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Summary
Scattering theory describes the asymptotic evolution of systems of interacting particles.
A key concept in this area is asymptotic completeness, which asserts that every state can
be decomposed into bound and scattering states. While asymptotic completeness is well-
understood in non-relativistic quantum mechanics, it remains an open and challenging
problem in local relativistic quantum field theory (QFT). In this dissertation, we adopt
the axiomatic (model-independent) framework of algebraic QFT and the Haag–Ruelle
scattering theory to investigate the problem of asymptotic completeness.

Modern proofs of asymptotic completeness in quantum mechanics rely on a Mourre
estimate, propagation estimates, and the convergence of asymptotic observables, such as
the asymptotic velocity. In QFT, Araki–Haag detectors, first introduced by Araki and
Haag (1967) and later further developed by Buchholz (1990), are natural asymptotic
observables. Controlling their convergence is an important prerequisite for asymptotic
completeness in QFT.

We prove the convergence of Araki–Haag detectors on states of bounded energy
that belong to the absolutely continuous part of the energy-momentum spectrum below
the three-particle threshold. This result brings us closer to two-particle asymptotic
completeness than the earlier work of Dybalski and Gérard (2014), who analysed the
convergence of products of detectors with distinct velocities. Our proof shares similarities
with proofs of the existence and completeness of wave operators in quantum mechanics.
Notably, we apply Mourre’s conjugate operator method to derive a local decay estimate,
which marks the first application of Mourre’s method in the relativistic QFT framework.

The conjugate operator method is a mathematical technique from spectral theory,
which is based on a strictly positive commutator estimate. This method has been cru-
cial to advance the spectral and scattering theory of quantum-mechanical many-body
systems. Apart from proving the convergence of Araki–Haag detectors, as mentioned
above, we also apply Mourre’s method to derive a limiting absorption principle for the
energy-momentum operators in relativistic QFT. The limiting absorption principle al-
lows us to reproduce results on spectral properties of the energy-momentum operators,
such as the absence of singular continuous spectrum.
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Podsumowanie
Teoria rozpraszania opisuje asymptotyczną ewolucję układów oddziałujących cząstek.
Kluczowym pojęciem w tej dziedzinie jest asymptotyczna zupełność, która stwierdza, że
każdy stan można rozłożyć na stany związane i rozproszeniowe. Chociaż asymptotyczna
zupełność jest dobrze zrozumiana w nierelatywistycznej mechanice kwantowej, pozostaje
ona otwartym i trudnym problemem w lokalnej relatywistycznej teorii pól kwantowych
(QFT). W niniejszej dysertacji przyjmujemy aksjomatyczne (niezależne od modelu) ramy
algebraicznej QFT oraz teorię rozpraszania Haaga-Ruelle’a w celu zbadania problemu
asymptotycznej zupełności.

Współczesne dowody asymptotycznej zupełności w mechanice kwantowej opierają
się na oszacowaniu Mourre’a, oszacowaniach propagacyjnych oraz zbieżności obserwabli
asymptotycznych, takich jak asymptotyczna prędkość. W QFT detektory Arakiego-
Haaga, po raz pierwszy wprowadzone przez Arakiego i Haaga (1967) i później badane
przez Buchholza (1990), stanowią naturalne obserwable asymptotyczne. Ich zbieżność
jest warunkiem koniecznym dla asymptotycznej zupełności w QFT.

W tej pracy dowodzimy zbieżności detektorów Arakiego-Haaga na stanach o ogranic-
zonej energii, które należą do absolutnie ciągłej części spektrum energii i pędu poniżej
progu trójcząstkowego. Wynik ten przybliża nas do asymptotycznej zupełności stanów
dwucząstkowych w większym stopniu niż wcześniejsza praca Dybalskiego i Gérarda
(2014), którzy analizowali zbieżność iloczynów detektorów o różnych prędkościach. Nasz
dowód wykazuje podobieństwa do dowodów istnienia i zupełności operatorów falowych
w mechanice kwantowej. W szczególności stosujemy metodę operatora sprzężonego
Mourre’a do wyprowadzenia lokalnego oszacowania zaniku, co jest pierwszym zastoso-
waniem teorii Mourre’a w relatywistycznej QFT.

Metoda operatora sprzężonego jest techniką matematyczną z zakresu teorii spek-
tralnej, opartą na ścisłej dodatniości pewnych komutatorów. Metoda ta odegrała kluc-
zową rolę w rozwoju teorii spektralnej i teorii rozpraszania układów wielocząstkowych
w mechanice kwantowej. W naszej pracy stosujemy metodę Mourre’a, aby udowodnić
zbieżność detektorów Arakiego-Haaga, jak wspomniano wyżej, oraz wykazać regularność
rezolwent (tzw. limiting absorption principle) dla operatorów energii i pędu w relaty-
wistycznej QFT. W ten sposób odtworzyliśmy wyniki dotyczące własności spektralnych
operatorów energii i pędu, takie jak brak osobliwego spektrum ciągłego.
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Chapter 1

Introduction

1.1 Scattering Theory

The primary objective of scattering theory is to understand how systems of interacting
particles evolve asymptotically. While the equations of motion that govern the evolution
of quantum systems are often too complicated to solve them exactly, it is expected that,
after a sufficiently long time, the motion of the particles simplifies as they separate. The
central concept in mathematical scattering theory is asymptotic completeness, which
asserts that every quantum state in the state space H is a linear combination of bound
and scattering states.

Definition 1.1.1. A quantum system is asymptotically complete if the state space H
decomposes into the subspaces of bound states (Hbound) and scattering states (Hscat):

H = Hbound ⊕Hscat. (1.1)

The precise definitions of bound and scattering states depend on the specific physical
context. We are mainly interested in the problem of asymptotic completeness in local
relativistic quantum field theory (QFT). However, to provide context for our findings
in QFT, we first review key results from scattering theory in non-relativistic quantum
mechanics.

1.1.1 Asymptotic Completeness in Quantum Mechanics

A non-relativistic many-body quantum system is expected to break up asymptotically
into freely moving clusters of particles. In the simplest case of two particles, either the
two particles move freely at large separations or they form a bound state. For many-body
systems, additional scattering channels arise because the particles can form clusters. For
example, in a three-particle system, an initial configuration where two particles form a
bound state can evolve in the following ways: the system might break up into three
freely moving particles, retain its initial configuration (elastic scattering), or result in a
rearrangement where two different particles form a bound state.

1
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A B C

breakup
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A B C
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Figure 1.1: Scattering channels for an initial configuration of three particles, where two
particles are in a bound state.

Many-body Hamiltonians

A typical N -body Hamiltonian on the Hilbert space L2(RdN ) with pair-interaction po-
tentials Vij has the following form:

H = −
N∑
i=1

1

2mi
∆i +

∑
1≤i<j≤N

Vij(xi − xj), (1.2)

where mi > 0 is the mass of particle i and ∆i is the Laplacian on L2(Rd).
Let A be the set of all cluster decompositions of {1, . . . , N}. For cluster decom-

positions a, b ∈ A, we write a ≤ b if a is finer than b; that is, for all A ∈ a, there is a
B ∈ b such that A ⊂ B. The collision planes Xa, a ∈ A, are defined as the subspaces
of the configuration space X = RdN where particles from the same clusters collide:

Xa = {x ∈ X | xi = xj if (ij) ≤ a}. (1.3)

Here, (ij) ∈ A is the cluster decomposition in which the particles i and j form a pair
while the other particles are separated.

The Hamiltonian H is invariant under translations. In scattering theory, it is often
advantageous to introduce Jacobi coordinates to eliminate the translation-invariance by
separating the centre-of-mass motion (see e.g. [Is23, Section 3.3]).

In the following, we introduce an abstract framework that encompasses Hamiltonians
of the form (1.2), as well as more general Hamiltonians, such as those with centre-of-mass
motion removed or those with additional confining potentials. The notation is adopted
from [DG97, Section 5.1, Section 6.1].

Let (A,≤) be a partially ordered set such that each two-element subset {a, b} ⊂ A
has a least upper bound, denoted by a ∨ b. The minimal and maximal element of A
with respect to the order relation ≤ are denoted by amin and amax, respectively. The
configuration space X is a Euclidean space (i.e. a finite-dimensional real vector space)
equipped with a scalar product. The collision planes {Xa}a∈A and the internal spaces
{Xa}a∈A are families of complementary subspaces (i.e. X = Xa ⊕ Xa) satisfying the
following properties:
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• if b ≤ a, then Xa ⊂ Xb and Xb ⊂ Xa;

• Xa ∩Xb = Xa∨b and Xa +Xb = Xa∨b;

• Xamin = X and Xamax =
⋂

a∈AXa.

The projections of x ∈ X to Xa and Xa are the external coordinate xa and the internal
coordinate xa, respectively.
Example. Let X = RdN be the Euclidean space equipped with the scalar product

x · y =
N∑
i=1

mixi · yi, x, y ∈ (Rd)N . (1.4)

It is straightforward to verify that the collision planes Xa, as defined in (1.3), satisfy the
stated properties if Xa is taken to be the orthogonal complement of Xa with respect to
the scalar product (1.4).

A quantum-mechanical many-body system is described by the following Hamiltonian
on the Hilbert space H = L2(X):

H = −1

2
∆ +

∑
a∈A

Va(x
a), (1.5)

where ∆ is the Laplacian on L2(X) and Va are (many-body) interaction potentials. The
notation Va(x

a) should indicate that the potential Va is independent of the external
coordinate xa (i.e. Va(x) = Va(x + ya) for all y ∈ Xa). For simplicity, we assume that
the potentials are bounded and short-range:

|Va(xa)| ≤ C〈xa〉−1−ε, ε > 0. (1.6)

The cluster Hamiltonians

Ha = −1

2
∆ +

∑
b≤a

Vb(x
b) (1.7)

describe the motion of the particles when the particles belonging to different clusters are
infinitely separated and thus have negligible interactions due to the short-range assump-
tion. The internal motion of these particles is described by the internal Hamiltonian,
which acts on the Hilbert space L2(Xa):

Ha = −1

2
∆a +

∑
b≤a

Vb(x
b), (1.8)

where ∆a is the Laplacian on L2(Xa). We denote by P a the projection onto the
eigenspace of Ha, and we write Pa = 1 ⊗ P a, where the tensor product is understood
with respect to the factorisation L2(X) = L2(Xa)⊗ L2(Xa).
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The internal Hamiltonian Ha is also a many-body Hamiltonian defined on the con-
figuration space Y = Xa, with collision planes Yb = Xa ∩Xb. To simplify the analysis,
we may replace H with Hamax to ensure that Xamax = {0}. This condition is desir-
able because if the space Xamax is non-trivial, then H is translation-invariant due to the
property Va(x + yamax) = Va(x) for all a ∈ A and yamax ∈ Xamax . This replacement
corresponds to separating the centre-of-mass motion because

H = −1

2
∆amax +Hamax . (1.9)

Henceforth, we assume that Xamax = {0}.

Asymptotic Completeness

Asymptotic clustering occurs if the many-body system asymptotically breaks up into
freely moving clusters of particles. Mathematically, this means that, for every state
ψ ∈ H, there exists a family {ψa,±}a∈H of vectors, with ψa,± ∈ PaH, such that the
following condition holds:

lim
t→±∞

‖ e− itHψ −
∑
a∈A

e− itHaψa,±‖ = 0. (1.10)

Motivated by this condition, we define the following wave operators:

Ωa,± = lim
t→±∞

eitH e− itHaPa. (1.11)

The ranges of the wave operators Ωa,±, a 6= amax, are the scattering states, while the
range of Ωamax,± = Ppp(H) describes the bound states (i.e. eigenstates of H). Asymp-
totic completeness asserts that the Hilbert space H can be decomposed into bound and
scattering states.

Definition 1.1.2. The quantum-mechanical many-body system described by the Hamil-
tonian H on the Hilbert space H = L2(X) is asymptotically complete if

H =
⊕
a∈A

ran(Ωa,±). (1.12)

It is easy to verify that asymptotic completeness is equivalent to asymptotic clustering
assuming that the wave operators (1.11) exist.

An important asymptotic observable in modern proofs of asymptotic completeness
is the asymptotic velocity:

P+ = lim
t→∞

eitH
x

t
e− itH , (1.13)

where the limit is understood in the strong resolvent sense. Once the existence of the
asymptotic velocity is established, proving asymptotic completeness for short-range po-
tentials becomes relatively straightforward [DG97, Section 6.7]. Notably, the asymptotic
velocity exists for a large class of potentials, including very slowly decaying long-range
potentials for which asymptotic completeness is known to fail [DG97, Section 6.6].
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History

Asymptotic completeness in non-relativistic quantum mechanics is a well-understood
chapter of mathematical physics, thanks to numerous advances throughout the 20th
century. We briefly review the historical developments.

For two-particle systems (or, equivalently, for single-particle systems in an exter-
nal potential), asymptotic completeness was established between the late 1950s and
the 1960s. Early results on the unitarity of the scattering operator were provided by
Kato [Ka57], Rosenblum [Ro57], and Kuroda [Ku59]. It is difficult to determine the first
complete proof of asymptotic completeness because several mathematical physicists con-
tributed to this problem around the same time. Among these contributions, we highlight
Kato’s seminal paper [Ka66], which introduced the concept of Kato smooth operators,
and Lavine’s work [La70a, La70b], which applied this concept to establish the existence
and completeness of the wave operators. These methods remained highly influential over
the past decades. Parts of our proof of Theorem 1.3.3 (from the paper [Kr24a]) are based
on these techniques.

Asymptotic completeness for three-particle systems with short-range potentials was
first proved by Faddeev [Fa65], whose technique was later improved by Ginibre and
Moulin [GM74] and Thomas [Th75]. Faddeev’s method, which was time-independent,
involved the use of the so-called Faddeev equations. These equations relate the resolvent
of the Hamiltonian H to the resolvent of the cluster Hamiltonians Ha. However, Fad-
deev’s time-independent technique had certain limitations: it only allowed for finitely
many eigenvalues, required very short-range potentials, and its generalisation to systems
with more than three particles remained difficult.

Several years after Faddeev’s publication, Enss [En78, En79, En83, En84] initiated a
program to analyse the phase-space propagation of quantum systems and the existence of
asymptotic observables. This approach proved to be more fruitful, as Enss successfully
established asymptotic completeness for three-particle systems with short- and long-
range potentials, without relying on implicit assumptions about the spectrum of the
Hamiltonian. This time-dependent framework ultimately led to a proof of asymptotic
completeness for many-body short-range systems by Sigal and Soffer [SS87]. Subsequent
simplified proofs were provided by Graf [Gr90] and Yafaev [Ya93]. Dereziński [De93]
completed the picture by establishing asymptotic completeness for many-body long-
range systems (for textbook expositions, see [DG97, Ya00, Is23]).

Time-dependent scattering theory relies on propagation estimates, which illustrate
that the motion of quantum particles tends to be concentrated along classical trajectories.
Several authors have extensively studied various aspects of these propagation estimates,
in particular in the large-velocity and low-velocity regimes, as well as propagation in
phase space [IK84, IK85, Si90, Sk91, HS91, Is94, HSS99]. One example of a phase-space
propagation estimate, originally established by Graf [Gr90], takes the following form:∫ t

1

∥∥∥∥1[0,θ]

(
|x|
t

)(xa
t

−Da

)
qa

(x
t

)
χ(H) e− itHψ

∥∥∥∥2 dtt ≤ C‖ψ‖2, (1.14)

where θ > 0 is arbitrary, a ∈ A is a cluster decomposition, qa is a channel localisation
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operator, and χ ∈ C∞
c (R). This estimate demonstrates that the relative mean veloc-

ity xa/t between the clusters converges to the instantaneous inter-cluster velocity Da

within the channel region a. For a simple proof of this propagation estimate, see [DG97,
Proposition 6.6.3].

An important technical element in many of the aforementioned papers is a Mourre
estimate, a strictly positive commutator estimate for the HamiltonianH with a conjugate
operator A:

E(J)[H, iA]E(J) ≥ θE(J), θ > 0, (1.15)

where E is the spectral measure of H and J ⊂ R is a real subset that is separated
from the eigenvalues and thresholds of H. (Thresholds are eigenvalues of the internal
Hamiltonians Ha, a 6= amax.) This estimate plays a crucial role not only in establishing
spectral properties of the Hamiltonian, such as the absence of singular continuous spec-
trum, but also in propagation estimates. For two- and three-body systems, a Mourre
estimate was originally proved by Mourre [Mo81], and this result was later extended to
many-body systems by Perry, Sigal, and Simon [PSS81] and Froese and Herbst [FH82].
In Section 1.4, we explain more details of Mourre’s method.

Dispersive Hamiltonians

We conclude this subsection with some remarks on the scattering theory of dispersive
many-body systems. Dispersive Hamiltonians are obtained by replacing the Laplacian
in the Hamiltonian (1.5) with a more general dispersion relation h(D):

H = h(D) +
∑
a∈A

Va(x
a). (1.16)

For two particles, proving asymptotic completeness works exactly as in the case of a
quadratic dispersion relation (i.e. h(D) = D2/2). However, for systems with three or
more particles, asymptotic completeness is an open problem for dispersive Hamiltonians
[DG97, p. 274] [Ya00, Section 11.5].

This is not merely a technical problem that could be solved by a simple adaptation
of the existing proofs of asymptotic completeness. In the many-body case, establishing
asymptotic completeness is difficult because the relative motion of the clusters and the
internal motion of the particles within the clusters remain interdependent asymptotically.
In contrast, if the dispersion relation is quadratic, the external and internal motions
separate asymptotically. To explain this point, let us examine the classical equations
of motion by considering the Hamilton function Ha, which describes the asymptotic
dynamics of the clusters in a cluster decomposition a ∈ A:

Ha(x, ξ) = h(ξa, ξ
a) +

∑
b≤a

Vb(x
b), (1.17)

where ξa is the inter-cluster momentum and ξa the internal momentum of the particles
within the clusters. We obtained Ha from the system’s complete Hamilton function
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by suppressing the interaction between particles from different clusters. The Hamilton
equations read as follows:

ẋa = ∂ξah(ξa, ξ
a), ξ̇a = 0, (1.18)

ẋa = ∂ξah(ξa, ξ
a), ξ̇a = −

∑
b≤a

∂xaVb(x
b). (1.19)

From these equations, we conclude that the inter-cluster momentum ξa is constant. The
relative motion between the clusters is determined by integrating the Hamilton equation
for ẋa:

xa(t) = xa(0) +

∫ t

0
∂ξah(ξa, ξ

a(s)) ds. (1.20)

We observe that, for general dispersion relations h, the relative motion of the clusters
is influenced by the internal motion of the particles within the clusters. However, when
h(ξ) = ξ2/2 = ξ2a/2 + (ξa)2/2, the velocity ∂ξah(ξ) = ξa becomes independent of the
internal momentum ξa.

The asymptotic interdependence of the external and internal motions significantly
complicates the asymptotic dynamics in the dispersive case. In particular, the phase-
space propagation estimate (1.14) cannot be expected to generalise to the dispersive case
because ∂ah(D) is not the correct inter-cluster velocity; it fails to account for effects of
the internal motion. Instead, the classical equations of motion suggest that a more
realistic propagation estimate would take the following form:∫ ∞

1

∥∥∥∥1[0,θ]

(
|x|
t

)(
x

t
− 1

t

∫ t

0
e− isHah′(D) eisHa ds

)
qa

(x
t

)
χ(H) e− itHψt

∥∥∥∥2 dtt
≤ C‖ψ‖2, (1.21)

where θ, qa, and χ are as in (1.14). Establishing (1.21) would certainly be a major step
towards asymptotic completeness for dispersive many-body systems. As we discuss later
(see Section 1.5), progress on this problem may also be of relevance in quantum field
theory, where the dispersion relation of the particles is relativistic.

1.1.2 Asymptotic Completeness in Quantum Field Theory

In the previous subsection, we illustrated that the problem of asymptotic complete-
ness is solved in non-relativistic quantum mechanics. In contrast, asymptotic com-
pleteness remains an open and challenging problem in local relativistic quantum field
theory (QFT), with only a few partial results available for specific models. Notably,
asymptotic completeness has been established in the low-coupling regime of the P (φ)2
model at the level of two [SZ76] and three particles [CD82]. The techniques employed
in the cited papers are similar to the time-independent methods used in quantum me-
chanics, with the latter work being an adaptation of Faddeev’s method to the QFT
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setting. More recent developments have led to the construction of asymptotically com-
plete integrable models [Le08, Ta14], in which the scattering operator is specified from
the outset. Asymptotic completeness has also been established for certain wedge-local
models [DT11, DD23, BC24]. However, despite these impressive results, a complete
understanding of asymptotic completeness in QFT remains elusive at the moment.

Proving asymptotic completeness in QFT is a difficult problem due to significant
conceptual and technical challenges. One of the most notable differences to quantum
mechanics is that QFT allows for processes that create or annihilate particles during
scattering processes. A proof of asymptotic completeness would likely require prior
knowledge of all types of particles present in a given QFT model. However, identifying
these particles is itself a non-trivial problem because it is generally not possible to read
out the particle content directly from the Lagrangian or equations of motions defining the
model (e.g. additional bound states, such as solitons in P (φ)2 models, may emerge and
contribute to the particle spectrum). Moreover, quantum field theories typically have
a rich superselection structure, arising from inequivalent representations of the algebra
of observables [DHR71, DHR74, BF82] (see [HM06] for a concise review). Inequivalent
representations define different sectors, each labelled by some kind of a charge. The
presence of charged particles poses additional difficulties, which we discuss further in
Subsection 1.2.2.

Moreover, counterexamples to asymptotic completeness in QFT are known, which
fall within the conventional frameworks of axiomatic quantum field theory as described in
Subsection 1.2.1 below. These so-called generalised free fields [Gr61] contain unphysical
states with too many degrees of freedom that do not allow a particle interpretation.
A proof of asymptotic completeness would therefore require conditions that exclude
these pathological states. Promising candidates for such conditions are phase-space
compactness criteria [HS65, DL84, BP90] [Ha96, Section V.5].

On a positive note, progress on asymptotic completeness has been made in non-
relativistic quantum field theory, which is considered to be an intermediate framework
between quantum mechanics and local relativistic quantum field theory. For example,
asymptotic completeness has been established for confined Pauli–Fierz Hamiltonians by
Dereziński and Gérard [DG99], for the confined Nelson model by Ammari [Am00], for
the P (φ)2 model in finite volume by Dereziński and Gérard [DG00], for Rayleigh and
Compton scattering by Fröhlich, Griesemer, and Schlein [FGS02, FGS04], and for the
translation-invariant Nelson model below the three-boson threshold by Dybalski and
Møller [DM15]. A common feature of these papers is that the employed methods closely
resemble the time-dependent techniques from quantum mechanics.

1.2 Algebraic Quantum Field Theory

Algebraic quantum field theory (AQFT) provides a mathematically rigorous framework
for studying quantum field theories using the language of operator algebras. Developed
in the mid-20th century by Haag, Kastler, and others [HK64], AQFT aims to describe
quantum fields independently of specific models. Central to the framework is the notion
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of a local net of algebras: to each region of spacetime, one associates an algebra, whose el-
ements represent observables measurable within that region. The axioms of AQFT, such
as isotony, locality, and translation covariance (see below), reflect fundamental physical
principles like causality and the independence of space-like separated observables.

1.2.1 Axioms

An algebraic quantum field theory is described by a C∗-algebra A, generated by a net
of von Neumann algebras {A(O)}O on a common Hilbert space H. The net is indexed
by open and bounded spacetime regions O ⊂ Rd and is required to satisfy the following
properties:

• Isotony: If O1 ⊂ O2, then A(O1) ⊂ A(O2).

• Locality: If O1 and O2 are space-like separated, then elements from the corre-
sponding algebras commute:

[A(O1),A(O2)] = 0. (1.22)

• Translation covariance: A unitary representation U : Rd → B(H) of the translation
group Rd = R1+s exists that satisfies

U(x)A(O)U(x)∗ = A(O + x), x ∈ Rd. (1.23)

For an element A ∈ A, we write A(x) for the Heisenberg evolution U(x)AU(x)∗

and abbreviate A(0,x) with A(x).

• Vacuum vector: There is a translation-invariant vector Ω ∈ H with norm ‖Ω‖ = 1:

U(x)Ω = Ω, x ∈ Rd. (1.24)

The vector Ω is the unique vector (up to a phase) that satisfies (1.24).

• Spectrum condition: The generators of the translation group Rd are the energy-
momentum operators P = (H,P) (i.e. U(x) = e− ix·P ). The joint spectrum σ(P )
of the energy-momentum operators P is contained in the forward light-cone V+:

σ(P ) ⊂ V+ = {(p0,p) ∈ Rd | p0 ≥ |p|}. (1.25)

To simplify the construction of scattering states, we assume the existence of an
isolated mass shell of one-particle states in the energy-momentum spectrum, a condition
typically satisfied by massive quantum field theory models. In the following, we always
adopt the following assumption (see also Figure 1.2):
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• Strong spectrum condition: The energy-momentum spectrum consists of the point
0, an isolated mass shell Hm, and the multi-particle spectrum G2m, for an m > 0:

{0} ∪Hm ⊂ σ(P ) ⊂ {0} ∪Hm ∪G2m, (1.26)

where

Hm = {(p0,p) ∈ Rd | p0 = ω(p) =
√
m2 + |p|2}, (1.27)

G2m = {(p0,p) ∈ Rd | p0 ≥
√
(2m)2 + |p|2}. (1.28)

If E is the joint spectral measure of the energy-momentum operators P , then we
define the one-particle space hm as the spectral subspace of H corresponding to the
mass shell Hm:

hm = E(Hm)H. (1.29)

States in hm are eigenstates of the relativistic mass operator M =
√
H2 − |P|2 with

eigenvalue m.

1.2.2 Haag–Ruelle Scattering Theory

Haag–Ruelle scattering theory provides a framework for defining scattering states in
AQFT. Unlike conventional approaches to scattering theory in QFT, the Haag–Ruelle
theory builds on fundamental principles such as locality, translation covariance, and the
spectrum condition. This approach originated in the seminal works of Haag [Ha58] and
Ruelle [Ru62]. More modern treatments of Haag–Ruelle scattering theory can be found
in [BLOT90, Chapter 12] and [DG14a, DG14b].

Creation operators

In the first step of the construction, we define creation operators B∗ ∈ A, which create
one-particle states from the vacuum Ω with good localisation properties. Due to the
Reeh–Schlieder theorem, it is untenable to take B∗ from a local algebra A(O). Instead,
we choose B∗ to be almost local.

Definition 1.2.1. Let Kr be the double cone of radius r > 0. An element A ∈ A
is almost local if a sequence (Ar) of local operators Ar ∈ A(Kr) exists such that Ar

converges rapidly in norm to A as r → ∞ (i.e., for every N ∈ N, ‖A−Ar‖ ≤ CNr
−N ).

The energy-momentum transfer (or Arveson spectrum [Ar74]) of an element A ∈ A
measures the change in energy-momentum of a state ψ ∈ H under the application of A.

Proposition 1.2.2 ([DG14a, (2.4)]). Let A ∈ A. If ∆ ⊂ Rd is a Borel set, then

AE(∆)H ⊂ E(∆ + σα(A))H, (1.30)
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where σα(A) is the energy-momentum transfer of A, defined as the support of the
operator-valued distribution

Rd 3 p 7→ Ǎ(p) =
1

(2π)d

∫
Rd

e− ip·xA(x) dx. (1.31)

The vector B∗Ω is a one-particle state with good localisation properties, provided
that B∗ is almost local and its energy-momentum transfer is contained in a sufficiently
small neighbourhood around a point of the mass shell Hm. This observation motivates
the following definition:

Definition 1.2.3. An element B∗ ∈ A is a creation operator if B∗ is almost local,
its energy-momentum transfer σα(B∗) is a compact subset of the forward light cone V+,
and ∅ 6= σα(B

∗) ∩ σ(P ) ⊂ Hm.

Let B∗ be a creation operator and ft = e− itω(Dx)f a Klein–Gordon wave packet,
where ω(Dx) =

√
m2 + |Dx|2 and f ∈ L2(Rs) (s = d − 1 is the space dimension).

We define the following Haag–Ruelle creation operators, which compare the time
evolution of the full Hamiltonian H with that of a Klein–Gordon wave packet:

B∗
t [ft] =

∫
Rs

ft(x)B
∗
t (x) dx, B∗

t (x) = U(t,x)B∗U(t,x)∗. (1.32)

Scattering states

The following theorem is the main result of the Haag–Ruelle theory, which provides the
construction of many-particle scattering states.

Theorem 1.2.4 ([DG14b, Theorem 6.5]). Let B∗
1 , . . . , B

∗
n be creation operators and

f1, . . . , fn ∈ L2(Rs). The outgoing (out) and incoming (in) scattering states exist:

ψ1

out
× · · ·

out
× ψn = lim

t→∞
B∗

1,t[f1,t] . . . B
∗
n,t[fn,t]Ω, (1.33)

ψ1

in
× · · ·

in
× ψn = lim

t→−∞
B∗

1,t[f1,t] . . . B
∗
n,t[fn,t]Ω. (1.34)

The limits depend only on the one-particle states ψi = B∗
i [fi]Ω ∈ hm.

We define by Hout and Hin the Hilbert spaces spanned by all outgoing and incoming
scattering states, respectively:

Hout = span{Ω, ψ1

out
× . . .

out
× ψn | ψ1, . . . , ψn ∈ hm, n ∈ N}, (1.35)

Hin = span{Ω, ψ1

in
× . . .

in
× ψn | ψ1, . . . , ψn ∈ hm, n ∈ N}. (1.36)

In this terminology, the vacuum vector and the one-particle states are treated as scat-
tering states. However, we may also consider them as bound states because the vac-
uum vector and the one-particles states are eigenstates of the relativistic mass operator
M =

√
H2 − |P|2.
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It can be shown that Hout and Hin can be identified in a natural way as (bosonic)
Fock spaces over the one-particle space hm. Specifically, let Γ(hm) be the symmetric Fock
space over hm with Fock vacuum Ω0, and, for ψ ∈ hm, let a∗(ψ) be the Fock creation
operator such that a∗(ψ)Ω0 = ψ. We define the wave operators W out : Γ(hm) → Hout

and W in : Γ(hm) → Hin by the following relations:

W outΩ0 =W inΩ0 = Ω, (1.37)

W out(a∗(ψ1) · · · a∗(ψn)Ω0) = ψ1

out
× · · ·

out
× ψn, (1.38)

W in(a∗(ψ1) · · · a∗(ψn)Ω0) = ψ1

in
× · · ·

in
× ψn. (1.39)

It is not difficult to verify that the wave operators defined in this way commute with
the representation of the translation group. Due to this natural identification, scattering
states have a clear interpretation in terms of particle states.

1.2.3 Asymptotic Completeness

Asymptotic completeness asserts that the ranges of the wave operators W out and W in,
respectively, coincide with the Hilbert space H.

Definition 1.2.5. An algebraic quantum field theory is asymptotically complete if

H = Hout = Hin. (1.40)

As explained in Subsection 1.1.2, proving asymptotic completeness in quantum field
theory is a challenging problem. One complication, which is common to systems with
infinitely many degrees of freedom, arises from the potential presence of charged par-
ticles. These charged particles are related to inequivalent representations of the alge-
bra A, as we mentioned in Subsection 1.1.2. Particles from superselection sectors with
opposite charges can combine to form neutral pairs, which contribute additional states
to the multi-particle spectrum of the vacuum sector. For simplicity, the construction
of scattering states, which we presented above, was restricted to the vacuum sector.
The Haag–Ruelle theory can be generalised to include charged particles [DHR74, BF82],
which must be taken into account when attempting to establish asymptotic completeness
in quantum field theories with non-trivial superselection structures.

Strategy for proving asymptotic completeness

Despite the significant challenges, which we encounter in quantum field theory, there
exists a promising strategy for proving asymptotic completeness. This approach traces
back to ideas from Buchholz [Bu86, Bu95] and Haag [Ha96, Chapter VI] and is based
on the concept of particle detectors. The logical structure of the argument can be
summarised in three main steps:

1. Identification of particle detectors: The first step is to identify observables in the
algebra A that can be interpreted as particle detectors.
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2. Triggering by scattering states: It must then be shown that these particle detectors
are only triggered by scattering states. Mathematically, one has to demonstrate
that any state from the orthogonal complements (Hout)⊥ and (Hin)⊥ of the scat-
tering states lies in the kernel of any particle detector.

3. Accessibility of quantum states through detectors: Finally, it must be proved that
every non-zero quantum state in H can trigger at least one particle detector.

If these three steps are accomplished, it follows that the orthogonal complements
(Hout)⊥ and (Hin)⊥ are trivial. Consequently, every state in H is a scattering state,
thereby establishing asymptotic completeness.

The appropriate observables, which serve as particle detectors, were identified by
Araki and Haag [AH67]. They constructed asymptotic observables as asymptotic limits
(t→ ±∞) of the following sequences:

eitH
∫
Rs

h
(x
t

)
(B∗B)(x) dx e− itH , (1.41)

where h ∈ L∞(Rs) is a velocity function and B∗ is a creation operator. These asymp-
totic observables, now known as Araki–Haag detectors, have a natural interpretation
as particle counters. Later, Buchholz [Bu90] found an important uniform bound that
facilitates the treatment of these detectors. We explain the details of the construction
in Section 1.3.

Araki and Haag proved the convergence of Araki–Haag detectors on scattering states.
However, to accomplish Step 2, we must prove the convergence on arbitrary states.
This problem has been the focus of considerable interest among mathematical physicists
since the publication of Araki and Haag’s seminal paper [Bu86, Bu95, Po04, BS06].
However, only relatively recently Dybalski and Gérard [DG14a, DG14b] made significant
progress in this area. They analysed the convergence of products of Araki–Haag detectors
sensitive to particles with distinct velocities (i.e. products of detectors where the velocity
functions have disjoint support) on arbitrary states of bounded energy. Their results
relied on techniques from time-dependent quantum-mechanical scattering theory, such as
large-velocity and phase-space propagation estimates. However, they could not establish
the convergence of a single detector due to a missing low-velocity estimate.

In the paper [Kr24a], we built upon the framework developed by Dybalski and Gérard
and successfully proved the convergence of a single Araki–Haag detector on states below
the three-particle threshold. Furthermore, we demonstrated that the orthogonal com-
plement of the scattering states (at the two-particle level) is mapped to 0 by Araki–Haag
detectors. These results are described in Theorem 1.3.3 below and address Step 2 at the
two-particle level.

At the moment, Step 3 remains open for future investigation. We anticipate that
proving this step axiomatically is challenging because detailed knowledge of the super-
selection structure and particle content of a given model is likely required to establish
the accessibility of quantum states through detectors.
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Notably, there are approaches to Step 3 which rely on the existence of an energy-
momentum tensor Tµν(x) [Kr24a, Section 5.1]. Given that such a density for the energy-
momentum operators exists, we may approach Step 3 as follows. If ψ is a state of positive
energy, then

0 < 〈ψ,Hψ〉 = 〈e− itHψ,H e− itHψ〉 = 〈e− itHψ,

∫
Rs

T00(x) dx e− itHψ〉, (1.42)

where we used that (i) ψ has positive energy, (ii) H commutes with the time evolution
eitH , and (iii) formally, the 00-component of the energy-momentum tensor integrates to
the Hamiltonian. The observable on the right-hand side of (1.42) structurally resembles
that of an approximating sequence of an Araki–Haag detector. If we could apply the
convergence result of Theorem 1.3.3, it would follow that ψ is triggered by an Araki–Haag
detector, as the limit on the right-hand side of (1.42) would be non-zero.

The challenge, however, is that T00(x) does not have the canonical form (B∗B)(x).
To apply Theorem 1.3.3, we would need to write or approximate the energy-momentum
tensor by a sum with operators of the form B∗

iBi, where each B∗
i is a creation operator.

An approximation property of a similar type has been established by Dybalski [Dy08,
Appendix D] for the free massive scalar field. It would be interesting to generalise this
result to interacting quantum field theories.

We emphasise that this approach to establish Step 3 requires controlling the conver-
gence of a single Araki–Haag detector or, through an iteration of the argument (1.42),
the convergence of products of detectors sensitive to particles with the same velocity.
The convergence of detectors sensitive to particles with disjoint velocity, as in the papers
of Dybalski and Gérard, would not be sufficient. In this sense, Theorem 1.3.3 brings us
closer to asymptotic completeness than this earlier result.

1.3 Araki–Haag Detectors

In this section, we formalise the notion of a particle detector. We review the results of
Araki and Haag’s seminal paper [AH67] and present our new result on the convergence
of Araki–Haag detectors on arbitrary states.

1.3.1 Araki–Haag Formula

Araki and Haag [AH67] defined a detector C as an almost local observable measuring
deviations from the vacuum.

Definition 1.3.1. A detector is an almost local observable C ∈ A that is self-adjoint
and annihilates the vacuum vector Ω (i.e. CΩ = 0).

Example. Let B ∈ A be almost local. If σα(B) ∩ V+ = ∅, where V+ is the forward
light cone, then C = B∗B is a detector. The detectors of the form B∗B generate a
∗-algebra C, in which each element is a detector.
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Let C = B∗B be a detector as in the example. Araki and Haag analysed the
Heisenberg evolution of the observable C. They observed that C(t,x) = U(t,x)CU(t,x)∗

converges weakly to 0 as t → ∞, which is a result of the dispersion of quantum states.
Physically, this means that, after a sufficiently long time, information about the particle’s
localisation is lost. We integrate C(t,x) over Rs to compensate for dispersion:

C(h; t) = eitH
∫
Rs

h
(x
t

)
(B∗B)(x) dx e− itH , h ∈ L∞(Rs). (1.43)

In [AH67], it was assumed that h is compactly supported to ensure the convergence
of the integral. However, later it was shown by Buchholz [Bu90] that the integral is
well-defined on subspaces of finite energy thanks to the following uniform bound:

Proposition 1.3.2 ([DG14a, Lemma 3.4]). Let B ∈ A be almost local such that σα(B)∩
V+ = ∅. For every compact subset ∆ ⊂ Rd and ψ ∈ H,∫

Rs

‖B(x)E(∆)ψ‖2 dx ≤ C∆‖ψ‖2. (1.44)

Araki and Haag [AH67, Theorem 4] proved the following asymptotic formula (Araki–
Haag formula), for regular scattering states φ, ψ ∈ Hout of bounded energy:

lim
t→∞

〈φ,C(h; t)ψ〉 = (2π)s
∫
Rs

h(∇ω(p))〈p|B∗B|p〉〈φ, a∗out(p)aout(p)ψ〉 dp, (1.45)

where a∗out(p) = W outa∗(p)(W out)∗. The asymptotic observable (1.45) is a Fock space
number operator (i.e. a particle counter). The additional factor h(∇ω(p))〈p|B∗B|p〉
is interpreted as the sensitivity of the counter to measure a particle of momentum p.
Specifically, h is a velocity filter because particles with group velocity ∇ω(p) outside the
support of h are not counted.

1.3.2 Convergence of Araki–Haag Detectors

The proof of the Araki–Haag formula follows from a relatively straightforward compu-
tation, which uses favourable properties of scattering states. However, extending the
convergence result to arbitrary states appears to be significantly more difficult. In the
paper [Kr24a], we managed to prove the following result.

Theorem 1.3.3. Let ∆ ⊂ Rd be compact, ψ ∈ E(∆)Hac(P ), and B∗ a creation operator.
If ∆− σα(B∗) ∩ σ(P ) ⊂ Hm, then, for every h ∈ L∞(Rs),

C(h; t)ψ = eitH
∫
Rs

h
(x
t

)
(B∗B)(x) dx e− itHψ (1.46)

converges in H as t→ ∞. The limit is 0 if ψ ∈ (Hout)⊥.
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B

Figure 1.2: The energy-momentum spectrum contains an isolated mass shell (red line)
and a continuous multi-particle spectrum (grey area) above the two-particle threshold
(grey line). A creation operator B∗ maps the vacuum vector Ω to a one-particle state.
In Theorem 1.3.3, we assume that B∗ is such that ∆− σα(B∗)∩ σ(P ) is a subset of the
mass shell.

Before presenting the main ideas of the proof, we discuss the assumptions of the
theorem. The condition ∆− σα(B∗) ∩ σ(P ) ⊂ Hm effectively selects states from the
multi-particle spectrum that lie below the three-particle threshold. If both the energy-
momentum spectrum of ψ and the energy-momentum transfer of B∗ were point-like,
then, for creation operators B∗ and states ψ below the three-particle threshold, Bψ
would either be zero or a one-particle state. However, because the energy-momentum
spectrum of ψ and the energy-momentum transfer of B∗ are not point-like but have a
finite extension, it is possible for Bψ to have a component in the multi-particle spectrum
even when ψ lies below the three-particle threshold.

Concerning the spectral assumption ψ ∈ Hac(P ), we recall that the Hilbert space H
can be decomposed into the pure point, absolutely continuous, and singular continuous
spectral subspaces of the energy-momentum operators P :

H = Hpp(P )⊕Hac(P )⊕Hsc(P ). (1.47)

The pure point spectral subspace Hpp(P ) is spanned by the vacuum vector Ω, whereas
the singular continuous spectral subspace Hsc(P ) typically consists of eigenstates of the
mass operator. These eigenstates correspond to mass shells in the energy-momentum
spectrum, which constitute non-atomic Lebesgue null sets in Rd. It is relatively straight-
forward to establish the convergence of Araki–Haag detectors on eigenstates of the mass
operator (see [Kr24a, Proposition 3.3]). However, in general, Hsc(P ) may also contain
exotic states related to the singular continuous spectrum of the mass operator, for which
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we are unable to control the convergence of Araki–Haag detectors.
We note that in asymptotically complete models, the singular continuous spectral

subspace is trivial (i.e. Hsc(P ) = {0}) because the energy-momentum operators P are
unitarily equivalent to those of the free field theory in this case. However, our conver-
gence results also applies to some models which are not asymptotically complete, such as
certain generalised free fields. This situation is analogous to the asymptotic velocity in
quantum mechanics, whose convergence can be proved even when the potential decays
too slowly for asymptotic completeness to hold (see Subsection 1.1.1).

Main steps of the proof of Theorem 1.3.3.

1. It is enough to establish the convergence of (1.46) for states ψ ∈ (Hout)⊥ because
the convergence of (1.46) on scattering states has been proved in previous works [AH67]
[DG14b, Proposition 7.1]. (A similar observation was made in [Dy18].) By an application
of Proposition 1.3.2 and the Cauchy–Schwarz inequality (see [Kr24a, (3.10)]), it also
suffices to prove that, for ψ ∈ (Hout)⊥,

lim
t→∞

∫
Rs

〈e− itHψ, (B∗B)(x) e− itHψ〉dx = 0. (1.48)

2. We utilise the assumption that Bψ ∈ hm is a one-particle state, along with the
following lemma:

Lemma 1.3.4 ([Kr24a, Lemma 3.5]). If ∆ ⊂ Rd is compact and ∆ ∩ σ(P ) ⊂ Hm, then
there exists a creation operator B∗

2 such that

E(∆) = E(∆)

∫
Rs

(B∗
2B2)(y) dyE(∆). (1.49)

This lemma is noteworthy because it demonstrates that one-particle states are ac-
cessible through Araki–Haag detectors. The proof of the lemma involves constructing
a creation operator B∗

2 such that the wave function of the one-particle state B∗
2Ω in

momentum space equals 1 on the projection of ∆ onto the mass shell Hm. We apply
this lemma by inserting a second Araki–Haag detector into (1.48):∫

Rs

〈e− itHψ, (B∗B)(x) e− itHψ〉 dx

=

∫
Rs

∫
Rs

〈e− itHψ,B∗(x)(B∗
2B2)(y)B(x) e− itHψ〉 dx dy

=

∫
Rs

∫
Rs

|〈e− itHψ,B∗(x)B∗
2(y)Ω〉|2 dx dy

=

∫
Rs

∫
Rs

|〈ψ, eit(H−ω(Dx)−ω(Dy))B∗(x)B∗
2(y)Ω〉|2 dx dy. (1.50)

In the second step, we used the fact that applying two annihilation operators to a two-
particle state results in the vacuum state. In the third step, we used that eit(ω(Dx)+ω(Dy))
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is an isometry on L2(R2s). After a careful refinement of this argument, we can assume
that B∗ and B∗

2 create one-particle states with distinct momenta (see [Kr24a, Proof of
Theorem 3.4]).

3. The key idea is that

ϕt(x,y) = eit(H−ω(Dx)−ω(Dy))B∗(x)B∗
2(y)Ω (1.51)

should converge to a scattering state as t → ∞. Because ψ ∈ (Hout)⊥ is orthogonal
to all scattering states, the limit of (1.50) should be 0. In fact, ϕt converges pointwise
to a scattering state as a consequence of Theorem 1.2.4. The technical challenge lies in
proving the convergence of 〈ψ,ϕt〉 in the L2-sense. In the following, it is convenient to
formulate (1.51) in relative coordinates:

u = x− y, v =
1

2
(x+ y). (1.52)

4. We establish the convergence of 〈ψ,ϕt〉 by verifying the Cauchy property through
Cook’s method (i.e. we demonstrate that the t-derivative is integrable):

〈ψ,ϕt2〉 − 〈ψ,ϕt1〉 =
∫ t2

t1

e− iτ(ω( 1
2
Dv+Du)+ω( 1

2
Dv−Du))〈ψ, eiτH e− iv·Pφ(u)〉 dτ. (1.53)

Here, φ is a function that involves a commutator of two creation operators:

φ(u) = e−
i
2
u·P[B̃∗

1 , B
∗
2(−u)]Ω, (1.54)

where B̃∗
1 =

∫
Rd g(x)B

∗(x) dx for a Schwartz function g ∈ S(Rd) such that ĝ(p) =
p0 − ω(p) on the energy-momentum transfer σα(B∗). The commutator in φ is obtained
from the t-derivative (see [Kr24a, Proof of Theorem 4.1, Step (ii)]). We observe that
the function φ decays rapidly in the relative coordinate u. This follows from the locality
axiom and the fact that creation operators are almost local (see [Kr24a, Lemma 2.2]).

5. To proceed, we take the Fourier transform Fv→p in the total variable v. We must
then prove the convergence to 0 as t1, t2 → ∞ of the following expression:∫

Rs

∫
Rs

∣∣∣∣∫ t2

t1

e− iτ(ω( 1
2
p+Du)+ω( 1

2
p−Du))Fv→p〈ψ, eiτH e− iv·Pφ(u)〉 dτ

∣∣∣∣2 dudp

=

∫
Rs

sup
‖f‖L2=1

∣∣∣∣∫ t2

t1

∫
Rs

f(u) e− iτωp(Du)Fv→p〈ψ, eiτH e− iv·Pφ(u)〉dudτ

∣∣∣∣2 dp. (1.55)

6. In (1.55), we insert a one through 1 = 〈Ap〉−ν〈Ap〉ν , where ν > 1/2. Here, Ap is a
modified generator of dilations. Its exact form, which is given in [Kr24a, (4.21)], is not
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so relevant at the moment except that Ap is relatively bounded with respect to u. An
application of the Cauchy–Schwarz inequality yields the following bound:∫

Rs

(
sup

‖f‖L2=1

∫ t2

t1

‖〈Ap〉−ν eiτωp(Du)χpf‖2L2 dτ

)

×
(∫ t2

t1

‖〈Ap〉νFv→p〈ψ, eiτH e− iv·Pφ〉‖2L2 dτ

)
dp, (1.56)

where χp is a projector that suppresses contributions from zero relative momentum
(Du = 0). This projector can be included because φ contains two creation operators
that create one-particle states with distinct momenta.

7. It remains to demonstrate that the first factor in (1.56) can be bounded uniformly
in t1, t2, and the total momentum p, and that the second factor, integrated over p,
converges to 0 as t1, t2 → ∞. That the second factor converges to 0, is an application of
the decay properties of φ (i.e. a consequence of the locality axiom) and the assumption
ψ ∈ Hac(P ) (see [Kr24a, (4.28)]). The first factor is bounded due to the following local
decay estimate: ∫ ∞

−∞
‖〈Ap〉−ν eiτωp(Du)χpf‖2L2 dτ ≤ C‖f‖2L2 . (1.57)

An efficient way of proving such a local decay estimate is through Mourre’s conjugate
operator method. We explain this method and its main results in the next section. Once
the local decay estimate is established, the proof of the theorem is complete.

The structure of the proof of Theorem 1.3.3 bears resemblances to proofs of the
existence and completeness of two-body wave operators in quantum mechanics. For
example, when applying Cook’s method in quantum mechanics, one obtains a term
involving the potential, which decays at infinity. In quantum field theory, however, there
are no potentials. Instead, as demonstrated in Step 4, decay arises from the commutator
of almost local observables.

Step 5, which involves taking the Fourier transform in the total variable v, corre-
sponds to the separation of the centre-of-mass motion in quantum mechanics.

The use of local decay estimates, as seen in Step 7, is also well-known in quantum
mechanics (see [ABG96, Theorem 7.1.4]). This technique of proving the existence and
completeness of wave operators traces back to the works of Kato [Ka66] and Lavine
[La70a, La70b].

1.4 Mourre’s Conjugate Operator Method
Mourre’s conjugate operator method is a mathematical technique for analysing spectral
properties of a self-adjoint operator H : D(H) → H on a Hilbert space H. The method
is based on a strictly positive commutator estimate (the so-called Mourre estimate) with
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a conjugate operator A. Mourre’s method is relatively well-known in non-relativistic
quantum mechanics, where it crucial to advance the spectral and scattering theory of
many-body Schrödinger operators (see Subsection 1.1.1). Our applications of Mourre’s
conjugate operator in relativistic quantum field theory, as presented in the papers [Kr24a,
Kr24b], are new.

1.4.1 Mourre Estimate

The following regularity classes are relevant for defining commutators of unbounded
operators. We denote by R(z) = (H − z)−1 the resolvent of H for z ∈ ρ(H) in the
resolvent set of H.

Definition 1.4.1. Let A be a self-adjoint operator on H, and let k ∈ N ∪ {∞}. The
space Ck(A) consists of all self-adjoint operators H such that, for a z ∈ ρ(H), the map
t 7→ eitAR(z) e− itA is Ck in the strong operator topology.

If the map t 7→ eitAR(z) e− itA is C1 in the strong operator topology, the derivative
in t = 0 defines the commutator [R(z), iA] as a bounded operator on H. Because
H ∈ C1(A), the commutator [R(z), iA] can be expressed as

[R(z), iA] = −R(z)[H, iA]R(z), (1.58)

which defines [H, iA] as a map from D(H)∗ to D(H) [ABG96, Theorem 6.2.10]. Here,
we consider the domain D(H) as a Banach space equipped with the graph norm.

Definition 1.4.2. The operator H obeys a Mourre estimate on an open and bounded
set J ⊂ R if a self-adjoint operator A (conjugate operator) exists such that H ∈ C1(A)
and, for an a > 0,

E(J)[H, iA]E(J) ≥ aE(J), (1.59)

where E is the spectral measure of H.

1.4.2 Main Results of Mourre’s Method

The three main results of the conjugate operator method are (1) the limiting absorption
principle, which controls the resolvent R(z) = (H − z)−1 as the resolvent parameter
z ∈ ρ(H) approaches the spectrum in a topology defined by the conjugate operator A,
(2) the local decay estimate, which asserts that 〈A〉−ν = (1 + |A|2)−ν/2 is a locally H-
smooth operator for ν > 1/2, (3) the absence of singular spectrum in regions where the
Mourre estimate holds.

Theorem 1.4.3 (Limiting absorption principle). Let H ∈ C2(A). If H obeys a Mourre
estimate on an open and bounded set J ⊂ R with conjugate operator A, then, for every
compact subset K ⊂ J and every ν > 1/2,

sup
λ∈K,µ>0

‖〈A〉−ν(H − λ∓ iµ)−1〈A〉−ν‖ <∞. (1.60)
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Theorem 1.4.4 (local decay estimate). Let H ∈ C2(A). If H obeys a Mourre estimate
on an open and bounded set J ⊂ R with conjugate operator A, then, for every compact
subset K ⊂ J and every ν > 1/2,∫ ∞

−∞
‖〈A〉−ν e− itHE(K)ψ‖2 dt ≤ C‖ψ‖2, ψ ∈ H. (1.61)

Theorem 1.4.5 (absence of singular spectrum). Let H ∈ C2(A). If H obeys a Mourre
estimate on an open and bounded set J ⊂ R, then the spectrum of H in J is purely
absolutely continuous.

The three main results of the conjugate operator method are interrelated. Both the
limiting absorption principle (LAP) and the local decay estimate (LDE) imply that the
spectrum of H in J is purely absolutely continuous [ABG96, Proposition 7.1.3] [RS78,
Theorem XIII.23]. Moreover, the LDE can be derived from the LAP, and conversely,
the LAP for the imaginary part of the resolvent holds if the LDE is established [ABG96,
Proposition 7.1.1].

There are independent proofs for both the LAP and LDE starting from the Mourre
estimate. Several proofs of the LAP under differing assumptions have been found. Proofs
under basically optimal assumptions are given in [ABG96, Sections 7.3–7.5] and [Sa97].
Direct proofs of the LDE from the Mourre estimate are less common but can be achieved
through the low-velocity estimate by Hunziker, Sigal, and Soffer [HSS99].

Interestingly, conjugate operators for a self-adjoint operator H on a set J ⊂ R can be
constructed under the assumption that the spectrum ofH is purely absolutely continuous
and of constant multiplicity in J [ABG96, Proposition 7.2.14].

[H, iA] ≥ a

LDELAP

σ(H) is purely a.c.

Figure 1.3: The main results of the Mourre method (LAP – limiting absorption principle,
LDE – local decay estimate, a.c. – absolutely continuous) are interrelated.

1.4.3 Applications in Quantum Field Theory

We have already encountered an application of Mourre’s conjugate operator method in
the proof of the convergence of Araki–Haag detectors (Theorem 1.3.3). As we demon-
strated in [Kr24b], Mourre’s method can also be employed to deduce spectral properties
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p0

p

Sκ

– κ

Figure 1.4: The set Sκ ⊂ V+ is invariant under Lorentz boosts.

of the energy-momentum operators in relativistic quantum field theories. Specifically,
the generators of Lorentz boosts can be used to construct conjugate operators.

Theorem 1.4.6 ([Kr24b, Theorem 1.1]). Let U : P → B(H) be a strongly continuous
unitary representation of the Poincaré group P = L n Rd on a Hilbert space H, P =
(P0,P) the generators of the translation subgroup U |Rd, E the joint spectral measure of P ,
and K the generators of Lorentz boosts. Assume that the energy-momentum operators P
obey the spectrum condition. For κ > 0, define the following Lorentz-invariant sets:

Sκ = {Λ1(t1) . . .Λs(ts)(p0,0) | t1, . . . , ts ∈ R, p0 ∈ [0, κ]}−, (1.62)

where Λj(tj) are the Lorentz boosts in the spatial direction j ∈ {1, . . . , s = d − 1} and
{. . . }− denotes the closure in Rd. For all compact subsets I0 ⊂ (κ,∞) and Ij ⊂ R\{0},
for every ν > 1/2,

sup
λ∈I0,µ>0

‖E(Sκ)〈Kj〉−ν(P0 − λ∓ iµ)−1〈Kj〉−νE(Sκ)‖ <∞, (1.63)

sup
λ∈Ij ,µ>0

‖E(Sκ)〈Kj〉−ν(Pj − λ∓ iµ)−1〈Kj〉−νE(Sκ)‖ <∞. (1.64)

The limiting absorption principles stated in the theorem are derived from a Mourre
estimate. In the case of the momentum operators, the basic idea of the proof is particu-
larly simple. Formally, the momentum operator Pj and the generator Kj of the Lorentz
boost in the spatial direction j satisfy the following commutation relation:

[Pj , iKj ] = P0. (1.65)

By the spectrum condition, the energy operator P0 is strictly positive on spectral sub-
spaces of Pj that are separated from 0. This gives the Mourre estimate for the momentum
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operator Pj :

Ej((a,∞))[Pj , iKj ]Ej((a,∞)) = P0Ej((a,∞)) ≥ aEj((a,∞)), a > 0, (1.66)

where Ej is the spectral measure of Pj . To rigorously justify the commutation relation
(1.65) and to apply the Mourre theory, it is necessary to demonstrate that Pj ∈ C2(Kj).
This is the only non-trivial part of the argument and requires the introduction of the
spectral projections E(Sκ). These spectral projections ensure that P0,κ = P0E(Sκ) and
Pj,κ = PjE(Sκ) are bounded relatively to each other and that P0,κ, Pj,κ ∈ C∞(Kj)
[Kr24b, Proposition 4.2].

Notably, we also established a Mourre estimate for the energy operator P0, but the
construction of the conjugate operator is more complicated in this case. The following
operator is similar to the generator of dilations in quantum mechanics, with the position
operator replaced by the generator of Lorentz boosts:

A =
1

2
(P1K1 +K1P1) . (1.67)

Formally, the commutator of P0 with iA yields a positive operator:

[P0, iA] = P 2
1 ≥ 0. (1.68)

However, it is not possible to make P 2
1 strictly positive by restricting the commutation

relation to spectral subspaces of P0. The momentum of a state can always be zero,
regardless of how large its energy is. To resolve this issue, we must restrict the com-
mutation relation to the Lorentz-invariant set Sκ. This allows us to obtain a Mourre
estimate on every open and bounded subset of (κ,∞) that is separated from κ > 0:

E0((κ+ ε,∞))[P0,κ, Aκ]E0((κ+ ε,∞)) = P 2
1E0((κ+ ε,∞)) ≥ aE((κ+ ε,∞)), (1.69)

where E0 is the spectral measure of P0, ε > 0, Aκ = AE(Sκ), and a > 0 depends on ε (see
also Figure 1.4). Moreover, we have P0,κ ∈ C1(Aκ), but not necessarily P0,κ ∈ C2(Aκ),
which is required to apply the results of Mourre’s method. To address this, a slight
technical modification of the conjugate operator Aκ is needed, where we replace P1 with
F (P ) for a suitable function F . For details, we refer to [Kr24b, Lemma 4.8].

The Mourre estimate for P0 is an interesting result because the Hamiltonian is typ-
ically of rather abstract nature in quantum field theory (e.g. the Hamiltonian is renor-
malised through a limiting procedure or the Hamiltonian is defined axiomatically as the
generator of time translations). Previously, a Mourre estimate was established for the
spatially cut-off P (ϕ)2 Hamiltonian by Dereziński and Gérard [DG00], but it remained
an open problem whether a Mourre estimate can be proved for the Hamiltonian in the
infinite-volume limit.

From Theorem 1.4.6, it follows that the spectra of the Hamiltonian and the momen-
tum operators are purely absolutely continuous, except at the point 0 [Kr24b, Proposi-
tion 1.2]. This spectral result is well-known in relativistic quantum field theory. It was
first proved by Maison [Ma68] through an application of Wigner’s theorem. Our result
not only reproduces Maison’s result but also establishes a limiting absorption principle,
which is a much stronger statement.
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1.5 Conclusion and Outlook
Asymptotic completeness in local relativistic quantum field theory (QFT) is a challenging
open problem due to several conceptual and technical difficulties. Nevertheless, there
is a promising strategy for establishing asymptotic completeness that uses Araki–Haag
detectors. We proved the convergence of Araki–Haag detectors on states ψ ∈ Hac(P )
below the three-particle threshold, which is an important prerequisite for asymptotic
completeness.

We demonstrated that Mourre’s conjugate operator method, which is a well-known
mathematical technique from non-relativistic quantum mechanics, is also relevant for the
spectral and scattering theory of QFT. Specifically, we applied a local decay estimate
to prove the convergence of Araki–Haag detectors (Theorem 1.3.3) and established a
limiting absorption principle for the energy-momentum operators (Theorem 1.4.6). Both
results were derived from a Mourre estimate.

We expect that further methods from many-body quantum mechanics could be
adapted to the QFT setting. It would be interesting to explore whether insights from
many-body quantum-mechanical scattering theory, especially the channel structure as
described in Subsection 1.1.1, could be applied to prove the convergence of Araki–Haag
detectors in regions above the three-particle threshold. This could be a promising direc-
tion for future research and could yield interesting correspondences between many-body
quantum mechanics and quantum field theory. Progress in this direction may first require
to solve the problem of asymptotic completeness for many-body dispersive Hamiltonians,
particularly for those with a relativistic dispersion relation. A Mourre estimate in this
case has been established with increasing generality by Dereziński [De90], Gérard [Ge91],
and Damak [Da97]. A large-velocity estimate can be adapted from Graf’s paper [Gr90,
Theorem 4.1], while a low-velocity estimate can be derived from the Mourre estimate
[HSS99]. The main obstacle to prove asymptotic completeness for dispersive Hamilto-
nians is to establish a suitable phase-space propagation estimate, as we discussed in
Subsection 1.1.1. Among different possible approaches, the conjectured propagation
estimate (1.21) seems to be the most promising at the moment.

Another interesting direction of future investigations is to close the gap between
the convergence of Araki–Haag detectors and asymptotic completeness (Step 3 of the
strategy described in Subsection 1.2.2). We anticipate it to be difficult to prove the acces-
sibility of quantum states through detectors axiomatically because a detailed knowledge
about the particle content may likely be necessary to achieve such a result. However,
it could be more realistic to attempt a proof in the P (φ)2 or the massive Sine–Gordon
model, where the particle spectrum is well-understood. As outlined in Subsection 1.2.2,
this would require a detailed analysis of the energy-momentum tensor, which could be a
realistic task in the Sine–Gordon model considering recent progress on its Minkowskian
construction [BNR23, FC23]. Establishing the accessibility of quantum states through
detectors in the Sine–Gordon model, in combination with Theorem 1.3.3, would lead
to a proof of two-particle asymptotic completeness. To our knowledge, this would be a
novel and significant result, considering the conceptual challenges in QFT.
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Abstract: We prove the convergence of Araki–Haag detectors in any Haag–Kastler
quantum field theory with an upper and lower mass gap. We cover the case of a single
Araki–Haag detector on states of bounded energy, which are selected from the abso-
lutely continuous part of the energy-momentum spectrum sufficiently close to the lower
boundary of the multi-particle spectrum. These states essentially encompass those states
in the multi-particle spectrum lying below the three-particle threshold. In our proof,
we draw on insights from proofs of asymptotic completeness in quantum mechanics.
Notably, we apply Mourre’s conjugate operator method for the first time within the
framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications
of our findings for the problem of asymptotic completeness in local relativistic quantum
field theory.

1. Introduction

A fundamental task of scattering theory is to prove asymptotic completeness, which
is important for interpreting quantum theories in terms of particles. In non-relativistic
quantum mechanics, asymptotic completeness for N -particle Hamiltonians has been
established through the works of Enss [En84], Sigal and Soffer [SS87], Graf [Gr90],
Yafaev [Ya93], Dereziński [De93], and many others (see [DG97] for a textbook expo-
sition). These classical results rely on the existence of asymptotic observables such as
the asymptotic velocity.1

In local relativistic quantum field theory, however, asymptotic completeness remains
an open problem, even at the level of two particles in massive theories. Asymptotic
completeness has been proved only for few models, including integrable models [Le07]
and the P(φ)2 model at the level of two [SZ76] and three particles [CD82].

1 The cited papers are formulated mainly in time-dependent scattering theory. More recently, Skib-
sted [Sk23] provided a proof of asymptotic completeness for short-range interactions in time-independent
scattering theory.
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The reason for this gap lies in additional conceptual and technical difficulties in
quantum field theory, as discussed in [DG14b]. Firstly, within the conventional Haag–
Kastler framework, there are pathological counterexamples to asymptotic completeness
(e.g. generalised free fields). Moreover, the infinite number of degrees of freedom in
quantum field theory allows for a rich superselection structure and myriads of elusive
charged particles. As a result, the vacuum sector accommodates not only neutral particles
but also particle states containing oppositely charged pairs of particles. On the technical
side, the understanding of dynamical properties of systems with relativistic dispersion
relation is incomplete. Specifically, for N ≥ 3, asymptotic completeness is an open
problem for N -particle Hamiltonians with non-quadratic dispersion relation.

It is not surprising that experts in quantum field theory have focused on other prop-
erties than asymptotic completeness. A closely related problem is the convergence of
asymptotic observables corresponding to the asymptotic velocity in quantum mechanics.
The convergence of asymptotic observables is still a difficult problem in Haag–Kastler
quantum field theory, where observables possibly evolve through a cascade of charged
particles and pathological states. However, building on decades of previous research
outlined below, we make substantial progress on this question.

Araki–Haag detectors have long ago been identified as natural asymptotic observables
in quantum field theory. In their seminal paper, Araki and Haag [AH67] proved the
convergence of these asymptotic observables on incoming scattering states (Hin) and
outgoing scattering states (Hout) of bounded energy and interpreted them as particle
counters.2 However, the convergence of Araki–Haag detectors on arbitrary states of
bounded energy has remained an open problem for decades despite continued interest
related to various aspects of particles in quantum field theory [Bu86,Bu95,Po04,BS06]
[Ha96, Section VI.1].

First convergence results of Araki–Haag detectors on arbitrary states of bounded en-
ergy have been obtained relatively recently by Dybalski and Gérard [DG14a,DG14b].
They managed to translate quantum mechanical methods such as large-velocity and
phase-space propagation estimates to Haag–Kastler quantum field theory via a tech-
nically important uniform bound by Buchholz [Bu90]. Dybalski and Gérard covered
products of two or more Araki–Haag detectors sensitive to particles with distinct ve-
locities, but products of detectors sensitive to particles with coinciding velocities and
the case of a single detector were not treated. The technical reason for this omission
was a missing low-velocity propagation estimate, which is usually proved by Mourre’s
conjugate operator method [DG97, Theorem 4.13.1] [HSS99,Ri04].

Mourre’s method is a powerful mathematical technique from spectral theory, which is
based on a strictly positive commutator estimate. In the appendix, we provide a concise
overview of some important results of this method. The conjugate operator method led
to significant progress in the spectral and scattering theory of many-body Schrödinger
operators, but it resisted so far any extension from quantum mechanics to Haag–Kastler
quantum field theory. Through scattering theory, we manage to apply Mourre’s method
to quantum field theory. This allows us to prove the convergence of a single Araki–Haag
detector on states of bounded energy sufficiently close to the lower boundary of the
multi-particle spectrum.

To state our main result and explain the essence of our argument, we introduce some
notation. Let h ∈ C∞c (Rs) be a smooth compactly supported function and B∗ a creation

2 Notably, Enss [En75] published a paper on Araki–Haag detectors before his celebrated proof of asymptotic
completeness in three-particle quantum mechanical systems. Asymptotic observables play a central role in
Enss’ proof of asymptotic completeness.
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Fig. 1. The energy-momentum spectrum contains an isolated mass shell (red line) and a continuous multi-
particle spectrum (grey area) above the two-particle threshold (grey line). A creation operator B∗ maps the
vacuum vector � to a one-particle state. In Theorem 1.1, we assume that B∗ is such that �− σα(B∗)∩ σ(P)

is a subset of the mass shell

operator (i.e. a bounded operator that creates one-particle states; see Sect. 2 for precise
definitions). Araki–Haag detectors are asymptotic limits (t → ±∞) of the following
observable:

C(h, t) = eit H
∫

Rs
h
(x

t

)
(B∗B)(x) dx e− it H . (1.1)

It is possible to extend the above formula to h ∈ L∞(Rs) by Buchholz’s uniform
estimate [Bu90]. Let Hac(P) be the jointly absolutely continuous spectral subspace of
the energy-momentum operator P = (H, P). We denote the spectral measure of P by
E . Our main result is that C(h, t) converges strongly on states ψ ∈ Hac(P) for which
Bψ is a one-particle state. We formulate the result for the limit t → ∞ and outgoing
scattering states. The result for the limit t → −∞ is analogous if Hout is replaced by
Hin.

Theorem 1.1. Let � ⊂ R
d be compact and ψ ∈ E(�)H ∩Hac(P) a state of bounded

energy. If B∗ is a creation operator such that Bψ is a one-particle state, then, for all
h ∈ L∞(Rs), C(h, t)ψ converges strongly in H as t →∞. If ψ lies in the orthogonal
complement of the scattering states Hout, then the limit is 0.

Intuitively, the condition that Bψ is a one-particle state selects states ψ of the multi-
particle spectrum below the three-particle threshold (see Fig. 1 and the comments preced-
ing Theorem 3.4 for more details). We emphasise that the assumptions of the theorem
exclude neither a non-trivial superselection structure nor pathological states with too
many degrees of freedom.

Regarding the spectral assumption ψ ∈ Hac(P), we note that the Hilbert space H
decomposes into the pure point, absolutely continuous, and singular continuous spectral
subspace of P:

H = Hpp(P)⊕Hac(P)⊕Hsc(P). (1.2)

Typically, the pure point spectral subspace Hpp(P) is the span of the vacuum vector �,
and the singular continuous spectral subspace Hsc(P) describes mass shells, isolated
or embedded in the multi-particle spectrum. To prove the convergence of Araki–Haag
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detectors on eigenstates of the mass operator M = √H2 − |P|2 is relatively simple (see
Proposition 3.3). However, in general, Hsc(P) may also contain exotic states for which
we cannot prove the convergence of Araki–Haag detectors. In Lorentz covariant quantum
field theories, these exotic states correspond to the singular continuous spectrum of the
mass operator.

Theorem 1.1 promises to advance our understanding of two-particle asymptotic com-
pleteness in local relativistic quantum field theory. A quantum field theory is asymp-
totically complete in the two-particle region if E(�)H = E(�)Hout = E(�)Hin for
all � ⊂ σ(P) between the two- and three-particle threshold. To prove two-particle
asymptotic completeness, we may adopt the following strategy: According to the last
statement of the theorem, Araki–Haag detectors map the orthogonal complement of scat-
tering states to 0. In physically relevant quantum field theories, quantum states should
be accessible through experiments, implying that we should be able to construct a de-
tector capable of detecting a given state ψ ∈ H. Notably, we can indeed construct such
detectors for one-particle states, as demonstrated in Lemma 3.5. However, establishing
this property for states in the multi-particle spectrum requires additional assumptions.

Corollary 1.2. Let � ⊂ R
d be compact. If, for every ψ ∈ E(�)Hac(P), a creation

operator B∗ exists such that Bψ is a one-particle state and

lim
t→∞ eit H

∫
Rs

(B∗B)(x) dx e− it H ψ 
= 0, (1.3)

then E(�)Hac(P) = E(�)Hout.

It is worth noting that there exist non-trivial models to which Theorem 1.1 applies.
As discussed above, the assumption ψ ∈ Hac(P) should not be very restrictive, but it
may be difficult to verify it in models. Notably, it is known from [SZ76] that the energy-
momentum spectrum of the weakly coupled P(φ)2 model is absolutely continuous in the
two-particle region. However, it is also known that this model is asymptotically complete
in the two-particle region, and the convergence of Araki–Haag detectors on scattering
states is already known from [AH67]. Models of interest for applying Theorem 1.1 are
those where the spectral assumption holds true, but asymptotic completeness either is
not established or fails. Among the simplest models, which belong to this class, are
certain generalised free fields. We discuss a model with non-trivial S-matrix in Sect. 5.2.

In the remainder of the introduction, we outline the proof strategy of Theorem 1.1. The
convergence of C(h, t) on scattering states has been previously established in [AH67].
Hence, we focus on proving the convergence of C(h, t) on states orthogonal to all
scattering states, similarly as in [Dy18]. We formulate the convergence of C(h, t) on the
orthogonal complement of scattering states in Theorem 3.4. Consequently, Theorem 1.1
directly follows from Theorem 3.4 (see Sect. 3 for the proof of Theorem 1.1).

The first step in proving Theorem 3.4 is to reduce the convergence of a single detector
to that of two detectors by introducing a second auxiliary detector (see Lemma 3.5). The
convergence of two detectors sensitive to particles with distinct velocities (i.e. detectors
for which the velocity functions h1 and h2 have disjoint support) has been analysed
in [DG14a]. However, in our case, the supports of the velocity functions intersect. To
proceed, a novel result in the form of an improved convergence property of Haag–Ruelle
scattering states is required, which we establish in Theorem 4.1. Under the assumption
that the momentum transfers of B∗1 and B∗2 are separated, we prove that, for every
ψ ∈ Hac(P), the function

(x, y) �→ 〈ψ, ϕt (x, y)〉 = e− it (ω(Dx)+ω(Dy))〈e− it H ψ, B∗1 (x)B∗2 (y)�〉 (1.4)
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converges in L2(R2s) as t → ∞, where ω = √m2 + | · |2 is the relativistic dispersion
relation and Dx = − i∂x. Additionally, we demonstrate that the limit is 0 if ψ lies in the
orthogonal complement of the scattering states.

The proof strategy of Theorem 4.1 resembles the proof of Lavine’s Theorem for
the existence and completeness of two-particle wave operators in quantum mechanics
[ABG96, Theorem 7.1.4] [Am09, Proposition 7.2]. In the first step, we apply Cook’s
method and reformulate the resulting expression in relative coordinates (u = x−y, v =
(x + y)/2). We prove that it is sufficient to establish the L2(R2s)-convergence of the
following function to 0 as t →∞:

(u, v) �→
∫ ∞

t
e− iτ(ω( 1

2 Dv+Du)+ω( 1
2 Dv−Du))〈ψ, eiτ H e− iv·Pφ(u)〉 dτ, (1.5)

where φ is a Hilbert space-valued Schwartz function. In the next step, we perform
a fibre decomposition of (1.5) along the total momentum Dv by taking the Fourier
transformation. This step is similar to removing the centre-of-mass motion in many-
body problems. We denote the Fourier variable corresponding to v by p, and we arrive
at the following bound for the L2-norm of (1.5):

∫
Ktot

(
sup

‖ f ‖L2=1

∫ ∞

t
‖〈Ap〉−ν eiτωp(Du)χ f ‖2

L2 dτ

)

×
(∫ ∞

t
‖〈Ap〉νFv→p〈ψ, eiτ H e− iv·Pφ〉‖2

L2 dτ

)
dp, (1.6)

where Ktot is a compact set, 〈·〉 = √1 + | · |2 denotes the Japanese bracket, Ap is a
modified dilation operator (see (4.21)),

ωp(Du) = ω(p/2− Du) + ω(p/2 + Du) (1.7)

is a pseudo-differential operator that corresponds to the energy of two free particles with
relativistic dispersion relation and total momentum p, χ is a cut-off that projects out
contributions with vanishing relative momentum, and F denotes the Fourier transfor-
mation.

Applying techniques from Mourre’s conjugate operator method, we prove that the
first factor in brackets in (1.6) is uniformly bounded in t . The second factor in brackets
converges to 0 as a consequence of the microcausality axiom. This crucial step combines
methods from quantum mechanics (Mourre theory) with concepts from quantum field
theory (microcausality).

The paper is structured as follows: In Sect. 2, we summarise the assumptions of the
paper and recall relevant facts from Haag–Ruelle scattering theory. We introduce Araki–
Haag detectors in Sect. 3, where we also prove the convergence of Araki–Haag detectors
on the orthogonal complement of scattering states (Theorem 3.4). In Sect. 4, we analyse
the convergence of the function (1.4). In Sect. 5, we discuss applications of Theorem 1.1
for a potential proof of asymptotic completeness and the applicability of our results to
models. Moreover, we provide an outlook for further research directions. In Appendix A,
we review key results of Mourre’s conjugate operator method, which are relevant for the
paper, and develop the notion of locally smooth operators for a family of commuting
self-adjoint operators.
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2. Haag–Ruelle Scattering Theory

In this paper, we work within the framework of Haag–Kastler quantum field theory. We
summarise our assumptions and notation in Sect. 2.1. Following this, we revisit some
well-known facts from Haag–Ruelle scattering theory. We refer to [DG14b, Section 2.2,
Section 6] for more details.

2.1. Assumptions and notation. Observables are described by a net of C∗-algebras
{A(O)}O∈J , where J is the set of all bounded open subsets of R

d = R
1+s (with d

representing the spacetime dimension and s = d−1 the spatial dimension). If O1 ⊂ O2,
then A(O1) ⊂ A(O2) (isotony), and if O1 is contained in the causal complement of
O2, then [A(O1),A(O2)] = {0} (microcausality). The global algebra A is the induc-
tive C∗-limit of the net {A(O)}O∈J . Moreover, a morphism α : R

d → Aut(A) from
the translation group R

d to the automorphism group Aut(A) of A exists such that, for
O ∈ J and x ∈ R

d , αxA(O) = A(O + x).
We assume that a vacuum state ρ0 : A → C invariant under the action of α exists.

The GNS triple of ρ0 is denoted by (π0,H,�), where π0 : A→ B(H) is a represen-
tation of A on the Hilbert space H and � is the (cyclic) vacuum vector. Moreover, we
impose the following assumptions: The spacetime translations are unitarily implemented
on H, that is, a strongly continuous unitary representation U : Rd → B(H) exists such
that, for A ∈ A and x ∈ R

d , π0(αx A) = U (x)π0(A)U (x)∗. Up to a multiplicative
constant, � is the unique vector such that, for all x ∈ R

d , U (x)� = �. The representa-
tion U satisfies the strong spectrum condition, that is, if σ(P) denotes the joint spectrum
of the energy-momentum operator P = (H, P) (i.e. the generators of U ), then
{0} ∪ Hm ⊂ σ(P) ⊂ {0} ∪ Hm ∪ G2m , where

Hm = {(p0, p) ∈ R
d | p0 = ω(p) =

√
m2 + |p|2}, (2.1)

G2m = {(p0, p) ∈ R
d | p0 ≥

√
(2m)2 + |p|2} (2.2)

are the mass hyperboloid of mass m > 0 and the multi-particle spectrum, respectively.
For simplicity, we assume that the mass eigenspace hm = E(Hm)H of the mass operator
M = √H2 − |P|2 corresponds to a single spinless particle, where E is the spectral
measure of P .

The local observable algebrasR(O), O ∈ J , are von Neumann algebras generated by
π0(A(O)), and the von Neumann algebra R generated by π0(A) is the global observ-
able algebra.3 For A ∈ R and x = (x0, x) ∈ R

1+s , we write A(x) = U (x)AU (x)∗
and abbreviate A(0, x) by A(x). If f ∈ S(Rd) is a Schwartz function, we define
A( f ) = ∫

Rd f (x)A(x) dx , where the integral is defined in the weak sense. Similarly,
for a Schwartz function f ∈ S(Rs), we write A[ f ] = ∫

Rs f (x)A(x) dx.

2.2. Haag–Ruelle creation operators. We explain how to define creation operators B∗ ∈
R such that B∗� ∈ hm is a one-particle state with good localisation properties. It is
untenable to take B∗ from a local observable algebra. Instead, we choose B∗ to be almost
local, that is, B∗ is essentially localised in a double cone, and its norm outside a double
cone decays rapidly.

3 Under our assumptions, it can be shown that R = B(H) [Ar99, Theorem 4.6].
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Definition 2.1. Let Kr be the double cone of radius r > 0. An element A ∈ R is almost
local if a sequence (Ar ) of local operators Ar ∈ R(Kr ) exists such that Ar converges
rapidly in norm to A as r →∞ (i.e., for every N ∈ N, ‖A − Ar‖ ≤ CN r−N ).

According to the microcausality axiom, the commutator of two observables localised
in space-like separated regions vanishes. The commutator of two almost local observ-
ables does not necessarily vanish, but its norm decays rapidly with increasing space-like
separation.

Lemma 2.2. If A1, A2 ∈ R are almost local, then, for every N ∈ N, a constant CN
exists such that ‖[A1, A2(x)]‖ ≤ CN 〈x〉−N .

The lemma is a direct consequence of Definition 2.1. Next, we introduce the energy-
momentum transfer of an element A ∈ R, which characterises the change in energy-
momentum of a state upon the action of A.

Definition 2.3. The energy-momentum transfer (or Arveson spectrum) σα(A) of an el-
ement A ∈ R is the support of the operator-valued distribution

R
d � p �→ Ǎ(p) = 1

(2π)d

∫
Rd

e− ip·x A(x) dx, (2.3)

where p · x = p0x0 − p · x denotes the Minkowski product. Moreover, the momentum
transfer of A is πP(σα(A)) = {p ∈ R

s | ∃p0 ∈ R : (p0, p) ∈ σα(A)}.
We list the following key properties of the energy-momentum transfer: If A∗ denotes

the adjoint of A ∈ R, then σα(A∗) = −σα(A). If x ∈ R
d , then σα(A(x)) = σα(A). For

a Schwartz function f ∈ S(Rd), it holds that σα(A( f )) ⊂ supp( f̂ )∩σα(A), where f̂ is
the Fourier transform of f . Furthermore, if σα(A) is compact and f̂ ∈ C∞c (Rd) satisfies
f̂ = 1 on σα(A), then A = A( f ). Similarly, if πP(σα(A)) is compact and f̂ ∈ C∞c (Rs)

satisfies f̂ = 1 on πP(σα(A)), then A = A[ f ].
The following proposition justifies the name energy-momentum transfer for the set

σα(A).

Proposition 2.4 ([DG14a, (2.4)]). If �⊂R
d is a Borel set, then

AE(�)H ⊂ E(� + σα(A))H. (2.4)

We see that B∗� is a one-particle state with good localisation properties if B∗ is
almost local and has energy-momentum transfer contained in a sufficiently small set
that intersects the mass hyperboloid Hm . This motivates the following definition:

Definition 2.5. An element B∗ ∈ R is a creation operator if B∗ is almost local, its
energy-momentum transfer σα(B∗) is a compact subset of the closed forward light cone
V+ = {p ∈ R

d | p0 ≥ |p|}, and ∅ 
= σα(B∗) ∩ σ(P) ⊂ Hm .

In scattering theory, typically the time evolution in the distant past and far future of
the (interacting) Hamiltonian H is compared with the time evolution of a simpler (free)
system. In Haag–Ruelle scattering theory, we compare the time evolution generated
by H with the evolution of Klein–Gordon wave packets by forming time-dependent
Haag–Ruelle creation operators:

B∗t [ ft ] =
∫

Rs
ft (x)B∗t (x) dx, B∗t (x) = U (t, x)B∗U (t, x)∗, ft = e− itω(Dx) f, (2.5)
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where B∗ is a creation operator, f ∈ S(Rs) is a Schwartz function with compact support
in Fourier space, and ω(Dx) =

√
m2 + |Dx|2 is the relativistic dispersion relation (i.e. ft

is a regular positive energy solution of the Klein–Gordon equation). The definition of
Haag–Ruelle creation operators can be extended to f ∈ L2(Rs). To define this extension,
the following estimate is required, which relies on a uniform bound by Buchholz [Bu90].

Proposition 2.6 ([DG14a, Lemma 3.4]). Let B ∈ R be almost local such that σα(B) ∩
V+ = ∅. For every compact subset � ⊂ R

d , a constant C� exists such that, for every
ψ ∈ H,

∫
Rs
‖B(x)E(�)ψ‖2 dx ≤ C�‖ψ‖2. (2.6)

The following two corollaries are consequences of Propositions 2.4 and 2.6. The first
corollary defines B∗[ f ] on states of bounded energy for f ∈ L2(Rs).

Corollary 2.7 ([DG14b, Lemma 6.4]). Let B∗ be a creation operator. For every com-
pact subset � ⊂ R

d , a constant C� exists such that ‖B[ f ]E(�)‖ ≤ C�‖ f ‖L2 and
‖B∗[ f ]E(�)‖ ≤ C�‖ f ‖L2 .

Corollary 2.8 ([Bu74, Lemma 4]). Let B∗1 , . . . , B∗n be creation operators. A constant
C <∞ exists such that, for all f ∈ L2(Rns),

∥∥∥∥
∫

Rns
f (x1, . . . , xn)B∗1 (x1) . . . B∗n (xn)� dx1 . . . dxn

∥∥∥∥ ≤ C‖ f ‖L2 . (2.7)

2.3. Scattering states. If a Haag–Ruelle creation operator B∗t [ ft ] is applied to the vac-
uum vector �, the interacting and free time evolution exactly cancel each other, and we
obtain a time-independent one-particle state.

Lemma 2.9. Let B∗ be a creation operator and f ∈ L2(Rs). The one-particle state
B∗t [ ft ]� = f̂ (P)B∗� ∈ hm is independent of t .

The next theorem provides the construction of multi-particle scattering states. We
state the theorem only for outgoing scattering states (i.e. for t → ∞). The results for
incoming scattering states (i.e. t →−∞) are similar.

Theorem 2.10. Let B∗1 , . . . , B∗n be creation operators and f1, . . . , fn ∈ L2(Rs). The
scattering states

ψ1
out× · · · out× ψn = lim

t→∞ B∗1,t [ f1,t ] . . . B∗n,t [ fn,t ]� (2.8)

exist and depend only on the one-particle states ψi = B∗i [ fi ]�. Moreover, scattering
states have the following properties:

1. For x ∈ R
d ,

U (x)(ψ1
out× · · · out× ψn) = U (x)ψ1

out× · · · out× U (x)ψn . (2.9)
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2. If φ1
out× · · · out× φm is another scattering state, then

〈ψ1
out× · · · out× ψn, φ1

out× · · · out× φm〉 = δnm

∑
σ∈Sn

〈ψ1, φσ(1)〉 . . . 〈ψn, φσ(n)〉, (2.10)

where Sn is the group of permutations of n elements.

Remark. In [DG14b, Theorem 6.5], the above theorem is stated for Klein–Gordon wave
packets f1, . . . , fn ∈ L2(Rs) with disjoint velocity support. The span of f1⊗ · · · ⊗ fn ,
where f1, . . . , fn have disjoint velocity support, is dense in L2(Rns). By Corollary 2.8,
the theorem extends to arbitrary families of Klein–Gordon wave packets.

Let �(hm) be the symmetric Fock space over the one-particle space hm = E(Hm)H
with Fock vacuum �0, and, for ψ ∈ hm , let a∗(ψ) be the Fock creation operator such
that a∗(ψ)�0 = ψ . Moreover, let Hout be the Hilbert space generated by scattering
states:

Hout = span{�,ψ1
out× . . .

out× ψn | ψ1, . . . , ψn ∈ hm, n ∈ N}. (2.11)

We define the isometric wave operator W out : �(hm) → Hout by the following relations:

W out�0 = �, (2.12)

W out(a∗(ψ1) · · · a∗(ψn)�0) = ψ1
out× · · · out× ψn . (2.13)

In the following, we write a∗out(ψ) = W outa∗(ψ)(W out)∗.

2.4. Carleman functions. A weakly measurable Hilbert space-valued functionϕ : Rns →
H is a Carleman function if its Carleman norm

‖ϕ‖C = sup
‖ψ‖H=1

(∫
Rns
|〈ψ, ϕ(x1, . . . , xn)〉|2 dx1 . . . dxn

) 1
2

= sup
‖ f ‖L2=1

∥∥∥∥
∫

Rns
f (x1, . . . , xn)ϕ(x1, . . . , xn) dx1 . . . dxn

∥∥∥∥ (2.14)

is finite.4 Let B∗1 , . . . , B∗n be creation operators. By Corollary 2.8, (x1, . . . , xn) �→
ϕ0(x1, . . . , xn) = B∗1 (x1) . . . B∗n (xn)� is a Carleman function. In particular, for every
ψ ∈ H, 〈ψ, ϕ0〉 ∈ L2(Rns). We define ϕt to be the Carleman function that obeys, for
every ψ ∈ H, the following identity:

〈ψ, ϕt 〉 = e− it (ω(Dx1 )+···+ω(Dxn ))〈e− it H ψ, ϕ0〉. (2.15)

Clearly, ‖ϕt‖C = ‖ϕ0‖C. Moreover, if f1, . . . , fn ∈ S(Rs) are Schwartz functions
which satisfy f̂i = 1 on the momentum transfer πP(σα(B∗i )), then

ϕt (x1, . . . , xn) = B∗1,t [ f x1
1,t ] . . . B∗n,t [ f xn

n,t ]�, (2.16)

4 In [HS78, p. 63], such functions are called bounded Carleman functions in the sense that ϕ defines a
kernel of a bounded operator mapping L2(Rns ) into H.
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where f xi
i = fi (· − xi ). By Theorem 2.10, for every x1, . . . , xn ∈ R

s , ϕt (x1, . . . , xn)

converges in H as t →∞ to the scattering state

ϕ+(x1, . . . , xn) = a∗out(B∗1 (x1)�) . . . a∗out(B∗n (xn)�)�, (2.17)

and ‖ϕ+‖C ≤ ‖ϕ0‖C by Fatou’s lemma. In particular, for every ψ ∈ H, we have
〈ψ, ϕ+〉 ∈ L2(Rns).

3. Araki–Haag Detectors

We introduce Araki–Haag detectors in Sect. 3.1, where we review convergence results
of Araki–Haag detectors on scattering states. Subsequently, in Sect. 3.2, we discuss the
convergence of single Araki–Haag detectors. Specifically, we prove our main result
(Theorem 1.1).

3.1. Araki–Haag formula. A detector C is an almost local observable measuring devi-
ations from the vacuum with C(x) = U (x)CU (x)∗ representing a measurement in the
neighbourhood of the spacetime point x ∈ R

d .

Definition 3.1. A self-adjoint element C ∈ R is a detector if C is almost local and
C� = 0.

Example. Let B ∈ R be almost local and denote the closed forward light cone by V+.
If σα(B)∩ V+ = ∅, then C = B∗B is a detector. Indeed, C is almost local and B� = 0
by Proposition 2.4 and the spectrum condition. The detectors of the form B∗B generate
a ∗-algebra C, where each element is itself a detector.

For an almost local element A ∈ R and regular scattering states φ,ψ ∈ Hout of
bounded energy in which no pair of particles has the same velocity, Araki and Haag
[AH67, Theorem 2] proved the following asymptotic expansion as t →∞:

〈φ, A(t, x)ψ〉 = 〈�, A�〉〈φ,ψ〉
+
∫

Rs

(〈p|A(t, x)|�〉〈φ, a∗out(p)ψ〉 + 〈�|A(t, x)|p〉〈φ, aout(p)ψ〉) dp

+
∫

Rs

∫
Rs
〈q|A(t, x)|p〉〈φ, a∗out(q)aout(p)ψ〉 dp dq + Rφ,ψ,A(t, x), (3.1)

where Rφ,ψ,A(t, x) is a remainder that decays rapidly in t uniformly in x ∈ R
s . Here, we

identify elements of the one-particle space hm with wave functions in L2(Rs). A single-
particle state with momentum p is denoted as |p〉 with normalisation 〈p|q〉 = δ(p− q).
Remember that, according to our assumptions, the one-particle space hm describes a
single spinless particle (see [AH67] for the asymptotic expansion in the general case).

If A = C is a detector, the first two terms of the asymptotic expansion (3.1) vanish,
and the dominant contributions of 〈φ|C(t, x)|ψ〉 as t → ∞ arise from single-particle
excitations. It can be shown that 〈φ, C(t, x)ψ〉 converges to 0 with the rate t−s due to
the dispersion of quantum states. To obtain a non-trivial limit as t → ∞, we integrate
the detector C(t, x) over the entire space:

C(h, t) =
∫

Rs
h
(x

t

)
C(t, x) dx, h ∈ C∞c (Rs). (3.2)
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Araki and Haag [AH67, Theorem 4] proved that, for scattering states φ,ψ ∈ Hout as
above,

lim
t→∞

∫
Rs

h
(x

t

)
〈φ, C(t, x)ψ〉 dx

= (2π)s
∫

Rs
h(∇ω(p))〈p|C |p〉〈φ, a∗out(p)aout(p)ψ〉 dp. (3.3)

Remark. If C ∈ C, we can extend the convergence result to all scattering states of
bounded energy by Proposition 2.6.

The asymptotic observable (3.3) resembles the Fock space number operator (i.e. a
particle counter). The additional factor h(∇ω(p))〈p|C |p〉 is interpreted as the sensitivity
of the counter to measure a particle of momentum p. Specifically, h is a velocity filter
because particles with velocity ∇ω(p) outside the support of h are not counted. Hence-
forth, we refer to these asymptotic observables as Araki–Haag detectors. The formula
(3.3) generalises to multiple detectors.

Theorem 3.2 (Araki–Haag formula, [AH67, Theorem 5]). Let φ,ψ ∈ Hout be scat-
tering states of bounded energy and C1, . . . , Cn ∈ C. If h1, . . . , hn ∈ C∞c (Rs) have
disjoint support, then

lim
t→∞〈φ, C1(h1, t) . . . Cn(hn, t)ψ〉 =

∫
Rns

h1(∇ω(p1)) . . . hn(∇ω(pn))�(p1, . . . , pn)

× 〈φ, a∗out(p1)aout(p1) . . . a∗out(pn)aout(pn)ψ〉 dp1 . . . dpn, (3.4)

where �(p1, . . . , pn) = (2π)ns〈p1|C1|p1〉 . . . 〈pn|Cn|pn〉.

3.2. Convergence of single Araki–Haag detectors. To obtain particle detectors that are
sensitive to particles of mass m, we choose C = B∗B, where B∗ is a creation operator.
However, such detectors may also be sensitive to bound states of other masses as the
following proposition illustrates.

Proposition 3.3. Let � ⊂ R
d be compact. If ψ ∈ E(�)H is an eigenvector of the mass

operator M = √H2 − |P|2, then
∫

Rs
〈e− it H ψ, (B∗B)(x) e− it H ψ〉 dx =

∫
Rs
〈ψ, (B∗B)(x)ψ〉 dx. (3.5)

Proof. If mb is an eigenvalue with eigenvector ψ , then Hψ = (m2
b + |P|2)1/2ψ =

ωmb (P)ψ , and
∫

Rs
〈e− it H ψ, (B∗B)(x) e− it H ψ〉 dx = 〈ψ, eitωmb (P)

∫
Rs

(B∗B)(x) dx e− itωmb (P)ψ〉

=
∫

Rs
〈ψ, (B∗B)(x)ψ〉 dx. (3.6)

Observe that the translation-invariant operator E(�)
∫

Rs (B∗B)(x) dxE(�), which is
well-defined by Proposition 2.6, commutes with eitωmb (P). ��
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We may exclude bound states of the mass operator by requiring that ψ belongs to the
jointly absolutely continuous spectral subspace Hac(P) of the energy-momentum oper-
ator P .5 In fact, mass shells, isolated or embedded in the multi-particle spectrum, belong
to the singular continuous subspace Hsc(P). If Mψ = mbψ , then ψ = E(Hmb )ψ , and
the mass hyperboloid Hmb ⊂ R

d has Lebesgue measure 0. However, in general, Hsc(P)

may include exotic states that are not bound states of the mass operator. Under the ad-
ditional assumption of Lorentz covariance, it can be shown that Hac(P) = Hac(M)

or, equivalently, Hpp(P) ⊕ Hsc(P) = Hpp(M) ⊕ Hsc(M). This identity implies that
the exotic states in Hsc(P) correspond to the singular continuous spectrum of the mass
operator.

We aim to extend the Araki–Haag formula to arbitrary states of bounded energy (i.e. to
states that are not necessarily scattering states). We expect that Araki–Haag detectors
do not detect a state that is orthogonal to all scattering states (i.e. the limit (3.3) should
be 0 if ψ is orthogonal to all scattering states). We manage to prove this expectation for
detectors C = B∗B, where B∗ is a creation operator, and for states ψ ∈ Hac(P) such
that Bψ is a one-particle state.

Intuitively, the latter condition selects states of the multi-particle spectrum below
the three-particle threshold. Specifically, if the energy-momentum spectrum of ψ and
the energy-momentum transfer of B∗ were point-like, then the condition that Bψ is a
one-particle state is always satisfied for creation operators B∗ and states ψ below the
three-particle threshold. However, due to the finite extension of the energy-momentum
spectrum of ψ and the energy-momentum transfer of B∗, it may happen that Bψ has a
component in the multi-particle spectrum for a state ψ below the three-particle threshold.
Also, there are creation operators B∗ and states ψ above the three-particle threshold such
that Bψ is a one-particle state.

Theorem 3.4. Let � ⊂ R
d be compact, ψ ∈ E(�)H ∩Hac(P) ∩ (Hout)⊥, and B∗ a

creation operator. If �− σα(B∗) ∩ σ(P) ⊂ Hm, then, for every h ∈ L∞(Rs),

lim
t→∞ eit H

∫
Rs

h
(x

t

)
(B∗B)(x) dx e− it H ψ = 0. (3.7)

Before we present the proof, we explain that Theorem 3.4 implies our main result
Theorem 1.1. This follows from the fact the convergence of Araki–Haag detectors on
scattering states is already known and that it suffices to prove convergence separately
on Hout and (Hout)⊥, as in [Dy18].

Proof of Theorem 1.1. We decompose ψ ∈ E(�)H ∩ Hac(P) into ψ = ψout + ψ⊥,
where ψout ∈ Hout and ψ⊥ ∈ (Hout)⊥. The strong convergence of C(h, t)ψout in H
was proved in [DG14b, Proposition 7.1]. The convergence of C(h, t)ψ⊥ follows from
Theorem 3.4. ��
Proof of Theorem 3.4. The proof of the theorem is based on the following two results: the
insertion of a second auxiliary detector (see Lemma 3.5 below) and the L2-convergence
of two-particle Haag–Ruelle scattering states (see Theorem 4.1 and Proposition 4.3 in
Sect. 4).

We may assume that an ε > 0 exists such that E(M ≤ 2 m + ε)ψ = 0, where
M = √H2 − |P|2 is the mass operator (i.e. ψ lies above the two-particle threshold).
Otherwise, we approximate ψ by such elements. Moreover, we may assume that � is

5 In [DG14a], a modified version of Araki–Haag detectors was proposed to circumvent the detection of
bound states.
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sufficiently small. Otherwise, we decompose � =⋃i �i into finitely many sufficiently
small compact sets �i and prove the theorem for ψi = E(�i )ψ .

Let {ĝ j } j ⊂ C∞c (Rd) be a locally finite smooth partition of unity. Because the
Arveson spectrum of B is compact, an f̂ ∈ C∞c (Rd) exists such that B = B( f ) =∫

Rd f (x)B(x) dx and

B( f ) =
∑

j

B( f ∗ g j ), (3.8)

where only finitely many summands are non-zero. The Arveson spectrum of B j =
B( f ∗g j ) is a subset of supp( f̂ ĝ j )∩σα(B). Hence, by choosing an appropriate partition
of unity, we may assume that, for every j , the Arveson spectrum of B j is sufficiently
small. Observe that B∗j is not necessarily a creation operator because it may happen that
σα(B∗j ) ∩ σ(P) = ∅. It remains to prove that, for every j ,

lim
t→∞ eit H

∫
Rs

h
(x

t

)
(B∗B j )(x) dx e− it H ψ = 0. (3.9)

Under the assumptions of the theorem, it occurs that either ∅ 
= �− σα(B∗j )∩ σ(P) ⊂
Hm or �− σα(B∗j ) ∩ σ(P) = ∅. If the latter is true, then B jψ = 0 and (3.9) is trivial.

Thus, we may assume ∅ 
= �− σα(B∗j ) ∩ σ(P) ⊂ Hm . We distinguish between the
following three cases:

1. ∅ 
= σα(B∗j ) ∩ σ(P) ⊂ Hm and the sets πP(�− σα(B∗j )) and πP(σα(B∗j )) overlap.

2. ∅ 
= σα(B∗j ) ∩ σ(P) ⊂ Hm and the sets πP(�− σα(B∗j )) and πP(σα(B∗j )) are
separated.

3. σα(B∗j ) ∩ σ(P) = ∅.

The list is exhaustive because σα(B∗j ) ⊂ σα(B∗) and σα(B∗) ∩ σ(P) ⊂ Hm . We can
exclude Case 1 if � lies above the two-particle threshold and � as well as σα(B j ) are
sufficiently small (this can be assumed by the arguments above). For the proof of this
claim, note that two vectors on the mass shell add up to a vector above the two-particle
threshold only if the two vectors are distinct.

For the remaining two cases, note that if �̃ is the closure of �− σα(B∗j ) + σα(B∗),
then we obtain the following estimate from the Cauchy–Schwarz inequality:

‖ eit H
∫

Rs
h
(x

t

)
(B∗B j )(x) dx e− it H ψ‖

= sup
‖φ‖=1

|〈e− it H E(�̃)φ,

∫
Rs

h
(x

t

)
(B∗B j )(x) dx e− it H ψ〉|

≤ ‖h‖L∞ sup
‖φ‖=1

(∫
Rs
‖B(x) e− it H E(�̃)φ‖2 dx

) 1
2
(∫

Rs
‖B j (x) e− it H ψ‖2 dx

) 1
2

.

(3.10)

It suffices to prove that the second factor in brackets converges to 0 because the first
factor in brackets is bounded by Proposition 2.6. We observe that, for every (t, x) ∈ R

d ,

B j (x) e− it H ψ = E(�− σα(B∗j ))B j (x) e− it H ψ. (3.11)
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By Lemma 3.5, a creation operator C∗ exists such that the Arveson spectrum σα(C∗)
lies in an open neighbourhood of �− σα(B∗j ) and, for every t ∈ R,

∫
Rs
‖B j (x) e− it H ψ‖2 dx =

∫
Rs

∫
Rs
|〈ψ, eit H B∗j (x)C∗(y)�〉|2 dx dy. (3.12)

In Case 2, we can choose C∗ such that πP(σα(C∗)) is separated from πP(σα(B∗j )). The

operator e− it (ω(Dx)+ω(Dy)) is an isometry on L2(R2s); hence, the r.h.s. of (3.12) equals
‖〈ψ, ϕt 〉‖2

L2 , where

ϕt (x, y) = eit (H−ω(Dx)−ω(Dy)) B∗j (x)C∗(y)�. (3.13)

We refer to Sect. 2.4 for the definition of ϕt as a Carleman function. In Case 2, 〈ψ, ϕt 〉
converges in L2(R2s) to 〈ψ, ϕ+〉 as t → ∞ by Theorem 4.1, and 〈ψ, ϕ+〉 = 0 be-
cause ψ ∈ (Hout)⊥. In Case 3, 〈ψ, ϕt 〉 converges in L2(R2s) to 0 as t → ∞ by
Proposition 4.3. ��

The following lemma, which we applied in the above proof of Theorem 3.4, demon-
strates that one-particle states are accessible through detectors. Specifically, for every
one-particle state ψ , we construct an Araki–Haag detector that is triggered by this state.
The main idea of the proof is to identify one-particle states ψ ∈ hm with wave functions
in L2(Rs) and to choose a creation operator B∗ such that the wave function of B∗� is
1 on a given compact set.

Lemma 3.5. Let � ⊂ R
d be compact such that � ∩ σ(P) ⊂ Hm. A creation operator

B∗ exists that satisfies

E(�) = E(�)

∫
Rs

(B∗B)(x) dx E(�). (3.14)

For every ε > 0, the creation operator B∗ can be chosen such that its Arveson spectrum
σα(B∗) is contained in an ε-neighbourhood of �.

Proof. The strategy of the proof is to demonstrate that the r.h.s. of (3.14) is equal to the
l.h.s. of (3.14) for a suitable creation operator B∗. It suffices to demonstrate that, for all
φ,ψ ∈ E(�)H,

〈φ,ψ〉 =
∫

Rs
〈φ, (B∗B)(x)ψ〉 dx. (3.15)

Because states in E(�)H are one-particle states, it holds that, for every creation operator
B∗,

B(x)ψ = 〈�, B(x)ψ〉�, (3.16)

and similarly for φ. The set of generalised momentum eigenvectors {|p〉}p∈Rs introduced
in Sect. 3.1 obeys a completeness relation in the one-particle space:

∫
Rs |p〉〈p| dp is the

identity in hm . We utilise (3.16) and this completeness relation to obtain the following
identity:
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∫
Rs
〈φ, (B∗B)(x)ψ〉 dx =

∫
Rs
〈φ, B∗(x)�〉〈B∗(x)�,ψ〉 dx

=
∫

Rs
〈φ|p〉〈p|ψ〉|〈p|B∗�〉|2 dp. (3.17)

The distributions p �→ 〈φ|p〉 and p �→ 〈p|ψ〉 are compactly supported with support
contained in πP(�). Moreover, a creation operator B∗ exists such that p �→ |〈p|B∗�〉|2
is smooth, |〈p|B∗�〉|2 = 1 on a given compact set, and |〈p|B∗�〉|2 = 0 on a slightly
larger set [Ar99, Section 5.3 (a)]. It follows that, for every ε > 0, we can choose a
creation operator B∗ in such a way that

∫
Rs
〈φ|p〉〈p|ψ〉|〈p|B∗�〉|2 dp =

∫
Rs
〈φ|p〉〈p|ψ〉 dp = 〈φ,ψ〉 (3.18)

and σα(B∗) is contained in an ε-neighbourhood of �. ��

4. L2-Convergence of Two-Particle Scattering States

In this section, we state and prove a new convergence result for Haag–Ruelle scattering
states that we applied in the proof of Theorem 3.4. We fix two creation operators B∗1 , B∗2 .
In the following, we use the same notation as in Sect. 2.4 for ϕt (with n = 2), that is,

ϕt (x, y) = eit (H−ω(Dx)−ω(Dy)) B∗1 (x)B∗2 (y)�. (4.1)

Remember that, for every ψ ∈ H, 〈ψ, ϕt 〉 ∈ L2(R2s) and 〈ψ, ϕt 〉 converges pointwise
to 〈ψ, ϕ+〉 ∈ L2(R2s). We improve pointwise convergence to convergence in L2(R2s).

Theorem 4.1. Let B∗1 , B∗2 be two creation operators such that the momentum transfers
πP(σα(B∗1 )), πP(σα(B∗2 )) are separated. For every ψ ∈ Hac(P), 〈ψ, ϕt 〉 converges in
L2(R2s) to 〈ψ, ϕ+〉 as t →∞.

Proof. (i) It suffices to prove the theorem for vectors ψ from a dense subset D ⊂
Hac(P). In fact, a vector ψ ∈ Hac(P) is approximated by a sequence (ψn)n∈N in D;
hence,

‖〈ψ, ϕt − ϕ+〉‖L2 ≤ 2 ‖ψ − ψn‖H ‖ϕ0‖C + ‖〈ψn, ϕt − ϕ+〉‖L2 . (4.2)

On the r.h.s. of (4.2), we take the limit t →∞ and, subsequently, the limit n →∞.
In the following, we chooseD =M(P) (see Definition A.13), that is, we assume that
the Radon–Nikodym derivative ρψ of the spectral measure 〈ψ, E(·)ψ〉 is a bounded
function. The space M(P) is dense in Hac(P) by Lemma A.14. We denote by |||ψ |||
the L∞-norm of

√
ρψ .

(ii) We prove by Cook’s method that, for ψ ∈ M(P), 〈ψ, ϕt 〉 is a Cauchy sequence
in L2(R2s):

‖〈ψ, ϕt2 − ϕt1〉‖L2 =
∥∥∥∥
∫ t2

t1
∂τ 〈ψ, ϕτ 〉 dτ

∥∥∥∥
L2

. (4.3)

We claim that the time derivative amounts to replacing the product of B∗1 (x) and
B∗2 (y) by a commutator of two creation operators. In fact,

∂τϕτ (x, y) = i eiτ(H−ω(Dx)−ω(Dy))(H − ω(Dx)− ω(Dy))B∗1 (x)B∗2 (y)�, (4.4)
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and, because ω(Dy)B∗2 (y)� = ω(P)B∗2 (y)� = H B∗2 (y)�, we obtain

(H − ω(Dx)− ω(Dy))B∗1 (x)B∗2 (y)�

= [H, B∗1 ](x)B∗2 (y)�− ω(Dx)B∗1 (x)B∗2 (y)�. (4.5)

If we write B∗1 = B∗1 ( f ) for a Schwartz function f ∈ S(Rd) that satisfies f̂ = 1
on σα(B∗1 ), then

[H, B∗1 ](x) = B∗1 (−D0 f )(x), (4.6)

ω(Dx)B∗1 (x) = B∗1 (ω(D) f )(x). (4.7)

We conclude that
∂τϕτ (x, y) = i eiτ(H−ω(Dx)−ω(Dy)) B̃∗1 (x)B∗2 (y)�

= i eiτ(H−ω(Dx)−ω(Dy))[B̃∗1 (x), B∗2 (y)]�, (4.8)

where B̃∗1 = B∗1 (g) and g ∈ S(Rd) is any function such that ĝ(p) = p0 − ω(p)

on σα(B∗1 ). To obtain the commutator, we used B̃∗1 � = (H − ω(P))B∗1 � = 0.
(iii) The sets Ktot = πP(σα(B∗1 ))+πP(σα(B∗2 )) and Krel = πP(σα(B∗1 ))−πP(σα(B∗2 ))

contain the total and relative momentum support of the function (x, y) �→ [B̃∗1 (x),

B∗2 (y)]�, respectively, that is,

[B̃∗1 (x), B∗2 (y)]�
= χ(Dx + Dy ∈ Ktot)χ(Dx − Dy ∈ Krel)[B̃∗1 (x), B∗2 (y)]�, (4.9)

where χ denotes the characteristic function. By assumption on the Arveson spectra
of B∗1 and B∗2 , the sets Ktot and Krel are compact and Krel is separated from 0.

(iv) It is convenient to introduce relative coordinates:

u = x − y, Du = 1

2
(Dx − Dy), (4.10)

v = 1

2
(x + y), Dv = Dx + Dy. (4.11)

If we formulate (4.3) in relative coordinates, we arrive at the following identity:

‖〈ψ, ϕt2 − ϕt1〉‖2
L2

=
∫

R2s

∣∣∣∣
∫ t2

t1
e− iτ(ω( 1

2 Dv+Du)+ω( 1
2 Dv−Du))〈ψ, eiτ H e− iv·Pφ(u)〉 dτ

∣∣∣∣
2

du dv,

(4.12)

where

φ(u) = e−
i
2 u·P[B̃∗1 , B∗2 (−u)]� (4.13)

is a Hilbert space-valued Schwartz function. The function φ is smooth because it
has bounded energy-momentum, and φ decays rapidly because the commutator
[B̃∗1 , B∗2 (−u)] decays rapidly in norm by Lemma 2.2. Moreover, by (4.9),

〈ψ, eiτ H e− iv·Pφ(u)〉
= χ(Dv ∈ Ktot)χ(2Du ∈ Krel)〈ψ, eiτ H e− iv·Pφ(u)〉. (4.14)
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(v) We apply Plancherel’s theorem in the v-integral (we denote the Fourier transfor-
mation by F), and duality in the u-integral:

∫
Rs

∫
Rs

∣∣∣∣
∫ t2

t1
e− iτ(ω( 1

2 p+Du)+ω( 1
2 p−Du))Fv→p〈ψ, eiτ H e− iv·Pφ(u)〉 dτ

∣∣∣∣
2

du dp

=
∫

Rs
sup

‖ f ‖L2=1

∣∣∣∣
∫ t2

t1

∫
Rs

f (u) e− iτωp(Du)Fv→p〈ψ, eiτ H e− iv·Pφ(u)〉 du dτ

∣∣∣∣
2

dp,

(4.15)

where we introduced, for p ∈ R
s , the following operator on L2(Rs):

ωp(Du) = ω(p/2 + Du) + ω(p/2− Du). (4.16)

The operator ωp(Du) corresponds to the energy of two free particles with relativis-
tic dispersion relation and total momentum p. Observe that the minimal value of
the Fourier multiplier q �→ ωp(q) = ω(p/2 + q) + ω(p/2 − q) is 2ω(p/2). This
value is assumed if and only if q = 0 (i.e. if and only if the relative momentum is
0).

(vi) The area of integration of the p-integral in (4.15) can be restricted to the total
momentum support Ktot due to (4.14). Moreover, because the relative momentum
support Krel is separated from 0, an ε > 0 exists such that, for all p ∈ Ktot,

Ep(Ip,ε)φ(u) = φ(u), (4.17)

where Ep is the spectral measure of ωp(Du), Ip,ε = [2ω(p/2) + ε, β], and

β = sup
p∈Ktot

sup
q∈Krel

ωp(q) = sup
p∈πP(σα(B∗1 ))

sup
q∈πP(σα(B∗2 ))

(ω(p) + ω(q)) <∞ (4.18)

is the maximal energy of two free relativistic particles with total momentum in
Ktot and relative momentum in Krel.

(vii) Let θ ∈ C∞c (0,∞) satisfy θ = 1 on (ε/2, β + 1). For p ∈ R
s , set θp(λ) =

θ(λ− 2ωp(p/2)) and

Fp(q) = θp(ωp(q))
∇ωp(q)

|∇ωp(q)|2 , (4.19)

where

∇ωp(q) =
1
2 p + q

ω( 1
2 p + q)

−
1
2 p− q

ω( 1
2 p− q)

. (4.20)

The function Fp(q) is well-defined because |∇ωp(q)| ≥ b > 0 for all q ∈
ω−1

p (supp(θp)). This follows from the fact that ∇ωp(q) = 0 if and only if q = 0
and 0 is separated from the set ω−1

p (supp(θp)). The optimal value of b depends on
p ∈ R

s , but b > 0 can be chosen independent of p as long as p ranges over com-
pact subsets of R

s . We define the following modified dilation operator in relative
coordinates:

Ap = 1

2
(Fp(Du) · u + u · Fp(Du)) = Fp(Du) · u +

i

2
(∇ · Fp)(Du), (4.21)



236 Page 18 of 36 J. Kruse

where u is the multiplication operator by the relative coordinate u. The operator Ap
is essentially self-adjoint on the Schwartz space S(Rs) [ABG96, Lemma 7.6.4].
We denote its self-adjoint closure by the same symbol. The divergence of Fp in
(4.21) can be computed explicitly:

∇ · Fp(q) = θ ′p(ωp(q))− θp(ωp(q))
�ωp(q)

|∇ωp(q)|2 , (4.22)

where the Laplacian of ωp is a bounded function:

�ωp(q) = s

ω( 1
2 p + q)

+
s

ω( 1
2 p− q)

− | 12 p + q|2
ω( 1

2 p + q)3
− | 12 p− q|2

ω( 1
2 p− q)3

. (4.23)

We take the operator Ap as a conjugate operator for ωp(Du) because the commu-
tator

[ωp(Du), iAp] = θp(ωp(Du)) (4.24)

assumes a simple form. Formally, we obtain (4.24) by utilising the well-known
commutation relation [ωp(Du), iu] = ∇ωp(Du); for more details, we refer to
the comments below the proof and the example subsequent to Definition A.3.
We denote by 〈·〉 the multiplication operator on L2(Rs) that maps f to u �→
〈u〉 f (u). From (4.21), the boundedness of �ωp, and |∇ωp(q)| ≥ b > 0 for
q ∈ ω−1

p (supp(θp)), it follows that, for all f ∈ S(Rs),‖〈Ap〉〈·〉−1 f ‖ ≤ ‖〈·〉−1 f ‖+
‖Ap〈·〉−1 f ‖ ≤ C‖ f ‖, where C can be chosen independent of p as long as p ranges
over compact subsets of R

s . Thus, 〈Ap〉〈·〉−1 extends to a bounded operator, which
is bounded by C . From interpolation (Lemma A.8 with X = 1), it follows that
‖〈Ap〉ν〈·〉−ν‖ ≤ Cν and ‖〈Ap〉ν f ‖ ≤ Cν‖〈·〉ν f ‖ for ν ∈ [0, 1].

(viii) Let ν ∈ (1/2, 1]. We insert 1 = 〈Ap〉−ν〈Ap〉ν into (4.15) and apply the Cauchy–
Schwarz inequality to arrive at the following bound of (4.15):

∫
Ktot

(
sup

‖ f ‖L2=1

∫ t2

t1
‖〈Ap〉−ν eiτωp(Du)Ep(Ip,ε) f ‖2

L2 dτ

)

×
(∫ t2

t1
‖〈Ap〉νFv→p〈ψ, eiτ H e− iv·Pφ〉‖2

L2 dτ

)
dp. (4.25)

By Lemma 4.2 below, for every p ∈ R
s , a constant c(p) <∞ exists such that

sup
‖ f ‖L2=1

∫ ∞

−∞
‖〈Ap〉−ν eiτωp(Du)Ep(Ip,ε) f ‖2

L2 dτ ≤ c(p), (4.26)

and supp∈Ktot
c(p) <∞ because Ktot is compact. It remains to prove that

∫
Ktot

∫ t2

t1
‖〈Ap〉νFv→p〈ψ, eiτ H e− iv·Pφ〉‖2

L2 dτ dp

≤ C2ν

∫
Rs

∫ t2

t1
‖〈·〉νFv→p〈ψ, eiτ H e− iv·Pφ〉‖2

L2 dτ dp (4.27)
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converges to 0 as t1, t2 → ∞. For this, it suffices to observe that, by Proposi-
tion A.15,

∫ ∞

−∞

∫
Rs

∫
Rs
|〈u〉ν〈ψ, eiτ H e− iv·Pφ(u)〉|2 du dv dτ

≤ (2π)d |||ψ |||2
∫

Rs
‖〈u〉νφ(u)‖2 du <∞. (4.28)

Note that the last integral is finite because ‖φ(u)‖ decays rapidly.
��

To complete the proof of Theorem 4.1, it remains to demonstrate (4.26). This bound
can be derived using Mourre’s conjugate operator method (see Section A.3). For a
fixed p ∈ R

s , (4.26) directly follows from a Mourre estimate for ωp(Du). Specifically,
ωp(Du) obeys a Mourre estimate with conjugate operator Ap on the open set Jp,ε =
(2ω(p/2) + ε/2, β + 1), which contains the compact interval Ip,ε. To prove this claim,
we refer to the example subsequent to Definition A.3, that is, we must confirm the
estimates (A.4) for h = ωp. We computed the gradient and Laplacian of ωp in (4.20)
and (4.23), respectively. The gradient∇ωp is bounded from below by a positive constant
b > 0 for all q ∈ ω−1

p (Jp,ε), and �ωp is a bounded function; thus, |�ωp(q)| ≤
‖�ωp‖∞b−2|∇ωp(q)|2. This implies ωp(Du) ∈ C∞(Ap) and the following Mourre
estimate:

Ep(Jp,ε)[ωp(Du), iAp]Ep(Jp,ε) = θp(ωp(Du))Ep(Jp,ε) = Ep(Jp,ε). (4.29)

The function θ was chosen such that θp = 1 on Jp,ε. By Proposition A.11, the Mourre
estimate (4.29) yields (4.26) with

c(p) = 8 sup
λ∈Ip,ε,μ∈(0,1)

‖〈Ap〉−ν�(ωp(Du)− λ− iμ)−1〈Ap〉−ν‖ <∞, (4.30)

where c(p) is finite for every p ∈ R
s due to the limiting absorption principle (The-

orem A.4). However, determining the dependence of c(p) on the total momentum p
seems to be non-trivial (i.e. verifying supp∈Ktot

c(p) <∞). In the proof of the following
lemma, we demonstrate that c(p) is bounded by a function that is continuous in p.

Lemma 4.2. Let p ∈ R
s and ε > 0. Let ωp(Du) and Ap be the operators defined in (4.16)

and (4.21), respectively, and set Ip,ε = [2ω(p/2) + ε, β] for a β ∈ (2ω(p/2) + ε,∞).
For every ν > 1/2, a constant c(p) exists such that, for f ∈ L2(Rs),

∫ ∞

−∞
‖〈Ap〉−ν eiτωp(Du)Ep(Ip,ε) f ‖2

L2 dτ ≤ c(p)‖ f ‖2
L2 , (4.31)

where supp∈K c(p) <∞ for every compact set K ⊂ R
s .

Proof. We may assume 1/2 < ν ≤ 1 because if (4.31) holds for a given ν = ν0, then it
obviously holds for all ν ≥ ν0. As argued above, it suffices to demonstrate that c(p) as
chosen in (4.30) is bounded by a continuous function. To obtain such a bound, we apply
Proposition A.7 with λ0 = 0, where we must verify a limiting absorption principle for
the inverse operator ωp(Du)−1. The inverse exists and is a bounded operator because
ωp(Du) ≥ 2m > 0 is bounded from below by a positive constant.
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Let Ẽp be the spectral measure of ωp(Du)−1. The Mourre estimate (4.29) for ωp(Du)

on Jp,ε implies a Mourre estimate for the inverse operator ωp(Du)−1 on J̃p,ε = {λ ∈
R | λ−1 ∈ Jp,ε}:

− Ẽp( J̃p,ε)[ωp(Du)−1, iAp]Ẽp( J̃p,ε)

= Ẽp( J̃p,ε)ωp(Du)−1[ωp(Du), iAp]ωp(Du)−1 Ẽp( J̃p,ε)

≥ 1

(1 + β)2 Ẽp( J̃p,ε), (4.32)

where we applied (A.2) in the first step. We remark that Ap depends implicitly on ε

through θ and that Ap is only well-defined as long as ε > 0. Let Ĩp,ε = {λ ∈ R | λ−1 ∈
Ip,ε} ⊂ J̃p,ε. From Proposition A.7, we obtain the following estimate for c(p):

1

8
c(p) ≤ sup

λ∈Ip,ε,μ∈(0,1)

‖〈Ap〉−ν(ωp(Du)− λ− iμ)−1〈Ap〉−ν‖

≤ sup
λ∈ Ĩp,ε,μ>0

|λ|
(
|λ| +

1

|λ| + ‖〈Ap〉−ν(ωp(Du)−1 − λ + iμ)−1〈Ap〉−ν‖
)

× ‖〈Ap〉νωp(Du)−1〈Ap〉−ν‖. (4.33)

The contributions of the supremum from μ ≥ 1 are uncritical; hence, we can restrict μ

to (0, 1). In the remaining expression, we bound the factors individually: For λ ∈ Ĩp,ε,
we have |λ| ≤ (2ωp(p/2) + ε)−1 and |λ|−1 ≤ β. From Theorem A.5, we obtain the
following estimate:

sup
λ∈ Ĩp,ε,μ∈(0,1)

‖〈Ap〉−ν(ωp(Du)−1 − λ∓ iμ)−1〈Ap〉−ν‖

≤
⎡
⎣
(

4

aε0
+

c3ε
ν
0

ν

) 1
2

+
c3ε

ν− 1
2

0

ν − 1
2

⎤
⎦

2

ec3ε0 , (4.34)

where

c1 ≡ c1(p) = ‖ωp(Du)−1‖ + ‖[ωp(Du)−1, Ap]‖
+ (1 + 4(1 + β)2)‖[ωp(Du)−1, Ap]‖2

+ ‖[[ωp(Du)−1, Ap], Ap]‖ +
1

(1 + β)2 +
1

β
+

1

|2ω(p/2) + ε| + 1, (4.35)

c2 ≡ c2(p) =
(√

2 +

√
8c1(p)

δ(p)

)
(1 + β), (4.36)

c3 ≡ c3(p) = 4c2(p) + 2c1(p)c2(p)2, (4.37)

ε0 ≡ ε0(p) = min

{
δ(p)

4(1 + β)c1(p)
,

δ(p)2

16c1(p)2

}
, (4.38)

and δ ≡ δ(p) > 0 is a continuous function such that Ĩp,ε + δ(p) ⊂ Jp,ε. Moreover, by
interpolation (Lemma A.8) and (A.24), it holds that, for ν ∈ [0, 1],
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‖〈Ap〉νωp(Du)−1〈Ap〉−ν‖ ≤ ‖ωp(Du)−1‖1−ν‖〈Ap〉ωp(Du)−1〈Ap〉−1‖ν
≤ ‖ωp(Du)−1‖1−ν(‖ωp(Du)−1‖ + ‖[Ap, ωp(Du)−1](Ap + i)−1‖)ν <∞, (4.39)

where we used ‖〈Ap〉(Ap + i)−1‖ = ‖(Ap + i)〈Ap〉−1‖ = 1 in the second step. We
observe that all expressions depend continuously on p; hence, c(p) is bounded by a
continuous function. ��

In the following proposition, we prove the statement of Theorem 4.1 under slightly
modified assumptions. Specifically, we drop the requirement for the momentum transfers
of B∗1 and B∗2 to be separated, but we assume B∗1 � = 0. This assumption simplifies the
proof because we obtain the commutator of the two almost local operators B∗1 , B∗2 from
B∗1 � = 0 (see Step (ii) in the proof of Theorem 4.1).

Proposition 4.3. If B∗1 , B∗2 are almost local operators with compact Arveson spectrum
such that B∗1 � = 0, then, for every ψ ∈ Hac(P),

lim
t→∞

∫
Rs

∫
Rs
|〈ψ, eit H B∗1 (x)B∗2 (y)�〉|2 dx dy = 0. (4.40)

Proof. As in the proof of Theorem 4.1, it suffices to prove the proposition forψ ∈M(P).
We obtain the following identity from the assumption B∗1 � = 0:

∫
R2s
|〈ψ, eit H B∗1 (x)B∗2 (y)�〉|2 dx dy

=
∫

R2s
|〈ψ, eit H e− ix·P[B∗1 , B∗2 (y)]�〉|2 dx dy; (4.41)

hence, by Proposition A.15,

∫ ∞

−∞

(∫
R2s
|〈ψ, eit H B∗1 (x)B∗2 (y)�〉|2 dx dy

)
dt

≤ (2π)d |||ψ |||2
∫

Rs
‖[B∗1 , B∗2 (y)]�‖2 dy <∞. (4.42)

The last integral is finite by Lemma 2.2 because B∗1 and B∗2 are almost local. This implies
that the L2(R2s)-valued function g(t; x, y) = 〈ψ, eit H B∗1 (x)B∗2 (y)�〉 is B-convergent
to 0 [ABHN11, Definition 4.1.1], that is, for every δ > 0,

lim
t→∞

1

δ

∫ t+δ

t
g(τ ) dτ = 0. (4.43)

In fact, the B-convergence of g is a consequence of the following estimate:

∥∥∥∥1

δ

∫ t+δ

t
g(τ ) dτ

∥∥∥∥
L2
≤ 1√

δ

(∫ t+δ

t
‖g(τ )‖2

L2 dτ

) 1
2 t→∞−→ 0. (4.44)

To prove that g also converges in L2(R2s), we demonstrate that g is slowly oscillating
[ABHN11, Definition 4.2.1], that is, for every ε > 0, a δ > 0 and t0 ≥ 0 exist such
that ‖g(t) − g(s)‖ ≤ ε whenever s, t ≥ t0 and |t − s| ≤ δ. If g is slowly oscillating
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and B-convergent to 0, then we deduce from a simple Tauberian theorem [ABHN11,
Theorem 4.2.3] that g converges in L2(R2s) to 0. In order to estimate

‖g(t)− g(s)‖2 =
∫

R2s
|〈ψ, e− ix·P(eit H − eis H )[B∗1 , B∗2 (y)]�〉|2 dx dy, (4.45)

we apply Proposition A.15 to the family (P, H). We select a = {1, . . . , s} ⊂ N =
{1, . . . , s + 1} so that (P, H)a = P. The vector [B∗1 , B∗2 (y)]� has bounded energy, that
is, for a p0 ∈ R,

[B∗1 , B∗2 (y)]� = E(H ≤ p0)[B∗1 , B∗2 (y)]�. (4.46)

Taking (4.46) into account, (A.52) of Proposition A.15 yields the following estimate:

‖g(t)− g(s)‖2 ≤ (2π)s2p0|||ψ |||2
∫

Rs
‖(eit H − eis H )[B∗1 , B∗2 (y)]�‖2 dy

≤ (2π)s2p3
0|||ψ |||2|t − s|2

∫
Rs
‖[B∗1 , B∗2 (y)]�‖2 dy; (4.47)

hence, g is slowly oscillating. ��

5. Applications and Outlook

In this section, we discuss the relevance of Theorem 1.1 to the problem of asymptotic
completeness in quantum field theory, its applicability to models, and its extension to spin
systems. Furthermore, we outline a strategy for proving the convergence of Araki–Haag
detectors in regions of the multi-particle spectrum above the three-particle threshold.

5.1. Asymptotic completeness. Our main result has potential implications for a proof
of asymptotic completeness in local relativistic quantum field theory, which is a long-
standing open problem, as discussed in Section 1. Theorem 1.1 alone does not imply
asymptotic completeness because it also applies to models that are not asymptotically
complete, such as certain generalised free fields. To bridge the gap from Theorem 1.1
to asymptotic completeness, an additional condition is necessary. We presented one
such condition in Corollary 1.2. Another potential condition, which is easier to verify in
models, could be that the Hamiltonian H can be written as a space integral over a local
energy density [Ha96, p. 278], represented schematically as

H =
∫

Rs
T 00(x) dx, (5.1)

where T 00(x) is the 00-component of the energy-momentum tensor (see Condition T in
[Dy10] for an appropriate smearing of the energy-momentum tensor). For a non-zero
state ψ ∈ H orthogonal to the vacuum vector, we then have

0 < 〈ψ, Hψ〉 =
∫

Rs
〈e− it H ψ, T 00(x) e− it H ψ〉 dx. (5.2)

We expect that the r.h.s. converges to 0 as t →∞ if ψ is not a scattering state, similar to
Theorem 1.1, where T 00(x) functions as the detector. This would provide a contradiction
to 〈ψ, Hψ〉 > 0, implying that all states are scattering states. However, T 00(x) is not



Mourre Theory and Asymptotic Page 23 of 36 236

in the canonical form (B∗B)(x) analysed in this paper, where B∗ is a creation operator.
Notably, it has been shown that in the free massive scalar field theory, the energy-
momentum tensor restricted to subspaces of bounded energy can be approximated by a
sum of operators of the form B∗B, where B is almost local and energy-decreasing [Dy08,
Section D]. This result would make Theorem 1.1 applicable if it could be established
that B∗ is a creation operator. Extending the results of [Dy08, Section D] to interacting
models is an interesting direction towards proving asymptotic completeness in quantum
field theory.

5.2. Models – Free products of Borchers triples. Essential for applying Theorem 1.1 to
models is the assumption for the multi-particle spectrum to be absolutely continuous in
the two-particle region. An interesting class of models, which meets this requirement,
emerges from the free product constructions of Borchers triples by Longo, Tanimoto,
and Ueda [LTU19]. A two-dimensional Borchers tripleB = (M, U,�) comprises a von
Neumann algebra M, a unitary representation U of R

2 with joint spectrum in V+, and a
cyclic and separating vector � such that � is invariant under U and U (x)MU (x)∗ ⊂M
for all x ∈ WR , where WR is the right wedge. Typical examples of Borchers triples
stem from Haag–Kastler nets with M being the wedge algebra generated by the local
observable algebras R(O), O ⊂ WR . Conversely, given a Borchers triple (M, U,�),
we can construct a local net by setting R(Da,b) = U (a)MU (a)∗ ∩ U (b)M′U (b)∗.
Here, Da,b = (WR + a) ∩ (WL + b), a, b ∈ R

2, is a double cone, and WL is the
left wedge. The resulting net satisfies microcausality, isotony, and Poincaré covariance
[LTU19, Section 2.1.2].

Consider two identical copies B1,B2 of the Borchers triple corresponding to the two-
dimensional free massive scalar field theory [LTU19, Section 5.1]. According to [LTU19,
Proposition 5.1], the free product B1 �B2 again forms a Borchers triple B = (M, U,�).
Because U is the free product of U1 and U2 (i.e., essentially, a direct sum involving only
the unitary representations U1 and U2 of the free theory), the multi-particle spectrum of
U is absolutely continuous. Furthermore, the two-particle S-matrix of the free product
model is non-trivial, yet asymptotic completeness fails [LTU19, Section 5.3].

We remark that the non-triviality of the local algebras arising from the free product
construction was not proved in [LTU19]. If it could be established that the vacuum
vector is cyclic for the local algebras, then the free product construction would present
an interesting class of models where the convergence result of Theorem 1.1 was not
known previously.

5.3. Spin systems. Theorem 1.1 can be extended to spin systems through the adapted
Haag–Ruelle scattering theory developed by Bachmann, Dybalski, and Naaijkens
[BDN16]. A spin system is a C∗-dynamical system (A, τ ), where τ is a unitary repre-
sentation of the spacetime translation group. The algebra A is generated by a local net
{A(�)}�, where � ⊂ Z

s is a bounded spatial region. The challenge in adapting the
Haag–Ruelle scattering theory to spin systems is to define a suitable almost local alge-
bra. By replacing the double cones Kr in Definition 2.1 with open balls in Z

s of radius
r , we obtain an algebra that is a priori not invariant under time translations. However,
by utilising the Lieb–Robinson bound,

‖[τt (A), B]‖ ≤ CA,B eλ(vLRt−d(A,B)), (5.3)
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where λ > 0 is a constant, vL R > 0 the Lieb–Robinson velocity, and d(A, B) the
distance between the localisation regions of the local observables A and B, it is possible
to define an almost local algebra that is invariant under spacetime translations and satisfies
Lemma 2.2 [BDN16, Theorem 3.10].

The proof of Theorem 1.1 readily extends to spin systems with only minor adjust-
ments, provided that the isolated mass shell in the energy-momentum spectrum is regular
and pseudo-relativistic. These properties of the mass shell have been verified for the Ising
model in a strong magnetic field [BDN16, Section 6].

To our knowledge, it is unknown whether the energy-momentum spectrum of the
Ising model is absolutely continuous in the two-particle region. Thus far, the spectral
analysis of spin systems has focused on perturbation theory of the energy spectrum
[Po92,Ya06,NSY23,DFPR23]. Nevertheless, the cited papers showcase a diverse array
of techniques available for investigating spectral properties of spin systems, which could
potentially be extended to analyse the energy-momentum spectrum as well.

Analogous to quantum field theory, the adapted version of Theorem 1.1 could be
utilised to prove two-particle asymptotic completeness in spin systems. Notably, Buch-
holz [Bu86] constructed an ideal local detector C under assumptions which are typical
for spin systems. If it were possible to verify that this detector has the canonical form
C = B∗B, where B∗ is a creation operator, it would provide a proof of two-particle
asymptotic completeness through Corollary 1.2.

5.4. Convergence of Araki–Haag detectors in the many-particle region. Extending the
convergence of Araki–Haag detectors into regions of the multi-particle spectrum above
the three-particle threshold presents an interesting direction for further research. Relevant
for this problem is the L2-convergence of many-body Haag–Ruelle scattering states:

ϕt (x1, . . . , xn) = eit (H−ω(Dx1 )−···−ω(Dxn )) B∗1 (x1) . . . B∗n (xn)�. (5.4)

In Sect. 4, we established the convergence of 〈ψ, ϕt 〉, ψ ∈ Hac(P), in L2(Rns) for the
case n = 2, but extending this proof to n ≥ 3 requires new ideas. The main difficulty
lies in Step (ii) of the proof, where differentiation w.r.t. t yields commutators of creation
operators. While for n = 2 the resulting expression decays in the relative coordinate
u, we obtain anisotropic decay for n ≥ 3 (e.g. the expression does not decay if two or
more particles stay close to each other while the remaining particles escape to infinity).
This anisotropic decay resembles the behaviour encountered in the scattering theory
of many-body quantum mechanical systems, where the many-body potential exhibits
similar anisotropic decay. Physically, the anisotropic decay of the potential is associated
with the formation of many-body bound states, which must be considered to describe
the asymptotic evolution of the quantum system correctly.

A promising approach to adapt the proof of Theorem 4.1 to the many-body case is
to transfer Yafaev’s proof of asymptotic completeness [Ya93] to quantum field theory.
Yafaev’s technique is a natural extension of Lavine’s theorem to the many-body case. His
proof relies on certain radiation estimates, which trace back to Sommerfeld’s radiation
condition. In the context of quantum field theory, such radiation estimates could prove
equally relevant.
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A Mourre’s Conjugate Operator Method

Mourre’s conjugate operator method is a powerful tool to analyse spectral properties
of a self-adjoint operator H : D(H) → H on a Hilbert space H based on a strictly
positive commutator estimate (the so-called Mourre estimate, see Section A.1). One of
the main results of the conjugate operator method is the limiting absorption principle
(see Section A.2), which controls the resolvent R(z) = (H − z)−1 as the resolvent
parameter z ∈ ρ(H) approaches the spectrum. Closely related to the limiting absorption
principle are locally smooth operators, which we discuss in Section A.3.

A.1 Mourre estimate. We introduce the following regularity classes, which are relevant
for defining commutators.

Definition A.1. Let A be a self-adjoint operator on H and let k ∈ N ∪ {∞}. We denote
by Ck(A) the space of all self-adjoint operators H such that, for a z ∈ ρ(H), t �→
eit A R(z) e− it A is a Ck-map in the strong operator topology.

By [ABG96, Lemma 6.2.1], if z ∈ ρ(H) exists such that t �→ eit A R(z) e− it A is a
Ck-map, then t �→ eit A R(z) e− it A is a Ck-map for all z ∈ ρ(H). Moreover, if H is
bounded, t �→ eit A R(z) e− it A is a Ck-map if and only if t �→ eit A H e− it A is a Ck-map.
If H ∈ C1(A) is bounded, we can define the commutator [H, A] on H as the strong
derivative of t �→ i eit A H e− it A. If H ∈ C1(A) is unbounded, the sesquilinear form
defined by H A − AH on D(A) ∩ D(H) extends to D(H).

Proposition A.2 ([ABG96, Theorem 6.2.10 (b)]). If H ∈ C1(A), then D(A)∩ D(H) is
a core for H, and the sesquilinear form

( f, g) �→ 〈H f, Ag〉 − 〈A f, Hg〉, f, g ∈ D(A) ∩ D(H), (A.1)

has a unique extension to a continuous sesquilinear form on D(H), where D(H) is
equipped with the graph topology. If we denote the operator associated to the extended
sesquilinear form by [H, A], then the following identity holds on H in the form sense:

[R(z), A] = −R(z)[H, A]R(z), z ∈ ρ(H). (A.2)

http://creativecommons.org/licenses/by/4.0/
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Observe that [R(z), A] is a bounded operator on H if H ∈ C1(A) and that R(z)
maps H into D(H) and the dual space D(H)′ into H. We are now able to formalise the
notion of a strictly positive commutator estimate. The example following the definition
is applied in Sect. 4.

Definition A.3. The operator H obeys a Mourre estimate on an open bounded set J ⊂ R

if a self-adjoint operator A (conjugate operator) exists such that H ∈ C1(A) and, for an
a > 0,

E(J )[H, iA]E(J ) ≥ aE(J ), (A.3)

where E is the spectral measure of H .

Example. ([ABG96, Lemma 7.6.4]) Let H = L2(Rn), and define H = h(D), where
h : Rn → R is a Borel function and D = − i∂ . Suppose J ⊂ R is an open set such that
� = h−1(J ) is also open in R

n , and h belongs to C2 on a neighbourhood of the closure
of �. Assume that a constant c > 0 exists such that, for x ∈ �,

|∇h(x)| ≥ c, |�h(x)| ≤ c−1|∇h(x)|2. (A.4)

Consider θ ∈ C∞c (J ) to be real-valued, and let F be defined as F(x) = θ(h(x))|
∇h(x)|−2∇h(x) for x ∈ �, and F(x) = 0 otherwise. The modified dilation operator

A = 1

2
(F(D) · X + X · F(D)) (A.5)

is essentially self-adjoint on S(Rn) and H ∈ C∞(A). Moreover, for all k ≥ 1,
adk
− iA(H) = θk−1(H) are bounded operators on H, where θk(λ) = [θ(λ)∂λ]kθ(λ).

In particular,

E(Jθ )[H, iA]E(Jθ ) = θ(H)E(Jθ ) = E(Jθ ), (A.6)

where Jθ = {λ ∈ R | θ(λ) = 1} (i.e. H obeys a Mourre estimate on every open subset
of Jθ ).

A.2 Limiting absorption principle. The limiting absorption principle extends, for ν >

1/2, the holomorphic resolvent function C± � z �→ 〈A〉−ν R(z)〈A〉−ν to a continuous
function on C± ∪ J if H obeys a Mourre estimate on J with conjugate operator A.
The limiting absorption principle has been proved under different assumptions. To our
knowledge, the optimal assumptions are those in [ABG96, Theorem 7.4.1] if H has a
spectral gap (i.e. σ(H) 
= R) and [Sa97, Theorem 0.1] if H does not have a spectral
gap. We prefer to cite the limiting absorption principle under less optimal assumptions,
which are sufficient for our purposes and avoid introducing Besov spaces associated to
a C0-group.

Theorem A.4 (Limiting absorption principle, [Ge08, Theorem 1]). Let H ∈ C2(A). If
H obeys a Mourre estimate on J , then, for every compact interval I ⊂ J and every
ν > 1/2,

sup
λ∈I,μ>0

‖〈A〉−ν(H − λ∓ iμ)−1〈A〉−ν‖ <∞. (A.7)
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In our application, it is relevant to determine the dependence of the bound (A.7) on
the parameter a, the operators A, H , and the sets I , J . It is easier to determine this
dependence if H is a bounded operator.

Theorem A.5 Let H ∈ C2(A) be a bounded operator. If H obeys a Mourre estimate
on J , then, for every compact interval I = [α, β] ⊂ J such that I + [−δ, δ] ⊂ J for a
δ > 0, and every ν > 1/2,

sup
λ∈I,μ∈(0,1)

‖〈A〉−ν(H − λ∓ iμ)−1〈A〉−ν‖

≤
⎡
⎣
(

4

aε0
+

c3ε
ν
0

ν

) 1
2

+
c3ε

ν− 1
2

0

ν − 1
2

⎤
⎦

2

ec3ε0 , (A.8)

where

c1 = ‖H‖ + ‖[H, A]‖ +

(
1 +

4

a

)
‖[H, A]‖2

+ ‖[[H, A], A]‖ + a + |α| + |β| + 1, (A.9)

c2 =
√

2

a
+

1

δ

√
8c1

a
, (A.10)

c3 = 4c2 + 2c1c2
2, (A.11)

ε0 = min

{√
aδ

4c1
,

δ2

16c2
1

}
. (A.12)

Proof. The proof relies on a clever approximation G±ε (λ, μ) of the resolvent R(λ± iμ)

such that, formally, G±ε (λ, μ) → R(λ± iμ) as ε ↓ 0. A differential inequality ensures
that 〈A〉−νG±ε (λ, μ)〈A〉−ν remains bounded as μ ↓ 0 and ε ↓ 0. A complete proof of
the theorem is provided in [Am09, Theorem 6.3]. We sketch the idea of the proof to
obtain the bound (A.8). For λ ∈ I and μ ∈ (0, 1), we define the operator-valued function

�ε = 〈εA〉−1〈A〉−νG±ε (λ, μ)〈A〉−ν〈εA〉−1, (A.13)

where G±ε (λ, μ) is the inverse of H −λ∓ iμ∓ iε[H, iA]. For ε ∈ (0, ε0), the existence
of the inverse is a consequence of the Mourre estimate. We must show that �ε remains
bounded as ε ↓ 0 and μ ↓ 0. This is achieved by proving the following differential
inequality [Am09, (6.56)]:

‖�′ε‖ ≤ c3ε
ν−1 + c3ε

ν− 3
2 ‖�ε‖ 1

2 + c3‖�ε‖. (A.14)

Moreover, ‖�ε0‖ ≤ 4/(aε0) [Am09, p. 279]. We complete the proof by Lemma A.6
below. ��
Lemma A.6 (Method of differential inequality, [Am09, Section 6.2.1]). Let ε0 > 0 and
(0, ε0) � ε �→ �ε be a continuously differentiable B(H)-valued function. If �ε is a
solution of the differential inequality

‖�′ε‖ ≤ θ1(ε) + θ2(ε)‖�ε‖ 1
2 + γ ‖�ε‖, (A.15)
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where θk : (0, ε0) → [0,∞) satisfy
∫ ε0

0 θk(ε) dε < ∞, k ∈ {1, 2}, then �ε is bounded
as follows:

‖�ε‖ ≤
[(
‖�ε0‖ +

∫ ε0

0
θ1(ε

′) dε′
) 1

2

+
∫ ε0

0
θ2(ε

′) dε′
]2

eγ ε0 . (A.16)

If H has a spectral gap, it is straightforward to obtain an explicit estimate for (A.7)
from Theorem A.5.

Proposition A.7. Let H ∈ C2(A) have a spectral gap. Select λ0 ∈ R\σ(H) and define
R = (H − λ0)

−1. If H obeys a Mourre estimate on J ⊂ σ(H), then, for every compact
interval I ⊂ J and every 1/2 < ν ≤ 1,

sup
λ∈I,μ∈(0,1)

‖〈A〉−ν(H − λ∓ iμ)−1〈A〉−ν‖

≤ sup
λ∈ Ĩ ,μ>0

|λ|
(
|λ| +

1

|λ| + ‖〈A〉−ν(R − λ± iμ)−1〈A〉−ν‖
)
‖〈A〉ν R〈A〉−ν‖ <∞,

(A.17)

where Ĩ = {(λ− λ0)
−1 | λ ∈ I }.

Proof. The main steps of the proof are the same as in the proof of [ABG96, Theo-
rem 7.4.1]. The resolvents of H and R are related as follows:

(H − λ∓ iμ)−1 = −(λ− λ0 ± iμ)−1[R − (λ− λ0 ± iμ)−1]−1 R. (A.18)

This identity entails the following estimate:

sup
λ∈I,μ∈(0,1)

‖〈A〉−ν(H − λ∓ iμ)−1〈A〉−ν‖

≤ sup
λ∈I,μ∈(0,1)

|λ− λ0 ± iμ|−1‖〈A〉−ν(R − (λ− λ0 ± iμ)−1)−1〈A〉−ν‖

× ‖〈A〉ν R〈A〉−ν‖. (A.19)

For z ∈ ρ(R), define Q(z) = (R − z)−1. From the resolvent formula, we obtain the
following identity:

Q((λ− λ0 ± iμ)−1)− Q

(
(λ− λ0)−1 ∓ i

μ

(λ− λ0)2 + μ2

)

= −μ2

[(λ− λ0)2 + μ2](λ− λ0)
Q((λ− λ0 ± iμ)−1)Q

(
(λ− λ0)−1 ∓ i

μ

(λ− λ0)2 + μ2

)
. (A.20)

Remember that ‖Q(z)‖ ≤ |�(z)|−1; hence,

∥∥∥∥Q((λ− λ0 ± iμ)−1)− Q

(
(λ− λ0)−1 ∓ i

μ

(λ− λ0)2 + μ2

)∥∥∥∥ ≤ (λ− λ0)2 + μ2

|λ− λ0| , (A.21)

and, subsequently,

sup
λ∈I,μ∈(0,1)

|λ− λ0 ± iμ|−1‖〈A〉−ν(R − (λ− λ0 ± iμ)−1)−1〈A〉−ν‖
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≤ sup
λ∈I,μ>0

1

|λ− λ0|

(
(λ− λ0)2 + 1

|λ− λ0| + ‖〈A〉−ν(R − (λ− λ0)−1 ± iμ)−1〈A〉−ν‖
)

.

(A.22)

It remains to demonstrate that the r.h.s. of (A.17) is finite. If K ⊂ J is a compact subset,
then R obeys a Mourre estimate on every open subset contained in K̃ = {(λ− λ0)

−1 |
λ ∈ K } (see [ABG96, Proposition 7.2.5]); hence, by Theorem A.5,

sup
λ∈ Ĩ ,μ>0

‖〈A〉−ν(R − λ± iμ)−1〈A〉−ν‖ <∞. (A.23)

Also, ‖〈A〉ν R〈A〉−ν‖ <∞ for ν ∈ [0, 1] because R ∈ C1(A). In fact,

(A + i)R(A + i)−1 = R + [A, R](A + i)−1 (A.24)

is a sum of bounded operators. It follows that 〈A〉R〈A〉−1 is also bounded, and from
Lemma A.8, we conclude ‖〈A〉ν R〈A〉−ν‖ ≤ ‖R‖1−ν‖〈A〉R〈A〉−1‖ν <∞. ��
Lemma A.8 (Interpolation, [Am09, Proposition 6.17]). Let X be a bounded operator
and S1, S2 positive invertible self-adjoint operators. Assume that S1 or S2 is bounded.
If the closure of S1 X S2 is bounded, then, for ν ∈ [0, 1], the closure of Sν

1 X Sν
2 is also

bounded and

‖Sν
1 X Sν

2‖ ≤ ‖X‖1−ν‖S1 X S2‖ν . (A.25)

A.3 Locally smooth operators. We introduce locally smooth operators for a family
H = (H1, . . . , Hn) of strongly commuting self-adjoint operators. Most of the results of
this section are straightforward generalisations of those for a single self-adjoint operator
(see e.g. [ABG96, Section 7.1]). The only exception is Kato’s Theorem (Theorem A.12),
whose proof requires a new idea. We denote by E the spectral measure of the family H
and by σ(H) ⊂ R

n the joint spectrum. Note that the intersection D(H) = D(H1) ∩
· · · ∩ D(Hn) is dense in H. We consider D(H) as a Banach space equipped with the
graph topology.

Set N = {1, . . . , n} and let a = {a1, . . . , ak} ⊂ N be a subset (w.l.o.g. a1 < · · · <
ak) with |a| = k elements. For x ∈ R

n , we denote the vector (xa1 , . . . , xak ) ∈ R
k by xa ,

and the vector (xb1 , . . . , xbn−k ) by xa , where {b1, . . . , bn−k} = N \a and b1 < · · · <

bn−k . We identify x with xa ⊕ xa . For a subset K ⊂ R
n , we define the following sets

(see Fig. 2):

K (N ) = K , (A.26)

K (a) = {x ∈ R
n | ∃y ∈ R

n−|a| : xa ⊕ y ∈ K }, ∅ 
= a � N , (A.27)

K (∅) = R
n\

⋃
∅
=a⊂N

K (a). (A.28)

Observe that the sets K (a), a ⊂ N , cover R
n , K is contained in K (a) if a 
= ∅, and

R
n\K = K (∅) ∪

⋃
∅
=a�N

(K (a)\K ). (A.29)
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Fig. 2. Partition of the set R
2 into the sets K (a), a ⊂ {1, 2}

For products of resolvents of H1, . . . , Hn , we use the following notation (λ,μ ∈ R
n):

Ra(λ + iμ) =
∏
j∈a

(Hj − λ j − iμ j )
−1, (A.30)

�Ra(λ + iμ) =
∏
j∈a

�(Hj − λ j − iμ j )
−1

= μa1 . . . μak Ra(λ± iμ)∗Ra(λ± iμ). (A.31)

We abbreviate RN (λ + iμ) by R(λ + iμ). The following definition is a natural generali-
sation of locally H -smooth operators for a family of commuting self-adjoint operators.

Definition A.9. Let G be a Hilbert space. A continuous operator T : D(H) → G is
locally H -smooth on an open set J ⊂ R

n if, for every ∅ 
= a ⊂ N and every compact
subset K ⊂ J , a constant CK (a) exists such that, for all f ∈ H,

∫
R|a|
‖T eixa ·Ha E(K (a)) f ‖2

G dxa ≤ CK (a)‖ f ‖2
H. (A.32)

In the case of a single self-adjoint operator H (i.e. n = 1), a continuous operator
T : D(H)→ G is locally H -smooth on J ⊂ R if, for every compact subset K ⊂ J ,

∫
R

‖T eix H E(K ) f ‖2
G dx ≤ CK ‖ f ‖2

H. (A.33)

This definition coincides with the one provided in [ABG96, p.274]. It is possible to
define locally H -smooth operators by demanding (A.32) only for a = N , and some
of the subsequent results can be generalised if this weaker definition is used instead.
However, we prefer the above definition because Theorem A.12 offers an equivalent
characterisation of locally H -smooth operators in terms of resolvent estimates.
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We state two identities that will be useful below. Define R+ = (0,∞). For every
μ ∈ R

n
+,

Ra(λ + iμ) = i|a|
∫

R
|a|
+

eiλa ·xa e− ixa ·Ha−μa ·xa dxa . (A.34)

The second identity is a consequence of the resolvent identity (A.34) (see [ABG96,
(7.1.2), (7.1.11)]):

∫
R|a|
‖T eixa ·Ha f ‖2 dxa = 2|a|

π |a|
sup

μ∈(0,1)n

∫
R|a|
‖T�Ra(λ + iμ) f ‖2 dλa . (A.35)

Proposition A.10. If T is locally H-smooth, the optimal constant for the bound (A.32)
is

C0
K (a) = 2|a| sup

λ∈Rn ,μ∈(0,1)n
μa1 . . . μak‖T E(K (a))Ra(λ + iμ)‖2. (A.36)

Moreover, a continuous operator T : D(H) → G is locally H-smooth on J if C0
K (a) <

∞ for every ∅ 
= a ⊂ N and every compact subset K ⊂ J .

Proof. The proof is similar to Step (i) of the proof of [ABG96, Proposition 7.1.1]. For
μ ∈ (0, 1)n , we obtain the following estimate from the resolvent identity (A.34) and the
Cauchy–Schwarz inequality:

‖T E(K (a))Ra(λ + iμ) f ‖2 ≤
(∫

R
|a|
+

e−μa ·xa‖T e− ixa ·Ha E(K (a)) f ‖ dxa

)2

≤ 1

2|a|μa1 . . . μak

∫
R|a|
‖T e− ixa ·Ha E(K (a)) f ‖2 dxa . (A.37)

Applying the assumption that T is locally H -smooth on J , yields C0
K (a) ≤ CK (a)

(i.e. C0
K (a) is the optimal constant for (A.32)).

Next, we establish that T is locally H -smooth on J if C0
K (a) <∞ for every ∅ 
= a ⊂

N and every compact subset K ⊂ J . From (A.35) and (A.31), it follows that

∫
R|a|
‖T eixa ·Ha E(K (a)) f ‖2 dxa = 2|a|

π |a|
sup

μ∈(0,1)n

∫
R|a|
‖T�Ra(λ + iμ)E(K (a)) f ‖2 dλa

≤ 2|a|

π |a|
sup

λ∈Rn ,μ∈(0,1)n
μ2

a1
. . . μ2

ak
‖T E(K (a))Ra(λ + iμ)‖2

∫
R|a|
‖Ra(λ− iμ) f ‖2 dλa .

(A.38)

To conclude, we utilise the following identity:

μa1 . . . μak

∫
R|a|
‖Ra(λ− iμ) f ‖2 dλa = π |a|‖ f ‖2. (A.39)

Thus, T is locally H -smooth on J if C0
K (a) <∞. ��
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Proposition A.10 demonstrates the close connection between the notion of locally
H -smooth operators and the boundary values of the resolvents Ra(λ + iμ) as μ ↓ 0.
This connection is further clarified in Kato’s theorem, which we present and prove in a
generalised form below. To prepare the theorem, we repeat the above proposition in the
case n = 1.

Proposition A.11. If n = 1, a continuous operator T : D(H)→ G is locally H-smooth
if and only if C0

K <∞ for every compact subset K ⊂ J . Moreover,

C0
K ≤ 8 sup

λ∈K ,μ∈(0,1)

‖T�R(λ + iμ)T ∗‖. (A.40)

The proof of (A.40) is Step (ii) in the proof of [ABG96, Proposition 7.1.1].

Theorem A.12. A continuous operator T : D(H) → H is locally H-smooth on J if
and only if, for every ∅ 
= a ⊂ N and every compact subset K ⊂ J ,

sup
λ∈K ,μ∈(0,1)n

‖T�Ra(λ + iμ)T ∗‖ <∞. (A.41)

Proof. The strategy of the proof is to demonstrate that (A.41) is equivalent to C0
K (a) <

∞. If this is proved, the theorem follows from Proposition A.10. We observe that, for
both directions of the proof, it suffices to consider compact hyperrectangles in J instead
of arbitrary compact subsets K ⊂ J . This follows from the fact that every compact set
in J can be covered by finitely many compact hyperrectangles in J .

Let T be locally H -smooth on J . We show (A.41) for a = N . The general case is
similar. Let K = I1×· · ·× In ⊂ J be a compact hyperrectangle, where I1, . . . , In ⊂ R

are compact intervals. Let K̃ = Ĩ1 × · · · × Ĩn ⊂ J be another compact hyperrectangle
such that, for every j ∈ N , I j ⊂ Ĩ j and dist(I j , R\ Ĩ j ) > 0. Let λ ∈ K . From (A.29)
applied to K̃ , it follows that

E(Rn\K̃ ) ≤ E(K̃ (∅)) +
∑

∅
=a�N
E(K̃ (a)\K̃ ), (A.42)

and, accordingly,

‖T E(Rn\K̃ )R(λ + iμ)‖2 ≤ ‖T E(K̃ (∅))R(λ + iμ)‖2 +
∑

∅
=a�N
‖T E(K̃ (a)\K̃ )R(λ + iμ)‖2

≤ ‖T E(K̃ (∅))R(λ + iμ)‖2 +
∑

∅
=a�N
‖T E(K̃ (a)\K̃ )Ra(λ + iμ)‖2‖E(K̃ (a)\K̃ )RN\a(λ + iμ)‖2;

(A.43)

hence, by Proposition A.10,

sup
λ∈K ,μ∈(0,1)n

μ1 . . . μn‖T E(Rn\K̃ )R(λ + iμ)‖2 ≤ sup
λ∈K

‖T E(K̃ (∅))R(λ)‖2

+
∑

∅
=a�N

1

2|a|
C0

K̃ (a)
sup
λ∈K

‖E(K̃ (a)\K̃ )RN \a(λ)‖2 <∞, (A.44)
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where we used that C0
K̃ (a)

<∞ due to the assumption that T is locally H -smooth on J .

Thus, we obtain (A.41):

sup
λ∈K ,μ∈(0,1)n

‖T�R(λ + iμ)T ∗‖ ≤ sup
λ∈K ,μ∈(0,1)n

μ1 . . . μn‖T E(K̃ )R(λ + iμ)‖2

+ sup
λ∈K ,μ∈(0,1)n

μ1 . . . μn‖T E(Rn\K̃ )R(λ + iμ)‖2 <∞. (A.45)

Next, we prove that T is locally H -smooth on J if (A.41) holds for every ∅ 
= a ⊂ N
and every compact subset K ⊂ J . We demonstrate that C0

K < ∞ for every compact
hyperrectangle K = I1 × · · · × In . The case C0

K (a) < ∞ is similar. We consider the

contributions in the supremum defining C0
K from the points λ /∈ K . If λ /∈ K , an

a � N exists such that λ ∈ K (a). For every j ∈ N \a, we choose κ j ∈ I j such that
dist(λ j , I j ) = |λ j − κ j |, and we define λ̃ ∈ K to be the element that satisfies λ̃ j = λ j

if j ∈ a and λ̃ j = κ j if j ∈ N \a. We have

R(λ + iμ) =
∏

j∈N \a
(1 + (λ j − κ j )(Hj − λ j − iμ j )

−1)R(λ̃ + iμ); (A.46)

thus,

‖T E(K )R(λ + iμ)‖ ≤ ‖T E(K )R(λ̃ + iμ)‖
× ‖E(K )

∏
j∈N \a

(1 + (λ j − κ j )(Hj − λ j − iμ j )
−1)‖

≤ 2n−|a|‖T E(K )R(λ̃ + iμ)‖. (A.47)

It follows that

C0
K ≤ 8n sup

λ∈K ,μ∈(0,1)n
‖T�R(λ + iμ)T ∗‖ <∞. (A.48)

This estimate can be compared with (A.40). However, we have obtained the factor 8n

only in the case that K ⊂ J is a compact hyperrectangle, and (A.48) might not generalise
to arbitrary compact sets K . ��

In the remainder of this section, we discuss an example of a locally smooth operator,
which is important for the main part of the paper. Let Hac(H) ⊂ H be the jointly
absolutely continuous subspace of H .

Definition A.13. For f ∈ Hac(H), let ρ f be the Radon–Nikodym derivative (w.r.t. the
Lebesgue measure on R

n) of the spectral measure 〈 f, E(·) f 〉. For a ⊂ N , we denote
by M(H)a the set of all vectors f ∈ Hac(H) for which

||| f |||a = sup
xa∈R|a|

(∫
Rn−|a|

ρ f (xa ⊕ xa) dxa
) 1

2

<∞. (A.49)

We abbreviate M(H)N by M(H) and ||| f |||N by ||| f |||.
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Observe thatM(H)∅ = Hac(H) and thatM(H) is the set of all vectors f ∈ Hac(H)

for which the Radon–Nikodym derivative ρ f is a bounded function. In general, for
∅ 
= a � N , M(H) is not a subset of M(H)a . If, for every j ∈ N \a, an h j ∈ R+
exists such that f = E({|x j | ≤ h j }) f , then

||| f |||2a = sup
xa∈R|a|

∫
Rn−|a|

ρ f (xa ⊕ xa) dxa ≤
∏

j∈N \a
2h j ||| f |||2. (A.50)

This follows from the fact that in this case ρ f (x) =∏ j∈N \a χ(|x j | ≤ h j )ρ f (x), where
χ denotes the characteristic function.

Lemma A.14. For every a ⊂ N , M(H)a is dense in Hac(H) (w.r.t. the norm in H).

Proof. It suffices to prove thatM(H) is dense inHac(H) because f ∈M(H) is approx-
imated by fR = E({|x | ≤ R}) f as R →∞ and fR ∈M(H)a due to (A.50). We may
assume that a cyclic vector f ∈ Hac(H) for H exists. Otherwise, we decomposeHac(H)

into subspaces such that each subspace has a cyclic vector. By spectral theory, the Hilbert
space Hac(H) is unitarily equivalent to L2(σ (H), ρ f dx) in such a way that H is uni-
tarily equivalent to the multiplication operator by x . For g ∈ L2(σ (H), ρ f dx), we have
ρg = |g|2ρ f . Because every g ∈ L2(σ (H), ρ f dx) is approximated by gχ(|g|2ρ f ≤ R)

as R →∞, the space M(H) is dense in Hac(H). ��
The following proposition demonstrates that the operator T f : H→ C, g �→ 〈 f, g〉,

is (locally) H -smooth on R
n if f ∈⋂a⊂N M(H)a . The proposition is a generalisation

of [RS79, Lemma XI.3.1].

Proposition A.15. For ∅ 
= a ⊂ N , f ∈M(H)a and g ∈ H,∫
R|a|
|〈 f, eixa ·Ha g〉|2 dxa ≤ (2π)|a|||| f |||2a ‖g‖2 . (A.51)

If, for every j ∈ N \a, an h j ∈ R+ exists such that f = E({|x j | ≤ h j }) f , then
∫

R|a|
|〈 f, eixa ·Ha g〉|2 dxa ≤ (2π)|a|

∏
j∈N \a

2h j ||| f |||2 ‖g‖2 . (A.52)

Proof. We demonstrate that T f is locally H -smooth on R
n . Let K ⊂ R

n be a compact
subset. By Proposition A.10, it suffices to show that, for every ∅ 
= a ⊂ N ,

sup
λ∈Rn ,μ∈(0,1)n

μ1 . . . μn‖T f E(K (a))Ra(λ + iμ)‖2

≤ sup
λ∈Rn ,μ∈(0,1)n

‖T f �Ra(λ + iμ)T ∗f ‖ ≤ π |a|||| f |||2a .
(A.53)

The first inequality is obvious. To obtain the second inequality, we observe the following:

sup
μ∈(0,1)n

‖T f �Ra(λ + iμ)T ∗f ‖ = sup
μ∈(0,1)n

|〈 f,�Ra(λ + iμ) f 〉|

= sup
μ∈(0,1)n

∫
Rn

∏
j∈a

� 1

σ j − λ j − iμ j
ρ f (σ ) dσ

≤ π |a|
∫

Rn−|a|
ρ f (λa ⊕ σ a) dσ a . (A.54)
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We conclude that, for every compact subset K ⊂ R
n ,

∫
R|a|
|T f eixa ·Ha E(K (a))g|2 dxa ≤ (2π)|a|||| f |||2a‖g‖2. (A.55)

The first statement of the lemma follows from Fatou’s lemma because the bound on the
r.h.s. is independent of K . The second statement follows from (A.50). ��
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Abstract
A central task of theoretical physics is to analyse spectral properties of quantum
mechanical observables. In this endeavour, Mourre’s conjugate operator method
emerged as an effective tool in the spectral theory of Schrödinger operators. This
paper introduces a novel class of examples from relativistic quantum field theory that
are amenable to Mourre’s method. By assuming Lorentz covariance and the spec-
trum condition, we derive a limiting absorption principle for the energy-momentum
operators and provide new proofs of the absolute continuity of the energy-momentum
spectra. Moreover, under the assumption of dilation covariance, we show that the
spectrum of the relativistic mass operator is purely absolutely continuous in (0,∞).

Keywords Spectral theory · Mourre’s conjugate operator method · Absence of
singular continuous spectrum · Representations of the Poincaré group ·
Dilation-covariant representations

Mathematics Subject Classification 81Q10

1 Introduction

Understanding spectral properties of quantum mechanical observables is of funda-
mental importance in theoretical physics. By analysing the spectrum, insights into the
system’s stability and long-time evolution can be obtained. Specifically, the spectrum
of a self-adjoint operator decomposes into a pure point, absolutely continuous and
singular continuous part, where the pure-point part corresponds to bound states and
the absolutely continuous part to scattering states. Typically, the singular continuous
spectrum, which evades a simple physical interpretation, is empty. One of the main
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objectives of this paper is to prove the absence of singular continuous spectrum for
relativistic energy-momentum operators.

Variousmathematical techniques havebeendeveloped to investigate the spectrumof
a self-adjoint operator. One powerful method in this endeavour is Mourre’s conjugate
operatormethod,which is based on a strictly positive commutator estimate. The idea of
analysing spectral properties of self-adjoint operators through commutator identities
and estimates can be traced back to the pioneeringworks of Putnam [19],Kato [12], and
Lavine [14]. However, it was Mourre [17] who advanced this approach by introducing
local commutator estimates.

Mourre’s method led to substantial progress in the spectral and scattering theory of
Schrödinger operators. In his seminal paper, Mourre [17] demonstrated the absence
of singular continuous spectrum for 2- and 3-body Schrödinger operators. The appli-
cability of the method to N -body systems was extended by Perry, Sigal, and Simon
[18] and by Froese and Herbst [10]. Mourre’s method also played a decisive role in
establishing asymptotic completeness of N -body Schrödinger operators (see [5] for
a textbook exposition). On an abstract level, the mathematical theory underlying the
conjugate operator method was notably improved by Amrein, Boutet de Monvel, and
Georgescu [1].

While originally developed for non-relativistic quantum mechanics, Mourre’s
method has also been extended to other areas. Worthy of note, it has been applied
in non-relativistic quantum electrodynamics (QED). Among many works, we men-
tion here that aMourre estimate was proved by Dereziński and Gérard [6] for confined
Pauli–Fierz Hamiltonians, by Fröhlich, Griesemer, and Schlein [8] for a Hamiltonian
describing Compton scattering, by Fröhlich, Griesemer, and Sigal [9] for the standard
model of non-relativistic QED, by Chen, Faupin, Fröhlich, and Sigal [4] for dressed
electrons, and by Møller and Rasmussen [16] for the translation-invariant massive
Nelson model.

The application of Mourre’s conjugate operator method in relativistic quantum
field theory is more difficult due to the abstract nature of the Hamiltonian. Typically,
the renormalised Hamiltonian is derived through a limiting procedure or is defined
axiomatically as the generator of time translations. Although a Mourre estimate was
established for the spatially cut-off P(ϕ)2 Hamiltonian by Dereziński and Gérard [7]
and Gérard and Panati [11], it remained an open problem whether a Mourre estimate
can be proved for theHamiltonian in the infinite-volume limit. Recently, the author [13]
applied Mourre’s method within the axiomatic framework of Haag–Kastler quantum
field theory to prove the existence of asymptotic observables. In this context, Mourre’s
method was implemented through scattering theory by comparing the abstract dynam-
ics generated by the Hamiltonian to a more concrete free dynamics.

In this paper, we apply Mourre’s conjugate operator method in the relativistic set-
ting directly to the energy-momentum operators, which are defined axiomatically as
the generators of spacetime translations. By assuming Lorentz covariance and the
spectrum condition, we prove Mourre estimates for the energy-momentum operators
P = (P0,P), using the generators of Lorentz boosts K to construct conjugate opera-
tors. Our Mourre estimates yield the following limiting absorption principle:

123
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Fig. 1 The set Sκ ⊂ V+ is invariant under Lorentz boosts

Theorem 1.1 Let U : P → B(H) be a strongly continuous unitary representation of
the Poincaré group P = L�R

d on a Hilbert space H, P = (P0,P) the generators of
the translation subgroup U |Rd , E the joint spectral measure of P, andK the generators
of Lorentz boosts. Assume that the energy-momentum operators P obey the spectrum
condition (see Assumption 4.1). For κ > 0, define the following Lorentz-invariant sets
(see Fig.1):

Sκ = {�1(t1) . . . �s(ts)(p0, 0) | t1, . . . , ts ∈ R, p0 ∈ [0, κ]}−, (1.1)

where � j (t j ) are the Lorentz boosts in the spatial direction j ∈ {1, . . . , s = d − 1}
and {. . . }− denotes the closure in R

d . For all compact subsets I0 ⊂ (κ,∞) and
I j ⊂ R\{0}, for every ν > 1/2,

sup
λ∈I0,μ>0

‖E(Sκ )〈K j 〉−ν(P0 − λ ∓ iμ)−1〈K j 〉−ν E(Sκ )‖ < ∞, (1.2)

sup
λ∈I j ,μ>0

‖E(Sκ)〈K j 〉−ν(Pj − λ ∓ iμ)−1〈K j 〉−ν E(Sκ )‖ < ∞. (1.3)

We illustrate our line of argument for the momentum operators P. Formally, the
momentum operator Pj and the generator of Lorentz boosts K j in the spatial direction
j satisfy the following commutation relation:

[Pj , iK j ] = P0. (1.4)

By virtue of the spectrum condition, the energy P0 is strictly positive on spectral sub-
spaces of Pj that are separated from 0. To make sense of the commutator and to apply
the results ofMourre theory, it is necessary to demonstrate that Pj lies in the regularity
classes Ck(K j ) (see Definition 3.1). However, this is not generally the case: because
the inclusion D(P0) ⊂ D(Pj ) of domains, which follows from the spectrum condi-
tion, can be proper, the form defined by the commutator [Pj , iK j ] on D(Pj )∩ D(K j )
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does not necessarily have a continuous extension to D(Pj ). To address this problem,
we introduce the Lorentz-invariant sets Sκ , which cover the closed forward light cone
V+. Within the sets Sκ , the energy stays bounded relative to the momentum, ensuring
that the operators P0,κ = E(Sκ)P0 and Pj,κ = E(Sκ)Pj are bounded relative to each
other. Moreover, the commutation relation (1.4) is preserved with P0 and Pj replaced
by P0,κ and Pj,κ , respectively, because E(Sκ) commutes with K j . Additionally, we
have D(P0,κ ) = D(Pj,κ ) and Pj,κ ∈ C∞(K j ) (see Proposition 4.2). The limiting
absorption principle (1.3) can then be derived from the standard results of Mourre
theory.

As a corollary of Theorem 1.1, we provide a new proof of the well-known theo-
rem asserting that the energy-momentum spectra are purely absolutely continuous if
translation-invariant vectors are removed [15]. More precisely, we prove the following
proposition, where Hac(A) denotes the absolutely continuous spectral subspace of a
commuting family of self-adjoint operators A and x · y = x0y0 − x · y, x, y ∈ R

d ,
denotes the Minkowski scalar product.

Proposition 1.2 Let U be as in Theorem 1.1 and e ∈ R
d\{0} a spacetime vector such

that e ·e �= 0 if d = 2. Assume that the energy-momentum operators P = (P0,P) obey
the spectrum condition. If Q0 denotes the projection onto the subspace of translation-
invariant vectors, then

H = Q0H ⊕ Hac(e · P) = Q0H ⊕ Hac(P). (1.5)

The first identity in (1.5) was originally proved by Maison [15, Satz 2] for d = 4
through the application ofWigner’s theorem. The second identity (absolute continuity
of the joint momentum spectrum) has been proved under differing assumptions in the
realm of quantum field theory. Buchholz and Fredenhagen [3, Proposition 2.2] utilised
the locality principle to establish this identity, andBachmann, Dybalski, andNaaijkens
[2, Lemma 4.16] presented a simplified proof under the additional assumption of the
existence of a vacuum vector.

An immediate consequence of Proposition 1.2 and the Riemann–Lebesgue lemma
is the following clustering property. If f , g ∈ H are two arbitrary vectors, then

lim
t→±∞〈 f , U (te)g〉 = 〈 f , Q0g〉. (1.6)

In quantumfield theory, the clustering property is well-known for space-like directions
(i.e. e ·e < 0) due to the locality principle. It is somewhat unexpected that this property
is also valid for light-like (i.e. e · e = 0) and time-like directions (i.e. e · e > 0) under
the assumption of Lorentz covariance.

In two spacetime dimensions (i.e. d = 2), the clustering property may not hold for
light-like directions. This stems from the potential presence of massless excitations,
as elaborated upon in the remark subsequent to Proposition 4.9.

Proposition 1.3 LetU be as in Theorem1.1and let EP0±P1 denote the spectral measure
of P0 ± P1. If d = 2, then

H = EP0±P1({0})H ⊕ Hac(P0 ± P1). (1.7)
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Another operator of interest in quantum field theory is the mass operator M =√
P2
0 − |P|2. We prove the absence of singular continuous spectrum for the mass

operator if U satisfies dilation covariance. A unitary representation U : R
d → B(H)

of the translation groupR
d is dilation-covariant if a self-adjoint operator D exists such

that, for all t ∈ R, x ∈ R
d ,

eit DU (x) e− it D = U (e−t x), (1.8)

that is, the adjoint action of eit D scales the translation x by the factor e−t .

Proposition 1.4 Let U : R
d → B(H) be a strongly continuous unitary representation

of the translation group R
d . Assume that the generators P = (P0,P) of U obey

the spectrum condition. If U is dilation-covariant, then, for every compact subset
I ⊂ (0,∞) and every ν > 1/2,

sup
λ∈I ,μ>0

‖〈D〉−ν(M − λ ∓ iμ)−1〈D〉−ν‖ < ∞. (1.9)

The spectrum of M is purely absolutely continuous in (0,∞).

Given that the spectrum of the mass operator M ≥ 0 is contained in the interval
[0,∞), the proposition implies that the pure point spectrum of M must be empty
or {0}, while the singular continuous spectrum is empty. Under the assumptions of
Proposition 1.2, the mass operator may have other eigenvalues than 0. The assumption
of dilation covariance excludes additional mass shells within the energy-momentum
spectrum.

The structure of the paper is as follows. InSect. 2,wedefine locally smoothoperators
for a commuting family of self-adjoint operators, and we relate the existence of a
locally smooth operator to the regularity of the joint spectrum. In Sect. 3, we review
essential results of Mourre’s conjugate operator method. We explain how to obtain
locally smooth operators based on a strictly positive commutator estimate. In Sect. 4,
we present the proofs of our results.

2 Locally smooth operators

Let U : R
n → B(H) be a strongly continuous unitary representation of R

n on
a Hilbert space H with self-adjoint generators H = (H1, . . . , Hn). We denote by
D(H) the intersection of the domains of H1, . . . , Hn , by E the spectral measure of
the family H , and by σ(H) ⊂ R

n its joint spectrum. We consider D(H) as a Banach
space equipped with the graph norm.

Definition 2.1 A continuous operator T : D(H) → H is locally H -smooth on an
open set J ⊂ R

n if, for every compact subset K ⊂ J , a constant CK exists such that,
for all f ∈ H,

∫

Rn
‖T U (x)E(K ) f ‖2 dx ≤ CK ‖ f ‖2. (2.1)
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In [13, Definition A.9], we defined locally H -smooth operators by demanding that
all subfamilies of H are locally H -smooth in the sense of the above definition. The
advantage of this stronger definition is that it allows locally H -smooth operators to be
equivalently characterised by resolvent estimateswhich resemble a limiting absorption
principle (see [13, Theorem A.12] and Proposition 2.4 below for the case n = 1). In
this paper, we prefer the weaker formulation of Definition 2.1 because it is sufficient
for analysing the regularity of the joint spectrum σ(H).

The following proposition is a straightforward generalisation of [21, Theo-
rem XIII.23].

Proposition 2.2 If T is locally H-smooth on J , then E(J )ran(T ∗) ⊂ E(J )Hac(H).
If, additionally, ker(T ) = {0}, then the joint spectrum of H is purely absolutely
continuous in J .

Proof Let f ∈ E(J )ran(T ∗). Due to the inner regularity of the spectral measure
E , we can approximate f by a sequence { f j } j∈N such that, for every j ∈ N, f j ∈
E(K j ) ran(T ∗) for a compact subset K j ⊂ J . If, for every j ∈ N, f j ∈ E(J )Hac(H),
then also f ∈ E(J )Hac(H) because E(J )Hac(H) is a closed subspace ofH.Wewrite
f j = E(K j )T ∗g j with g j ∈ D(T ∗). Let μ f j be the spectral measure associated with
f j , and let Fj be its inverse Fourier transform:

Fj (x) = 1

(2π)n

∫

Rn
eip·x dμ f j (p) = 1

(2π)n
〈E(K j )T

∗g j , U (x) f j 〉. (2.2)

The function Fj is square-integrable because |Fj (x)|≤(2π)−n‖g j‖‖T U (x)E(K j )f j‖
and T is locally H -smooth on J by assumption. Thus, dμ f j (p) = F̂j (p) dp is an
absolutely continuous measure.

To prove the second statement, we apply the decompositionH = ker(T )⊕ran(T ∗).
If ker(T ) = {0}, then E(J )H = E(J )ran(T ∗) ⊂ E(J )Hac(H). We conclude
E(J )H = E(J )Hac(H) because Hac(H) ⊂ H, that is, the joint spectrum of H
is purely absolutely continuous in J . ��

It is possible to determine the constant CK for the bound (2.1), which is useful to
verify the H -smoothness of an operator T . The following proposition is proved as in
[13, Proposition A.10].

Proposition 2.3 A continuous operator T : D(H) → H is locally H-smooth on J if
and only if, for all compact subsets K ⊂ J ,

C0
K = 2n sup

λ∈Rn ,μ∈(0,1)n
μ1 . . . μn‖T E(K )R(λ + iμ)‖2 < ∞, (2.3)

where

R(λ + iμ) =
n∏

j=1

(Hj − λ j − iμ j )
−1. (2.4)
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If n = 1, we can formulate a necessary and sufficient condition for C0
K < ∞ in

terms of a limiting absorption principle (see Theorem 3.5).

Proposition 2.4 Let n = 1. For every compact subset K ⊂ R, C0
K < ∞ if and only if

sup
λ∈K ,μ∈(0,1)

‖T �R(λ + iμ)T ∗‖ < ∞. (2.5)

The proof of Proposition 2.4 is contained in the proof of [1, Proposition 7.1.1];
see [13, Theorem A.12] for a generalisation to n ≥ 2. In the next section, we apply
Propositions 2.3 and 2.4 to construct locally smooth operators (see Corollary 3.6).

3 Mourre’s conjugate operator method

Mourre’s conjugate operator method is a mathematical tool to analyse the spectrum
of a self-adjoint operator based on a positive commutator estimate. In this section, we
outline the framework and state the most important results of the method, in particular
the limiting absorption principle. At the end of this section, we applyMourre’s method
to construct locally smooth operators.

We introduce the following regularity classes, which are relevant for defining com-
mutators.

Definition 3.1 Let A be a self-adjoint operator onH and let k ∈ N ∪ {∞}. We denote
by Ck(A) the space of all self-adjoint operators H such that t �→ eit A(H + i)−1 e− it A

is a Ck-map in the strong operator topology. We denote by Ck
u (A) the subspace of

operators H for which the same map is Ck in norm.

We collect some properties of the class C1(A) from [1, Theorem 6.2.10]. If H ∈
C1(A), then D(A) ∩ D(H) is dense in D(H) (equipped with the graph topology).
Moreover, the sesquilinear form defined by the commutator H A − AH on D(A) ∩
D(H) extends to a continuous sesquilinear form on D(H). We denote the extended
sesquilinear form by [H , A]. It is possible to characterise the class C1(A) in terms of
the commutator [H , A].
Proposition 3.2 [1, Theorem 6.2.10 (a)] A self-adjoint operator H belongs to the
class C1(A) if and only if there exists z ∈ ρ(H) such that { f ∈ D(A) | (H − z)−1 f ∈
D(A) and (H − z)−1 f ∈ D(A)} is a core for A and, for all f ∈ D(A) ∩ D(H),

|〈H f , A f 〉 − 〈A f , H f 〉| ≤ c(‖H f ‖2 + ‖ f ‖2). (3.1)

Having formalised the commutator of two self-adjoint unbounded operators, we
are able to define strictly positive commutator estimates.

Definition 3.3 A self-adjoint operator H obeys a Mourre estimate on an open and
bounded subset J ⊂ R if a self-adjoint operator A (conjugate operator) exists such
that H ∈ C1(A) and, for an a > 0,

E(J )[H , iA]E(J ) ≥ aE(J ), (3.2)
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where E is the spectral measure of H .

Example Let H be A-homogeneous, that is, for every t, x ∈ R,

eit A eix H e− it A = ei e
−t x H . (3.3)

It is not difficult to show that (3.3) implies H ∈ C∞(A) and [H , iA] = H . Moreover,
for every open and bounded interval J = (a, b) ⊂ (0,∞), 0 < a < b < ∞,

E(J )[H , iA]E(J ) = H E(J ) ≥ aE(J ), (3.4)

that is, H obeys a Mourre estimate on J with conjugate operator A. Similarly, for
every open and bounded interval I = (a, b) ⊂ (−∞, 0), −∞ < a < b < 0,

E(I )[H ,− iA]E(I ) = −H E(I ) ≥ −bE(I ), (3.5)

that is, H obeys a Mourre estimate on I with conjugate operator −A.

A consequence of the Mourre estimate on J is that H has no eigenvalues in J . This
fact emerges as a direct corollary of the virial theorem [1, Proposition 7.2.10].

Theorem 3.4 (Virial theorem) Let H ∈ C1(A). If f is an eigenvector of H, then
〈 f , [H , A] f 〉 = 0.

Next,we state the limiting absorption principle. To formulate the limiting absorption
principle under optimal conditions, we introduce new regularity classes. Let p ∈
[1,∞] and k ∈ N. For 0 < s < k, we denote by Cs,p(A) the real interpolation space
[1, (5.2.6)]

Cs,p(A) = (Ck
u (A), C0

u (A))θ,p, θ = 1 − s/k. (3.6)

Moreover, we write H ∈ Ck+0(A) [1, p. 204] if H ∈ Ck(A) and if the operator-valued
function S(t) = eit Aadk

A((H + i)−1) e− it A is Dini continuous in norm, that is,

∫

|t |<1
‖S(t) − S(0)‖dt

t
< ∞. (3.7)

We mention the following chain of inclusions [1, (5.2.14)]:

Ck+1(A) ⊂ Ck+0(A) ⊂ Ck,1(A) ⊂ Ck
u (A), k ∈ N. (3.8)

Note that Ck+1(A) ⊂ Ck+0(A) as a consequence of the mean value theorem and the
uniform boundedness principle.

We say that H has a spectral gap if σ(H) �= R and we write 〈A〉 for √
A2 + 1.
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Theorem 3.5 (Limiting absorption principle) Let H ∈ C1,1(A) if H has a spectral
gap and H ∈ C1+0(A) if σ(H) = R. If H obeys a Mourre estimate on J , then, for
every compact subset K ⊂ J and every ν > 1/2,

sup
λ∈K ,μ>0

‖〈A〉−ν(H − λ ∓ iμ)−1〈A〉−ν‖ < ∞. (3.9)

Remark The assumption H ∈ C1,1(A) is optimal on the Besov scale in the sense that
counterexamples of the limiting absorption principle for operators possessing less
regularity exist [1, Section 7.B]. A proof of the limiting absorption principle under the
assumption H ∈ C1,1(A) has been accomplished in the case that H has a spectral gap
[1, Theorem 7.4.1]. Sahbani [22] proved the limiting absorption principle under the
more restrictive assumption H ∈ C1+0(A). It is an open problem to prove the limiting
absorption principle for H ∈ C1,1(A) if σ(H) = R.

According to Proposition 2.2, H has no singular spectrum in J if an injective locally
H -smooth operator on J exists. If each Hi obeys a Mourre estimate with conjugate
operator Ai such that, for i �= j , Ai commutes strongly with Hj , then, for every
ν > 1/2, 〈A1〉−ν . . . 〈An〉−ν is an injective operator that is locally H -smooth. This is
a corollary of the limiting absorption principle and the results from Sect. 2.

Corollary 3.6 Consider a commuting family of self-adjoint operators H = (H1, . . . ,

Hn) and a corresponding family A = (A1, . . . , An) of self-adjoint operators such that,
for every i ∈ {1, . . . , n}, Hi ∈ C1,1(Ai ) if Hi has a spectral gap and Hi ∈ C1+0(Ai )

if σ(Hi ) = R. If Hi obeys a Mourre estimate on Ji with conjugate operator Ai and,
for i �= j , Ai commutes strongly with Hj , then the joint spectrum of H is purely
absolutely continuous in the product region J = J1 × · · · × Jn.

Proof We demonstrate that the injective operator T = 〈A1〉−ν . . . 〈An〉−ν is locally
H -smooth on J for every ν > 1/2. If this claim is proved, the statement follows
from Proposition 2.2. We show that the constant C0

K from Proposition 2.3 is finite
for every compact subset K ⊂ J . It suffices to consider compact hyperrectangles
K = K1 × · · · × Kn , where Ki ⊂ Ji are compact intervals, because every compact
subset K ⊂ J can be covered by finitely many compact hyperrectangles in J . If Ei

denotes the spectral measure of Hi , then

E(K ) = E1(K1) . . . En(Kn). (3.10)

By assumption, Ai commutes strongly with Hj if i �= j ; hence,

C0
K = 2n sup

λ∈Rn ,μ∈(0,1)n
μ1 . . . μn‖〈A1〉−ν . . . 〈An〉−ν E(K )R(λ + iμ)‖2

≤
n∏

i=1

2 sup
λi ∈R,μi ∈(0,1)

μi‖〈Ai 〉−ν Ei (Ki )Ri (λi + iμi )‖2. (3.11)

Each factor on the r.h.s. is finite due to Proposition 2.4 and the limiting absorption
principle (Theorem 3.5). ��
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4 Spectral analysis of relativistic energy-momentum operators

In this section,we establishMourre estimates for the energy-momentumoperators P =
(P0,P) and verify the limiting absorption principle of Theorem 1.1 (see Theorem 4.3
and Theorem 4.6 below). Moreover, we analyse the spectra of the energy-momentum
operators: in Proposition 4.4 for the momentum operators P, in Proposition 4.7 for the
energy operator P0, and in Proposition 4.9 for the operators e · P , where e is a light-like
vector. The relativistic mass operator M and its spectrum is studied in Sect. 4.2.

4.1 Representations of the Poincaré group

The Poincaré group is the semi-direct product P = L � R
d of the Lorentz group

L = O(d − 1, 1) and the translation group R
d . Its multiplication law is defined as

follows:

(λ1, a1) · (λ2, a2) = (λ1λ2, a1 + λ1a2), λ1, λ2 ∈ L, a1, a2 ∈ R
d . (4.1)

Let U : P → B(H) be a strongly continuous unitary representation of the Poincaré
group on a Hilbert space H. The generators of the translation subgroup U |Rd are the
energy-momentum operators P = (P0,P), such that, for x ∈ R

d , U (1, x) = eix ·P ,
where x · P = x0P0 −x ·P. Let E be the joint spectral measure of P . A vector f ∈ H
is translation-invariant if U (1, x) f = f for all x ∈ R

d . We denote by Q0 = E({0})
the projection onto the subspace of translation-invariant vectors.

Let�1(t), . . . , �s(t) be the Lorentz boosts in the space directions 1, . . . , s = d−1,
for example,

�1(t) =

⎛
⎜⎜⎜⎜⎜⎝

cosh(t) sinh(t) 0 · · · 0
sinh(t) cosh(t) 0 · · · 0

0 0 1 0
...

...
. . .

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

, (4.2)

and let K1, . . . , Ks be the self-adjoint generators of the Lorentz boosts, that is,
U (� j (t), 0) = eit K j , j ∈ {1, . . . , s}. We mention the following identities, which
are consequences of the multiplication law (t ∈ R, x ∈ R

d ):

eit K j e− ix0P0 e− it K j = e− ix0(cosh(t)P0−sinh(t)Pj ), (4.3)

eit K j e− ix j Pj e− it K j = e− ix j (cosh(t)Pj −sinh(t)P0). (4.4)

Formally, by differentiating in x = 0 and t = 0, these identities are equivalent to the
commutation relations [P0, iK j ] = Pj and [Pj , iK j ] = P0.

Our analysis below crucially depends on the spectrum condition. The spectrum
condition states that the energy-momentum spectrum is contained within the forward
light cone, which is the largest Lorentz-invariant set where the energy is nonnegative.
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This condition is a quantum field theory axiom in the frameworks of Wightman and
Haag–Kastler. It will be assumed for the remainder of this section.

Assumption 4.1 (Spectrum condition) The joint spectrum of the energy-momentum
operators P is a subset of the closed forward light cone V+ = {p = (p0,p) ∈ R

d |
p0 ≥ |p|} (i.e. σ(P) ⊂ V+).

From the spectrum condition, it follows that the momentum operators are relatively
bounded relative to the energy operator P0, that is, |P| ≤ P0. This implies the inclusion
D(P0) ⊂ D(Pj ) of domains, which can be proper. As explained in the introduction,
this is problematic for defining the commutators [P0, iK j ] and [Pj , iK j ] in a way
suitable for Mourre theory. Specifically, P0 and Pj are not necessarily elements of the
regularity classes Ck(K j ).

TheLorentz-invariant sets Sκ , defined in (1.1), cover the light coneV+ (i.e.
⋃

κ>0 Sκ

= V+). These sets are constructed so that the energy within Sκ remains bounded
relative to the momentum. Consequently, the operators P0,κ = E(Sκ )P0 and Pκ =
E(Sκ)P are bounded relative to each other:

|Pκ | ≤ P0,κ ≤ Cκ(1 + |Pκ |). (4.5)

Moreover, the subspaces E(Sκ )H cover the Hilbert space H, and it holds that

Hac(P) =
⋃
κ>0

Hac(Pκ), Hac(P0) =
⋃
κ>0

Hac(P0,κ ). (4.6)

In the following three subsections, we proveMourre estimates and absence of singular
continuous spectrum for the momentum operators P, the energy operator P0, and the
light-cone operators e · P , where e is a light-like vector.

4.1.1 Momentum operators

The following proposition, which proves that P0,κ and Pj,κ are elements of the reg-
ularity class C∞(K j ), is essential for establishing the Mourre estimate and applying
the results of Sect. 3.

Proposition 4.2 For every κ > 0 and j ∈ {1, . . . , s}, P0,κ ∈ C∞(K j ), Pj,κ ∈
C∞(K j ), and

[P0,κ , iK j ] = Pj,κ , (4.7)

[Pj,κ , iK j ] = P0,κ . (4.8)

Proof The spectral projection E(Sκ) commutes with K j because Sκ is a Lorentz-
invariant set. Thus, we can replace P0 and Pj in (4.4) with P0,κ and Pj,κ :

eit K j e− ix j Pj,κ e− it K j = e− ix j (cosh(t)Pj,κ−sinh(t)P0,κ ). (4.9)
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From (4.9), we obtain the following identity:

eit K j (Pj,κ + i)−1 e− it K j = (cosh(t)Pj,κ − sinh(t)P0,κ + i)−1. (4.10)

The r.h.s. is a smooth function in t in the strong operator topology because P0,κ
and Pj,κ are bounded relative to each other; hence, Pj,κ ∈ C∞(K j ). Moreover, by
differentiating (4.9) in t = 0 and x j = 0,weobtain, for every f , g ∈ D(Pj,κ )∩D(K j ),

〈Pj,κ f , K j g〉 − 〈K j f , Pj,κ g〉 = − i〈 f , P0,κ g〉. (4.11)

Because Pj,κ ∈ C1(K j ), the sesquilinear form (4.11) has a unique extension to
D(Pj,κ ) = D(P0,κ ), yielding the commutator identity [Pj,κ , iK j ] = P0,κ . The proof
of P0,κ ∈ C∞(K j ) and [P0,κ , iK j ] = Pj,κ is analogous. ��
Theorem 4.3 Under the assumptions of Theorem 1.1, the following limiting absorption
principle holds for every κ > 0, every compact subset I j ⊂ R\{0}, and every ν > 1/2:

sup
λ∈I j ,μ>0

‖E(Sκ)〈K j 〉−ν(Pj − λ ∓ iμ)−1〈K j 〉−ν E(Sκ )‖ < ∞. (4.12)

Proof Let a > 0 and let J be an open and bounded subset of (−∞,−a]∪[a,∞). From
Proposition 4.2 and the spectrum condition (P0,κ ≥ |Pj,κ |), we obtain the following
Mourre estimate:

E j,κ (J )[Pj,κ , iK j ]E j,κ (J ) = P0,κ E j,κ (J ) ≥ aE j,κ (J ), (4.13)

where E j,κ denotes the spectralmeasure of Pj,κ .Moreover, Pj,κ ∈ C1+0(K j ) because
C∞(K j ) ⊂ C1+0(K j ) by (3.8). Thus, the limiting absorption principle (4.12) follows
from Theorem 3.5 and the fact that E(Sκ) commutes with K j . ��
Proposition 4.4 Under the assumptions of Proposition 1.2, H = Q0H⊕Hac(P), and,
for every space-like vector e ∈ R

d , H = Q0H ⊕ Hac(e · P).

Proof In the proof of Theorem 4.3, we demonstrated that Pj,κ obeys aMourre estimate
on every open and bounded subset of (−∞,−a] ∪ [a,∞), a > 0, with conjugate
operator K j . Moreover, Ki commutes strongly with Pj,κ if i �= j . Because a >

0 can be arbitrary small, it follows from Corollary 3.6 that E({p ∈ Sκ | ∀ j ∈
{1, . . . , s} : p j �= 0})H ⊂ Hac(Pκ). By taking the union over κ > 0, we obtain
E({p ∈ V+ | ∀ j ∈ {1, . . . , s} : p j �= 0})H ⊂ Hac(P), and, according to Lemma 4.5,
E({p ∈ V+ | ∀ j ∈ {1, . . . , s} : p j �= 0})H = E(V+\{0})H. Thus, the first statement
of the proposition follows from the decomposition H = Q0H ⊕ E(V+\{0})H. The
second statement can be proved by a similar argument or can be derived from the first
statement. ��
Lemma 4.5 Let f ∈ H. If Pμ f = 0 for one μ ∈ {0, . . . , s}, then Pμ f = 0 for all
μ ∈ {0, . . . , s}, that is, if a vector is translation-invariant in one spacetime direction,
then it is translation-invariant in all spacetime directions.
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Proof If P0 f = 0, then Pj f = 0 for all j ∈ {1, . . . , s} due to the spectrum condition.
If Pj f = 0 for one j ∈ {1, . . . , s}, then also Pj,κ f = 0 for all κ > 0. From the
commutation relation [Pj,κ , iK j ] = P0,κ and the virial theorem (Theorem 3.4), it
follows that

‖√P0,κ f ‖2 = 〈 f , [Pj,κ , iK j ] f 〉 = 0; (4.14)

hence, P0,κ f = 0 for all κ > 0, that is, P0 f = 0. ��

4.1.2 Energy operator

Constructing a conjugate operator for the energy operator P0 is more difficult. We
cannot choose the generator K j of a Lorentz boost because [P0,κ , K j ] = Pj,κ , and
Pj,κ has no definite sign on any spectral subspace of P0,κ . The conjugate operator Aκ ,
which we construct below, is adapted from [1, Lemma 7.6.4].

Theorem 4.6 Under the assumptions of Theorem 1.1, the following limiting absorption
principle holds for every κ > 0, every compact subset I0 ⊂ (κ,∞), and every
ν > 1/2:

sup
λ∈I0,μ>0

‖E(Sκ )〈K j 〉−ν(P0 − λ ∓ iμ)−1〈K j 〉−ν E(Sκ)‖ < ∞. (4.15)

Proof For convenience, we choose j = 1. Let κ > 0, θ ∈ C∞
c ((κ,∞)) a real-valued

function, and set F(Pκ) = θ(P0,κ )/P1,κ . The operator F(Pκ) is well-defined because
if p ∈ Sκ with p0 ∈ supp(θ), then p1 is separated from 0. We define the following
operator on the domain D(Aκ) = D(K1):

Aκ = 1

2
(F(Pκ)K1 + K1F(Pκ)). (4.16)

By Lemma 4.8, the operator Aκ is essentially self-adjoint, P0,κ ∈ C∞(Aκ), where Aκ

is the self-adjoint closure of Aκ , and, for 0 < a < b,

E0,κ (κ + (a, b))[P0,κ , iAκ ]E0,κ (κ + (a, b)) = θ(P0,κ )E0,κ (κ + (a, b)), (4.17)

where E0,κ is the spectral measure of P0,κ . If we select θ ∈ C∞
c ((κ,∞)) such that θ =

1 on κ + (a, b), then P0,κ obeys a Mourre estimate on κ + (a, b). From Theorem 3.5,
it follows that

sup
λ∈I0,μ>0

‖E(Sκ )〈Aκ 〉−ν(P0 − λ ∓ iμ)−1〈Aκ 〉−ν E(Sκ)‖ < ∞. (4.18)

To replace 〈Aκ 〉−ν with 〈K1〉−ν , we observe that 〈Aκ 〉−ν〈K1〉ν is a bounded operator
which commutes with E(Sκ). ��
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Proposition 4.7 Under the assumptions of Proposition 1.2, H = Q0H ⊕ Hac(e · P)

for every time-like vector e.

Proof It suffices to prove the proposition for e = (1, 0, . . . , 0) because e · P is unitarily
equivalent to P0 if e is time-like. In the proof of Theorem 4.6, we demonstrated that
P0,κ obeys a Mourre estimate on κ + (a, b) for every 0 < a < b. From Corollary 3.6,
it follows that E({p ∈ Sκ | p0 ∈ κ + (a, b)})H ⊂ Hac(P0,κ ). We take the union over
κ , a, and b:

E(V+\{p = 0})H =
⋃

κ>0,b>a>0

E({p ∈ Sκ | p0 ∈ κ + (a, b)})H ⊂ Hac(P0).

(4.19)

According to Lemma 4.5, the l.h.s. is equal to E(V+\{0})H. ��
Lemma 4.8 Let κ > 0, θ ∈ C∞

c ((κ,∞)) a real-valued function, and set F(Pκ) =
θ(P0,κ )/P1,κ . The symmetric operator

Aκ = 1

2
(F(Pκ)K1 + K1F(Pκ)) (4.20)

is essentially self-adjoint on D(K1). If we denote its self-adjoint closure by Aκ , then
P0,κ ∈ C∞(Aκ) and

[P0,κ , iAκ ] = θ(P0,κ ). (4.21)

Proof (i) If G ∈ C∞
c (Rd , R) and j ∈ {1, . . . , s}, then G(Pκ ) ∈ C∞(K j ) and the

following commutator identity holds:

[G(Pκ), iK j ] = −∂t
∣∣
0 e

it K j G(Pκ) e− it K j

= −∂t
∣∣
0G(cosh(t)P0,κ − sinh(t)Pj,κ , P1,κ , . . . , cosh(t)Pj,κ

− sinh(t)P0,κ , . . . , Ps,κ )

= ∂0G(Pκ)Pj,κ + ∂ j G(Pκ )P0,κ . (4.22)

Applying this identity to F(Pκ), we obtain the following commutator:

[F(Pκ), iK1] = θ ′(P0,κ ) − θ(P0,κ )
P0,κ

P2
1,κ

. (4.23)

The operator on the r.h.s. is bounded. It follows that F(Pκ) leaves D(K1) invariant.
In particular, Aκ is well-defined on D(K1).
(ii) We apply Nelson’s commutator theorem [20, Theorem X.36] to establish the
essential self-adjointness of Aκ on D(K1). Setting N = K 2

1 +1, we define the integer
scale Hk , k ∈ Z, corresponding to N as the completion of D(N k/2) with respect to
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the norm ‖ f ‖k = ‖N k/2 f ‖. Clearly, Aκ is a symmetric bounded operator from Hn

toH−n for every n ≥ 1. Moreover, as an operator identity from Hn+2 toH−n−2,

N Aκ − Aκ N = 2K1[K1, F(Pκ )]K1 + 1

2
[K1, [K1, [K1, F(Pκ)]]]. (4.24)

The triple commutator in the second summand is a bounded operator onH according
to (4.22). It follows that, for every f ∈ Hn+2 ⊂ Hn , the commutator N Aκ f − Aκ N f
is an element of H−n , and

‖N Aκ f − Aκ N f ‖−n ≤ c‖ f ‖n; (4.25)

hence, the commutator N Aκ − Aκ N extends to a bounded operator fromHn toH−n .
We conclude that Aκ is essentially self-adjoint on any core of N , particularly on
D(K 2

1 ). The closure of Aκ restricted to D(K 2
1 ) coincides with the closure of Aκ

defined on D(K1). Thus, Aκ is essentially self-adjoint on D(K1).

(iii) If χ ∈ C∞
c (R) is a function such that χ = 1 on supp(θ), then Aκ = χ(P0,κ )Aκ .

In fact, if f ∈ D(K1), then, by (4.23),

Aκ f = Aκ f = F(Pκ)K1 f + 1

2

(
θ ′(P0,κ ) − θ(P0,κ )

P0,κ

P2
1,κ

)
f

= χ(P0,κ )Aκ f = χ(P0,κ )Aκ f . (4.26)

This identity extends to f ∈ D(Aκ) by approximating f with elements from D(K1)

in the graph topology of Aκ .

(iv) We prove P0,κ ∈ C1(Aκ). Utilising [P0,κ , iK1] = P1,κ (see Proposition 4.2), it
is easy to verify that, for every f ∈ D(K1) ∩ D(P0,κ ),

|〈P0,κ f , Aκ f 〉 − 〈Aκ f , P0,κ f 〉| = |〈 f , θ(P0,κ ) f 〉| ≤ ‖θ(P0,κ )‖‖ f ‖2. (4.27)

By approximating f ∈ D(Aκ) in the graph topology of Aκ with elements from D(K1),
it follows from the previous step that (4.27) is valid for f ∈ D(Aκ). Moreover, { f ∈
D(Aκ) | (P0,κ ± i)−1 f ∈ D(Aκ)} contains the core D(K1). In fact, if f ∈ D(K1),
then

lim
t→0

1

it
(eit K1 − 1)(P0,κ ± i)−1 f = − iP1,κ (P0,κ ± i)−2 f

+ (P0,κ ± i)−1K1 f ∈ H. (4.28)

We conclude P0,κ ∈ C1(Aκ) by Proposition 3.2.

(v) From the previous step, it follows that the commutator [P0,κ , iAκ ] = θ(P0,κ ) is a
bounded operator. By similar arguments as in step (iv), we compute the higher-order
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commutators:

adk
− iAκ

(P0,κ ) = θk−1(P0,κ ), θk(x) = [θ(x)∂x ]kθ(x). (4.29)

All commutators are bounded operators; thus, P0,κ ∈ C∞(Aκ). ��

4.1.3 Light-cone operators

WeproveProposition 1.2 for nonzero light-like vectors e andProposition 1.3. It suffices
to consider e = (1,∓1, 0, . . . , 0) because e · P is unitarily equivalent to P0 + P1 or
P0 − P1 if e is light-like.

Proposition 4.9 Under the assumptions of Proposition 1.2,H = Q0H⊕Hac(P0±P1)

if d ≥ 3 and H = EP0±P1({0})H ⊕ Hac(P0 ± P1) if d = 2.

Proof From (4.3) and (4.4), we obtain the following identity (t, x ∈ R):

eit K1 eix(P0±P1) e− it K1 = ei e
∓t x(P0±P1). (4.30)

In the terminology of the example subsequent to Definition 3.3, the operator P0± P1 is
±K1-homogeneous. It follows that P0±P1 obeys aMourre estimate on every open and
bounded interval that is separated from 0. Thus, by Corollary 3.6, E(V+\{p0 ± p1 �=
0})H ⊂ Hac(P0 ± P1). If d ≥ 3, then E(V+\{p0 ± p1 �= 0})H = E(V+\{0})H. In
fact, for f ∈ H, P0 f = ±P1 f implies P2 f = 0 by the spectrum condition. And, by
Lemma 4.5, P2 f = 0 implies P0 f = P1 f = 0. ��
Remark Assume that an eigenstate f ∈ H/Q0H with eigenvalue 0 of the mass oper-

ator M =
√

P2
0 − |P|2 exists. If d = 2, then P0 f = |P| f = |P1| f for such a

massless excitation. If f± denotes the positive/negative momentum component of
f , then (P0 ∓ P1) f± = 0. This illustrates that, in the case d = 2, the subspace
EP0±P1({0})H can be larger than Q0H.

4.2 Dilation-covariant representations

Let U : R
d → B(H) be a strongly continuous unitary representation of the transla-

tion group, whose generators obey the spectrum condition (Assumption 4.1). In this
subsection, we assume that U is dilation-covariant, that is, a self-adjoint operator D
exists such that, for every μ ∈ {0, . . . , s} and t, x ∈ R,

eit D eix Pμ e− it D = ei e
−t x Pμ. (4.31)

We analyse the spectrum of the mass operator M =
√

P2
0 − |P|2, which is a well-

defined self-adjoint operator due to the spectrum condition.
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Proof of Proposition 1.4 In the terminology of the example subsequent to Defini-
tion 3.3, M is D-homogeneous due to (4.31), implying M ∈ C∞(D) and

[M, iD] = M . (4.32)

Thus, M obeys a Mourre estimate with conjugate operator D on every open and
bounded subset of [a,∞), a > 0. The limiting absorption principle (1.9) for the
mass operator follows from Theorem 3.5. That the spectrum of M is purely absolutely
continuous in (0,∞) is a consequence of Corollary 3.6. ��
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