PH, as well as antisymmetric (i.e., unidirectional behaviour)
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Figure 6.7: Schematic picture of measurement of the longitudinal, V , and transverse, VPH,
voltage. The antisymmetric part of the signals determines the bilinear magnetoresistance (BMR)
and nonlinear planar Hall effect (NPHE) [243].
Reprinted with permission from K. Boboshko, A. Dyrdał: Phys. Rev. B. 109, 155420 (2024). Copyright (2024) by the American Physical

Society.

with respect to b dependence of BMR and ΘAS
PH. Moreover, the antisymmetric components

of magnetoresistance and planar Hall angle have the periodicity 2π, whereas their symmetric
components have the periodicity π. Figs. 6.6(e)-(f) show that, in general, both the absolute
values of BMR and ΘAS

PH increase with |εF|, however, their explicit dependence on Fermi energy
is determined by the functions ξ(λ̃) and κ(λ̃), respectively [7, 11, 243].

Both BMR and the bilinear part of planar Hall conductivity can be useful in spintronics
applications, as well as a tool for the determination of the Fermi wave vector (energy) or material
constants related to the strength of SO interaction. They can be measured during one transport
experiment under a rotating in-plane magnetic field, as presented in Fig. 6.7.

It should be stressed that the full theoretical description of the bilinear system response
needs further expansion of Green’s function with respect to the external electric field, similarly
to that done recently by Parker et al. [247] and Du et al. [248]. Also, it can be done by
expansion of the distribution function with respect to external electric field, as developed by
Zhang and Vignale [11, 204]. This formal analysis provides additional contributions to the
bilinear magnetotransport, that in general can coexists and interplay with the mechanism that we
have described and discussed. Importantly, the mechanism proposed here explains the bilinear
magnetotransport in systems with isotropic Fermi contours in contrast to the theory of Zhang
and Vignale that needs anisotropic Fermi contours (e.g., hexagonal warping term) to obtain a
nonzero BMR, that was discussed in Sections 3.3 and 4.2.
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Chapter 7

Conclusions

This PhD thesis focuses on the theory of bilinear magnetoresistance and the nonlinear planar
Hall effect in the surface states of three-dimensional topological insulators with an isotropic
Fermi contour. Both effects arise in systems with strong spin-orbit coupling and are very
promising for controlling spin currents and magnetic responses in spintronic devices.

The thesis begins with an in-depth study of topological insulators in Section 2.1, materials
that exhibit insulating behavior in their bulk while revealing topologically protected conducting
states on their surfaces. These surface states are characterized by spin-momentum locking, which
makes them promising candidates for spintronic devices. Starting from a detailed analysis of
spin-orbit coupling, the Rashba effect, and current-induced spin polarization (Edelstein effect)
in Sections 2.2 and 2.3, the thesis provides a review of the most important phenomena for
today’s spintronics, with particular emphasis on various kinds of Hall effects in Section 2.4,
magnetoresistance effects in Chapter 3, and planar Hall effect in Chapter 4.

The key original contribution of this work is the formulation of the theory of bilinear
magnetoresistance and the nonlinear planar Hall effect of surface states of three-dimensional
topological insulators, presented in Chapter 6. These phenomena are discussed in the case of
systems with isotropic Fermi contour, performing calculations in the so called "bare bubble"
approximation, in Section 6.2, and considering the vertex correction in the ladder approximation,
as presented in Section 6.3. For this case, the hexagonal warping is absent, and the Zhang-
Vignale mechanism leading to the magnetoelectric magnetotransport response does not occur.
However, due to the strong nonequilibrium spin polarization (Edelstein effect), the conduction
electrons experience an effective spin-orbital field that adds to the external in-plane magnetic
field and results in linear to charge current density and to magnetic field (i.e., socalled bilinear or
unidirectional) contribution to the magnetoresistance and planar Hall effect. Using the Green’s
function formalism and diagrammatic technique, principles of which were considered in Chapter
5, all components of the conductivity tensor have been determined, taking into account both
single-loop and side-jump diagrams. In the leading terms to the spin-orbit coupling constant, we
derived general expressions for the arbitrary orientation of charge current density and magnetic
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field. These equations allowed us to determine the symmetric and antisymmetric (i.e., linear and
nonlinear) to the charge current density contributions to the magnetoresistance and planar Hall
effect, i.e., bilinear magnetoresistance and antisymmetric part to planar Hall angle, respectively.
The expressions describing the amplitudes of bilinear and quadratic magnetoresistance have been
derived, as well as symmetric and antisymmetric planar Hall angles. In Sections 6.2 and 6.3
relations between magnetoresistance and planar Hall angle have been derived. The mechanism
discussed in the thesis is based on the interplay of a nonequilibrium effective spin-orbital field
due to current-induced spin polarization and momentum-dependent scattering on spin-orbital
impurities.

The presented mechanism is one of the various possible mechanisms that can appear in real
materials and lead to the bilinear system response. However, the proposed mechanism seems
to be especially important in systems with isotropic Fermi contours or close to the Dirac-like
crossing points. It has been shown that, in our approach, the side-jump contribution is rather
small, whereas the skew-scattering has not been considered, as we have assumed Gaussian
disorder distribution. It should be noted that recently it has been shown that the skew-scattering
in cooperation with Berry curvature contribution can be an essential mechanism leading to the
nonlinear Hall effect in PT −symmetric antiferromagnets [249]. The results obtained in this
thesis may be useful in the experimental determination of the material constants such as the
Fermi wave vector (or Fermi velocity) and spin-orbit coupling parameter.
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Chapter 8

List of Abbreviations

2D – two-dimensional
2DEG – two-dimensional electron gas
3D – three-dimensional
AC – alternating current
AHE – anomalous Hall effect
AMR – anisotropic magnetoresistance
ARPES – angle resolved photoemission
spectroscopy
BIA – bulk inversion asymmetry
BMR (BMER) – bilinear magnetoresistance
(bilinear magnetoelectric resistance)
BST – Bi2−xSbxTe3
CISP – current-induced spin polarization
CMR – colossal magnetoresistance
DC – direct current
DEE – direct Edelstein effect
EE – Edelstein effect
FI – ferromagnetic insulator
GMR – giant magnetoresistance
HDD – hard disk drive
ISB – inversion symmetry breaking

MBE – molecular beam epitaxy
MR – magnetoresistance
MRAM – magnetic random access memories
MTJ – magnetic tunnel junction
NM – non-magnetic; normal metal
NPHE – nonlinear planar Hall effect
OMM – orbital magnetic moment
OMR – ordinary magnetoresistance
PHE – planar Hall effect
SHE – spin Hall effect
SIA – structural inversion asymmetry
SMR – spin Hall magnetoresistance
SO – spin-orbital
SOC – spin-orbit coupling
TI – topological insulator
TMD – transition metal dichalcogenides
TMR – tunneling magnetoresistance
TRS – time-reversal symmetry
TSSs – topological surface states
UMR – unidirectional magnetoresistance
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[47] A. Dyrdał and J. Barnaś. Current-induced spin polarization and spin-orbit torque in
graphene. Phys. Rev. B, 92(16):165404, (2015).

[48] J. Ryu, S. Lee, K.-J. Lee, and B.-G. Park. Current-induced spin-orbit torques for spintronic
applications. Adv. Mater., 32(35):1907148, (2020).

[49] A. Karsenty. A comprehensive review of integrated Hall effects in macro-, micro-,
nanoscales, and quantum devices. Sensors, 20(15):4163, (2020).

98



[50] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong. Anomalous Hall
effect. Rev. Mod. Phys., 82(2):1539–1592, (2010).

[51] E. H. Hall. On a new action of the magnet on electric currents. American Journal of

Mathematics, 2(3):287–292, (1879).

[52] G. S. Leadstone. The discovery of the Hall effect. Phys. Educ., 14(6):374, (1979).

[53] J. A. Gaj. Semimagnetic semiconductors. In Comprehensive Semiconductor Science and

Technology, volume 2, pages 95–124. Elsevier, (2011).

[54] S. Zhang, R. Wang, X. Wang, B. Wei, B. Chen, H. Wang, G. Shi, F. Wang, B. Jia,
Y. Ouyang, F. Xie, F. Fei, M. Zhang, X. Wang, D. Wu, X. Wan, F. Song, H. Zhang, and
B. Wang. Experimental observation of the gate-controlled reversal of the anomalous
Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 Device. Nano Lett.,
20(1):709–714, (2020).

[55] M. Mogi, T. Nakajima, V. Ukleev, A. Tsukazaki, R. Yoshimi, M. Kawamura, K. S.
Takahashi, T. Hanashima, K. Kakurai, T. Arima, M. Kawasaki, and Y. Tokura. Large
anomalous Hall effect in topological insulators with proximitized ferromagnetic insulators.
Phys. Rev. Lett., 123(1):016804, (2019).

[56] H.-D. Song, P.-F. Zhu, J. Fang, Z. Zhou, H. Yang, K. Wang, J. Li, D. Yu, Z. Wei, and Z.-M.
Liao. Anomalous Hall effect in graphene coupled to a layered magnetic semiconductor.
Phys. Rev. B, 103(12):125304, (2021).

[57] R. Karplus and J. M. Luttinger. Hall effect in ferromagnetics. Phys. Rev., 95(5):1154–1160,
(1954).

[58] T. S. Nunner, N. A. Sinitsyn, M. F. Borunda, V. K. Dugaev, A. A. Kovalev, Ar. Abanov,
C. Timm, T. Jungwirth, J. Inoue, A. H. MacDonald, and J. Sinova. Anomalous Hall effect
in a two-dimensional electron gas. Phys. Rev. B, 76(23):235312, (2007).

[59] J. Smit. The spontaneous Hall effect in ferromagnetics I. Physica, 21(6):877–887, (1955).

[60] L. Berger. Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B,
2(11):4559–4566, (1970).

[61] Á. Gutiérrez-Rubio, L. Chirolli, L. Martín-Moreno, F. J. García-Vidal, and F. Guinea.
Polariton anomalous Hall effect in transition-metal dichalcogenides. Phys. Rev. Lett.,
121(13):137402, (2018).

[62] Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi. Mott relation for anomalous Hall
and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett.,
101(11):117208, (2008).

99



[63] H. J. Trodahl, F. Natali, B. J. Ruck, and W. R. L. Lambrecht. Carrier-controlled anomalous
Hall effect in an intrinsic ferromagnetic semiconductor. Phys. Rev. B, 96(11):115309,
(2017).

[64] A. Husmann and L. J. Singh. Temperature dependence of the anomalous Hall conductivity
in the Heusler alloy Co2CrAl. Phys. Rev. B, 73(17):172417, (2006).

[65] S. Roy, R. Singha, A. Ghosh, A. Pariari, and P. Mandal. Anomalous Hall effect in the
half-metallic Heusler compound Co2TiX (X = Si, Ge). Phys. Rev. B, 102(8):085147,
(2020).

[66] Y. Omori, E. Sagasta, Y. Niimi, M. Gradhand, L. E. Hueso, F. Casanova, and Y. Otani.
Relation between spin Hall effect and anomalous Hall effect in 3d ferromagnetic metals.
Phys. Rev. B, 99(1):014403, (2019).

[67] N. A. Sinitsyn. Semiclassical theories of the anomalous Hall effect. J. Phys.: Condens.

Matter, 20(2):023201, (2007).

[68] M. I. D’yakonov and V. I. Perel’. Possibility of orienting electron spins with current.
JETP Lett., 13:467, (1971).

[69] J. E. Hirsch. Spin Hall effect. Phys. Rev. Lett., 83(9):1834–1837, (1999).

[70] H.-A. Engel, E. I. Rashba, and B. I. Halperin. Theory of spin Hall effects in semiconduc-
tors. In Handbook of Magnetism and Advanced Magnetic Materials. John Wiley & Sons,
Ltd, (2007).

[71] G. Vignale. Ten years of spin Hall effect. J. Supercond. Novel Magn., 23(1):3–10, (2010).
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