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Abstract

The thesis on “Control of quantum correlations in dissipative systems: New quantum
effects, and novel theoretical and experimental methods” concentrates on devel-
oping and applying quantum techniques to generate, enhance, control, and detect
nonclassical correlations in dissipative systems. The methods enabled me to predict
new quantum effects, such as hybrid photon-phonon blockade or two-photon block-
ade induced by light squeezing. The research is based on five articles co-authored
by me. Below I show the motivation behind my studies and briefly summarize the
main reported results.

Quantum correlations, such as quantum entanglement, Einstein-Podolsky-Rosen
(EPR) steering (also known as quantum steering), Bell nonlocality, squeezing of light,
and photon antibunching are critical resources for quantum technologies, including
quantum information processing and quantum metrology. Unfortunately, quantum
states are very fragile to the environmental noise, which causes their amplitude and
phase damping. As a result, it is critical to develop methods for controlling and
preserving quantum correlations in dissipative systems. In my thesis, I described
and applied various approaches which offer promising routes to a better quantum
control of dissipative systems and also to generate various novel effects useful for
quantum technologies (including new single-photon and single-phonon sources).

Quantum entanglement, EPR steering, and Bell nonlocality reduce to the same
effect for two-qubit systems in pure states; however, system dissipation can reveal
their fundamental differences. I studied theoretically the hierarchy of these effects
on the examples of the Werner states, which are the mixtures of the singlet state and
the maximally mixed state (i.e., white noise). I also studied a refined hierarchy of
quantum correlations of generalized Werner states, which are defined as white-noise-
affected arbitrary two-qubit pure states. And more importantly, I reported the results
of our experiments demonstrating the hierarchy of these quantum correlations for
the Werner states without full quantum state tomography (QST) [Sci. Rep. 13,
8564 (2023)]. Previous experimental studies were based on applying complete QST
methods.
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Moreover, I studied nonclassical phenomena, such as various types of photon
blockade and photon-induced tunneling, and their phononic analogues. In particular,
I discussed in [Sci. Rep. 12, 17655 (2022)] a novel type of blockade, referred to as
hybrid photon-phonon blockade, which is the blockade of excitations in a hybrid
mode generated by linear coupling of purely photonic and phononic modes. I
demonstrated how this effect can be generated in an optomechanical system and
described in experimental setups, which can enable measuring this novel effect.
Furthermore, I discussed the possibility to observe unconventional single- and multi-
photon blockade effects, which can be generated in a linear system coupled to a
squeezed reservoir, as reported in [Phys. Rev. A 100, 053857 (2019)]. In that case,
the nonlinearity required to observe photon blockade in a linear quantum system is
induced by its linear coupling to a nonlinear quantum environment.

The physics of open quantum light-matter systems in the ultrastrong and deep-
strong coupling regimes is also discussed in the thesis. I have paid a special attention
to pure dephasing, which is an essential factor deteriorating quantum-information
processing. I explained the impact of pure dephasing of either light or matter
within the ultrastrong and deep-strong coupling regimes by applying generalized
master equations for two well-known models of light-matter interactions beyond
the rotating-wave approximation, i.e.: (i) the quantum Rabi model describing a
two-level system coupled to a single cavity mode, and (ii) the Hopfield model
describing collective (bosonic) matter excitations interacting with a single-mode
light field. I explained that the form of the noise Hamiltonians for the components
of a light-matter system can be affected by light-matter interactions and can, thus, be
gauge relative. However, if the changes induced by the interaction as well as gauge
transformations are correctly described, then the correct gauge-invariant rates can
be obtained as explained in [Phys. Rev. Lett. 130, 123601 (2023)]. The dephasing
rates induced by the states of the interacting light-matter systems and including
fluctuations in either the light or matter degrees of freedom are calculated and the
results are analyzed in detail.

Under ideal physical conditions, one typically considers Hermitian systems as-
suming their complete isolation from their environment, whereas non-Hermitian
systems account for non-unitary evolutions in more realistic physical models. The
dynamics of a realistic system is described by a master equation, which describe how
energy, coherence, and quantum information are lost to its environment. The master
equation (in the standard form of Gorini, Kossakowski, Sudarshan, and Lindblad)
consists of a Hermitian-Hamiltonian term that describes a unitary evolution of a
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given system and a non-Hermitian part, given by the so-called Lindblad dissipa-
tors, describing a non-unitary evolution. According to the quantum-trajectory (or
quantum-jump) interpretation of master equations, these dissipators can be sepa-
rated into two terms depending whether they are affected or unaffected by quantum
jumps. Thus, a Hermitian Hamiltonian can be transformed into a non-Hermitian
one, which describes the system dissipating coherently and non-unitarily without
quantum jumps. The second part of the Lindblad dissipators describes a given
system evolution induced by quantum jumps, which result from continuous mea-
surements of the system by its environment. Quantum jumps are usually critical
for accurately describing microscopic open quantum systems and obtaining results
consistent with quantum measurement theories. The quantum-jump-free evolution,
which is described by small perturbations to a given non-Hermitian Hamiltonian,
can exhibit distinct and novel types of behavior. One example of such a novel
behavior is the appearance of exceptional points, where some eigenvalues of a non-
Hermitian Hamiltonian become degenerate and the corresponding eigenvectors
coalesce. In my thesis I discuss quantum Liouvillian exceptional points (LEPs),
which are defined as the eigenvalue and eigenvectors degeneracies of a quantum
Liouvillian (which includes the effect of quantum jumps), instead of those of the cor-
responding non-Hermitian Hamiltonian (which ignores quantum jumps). In order
to confirm these theoretical predictions, I performed cloud quantum experiments
on an IBM quantum processor [e-print arXiv:2401.14993 (2024)]. These results have
unequivocally demonstrated the experimental capabilities of generating, controlling,
and detecting quantum exceptional points in systems with a small number of qubits
based on quantum process tomography.





Streszczenie

W dysertacji pt. „Kontrola korelacji kwantowych w układach dyssypatywnych:
Nowe zjawiska kwantowe oraz nowatorskie metody teoretyczne i eksperymentalne”
opracowano i zastosowano metody kwantowe do generacji, wzmacniania, kon-
trolowania i detekcji nieklasycznych korelacji w układach dyssypatywnych. Metody
te umożliwiły mi przewidzenie nowych efektów kwantowych takich jak hybrydowa
blokada fotonowo-fononowa czy też blokada dwufotonowa uzyskana poprzez
ściskanie światła. Wyniki tych badań zostały opisane w pięciu artykułach, których
jestem współautorem. Poniżej przedstawione są cele tych badań i podsumowane
główne wyniki rozprawy.

Korelacje kwantowe, takie jak splątanie kwantowe, sterowanie kwantowe (zwane
też sterowaniem Einsteina-Podolsky’ego-Rosena, EPR), nielokalność Bella, ściskanie
światła, czy też antygrupowanie fotonowe są krytycznymi zasobami technologii
kwantowych, w szczególności mają kluczowe znaczenie w kwantowym przetwarza-
niu informacji i metrologii kwantowej. Niestety stany kwantowe są wyjątkowo
wrażliwe na szumy środowiskowe, które powodują tłumienie ich amplitudy i fazy.
Dlatego też, kwestią niezwykle ważną jest opracowanie metod kontroli i prze-
chowywania korelacji kwantowych w układach dyssypatywnych. W rozprawie
opisano i zastosowano różne metody, które umożliwiają lepszą kontrolę kwan-
towych układów dyssypatywnych, a także umożliwiają generację i detekcję nowych
zjawisk kwantowych przydatnych w technologiach kwantowych, m.in. jako nowe
źródła pojedynczych fotonów i fononów.

Splątanie kwantowe, sterowanie EPR i nielokalność Bella redukują się do tego
samego typu korelacji kwantowych w układach dwukubitowych w stanach czystych;
jednak dyssypacja takich układów dwukubitowych może ujawnić ich fundamen-
talne różnice. Zbadano numerycznie i analitycznie hierarchię tych efektów na
przykładach stanów Wernera, które są mieszaninami stanu singletowego (tj. dwuku-
bitowego stanu maksymalnie splątanego) i (separowalnego) stanu maksymalnie
zmieszanego (tj. białego szumu). Ponadto zbadano bardziej złożoną hierarchię
uogólnionych stanów Wernera, zdefiniowanych jako dowolne dwukubitowe stany
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czyste zaszumione białym szumem. Co ważniejsze, przedstawiano wyniki naszych
eksperymentów demonstrujących hierarchię tych korelacji kwantowych dla stanów
Wernera bez zastosowania pełnej tomografii stanów kwantowych (QST) [Sci. Rep.
13, 8564 (2023)]. Wcześniejsze badania doświadczalne opierały się na pomiarach
odpowiadających wyłącznie pełnej tomografii stanów.

Ponadto w rozprawie opisano zjawiska nieklasyczne, takie jak różne rodzaje
blokad fotonowych i tunelowania indukowanego fotonami oraz ich odpowied-
niki fononowe. W szczególności, w pracy [Sci. Rep. 12, 17655 (2022)] opisano
nowy rodzaj blokady, który nazwaliśmy hybrydową blokadą fotonowo-fononową.
Zjawisko to polega na blokowaniu wzbudzeń w modzie hybrydowym generowanym
w wyniku liniowego sprzężenia modów optycznych i fononowych. Zademon-
strowano w jaki sposób efekt ten można wywołać w kwantowym układzie op-
tomechanicznym i opisano układy eksperymentalne, w których generacja i ob-
serwacja tego nowego zjawiska jest możliwa. Ponadto omówiono możliwość zaob-
serwowania niekonwencjonalnych jedno- i wielofotonowych blokad, które mogą
być wywołane w układzie liniowym sprzężonym ze ściśniętym rezerwuarem, jak
to opisano w pracy [Phys. Rev. A 100, 053857 (2019)]. W tym przypadku nielin-
iowość, która jest odpowiedzialna za generację blokady fotonowej w liniowym
układzie kwantowym jest indukowana przez jego liniowe sprzężenie z nieliniowym
rezerwuarem kwantowym.

Fizyka otwartych kwantowych układów w przypadkach ultrasilnego i tzw.
głęboko-silnego sprzężenia światła z materią jest również omawiana w rozprawie.
Szczegółowo zbadano zjawisko rozfazowania układów kwantowych będące głównym
czynnikiem utrudniającym implementacje algorytmów kwantowych i tym samym
rozwój praktycznych technologii kwantowych. Wyjaśniano wpływ czystego rozfa-
zowania światła i materii, w przypadkach ultrasilnego i głęboko-silnego sprzężenia,
stosując uogólnione równania podstawowe dla dwóch dobrze znanych modeli
oddziaływan światła z materią bez zastosowania przybliżenia rotującej fali, tj.: (i)
kwantowego modelu Rabiego opisującego układ dwupoziomowy sprzężony z po-
jedynczym modem wnęki rezonansowej oraz (ii) modelu Hopfielda opisującego
kolektywne (bozonowe) wzbudzenia materii oddziałującej z jednomodowym polem
wnęki. Wyjaśniono w rozprawie, że postać Hamiltonianu szumu dla składników
takich układów może zależeć od oddziaływania światła z materią, a zatem może
zależeć od zastosowanego cechowania. Jednakże, jeśli zmiany wywołane przez
oddziaływania, jak również transformacje cechowania są poprawnie zastosowane,
wówczas można uzyskać prawidłowe współczynniki niezmiennicze względem ce-
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chowania, tak jak opisano to w pracy [Phys. Rev. Lett. 130, 123601 (2023)]. W
rozprawie policzono i szczegółowo omówiono współczynniki rozfazowania zależne
od stanów oddziałujących układów światła z materią przy uwzględnieniu fluktuacji
w stopniach swobody światła lub w stopniach swobody materii.

W idealnych warunkach fizycznych można rozważać unitarną ewolucję układów
hermitowskich zakładając ich całkowitą izolację od otoczenia, podczas gdy układy
niehermitowskie w bardziej realistycznych modelach fizycznych ewoluują (zwykle)
w sposób nieunitarny. Dynamika realistycznego układu jest opisana przez równanie
podstawowe, które opisuje, w jaki sposób energia, spójność i informacja kwan-
towa są tracone do środowiska. Równanie podstawowe w standardowej postaci
Goriniego, Kossakowskiego, Sudarshana i Lindblada składa się z członu uwzględ-
niającego hamiltonian hermitowski, który opisuje unitarną ewolucję układu, oraz
z członu niehermitowskiego określonego przez tak zwane dyssypatory Lindblada
opisujące nieunitarną ewolucję układu. Zgodnie z metodą trajektorii kwantowych
(zwaną też metodą skoków kwantowych), umożliwiającą rozwiązywanie i intu-
icyjną interpretację równań podstawowych, te dyssypatory mogą być rozdzielone
na dwa człony: zależne i niezależne od skoków kwantowych. W ten sposób hermi-
towski hamiltonian może być przekształcony w hamiltonian niehermitowski, który
opisuje układ, który ulega dyssypacji bez skoków kwantowych. Drugi człon dyssy-
patorów Lindblada opisuje ewolucję układu wywołaną skokami kwantowymi, które
wynikają z ciągłych pomiarów układu wykonywanych przez otoczenie. Skoki kwan-
towe są zwykle istotne dla dokładnego opisu mikroskopijnych otwartych układów
kwantowych i uzyskania wyników zgodnych z teorią pomiarów kwantowych.
Ewolucja bez skoków kwantowych, która jest określona przez małe perturbacje w
układzie opisanym przez Hamiltonian niehermitowski, może prowadzić do nowych
fundamentalnych typów ewolucji. Jednym z ciekawych przykładów takiego nowego
zachowania w niehermitowskiej mechanice Carla Bendera jest pojawienie się (półk-
lasycznych) punktów wyjątkowych, w których niektóre wartości i wektory własne
niehermitowskiego hamiltonianu stają się zdegenerowane. W rozprawie omówione
kwantowe punkty wyjątkowe Liouvillianów (LEP), które są zdefiniowane jako de-
generacje wartości i wektorów własnych kwantowego Liouvillianu (przy uwzględ-
nieniu efektu skoków kwantowych), zamiast rozważania półklasycznych punk-
tów wyjątkowych odpowiadających degeneracjom niehermitowskiego hamiltoni-
anu (z pominięciem skoków kwantowych). W rozprawie wykazano teoretycznie i
eksperymentalnie, że można zaobserwować kwantowe punkty wyjątkowe stosując
tomografię procesów kwantowych (QPT). Celem potwierdzenia tych przewidywań
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teoretycznych, przeprowadziłam eksperymenty kwantowe w chmurze na proce-
sorze kwantowym IBMQ [e-print arXiv:2401.14993 (2024)]. Wyniki te jednoznacznie
pokazały możliwości eksperymentalne generowania, kontroli i detekcji kwantowych
punktów wyjątkowych w układach o małej liczbie kubitów z wykorzystaniem kwan-
towej tomografii procesów.
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Preface

This thesis comprises a collection of five articles that delve into the fascinating world
of controlling and preserving quantum correlations in dissipative systems, shedding
light on how dissipation can result in novel phenomena and effects in the quantum
world.

Quantum correlations, including entanglement, quantum steering, Bell nonlocal-
ity, quadrature squeezing, photon antibunching, and sub-Poissonian photon number
statistics, are vital for quantum technologies such as quantum information process-
ing and metrology. However, these correlations are fragile and are susceptible to
environmental noise and dissipation. Therefore, it is crucial to develop methods for
controlling and preserving quantum correlations in dissipative systems.

My research journey was fueled by this quest to understand and manipulate
quantum correlations in the presence of noise. In article [P1] (chapter 1) I explain
how the presence of system dissipation can uncover a fundamental distinctions
between quantum entanglement, EPR steering, and Bell nonlocality for two-qubit
systems.

In the initial stages of my research, my focus was on engineering nonlinear quan-
tum optics systems and exploring the nonclassical effects that could be anticipated
within different systems, including cavity-quantum electrodynamics (QED) and
circuit QED. Specifically, I have delved into the possibilities of observing photon
blockade and photon-induced tunneling phenomena. To accomplish this, I em-
ployed existing criteria and proposed novel criteria to predict and ascertain these
effects within our proposed systems in chapters 2 and 3.

In this thesis, I also study the physics of open quantum light-matter systems
in the ultrastrong and deep-strong coupling regimes, focusing on pure dephasing,
which is a major source of quantum information loss. Pure dephasing can limit the
performance of quantum devices and protocols that rely on coherence. In article [P4]
(chapter 4), we applied generalized master equations and calculated the dephasing
rates induced by fluctuations in either the light or matter degrees-of-freedom.



2 Contents

Another research topic that our group is focused on for dissipative quantum
engineering are exceptional points (EPs), which are singularities in the spectrum of
a non-Hermitian Hamiltonian. In article [P5] (chapter 5), we studied quantum Liou-
villian exceptional points (LEPs) as degeneracies of quantum Liouvillians. LEPs are
natural generalizations of standard semiclassical Hamiltonian EPs, by including the
effect of quantum jumps. We suggested and experimentally implemented quantum
process tomography (QPT) to reveal LEPs in a chosen system.

This thesis is composed of five chapters, where each chapter presents the research
conducted during my studies related to the topic of the dissertation. Each chapter
provides an overview of a given paper. It comprises a short general introduction
to the topic considered, as well as motivation for the stated problem, followed by a
summary of the obtained results. It also include the statement of my contribution.

For the convenience of cross-reference within the dissertation, I index these
publications with the letter P.

Chapter 1 is titled Experimental hierarchy of two-qubit quantum correlations without
state tomography [P1].

This chapter is devoted to the theoretical study of the hierarchy of quantum
correlations on the example of two-qubit pure states mixed with white noise, which
are referred to as Werner states or generalized Werner states (GWSs). Moreover, the
experimental results are reported demonstrating these quantum correlations for the
Werner states without full quantum state tomography (QST).

Chapter 2 is titled Hybrid photon-phonon blockade [P2].
This chapter introduces the phenomenon of photon-phonon blockade in a hybrid

optomechanical system, in which a cavity mode is coupled to both a mechanical
mode and a qubit. This is a novel type of a blockade effect. It is demonstrated
how the interplay between photon and phonon interactions can lead to strong
nonlinearity effects and nonclassical correlations.

Chapter 3 is titled Two-photon blockade and photon-induced tunneling generated by
squeezing [P3].

This chapter discusses the generation of two-photon blockade and photon-
induced tunneling in a cavity QED system with squeezed light. It is demonstrated
how to control the transition between different regimes of photon statistics and
quantum interference by properly tuning the squeezing parameter.

Chapter 4 is titled Pure Dephasing of Light-Matter Systems in the ultrastrong and
deep-Strong coupling regimes [P4].
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The chapter is devoted to the dephasing problem in a two well-studied models
of light-matter interactions, i.e.: the quantum Rabi model and the Hopfield model in
the ultra-strong and deep-strong coupling regimes. In these regimes the light-matter
interaction becomes comparable to the bare resonance frequencies of the subsystems.
It is shown how the choice of gauge transformation affects the noise Hamiltonians
and dephasing rates.

Chapter 5 is titled Quantum exceptional points of non-Hermitian systems via quantum
process tomography [P5].

This chapter discusses how non-Hermitian Hamiltonians can describe open
quantum systems and how their degeneracies, known as exceptional points, affect
quantum dynamics and measurements. Here, a novel method and its experimental
implementation for detecting and characterizing exceptional points using quantum
process tomography is described.

Appendix A contains the list of my publications which are discussed in this
thesis.

The interrelations between my papers are summarized in the Table below.
Appendix B includes statements about the contributions of other co-authors to

publications [P1]–[P5].
Appendix C comprises the list of abbreviations utilized in my thesis, including

those in my publications.
It is my sincere hope that this thesis not only enriches the current knowledge,

but also inspires further research in the fascinating field of quantum optics.



4 Contents

Research fields & topics Articles
[P1] [P2] [P3] [P4] [P5]

Nonlinear optics — yes yes yes —
Linear optics yes — — — —
Circuit-QED — — — — yes

Optomechanics — yes — — —
Quantum information processing yes — — — yes

Non-Hermitian systems yes yes yes yes yes
Non-Hermitian Hamiltonians — yes — — yes

White noise yes — — — yes
Master equations (MEs) — yes yes yes yes

Generalized MEs — — yes yes —
Exceptional points — — — — yes
Photon correlations yes yes yes yes —

Correlations of qubits yes yes — — yes
Entanglement yes yes yes yes —

Photon antibunching — yes yes — —
Quantum tomography yes yes — — yes

Experiments yes — — — yes
Table 1 Research areas and topics (including quantum effects and quantum methods)
covered by my papers and thesis.



Chapter 1

Experimental hierarchy of two-qubit
quantum correlations without state
tomography

1.1 Chapter outline

This chapter explores various types of quantum correlations, such as quantum
entanglement, EPR steering, and Bell nonlocality, for two-qubit pure states affected
by white noise, which are called Werner or generalized Werner states (GWSs) and
discussed in my article [P1]. Specifically, Werner states [8]1 are the mixtures of a
maximally entangled state and a maximally mixed state corresponding to white
noise. Moreover, I studied GWSs which are defined as an arbitrary two-qubit pure
state mixed with white noise. They exhibit quantum correlations which are even
more counterintuitive than those of the standard Werner states (see, e.g., [9] and
references therein).

I present the main results of article [P1] that clarify the significance and impact
of our results in the field of quantum information and technology.

1.1.1 Popular introduction

Quantum correlations stand as a fundamental feature of quantum physics, setting
them apart from classical physics. They encompass various forms, such as quantum
entanglement [2], EPR steering [3,4], and Bell nonlocality [5]. Comprehending and

1This and other references in this chapter correspond to those cited in article [P1].
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quantifying various properties of quantum correlations is crucial for advancing the
development of quantum information protocols and their practical applications.

From a cryptographic standpoint, distinguishing the three types of two-party
quantum correlations involves assessing the reliability of detectors employed by
the involved parties, typically referred to as Alice and Bob. In reference to [6], the
distinctions are as follows: (i) Quantum entanglement signifies nonlocal quantum
correlations detectable when both parties possess reliable detectors; (ii) EPR steering
denotes nonlocal quantum correlations verifiable when one party has a reliable
detector and the other an unreliable one; and (iii) Bell nonlocality represents nonlocal
quantum correlations observable when both parties have unreliable detectors.

Although quantum entanglement, EPR steering, and Bell nonlocality are indistin-
guishable for pure two-qubit states, they may exhibit different characteristics when
dealing with mixed two-qubit states that contain noise. Thus, by introducing noise
into a pure state, a hierarchy of these types of quantum correlations emerges.

The Werner states exemplify this hierarchy, because they demonstrate that the
singlet state when is influenced to a precisely defined extent by white noise can
exhibit, e.g., entanglement without displaying Bell nonlocality, as first demonstrated
by Werner in 1989 [8]. Further explorations of the Werner states revealed that
different regimes of entanglement, EPR steerability, and Bell nonlocality can arise,
depending on the level of white noise. Thus, special states of the Werner states can
be: (i) Bell nonlocal and thus entangled and steerable, (ii) Bell local but steerable and
thus entangled, (iii) unsteerable (and thus Bell local) but entangled, or (iv) separable
(and thus unsteerable and Bell local). Note that steering and its measures can be
defined in various measurement scenarios. Then a more nuanced and profound
insight into the hierarchy of quantum correlations can be revealed. Article [P1]
focuses on generating and detecting these correlations, with a particular emphasis
on the Werner and Werner-like states.

The objective of article [P1] is to investigate the hierarchy of quantum correlations,
including entanglement, steering, and Bell nonlocality, for two-qubit mixed states.
Detecting and quantifying quantum correlations experimentally can be challenging
because traditional methods such as quantum state tomography (QST) or specific
witnesses are often inefficient or limited in scope. Therefore, our aim was to establish
a versatile and practical experimental setup capable of measuring various types of
quantum correlations without relying on a full QST. To achieve this, we reviewed
the existing methods and indicators of quantum correlations in the literature and
compare them with our proposed approach.
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We introduced a convenient tool for determining the density matrix of a two-
qubit system using only six elements of a correlation matrix R, which are linear
combinations of two-qubit Stokes parameters. Experimental determination of these
elements of R allowed us to unveil the hierarchy of ‘good’ measures of entanglement,
steering, and Bell nonlocality for the Werner states. Furthermore, we demonstrated
that our experimental setup can reveal the hierarchy of these quantum correlations
also for the GWSs. Crucially, our method eliminates the necessity for employing
complete QST methods, thereby significantly reducing experimental complexity and
potential errors.

1.1.2 Motivation

The main motivation for this work is to investigate and understand the hierarchy
of quantum correlations, such as entanglement, steering, and nonlocality, in two-
qubit mixed states. We aim to explore these correlations in the context of quantum
information processing and quantum technologies, as they play a crucial role in these
fields. The detection and quantification of quantum correlations are challenging
tasks, and existing methods, such as QST and specific witnesses, have limitations in
terms of efficiency and scope. To our knowledge former experimental demonstration
of such hierarchies based on ‘good’ measures of quantum correlations were based
on performing full QST (see [9] and references therein) or full quantum process
tomography (see [23,24] and references therein).

Therefore, we motivated to develop a versatile and practical experimental setup
that can measure various types of quantum correlations without the need for full
quantum state tomography. By proposing a new approach using correlation matrices
and measuring specific elements, we seek to provide an efficient way to estimate
quantum correlation measures and gain insights into the nature and structure of
quantum correlation in two-qubit systems.

1.1.3 Main results

Understanding the distinctions between entanglement, steering, and Bell non-
locality is crucial in exploring and quantifying quantum correlations. Each concept
provides valuable insights into the nature of quantum systems and offers different
perspectives on the characterization and verification of quantum correlations.

The study of quantum correlations emphasizes the importance of understanding
their hierarchical relationship. We use an experimental approach in this study to
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investigate this aspect by measuring six elements of the correlation matrix R =

TTT, where the matrix elements of T are defined by Tij = Tr[ρ(σi ⊗ σj)], which
represent the average values of the Pauli matrices σi (i = 1,2,3), and are often
referred in optics to as two-qubit Stokes parameters. Here the superscript T denotes
transposition. Furthermore, we demonstrated that our experimental setup could
reveal the hierarchy of these quantum correlations of the Werner state and GWSs.

Below, I explain how through article [P1] we used these concepts to show the
hierarchy of quantum correlations of the Werner state and GWSs.

First, we calculated the matrix R for these two states. I should note that we have
prepared experimentally the polarization Werner states by mixing the singlet Bell
state with white noise.

The entanglement measure we used is the fully entangled fraction (FEF) which is
dependent solely on the R matrix and, therefore, cannot be considered a universal
witness of two-qubit entanglement. However, it remains a ‘good’ measure for
quantifying the entanglement of the Werner states and GWSs, for which it reduces
to the same function as the commonly used measures of entanglement: the Wootters’
concurrence [27] and the Zyczkowski et al.’s negativity [28]. We identified the range
of the mixing (white-noise) parameter, in which the GWSs are entangled. Concerning
quantifying EPR steering, we assumed simple measurement scenarios (MSs) based
on two- (2MS) and three (3MS) measurements. Specifically, these scenarios involve
measuring two and three Pauli operators in the qubits of both parties. For this, we
used the Costa-Angelo steering measures [61], which we have rewritten in terms of
the correlation matrix R. These measures quantify the degree of the violation of the
steering inequality derived by Cavalcanti, Jones, Wiseman, and Reid (CJWR) [60].

We stressed that the Costa-Angelo measures, because their invariance under
qubit swapping, are unable to capture the directional nature of EPR steering. It
means that these measures do not account for the possibility that one qubit can
be steerable by another, while the reverse may not hold. Specifically, the steering
measures in the 2MS and 3MS depend on the eigenvalues of the correlation matrix
R while, swapping qubits A and B leads to a modified correlation matrix R′ = TTT,
which, however, shares the same eigenvalues as R. Consequently, the steering
measures remain unchanged under qubit swapping and describe only two-way
symmetric steering for any two-qubit states.

Moreover, we used the fact that the Bell nonlocality of a two-qubit state can
be checked by the violation of the Bell inequality in the Clauser-Horne-Shimony-
Holt (CHSH) form. We applied a rescaled Bell nonlocality measure of Horodecki
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et al. [58] in a way that it takes values in the range [0,1] for easier comparison
with other measures employed in the article. We found the range of white noise
that can be added to a given pure state, for which the resulting theoretical and
experimental GWSs are Bell nonlocal. It should be stressed that the steering effect
defined via the violation of the CJWR inequality in the 2MS exactly corresponds
to Bell nonlocality defined via the violation of the CHSH inequality. Indeed, the
Costa-Angelo steering measure in the 2MS is one-to-one related to the Horodecki et
al.’s nonlocality measure.

The hierarchy of quantum correlations of the GWSs is analyzed theoretically in
the article. More importantly in article [P1] we demonstrate this hierarchy experi-
mentally by measuring only six elements of a correlation matrix. The experiment
described in the study is conducted using a linear optics platform. In this setup,
qubits are encoded into polarization states of discrete photons, which are generated
through spontaneous parametric down-conversion (SPDC). We tested the experi-
mental Werner-like states generated in our setup and compared experimental results
with our theoretical predictions for the ideal Werner states demonstrating a very
good agreement.

We calculated experimentally the correlation matrix elements Rij for the Bell
singlet state R|ψ−⟩ and the maximally mixed state RI corresponding to white noise.
In this way the correlation matrix RρW of the Werner states for selected values of the
mixing parameter p can be calculated as

RW(P) = p2R|ψ−⟩ + (1 − p2)RI . (1.1)

Given the experimental correlation matrix for the Werner states, we could apply
the R-dependent measures of quantum correlations introduced in the theoretical
part of article [P1]. These include the above mentioned measures of Bell nonlocality,
steering, and entanglement solely based on the correlation matrix R.

We showed that the feasibility of our method based on measuring only six
elements of the correlation matrix R for a given state ρ instead of measuring all
(i.e., 15 or 16) elements of ρ as required for full QST. We tested this method on the
example of the Werner states with different amounts of white noise that we were
able to determine various measures of quantum entanglement, steerability, and Bell
nonlocality. The method can readily be applied also for the GWSs, as we predicted
theoretically, but we have not performed such experiments.
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1.1.4 My contribution and importance of the work

To the best of our knowledge, prior to the publication of article [P1], there were no
experimental demonstrations showcasing the hierarchy of quantum entanglement,
steering, and Bell nonlocality using their respective ‘good’ measures, all achieved
without resorting to full QST.

Thus, we believe that our experimental approach, which avoids the need for full
QST, provides significant advantages compared to standard methods. By measuring
only six elements of a correlation matrix instead of measuring all (15 or 16) elements
of a density matrix required for a complete two-qubit QST, we could determine
various measures of entanglement, steering, and Bell nonlocality for some classes of
two-qubit states, including the studied Werner states and GWSs.

From a general perspective, we believe, that exploring the hierarchy of quantum
correlation measures has potential applications such as testing complimentary rela-
tions, estimating one measure based on another without full QST, and quantifying
nonclassicality in single-qubit systems using the potentials of quantum correlations.
Recent experiments, such as those detailed in Opt. Express 32, 2333-2346 (2024),
along with preprints arXiv:2401.15995 and arXiv:2312.01055 from the experimental
group led by Prof. Karel Lemr at Palack’y University in Olomouc, Czech Republic,
have further validated the usefulness of our approach, as developed in [P1], and its
generalizations.

I and Jan Soubusta have performed all numerical and analytical calculations. I
prepared the first draft of the theoretical part of the article (i.e., its first six pages). It is
important to emphasize that while I was not involved in designing the experimental
setup or conducting the experiment, my contribution was significant in comparing
the experimental data with the theoretical framework.
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Experimental hierarchy 
of two‑qubit quantum correlations 
without state tomography
Shilan Abo 1, Jan Soubusta 2*, Kateřina Jiráková 2, Karol Bartkiewicz 1,2, Antonín Černoch 3, 
Karel Lemr 2 & Adam Miranowicz 1*

A Werner state, which is the singlet Bell state affected by white noise, is a prototype example of 
states, which can reveal a hierarchy of quantum entanglement, steering, and Bell nonlocality by 
controlling the amount of noise. However, experimental demonstrations of this hierarchy in a 
sufficient and necessary way (i.e., by applying measures or universal witnesses of these quantum 
correlations) have been mainly based on full quantum state tomography, corresponding to measuring 
at least 15 real parameters of two‑qubit states. Here we report an experimental demonstration of this 
hierarchy by measuring only six elements of a correlation matrix depending on linear combinations 
of two‑qubit Stokes parameters. We show that our experimental setup can also reveal the hierarchy 
of these quantum correlations of generalized Werner states, which are any two‑qubit pure states 
affected by white noise.

Quantum correlations reveal not only the strangeness of quantum mechanics, but are the main resources for 
quantum technologies, including quantum sensing and quantum information  processing1. Thus, the detection, 
control, and quantification of these resources are of paramount importance.

Among different types of quantum correlations, a special interest has been paid to quantum  entanglement2, 
Einstein–Podolsky–Rosen (EPR) steering (also called quantum steering)3,4, and Bell nonlocality that can be 
revealed by testing the violation of a Bell  inequality5. These types of correlations coincide for two-qubit pure 
states, but can be different for mixed states. Probably, the most intuitive distinction between these three types of 
quantum correlations for two systems (parties) can be given from a cryptographic perspective with the use of 
trusted and untrusted detectors. Specifically, according to Refs.6,7: (i) quantum entanglement can be revealed if 
both parties use only trusted detectors, (ii) EPR steering can be tested if one party uses trusted detectors and the 
other untrusted ones, and (iii) Bell nonlocality can be demonstrated if both parties use untrusted detectors. We 
experimentally determined and compared measures of these correlations for Werner states.

It is theoretically well known that by gradually adding noise to a pure state, one can reveal a hierarchy of 
different types of quantum correlations, including quantum entanglement, EPR steering, and Bell nonlocality. 
These effects are equivalent for two-qubit pure states, however they are in general different for mixed states. 
 Werner8 found in 1989 that the singlet Bell state affected by white noise can be entangled without exhibiting 
Bell nonlocality, i.e., without violating any Bell inequality. It was further found that Werner states with a proper 
amount of white noise can be entangled but unsteerable, or steerable without exhibiting Bell nonlocality, in 
addition to the trivial cases when a given state is Bell nonlocal (so also steerable and entangled) or separable 
(so also unsteerable and Bell local). Even a more refined hierarchy can be revealed by considering generalized 
Werner states, defined as mixtures of an arbitrary two-qubit pure states and white  noise9. Thus, the Werner and 
Werner-like states can be considered prototype examples of states indicating such a hierarchy. Their generation 
and the detection of their quantum correlations are a central topic of this paper.

Here we study a hierarchy of quantum correlations via their measures. We note that various other hierarchies 
of non-universal witnesses of quantum correlations have been investigated in detail. These include studies of 
sufficient conditions (i.e., nonuniversal witnesses) for observing specific types of correlations via matrices 
of moments of, e.g., the annihilation, creation, position, momentum, or Pauli operators. For example: (i) 
hierarchies of various witnesses of  spatial10 and  spatiotemporal11,12 correlations of bosonic systems revealing their 
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nonclassicality via a nonpositive Glauber–Sudarshan P function; (ii) a hierarchy of entanglement  witnesses13,14 
based on the Peres–Horodecki partial transposition criterion or their  generalizations15 using contraction maps 
(e.g., realignment) and positive maps (e.g., those of Kossakowski, Choi, and Breuer); (iii) a hierarchy of necessary 
conditions for the correlations that arise when performing local measurements on separate quantum systems, 
which enabled finding a hierarchy of upper bounds on Bell  nonlocality16,17 (iv) a hierarchy of EPR steering 
 witnesses18 based on entanglement criteria with the constraint that measurement devices of one party cannot be 
trusted. Especially powerful methods for finding infinite hierarchies of quantum-correlation criteria are those 
formulated as semidefinite  programs16–20. Note that semidefinite programming has been found very effective in 
calculating not only nonuniversal witnesses but also measures (or universal witnesses) of quantum  steering3,21,22, 
 Bellnonlocality5, and  entanglement2. It could also be noted that a hierarchy of quantum nonbreaking channels, 
which is closely related to a hierarchy of  temporal23 and spatial quantum correlations, has been studied very 
recently both theoretically and experimentally in Ref.24, where the effects of white noise (or, equivalently, of a 
qubit-depolarizing channel) on quantum memory, temporal  steerability25,26, and nonmacrorealism were revealed 
by applying a full quantum process tomography.

The use of measures or universal witnesses of these quantum correlations, however, is required to demonstrate 
experimentally such hierarchies in a sufficient and necessary manner. For example, to our knowledge, no 
experiment has been performed to determine standard entanglement measures of a general two-qubit mixed state 
without full quantum state tomography (QST). These measures include the  concurrence27, which is a measure of 
the entanglement of formation, the  negativity28 related to the Peres–Horodecki entanglement criterion, and the 
relative entropy of  entanglement29. Thus, a QST-based approach to study a hierarchy of quantum correlations 
was applied in our former related  study9, which was based on measuring 16 real parameters for two-qubit 
Werner states.

A hierarchy of quantum-correlation measures enables efficient estimations of one measure for a given value of 
another. More specifically, the estimations of a measure of a given type of quantum correlation for a certain value 
of a measure (or bounds) of another type of quantum correlations were reported for arbitrary or specific classes 
of two-qubit states. These estimations include various comparisons of: (i) entanglement and Bell  nonlocality30–33, 
(ii) steering and Bell  nonlocality34, as well as (iii) entanglement and  steering35. Note that such estimations can 
also be applied to compare non-equivalent measures describing the same type of correlations, including two-
qubit  entanglement36,37 or single-qubit  nonclassicality38. Explorations of the relationships between measures 
of entanglement, steering, and Bell nonlocality for specific types of two-qubit states have also been attracting 
a considerable interest. Recent studies include, e.g., theoretical analyses of two-qubit X-states39 and two-mode 
Gaussian  states40. Experimental QST-based hierarchies of quantum entanglement, steering, and Bell nonlocality 
for specific classes of two-qubit states in relation to the above-mentioned estimations were also reported, which 
include experiments with mixtures of partially entangled two-qubit pure  states41 and GWSs based on full  QST9 
or full quantum process  tomography24. Such a hierarchy for the Werner states is also experimentally studied 
here but without applying a full QST.

We note that an experimental method for testing polarization entanglement without QST of general two 
qubit states was proposed in Ref.42 based on measuring a collective universal witness of Ref.43. However, the 
method, to our knowledge, has not been implemented experimentally yet. Another experimental approach to 
determine entanglement of a given state without QST can be based on measuring a bipartite Schmidt number, 
which satisfies various conditions of a good entanglement  measure44,45 and can be determined experimentally 
via a witnessing  approach46. However, it is not clear how the same method can also be used to experimentally 
determine steering and nonlocality measures. Note that we want to apply a versatile experimental setup, which 
can be used to determine various measures of all the three types of quantum correlations.

Multiple indicators of quantum steering have been demonstrated experimentally (for a review see Ref.4). We 
note a very recent Ref.47, where it was shown experimentally that a critical steering radius is the most powerful 
among practical steering indicators. Its scaling property allows classifying as steerable or non-steerable various 
families of quantum states. This approach is useful in testing theoretical concepts of the critical radius in real 
experiments prone to unavoidable noise. The authors used a setup introducing losses and measured elements 
of a correlation matrix to determine the steering indicators. Similar quantifiers, but describing nonlocality and 
entanglement, were measured in Ref.48 using the parameters M and F, which are also applied in this paper.

Here, we report the first (to our knowledge) experimental demonstration of the hierarchy of measures of 
entanglement, steering, and Bell nonlocality without applying full QST, i.e., by measuring only six elements of 
a correlation matrix R (corresponding to linear combinations of two-qubit Stokes parameters) for the Werner 
states. Moreover, we show that the generalized Werner states (GWSs), which are mixtures of an arbitrary two-
qubit pure state and white noise, can reveal a more refined hierarchy of the quantum-correlation measures using 
our experimental setup.

We note that the setup applied in this work was also used earlier in Refs.48–51, but for conceptually different 
tasks, e.g., measuring collective nonlinear witnesses of  entanglement52,53, Bell nonlocality  measure54, or 
diagnosing an entanglement-swapping protocol. Moreover, the setup enables entanglement swapping and 
measuring multicopy entanglement witnesses as inspired by Refs.55,56.

The setup also bears some similarities with a previously proposed and implemented scheme by Bovino et al.56. 
Our experimental method of measuring R for general two qubit states is conceptually similar to that reported 
in Ref.56 for measuring a nonlinear entropic witness. We find that the witness, defined in the next section, can 
actually be interpreted as the three-measurement steering measure S. However, the advantage of our method is 
that it is more versatile. As shown in Ref.48, one can perform a full tomography of all the elements of the R matrix 
rather than only determining its trace. Thus, from the set of six numbers (determining a correlation matrix R) we 
can learn much more about quantum correlations compared to the original method of Ref.56. In addition to that, 
our design provides several practical benefits with respect to Ref.56. Namely from the experimental point of view, 
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it only requires a single Hong–Ou–Mandel interferometer instead of two. Moreover, our design shares the same 
geometry with the entanglement-swapping  protocol48. As a result, it can be deployed in future teleportation-based 
quantum networks to acquire various entanglement measures of distributed quantum states.

This experimental method of measuring the R matrix enables us a complete determination of not only steering 
measures, but also a fully entangled fraction (FEF)57 and Bell nonlocality  measures58. We note that for the GWSs, 
the FEF is exactly equal to the two most popular measures of entanglement, i.e., the negativity and  concurrence2. 
Thus, the hierarchy of the three measures can be experimentally determined from the R matrix for the Werner 
states, which is the main goal of this paper.

Correlation matrix R for Werner and Werner‑like states
We study quantum effects in two qubits by means of the 3× 3 correlation matrix R = TTT , which is defined 
by the matrix T composed of the two-qubit Stokes parameters Tij = Tr[ρ(σi ⊗ σj)] , which are the mean values 
of the Pauli matrices σi ( i = 1, 2, 3 ). Superscript T denotes transposition. The standard Bloch representation of 
a general two-qubit state ρ can be given by the elements Tij together with the single-qubit Stokes parameters 
ui = Tr[ρ(σi ⊗ I2)] and vi = Tr[ρ(I2 ⊗ σi)] as

where u = [u1, u2, u3] and v = [v1, v2, v3] denote the Bloch vectors of the first and second qubits, respectively. 
Moreover, σ = [σ1, σ2, σ3] ≡ [X,Y ,Z] , and In is the n-dimensional identity operator.

We analyze in detail a special type of the general states given in Eq. (1). Specifically, we have experimentally 
generated the polarization Werner states by mixing the singlet Bell state, |ψ−� = (|HV� − |VH�)/

√
2 , with white 

noise (i.e., the maximally mixed state)8:

assuming various values of the mixing (noise) parameter p ∈ [0, 1] . Here, |H� and |V� denote horizontal and verti-
cal polarization states, respectively. The correlation matrix R for the Werner states simplifies to R(ρW) = p2I3.

We also theoretically analyze GWSs, which can be defined by replacing the singlet state |ψ−� in Eq. (2) by a 
pure state |ψq� =

√
q|HV� − √

1− q|VH� with a superposition parameter q ∈ [0, 1] , i.e.,

The state can also be obtained by transmitting a photon in the state |ψq� through a depolarizing chan-
nel. Note that GWSs is often defined slightly differently, i.e., ρ′

GW(p, q) = p|φq��φq| + (1− p)I4/4, where 
|φq� =

√
q|HH� + √

1− q|VV� instead of |ψq� in Eq. (3), as experimentally studied in, e.g., Ref.9. A special case 
of such states, i.e., a modified Werner state, when |ψ−� is replaced by |φq=1/2� , is referred to as an isotropic state. 
Such modifications of the Werner states or the GWSs do not affect their quantum correlation measures.

The correlation matrix R for the GWSs, given in Eq. (3), is diagonal and reads

We note that the correlation matrices T and R are in general nondiagonal (including the non-perfect Werner state 
measured by us experimentally), although they are diagonal for the perfect GWSs states given in Eq. (3). Anyway, 
as shown in Ref.59, an arbitrary state ρ described by a nondiagonal T, can be transformed (via a singular-value 
decomposition) into a state with a diagonal T by local unitary operations, thus, without changing its quantum 
correlations, including those studied below.

Measures of quantum correlations for Werner and Werner‑like states
Fully entangled fraction and entanglement measures. The  FEF57 for an arbitrary two-qubit state ρ 
in Eq. (1) can be defined  as48:

given in terms the function θ(x) = max(x, 0) . In general, the FEF is only a witness of entanglement; however, for 
some special classes of two-qubit states, including the GWSs, the FEF becomes a good entanglement measure, 
and it reduces to the concurrence and negativity:

For completeness, we recall that the concurrence C(ρ) of an arbitrary two-qubit state ρ is defined  as27: 
C(ρ) = θ(

√
�1 −

√
�2 −

√
�3 −

√
�4) , where �1 � �2 � �3 � �4 are the eigenvalues of ρ(σ2 ⊗ σ2)ρ

∗(σ2 ⊗ σ2) , 
the superscript ∗ denotes complex conjugation, and σ2 is the second Pauli matrix. Moreover, we recall the defini-
tion of the negativity N of a two-qubit state ρ , which  reads28: N(ρ) = θ(−2µmin) with µmin denoting the smallest 

(1)ρ = 1

4

(
I4 + u · σ ⊗ I2 + I2 ⊗ v · σ +

3∑

i,j=1

Tij σi ⊗ σj

)
,

(2)ρW =p|ψ−��ψ−| + 1− p

4
I4,

(3)ρGW(p, q) =p|ψq��ψq| +
1− p

4
I4.

(4)R[ρGW(p, q)] =





4p2q(1− q) 0 0
0 4p2q(1− q) 0
0 0 p2



 .

(5)FEF(ρ) = 1
2 θ(Tr

√
R − 1),

(6)FEF[ρGW(p, q)] = N(ρGW) = C(ρGW) = 1
2 θ

{

p[1+ 4
√

q(1− q)] − 1
}

.
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eigenvalue of ρŴ , i.e., min[eig(ρŴ)] , where the superscript Ŵ indicates partial transposition. It is seen that the 
negativity, concurrence, and FEF reduce to the same function for the GWSs.

Let pE(q) denote the largest value of the mixing parameter p as a function of the superposition parameter q 
for which ρGW(p, q) is separable. This can be obtained by solving FEF(ρGW) = 0 resulting in:

which means that ρGW(p, q) is entangled iff p ∈ (pE(q), 1] . In the special case of the standard Werner states, 
Eq. (6) simplifies to

which implies the well known  fact8 that a given Werner state is separable iff its mixing parameter is p ∈ [0, 1/3].
It should be noted that entanglement measures for general states, given in Eq. (1), depend not only on the 

correlation matrix R, but also on the single-qubit Stokes parameters 〈σ i
n〉 for n = 1, 2, 3 and i = 1, 2 . It is seen 

that the FEF is not a universal witness of two-qubit entanglement, because it solely depends on the R matrix. 
Nevertheless, the FEF is a good measure of the entanglement of the GWSs.

Quantum steering measures. The effect of quantum steering of a two-qubit state refers to the possibility 
to affect at a distance one qubit (say subsystem B of Bob) via local measurements performed on the other qubit 
(say subsystem A of Alice). The quantum steerability of a given two-qubit state ρ can be experimentally tested, 
assuming that each party is allowed to measure n observables in their sites (qubit), by the inequality derived by 
Cavalcanti, Jones, Wiseman, and Reid (CJWR), which  reads60:

where r = {r̂A1 , . . . , r̂An , r̂B1 , . . . , r̂Bn } is the set of measurement directions with r̂Ai , r̂
B
i ∈ R3 (for i = 1, . . . , n ) denot-

ing unit and orthonormal vectors, respectively. According to Ref.61, the orthogonality of the vectors r̂Ai  is not 
required, which allows for non-orthogonal measurements to be carried out on the subsystem A. Moreover, 
Ai = r̂Ai · σ , Bi = r̂Bi · σ , and �Ai ⊗ Bi� = Tr(ρAi ⊗ Bi) . A measure of steering can be obtained by maximizing 
Fn(ρ, r) over the set of measurement directions, i.e., Fn(ρ) = maxr Fn(ρ, r) . More specifically, Costa and  Angelo61 
suggested the following steering measures depending on the number n of measurements per qubit:

where Nn = [maxρ Fn(ρ)− 1]−1 is the normalization constant such that Sn(ρ) ∈ [0, 1] for any two-qubit ρ . 
Hereafter, we focus on analyzing the steering measures S2 and S3 (and related quantifiers) in the two- and three- 
measurement scenarios, denoted as 2MS and 3MS, which correspond respectfully to measuring two and three 
Pauli operators on qubits of both parties. Costa and Angelo found that these two-qubit steering measures can 
be compactly written  as61:

respectively, given in terms of c =
√

c21 + c22 + c23  and cmin = min |ci| , where {ci} = svd(T) are singular values 
of T. Note that the original formulas for S2 and S3 in Ref.61 were given assuming the diagonal form of the matrix 
T, so ci were simply given by Tii . The steering measures given in (11) can be rewritten in terms of the correlation 
matrix R as follows:

The Costa–Angelo measure S3 of steering in the 3MS is sometimes modified as (see, e.g., Refs.35,41):

and we also apply this measure in the following, because of a useful property that S reduces to the negativity and 
concurrence for any two-qubit pure states. Note that S, S3 ∈ [0, 1] and they are monotonically related to each 
other for any two-qubit states:

(7)pE(q) = 1/
[

1+ 4
√

q(1− q)
]

,

(8)FEF[ρW(p)] = N[ρW(p)] = C[ρW(p)] = θ(3p− 1)/2,

(9)Fn(ρ, r) =
1√
n

∣

∣

∣

∣

∣

n
∑

i=1

�Ai ⊗ Bi�
∣

∣

∣

∣

∣

� 1,

(10)Sn(ρ) = Nnθ [Fn(ρ)− 1],

(11)
S3(ρ) =

θ(c − 1)√
3− 1

, S2(ρ) =
θ

(

√

c2 − c2min − 1

)

√
2− 1

,

(12)S3(ρ) =
θ(
√
TrR − 1)√
3− 1

,

(13)S2(ρ) =
θ
{√

TrR −min[eig(R)] − 1
}

√
2− 1

.

(14)S(ρ) =
√

1
2 θ(TrR − 1),

(15)S3(ρ) =
√

2S2(ρ)+ 1− 1√
3− 1

≤ S(ρ).
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For the GWSs, described by the correlation matrix R given in Eq. (4), we find

Let pS(q) denote the largest value of the mixing parameter p for a given value of the superposition parameter q 
for which ρGW(p, q) is unsteerable. Thus, by solving S(ρGW) = 0 , we have:

which means that a given GWS, ρGW(p) , is steerable assuming three measurements per qubit iff the mixing 
parameter p ∈ (pS(q), 1] . In the special case of the Werner states, Eq. (16) simplifies to the formulas:

which imply that ρW(p) is unsteerable in the 3MS iff p ∈ [0, 1/
√
3].

Quantum steerability in the 2MS, as based on S2 or related measures, corresponds to Bell nonlocality and it 
is discussed in detail in the next section.

We note that to quantify steering, assuming three measurements on both Alice’ and Bob’s qubits, we can 
interchangeably use: S3 , defined in Eq. (12), S, given in Eq. (14), as well the steerable  weight21 (as applied in our 
closely related  paper9), or the steering  robustness22 in the 3MS. Indeed, if one of the steering measures vanishes, 
then all the other measures vanish too. However, the steering measure S2 , as defined in Eq. (13) in the 2MS, 
although it is equivalent to the Bell nonlocality measure B, but it is fundamentally different from another steering 
measure S2 (for clarity denoted here as S′2 ) studied by us in Ref.9, because it corresponds to the case when Alice 
(Bob) performs two (three) measurements on her (his) qubit. Thus, S2(ρ) = 0 (corresponding to vanishing Bell 
nonlocality of a given state ρ ) does not imply that also S′2(ρ) = 0 , which was shown experimentally in Ref.9). This 
is possible because an extra measurement performed by Bob on his qubit, which is allowed in the S′2 scenario, 
can reveal the steerability of ρ.

Finally, it is important to stress that the applied Costa–Angelo measures, because of their invariance under 
qubit swapping, cannot reflect the directional property of EPR steering that one qubit might be steerable by 
another, but not vice versa. Specifically, the steering measures S2 and S3 are the functions of some eigenvalues 
of the correlation matrix R = TTT . By swapping qubits A and B, one obtains a modified correlation matrix 
R′ = TTT , which, however, has the same eigenvalues as those of R. This means that the steering measures are 
invariant under the qubit-swapping operation, and, thus, describe only two-way-symmetric steering for arbitrary 
two-qubit states.

However, two-way steering with an asymmetry in the steering  strengths62 and one-way  steering63 can be 
revealed, by some strengthened criteria or measures, including the steering measure SLUR based on local uncer-
tainty relations (LUR), as introduced in Ref.64. Note that SLUR cannot be determined from R, because its defini-
tion requires, in general, the knowledge of not only the correlation matrix T (or R), but also the vectors u and v 
for a given density state ρ.

The ideal Werner states ρW(p) and the GWSs ρ′
GW(p, q) , for any p, q ∈ [0, 1] , are unchanged under qubit 

swapping operation (say USWAP ). Although, the GWSs ρGW(p, q) , given in Eq. (3), change under qubit swap-
ping, but still can be transformed into a swapping-invariant ρ′

GW(p, q) by local unitary operations. Thus, any 
steering measures are symmetric (including those based on the LUR) for ρW(p) , ρ′

GW(p, q) , and ρGW(p, q) with 
arbitrary p, q. Of course, this steering-strength symmetry can be slightly broken for experimental states, as we 
have revealed for the experimental Werner states ρexp

W  reported in Ref.9. Note that those states were generated in 
a setup fundamentally different from that applied in the present paper and reconstructed by a full state tomog-
raphy. Thus, one can calculate the steering difference �Sj = |SLUR(ρexp

j,W)− SLUR(USWAPρ
exp
j,WUSWAP)| to reveal a 

potential asymmetry in the LUR-based steering measure from qubit A to B compared to that from qubit B to A, 
where j labels the generated eleven states. Thus, the maximum steering difference for the experimental states of 
Ref.9 can be found to be maxj �Sj = 0.0016 , which is practically negligible and much less than the corresponding 
error bars. More importantly, none of those experimental states exhibited one-way steering. As explained above, 
SLUR cannot be calculated, in general, from R, so one cannot calculate �Sj for the experimental data reported here, 
but one can reasonably assume that �Sj would be negligible as those for the experimental states reported in Ref.9.

Bell nonlocality measures. The Bell nonlocality of a given two-qubit state ρ can be tested by the violation 
of the Bell inequality in the Clauser–Horne–Shimony–Holt (CHSH)  form65

where a, a′, b, b′ ∈ R
3 are unit vectors describing measurement settings, and B is referred to as the Bell-CHSH 

operator. Bell nonlocality can be quantified by the maximum possible violation of the CHSH inequality in 
Eq. (20) over all measurement settings, which lead Horodecki et al. to the following analytical  formula58

(16)S[ρGW(p, q)] =
√

1
2θ[8p2q(1− q)+ p2 − 1],

(17)S3[ρGW(p, q)] = θ [p
√

1+ 8q(1− q)− 1]√
3− 1

.

(18)pS(q) = [1+ 8q(1− q)]−1/2,

(19)S[ρW(p)] =
√

1
2 θ(3p

2 − 1), S3[ρW(p)] = θ(
√
3p− 1)√
3− 1

,

(20)|�B �ρ | ≡
∣

∣

〈

a · σ ⊗ (b + b
′) · σ + a

′ · σ ⊗ (b − b
′) · σ

〉

ρ

∣

∣ ≤ 2,
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where the nonnegative quantity M(ρ) is the sum of the two largest eigenvalues of R(ρ) . The CHSH inequality in 
(20) is satisfied iff M(σ ) ≤ 1 . For a better comparison with other measures of quantum correlations defined in 
the range [0,1], the Bell nonlocality measure of Horodecki et al.58 can be given by (see, e.g.,41,48,66)

or, equivalently,  as61

which guarantee that B,B′ ∈ [0, 1] . It is seen that B′ is exactly equal to the steering measure S2 , given in Eq. (13), 
in the 2MS.

Hereafter, we apply both nonlocality measures because their specific advantages. In particular, as shown 
explicitly below, B′ depends linearly on the mixing parameter p of the Werner states and GWSs, thus its experi-
mental estimation results in smaller error bars compared to those of B. On the other hand, B is equal to the 
negativity and  concurrence37,66, but also to the steering measure S and the FEF:

for an arbitrary two-qubit pure state |ψ� = a|HH� + b|HV� + c|VH� + d|VV� , where a, b, c, d are the normalized 
complex amplitudes. This useful property of B is not satisfied for B′ . We also study B to enable a more explicit 
comparison of our present experimental results with those in our former closely related  papers9,48. Anyway, B 
and B′ are monotonically related to each other:

The Bell nonlocality measures B and B′ for the Werner states read

which explicitly shows that the states are nonlocal iff p > 1/
√
2 . By comparing Eq. (26) with Eq. (8), it is clearly 

seen that the Werner states for the mixing parameter p ∈ (1/3, 1/
√
2) are entangled, although they do not violate 

the CHSH inequality, as was first predicted in Ref.8. For the GWSs, formulas in Eq. (26) generalize to:

Let pB(q) denote the largest value of the mixing parameter p for a given value the superposition parameter q for 
which ρGW(p, q) is Bell local. Thus, by solving B(ρGW) = 0 one finds:

which means that ρGW(p, q) is Bell nonlocal if p ∈ (pB(q), 1] . This function reduces for q = 1/2 to the well-known 
result that the Werner state violates the CHSH inequality iff the mixing parameter p ∈ (1/

√
2, 1]8.

Hierarchy of quantum correlations. The following hierarchy of the discussed quantum correlation 
measures hold for a general two-qubit state ρ:

or, equivalently,

We also note that S2(ρ) ≤ B(ρ) and S3(ρ) ≤ S(ρ) . The inequalities in (30) for the GWSs reduce to

To visualize this hierarchy, we define the following hierarchy parameter of quantum correlations for the GWSs,

(21)max
ν

�B �ρ = 2
√

M(ρ),

(22)B(ρ) =
√

θ[M − 1] =
√

θ
{

TrR −min[eig(R)] − 1
}

,

(23)B′(ρ) = θ [
√
M − 1]√
2− 1

=
θ
(√

TrR −min[eig(R)] − 1
)

√
2− 1

= S2(ρ),

(24)B(|ψ�) = S(|ψ�) = FEF(|ψ�) = C(|ψ�) = N(|ψ�) = 2|ad − bc|,

(25)B′(ρ) =
√

B2(ρ)+ 1− 1√
2− 1

≤ B(ρ).

(26)B[ρW(p)] =
√

θ(2p2 − 1), B′[ρW(p)] = θ(
√
2p− 1)√
2− 1

,

(27)B[ρGW(p, q)] =
√

θ
{

p2[1+ 4q(1− q)] − 1
}

,

(28)B′[ρGW(p, q)] = θ [p
√

1+ 4q(1− q)− 1]√
2− 1

,

(29)pB(q) = [1+ 4q(1− q)]−1/2,

(30)B(ρ) ≤ S(ρ) ≤ FEF(ρ) ≤ N(ρ) ≤ C(ρ),

(31)S2(ρ) ≤ S3(ρ) ≤ FEF(ρ) ≤ N(ρ) ≤ C(ρ),

(32)B(ρGW) ≤ S(ρGW) ≤ FEF(ρGW) = N(ρGW) = C(ρGW).

(33)
H(ρGW) = χ [B(ρGW)] + χ[S(ρGW)] + χ [FEF(ρGW)] = χ [S2(ρGW)] + χ [S3(ρGW)] + χ [FEF(ρGW)],
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which is given in terms of the Heaviside function χ(x) equal to 1 for x > 0 and zero for x ≤ 0 . This parameter 
is plotted in Fig. 1 as a function of the parameters p and q uniquely specifying ρGW(p, q).

Methods
The experiment is implemented on the platform of linear optics with qubits encoded into polarization states 
of discrete photons. These photons are generated in the process of spontaneous parametric down-conversion 
occurring in a cascade of two Type-I BBO crystals in the Kwiat et al.  configuration67. A femtosecond fundamental 
laser pulse is frequency doubled to 413 nm and pumps the crystal cascade on its way there and back (as depicted 
in Fig. 2). Each time the pulse impinges on the crystals, a pair of photons can be generated in the polarization 
singlet Bell state. To achieve a high degree of entanglement, the pumping pulse is diagonally polarized (by 
the half-wave plate HWPA ) and subject to a polarization dispersion  line68. In our case, this dispersion line 
is implemented by two beam displacers (BDs) enveloping HWPB . The photons generated, while the pulse 
propagates forward are labelled 1 and 2 while the photons generated in the pulses second-time travel through 
the crystals are denoted 3 and 4.

The investigated state is encoded both into photons 1 and 2 (the first copy) and into photons 3 and 4 (the 
second copy). A collective measurement on both copies is then performed by projecting photons 2 and 4 onto 
the singlet Bell state using a fiber beam splitter (FBS) followed by post-selection onto coincidence detection on 

q

p

H

Figure 1.  Hierarchy of quantum correlations of the generalized Werner states: The hierarchy parameter 
H[ρGW(p, q)] , defined in Eq. (33), versus the superposition (q) and mixing (p) parameters. A given GWS, 
ρGW(p, q) , is separable if H(ρGW) = 0 , entangled if H(ρGW) ≥ 1 , steerable in the 3MS if H(ρGW) ≥ 2 , and Bell 
nonlocal (and steerable in the 2MS) if H(ρGW) = 3.

HWPA
HWPBBD BD

2xBBO QWP
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D
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local projections

singlet state
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Figure 2.  Schematic depiction of the experimental setup. Individual components are labelled as follows: HWP 
half-wave plate, QWP quarter-wave plate, D detector, BD beam displacer, PBS polarizing beam splitter, BBO β
-barium-borate crystals, M motorized translation, F5,10 5, 10 nm-wide bandpass filters, FBS fiber beam splitter, 
PC polarization controller. Photons generated during the forward (backward) propagation of pump photons 
through the BBO crystals are labelled as 1 and 2 (3 and 4).
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its output ports. The remaining photons 1 and 3 are projected locally by means of the sets of quarter and half-
wave plates (QWPs and HWPs) and polarizing beam splitters (PBSs). We recorded the number of four-fold 
coincidence detections for various settings of the wave plates; namely, for all combinations of the projections 
onto the horizontal, vertical, diagonal, anti-diagonal, and both circular polarization states. We have subsequently 
calculated the expectation values of the Pauli matrices, that is Aij = Tr[ρ1ρ2�σiσj] , where � = −4|ψ−��ψ−| . 
Note that this formula is almost identical to the one in our previous  paper48, except that in the paper instead of 
the � projection, the 1−� projection was applied there.

When adjusting the setup to generate the requested Bell state (or the maximally mixed state), we have 
tuned the polarization of the pump beam, so that locally the generated photons have equal probabilities to 
be horizontally and vertically polarized. (The probability for a single photon being horizontally polarized is 
pH = 0.50± 0.03 .) Balancing these probabilities for the horizontal and vertical polarizations implies also bal-
ancing in any single-photon polarization basis. Note that the single-photon state is fully incoherent, because 
the other photon from a pair is ignored and, hence, mathematically one traces over its state. As a consequence, 
we can consider Bij = Tr[ρ1ρ2I4σiσj] ≈ 0 . With respect to that we conclude that the prepared two copies of 
the Bell state are balanced enough to warrant the replacement of 1−� by � . This is also supported by the fact 
that the numerically closest Bell state producing the observed values for the three measures has its parameter 
q = 0.474 – see Eq. (38) and comments in the surrounding paragraph.

Despite narrow frequency filtering on all photons (see the parameters of the bandpass filters in Fig. 2) and 
a relatively thin crystal cascade of twice 1 mm, there is a generation-time jitter, which causes the visibility of 
two-photon interference on the FBS to decrease. We have performed a calibration measurement that reveals 
that 56.7% of the photons do not interfere on FBS. Moreover, the laser power fluctuates over time yielding 
variable rates of photon-pairs generation. In order to compensate for these two effects, we have performed all 
the measurements in the two regimes with a temporal delay between photons 2 and 4: (a) tuned for interfer-
ence and (b) detuned (controlled by the motorized translation M). These two measurements together with the 
calibration measurement allow us to estimate the net probability of the two copies of the investigated state to 
pass simultaneously the Bell-state projection on the FBS, as well as the local polarization projections resulting 
in a four-fold detection event. With the repetition rate of the laser pulse of 80 MHz, we achieve about 1 such an 
event per 5 minutes.

While the crystals generate two copies of the singlet Bell state, we can readily modify the detection electron-
ics to effectively perform the measurement on the two copies of a maximally mixed state. So far the coincidence 
window, i.e., the time within all photons must be detected to be considered a coincidence event, had to be very 
narrow (5 ns) to assure detection of photon pairs originating from a single laser pulse. By considerably widening 
that window by several orders of magnitude, we effectively aggregate also detections that are completely unrelated 
and mutually random. This way, the observed state becomes effectively white noise.

Having all the measurements performed on a pure entangled state (two copies of the singlet Bell states) as 
well as on the maximally mixed state (i.e., the two copies of the maximally mixed state), we can easily interpolate 
the results for any Werner state with mixing parameter p. In order to do so, we make use of the fact that when 
two polarization states of single photons interact on a beam splitter and one of them is being a maximally mixed 
state, the resulting probability of coincidence detection is independent of the state of the other photon. As a 
result, we interpolate the measurement for any Werner state by combining with probability p2 the outcomes 
observed on two copies of maximally entangled states and with probability of 1− p2 the results observed on a 
maximally mixed state.

Note that, contrary to reconstructing the R matrix, there is no experimental advantage of reconstructing the 
3× 3 matrix T ≡ T3 compared to a full QST of a two qubit state ρ , which corresponds to reconstructing the 
4× 4 matrix T4 = [�σn ⊗ σm�] for n,m = 0, . . . , 3 , where σ0 = I2 is the qubit identity operator. It might look 
that reconstructing all the 9 elements of T3 is much simpler than reconstructing 16 (or 15) elements of T4 . But 
this is not the case, because the required types of measurements are the same in both reconstructions. Note that 
the optical reconstruction T3 for a given two-qubit polarization state ρ is usually based on projecting ρ on all 
the eigenstates of the three Pauli operators for each qubit, i.e., projections onto the six polarization single-qubit 
states (so 36 two-qubit states): diagonal ( |D� ), antidiagonal ( |A� ), right- ( |R� ) and left-circular ( |L� ), horizontal 
( |H� ), and vertical ( |V� ). Analogously, a standard QST of ρ also corresponds to reconstructing T4 via the same 
36 projections as those for T3 , and the single-qubit identity operator is given by I2 = |H��H| + |V��V | . So, the 
required measurements for reconstructing T3 and T4 are the same, but only their numerical reconstructions are 
different, although can be based on exactly the same measured data.

Results
In this section we test the experimental Werner states generated in the setup described in the former section 
and compare experimental results with theoretical predictions for ideal Werner states. One can calculate the 
correlation matrix elements Rij following the  derivations48:

noting that Aij and Bij can be experimentally determined. As a result, the physical correlation matrices Rij of the 
singlet Bell state and the maximally mixed state were obtained using a maximum likelihood method. First we 
derive the correlation matrix R|ψ−� for the singlet Bell state.

(34)Rij = Aij + Bij = Tr(ρ1ρ2�σiσj)+ Tr(ρ1ρ2I4σiσj),
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Then we evaluated also the correlation matrix for the maximally mixed state corresponding to white noise,

Using definition (2) we can derive the correlation matrix RW(p) of the Werner states for selected values of the 
mixing parameter p as follows,

Now we apply the above-described definitions of the quantifiers of quantum correlations including the defined 
measures of Bell nonlocality (B and B′ = S2 ), steering in the 3MS (S and S3 ), and entanglement (FEF) based on 
this correlation matrix.

Our experimental results are summarized in Tables 1 and 2 and marked by symbols in Figs. 3 and 4. The 
error bars were derived using a Monte Carlo method following the normal distribution of the correlation matrix 
components with variance corresponding to the number of detected photocounts. The asymmetry of estimated 
error bars results from presence of the θ function in the formulas for the estimated quantities as well as from 

(35)R|ψ−� =
(

0.971 0.073 0.010
0.073 0.966 − 0.009
0.010 − 0.009 0.941

)

.

(36)RI =
(

0.017 0.006 − 0.007
0.006 0.013 0.016
−0.007 0.016 0.006

)

.

(37)RW(p) = p2R|ψ−� + (1− p2)RI .

p

S
B

p

S
S B’

Figure 3.  Experimental demonstration of the hierarchy of quantum correlations of the Werner states without 
full QST: the Bell nonlocality measures (a) B and (b) B′ = S2 (solid blue lines and curves), the 3MS steering 
measures (a) S and (b) S3 (dashed red), and (a,b) the FEF (dot-dashed black lines) shown versus the mixing 
parameter p. Symbols depict experimental results and curves represent theoretical predictions.

Table 1.  Quantum correlation measures for the experimental and theoretical Werner states plotted in Fig. 3a, 
including measures of Bell nonlocality (B) and steering (S) in the 3MS, and the FEF. Experimental values are 
listed together with their asymmetric errors in square brackets.

p

B S FEF

Theory Experiment Theory Experiment Theory Experiment

0.3 0.000 0.000 0.000 0.000 0.000 0.000

0.4 0.000 0.000 0.000 0.000 0.100 0.106[−0.030,+0.031]
0.5 0.000 0.000 0.000 0.000 0.250 0.248[−0.022,+0.034]
0.6 0.000 0.000 0.200 0.172[−0.168,+0.078] 0.400 0.391[−0.028,+0.027]
0.7 0.000 0.000[−0.000,+0.145] 0.485 0.463[−0.064,+0.046] 0.550 0.534[−0.041,+0.032]
0.8 0.529 0.528[−0.098,+0.068] 0.678 0.654[−0.043,+0.047] 0.700 0.679[−0.038,+0.038]
0.9 0.787 0.783[−0.057,+0.064] 0.846 0.818[−0.041,+0.045] 0.850 0.824[−0.038,+0.042]
1.0 1.000 0.993[−0.133,+0.007] 1.000 0.969[−0.092,+0.030] 1.000 0.969[−0.098,+0.031]
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the requirement on the physicality of the R matrices. Figure 3 shows also the theoretically predicted correlation 
measures plotted with solid curves, which were calculated for the ideal Werner states.

In the theoretical section we considered the Costa–Angelo steering measures S2 and S3 that can be calculated 
also from the R matrix. We evaluated these steering measures using Eqs. (12) and (13). The results are plotted 
in Fig. 3b. It is clear that these measures linearly depend on the mixing parameter p. The nonzero regions of the 
correlation measures, shown in both panels of Fig. 3, are the same. Experimental results shown in Fig. 3b are 
also summarized in Table 2.

The original correlation matrices R were derived from measured coincidences using two methods of maxi-
mum likelihood estimation of Ref.69. Both methods lead to the R matrices that are essentially the same. Our 
experimental results shown in Fig. 3 demonstrate a very good agreement with our theoretical predictions. It is 
clear that S2 , S3 , and FEF are the most stable measures at least for the Werner states and GWSs by exhibiting the 
smallest errors because of their linear dependence on the mixing parameter p. By contrast to those quantifiers, 
the measures of steering S in the 3MS and of Bell nonlocality (B) are much steeper functions and that is why 
they are much more sensitive to unavoidable fluctuations of measured coincidence counts, as reflected in all the 
derived quantities. A comparison of the steering measures S3 and S and the Bell nonlocality measures S2 and B 
for arbitrary theoretical states and the experimental Werner states are shown in Fig. 4.

In the experiment all imperfections of individual components decrease the resulting correlation measures. 
Together with the instability and a natural Poisson randomness of the measured coincidences, these effects result 
in measurement uncertainties. Also our experimentally generated singlet Bell state is not perfect. We tried to 
simulate all these mentioned imperfections by degrading the input Bell-like state assuming the rest of the meas-
urement to be nearly perfect. These expected imperfections result in a class of generalized states in the form of

S

S
B
’

B

Figure 4.  Experimental and theoretical predictions of different measures: (a) S3 vs S quantifying steering in 
the 3MS and (b) S2 = B′ vs B describing Bell nonlocality and, equivalently, steering in the 2MS. Symbols depict 
the measures calculated for the experimental Werner states for the indicated values of the mixing parameter p. 
The error bars are marked by solid red curves that follow the dotted curves. Arbitrary two-qubit states lie on the 
dotted curves. The dashed diagonal lines are added just to show the curvature of the solid curves more clearly.

Table 2.  The Costa–Angelo measures S3 and S2 = B
′ of steering in the 3MS and 2MS, respectively, for the 

experimental and theoretical Werner states plotted in Fig. 3b.

p

S2 S3

Theory Experiment Theory Experiment

0.3 0.000 0.000 0.000 0.000

0.4 0.000 0.000 0.000 0.000

0.5 0.000 0.000 0.000 0.000

0.6 0.000 0.000 0.054 0.040[−0.040,+0.044]
0.7 0.000 0.000 0.290 0.267[−0.064,+0.050]
0.8 0.317 0.316[−0.112,+0.086] 0.527 0.494[−0.055,+0.062]
0.9 0.659 0.652[−0.085,+0.101] 0.763 0.723[−0.058,+0.066]
1.0 1.000 0.989[−0.233,+0.011] 1.000 0.952[−0.141,+0.048]
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where |ψ±
q � = √

q|HV� ± √
1− q|VH� . The correlation measures for our most entangled experimental Bell-like 

state read: B = 0.9933 , S = 0.9691 , and FEF = 0.9685. We found that these results are the most consistent with 
ρ(p, q) for the parameters q ≈ 0.474 and p ≈ 0.994 . This implies the purity of this Bell-like state of about 98.9%.

Conclusions
We reported the detection of quantum correlation measures of two optical polarization qubits without QST. 
Specifically, we have measured all the elements of the correlation matrix R (which is symmetric by definition) 
for the Werner states with different amount of white noise. These elements correspond to linear combinations 
of two-qubit Stokes parameters. With the matrix R, we were able to determine various measures of quantum 
entanglement, steerability, and Bell nonlocality of the Werner and Werner-like states.

Most notably, our experiment allows us to show the hierarchy of the tested quantum correlation meas-
ures. This means that a given Werner state is separable iff its mixing parameter is p ≤ 1/3 . A Werner state 
for p ∈ (1/3, 1/

√
3] is entangled (as revealed by a nonzero FEF), but it is unsteerable and Bell local. Subse-

quently, a Werner state for p ∈ (1/
√
3, 1/

√
2] is entangled and steerable in the 3MS, but unsteerable in the 

2MS, which means that it does not exhibit Bell nonlocality. Finally, a Werner state for p > 1/
√
2 is also Bell 

nonlocal, so steerable even in the 2MS. It is clear that a specific threshold for steerability depends on the 
number of measurement settings which in our case equal 2 and 3. Different thresholds have been found for 
different number of measurement settings, see e.g. Refs.6,9,70. These regions, separated by the three values of 
p = {1/3, 1/

√
3, 1/

√
2} ≈ {0.333, 0.577, 0.707} , are depicted with different background colors in Fig. 3. We have 

also analyzed theoretically a hierarchy (shown in Fig. 1) of some measures of quantum correlations for general-
ized Werner states, which are defined as arbitrary superpositions of a two-qubit partially-entangled pure state 
and white noise.

The problem of detecting measures of quantum correlations is essential to assess their suitability for quantum-
information protocols especially for quantum communication and cryptography when considering not only 
trusted but also untrusted devices. We believe that experimental determination of various measures of entan-
glement, steering, and Bell nonlocality without full QST, as reported in this work, clearly shows its advantage 
compared to standard methods based on a complete QST. Specifically, our method relies on measuring only 6 
real elements instead of 15 (or even 16) elements in a complete two-qubit QST.

Moreover, experimental studies of a hierarchy of quantum-correlation measures might be useful for, e.g.: (i) 
testing complementarity relations between various measures, (ii) effective estimations of one measure for a spe-
cific value of another measure without full QST, or even (iii) quantifying nonclassicality of single-qubit systems 
via potentials of quantum correlations.

Data availability
All the data necessary to reproduce the results are included in this published article and its digital supplement. 
We note that all the raw experimental data used in this work were obtained in our experiment reported in Ref.48. 
Of course, their usage and interpretation are very different here compared to the previous work.
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Chapter 2

Hybrid Photon-Phonon Blockade

2.1 Chapter outline

In this chapter, I provide a concise yet comprehensive overview of article [P2] of this
thesis. I provide a general introduction to photon and phonon blockade phenomena
and provide a short summary of the main results of the article.

2.1.1 Popular introduction

Quantum technologies, such as quantum cryptography, quantum computing, and
quantum sensing, form the backbone of the so-called second quantum revolution,
where precise control of the quantum properties of individual particles allow the
performance of information processing tasks beyond the capabilities of more con-
ventional technologies. In the context of light-based quantum systems, the control
of the precise number of photons is often required for various such tasks.

One promising method to generate a precise number of photons is via photon
blockade (PB), which was first predicted in [1,17,18]1 (for reviews see [2-4]). PB, the
optical equivalent of Coulomb blockade, is a non-classical phenomenon in which
the presence of one photon in a driven nonlinear system prevents the generation of
additional photons. This effect can be achieved, in particular, in cavity setups such
as cavity quantum electrodynamics (QED) with strong non-linearity introduced by
atom-cavity coupling or via a Kerr medium [17-19].

The quantum Rabi model (QRM) is the prototypical model describing the in-
teraction of a two-level atom (which in general can be identified as a qubit) and a
single-cavity mode, and is a natural basis to study PB phenomena. However, in

1These and other references in this chapter correspond to those cited in [P2].
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many experiments [5,11], the light-matter coupling g is much smaller than the cavity
resonance frequency ωc and qubit frequency (or level splitting) ωq. Under these
conditions, for a small detuning of the qubit from the cavity frequency (ωc ≈ ωq), it
is justified to employ the so-called rotating wave approximation (RWA). The QRM
atom-cavity interaction contains terms that correspond to the process of exciting the
atom with simultaneous de-excitation of the cavity field, and the process of simulta-
neously exciting or de-exciting both the qubit and cavity field. The latter, so-called
energy non-conserving terms lead to fast oscillations at frequency ∼ 2ω under near
resonant conditions (where ω = ωq ∼ ωc) and can be essentially neglected when
the coupling g ≪ ω. This is the essence of the RWA that simplifies the QRM to the
famous Jaynes-Cummings (JC) model, which is also a conceptually simpler and
exactly solvable model of atom-cavity interactions.

The JC spectrum is characterized by a non-linear energy spacing – the so-called
JC ladder – for any nonzero interaction g. PB is easily understood in a JC system as
originating from this anharmonic nature of the spectrum. Indeed, in the driven JC
system, when an incoming photon resonantly excites the atom-cavity system from
the ground state to a specific excited state, subsequent photons at the same frequency
are detuned from the next energy levels in the ladder. This type of PB, which is
induced by the anharmonicity of the energy ladder, is called conventional PB [1,19].
In order to observe such conventional PB as described by the mechanism above, in
practice, the decay rates of the atom (γ) and cavity (κ) should be small enough to
allow for prolonged atom-cavity interaction, which in combination with the RWA
conditions yields the conditions κ,γ ≤ g ≪ ωc,ωq, which corresponds to the strong
coupling regime of light-matter interactions [64]. Under these conditions, once a
single photon is present in the system, the next photon is detuned from the next
available excited state even when including the linewidth of that state. As a result,
the possibility of observing two photons in the system simultaneously becomes rare.
This blockade phenomena can be witnessed in the transmitted field of the cavity,
wherein photons emerge from the cavity one at a time [52].

The second-order delay-time correlation function, g(2)(τ), is an important quan-
tity frequently used to identify PB. It captures the statistical properties of the cavity
field and provides information on the effective interactions between the photons
in the system. Experimental measurements of g(2)(τ) usually involve detecting
emitted photons using single-photon detectors in the Hanbury Brown and Twiss
(HBT) configuration. A necessary signature of PB is sub-Poissonian photon-number
statistics, which is tested by g(2)(τ = 0) < 1. This condition is associated with non-
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classical photon statistics and indicates that two photons are less likely to be detected
together compared to a classical photon system.

Importantly, a true PB effect is associated with photon antibunching, indicated
by a dip of the correlation function, at τ = 0, i.e., g(2)(0) < g(2)(τ). The depth of
the dip indicates the strength of the PB phenomenon. While the joint criteria of
sub-Poissonian statistics and antibunching are usually used to identify PB (also in
our work), it is perhaps worth adding that generally higher-order sub-Poissonian
photon-number statistics should also be verified to unambiguously determine PB,
but this is rarely studied for practical reasons associated with gathering statistics
with low photon numbers.

Conventional PB described above stems from strong nonlinear effects, which
are challenging to achieve especially when dealing with a small mean number of
photons in the system. In recent years, a new kind of PB has been predicted – so-
called unconventional photon blockade (UPB) [46] – that allows the relaxation of
the strong conditions on nonlinear interactions required for conventional PB and
remarkably allows the observation of PB for very low photon numbers. UPB is
induced by introducing an additional degree of freedom, e.g., an additional cavity
coupled to the original system, which allows the destructive interference between
different excitation paths leading specifically to the inhibition of the process of
the simultaneous excitation of two photons. It is important to note, however, that
UPB does not necessarily preclude the possibility of observing a higher number
of photons, although a small mean number of photons usually reduces the prob-
ability of generating multiphoton states or higher-order coherences [12,13]. This
unconventional PB method opens up exciting opportunities for manipulating and
controlling the behavior of light in quantum systems, offering new avenues for
quantum information processing and quantum communication.

While we have summarized photon blockade, fundamentally, conventional and
unconventional blockade phenomena can be similarly induced in other systems
with discrete field excitations, such as phonons. Indeed formally, the description
of vibrational excitations of a quantum nanomechanical resonator are identical to
that of field excitations in an optical cavity [47]. Indeed, the description of the
vibrational excitations of a quantum nanomechanical resonator is identical to that of
the field excitations in an optical cavity. In the following, we shall generally denote
by PB various kinds of particle blockade, including the photon, phonon, and hybrid
photon-phonon blockade effects, which are the phenomena we consider in the article
summarized in this chapter.



28 Hybrid Photon-Phonon Blockade

The phenomenon opposite to PB is another notable non-classical photon-number
correlation effect that can be observed in nonlinear systems, called photon-induced
tunneling (PIT) [6]. In PIT, the probability of detecting additional photons in a
higher manifold of the system increases when the first photon is generated near
the resonance frequency. There are different sets of criteria based again on the
characteristics of second- and higher-order delay-time correlation functions that
can be used to identify this regime and are explicitly introduced in the article. The
common criterion is that the photon number statistics in PIT is super-Poissonian
photon-number statistics indicated by g(2)(0) > 1. However, the nonclassicality of
this effect can be identified by supplemental conditions on the statistics of higher
photon-number events and are described in the article.

Finally, we note here that the system under consideration in our study is a open
(i.e., amplified and dissipative) quantum system, which exhibits stochastic behavior
by definition. In such systems, the state is described by a density matrix ρ, which
represents an ensemble-averaged state as ρ = ∑n Pn |ψn⟩ ⟨ψn| with Pn denoting the
probability of the system being in the state |ψn⟩. The standard Gorini-Kossakowski-
Sudarshan-Lindblad master equation is employed normally to capture the time
evolution of such a system. We used two methods in this article to calculate the
dynamics of the system. We used the standard master equation to calculate the
reduced density matrix of our dissipative system. We calculate g(2)(0) and g(2)(τ)
in the steady state solution of the density matrix. Moreover, to explain analytically
the destructive interference of two-particle excitations, leading to UPB, we used a
semiclassical description based on a non-Hermitian Hamiltonian, which ignores the
quantum-jump terms in the master equation [45].

2.1.2 Motivation

Optomechanical systems offer a promising platform to explore the interaction and
correlations between electromagnetic and vibrational modes, i.e., photons and
phonons, making it an important area of study in the field of quantum information
processing. Intriguingly, these systems can be used to study the number correlation
effects not only in both the phonon and photon subsystems individually, but also in
hybrid modes consisting of mixed photon and phonon modes (also called polaritons)
[65].

Studying such coupled systems enables us to gain valuable insights into the
interplay of quantum properties of light and mechanical motion. We perform a
thorough theoretical study and classification of the PB and PIT effects that can
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occur in coupled systems, focusing on a particular optomechanical superconducting
system. Previous research has explored PB and PIT in optomechanical systems (see
[56] and references therein). Despite this, there remains a paucity of experimental
investigations that specifically focus on hybrid systems composed of both mechanical
and optical resonators with similar frequencies. Nevertheless, these systems show
promise for experimental realizations, and, thus, are the primary focus of our study
[P2]. The driving motivation for our study came from the quest to understand
whether PB or PIT can occur under unexpected conditions in such coupled systems.
In particular, we wanted to answer the question whether pure hybrid blockade can
exist, i.e., hybrid photon-phonon or polariton blockade [65] without blockade in the
individual photon and phonon modes.

2.1.3 Main results

To demonstrate the effects of PB and PIT, we analyzed a specific setup involving two
linearly coupled resonators: a superconducting microwave resonator (SMR), which
can function as a transmission line resonator, and a micromechanical resonator
known as a quantum drum (QD), which is capacitively coupled to the SMR. As
mentioned earlier, nonlinearity is essential for nonclassical phenomena, such as PB,
including conventional and unconventional PB in addition to PIT. In our proposed
setup, this nonlinearity was achieved by coupling the SMR to a qubit [17,60,61]. The
system can be driven either at the QD or SMR; however, the main focus of our study
is on the driven QD. We aimed to propose this system for real-world experimentation,
and therefore we carefully selected the parameters for each component based on
existing experimental setups in this field. It is important to note that our system is
considered an open quantum system because of its interaction with the environment
causing dissipation and amplification.

In our research, we focused on investigating the individual photon and phonon
modes and the hybrid photon-phonon mode achieved through the coupling of
photons from an optical or microwave mode with phonons from a mechanical mode
using a balanced linear coupler. Thus, the hybrid modes are two orthogonal modes
consisting of equal superpositions of the individual photon and phonon modes.

We begin by introducing the Hamiltonian of the system and transform it into
a rotating frame that rotates at the frequency of the optical pump field. Thus, the
analysis of the system is simplified and allows us to focus on the relevant dynamics
of the system and obtain its steady-state solution. To study the time evolution of
the system, we utilized the density matrix formalism and numerically solved the
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standard Lindblad master equation. We numerically calculated the second-order
correlation functions g(2)(0) and g(2)(τ) for three sets of parameters to discover
different coupling regimes. In particular, the central result is that we discovered a
novel type of PB in one of the hybrid (photon-phonon) modes, which occurs even
though the photonic and phononic modes individually do not exhibit PB (but exhibit
PIT instead).

In the case of the driven SMR, we showed that by adjusting the pump frequency
with respect to the hybrid system’s energy levels, it is possible to observe conven-
tional PB and PIT that are induced by the energy-level anharmonicity in the regime
of strong coupling (or high nonlinearity). However, the outcomes demonstrate that
g(2)(τ) oscillates as a result of the coupling (g) between the SMR and qubit as well as
the hopping ( f ) between the SMR and QD. We showed that a PB can be created in hy-
brid mode, which is the symmetric superposition of the photon and phonon modes,
that last for longer time interval by driving the QD instead of the SMR. Additionally,
we used the resonance distance measure DnPR in a specific detuning frequency to
show how far our photon/phonon is from the n-photon/phonon resonance (nPR)
and is used to identify PB and PIT in our studies through the anharmonicity of
energy levels. We further predicted UPB in the mechanical and hybrid modes in
the regime with weak coupling (or low nonlinearity) using a method that ignores
quantum jumps based on a non-Hermitian Hamiltonian. It is shown that the analyt-
ical approximate predictions that we used in this method are in a relatively good
agreement with our precise master-equation approach (including quantum jumps).

Moreover, we showed the importance of studying the behavior of g(2)(τ) in
addition to g(2)(0) to accurately characterize the true PB effect via the conditions:
g(2)(0) < 1 and g(2)(0) < g(2)(τ). As a result we found such parameter regimes of
the system, for which four different types of blockade and tunnelling effects are
possible. Moreover, by analyzing only the value of g(2)(0) in each mode (optical,
mechanical, and hybrid) in different coupling regimes of the system, we predicted
eight different combinations of either PB or PIT in these three modes.

Additionally, we calculated g(n)(0) for n = 2,3,4 to show the different PB and
PIT possibilities, which demonstrates the importance of studying higher-order
correlation functions to accurately identify PB and PIT.

The possibility of experimental demonstration of PB and PIT in the hybrid mode
are also a focus of this paper. We proposed two different measurement setups
to explain how to access this type of PB in the hybrid mode by using existing
experimental configurations.
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2.1.4 My contribution and importance of the work

The proposal and exploration of the novel hybrid blockade provide new insights
into the interaction between photons and phonons, expanding our understanding of
the quantum behavior of optomechanical systems. This opens up possibilities for
further research and development in the field of quantum information processing.

I performed all numerical and analytical calculations of this study. I utilized
Python, specifically with the QuTiP package, for my numerical calculations; while
analytical calculations were performed using Mathematica. I have made significant
contributions to the interpretation of the obtained results. I drafted the initial version
of the article and collaborated with my supervisors to refine and polish the content.
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2.2 Reprint of article [P2]

On the subsequent pages, we append a reprint with permission:

[P2] Shilan Abo, Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk,
Jan Peřina Jr., Ravindra Chhajlany, and Adam Miranowicz:

Hybrid photon-phonon blockade,
Scientific Reports 12, 17655 (2022).

http://dx.doi.org/10.1038/s41598-022-21267-4
Copyright (2022) is retained by the authors.2
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Hybrid photon–phonon blockade
Shilan Abo1, Grzegorz Chimczak1, Anna Kowalewska‑Kudłaszyk1, Jan Peřina Jr.2, 
Ravindra Chhajlany1 & Adam Miranowicz1*

We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and 
phononic modes. We refer to this effect as hybrid photon–phonon blockade and show how it can 
be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, 
we study boson‑number correlations in the photon, phonon, and hybrid modes in linearly coupled 
microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find 
such system parameters for which we observe eight types of different combinations of either blockade 
or tunnelling effects (defined via the sub‑ and super‑Poissonian statistics, respectively) for photons, 
phonons, and hybrid bosons. In particular, we find that the hybrid photon–phonon blockade can be 
generated by mixing the photonic and phononic modes which do not exhibit blockade.

Photon blockade (PB)1, also referred to as optical state truncation (see reviews in Refs.2,3), or nonlinear quantum 
scissors (for a review see Ref.4) is an optical analogue of Coulomb’s blockade. Specifically, it refers to the effect 
in which a single photon, generated in a driven nonlinear system, can block the generation of more photons. 
The light generated by an ideal (or ‘true’) PB exhibits both sub-Poissonian photon-number statistics and photon 
antibunching. But even if one of these properties is satisfied, the term PB is often used.

PB has been demonstrated experimentally in various driven nonlinear systems with  single5–11 and  two12,13 
resonators, in a bimodal  cavity14, or even in cavity-free  systems15. Experimental platforms where PB was observed 
include: cavity quantum electrodynamics (QED) with Fabry-Perot  cavities5, photonic  crystals6, and whispering-
gallery-mode  cavities16, as well as circuit  QED7,8. Note that the possibility of producing a single-photon state in a 
driven cavity with a nonlinear Kerr medium was predicted already in Refs.17–19, but only the publication of Ref.1, 
where the term ‘photon blockade’ was coined, has triggered much interest in studying this effect both theoretically 
and experimentally. Arguably, many studies reported already in the 1970s and 1980s on photon antibunching and 
sub-Poissonian light (see, e.g., reviews in Refs.20–22 and references therein) are actually about PB-related effects, 
although such a relation (to the optical analogue of Coulomb’s blockade) was not mentioned explicitly there.

In addition to the original idea of using PB as a single-photon turnstile device with  single1,16,23 or  multiple24 
outputs, PB can have much wider applications in quantum nonlinear optics at the single-photon level, including 
single-photon induced nonlinear effects, quantum noise reduction via antibunching of photons, simulations 
of nonreciprocal nonlinear processes, or studying chirality at exceptional points for quantum metrology, etc.

A number of generalisations of the standard single-PB effect were proposed, which include: (1) two- and 
multi-photon versions of PB, as first predicted in Refs.25,26 and demonstrated experimentally in Refs.11,27; (2) 
unconventional PB as predicted in Ref.28 and experimentally demonstrated in Refs.12,13; (3) conventional and 
unconventional nonreciprocal PB effects as predicted in Refs.29,30 and (at least partially) confirmed experimentally 
in Ref.31; (4) state-dependent  PB32, (5) exceptional  PB33, and (6) linear quantum scissors based on conditional 
measurements for: single-PB34–36, which was experimentally demonstrated in Ref.37, as well as two-PB38, and 
multi-PB39,40 using multiport Mach–Zehnder  interferometers41. This probabilistic approach to PB enables also 
nondeterministic quantum teleportation and more selective optical-state truncations, e.g, hole burning in the 
Hilbert  space42. Concerning example (2), note that PB in two driven Kerr resonators was first studied in Refs.43,44, 
but only for relatively strong Kerr nonlinearities. Surprisingly, PB remains in such two-resonator systems even 
for extremely weak Kerr nonlinearities, as first predicted in Ref.28 and explained via destructive quantum inter-
ference in Ref.45. This effect is now referred to as unconventional  PB46.

Here we study phonon  blockade47, which is a mechanical analogue of the mentioned blockade effects, i.e., 
the blockade of quantum vibrational excitations of a mechanical resonator. This effect has not been demon-
strated experimentally yet. However, a number of experimentally feasible methods have been proposed for 
measuring it, including a magnetomotive  technique47, an indirect measurement of phonon correlations via 
optical  interferometry48, or by coupling a mechanical resonator to a qubit, which is used not only for induc-
ing the resonator nonlinearity, but also to detect the blockade effect itself, i.e., by measuring qubit’s  states49. 
Among possible applications of phonon blockade, we mention: testing nonclassicality of meso- or macroscopic 

OPEN

1Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 
61-614 Poznan, Poland. 2Joint Laboratory of Optics of Palacký University and Institute of Physics of CAS, Faculty of 
Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic. *email: miran@amu.edu.pl

2.2 Reprint of article [P2] 33



2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17655  | https://doi.org/10.1038/s41598-022-21267-4

www.nature.com/scientificreports/

mechanical  systems47 and studying single-phonon optomechanics, in addition to offering a source of single- or 
multiple  phonons50,51.

PB can be changed into light  transmission52, e.g., by photon-induced tunnelling (PIT)6. This is another 
nonclassical photon-number correlation phenomenon, in which the probability of observing more photons in a 
higher manifold of the system increases with the generation of the first photon near the resonance frequency of 
the system. Multi-PIT effects were also  predicted29, including those generated by  squeezing53.

For simplicity, we use here the abbreviation PB, when referring to the blockade of not only photons, but also 
of phonons or hybrid photon–phonon bosons. The precise meaning can be found from its context, e.g., when we 
refer to a specific mode, including the optical (a), mechanical (b), or hybrid (c) modes. Analogously, PIT denotes 
a given particle-induced tunnelling among the three types of excitations.

Nanomechanical resonators can coherently interact with electromagnetic  radiation54, and quantum correla-
tions between single photons and single phonons were studied for a single entangled photon–phonon  pair55 or via 
photon and phonon blockade effects in optomechanical  systems56. A mechanical switch between PB and PIT has 
been studied  recently57. PB and PIT effects in systems comprising mechanical and optical resonators, which are 
characterised by the same or similar bare frequencies, to our knowledge, have not been studied experimentally 
yet, although they seem to be experimentally feasible and, thus, they are at focus of this paper.

Crucial signatures of PB and PIT can be observed by measuring the second-order correlation function, 
g (2)(0) . Specifically for photons, (1) the condition of g (2)(0) < 1 defines the sub-Poissonian photon-number 
statistics (also referred to as zero-delay-time photon antibunching), which indicates the possibility of observing 
PB, while (2) the condition g (2)(0) > 1 , defines the super-Poissonian statistics (also referred to as zero-delay-
time photon bunching), which is a signature of PIT in a given system. To observe the ‘true’ effects of PB and 
PIT, also other criteria should be satisfied, such as nonzero-delay-time photon antibunching and higher-order 
sub-Poissonian photon-number statistics. Indeed, an ideal conventional PB, which can be served as a single-
photon source, usually should also be verified by studying higher-order correlation functions, g (n)(0) for n > 2 . 
For example, in case of single-PB (1PB) conditions g (2)(0) < 1 and g (n)(0) < 1 for n > 2 should be fulfilled.

PB can be verified also in other ways via demonstrating, e.g., a staircase-like dependence of the mean photon 
number (or measured power transmitted through a nonlinear resonator) on the energy spectrum of the photons 
incident on the  resonator8,52. Such a dependence is the photon analogue of the Coulomb staircase. All of the above 
criteria are just necessary but not sufficient conditions for demonstrating PB. A sufficient condition could be, e.g., 
showing a high fidelity of a given generated light (with a nonzero mean photon number) to an ideally truncated 
two-dimensional state, which is the closest to the generated one. This approach was applied in, e.g.,26,35,36. The 
latter two types of PB tests are, however, are not applied in this paper.

Conventional single-PB prevents the absorption of a second photon with a specific frequency due to the non-
linearity of a given system. Such a nonlinearity can be described by a Kerr-type interaction and/or can induced by 
an atom (real or artificial) coupled to a resonator. An artificial atom can be realised by, e.g., a quantum  dot23,58,59 
in cavity  QED10 or a superconducting qubit or qudit in circuit  QED52.

Unconventional PB, which is induced by destructive interference, operates better for very low (or even 
extremely low) mean photon  numbers12,13. This can be disadvantageous by considerably decreasing the prob-
ability of generating a single photon. But, at the same time, it can be an advantage, because a very small mean 
photon number usually reduces the chance of generating multi-photon states and inducing higher-order coher-
ence. This is not always the case, and even if the probability of observing two photons is suppressed, higher-order 
coherence might be enhanced, leading to the generation of multi-photon  states46.

In this paper, we consider an optomechanical system, which generates photonic and phononic modes. Then 
we apply a balanced linear coupling transformation to the these modes to create hybrid modes (also referred to 
as supermodes). We study the interplay between photons and phonons resulting in their nonclassical number 
correlation effects. Thus, we find such system parameters to observe either PB or PIT in the four modes. In par-
ticular, we predict PB in one of the hybrid modes, but not in the individual (photon and phonon) modes, i.e., 
this PB is created from the two modes, which do not exhibit PB. We refer to this effect as hybrid photon–phonon 
blockade, which is the main result reported here.

Specifically, we define hybrid photon–phonon blockade as the blockade of hybrid-mode bosons (polaritons) 
obtained by coupling photons of an optical or microwave mode with phonons of a mechanical mode by a bal-
anced linear coupler. The idea and criteria for testing this type of blockade are analogous to those for other 
known blockade effects (e.g., of photons, phonons, or magnons), but it is predicted for another type of bosons. 
We show that this hybrid blockade can occur by coupling the modes, which exhibit neither photon blockade 
nor phonon blockade.

To show this effect we analyse the system of two linearly-coupled resonators: a superconducting microwave 
resonator (SMR), which might be a transmission line resonator, and a micromechanical resonator, referred to 
as a quantum drum (QD), which is capacitively coupled to the SMR. To generate any kind of PB (including 
unconventional PB), one needs to incorporate a nonlinearity into a given  system17,60,61. This can be done by 
coupling one of the resonators (e.g., the SMR) to a qubit (e.g., an artificial superconducting two-level atom). 
We also assume that the system is driven either at the QD or the SMR as described in detail in the next section.

The paper is organised as follows: first, the hybrid optomechanical system and its Hamiltonians are intro-
duced. We also define the hybrid photon–phonon modes, which can be generated by the balanced linear coupling 
of photonic and phononic modes. Then, we study the correlation effects in the photonic, phononic, and one of 
the hybrid modes in the system driven at either the optical or mechanical resonator, respectively, for experi-
mentally feasible parameters specified in “Methods”. We then predict and analytically explain the generation 
of unconventional hybrid-mode blockade via a non-Hermitian Hamiltonian method. We systematically study 
different weaker and stronger criteria for observing blockade and tunnelling effects in our system. We also find 
all the eight combinations of the conventional blockade and tunnelling effects in the three modes. In particular, 
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we find a surprising effect that the hybrid-mode photon–phonon blockade can be generated by mixing the 
photonic and phononic modes exhibiting tunnelling effects. In addition to this study of the second-order cor-
relation effects, we discuss also higher-order effects and their classification in “Methods”. Moreover, we discuss 
two types of schemes for measuring photon–phonon correlations in hybrid modes. Finally, we summarise our 
results and indicate their potential applications.

The system and Hamiltonians
Figure 1 shows the schematics of the studied hybrid system, which consists of a superconducting two-level 
artificial atom (a qubit) embedded in a waveguide and coupled to an SMR, which might be a transmission-line 
resonator. This qubit induces anharmonicity in the SMR, which is crucial for observing PB. Our setup includes 
also a microwave-frequency mechanical resonator (a QD), which is capacitively coupled to the SMR. The non-
linearity of the QD is induced indirectly by the linear coupling of the QD to the effectively nonlinear SMR.

The free Hamiltonian of the SMR is Ha = �ωSMRa
†a , where ωSMR is its resonance frequency (assumed here of 

the order of tens of GHz) and a (a†) is the photon annihilation (creation) operator. We can reasonably assume 
the SMR quality factor as QSMR ≈ 104 . The free Hamiltonian of the QD is Hb = �ωmb

†b , where ωm is its reso-
nance frequency and b (b†) is the phonon annihilation (creation) operator. In our numerical simulations, we 
set ωm/2π = 7.8 GHz and the QD quality factor as Qm ≈ 260 . Moreover a two-level quantum system has the 
ground state |g� and the excited state |e� with transition frequency ωq (set here of the order of ωm and ωSMR ). The 
free qubit Hamiltonian is described as Hq = �ωqσ+σ− , where σ+ = |e��g| ( σ− = |g��e| ) is the atomic raising 
(lowering) operator. Thus, the total free Hamiltonian of the system is H0 = Ha +Hb +Hq . The complete Ham-
iltonian (without driving) of our coupled system can be given by ( � = 1)

which includes the three coupling terms: (1) the Jaynes–Cummings term describing the interaction between the 
SMR and qubit under the rotating-wave approximation (RWA); (2) the radiation-pressure term with coupling 
strength gr ; and (3) the Hopfield-type nonlinear coupling term with strength gl . The gl coupling can be realized 
via a capacitor, as shown in Fig. 1 and explained in a more detail in Ref.48 for a similar system. Note that the gl 
term describes canonical position–position (momentum–position) interactions, where gl is real (imaginary) for 
H ′
+ ( H ′

− ). These interactions can be interchanged by adding the π/2 phase to a, a† , i.e., a → ia and a† → −ia† . 
This extra phase does not change number correlations in the modes a and b. In typical ranges of parameters of 
analogous superconducting  circuits62, the gl term is dominant, so the radiation-pressure term can be  neglected63. 
Moreover, although the counter-rotating terms ab± b†a† , which appear in the gl-interaction, play an important 
role in the ultrastrong and deep-strong coupling  regimes64, but they can be safely omitted under the RWA, which 
is valid in the weak and strong coupling regimes. Indeed, the latter regimes are solely studied in this paper, as 
discussed below. Then the Hopfield nonlinear gl-interaction becomes effectively linearised. Thus, Hamiltonian (1) 
reduces to

(1)H ′
± = H0 + g(a†σ− + aσ+)+ gr(b+ b†)a†a+ gl(a± a†)(b+ b†),

Figure 1.  Schematics of the discussed circuit-QED-based realisation of the considered hybrid optomechanical 
system. It consists of a superconducting qubit embedded in a superconducting microwave resonator (SMR), 
e.g., a transmission-line resonator, to induce its nonlinearity. A quantum micromechanical resonator, which is 
referred to as a quantum drum (QD), is coupled to the SMR with a tunable capacitor Cg . We assume that the 
system is driven either at the SMR or QD. Dashed semicircular curves visualise that the QD is oscillating. The 
driving and motion detection of the QD can be realised by controlling the static magnetic field B, potential Vg , 
and alternating current I(t), as described in Ref.47 for detecting phonon blockade.
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where the linear-coupling strength is denoted by f, which replaces the symbol gl . Analogously to gl , f is real 
(imaginary) for H+ ( H− ). In the following, for simplicity, we focus on studying the canonical position–position 
interactions between the modes a and b, as described by H+ . The eigenstates of Hamiltonian H± can be referred 
to as atomic-optomechanical polaritons or atom-cavity-mechanics  polaritons65. It is clear that Hamiltonians H± 
conserve the polariton number,

which is the total number of excitations. Thus, H± can be diagonalised in each subspace (or manifold) H(n) with 
exactly n polaritons.

The RWA is fully justified assuming both (1) the weak- or strong-couplings and (2) small detunings between 
the SMR and QD, and the SMR and qubit (see, e.g., Ref.66). We stress that these conditions are fully satis-
fied for the parameters applied in all our numerical calculations in this paper. Thus, the Jaynes–Cummings 
and frequency-converter (or linear-coupler) models can be applied. However, the RWA cannot be applied in 
the ultrastrong and deep-strong coupling regimes, as defined by g > 0.1ωi and g > ωi ,  respectively64, where 
i = SMR,m, q . In these regimes, the quantum Rabi and Hopfield models cannot be reduced to the Jaynes–Cum-
mings and frequency-converter models, respectively. However, we study the system for the parameters specified 
in Eqs. (28)–(30), for which the ratios of the coupling strengths and frequencies, f /ωi and g/ωi , are < 0.002 . So, 
the system is in the strong-coupling regime, and far away from the border line with the USC regime. Moreover, 
the chosen detunings are |ωSMR − ωm|/ωSMR ≤ 2.6× 10−3 and |ωSMR − ωq|/ωSMR < 8× 10−4 . Thus, it is clearly 
seen that we can safely apply the RWA. Anyway, as a double test, we have calculated time-dependent second-
order correlation functions for the Hamiltonian H ′

± and H± for the parameters set in Eqs. (28)–(30) for various 
evolution times assuming classical drives (as specified below) and no dissipation. And we have found that the 
differences between the correlation functions calculated for the models with and without the RWA are negligible 
on the scale of figures. The inclusion of dissipation in the system makes such differences even smaller.

We assume that an optical pump field of frequency ωp is applied either to the SMR mode a, as described by

or to the QD mode b, as given by

to drive (excite) the system (with coupling strength ηa or ηb ) from its ground state and to induce the emission of 
photons and phonons. Thus, the total Hamiltonian becomes

Direct driving of the QD can be implemented by a weak-oscillating current, as considered in Refs.47,48, where 
the drive strength ηb is proportional to the current amplitude I(t) and the magnetic field B shown in Fig. 1. The 
SMR can be driven in circuit-QED systems in various  ways62.

Note that by driving directly the SMR (or alternatively the QD), one also indirectly drives the QD (SMR) 
through the capacitive coupling Cg , as shown in the scheme in Fig. 1. So, by referring to the SMR- or QD-driven 
systems, we indicate only the resonator, which is directly pumped, although finally both resonators are driven.

The inclusion of an additional nonlinearity in the QD and/or applying drives to the qubit(s) and both resona-
tors is not essential for the prediction of hybrid blockade, but this could enable achieving stronger photon–pho-
non antibunching and more sub-Poissonian statistics.

Considering the case, where the pump field drives only the SMR, to remove the time dependence of the 
Hamiltonian H(n)(t) and to obtain its steady-state solution, we transform the system Hamiltonian into a refer-
ence frame rotating at frequency ωp.

We apply the unitary transformation UR(t) = exp
(
−iNpolaritonωpt

)
 to H(n) according to the general formula

Thus, H(a)(t) reduces the time-independent SMR-driven Hamiltonian:

where �i = ωi − ωp for i = a, b, q . So, in particular, �b ≡ �m (�a ≡ �SMR ) is the mechanical (microwave) 
resonator frequency detuning with respect to the pump frequency. Analogously, in the same rotating frame, 
H(b)(t) reduces to the QD-driven Hamiltonian:

(2)H± =H0 + g(a†σ− + aσ+)+ f (ab† ± a†b),

(3)Npolariton = a†a+ b†b+ σ+σ−,

(4)H
(a)
drv(t) = ηa(e

iωpta+ e−iωpta†),

(5)H
(b)
drv(t) = ηb(e

iωptb+ e−iωptb†),

(6)H(n)(t) = H+ +H
(n)
drv(t) (n = a, b).

(7)H
(n)
rot = U†

RH
(n)UR − iU†

R

∂

∂t
UR .

(8)
H ′ ≡ H

(a)
rot = �SMRa

†a+�mb
†b+�qσ+σ−

+ g(a†σ− + aσ+)+ f (a†b+ ab†)+ ηa(a+ a†),

(9)
H ′′ ≡ H

(b)
rot = �SMRa

†a+�mb
†b+�qσ+σ−

+ g(a†σ− + aσ+)+ f (a†b+ ab†)+ ηb(b+ b†).
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We recall that Eqs. (8) and (9) are directly derived from Eq. (6) for H+ given in Eq. (2). Moreover, H+ is derived 
from Eq. (1) assuming the RWA, which is justified for small detunings in the weak- and strong-coupling regimes, 
which are the only numerically studied regimes in this paper, as emphasised above. Indeed, the studied ranges of 
parameters guarantee the system evolution is far from the USC regime. Note that the Hamiltonian H ′

+ in (1) for 
gr = 0 with an additional drive term H(n)

drv(t) can be transformed, according to Eq. (7), to H(n)
rot  given in Eqs. (8) 

and (9) but with the additional term f [ab exp(2iωpt)+ h.c.] . In all our numerical calculations we set ωp of the 
order of GHz. Thus, the effect of this rapidly oscillating term is negligible compared to all the other terms in the 
Hamiltonians. Moreover, we have also assumed that the optomechanical term gr is negligible. In general, this 
assumption is not necessary, because the gr term can be reduced (in the red-detuned regime) to an interaction 
term describing a linear coupler (or a beam splitter), which can be combined with the f term. Anyway, for sim-
plicity concerning both theory and potential experiments, we set gr = 0 . We have also assumed that the system 
is driven at either the mechanical or optical mode to obtain effectively time-independent Hamiltonians in a 
rotating frame. This simplification would not be directly possible by considering the system driven simultane-
ously at both modes with different frequencies.

Figure 2 shows the structure of the energy spectrum for the hybrid system Hamiltonian (2). To study the 
sub-Poissonian light generation in hybrid modes, we apply to the SMR and QD modes a balanced linear coupling 
transformation, which is formally equivalent to a balanced (50/50) beam splitter (BS). This transformation creates 
the hybrid (or cross) photon–phonon modes:

for the system described by H+ and related Hamiltonians. Note that if this BS transformation is modified as 
a → −ia and a† → ia† [which compensate the extra π/2 phase introduced below Eq. (1)] then all our predic-
tions of number correlations shown in various figures for the hybrid mode c (in addition to those for the modes 
a, b, and d) are the same as those for the model described by H−.

Thus, the Hamiltonian H ′ after the BS transformation reads

which describes the qubit interacting with two hybrid modes c and d, where �c,d = (ωSMR + ωm)/2− ωp ± f  
and δ = (ωSMR − ωm)/2 . It is seen that the two modes c and d have no direct coupling if ωm = ωSMR.

(10)c =
a+ b
√
2

, d =
a− b
√
2

,

(11)
H ′
BS =�cc

†c +�dd
†d +�qσ+σ− + δ(c†d + d†c)

+
1
√
2

[

ηa(c + c†)+ ηa(d + d†)+ g(c†σ− + cσ+)+ g(d†σ− + dσ+)
]

,

Figure 2.  Energy levels ωn versus the QD frequency ωm in units of the SMR frequency ωSMR for the 
Hamiltonian Eq. (2) with the parameters given in Eq. (28) and g = 7.5γ . The three manifolds of the lowest 
energy levels in panel (a) are zoomed in panels (b–d) near the resonance ωm = ωSMR to reveal the anti-crossing 
of energy levels. Here, ω(n)

i  (with n = 1, 2, 3 ) denotes the frequencies of the nth manifold.
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The dynamics of an open system in the presence of losses under the Markov approximation can be described 
within the Lindblad approach for a system reduced density matrix ρ satisfying the standard master equation,

which is given in terms of the Lindblad superoperator D [O]ρ = 1
2 (2OρO

† − ρO†O − O†Oρ) , where κa , κb, 
and γ are the decay rates for the SMR, QD, and qubit, respectively.

All our numerical calculations and their analyses are given for the system parameters, which satisfy the 
conditions for the weak or strong-coupling regimes and for small detunings between the SMR, QD, and qubit. 
Thus, we can safely apply the standard master equation given in Eq. (12). Of course, if one considers Eq. (1) for 
the system in the USC or deep-coupling regimes, then the master equation in Eq. (12), should be replaced by a 
generalised one, e.g., of Refs.64,67–69.

We also note that the application even of a single classical drive to the Jaynes–Cummings model in the 
strong-coupling regime effectively creates counter-rotating terms, which can induce a variety of USC effects, as 
shown explicitly in Ref.70. Thus, to confirm the validity of our results, we have applied the generalised formalism 
described in Ref.67, which is valid for arbitrary light-matter coupling regimes, including the weak-, strong-, and 
USC regimes. In particular, we calculated the correlation functions g (n)(0) defined in terms of the positive- ( X+

n  ) 
and negative- [ X−

n = (X+
n )

† ] frequency components of the canonical position operators: Xa = a+ a† for pho-
tons, Xb = b+ b† for phonons, and Xc = c + c† for hybrid-mode bosons in the qubit-SMR-QD dressed basis. 
We calculated the steady states of the system by solving numerically the generalised master equation of Ref.67 
for the Hamiltonians H ′ and H ′′ . As expected from general considerations, our numerical calculations for the 
parameters set in Eqs. (28)–(30) using the standard and generalised formalisms based on H ′ (as well as H ′′ ) give 
effectively the same results.

In our simulations, we assume that the system is prepared in the ground state |n = 0, g�|m = 0� (i.e., with no 
photons in the SMR, no phonons in the QD, and the qubit is in the ground state), such that a given pump laser 
can drive the SMR photons in the microwave frequency range. Note that the choice of initial states affects the 
short-time evolution of our system, but has no effect on the steady-state solutions in the time limit, assuming 
the single-photon and single-phonon damping channels, as described in Eq. (12). However, as shown in Ref.32, 
initial states of a system can indeed affect steady states of the system, thus can also change PB, in case of quantum 
engineered dissipation channels allowing for, e.g., two-photon dissipation only.

In the following sections, we show that it is possible to observe both PB and PIT in the hybrid mode in the 
weak, mediate, and strong coupling regimes compared to the decay rates of the SMR, QD, and qubit. In par-
ticular, we show that the system can generate the hybrid photon–phonon modes with strongly sub-Poissonian 
(or super-Poissonian) statistics by mixing the SMR and QD modes with strongly super-Poissonian (or sub-
Poissonian) statistics.

Hybrid‑mode blockade in the SMR‑driven system
Here we analyse in detail various blockade and PIT effects in the SMR-driven dissipative system described by 
the Hamiltonian H ′ and the master equation (12) for the parameters specified in Eq. (28).

Photon/phonon-number statistics of the modes generated by our hybrid system can be described quanti-
tatively by calculating the zero-delay-time kth-order correlation function ( kth-order intensity autocorrelation 
function),

where z = a, b, c, d and k = 2, 3, . . . . In the special case of k = 2 , which is of particular interest in testing single-
PB and single-PIT, the three different types of the boson-number statistics can be considered: the Poissonian 
[if g (2)(0) = 1 ], super-Poissonian [if g (2)(0) > 1 ], and sub-Poissonian (otherwise). Analogously, one can define 
higher-order Poissonian, sub-Poissonian, and super-Poissonian statistics for k > 2 . Such higher-order criteria 
are not only crucial in analysing multi-PB and multi-PIT  effects11,29,53, but they are also important in testing 
whether a specific PB effect is a ‘true’ PB, which can be used for generating single photons or phonons. These 
higher-order statistics are studied in “Methods”.

Figure 3(a) shows g (2)(0) as a function of the qubit-SMR coupling for the SMR-driven system with the 
parameters specified in Eq. (28). The regions, when the sub-Poissonian statistics in the hybrid mode c is accom-
panied by the super-Poissonian statistics in the modes a and b,  are indicated by the yellow background in this 
and other figures. This area in yellow colour is referred to as Case 7 in Table 1, in which we observe strongly 
super-Poissonian photons (phonons) in the SMR (QD); whereas a single excitation is observed in the hybrid 
mode. The system parameters, which lead to Case 7, are found by numerical simulations and are discussed below.

Note that Fig. 3a shows these effects in the strong coupling  regime64, i.e., when the qubit-SMR coupling con-
stant g is larger than the system damping rates: g/κmax > 1 , where κmax = max{κa, κb, γ } . On the other hand, 
Fig. 3b shows the same yellow region in the weak-coupling regime, i.e., when g/κmax < 1 , but this figure was 
calculated for the QD-driven system, which is discussed in the next section.

By considering the values of Eq. (28), the SMR decay rate is κa = 1.5γ , given that the mode a is always in the 
strong qubit-SMR coupling regime in the region of our interest. This results in Rabi-type oscillations of g (2)(0) 
that occur in the SMR mode a and the hybrid mode c. In Fig. 3a, both weak and strong coupling regimes are 
shown corresponding to g smaller or larger than the maximum decay rate of the whole system.

(12)
∂ρ

∂t
= −i[H , ρ] + κaD [a]ρ + κbD [b]ρ + γD [σ ]ρ,

(13)g (k)z (0) = lim
t→∞

�z†k(t)zk(t)�
�z†(t)z(t)�k

,
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Given the set of parameters in Eq. (28), we are in the good-cavity  regime71, because κa < {κb, g , f } . In the 
range g/2π ∈ (4.5, 42) MHz, the hybrid mode c has the sub-Poissonian statistics, while the SMR mode has the 
super-Poissonian statistics in all the shown cases and a very weak sub-Poissonian statistics occur for phonons 
in the QD mode b, but still corresponding to Case 4 in Table 1. This behaviour changes to the super-Poissonian 
statistics in the mode b, which corresponds to Case 7, as shown in Fig. 3a. There is a transition for the mode c 
from the sub-Poissonian to super-Poissonian statistics, which corresponds to switching from Case 7 to Case 8 
in the strong-coupling regime, where the other two modes are both super-Poissonian. Observing g (2)(0) > 1 
witnesses PIT and the quantum nature of this effect is explored further below.

In order to better probe and understand the dynamics of the system in specific parameter regimes, we analyse 
also the delay-time second-order photon correlation function, defined as

where nz(t) = z†(t)z(t) is the boson number in the modes z = a, b, c, d , and the operator products are written in 
normal order (::) and in time order T . With g (2)z (τ ) another quantum optical number-correlation phenomenon 
can be investigated. Specifically, in case of photons, it is referred to as photon antibunching if g (2)(0) < g(2)(τ ) , 
photon unbunching if g (2)(0) ≈ g (2)(τ ) , and photon bunching if g (2)(0) > g(2)(τ ) , which is usually defined for 
short or very short delay times τ72. It is worth noting that photon antibunching was first experimentally observed 
in the 1970s by Kimble, Dagenais, and  Mandel73. This was historically the first experimental demonstration of the 
quantum nature of an electromagnetic field, which cannot be explained classically, unlike photoelectric bunching.

Analogously, one can also investigate the antibunching and bunching of phonons and/or hybrid-mode bosons. 
Note that the term photon antibunching is often interchangeably used with the sub-Poissonian photon-number 

(14)g (2)z (τ ) = lim
t→∞

�T : nz(t + τ)nz(t) :�
�nz(t)�2

= lim
t→∞

�z†(t)z†(t + τ)z(t + τ)z(t)�
�z†(t)z(t)�2

,

Figure 3.  Second-order correlation functions g (2)i (0) (in the common logarithmic scale) versus the ratio of 
qubit-SMR coupling strength and the largest decay rate. Different predictions of the sub- and super-Poissonian 
boson number statistics, which can be interpreted, respectively, as the PB and PIT effects, of the photonic (a), 
phononic (b), and hybrid (c) modes assuming: (a) the SMR-driven system with parameters specified in Eq. (28) 
and (b) the QD-driven system with Eq. (29). All the shown Cases (i.e., 4, 6, 7, and 8) correspond to those listed 
in Table 1. The broken line at g = max κj is the border line between the strong- and weak-coupling regimes.

Table 1.  Different predictions of the super- and sub-Poissonian particle (i.e., photon, phonon or hybrid 
photon–phonon)-number statistics (PNS) corresponding, respectively, to PIT and PB, for the photon mode a, 
phonon mode b, and hybrid photon–phonon mode c, where 
fabc =

(

sgn[g (2)a (0)− 1], sgn[g (2)b (0)− 1], sgn[g (2)c (0)− 1]
)

 and the last column indicates each prediction of the 
mode a, b, and c in the specific colour that is used in our plots. All these cases can be seen in Fig. 10.

Case fabc PNS in mode a PNS in mode b PNS in mode c colour

1 (−,−,−) Sub-Poissonian Sub-Poissonian Sub-Poissonian Aquamarine

2 (−,−,+) Sub-Poissonian Sub-Poissonian Super-Poissonian Lime

3 (−,+,−) Sub-Poissonian Super-Poissonian Sub-Poissonian Light cyan

4 (+,−,−) Super-Poissonian Sub-Poissonian Sub-Poissonian Mint cream

5 (−,+,+) Sub-Poissonian Super-Poissonian Super-Poissonian Plum

6 (+,−,+) Super-Poissonian Sub-Poissonian Super-Poissonian Pink

7 (+,+,−) Super-Poissonian Super-Poissonian Sub-Poissonian Yellow

8 (+,+,+) Super-Poissonian Super-Poissonian Super-Poissonian Cyan
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 statistics21. However, to avoid confusion, one can refer to single-time (or zero-delay-time) photon antibunching 
if defined by g (2)(0) and two-time (or delay-time) photon antibunching if defined via g (2)(τ ).

In Fig. 4, we plotted g (2)(τ ) for the range [0, 1.5] of g/κmax . This range is also shown in Fig. 3a, where the 
examples of Cases 4 and 7 can be identified. As expected, one can see oscillations in the SMR and hybrid modes 
in Figs. 4a,c, respectively. These oscillations are induced by the competition between the qubit-SMR coupling 
g and the SMR-QD hopping f in our system. Apparently, by analysing g (2)(τ ) in the weak-coupling regime, the 
frequency of the oscillations is smaller than that in the strong-coupling regime, in which the oscillations are 
caused by both couplings g and f. Moreover in a very weak coupling regime, where g ≪ 1 oscillations occur due 
to the hopping strength f, with the period 2π/f 74. This means that, in the weak-coupling regime, also the coupling 
between the SMR and QD can generate oscillations in our system, where in this case the period of oscillations, 
which are induced by f = 5.5γ , is approximately equal to τ ≈ 0.036 , which coincides with the period deduced 
from the graph, as seen in Fig. 5c. These detrimental oscillations should be suppressed on a time scale longer 
than the SMR lifetime τ = 1/κa to enable boson antibunching to survive in the area of our interest.

Various combinations of correlations effects are shown in Fig. 5. All panels in Fig. 5 show that the photon 
mode a is super-Poissonian and bunched, while the hybrid mode c is sub-Poissonian and antibunched. How-
ever, the properties of the phonon mode b are different in every panel. Specifically, the mode b is in panel: 

Figure 4.  Delay-time second-order correlation functions: (a) g (2)a (τ ) for the photonic mode, (b) g (2)b (τ ) for 
the phononic mode, and (c) g (2)c (τ ) for the hybrid mode versus the coupling strength g and the delay time τ . 
We consider here the SMR-driven system with parameters specified in Eq. (28), which enable us to observe the 
single-photon resonances in the mode c. For clarity, all the values of the correlation functions ≥ 2 are truncated 
at 2.

Figure 5.  Delay-time second-order correlation functions g (2)i (τ ) for the SMR mode a, the QD mode b, and 
the hybrid mode c modes assuming: (a–c) the SMR-driven system specified in Eq. (28) with f = 5.5γ and 
κmax = κb = 6γ , and (d,e) the QD-driven system in Eq. (29) with κmax = 7.5γ , where we additionally set: 
(a) g = 1.3κmax = 7.8γ , (b) g = 1.1κmax = 6.6γ , (c) g = 0.2κmax = 1.2γ , (d) g = 0.7κmax = 5.25γ , and (e) 
g = 0.758κmax = 5.685γ.
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(a) super-Poissonian and unbunched [defined as g (2)b (0) ≈ g
(2)
b (τ ) for non-zero but short delay times τ ], (b) 

Poissonian and unbunched, (c) sub-Poissonian and unbunched, (d) super-Poissonian and bunched, and (e) 
Poissonian and bunched, as usually considered for very short delay times τ . Note that panels (a, b, c) are for the 
SMR-driven system, while the remaining panels (d, e) are for the QD-driven system, which are discussed in 
detail in the next section.

In particular, it is seen that by decreasing the coupling at g/κb = 1.1 in Fig. 5b, the QD mode b is unbunched 
with the Poissonian statistics, while the hybrid mode c exhibits antibunching g (2)(0) < g(2)(τ ) and the sub-
Poissonian statistics g (2)(0) < 1 , in both cases. The role of the auxiliary mode b is, in a sense, to convert the 
super-Poissonian into sub-Poissonian statistics in the mode c.

The destructive interference of both modes a and b, at the balanced linear coupler, can result in the sub-
Poissonian statistics of the hybrid modes. We observe this effect even in the weak-nonlinearity (or weak-cou-
pling) regime, which witnesses unconventional PB, as discussed in detail in “Methods”. It is worth noting that 
in this study we are aiming at observing g (2)(τ ) < 1 not only at τ = 0 , but also for non-zero delay times (e.g., 
τ ∈ [0, 0.1] ), as in standard experimental demonstrations of the boson antibunching statistics reported in, e.g., 
 Refs7,75. Thus, the cases shown in Fig. 4a,c can hardly be considered as convincing demonstrations of the sub-
Poissonian statistics, because of the oscillations, which occur in g (2)a,c (τ ) with increasing τ . More convincing 
demonstrations of these effects without such oscillations (or by considerably suppressing them) are presented 
in Figs. 6 and 7, as analysed in detail in the next section.

To explain the super-Poissonian photon-number statistics and photon bunching in the mode a for the system 
pumped in the SMR mode, let us analyse Fig. 5a with g ≈ κm concerning the anharmonicity of the energy levels 
in these cases.

The g term in Eq. (2) corresponds to the standard Jaynes–Cummings model with the familiar  eigenvalues62:

with the corresponding eigenstates:

which are often referred to as dressed states or dressed-state dublets, where θn = �n/�1 is the mixing angle, 
�1 = ωq − ωSMR is the detuning between the SMR and qubit. Moreover, �n = 2g

√
n+ 1 can be interpreted as the 

n-photon Rabi frequency on resonance, so, in particular, �0 = 2g is the vacuum Rabi frequency. Thus, the energy 
spectrum is clearly anharmonic, which is a necessary condition to observe PB. Note that the Jaynes-Cummings 
interaction can be effectively described in the dispersive limit (i.e., far off resonance) as a Kerr nonlinearity (for 
a detailed derivation see, e.g.,50), which is the standard nonlinearity assumed in many predictions of PB effects.

To demonstrate the anharmonic energy levels of the complete Hamiltonian H+ on resonance (see Fig. 2), we 
assume a weak drive coupling strength ηa . Given that, the system Hilbert space can be truncated. We assume that 
the polariton number is at most equal to two in this weak-drive regime. The ground state is |ψ0� = |0, 0, g� with 
the corresponding eigenvalue E0 = 0 . The three eigenvalues of the first manifold (with eigenstates containing a 
single polariton), as shown in Fig. 2b, are:

while the five eigenvalues of the second manifold (with eigenstates containing two polaritons), which are shown 
in Fig. 2c, read:

(15)E±n ≡ E(|n,±�) = nωSMR ±
1

2

√

�2
1 +�2

n

(16)
|n,+� ≡ cos

(

θn
2

)

|n�|e� + sin
(

θn
2

)

|n+ 1�|g�,

|n,−� ≡ − sin
(

θn
2

)

|n�|e� + cos
(

θn
2

)

|n+ 1�|g�,

(17)E
(1)
1,3 = �∓

√

g2 + f 2, E
(1)
2 = �,

Figure 6.  Same as in Fig. 4, but for the QD-driven system with parameters given in Eq. (29). We observe here 
single-PRs and the corresponding single-PB effects.
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where f1 =
√

3f 2(10g2 + 3f 2)+ g4  . In particular, by assuming f = 5γ  and g = 7.5γ  , the eigenener-
gies of the first and second manifolds are, respectively: (1) � , �± 9.01388γ ≈ �± 9γ  , and (2) 2� , 
2�± 5.82965γ ≈ 2�± 6γ , and 2�± 16.11725γ ≈ 2�± 16γ.

A simple way to probe the pumped mode is to record the second-order correlation g (2)(0) as a function of 
�SMR , where the pump frequency ωp is changing (see Fig. 8). To do so, we first consider the resonance case as 
ωSMR = ωm = ωq = ω in Eq. (8) and ω − ωp = � . As depicted in Fig. 8a, one can see local minima with negative 
values in log g (2)(0) for the three modes, which indicate Case 1 in Table 1, at �SMR/γ = ±9 , which correspond to 
� = ±

√

g2 + f 2 ≈ ±9γ , given Eq. (17). This means that the pump frequency is located at the two dressed state 
dublets with energies E(1)1  and  E(1)3  . And we are off-resonance from the second energy manifold, which implies 
the possibility of observing PB at these frequencies.

Furthermore, our simulations predict a maximum of log g (2)(0) ≈ 3 showing a strong super-Poissonian sta-
tistics in the three modes (corresponding to Case 8 in Table 1) as �SMR → 0 . In particular, at �SMR/γ ≈ ±6 , the 
pump frequency is near E(2)1 ≈ 6 and E(2)4 ≈ −6 , respectively, of the second manifold, in which the probability of 
the two-photon resonance is maximised, as a signature of PIT. It signifies that the pump is in resonance with one 

(18)

E
(2)
1,2 =

1

2

[

4�−
√

2(3g2 + 5f 2 ± f1)

]

,

E
(2)
3 = 2�,

E
(2)
4,5 =

1

2

[

4�+
√

2(3g2 + 5f 2 ∓ f1)

]

,

Figure 7.  (a–d) Delay-time second-order correlation functions g (2)i (τ ) (in the logarithmic scale) for the SMR 
mode a, the QD mode b, and the hybrid mode c modes in the QD-driven system assuming that g/κmax is equal 
to: (a) 3, (b) 2.1, (c) 3.8, and (d) 2.2. The four different predictions of correlations for the QD mode b correspond 
to all the cases listed in Table 2. (e,f) Same as in Fig. 4, but for the parameters given in Eq. (30). Note that panels 
(a–d) show the cross-sections of the 3D plot in (f) at the values of g/κmax marked by broken lines.

42 Hybrid Photon-Phonon Blockade



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17655  | https://doi.org/10.1038/s41598-022-21267-4

www.nature.com/scientificreports/

of the levels in the second manifold of the hybrid system energy levels, here specifically E(2)1  and E(2)4  . One can see 
in Fig. 8, peaks (global maxima in the analysed range) of log g (2)n (0) > 0 for n = a, b, c at �SMR = 0 . In particular, 
the probability of absorbing a single photon decreases here. However, if a photon is absorbed, it enhances the 
probability of capturing subsequent photons, this effect produces the super-Poissonian statistics, which is due 
to the fact that the probability of observing a single photon is also very small ( P10g ≪ 1 ) and smaller than the 
probability of observing two  photons6,76.

It is seen that, by tuning the drive frequency to the transition E2 − E0 in the energy spectrum of the total non-
linear system, the probability of admitting two photons increases. This results in the super-Poissonian statistics, 
which is opposite to the case, when the drive frequency is tuned to the transition E1 − E0 , when the probability 
of admitting subsequent photons decreases resulting in PB.

By assuming the off-resonance condition, ωSMR  = ωm  = ωq , we show in Fig. 8b the correlation functions for 
the three modes (a, b, c) as a function of �SMR in the case, when the drive is tuned in-between the dressed state 
eigenenergies of the hybrid system.

The PB and PIT effects observed in Fig. 8 can be explained by considering some measures of the distances 
from resonances, as shown in Fig. 9a. The distances of the single-, two-, and three-photon resonances (PRs) are 
defined here, respectively, as:

where ωp is the frequency of the pump that is tuned with respect to the energy of the hybrid system. Here ω(n)
i  

are the frequencies (labelled with subscript i) in the nth manifold, so the minimalization is performed over ω(n)
i  

for a given manifold n. Figure 9 shows the resonance distances versus �SMR , where ωp is tuned with respect to 
the energy of the whole system. The dip in g (2)(0) at �SMR/γ = 10 (see Fig. 8b), which is characteristic for PB, 
corresponds to the resonance for a single excitation, as seen from D1PR , and is off-resonance for higher excita-
tions at that frequency (see Fig. 9a). The second-order correlation function g (2)c (0) for the hybrid mode has a 
dip as a signature of PB around �SMR/γ = −3.4 , while the modes a and b exhibit the super-Poissonian statistics 
(indicating PIT), as shown in Fig. 8b. This effect is witnessed as a dip in D1PR and it is off-resonance for D2PR and 

(19)D1PR = min
i

|ωp − ω
(1)
i |2, D2PR = min

i
|2ωp − ω

(2)
i |2, D3PR = min

i
|3ωp − ω

(3)
i |2,

Figure 8.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR (in units of the qubit decay 
rate γ ) between the drive and SMR for: (a) the resonance case ωSMR = ωm = ωq (so also �SMR = �m = �q ) 
and (b) the nonresonance case ωSMR  = ωm  = ωq , where ωb/γ = 1560 MHz. Note that by changing the pump 
frequency, different detunings appear with respect to the modes a and b, and qubit. We set g = 7.5γ and other 
parameters are given in Eq. (28). The numbering of the coloured regions correspond to the cases listed in 
Table 1.

Figure 9.  Resonance distances, as defined in Eq. (19), versus the frequency detuning �SMR (in units of the qubit 
decay rate γ ) between the drive and SMR for: (a) the SMR-driven system with parameters specified in Eq. (28) 
with g = 7.58γ and (b) the QD-driven system with Eq. (29) with g = 4.5γ.
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D3PR , as illustrated in Fig. 9a, while the modes a and b exhibit PIT. This type of unconventional PB is discussed 
further in sections below.

By decreasing �SMR/γ from 0 to − 2, the correlation function g (2)a (0) for the SMR mode in Fig. 8a resembles 
a shoulder in shape. We observe PIT at this point or region, as expected from our findings in the resonance-
distant diagram in Fig. 9a. Indeed, there is a dip in D2PR for higher resonances at this point, which explains the 
occurrence of PIT.

Let us consider now �SMR/γ → 3 in Fig. 8b for the pump frequency in resonance with the qubit, �q = 0 , 
which is close to the resonance frequency of the hybrid mode. In this case multi-photon transitions are induced, 
which result in PIT at �SMR/γ = 3 , and we observe a peak in log g (2)(0) > 0 at this frequency in Fig. 8b. Clearly, 
we are here in resonance with higher-energy levels, while the drive strength is very small, ηa/γ = 0.7 . The prob-
ability of observing a single photon is also small as the peak for �c = 0 , but if a single photon is absorbed, then 
the probability of capturing subsequent photons increases, as for PIT.

The analysed system parameters are found by optimising our system to observe the super-Poissonian statistics 
in the SMR and QD modes. At the sub-Poissonian statistics area of g (2)(0) , it is possible to observe in Fig. 14 (in 
“Methods”) that g (3)(0) > 1 and/or g (4)(0) > 1 , which are signatures of higher-order photon/phonon resonances 
and multi-PIT (see “Methods”). Actually, by calculating the second-order correlation function to witness the 
PB and PIT phenomena, higher-order correlation functions can be used to test whether a given effect is indeed: 
(1) single-PB or single-PIT, (2) multi-PB or multi-PIT, or (3) nonstandard versions of these effects, as discussed 
in “Methods” and, e.g., in Refs.29,53. As mentioned above, these parameters allow us to achieve the sub-Poissonian 
statistics for a relatively long delay times.

Hybrid‑mode blockade in the QD‑driven system
In this section, we analyse steady-state boson-correlation effects, including the hybrid-mode blockade and PIT, 
in the QD-driven dissipative system, as described by the Hamiltonian H ′′ and the master equation (12) for the 
parameters specified mostly in Eqs. (29) and (30).

To eliminate or at least to suppress the undesired oscillations in g (2)(τ ) , we assume in this section that 
our system is driven classically at the QD. Moreover, we assume that the SMR is in the bad-cavity regime, as 
κSMR ≫ g2/κSMR ≫ γ71. So, we apply the effective system Hamiltonian in the rotating frame, as given by Eq. (9). 
Even if the lifetime τSMR = 1/κSMR of the SMR is much shorter than that assumed in the SMR-driven system, 
which was discussed in the former section, the hybrid mode, as we show below, reveals no oscillations for quite 
long delay times, which is due to driving the QD.

To study boson-number statistics of our system, we compute the second-order correlation function g (2)(0) 
for the optimised parameters, which enables us to demonstrate Cases 4, 6, and 7 of Table 1 in Fig. 3b. In Case 7, 
which is of our special interest, the modes a and b are super-Poissonian, as log g (2)(0) > 0 , while the hybrid 
mode c is sub-Poissonian, as log g (2)c (0) < 0 . By increasing the coupling g between the SMR and qubit, the mode 
b becomes sub-Poissonian, as being affected by the nonlinearity of the mode a.

To check the second criterion for PB, the second-order correlation function g (2)(τ ) is considered below. 
Figure 6 shows g (2)(τ ) corresponding to g (2)(0) plotted in Fig. 3b showing Cases 4, 6, and 7. As expected, boson 
antibunching is observed for the hybrid mode, as shown in Fig. 6c, while the SMR mode reveals bunching, 
as illustrated in Fig. 6a. Moreover both phonon antibunching and bunching, in addition to unbunching [i.e., 
g
(2)
b (0) ≈ g

(2)
b (τ ) for τ � 0 ], have been observed in the studied region of the QD mode, as shown in Fig. 6b. It is 

clear from Fig. 6 that the antibunching of bosons in the three modes survives in some specific coupling regime 
(around g = 0.7κm ) for a relatively long delay time τ > 1/κ and oscillations in g (2)c (τ ) are absent in the hybrid 
mode c. Moreover, boson bunching is observed, when g (2)a (τ ) drops rapidly for delay times greater than the cavity 
photon lifetime, as considered in Fig. 5d,e.

To understand the delay-time dependence of the hybrid mode c, we consider Eq. (9), when the SMR, QD, 
and qubit have the same resonance frequency, ωSMR = ωm = ωq = ω and g = 4.5γ . As illustrated in Fig. 10a, 
there are three dips (local minima) in g (2)b (0) < 0 for the mode b of the QD, where we assumed g < min{κa, κb} 
and f > g . For these parameters, only a weak nonlinearity is induced in the mode b. Thus, the anharmonicity of 
energy levels cannot explain the PB effect observed as a dip at these three dips (see Fig. 9b). Actually, these dips 
in log g (2)b (0) are due to single-photon resonant transitions, which correspond to unconventional PB, as explained 
by the non-Hermitian effective Hamiltonian method in the next section and in “Methods”.

Figure 10c shows log g (2)i (0) for the three modes as a function of �SMR . In this case, we assume that the reso-
nance frequencies of the SMR, QD, and qubit are not the same, and the detuning of each mode with respect to 
ωp is different. It is shown that, when �SMR/γ → 2 , multiphoton transitions (and so PIT or multi-PB) can be 
induced in the mode a, where the pump frequency is in the resonance with the qubit, ωp = ωq . This effect is 
seen in Fig. 14 (in  “Methods”) corresponding to a local maximum in higher-order moments g (3)i (0) and g (4)i (0) . 
Likewise the resonance case, unconventional PB in the modes b and c can be explained by the method applied 
in the next section.

In Fig. 11, we study how the second-order correlation functions reveal the PIT regime, which corresponds to 
Case 8 in Table 1, as a function of the SMR-pump strength ηa [in panels (a) and (c)] and the QD-pump strength 
ηb [in panels (b) and (d)]. The hybrid mode c is super-Poissonian for all the shown cases and pump strengths. 
The modes a and b are super-Poissonian [except the mode a in panel (b)] for small pump strengths ηa,b . By 
increasing the driving power at least to some values, which can be identified in the figures for specific modes, 
we observe that the correlation functions g (2)(0) also decrease for all the modes (except the mentioned case). 
This property confirms the nonclassicality of the predicted PIT in the hybrid system according to an additional 
criterion of ‘true’ PIT of Ref.14.
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Unconventional blockade explanation via non‑Hermitian Hamiltonian approach
In this section, we apply the analytical mathematical formalism of Ref.45, based on an non-Hermitian Hamilto-
nian, to identify the quantum interference effect that is responsible for inducing unconventional PB, i.e., strongly 
sub-Poissonian statistics in the weak-coupling regime or the weak-nonlinearity regime. We stress that this is an 
approximate approach, where the effect of quantum jumps is  ignored77,78.

By considering the system studied in the former section under the weak-pump condition, we can truncate 
the Hilbert spaces for the modes a and b and the qubit at their two excitations in total. This allows us to con-
sider the total-system Hilbert space of dimension 3× 3× 2 = 18 . Moreover, the weak-pump condition implies 
that C00g ≫ C10g ,C01g ,C00e ≫ C11g ,C10e ,C01e ,C20g ,C02g . Thus, the steady-state of the coupled system can be 
expressed as

where |na, nb, g/e� is the Fock state with na photons in the SMR, nb phonons in the QD, and the lower ( |g� ) or 
upper ( |e� ) state of the qubit. The effective non-Hermitian Hamiltonian of the system can be written as

where H ′′ is given by Eq. (9). Analogously, one can consider the non-Hermitian Hamiltonian with H ′ , given by 
Eq. (8).

In the weak-pump regime, the mean number of photons and phonons in the SMR and QD can be approxi-
mated as �na� ≈ |C10g |2 and �nb� ≈ |C01g |2 , respectively. As derived in detail in “Methods”, the second-order cor-
relation functions for generated photons and phonons, under the same weak-pump conditions, can be given by:

where the superposition coefficients Cn,m,g are given in Eqs. (39) and (41).

(20)
|�abq(t)� = C00g |00g� + e−iωd t

(

C00e|00e� + C10g |10g� + C01g |01g�
)

+ e−2iωd t
(

C10e|10e� + C01e|01e� + C11g |11g� + C20g |20g� + C02g |02g�
)

,

(21)Heff = H ′′ − i
κa

2
a†a− i

κb

2
b†b− i

γ

2
σ+σ−,

(22)

g (2)a (0) =
�a†a†aa�
�a†a�2

≈
2|C20g |2

|C10g |4
,
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(2)
b (0) =
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2|C02g |2
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Figure 10.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR (in units of the qubit decay 
rate γ ) between the drive and SMR for the QD-driven system for: (a,b) the resonant case with ωSMR = ωm = ωq 
(so also �SMR = �m = �q ), and (c) the nonresonant case with ωSMR  = ωm  = ωq . Parameters are set in: Eq. (29) 
with g = 4.5γ for (a,c), and Eq. (30) with g = 9.5γ for (b). Eight different predictions, which correspond to all 
the cases listed in Table 1, are marked for the sub- and super-Poissonian number statistics in the photonic (a), 
phononic (b), and hybrid photon–phonon (c) modes.
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The hybrid photon–phonon modes, which are defined in Eq. (10), are the output modes of the balanced linear 
coupler with the SMR and QD modes at its inputs. As shown in “Methods”, we find, analogously to Eq. (22), the 
second-order correlation function for the hybrid mode c reads:

where the superposition coefficients C′
n,m,e/g are given in Eqs. (40) and (41), and the sixth formula in Eq. (34).

This approach enables us to explain unconventional PB generated in the hybrid system, which is the result 
of a destructive quantum interference effect that assures, together with other conditions, that the probability 
amplitude of having two photons in the SMR and QD is negligible. This method can also be used to find some 
optimal parameters to observe PB in the system.

Figure 12 presents a comparison of our predictions based on the precise numerical solutions of the master 
equation in Eq. (12), as shown by thin curves, with those calculated from Eqs. (22) and (23) using the non-
Hermitian Hamiltonian approach, as shown by thick curves. The locations of the maxima and minima of the 
correlation functions are found similar according to both formalisms. However, these extremal values can dif-
fer more distinctly, especially for the two global minima in the sub-Poissonian statistics of the mode b and the 
super-Poissonian maximum of the mode a. The differences result from the effect of quantum jumps, which 
are properly included in the master-equation approach and totally ignored in the non-Hermitian Hamiltonian 
approach (Fig. 12).

Different types of blockade and tunnelling effects
The sub-Poissonian statistics of a bosonic field, as described by g (2)(0) ≪ 1 , is not a sufficient criterion for 
observing a ‘true’ PB, which can be a good single-photon or single-phonon source. In fact, other criteria, such 
boson antibunching, g (2)(0) < g (2)(τ ) , and the sub-Poissonian statistics of higher-order correlation functions, 
g (n)(0) ≪ 1 , should also be satisfied (see “Methods”). Anyway, most of the studies of PB, and especially those on 
unconventional PB, are limited to testing the second-order sub-Poissonian statistics described by g (2)(0) < 1.

As explicitly discussed in Refs.21,72,79,80, photon antibunching and sub-Poissonian statistics are different pho-
ton-number correlation effects. So, the four cases listed in Table 2, can be considered as different types of PB 
and PIT. We show that all these effects can be observed in the studied system. For brevity, Table 2 is limited to 
phononic effects. PB, as defined in Case I and often referred to as a ‘true’ PB, can be a good single-photon sources; 
but, as mentioned above, other higher-order criteria should also be satisfied.

To show these four different effects, we use the parameters set in Eq. (30), where κb ≪ κa at the κb = 0.002 γ , 
which indicates that the quality factor is Q ≈ 200, and so ηb/κb ≈ 100 in the case of a strong pump driving the 
QD mode with ηb = 0.22 γ . Apart from the previously mentioned phenomena, such as observing the super-Pois-
sonian statistics and bunching in the SMR and QD modes, while a hybrid mode exhibiting the sub-Poissonian 

(23)g (2)c (0) =
�c†c†cc�
�c†c�2

≈
2|C′

20g |2

|C′
10g |4

,

Figure 11.  Second-order correlation functions log g (2)i (0) versus the drive strengths: (a,c) ηa for the SMR-
driven system and (b,d) ηb for the QD-driven system. Parameters are given in: (a) Eq. (28) with g = 7.5γ 
and ωp = 1554γ , which implies �q = −3γ , �b = 6γ , �a = 0 ; (b) Eq. (29) with ωp = 1568γ , which implies 
�q = 0 , �b = −8γ , and �a = 2γ ; (c) Eq. (28) with g = 7.5γ and ωp = 1551γ , which implies �q = 0 , 
�b = 9γ , and �a = 3γ ; and (d) Eq. (29) with ωp = 1570γ , which implies �q = −2γ , �b = −10γ , and �a = 0.
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statistics and boson antibunching, we find the four types of PB/PIT in the mode b in different coupling regimes, 
as shown in Table 2, which includes the examples of specific experimentally feasible values of g/κa.

Case I corresponds to a stronger form of PB, which we refer to as a ‘true’ PB, when the nonclassical nature of 
bosons is revealed by both their antibunching and sub-Poissonian statistics. Case II corresponds to a stronger 
form of PIT, which can be called a ‘true’ PIT, when bosons exhibit both classical effects: the super-Poissonian 
statistics and bunching. In Case III, one can talk about a weaker form of PIT or, equivalently, another weaker type 
of PB, as such bosons are characterised by the classical super-Poissonian statistics and their nonclassical nature is 
revealed by antibunching. Case IV represents another weaker form of PB or, equivalently, of PIT, which is char-
acterised by the nonclassical sub-Poissonian statistics of classically bunched bosons. These results imply that one 
cannot say in general that the antibunching of bosons leads to their sub-Poissonian statistics and vice  versa21,79.

Therefore, g (2)(τ ) > g (2)(0) does not necessarily imply g (2)(0) < 1, as in Case III, which can be seen in 
Fig. 7c,f. In addition, as another example related to Case IV, let us consider a Fock state |n� with n ≥ 2 , for which 
g (2)(0) = 1− 1/n , such that if n = 2 then g (2)(0) = 0.5, so g (2)(0) < 1 and it is not accompanied by boson 
antibunching, but bunching in this case.

Our focus in this paper is on the generation of PB in the hybrid mode, while the other two modes exhibit PIT. 
Note that this a very special case of Table 1, which shows that eight combinations of boson number correlation 
phenomena in the modes a, b, and c can be generated in our system, as specified by the numbered coloured 
regions in various figures corresponding to the cases in Table 1. Thus, we found all the eight possible combina-
tions of the PIT and PB effects in the hybrid system for the parameters specified in Eqs. (28), (29), and (30).

Detection of the hybrid‑mode correlation functions
Here, we describe two detection schemes for measuring the intensity autocorrelation functions for the hybrid 
photon–phonon modes c and d, as shown in Fig. 13.

Figure 12.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR in units of γ for the QD-driven 
system for the resonant case with ωSMR = ωm = ωq = γ × 1560 MHz (so also �a = �b = �q ). The thin 
curves in each mode are obtained using the master equation in Eq. (12) and the thick curves are obtained 
from the non-Hermitian Hamiltonian method using Eqs. (22) and (23). Parameters are set in Eq. (29) except 
g = 4.5γ and κa = κb = 6γ.

Table 2.  Different single- and two-time phonon-number correlation effects induced in the QD mode, which 
can be observed for different values of the qubit-SMR coupling strength g with respect to the SMR decay rate 
κa , e.g., by setting the other parameters to be the same as in Eq. (30). Here, PNS stands specifically for the 
phonon-number statistics of the mode b. Note that we also found examples of Cases I, II, and IV for the modes 
a and c using the same system parameters as for the mode b.

Case Effect Single-time correlations Two-time correlations Example of g/κa Figure

I Stronger form of PB
(‘true’ PB)

Sub-Poissonian PNS
g
(2)
b (0) < 1

Phonon antibunching
g
(2)
b (τ ) > g

(2)
b (0)

3.0 7(a)

II Stronger form of PIT
(‘true’ PIT)

Super-Poissonian PNS
g
(2)
b (0) > 1

Phonon bunching
g
(2)
b (τ ) < g

(2)
b (0)

2.1 7(b)

III Weaker form of PIT or PB
Super-Poissonian PNS
g
(2)
b (0) > 1

Phonon antibunching
g
(2)
b (τ ) > g

(2)
b (0)

3.8 7(c)

IV Weaker form of PB or PIT
Sub-Poissonian PNS
g
(2)
b (0) < 1

Phonon bunching
g
(2)
b (τ ) < g

(2)
b (0)

2.2 7(d)
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Figure 13.  Schematics of the proposed detection schemes: (a) General scheme for the generation of the 
photonic mode a, phononic mode b, and hybrid modes c, d, and their detection in the measurement unit M, 
which is shown in specific implementations using: (b) detection method 1 and (c) detection method 2. Key: 
ULC(θ) stands for the linear-coupler transformation, which in special cases corresponds to multi-level SWAP 
(for θ = π/2 ) and Hadamard-like (for θ = ±π/4 ) gates; BS is the balanced beam splitter, which corresponds 
to ULC(π/4) , M ′

a ( M ′
b ) is a measurement unit for detecting photons (phonons), CCL is a coincidence and count 

logic unit, HBT stands for the standard Hanbury–Brown and Twiss optical interferometer. Mode e′ ( e′′ ) is in the 
photonic (phononic) vacuum state.

Figure 14.  Correlation functions log g (n)i (0) of various orders [second (solid curves), third (dashed), and 
forth (dot-dashed)] versus the detuning between the drive and SMR (in units of the qubit decay rate γ ) for 
the QD-driven system for: (a) the photonic mode a, (b) the phononic mode b, and (c) the hybrid mode c. All 
parameters and colourful regions are the same as in Fig. 10a.
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The measurements of g2(τ ) for the photonic mode a and the phononic mode b are quite standard and are 
usually based on the Hanbury-Brown and Twiss (HBT) optical interferometry and its generalised version for 
 phonons81, respectively. However, the measurement M (as schematically shown in Fig. 13a) of g (2)(τ ) , or even 
g (2)(0) , for the hybrid photonic-phononic modes c and d is quite challenging if applied directly. Here we propose 
two detection methods, as shown in Fig. 13b,c, for indirect measuring of g (2)c,d (0).

The first operation of the measurement unit M in both schemes is a linear-coupler transformation of the 
hybrid modes (c, d) into (a′, b′) , which, assuming that the process is perfect, should be equal to the original 
purely photonic (a) and phononic (b) modes.

We consider a linear coupler (formally equivalent to a beam splitter) described by a unitary operation ULC(θ) , 
which transforms the input operators a and b into:

for a real parameter θ , where T = cos2 θ and R = 1− T = sin2 θ are the transmission and reflection coefficients 
of the linear coupler, respectively. The studied hybrid modes are the special cases of Eq. (24) for c ≡ c(θ = π/4) 
and d ≡ d(θ = π/4) . Clearly, the first transformation ULC(−π/4) in Fig. 13b,c, is the transformation inverse 
to that in Fig. 13a.

Detection method 1 based on measuring photons and phonons. The correlation functions g (2)c,d (0) 
in the hybrid photon–phonon modes can be measured indirectly, as indicated in Fig. 13b, by measuring the 
observables:

where k, l,m, n = 0, 1, 2 , by using the relations:

and analogous relations for the hybrid mode d. The measurement units M ′
a and M ′

b in this method, as shown in 
Fig. 13b, describe the measurements of photons and phonons, respectively. It is seen that, in this approach, to 
determine g (2)c,d (0) , one has to measure the following observables: f01 , f10 , f11 , f02 , f20 , f12 , f21 , and f22 . Almost 
each observable fkl should be measured simultaneously with a specific observable gmn , which can be realised by 
a coincidence and count logic (CCL) unit in Fig. 13b.

The measurements of all the required photonic observables fkl can be performed by using, e.g., the 
Shchukin–Vogel method, which is based on balanced homodyne correlation  measurements82. According to 
that method, a photonic signal is superimposed on a balanced beam splitter with a local oscillator, which is in a 
coherent state |α = |α| exp(φ)� with a tunable phase φ . A desired mean value of the observable fkl can be obtained 
by linear combinations of the coincidence counts registered by specific detectors for different local-oscillator 
phases φ . This part of the method corresponds to a Fourier transform. The simplest nontrivial configuration, 
which enables the measurement of the observables f10 , f01 , f20 , and f02 , requires four detectors and three balanced 
BSs, where additional input ports are left empty, i.e., allowing only for the quantum vacuum noise. By replacing 
the four detectors with four balanced BSs with altogether eight detectors at their outputs, one can measure any 
observable fkl for k + l ≤ 4 . These include the desired observables f21 , f12 , and f22 . Of course, the observable f22 
can be measured in a simpler way via the HBT interferometry. The measurement of phononic observable gmn can 
be performed analogously just by replacing the balanced BSs by balanced phonon-mode linear couplers and using 
phonon detectors as, e.g., in Ref.81. The measurement of two-mode moments 〈fklgmn〉 is, at least conceptually, 
a simple generalisation of the single-mode methods relying on proper coincidences in photonic and phononic 
detectors. Note that a multimode optical version of the original single-mode method was described in Ref.83.

Detection method 2 based on measuring only photons. Figure 13c shows another realisation of 
the measurement unit M, to determine g (2)c,d (0) , and even g (2)c,d (τ ) . This method is, arguably, simpler and more 
effective than detection method 1, because it is based on measuring only photons and using standard HBT inter-
ferometry. Our approach was inspired by Ref.48, where the measurement of single-mode phonon blockade was 
described via an optical method instead of a magnetomotive technique, which was described in Ref.47, where 
phonon blockade was first predicted.

Our measurement setup realises the following three transformations: (1) converting the phononic mode b′ 
into a photonic mode b′′ , (2) mixing the optical modes a′ and b′′ on a balanced BS to generate the modes c′ and 
d′ , which, in an ideal case, have the same boson-number statistics as the original hybrid photon–phonon modes c 
and d; and finally, (3) applying the conventional optical HBT interferometry for these two optical modes. In unit 
(1), this conversion corresponds to a multi-level SWAP gate, which can be implemented by a photonic–phononic 
linear coupler for θ = π/2, assuming that the auxiliary input mode e′ is in the photonic vacuum state, while the 
output mode e′′ is in the phononic vacuum state. In unit (3), the balanced BS action on the optical modes a′ and 

(24)
c(θ) = U†

LC(θ)aULC(θ) = a sin θ + b cos θ ,

d(θ) = U†
LC(θ)bULC(θ) = a cos θ − b sin θ ,

(25)fkl = (a†)kal , gmn = (b†)mbn,

(26)�c†c� =
1

2

(

�f11� + �g11� + �f01g10� + �f10g01�
)

,

(27)

�c†2c2� =
1

4

(

�f22� + 4�f11g11� + �g22� + 2�f01g21� + 2�f10g12� + �f20g02� + �f02g20� + 2�f21g01� + 2�f12g10�
)

,
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b′′ in Fig. 13c corresponds to the transformation of the balanced linear coupler on the photonic (a) and phononic 
(b) modes, as shown in Fig. 13a.

Clearly, the linear-coupler transformation ULC(θ) is applied not only to the modes (a, b), but also to other 
modes. Thus, Eq. (24) should be adequately modified by replacing (a, b) by (c, d), (e′, b′) , and (a′, b′′) . For brevity, 
we omit their explicit obvious definitions here. Note that ULC(π/2) and ULC(π/4) correspond to a multi-level 
SWAP and Hadamard-like gates, respectively; while the balanced BS in Fig. 13c corresponds to ULC(π/4).

Discussion
We proposed a novel type of boson blockade, as referred to as hybrid photon–phonon blockade, which is a 
generalisation of the standard photon and phonon blockade effects. We predicted the new effect in a hybrid 
mode obtained by linear coupling of photonic and phononic modes. We described how hybrid photon–phonon 
blockade can be generated and detected in a driven nonlinear optomechanical superconducting system. Spe-
cifically, we considered the system composed of linearly coupled microwave and mechanical resonators with a 
superconducting qubit inserted in one of them.

We studied boson-number correlations in the photon, phonon, and hybrid modes in the system. By analysing 
steady-state second-order correlation functions, we found such parameter regimes of the system for which four 
different types of boson blockade and/or boson-induced tunnelling can be observed. Thus, we showed that bosons 
generated in the studied system can exhibit the sub-Poissonian (or super-Poissonian) boson-number statistics 
accompanied by boson antibunching in some cases or bunching in others. These results can be interpreted as 
four different types of blockade or tunnelling effects, as summarised in Table 2.

By tuning the pump frequency with respect to the energy levels of the hybrid system, which is driven via the 
SMR, we showed that it is possible to observe PB and PIT that can be explained by a large energy-level anhar-
monicity in the strong-coupling (or large-nonlinearity) regime. However, the time evolution of the second-order 
correlation function g (2)(τ ) oscillates due to the coupling g between the SMR and qubit as well as the hopping 
f between the SMR and QD. We showed that it is possible to induce PB in the hybrid mode c that survives for 
much longer delay times by driving the QD instead of the SMR.

We also predicted unconventional PB in the three modes in the weak-coupling (or weak-nonlinearity) regime 
using a non-Hermitian Hamiltonian approach based on neglecting quantum jumps. Our analytical approximate 
predictions are in a relatively good agreement with our precise master-equation solutions (including quantum 
jumps).

Moreover, as summarised in Table 1, we showed the possibility to observe eight different combinations of 
either PB or PIT in the three modes (a, b, and c) in different coupling regimes of this system. Thus, in particular, 
we found that the tunnelling effects in the photonic and phononic modes can lead, by their simple linear mixing, 
to the hybrid photon–phonon blockade effect.

Finally, we discussed two methods of detecting hybrid-mode correlations. One of them is based on measuring 
various moments of photons and phonons via balanced homodyne correlation measurements. While the other 
method is based on converting phonons of the hybrid mode into photons, by using a linear coupler acting as a 
multi-level SWAP gate, and then applying the standard optical HBT interferometry.

We believe that our study of the interplay between photons and phonons can lead to developing new 
experimental methods for controlling and testing the quantum states of mechanical systems with atom-cavity-
mechanics polaritons. We hope that our work can also stimulate research on quantum engineering with hybrid 
photon–phonon modes.

Methods
Parameters used in our simulations. Our figures, as indicated in their captions, are plotted for the SMR-
driven dissipative system described by the Hamiltonian H ′ , given in Eq. (8), assuming:

and for the QD-driven dissipative system for the Hamiltonian H ′′ , given in Eq. (9), assuming either

or

where γ = 10π MHz. Minor modifications of these parameters are specified in figure captions.

Higher‑order correlation effects. Here we briefly study the kth-order boson-number correlation func-
tions g (k)z (0) , as defined in Eq. (13) for k = 3, 4, in comparison to the standard second-order function g (2)z (0) for 
the photon ( z = a ), phonon (b), and hybrid photon–phonon (c) modes.

Figure 14 shows our results for g (3)z (0) (dashed curves) and g (4)z (0) (dot-dashed curves) in comparison to 
g
(2)
z (0) (solid curves) for z = a, b, c in corresponding panels. Note that the same curves for g (2)z (0) are also shown 

in Fig.  10a, but we repeat them for a better comparison with g (3,4)z (0) . It is seen that the eight cases of Table 1 can 
be divided into a number of subcases depending on g (3)z (0) and g (4)z (0) . Such a classification is quite complex as 
includes, in principle, 83 = 512 cases. So, instead of that, we present another much-simplified classification of 
eight cases only, as shown in Table 3 using the auxiliary function g234 defined as:

(28)A1 = {�a = −3γ ,�b = 3γ ,�q = −6γ , f = 5γ , ηa = 0.7γ , ηb = 0, κa = 1.5γ , κb = 6γ },

(29)A2 = {�a = 5γ ,�b = −5γ ,�q = 3γ , f = 7γ , ηa = 0, ηb = 0.5γ , κa = 7.5γ , κb = 6γ },

(30)A3 = {�a = 4γ ,�b = −4γ ,�q = 7γ , f = 6.4γ , ηa = 0, ηb = 0.22γ , κa = 3.5γ , κb = 0.002γ },

50 Hybrid Photon-Phonon Blockade



19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17655  | https://doi.org/10.1038/s41598-022-21267-4

www.nature.com/scientificreports/

In particular [−,−,−] means that the second-, third- and fourth-order sub-Poissonian photon number-statistics 
are observed in a given mode, which are the necessary conditions for observing a ‘true’ single-PB. This case can 
be easily identified in both panels of Fig. 14. One can also find the case when [+,+,+] , which corresponds to the 
super-Poissonian statistics of orders k = 2 , 3, and 4, which might be interpreted, as the induced tunnelling by one, 
two, and three photons. However, we can also find intermediate four out of six cases, which can be interpreted 
as non-standard types single-PB and/or single-PIT, and in some cases can be identified as multi-PB11,26,29,30,53. 
However, a detailed classification of such multi-PB and their interpretation is not at the focus of this paper. The 
presented results show only the possibility of generating in our system a plethora of various photon–phonon 
correlation effects, which can be revealed by higher-order correlation functions for the experimentally feasible 
parameters.

Analytical approach via non‑Hermitian Hamiltonian in Eq. (21). Here, we follow the method of 
Ref.45 to derive the coefficients Cn,m,k and C′

n,m,k for n,m ∈ 0, 1, 2 and k = e, g , which appear in Eqs. (22) and (23).
First we recall that the balanced linear coupler (or a balanced beam splitter) transformation, which leads to 

Eq. (24), if applied to the input Fock states |na, nb� for na + nb ≤ 2 yields:

 So, for the input state |�abq(t)� , given in Eq. (20), the output state of the balanced linear coupler can be repre-
sented as follows:

where the superposition coefficients are:

(31)g234 =
[

sgn log g (2)z (0), sgn log g (3)z (0), sgn log g (4)z (0)
]

.

(32)
|10� →

1
√
2
(|10� − |01�), |01� →

1
√
2
(|10� + |01�), |11� →

1
√
2
(|20� − |02�),

|02� →
1

2
(|20� +

√
2|11� + |02�), |20� →

1

2
(|20� −

√
2|11� + |02�).

(33)
|�cdq(t)� = C00g |00g� + e−iωd t

(

C00e|00e� + C′
10g |10g� + C′

01g |01g�
)

+ e−2iωd t
(

C′
10e|10e� + C′

01e|01e� + C′
11g |11g� + C′

20g |20g� + C′
02g |02g�

)

,

(34)

C′
10g =

1
√
2
(C10g + C01g ),

C′
01g =

1
√
2
(C10g − C01g ),

C′
10e =

1
√
2
(C10e + C01e),

C′
01e =

1
√
2
(C10e − C01e),

C′
11g =

1
√
2
(C20g − C02g ),

C′
20g =

1

2
(C20g +

√
2C11g + C02g ),

C′
02g =

1

2
(C20g −

√
2C11g + C02g ).

Table 3.  Different predictions of the nth-order super- and sub-Poissonian statistics with n = 2, 3, 4 for the 
photon ( z = a ), phonon (b), and hybrid photon–phonon (c) modes, where g234 is defined in Eq. (31). The 
cases marked with 

√
 can be identified under both (1) nonresonance conditions, as shown in Fig. 14b, and (2) 

resonance conditions, as shown in Fig. 14a, except the case marked with ∗.

Case g234 Mode a Mode b Mode c

1 (−,−,−)
√ √ √

2 (−,−,+) ×
√ √∗

3 (−,+,−) × × ×
4 (+,−,−)

√ √ √

5 (−,+,+) ×
√ √

6 (+,−,+) × × ×
7 (+,+,−)

√ √ √

8 (+,+,+)
√ √ √
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We can calculate the coefficients Cna ,nb ,g/e  iteratively45. For a single excitation and assuming the resonance case 
�SMR = �m = �q = � and κa = κb = κ , the steady-state superposition coefficients can be calculated from:

where η = ηb , � = ωi − ωp and ωSMR = ωm = ωq = ω . Moreover, we assume the weak-driving regime. So, in 
the first iteration, the contributions from the states with more than a single excitation, such as C01e , C11g , ..., are 
negligible. From Eq. (35), by comparing the coefficients with a single excitation, we can see that C10g and C00e 
are much larger than C01g , because of a weak-pump amplitude η , and they can be written as

In the second iteration, to include states with two excitations in total, the steady-state coefficients can be calcu-
lated from:

where �κ = �− iκ/2 and �γ = �− iγ /2 . As can be seen from Eq. (37), we have

So, to minimise C02g , the minimalization of C11g and C01g is also required. Destructive interference between the 
direct and indirect excitation paths in the energy ladders of the total system can enable us minimising C02g . This 
explains the occurrence of the dip in g (2)b (0) in the mode b, as a signature of PB. As clearly seen in Fig. 12a, the 
optimal PB in this mode occurs at �SMR/g = ±1.2 . The above equations lead us to analytical optimal conditions 
for the system parameters to maximise the sub-Poissonian character of the QD mode and, thus, to optimise the 
parameters for observing PB in the mode b. Given Eq. (39) for a single excitation and Eq. (41) for two excita-
tions, which are calculated from Eq. (37), we show that the second-order correlation function calculated by this 
method and the master equation method both give very similar predictions, as shown in Fig. 12, where the thick 
curves are calculated based on the non-Hermitian Hamiltonian approach and the thin curves correspond to the 
master-equation approach for the modes a, b, and c.

Thus we find

which yields

Analogously, we find

where �κγ = �κ +�γ and the auxiliary functions Xn read: X1 = �2
κγ − f 2 , X2 = �κγ (2�κ + 5�γ )− 4f 2 , 

X3 = 2�κ(�
2
κ − f 2)X1  ,  X4 =

[

3�2
κ�κγ + (�κ −�γ )f

2
]

g2 −�κg
4  ,  X5 = �2

κ�γ −�γ f
2 −�κg

2  , 

(35)

0 =
(

�−
iκ

2

)

C01g + fC10g + ηC00g ,

0 =
(

�−
iκ

2

)

C10g + fC01g + gC00e ,

0 =
(

�−
iγ

2

)

C00e + gC10g ,

(36)
C10g =

f (24�− 2iκ)C01g

(24g2 − 24�2 + 14iκ�+ κ2)
,

C00e = −
24fgC01g

(24g2 − 24�2 + 14iκ�+ κ2)
.

(37)

0 = 2�κC11g +
√
2fC20g +

√
2fC02g + gC01e + ηC10g ,

0 = �κC10e +�γC10e + fC01e +
√
2gC20g ,

0 = �κC01e +�γC01e + fC10e + gC11g + ηC00e ,

0 = 2�κC20g +
√
2fC11g +

√
2gC10e ,

0 = 2�κC02g +
√
2fC11g +

√
2ηC01g ,

(38)C02g = −(
√
2fC11g +

√
2ηC01g )/(2�κ).

(39)
C01g = (�κ�γ − g2)ηX−1

5 ,

C10g = −�γ f ηX
−1
5 ,

(40)C′
10g =

(�κ�γ −�γ f − g2)η
√
2X5

,

(41)

C02g =
η2[−2�3

κ�γX1 +�2
κX2g

2 − X6g
4 + g6]

√
2X5(X3 − X4)

,

C20g = −
η2f 2[2�κ�γX1 + (2�κ −�γ )�κγ g

2 − g4]
√
2X5(X3 − X4)

,

C11g =
η2f (2�2

κ�γX1 + X7g
2 +�γ g

4)

X5(X3 − X4)
,
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X6 = 3�2
κ + 4�κ�γ + f 2 , and X7 = �κ(2f

2 − 3�γ�κγ ) . These formulas, together with C′
20g in Eq. (34), enable 

us to calculate analytically the correlation functions in Eqs. (22) and (23).
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Chapter 3

Two-photon blockade via squeezing

3.1 Chapter outline

This chapter provides an overview of article [P3]. In contrast to results presented in
Chapter 2, where photon-number-correlation phenomena emerged due to system
nonlinearities, we discuss in article [P3] instead how coupling of a linear system (a
harmonic cavity) to a nonlinear (in this case, squeezed) bath can result in various
photon correlation effects. In particular, we show that various kinds of single-
photon blockade (PB), as well as two-PB, and photon-induced tunneling (PIT) can
be observed under appropriate conditions in such a setup.

3.1.1 Popular introduction to multi photon blockade (multi-PB)

PB is a quantum phenomenon that, as also described in previous chapter, conven-
tionally requires strong light-matter interactions at the single-particle level, where a
single photon can block the transmission of subsequent photons through a cavity, as
first predicted in Refs. [29,31,32].1 In contrast PIT refers to the quantum phenomena
in which the presence of the first photon in a driven cavity enhances the probability
of generating subsequent photons, as first described under this term in Ref. [38]. The
measurement of the zero-delay-time second-order correlation function, g(2)(0), and
the delay-time second-order correlation function, g(2)(τ), provides the information
required to verify the criterion for one-PB. The antibunching of photons, as tested
by g(2)(0) < g(2)(τ), in a sub-Poissonian light beam, as characterized g(2)(0) < 1, is
a critical feature of PB, which occurs in strongly nonlinear systems and significantly

1These and other references in this chapter correspond to those cited in [P3].
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reduces the probability of detecting two photons simultaneously. However, achiev-
ing such strong nonlinearity is difficult. As demonstrated in previous works, the
desired nonlinearity can be achieved by coupling a qubit to the cavity, to form the
Jaynes-Cummings (JC) system, or by incorporating a Kerr nonlinear material into
the system. Note that a Kerr-type Hamiltonian can be obtained from the JC model
in the dispersive limit, i.e., when the atom-light detuning is much larger than the
coupling and decay rates.

In article [P3], we mainly focused on observing two-PB in addition to different
types of nonstandard PB which we introduced in detail with their criteria. Two-PB
occurs when the presence of two photons with the same frequency in the system
suppresses the probability of observing more photons, as first predicted in Refs.
[52,53]. In other words, the generation of single- and two-photon Fock states inhibits
the generation of higher photon numbers. The first experimental demonstration of
two-PB, using an optical cavity where a single atom was strongly coupled to a cavity,
was performed in 2017 by the group of Prof. Gerhard Rempe at the Max Planck
Institute in Garching and reported in Ref. [11]. This particular configuration revealed
that driving the atom results in significantly greater optical nonlinearity compared
to driving the cavity alone. This increased nonlinearity enhances the occurrence of a
single-PB and enables a successful observation of the two-PB effect. To observe PB,
one needs a system with strong nonlinear interactions that overcome its dissipation
rates. This is hard to achieve. Most PB studies assumed that a nonlinear system
(i.e., a nonlinear cavity) interacts with a thermal bath, so the PB system loses energy
linearly to a harmonic reservoir. Only a very few studies looked at PB in systems
with quantum nonlinear reservoirs such as those studied in Refs. [74,75]. Indeed
PB can be induced by a system nonlinearity, a reservoir nonlinearity, or both. The
mentioned study by the Ash Clerk group [75] demonstrated that the one-PB criteria
could be fulfilled by optimized amplitude-squeezed Gaussian states, which can be
realized by effectively coupling the cavity to a squeezed reservoir. So, quantum
reservoir engineering can be used to produce a high-quality intracavity squeezing.
This is when a cavity interacts with a engineered reservoir through dissipative
squeezing interactions.

3.1.2 Motivation

The above-mentioned recent observation of two-photon blockade (2PB) by Hamsen
et al. [11] in a strongly driven non-linear system motivated our study presented in
article [P3]. Successfully demonstrating conventional PB phenomena experimen-
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tally generally entails meeting stringent requirements on strength of nonlinearities
(including the atom-photon coupling or the photon-photon Kerr-type interaction).
In article [P3], we studied an alternative approach, where the driven system itself
has no nonlinearities of any kind. Instead we considered whether a linear system
coupled to an engineered nonlinear (squeezed) reservoir can specifically induce
multi-photon correlation effects. This, in particular, allows also the consideration
of PB beyond the conventional (based on strong nonlinear interactions) and uncon-
ventional (based on multi-path interference) scenarios that have been previously
summarized in Chapter 2.

Most previous studies of single PB phenomena (both conventional and uncon-
ventional) focused on the setting of nonlinear systems coupled to harmonic (linear,
i.e., thermal) baths. To our knowledge only a few works have dealt with engi-
neered reservoirs in the context of blockade phenomena [74,75]. In particular, single
and multi-PB was studied in systems with Kerr nonlinear interactions coupled to
a squeezed bath [74], and single-PB was studied in a linear system coupled to a
squeezed bath [75]. Thus, it was a pertinent question to address whether a squeezed
bath itself can generate multiphoton correlation effects in a linear system. In consid-
ering this problem, we also characterized in detail various kinds of single-PB effects
that can occur using the studied reservoir engineering.

3.1.3 Main results

We showed in [P3] the possibility of observing two-PB, three-PT, and different kinds
of nonstandard one-PB in linear system that is dissipatively coupled to the nonlinear
reservoir. In this study, we investigated a system configuration consisting of a linear
optical cavity with resonance frequency ωc that is externally stimulated by a laser
field of amplitude ϵ and frequency ωd. First, we wrote the effective Hamiltonian of
our system in a rotating frame. To study the time evolution of our system interacting
with the squeezed reservoir, we applied a squeezed-reservoir master equation (see,
e.g., [82]). This equation incorporates additional terms that account for the two-
photon loss mechanism, in addition to one-photon dissipation described by the
standard master equation. In this way, the steady-state solution was obtained by
solving this generalized master equation.

Based on higher-order correlation functions, one can introduce criteria for two-PB
[44]. In article [P3] we applied two types of criteria (i.e., simplified and refined) to
investigate the possibility of n-PB and n-PIT in our proposed system. The simplified
criteria are obtained from refined criteria under the assumption that the mean
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photon number is very small as ⟨n̂⟩ ≪ 1. We calculated the delay-time second-order
correlation function, g(2)(τ), for the steady-state solution of the master equation in
addition to the zero-delay-time n-order correlation functions, g(n)(0) for n = 2,3,4,
to check the possibility of true PB and other different kinds of nonstandard PB.

In this work, we have shown that the squeezing of the field in the reservoir
leads to the generation of one-PB in the linear-cavity field, resulting in the sub-
Poissonian photon-number statistics, described by g(2)(0) < 1. On the other hand,
the interaction of the linear system with the thermal field of the environment leads
to the super-Poissonian photon-number statistics, with g(2)(0) > 1, known as PIT.
The lower values of g(2)(0) can be achieved by detuning ∆ = 0 between the cavity
and driving frequencies and using weaker driving strength. In addition, by taking
into account g(2)(τ), we showed the possibility to find nonstandard PB indicated by
the conditions: g(2)(0)< 1 and g(2)(0)> g(2)(τ), which is in contrast to the standard
PB effect defined by: g(2)(0) < 1 and g(2)(0) < g(2)(τ). Our numerical calculations
showed that two-PB in the harmonic cavity coupled to the squeezed reservoir is
only possible if we consider the refined criteria for this case and it is not possible
to observe two-PB according to simplified criteria. I should note that for two-PB
we need to measure g(3)(0) in addition to g(2)(0). These outcomes emphasize the
significance of the two-photon dissipation process in a linear optical system for the
generation of the one- and two-PB, as well as the other three nonstandard types
of one-PB observed for our system. Instead of analyzing the cavity that is coupled
to the squeezed reservoir, we also showed that by preparing the cavity field in a
squeezed coherent state (SCS) and a displaced squeezed thermal state (DSTS), it is
possible to obtained analogous results, as described above.

We analytically calculated g(n)(0) for n = 2,3,4 and found the parameters in
which the criteria for specific multi-PB effects are fulfilled. We explicitly explained
the relationship between the squeezed-state simulations of these effects and their
generation via the squeezed reservoir.

The results of our simulation are clearly demonstrated through our plots showing
the regions of the displacement (α) and squeezing (r) parameters for SCSs and
DSTSs in which different single- and two-PB effects might observed. Moreover, our
findings for both SCSs and DSTSs confirmed that it is possible to observe two-PB
only according to refined criteria within a specific range of parameters as in our
proposed model. Additionally, the findings highlight the detrimental influence of
thermal photons in the observation of two-PB.
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We also addressed the question of the nonclassicality of the studied effects
and states. We show that all our numerical predictions for different single-and
multiphoton types of PB are nonclassical effects. For this we used two measures of
nonclassicality: an entanglement potential (EP) and a squeezing variance (SV). We
also identified parameter regimes, which enable the observation of PIT and other
photon-number correlation effects predicted in our studies.

Our findings highlights that the presence of a squeezed reservoir can lead to
different forms of PB and PIT, including the emergence of two-photon effects in a
driven harmonic resonator.

3.1.4 My contribution and importance of the work

In this article, we have proposed a new method of quantum reservoir engineering
that can create novel effects in linear systems coupled to nonlinear reservoirs, such
as multi-PB and PIT. It highlighted the potential applications and implications of
our method for the fields of optical and microwave photonics, and we hoped to
encourage further research in this direction.

Anna Kowalewska-Kudłaszyk and I have performed all the numerical and ana-
lytical calculations, as well as we wrote the paper with input from all the authors.
Moreover, I have made significant contributions to the interpretation of the obtained
results, as confirmed by the signed declaration of the all co-authors.
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Inspired by the recent experiment of Hamsen et al. [Phys. Rev. Lett. 118, 133604 (2017)], which demonstrated
two-photon blockade in a driven nonlinear system (composed of a harmonic cavity with a driven atom), we show
that two-photon blockade and other nonstandard types of photon blockade and photon-induced tunneling can be
generated in a driven harmonic cavity without an atom or any other kind of nonlinearity, but instead coupled
to a nonlinear (i.e., squeezed) reservoir. We also simulate these single- and two-photon effects with squeezed
coherent states and displaced squeezed thermal states.
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I. INTRODUCTION

A. Squeezed states of light

Squeezed states of light [1], which have less quantum
noise in one quadrature than a coherent state, are a powerful
resource for quantum technologies. These include quantum
communication, improving the precision of optical measure-
ments, and fundamental spectroscopic tests of general relativ-
ity and quantum mechanics [2–6]. Although squeezed states
were already studied in 1927 by Kennard [7] and the squeez-
ing operator was introduced in 1955 [8,9], these states had not
been attracting much attention for 50 years. A real practical
interest in squeezed states has been triggered only 40 years
ago by finding their first applications for detecting gravita-
tional waves via supersensitive interferometry [10–13]. Since
the pioneering experimental generation of squeezed states
via four-wave mixing in 1985 by Slusher et al. [14], shortly
followed by two other experiments [15,16], various methods
of squeezed-light generation have been implemented experi-
mentally not only for optical fields [6], but also for microwave
fields using superconducting quantum circuits [17]. The first
long-term practical applications of squeezed-vacuum states
were demonstrated in 2013 for increasing the astrophysical
limits of gravitational-wave detectors including the laser in-
terferometer gravitational-wave observatory (LIGO) [18] and
the gravitational-wave observatory (GEO 600) detectors [19].
Among many applications of squeezing, we mention also re-
cent proposals of an exponential enhancement of light-matter
interactions via squeezing [20–25] (for a review see Ref. [26]).
Such increased interactions at the single-photon level can fun-
damentally change nonlinear optical effects, including photon
blockade (PB) [27,28]. (This and other abbreviations used
in this paper are also defined in Table I.) Here we study
multiphoton correlations in squeezed coherent states (SCS),
displaced squeezed thermal states (DSTS), and light generated

by a driven harmonic cavity coupled to a squeezed reservoir
for generating (or simulating) various kinds of PB.

B. Single-photon blockade

The phenomenon of Coulomb’s blockade has its optical
analog, known as PB [29] (also referred to as nonlinear
quantum scissors [30]). PB (or more precisely single-photon
blockade, 1PB) refers to the effect in which a single photon
generated in a driven nonlinear system (as those schemat-
ically shown in Fig. 1) can block the generation of more
photons in the system. This effect was first predicted by Tian
and Carmichael [31], Leoński and Tanaś [32], and later by
Imamoğlu et al. [29], who coined the term photon block-
ade and studied the effect in the steady-state limit. Indeed,
Ref. [31] predicted PB by demonstrating a two-state behavior
in a driven optical cavity containing one atom, as shown in
Fig. 1(b) and discussed in Appendix A, applying the quan-
tum trajectory method to the Jaynes-Cummings model, while
Ref. [32] predicted the PB effect in a driven Kerr nonlinear
cavity and showed its application for the generation of the
single-photon Fock state. Note that the Jaynes-Cummings
model in the dispersive limit (i.e., far off resonance) be-
comes equivalent to the Kerr Hamiltonian, which shows the
correspondence of the PB predictions of Refs. [31,32]. We
also mention that PB has a mechanical analog referred to
as phonon blockade, i.e., blockade of quantum excitations of
mechanical oscillators [33–36].

PB has been experimentally generated in a number of
driven systems of single [37–44] and two [45,46] resonators
with a nonlinearity, as shown schematically in Figs. 1(b)
and 1(c), respectively. Such a nonlinearity can be induced
by a two-level atom (or atoms) coupled to one or both
cavities. In the dispersive regime, such atom-cavity inter-
action can effectively lead to a Kerr-type nonlinearity as
mentioned above. Note that PB can be generated not only in a

2469-9926/2019/100(5)/053857(18) 053857-1 ©2019 American Physical Society
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TABLE I. Abbreviations used in this paper.

Full Name Abbreviation

Photon blockade PB

Nonstandard photon blockade NPB

Single-photon (two-photon) blockade 1PB (2PB)

Photon-induced tunneling PIT

Two-photon (three-photon) tunneling 2PT (3PT)

Squeezed coherent states SCS

Displaced squeezed thermal states DSTS

Photon antibunching PAB

Kerr-nonlinear driven cavity, but also other types of nonlin-
earities enable the generation of PB. The occurrence of PB
is usually experimentally characterized by the second-order
correlation function g(2)(0) < 1, which means that the PB
generated state exhibits the sub-Poissonian photon-number
statistics, also referred to as (single-time) photon antibunching
(PAB). PB and the generation of Bell states in two-cavity
driven nonlinear systems, as shown in Fig. 1(c) and discussed
in Appendix A, were first demonstrated in Refs. [47,48]. It
was later shown in Refs. [49,50] that the nonlinear system
of Fig. 1(c) can exhibit surprisingly strong single-time PAB
for weak nonlinearities or, equivalently, weak atom–cavity-
field couplings. This effect is now usually referred to as
unconventional PB [51].

Note that this single-time PAB should not be confused
with standard two-time PAB, defined by g(2)(τ ) > g(2)(0) for
small delay times τ , which is another important feature of
PB. Indeed, if one considers single-PB as a true source of
single photons, one would be required to satisfy not only
single-time PAB, but also two-time PAB, characterized by a
local minimum of the second-order correlation function,

g(2)(τ ) = lim
t→∞

〈â†(t )â†(t + τ )â(t + τ )â(t )〉
〈â†(t )â(t )〉〈â†(t + τ )â(t + τ )〉 , (1)

as a function of the delay time τ ≈ 0, where â (â†) is the
annihilation (creation) operator of an optical mode. Thus, at
least the following conditions should be satisfied for “true”
single-PB:

g(2)(0) < 1 and g(2)(0) < g(2)(τ ), (2)

for small τ . For brevity, we analyze two-time PAB only in
Sec. III and Fig. 2. Otherwise we limit our characterization of
PB to single-time correlation functions.

C. Multiphoton blockade

Single-PB has been generalized to include two-PB and
multi-PB effects [52–61]. Two-PB was first experimentally
demonstrated by Hamsen et al. in 2017 [44]. We also note ear-
lier theoretical works on multi-PB in dissipation-free driven
Kerr systems [62,63] (for reviews see Refs. [30,64]). Multi-
phonon blockade, which is a mechanical analog of multi-
PB, was studied in Ref. [35]. Multi-PB in dissipation-free

FIG. 1. Schematics of three prototype systems for observing
photon blockade and photon-induced tunneling. (a) An unusual pho-
ton blockade device, described in Sec. III A, which is composed of
a driven harmonic cavity coupled to a quantum (squeezed) reservoir
Rsq. Panel (a) is shown in contrast to the common photon blockade
devices (see Appendix A for more details). (b) A driven anharmonic
cavity (due to the atom) coupled to a harmonic reservoir R1. (c) A
two-cavity system, which is the anharmonic resonator shown in
panel (b) coupled to a harmonic (or anharmonic) resonator linked
to a harmonic reservoir R2. The anharmonicity can be induced in a
harmonic resonator by its coupling to a two-level atom (qubit) as
shown in panels (b) and (c). This qubit is coupled to a reservoir Rq.
Red arrows denote classical coherent drives applied to a cavity or a
qubit. Note that in setup (a) the cavity anharmonicity is replaced by
the reservoir anharmonicity.

systems enables generation of quantum optical states in a
finite-dimensional Hilbert space including finite-dimensional
analogs of coherent and squeezed states of light [62,64–67].

Intuitively, two-PB (and analogously multi-PB) occurs if
the single- and two-photon Fock states, which are generated
in a driven nonlinear system, block the generation of more
photons in the system. This paper is focused on the study of
two-PB and other kinds of single- and two-photon correlations.

For any classical states, the second-order equal-time cor-
relation function satisfies g(2)(0) � 1, which is a property of
classical intensity fluctuations. The states for which g(2)(0) <

1 have the sub-Poissonian photon-number statistics and, thus,
are nonclassical (see Appendix C). This condition is also
used for identifying the presence of single-photon blockade
(1PB). The analysis of higher-order correlations is necessary
to characterize multi-PB or other types of nonstandard PB
(NPB).

Thus, in our study of multi-PB, we apply the kth-order
equal-time correlation functions, g(k)(0) = 〈(â†)kâk〉/〈â†â〉k ,
describing the probability of measuring simultaneously k
photons. In PB experiments, the second-order correlation
functions g(2)(0) and g(2)(τ ) are usually measured, except the
experiment of Hamsen et al. [44], where also the third-order
correlation functions g(3)(0) and g(3)(τ ) were measured to
confirm two-PB.
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FIG. 2. Squeezed-reservoir model: steady-state second-order
correlation function g(2)(τ ) vs (a), (c) the (rescaled) delay time
γ τ between the measurements of subsequent photons and (b) the
reservoir squeezing parameter M for various values of the external
field strength ε at the resonance, � = 0, between the cavity and
driving fields, with the damping rate γ = 1. Moreover, in panel
(a) we set ε/γ =0.05 (curve A), 0.06 (B), 0.07 (C), 0.1 (D), 0.2 (E),
and 0.5 (F), and assume that the reservoir is maximally squeezed with
the reservoir mean photon number n = 0.003, which corresponds to
M = 0.017. The τ dependences for the four specific points in panel
(b) are shown in panel (c). In panels (b) and (c) we set ε/γ = 0.07
and n = 0.001. It is evident that the curves 2 and 3 (1 and 4) show
two-time photon antibunching (bunching) in panel (c). This implies
that only the points 2 and 3 in panel (b) can correspond to “true”
single-photon blockade states.

We note that experimental tests of PB are not limited to
measuring g(k)(0) and g(k)(τ ). Indeed, the occurrence of PB
can also be revealed by showing, e.g., a staircase depen-
dence of the total transmitted power through a driven nonlin-
ear system for different incident photon bandwidths, which
was experimentally demonstrated by Hoffman et al. [40]
or a staircase dependence of the mean photon number
in the ground state of a given Kerr nonlinear system on
a rescaled detuning [68]. Such dependences are photonic

TABLE II. Different types of photon blockade and photon tun-
neling classified via g(2)(0) and g(3)(0). Four of these types of
photon-number correlations can be exhibited by the steady-state light
generated by the squeezed-reservoir system, as well as squeezed
coherent states and displaced squeezed thermal states, which are
shown in Figs. 3–5, respectively.

Case Permutation Inequalities Effect

a (1 2 3) 1 < g(2)(0) < g(3)(0) 3PT
b (1 3 2) 1 < g(3)(0) < g(2)(0) 2PT
c (2 1 3) g(2)(0) < 1 < g(3)(0) 1PB (type 2)
d (2 3 1) g(2)(0) < g(3)(0) < 1 1PB (type 3)
e (3 1 2) g(3)(0) < 1 < g(2)(0) 2PB and 2PT
f (3 2 1) g(3)(0) < g(2)(0) < 1 1PB (type 1)

analogs of a Coulomb-blockade staircase. This paper is fo-
cused on characterizing multi-PB via g(k)(0) and g(2)(τ )
only.

D. Photon-induced tunneling

Photon-induced tunneling (PIT) refers to a photon-number
correlation effect, which enhances the probability of subse-
quent photons (from a coherent drive) to enter the driven
cavity [38,60,61,69–73]. Evidently, this process is inverse to
PB, in which the probability that the subsequent photons of
a drive enter the driven cavity is decreased (or even essen-
tially vanishing). PIT has been observed experimentally in
Refs. [38,69,72].

Standard two-photon tunneling (two-PT), where the si-
multaneous arrival of two photons is enhanced compared to
single-photon arrivals, is usually characterized by the super-
Poissonian photon-number statistics (i.e., single-time photon
bunching), when 1 < g(2)(0) [69–71]. Analogously, standard
three-photon tunneling (three-PT) is a photon-number cor-
relation effect, in which the simultaneous arrival of three
photons is enhanced compared to the two-photon and single-
photon arrivals. Thus, three-PT can be characterized by the
conditions [60,71]

1 < g(2)(0) < g(3)(0). (3)

Note that other definitions of PIT are used in the literature
(see Ref. [60] for a comparison), e.g., those based on a local
maximum of g(2)(τ ) at τ = 0 (i.e., corresponding to two-
time photon bunching) [38] or the requirement that g(3)(0) >

g(2)(0), i.e., the simultaneous arrival of three photons is en-
hanced compared to the simultaneous two-photon arrivals [72]
without specifying whether g(2)(0) exhibits the super- or sub-
Poissonian statistics. Various types of PIT in comparison to
PB are listed in Table II.

E. Photon blockade and photon-induced tunneling via squeezing

It is known that SCS can exhibit the (second-order)
sub-Poissonian photon-number statistics (also referred to as
single-time PAB). This effect is also an important feature of
light generated via photon blockade.

The vast majority of previous works on PB assumed that
dissipation of a PB system can be modeled via its linear
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coupling to a harmonic reservoir (a thermal bath). Only a
few works, including Refs. [74,75], were analyzing PB in
systems coupled to nonlinear reservoirs. In such dissipative
systems, PB can result from (i) a system nonlinearity, (ii)
a reservoir nonlinearity, or (iii) both of them. Single- and
multi-PB effects in a Kerr-nonlinear system coupled to a
nonlinear (squeezed) reservoir were analyzed in Ref. [74].
Shortly after that publication, a single-PB effect generated
solely by a nonlinear (squeezed) reservoir was studied in a
linear system in Ref. [75]. Here we analyze various PB effects
and PIT in a harmonic cavity coupled to squeezed systems,
as shown in Fig. 1(a). The other two common systems, which
enable the generation of conventional and unconventional PB,
are schematically shown in Figs. 1(b) and 1(c), respectively.
Note that some other schemes for PB can be obtained by
combining the three schemes shown in this figure.

The main objective of this paper is to analyze whether
squeezing plays an important role in generating various types
of PB (especially multiphoton effects). In other words, we
address the question whether PB can be observed in a driven
harmonic resonator without a strongly nonlinear medium [like
in the standard PB setup shown in Fig. 1(b)] and without
relying on multipath interference, as in the PB setup shown
in Fig. 1(c).

The paper is organized as follows. In Sec. II, we specify
the criteria of multi-PB and PIT. In Sec. III, we numerically
show that a two-photon decay process of light generated in
an optically linear system (a harmonic resonator) can induce
two-PB. Then, in Sec. IV, we analytically study the relations
between g(2)(0) and the higher-order correlation functions
g(k)(0) for the squeezed coherent states and the displaced
squeezed thermal states, to demonstrate more explicitly the
possibility of generating two-PB, three-PT, and various types
of nonstandard single-PB via squeezing. The question of
nonclassicality of the studied effects and states is addressed
in Sec. V and Appendices C–E. We also compare the pro-
posed method for generating multi-PB with the standard PB
setups in Appendix A. Moreover, for pedagogical reasons, we
present more details about the master equation for a squeezed
reservoir and recall its relation to the standard master equation
in Appendix B. We conclude in Sec. VI.

In the main paper, we use several abbreviations. We con-
cisely list them in Table I to facilitate the following exposition.

II. CRITERIA FOR VARIOUS TYPES
OF PHOTON BLOCKADE

A. Refined criteria for multiphoton blockade

The mechanisms of both conventional and unconventional
single-PB under proper resonance conditions can be general-
ized to generate also two- and multi-PB, i.e., the generation
of two or a larger number of photons at the same instance of
time.

Intuitively, k-PB can be understood as the generation of
a state ρ̂ satisfying the conditions for the photon-number
probabilities Pk = 〈k|ρ̂|k〉 as follows [44,53]:

Pk+1 ≈ 0 and Pk � Pk+1. (4)

However, in more realistic scenarios, the conditions in Eq. (4)
are replaced by weaker criteria, where the photon-number

distribution Pk of ρ̂ is compared with the Poissonian distribu-
tion PCS

k , describing the photon-number statistics of a coherent
state. Specifically,

Pk+1 < PCS
k+1 and Pk � PCS

k , (5)

where the probability PCS
k = |〈α|k〉|2 is for a coherent state

α with the same mean photon number as that for ρ̂,
i.e., 〈α|n̂|α〉 = |α|2 = Tr(ρ̂n̂), where n̂ = â†â is the photon-
number operator. The conditions for the probabilities Pk can
be replaced by those based on the experimentally accessible
kth-order correlation function,

g(k)(0) = 〈(â†)kâk〉
〈n̂〉k

= 〈n̂[k]〉
〈n̂〉k

=
∑∞

n=0 Pnn[k]

〈n̂〉k
, (6)

where, as usual, â (â†) is the annihilation (creation) operator,
〈n̂[k]〉 = 〈(â†)kâk〉, and n[k] = n(n − 1) · · · (n − k + 1) is the
factorial power (also called the falling power). Thus, the
criteria for PB given in Eq. (4) can be replaced by

g(k+1)(0) ≈ 0 and g(k)(0) � g(k+1)(0). (7)

In this paper, we assume that k-PB is defined by the following
two criteria derived by Hamsen et al. [44]:

Criterion 1: g(k+1)(0) < A ≡ exp(−〈n̂〉);

Criterion 2 : g(k)(0) � B(k) ≡ A + 〈n̂〉g(k+1)(0), (8)

which replace the criteria in Eq. (5).
We note that the definition of multi-PB in Eq. (8) has some

drawbacks and limitations. Strictly speaking, the criteria in
Eq. (8) can only be considered a PB witness, i.e., necessary
but not sufficient conditions of PB. Note that second-order
single-time photon antibunching [g(2)(0) < 1] is the most
common test of single-PB, but it is also only a necessary
but not sufficient condition for PB. An intuitive “orthodox”
interpretation of single- and multi-PB effects can be given
as follows: k-PB (k = 1, 2, ...) corresponds to the effect, in
which the photon occupation of the first k energy levels of
a driven nonlinear system blocks the generation of more
photons in the system. In other words, k-PB corresponds to
an effective truncation of the Hilbert space spanning a given
state at the k-photon Fock state |k〉 so the contributions of
the Fock states |k + l〉 for l > 0 can be effectively ignored,
which means that 〈k|ρ̂|k〉 � 〈k + l|ρ̂|k + l〉 or, alternatively,
g(k)(0) � g(k+l )(0), for any l > 0. However, the above condi-
tions are usually only checked for l = 1, ignoring the anal-
ysis of the cases for l > 1. Such objection also applies to
many studies of single-PB based on requiring g(2)(0) < 1 and
ignoring the values of g(3)(0) and higher-order correlation
functions.

B. Simplified criteria for multiphoton blockade

Note that if 〈n̂〉 	 1 then the refined conditions for multi-
PB, given in Eq. (8), simplify to the following familiar criteria
for ρ̂:

g(k+1)(0) < 1 and g(k)(0) � 1, (9)

which mean that, in this small photon-number limit, the state
generated via k-PB exhibits (single-time) (k + 1)-PAB, and
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k-photon bunching if g(k)(0) > 1 or the so-called unbunching
if g(k)(0) = 1.

Thus, two-photon and three-PB effects can be given by the
following relations for the correlation functions:

g(2)(0) � 1 and g(3)(0) < 1; (10)

g(2)(0), g(3)(0) � 1 and g(4)(0) < 1, (11)

respectively. Note that we have added an extra condition
for g(2)(0) in Eq. (11), which is not required in the criteria
specified in Eqs. (8) and (9). Moreover, in this simplified
characterization of PB we ignore the requirements on two-
time correlation functions g(k)(τ ), including g(2)(τ ).

Thus, in the case of two-PB, the three-photon probability
has to be suppressed and simultaneously the probability of
observing two photons should be enhanced. Analogously, the
suppression of the four-photon probability and the increase in
the probabilities of a lower number of photons would lead to
three-PB.

Both types of PB, which are characterized by the simplified
and refined criteria, correspond to nonclassical effects, be-
cause they require the sub-Poissonian photon-number statis-
tics (of any given order k), as described in greater detail in
Appendix C.

As mentioned above, the refined criteria in Eq. (8) reduce
to the conditions in Eq. (10) for small photon numbers 〈n̂〉 	
1. But, in principle, these simplified criteria can be applied
even if 〈n̂〉 > 1, but then the predicted PB can differ from that
based on the refined criteria in Eq. (8). It might also be the
case that a given state exhibits, e.g., two-PB according to the
refined criteria, but not according to the simplified criteria.
Actually, we will show such cases in the following sections.

Now, we consider a simple example of such different pre-
dictions of two-PB according to Eqs. (8) and (9). Specifically,
the two-photon Fock state |2〉, for which g(2)(0) = 1/2 and
g(3)(0) = 0, can be considered a two-PB state according to the
refined criteria in Eq. (8), because g(2)(0) > exp(−2) ≈ 0.135
and g(3)(0) < exp(−2). Note that the simplified criteria in
Eq. (9) can, in principle, be applied to the two-photon Fock
state |2〉. However, since A ≡ exp(−〈n̂〉) is not negligible,
the predictions of PB for |2〉 according to the refined and
simplified criteria are different. Indeed, the Fock state |2〉
is not considered a two-PB state according to the simplified
criteria (9).

C. Nonstandard types of photon blockade

As described in previous subsections, the simplified condi-
tion for observing single PB corresponds to the requirement
of single-time PAB. If the following additional condition
g(3)(0) < g(2)(0) is satisfied, as desirable for good single-
photon sources, then we refer to this effect as single-PB of
type 1, which is characterized by

g(3)(0) < g(2)(0) < 1. (12)

Apart from this single-PB, there are other possibilities of
obtaining quantum photon-number statistics by specifying the
relations between higher-order single-time correlations g(k)(0)
and/or the second-order two-time correlations g(2)(τ ). These
include the following types of PB.

(1) We recall that, in order to consider single-PB as a true
source of single photons, the generated light via PB should
also exhibit two-time PAB as given in Eq. (2). Indeed, it is
known that the sub-Poissonian photon-number statistics (i.e.,
single-time PAB) of a field can be accompanied with both
two-time PAB and two-time photon bunching, and vice versa
(see, e.g., Ref. [76] and references therein). Thus, if light
exhibits single-time PAB and two-time photon bunching [i.e.,
a local maximum of g(2)(τ ) for small τ ], one can refer to
it as nonstandard single-PB , because it is not characterized
by Eq. (2). Examples of this nonstandard PB are analyzed
in Sec. III and shown in Fig. 2. In the following we mainly
analyze other types on nonstandard PB based solely on single-
time correlation functions.

(2) In greater detail we analyze a special kind of nonstan-
dard PB characterized by the single-time correlation functions
satisfying the conditions

g(2)(0) < 1 < g(3)(0), (13)

which was first studied in greater detail in Ref. [77] under
the name unconventional PB. However, in order to avoid
confusion of this type of PB and unconventional PB studied
in Refs. [45,46,51], we refer to the effect characterized by
Eq. (13) as nonstandard PB of type 2.

It is seen that this nonstandard PB occurs when the prob-
ability of measuring two photons at the same time is sup-
pressed and, simultaneously, the probability of obtaining three
photons is enhanced. Note that this effect can be generated
by different physical mechanisms in different systems: (i)
by using large nonlinearities in conventional PB systems, as
shown in Fig. 1(b); (ii) by small nonlinearities and multi-
path interference in unconventional PB systems, as shown
in Fig. 1(c); or (iii) by exploiting squeezing in, e.g., linear
systems coupled to a squeezed reservoir, as shown in Fig. 1(a)
and studied here.

(3) One can modify the condition for g(3)(0) in Eq. (13) to
consider another type (say type 3) of single-PB, as character-
ized by

g(2)(0) < g(3)(0) < 1. (14)

The latter two types of nonstandard single-PB are listed
in Table II and a few examples of such effects generated via
squeezing are discussed in the following sections and shown
in Figs. 3–6.

Note that we found examples of nonstandard PB concern-
ing unusual properties of both single- and two-time corre-
lation functions. But, for brevity, we do not present such
examples here.

We also note that nonclassical states often satisfy the
conditions g(2) < g(3) < . . . < g(k) < 1, as those studied in
Refs. [78,79], where the sub-Poissonian statistics was re-
sulting from postselection. Such states can also be used for
simulating nonstandard single-PB effects.

III. VARIOUS TYPES OF PHOTON BLOCKADE AND
TUNNELING GENERATED BY A SQUEEZED RESERVOIR

A. Model

Here we will show that a squeezed reservoir can induce
various types of PB and PIT, including two-photon effects in
a driven harmonic resonator.
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FIG. 3. Squeezed-reservoir model: photon-number correlations
of light generated in a driven harmonic cavity coupled to a squeezed
reservoir, assuming n = 0.01 and � = 0. The regions of the driving
strength ε and the reservoir squeezing parameter M satisfying the six
conditions, which are listed in Table II for the correlation functions
g(2)(0) and g(3)(0), are shown here in yellow (Y) and blue (B),
respectively. The regions in green show the ranges of the parameters
M and ε for which given criteria are satisfied simultaneously by
g(2)(0) and g(3)(0) indicating a specific type of photon blockade or
photon-induced tunneling. In grayscale, yellow is the brightest, and
green looks slightly darker than blue. Yellow is also indicated by “Y,”
and blue is indicated by “B.”

Specifically, as an example of a physical system, in which
squeezing interactions induce PB, we use a single optical
cavity of a frequency ωc, which is externally driven by a
laser field of an amplitude ε with a frequency ωd . The cavity
decays into a squeezed reservoir characterized by the reservoir
squeezing parameter M. The model is presented in Fig. 1(a).
We will show that for such a linear optical system the two-
photon dissipation process plays a crucial role in obtaining

FIG. 4. Photon-number correlations in the squeezed coherent
states showing the regions of the displacement (α) and squeezing (r)
parameters for which the conditions in Table II are satisfied. This
figure uses the same notation and coloring, and carries a similar
message as in Fig. 3. For example, the green region in figure (c) (213)
shows the ranges of parameters for which the conditions g(2)(0) <

1 < g(3)(0) are satisfied, as in Table II (c). The yellow (blue) region
shows the parameter ranges satisfying solely the condition g(2)(0) <

1 [g(3)(0) > 1]. Yellow (blue) is also indicated by “Y” (“B”).

single- and two-PB, as well as other nonstandard types of
nonclassical photon correlations.

The Hamiltonian of the system has the following form
(hereafter we set h̄ = 1):

Ĥ ′ = ωcâ†â + ε(âeiωd t + â†e−iωd t ). (15)

After its transformation to the interaction picture to the frame
rotating with the driving frequency ωd , one obtains the fol-
lowing effective Hamiltonian of the system:

Ĥ = �â†â + ε(â† + â), (16)
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FIG. 5. Photon-number correlations in the displaced squeezed
thermal states satisfying the inequalities in Table II, the same as
in Fig. 4 but for the states defined in Eq. (23) with nth = 0.1.
The parameter region on the left-hand (right-hand) side of the red
vertical line in all the plots corresponds to the classical (nonclassical)
regimes of the states. This red line is plotted at the critical squeezing
parameter r0 = 0.0912, which is shown later in Fig. 12 by the solid
curve for nth = 0.1 for the vanishing entanglement potential, EP = 0.

where � = ωc − ωd is the detuning between the cavity and
driving frequencies.

The evolution of the driven cavity interacting with a
squeezed reservoir is governed by the following master equa-
tion [80–82]:

d ρ̂

dt
= −i[Ĥ, ρ̂] + 1

2
γ (n + 1)(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ 1

2
γ n(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†)

− 1

2
γ M(2âρ̂â − ââρ̂ − ρ̂ââ)

− 1

2
γ M	(2â†ρ̂â† − â†â†ρ̂ − ρ̂â†â†). (17)

FIG. 6. Squeezed-reservoir model: correlation functions g(k)(0)
vs (a) the driving strength ε for fixed � = 0 and (b) the detuning �

for the maximally squeezed reservoir for n = 3 × 10−4, which cor-
responds to M = 0.017, for fixed ε = 0.07γ . All the parameters are
scaled in γ units. The regions between the broken lines correspond
to nonstandard single-photon blockade (type 2).

We refer to M as a reservoir squeezing parameter and to n
as the mean number of reservoir photons. These parameters
satisfy the inequality |M| � √

n(n + 1). For the squeezed-
vacuum reservoir, these parameters are given by n = sinh2(r)
and M = cosh(r) sinh(r) exp(−iθ ), implying the equality
|M| = √

n(n + 1), where r and θ correspond, respectively,
to the amplitude and phase of the squeezing parameter ξ =
r exp(iθ ) (see Appendix B for more details). Apart from the
standard parts in Eq. (17), which describe a thermal-like
Markovian reservoir with the mean photon number n allowing
for single-photon dissipation, this master equation includes
also two-photon decay processes. Indeed, Eq. (17) reduces
to the standard master equation for the thermal reservoir
by setting M → 0 and n → nth = {exp[h̄ω/(kBT )] − 1}−1,
which becomes the mean number of thermal photons at the
frequency ω and temperature T , where kB is the Boltzmann
constant.
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FIG. 7. Squeezed-reservoir model: single-photon blockade in a
driven harmonic resonator coupled to a squeezed reservoir. Specifi-
cally, the steady-state second-order correlation function g(2)(0) vs the
detuning � between the cavity and driving frequencies for various
values of the external field strength ε, assuming (a) the squeezed-
vacuum reservoir (see Appendix B) with M = √

n(n + 1) and (b) no
squeezing (M = 0) of the reservoir. We set the reservoir mean photon
number as n = 3 × 10−4, and ε/γ = 0.07 (curve A), 0.1 (B), 0.2
(C), and 0.5 (D). All the parameters are scaled in γ = 1 units. Panel
(a) shows strong single-time photon antibunching, especially for
ε = 0.07γ and � = 0, which characterizes single-photon blockade.
Panel (b) shows single-time photon bunching, which confirms that
the single-photon blockade in panel (a) results from the squeezed
reservoir.

B. Standard single-photon blockade

As mentioned above, the standard indicator of single-PB
is the condition g(2)(0) < 1 showing the decreased probability
of measuring simultaneously two photons during the process
of the cavity-field dissipation.

In Figs. 7(a) and 7(b), we have shown the dependence
of single-time steady-state second-order correlation function
g(2)(0) versus the detuning � for the harmonic cavity field
decaying, respectively, into (a) the squeezed-vacuum reservoir
[i.e., the maximally squeezed reservoir with M = √

n(n + 1)]
and (b) the standard thermal reservoir (M = 0) with the
same mean number n = 0.003 of reservoir photons. Various
external-driving-field strengths are considered. Our first con-
clusion is that the squeezing of the field in the reservoir is
responsible for generating single-PB of the linear-cavity field,
as described by the sub-Poissonian photon-number statistics
shown in Fig. 7(a), while the interaction with the thermal field
of the environment inevitably leads to the super-Poissonian
photon-number statistics of the cavity field shown in Fig. 7(b).
This effect can be interpreted as PIT. In all of these cases,
by tuning the frequency of the external excitation with the
cavity frequency, one can assure the lowest possible value
of g(2)(0). Additionally, a weaker external driving is prefer-
able to obtain lower values of g(2)(0). For the parameters
presented in Fig. 7(a), the lowest value of g(2)(0) is 0.0729.
By decreasing the mean photon number inside the squeezed
reservoir, or by applying a weaker external field, one can

FIG. 8. Squeezed-reservoir model: steady-state correlation func-
tion g(2)(0) vs the reservoir squeezing parameter M and the driving
strength ε in a driven harmonic resonator coupled to a squeezed
reservoir. We set ε/γ = 0.05 (curve A), 0.07 (B), 0.1 (C), and
0.2 (D). Moreover, we assume resonance between the cavity and
external fields, � = 0, and the mean photon number of the squeezed
reservoir is n = 3 × 10−4. All the parameters are scaled in γ units.
It is seen that, usually, a larger reservoir squeezing parameter M
implies stronger single-time PAB, reaching the smallest value of
g(2)(0) for the squeezed-vacuum reservoir with M = √

n(n + 1) (see
Appendix B). However, this is not the case for, e.g., ε = 0.05γ in
panel (a), when there is an optimal value of M 	 √

n(n + 1), which
results in the strongest single-time PAB. The same surprising result is
shown in panel (b) in the area between the dashed lines indicating the
range of the external field strength ε for which g(2)(0) has a minimum
for M <

√
n(n + 1).

obtain even smaller values of g(2)(0) under the exact resonance
condition � = 0.

Figures 8(a) and 8(b) show the dependence of the steady-
state single-time second-order correlation g(2)(0) on the
reservoir squeezing parameter M and the driving strength
ε. Usually, the minimal possible values of g(2)(0) are ob-
tained when the field inside the reservoir is maximally
squeezed, i.e., for the squeezed-vacuum reservoir satisfy-
ing M = √

n(n + 1). However, for very weak excitations,
the dependence g(2)(0) versus M has a minimum for M <√

n(n + 1). Thus, it is worth stressing that it is possible to
use a nonmaximally squeezed reservoir, which still enables
strong single-time PAB for very weak excitations, as shown in
Fig. 8(a).
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C. Nonstandard single-photon blockade with two-time
photon bunching

Here we discuss whether a squeezed reservoir can generate
nonstandard PB exhibiting two-time photon bunching, and
single-time PAB. Three examples of this type of PB are shown
in Figs. 2(a) and 2(c) by the curves marked as A, B, and 4.
These examples should be compared with the examples of true
single-PB indicated there by arrows 2 and 3.

More specifically, in Fig. 2(a), the steady-state two-time
second-order correlation function g(2)(τ ) is shown versus the
rescaled delay time γ τ for the same values of the parameters
as those in Fig. 8(a). We assumed here the maximal squeezing
of the field in the reservoir, i.e., M = √

n(n + 1). For each of
the considered cases, having the minimum of g(2)(0) < 1, the
cavity field clearly exhibits two-time PAB, g(2)(τ ) > g(2)(0).
When ε takes such a value, which results in the minimal value
of g(2)(0) for a nonmaximally squeezed reservoir field, the
cavity field exhibits two-time bunching of photons for short
delay time. PAB appears for longer delay time. In Figs. 2(b)
and 2(c), this behavior is studied in more detail. It appears
that, depending on the reservoir squeezing degree M of the
reservoir, both two-time photon bunching and antibunching
are possible. But bunching for short delay times is possible
only for such values of M, which result in decreasing g(2)(0)
for increasing M.

D. Nonstandard single-photon blockade of types 2 and 3

We will show now the possibility of generating nonstan-
dard single-PB of the second and third types in the system
considered here.

In Fig. 6(a), the correlation functions of g(2)(0), g(3)(0),
and g(4)(0) are shown in their dependence on the external
excitation strength ε for a specified mean number of photons
in the squeezed reservoir, while Fig. 6(b) shows g(2)(0) and
g(3)(0) as a function of the detuning �. As one can see, there
are ranges of the excitation strengths ε and the detuning � for
which g(2)(0) < 1 is accompanied by the additional condition
for g(3)(0) > 1, which implies the occurrence of NPB of type
2. For these regions, the condition g(2)(0) < 1 is not sufficient
for identifying “true” single-PB, because there still exists a
nonzero probability of measuring more than two photons at
the same time. Only the two-photon statistics is suppressed
and that can be also achieved when the external driving field
is off resonance with the cavity frequency. Larger values of ε

are related to the simultaneous suppression of the higher-order
correlations. Although the values of g(2)(0) are increasing, still
we can decrease the higher-order correlations below the value
of g(2)(0), as shown in Fig. 6(a).

Moreover, in Fig. 4(d), we show the ranges of the squeez-
ing r and displacement α parameters, for which another type
of nonstandard single-PB (i.e., type 3) can be observed. This
NPB in Fig. 4(d) is shown in addition to the NPB of type 2
presented in Fig. 4(c).

E. Two-photon blockade

As shown in Fig. 3, various types of single-PB can be
generated via dissipation of a linearly driven optical cav-
ity field into a squeezed environment. However, two-PB,

FIG. 9. Squeezed-reservoir model: two-photon blockade gener-
ated in a driven harmonic cavity coupled to a squeezed reservoir
according to the refined criteria in Eq. (8) for n = 0.03 and (a) M �√

n(n + 1) and (b) M = √
n(n + 1) corresponding to the squeezed-

vacuum reservoir (see Appendix B), assuming � = 0. Specifically,
by changing the driving strength ε vs (a) the reservoir squeezing
parameter M and (b) the reservoir mean photon number n, we show
the regions in which the criteria 1 and 2 are satisfied, as indicated
in yellow and blue, respectively. Two-photon blockade occurs when
both criteria 1 and 2 are satisfied, which corresponds to the green
regions.

according to the simplified criteria in Eq. (10), is not observed
in this model, which is demonstrated in Fig. 3(e) for a specific
choice of n. Also our numerical calculations show that it is
very unlikely to generate three-PB according to the simplified
criteria Eq. (11) for an arbitrary value of n.

However, two-PB, according to the refined criteria in
Eq. (8), can be observed in this model. Indeed, the green
regions in Fig. 9 show the ranges of the parameters M, ε, and
n for which two-PB can be observed.

IV. SIMULATING VARIOUS TYPES OF PHOTON
BLOCKADE AND TUNNELING WITH SQUEEZED

COHERENT STATES

A. Squeezed coherent states

Ideal SCS, or more precisely the displaced squeezed vac-
uum, can be obtained by applying the squeezing and displace-
ment operators to the vacuum state as follows:

|α, ξ 〉 = D̂(α)Ŝ(ξ )|0〉, (18)

where

Ŝ(ξ ) = exp
[

1
2 (ξ	â2 − ξ â†2)

]
(19)

is the squeezing operator with a complex squeezing parameter
ξ = r exp(iθ ) and D(α) = exp(αâ† − α	â) is the displace-
ment operator with α = ᾱ exp(iφ), for arbitrary phases θ, φ ∈
[0, 2π ] and amplitudes ᾱ, r � 0.

The second-order correlation function g(2)(0) for the SCS
with arbitrary values of θ and φ is given by

g(2)(0) = 3 + 2(1 − 2ᾱ2)N̄−1 − ᾱ2[1 + C]N̄−2, (20)

where the mean photon number is

N̄ ≡ 〈â†â〉 = 1
2 [2ᾱ2 + cosh(2r) − 1], (21)
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and C = cos (2φ − θ ) sinh (2r). For a special case with the
optimally squeezed amplitude quadrature (θ = 2φ), Eq. (20)
simplifies to the formula given in Ref. [75]. Note that such
phase optimization corresponds to the so-called principal
squeezing [76,83,84].

Our main objective is to determine whether two-PB (2PB)
and three-PB (3PB), as well as various types of nonstandard
single-PB (NPB) and other phenomena such as PIT, can be
generated or simulated with squeezed states. Thus, we have
to examine higher-order correlation functions, namely, g(3)(0)
and g(4)(0). We find that the third-order correlation function
for the SCS with arbitrary angles θ and φ is

g(3)(0) = 15 + 9(1 − 3ᾱ2)N̄−1 − 9ᾱ2(1 + B)N̄−2

+ 2ᾱ2(2ᾱ2 + 3C)N̄−3, (22)

which considerably simplifies for the optimally squeezed
amplitude quadratures (θ = 2φ).

The analytical solution of the simplified criteria in Eq. (10)
can be obtained for the optimally squeezed state holding the
relation of θ = 2φ. Additionally, analytical solutions can also
be found whenever one of the phases is fixed and the other
takes any value from the range [0, 2π ]. Our numerical and
analytical results show that it is very unlikely to obtain the
simplified conditions in Eq. (10) for two- and three-PB for the
SCS having the optimally squeezed amplitude quadratures.
The same conclusion holds for the SCS with one of the phases
fixed and for any values of the other phase, α, and r. This
conclusion has been confirmed numerically for 106 randomly
generated SCS without fixing any parameters.

Thus, we have shown that multi-PB, according to the
simplified criteria in Eq. (10), are very unlikely for any choice
of the parameters of the SCS. This suggests that, by having a
physical system evolving into a squeezed state, one can expect
the possibility of generating single-PB but standard squeezing
does not lead to the generation of this type of multi-PB.

In contrast to this, we find that two-PB is still possible,
but according to the refined criteria in Eq. (8). Indeed, for
properly chosen parameters M and ε of the SCS, two-PB can
be observed as shown by the green regions in Fig. 9.

Nonstandard single-PB (of type 2) can occur for the SCS.
Indeed, we have found analytical solutions satisfying both
criteria in Eq. (13). Such solutions exist only for some rela-
tions between the phases of the displacement and squeezing
operators. The ranges of these phases are collected in Ta-
ble III. The nonstandard PB effect cannot be observed for
other phase relations.

B. Displaced squeezed thermal states

In addition to the SCS, we also analyze the displaced
squeezed thermal states (DSTS), which can be obtained by
applying the displacement D̂(α) and squeezing Ŝ(ξ ) operators
to a thermal state ρ̂th(nth ), i.e.,

ρ̂(α, ξ, nth ) = D̂(α)Ŝ(ξ )ρ̂th(nth )Ŝ†(ξ )D̂†(α). (23)

The thermal state is characterized by the density matrix
ρ̂th(nth ) = ∑

n Pn|n〉〈n|, where Pn = nn
th/(1 + nth )n+1 is the

probability of finding n thermal photons in a thermally excited
mode having a geometric probability distribution, and nth is
the mean number of thermal photons.

TABLE III. Squeezed coherent states simulating nonstandard
photon blockade (of type 2), for which g(2)(0) < 1 and g(3)(0) > 1
hold, vs the phase φ = arg α of the displacement operator and the
phase θ = arg ξ of the squeezing parameter.

θ φ NPB

0 (−π/4; π/4) and (3π/4; 5π/4) Yes
[π/4; 3π/4] and [5π/4; 7π/4] No

π (π/4; 3π/4) and (5π/4; 7π/4) Yes
[−π/4; π/4] and [3π/4; 5π/4] No

(−π/2; π/2) 0, π Yes
[π/2; 3π/2] No
[−π/2; π/2] π/2 No
(π/2; 3π/2) Yes

In Appendix E we show explicitly that the DSTS
ρ̂(α, ξ, nth ) are nonclassical if and only if the squeezing
parameter r ≡ |ξ | is greater than the critical value r0:

r > r0 ≡ 1
2 ln(1 + 2nth ). (24)

These states are nonclassical, independent of the displacement
parameter α, because they are described by a non-positive-
semidefinite Glauber-Sudarshan P function. This is demon-
strated in Appendix E without recalling the explicit form
of the P function for the DSTS. Further discussion of the
nonclassical (r > r0) and classical (r � r0) regimes of the
DSTS in relation to their simulation of PIT is presented in
Sec. V.

Applying the definition of the kth-order correlation func-
tions g(k)(0), we can easily obtain the following relations
describing the second- and third-order equal-time correlation
functions:

g(2)(0) = 3 + (1 − 2ᾱ2)N̄−1 − h−, (25)

g(3)(0) = 15 + 9(1 − 3ᾱ2)N̄−1 − 9h+

+ 2ᾱ2[2ᾱ2 + 3(2nth + 1)B]N̄−3, (26)

where the mean photon number is

N̄ ≡ 〈â†â〉 = 1
2 [2ᾱ2 + (1 + 2nth ) cosh(2r) − 1], (27)

and the auxiliary functions are

h± = {nth(1 + nth ) + ᾱ2[1 ± (2nth + 1)C]}N̄−2, (28)

where C is defined below Eq. (21). For θ = 2φ, Eqs. (25)
and (26) considerably simplify. In this special case, Eq. (25)
reduces to the corresponding formula given in Ref. [75].

C. Photon correlations in squeezed coherent states

Here we analyze different kinds of PB and PIT effects as
listed in Table II and shown in Figs. 3–12.

(i) Three-PT occurs when 1 < g(2)(0) < g(3)(0). We find
that these conditions are satisfied for the SCS if r > 0 and α

is smaller than a critical parameter α0, i.e.,

0 < α < α0 ≡ 1√
2

√
1 + c4 + c(2c + s)(cs − 1), (29)

where hereafter c = cosh(r) and s = sinh(r).
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FIG. 10. Squeezed coherent states: regions of the displacement
(α) and squeezing (r) parameters for which the refined photon
blockade criteria in Eq. (8) are satisfied for two-photon (a)–(c) and
three-photon (d)–(f) blockades. Specifically, the regions of the SCS
parameters, where the criteria 1 and 2, are satisfied for g(2)(0), g(3)(0),
and g(4)(0), are shown in yellow, blue, and violet (or navy blue),
respectively. In grayscale, yellow (indicated by “Y”) is the brightest,
and violet is the darkest color. Blue is marked by “B.” Two-photon
blockade occurs if the criteria for g(2)(0) and g(3)(0) are both satisfied,
which corresponds to the green region in (c). Three-photon blockade
does not occur as the regions for g(3)(0) and g(4)(0) do not overlap.

(ii) Nonstandard single-PB of type 2, which is also referred
to as unconventional PB in Ref. [77], occurs if g(2)(0) < 1 <

g(3)(0), which can be observed for the SCS if α ∈ (α0, α1) for
r > 0, where the critical parameter α0 is defined in Eq. (29)
and another critical value of α is

α1 = 1

4
√

6s

√
3 f7 − 4(3c − 21s) + 8

√
3β1(c + s)s2, (30)

FIG. 11. Simulation of two-photon blockade with the displaced
squeezed thermal states according to the refined criteria 1 and 2.
Same as in Fig. 10 but for the DSTS with (a) nth = 0.005 and
(b) nth = 0.01. We set here θ ≡ arg ξ = π and φ ≡ arg α = 4π/8.
Two-photon blockade occurs only in panel (a) (in the green region).
This green region is much larger for nth = 0 as shown in Fig. 10(c).
It is seen that even a very small number of thermal photons severely
shrinks the range of the parameters allowing for the observation of
two-photon blockade.

given in terms of the auxiliary functions:

fx = x exp(−3r) − 4 exp(3r) + exp(5r),

β1 = 35 + 94c4 + 2cs(70 + 47cs) − 2c2(51 + 88cs). (31)

(iii) Nonstandard three-PT occurs when g(2)(0) <

g(3)(0) < 1. This effect can be observed for the SCS if
α ∈ (α1, α2) for r > 0, where α1 is defined in Eq. (30) and

α2 = 1

4
√

2r

√
f9 − 2(3c − 17s) + 8

√
2β2(c + s)s2,

β2 = 10 + 29c4 + cs(40 + 29cs) − c2(31 + 56cs). (32)

(iv) Single-PB is usually verified by the simplified condi-
tion g(2)(0) < 1. Stricter conditions for single-PB can be given
as g(3)(0) < g(2)(0) < 1. These conditions are satisfied for the
SCS if α > α2 and r > 0.

(v) Our numerical and analytical calculations show that
there are no solutions for α satisfying the conditions 1 <

g(3)(0) < g(2)(0) for two-PT.
(vi) Two-PB can indeed be observed according to the

refined conditions given in Eq. (8) for both SCS and DSTS,
as shown by the green regions in Figs. 10(c) and 11(a), re-
spectively, for specific choices of the squeezing phase θ = π

and the displacement phase φ = 4π/8. It is seen in Figs. 10(a)
and 10(b) that two-PB cannot be observed for the phases φ =
0, 3π/8. Figures 10(c) and 11 show the destructive role of
thermal photons nth for the generation of two-PB. Indeed, the
green region in Figs. 10(c) and 11 decreases with increasing
nth, and it is not seen any more for nth = 0.01 in Fig. 11(b).

In contrast to this refined two-PB, our analytical and
numerical calculations show that the simplified criteria in
Eq. (10) for two-PB are very unlikely to be satisfied as
graphically explained in Fig. 4(e) for the SCS and Fig. 5(e)
for the DSTS.

Moreover, our both numerical and analytical results show
that three-PB can be simulated by neither SCS nor DSTS
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according to the refined and simplified criteria of PB, given
in Eqs. (8) and (9), respectively. Indeed, the criteria 1 and
2 can be satisfied separately, as shown by the violet and
blue regions in Figs. 10(d) and 10(e), but they cannot be
satisfied simultaneously for the same values of the squeezing
parameter r and the displacement parameter α. This result
implies that the colored regions in these figures do not overlap.

V. NONCLASSICAL AND CLASSICAL
EFFECTS AND STATES

Now we address the question whether the analyzed effects
and states are nonclassical or not.

We apply here the standard quantum-optical definition (or
criterion) of the nonclassicality of a single-mode bosonic state
ρ̂ in terms of the Glauber-Sudarshan P function [85]:

ρ̂ =
∫

d2β P(β, β∗)|β〉〈β|, (33)

where |β〉 is a coherent state with a complex amplitude β.
According to this common definition (see, e.g., Refs. [76,85]),
a given state ρ̂ is referred to as classical, if it is described
by a classical-like (i.e., non-negative) P function. Otherwise,
a state ρ̂ is considered nonclassical (or quantum), i.e., when
it is described by a negative (or more precisely nonpositive
or non-positive-semidefinite) P function. Thus, according to
this definition, only coherent states and their mixtures (in-
cluding thermal states) can be considered classical, while all
other mixed and pure states (including squeezed states) are
nonclassical.

Single- and multi-PB effects are indeed purely nonclassical
as shown explicitly in Appendix C.

PIT is usually also considered a quantum effect (as em-
phasized in, e.g., Refs. [38,60]), even if it is characterized
by a classical-like property of the photon-number distribu-
tions, i.e., the second-order or higher-order super-Poissonian
photon-number statistics (i.e., single-time photon bunching).
We note that g(2)(0) � 1 is usually regarded as “a general
property of all kinds of classical light” [86]. Indeed, thermal
states, which are classical as given by the mixtures of coherent
states, can simulate PIT as shown in Appendix D.

A number of nonclassicality measures of bosonic fields
have been proposed, which include nonclassical depth [87],
nonclassical distance [88], and the nonclassicality vol-
ume [89], which corresponds to the volume of the negative
part of the Wigner function (see, e.g., Ref. [90] and refer-
ences therein). Here, we apply an entanglement potential (EP)
introduced by Asbóth et al. [91]. Entanglement potentials
are, in general, numerically and experimentally simpler than
other formally defined nonclassicality measures, including
the nonclassical depth and distance. Moreover, entanglement
potentials are much more sensitive in detecting nonclassi-
cality compared to the nonclassicality volume. Indeed, the
nonclassicality volume of the SCS studied here is exactly zero,
although the states are nonclassical according to entanglement
potentials.

The basic idea of entanglement potentials is physically
quite simple: By combining a classical single-mode light with
the vacuum on a beam splitter (BS), then the output state is
separable. In contrast to this, if the input light is nonclassical

then the output light from a lossless beam splitter is entangled.
Moreover, the degree of nonclassicality is not changed by
lossless linear-optical transformations (including beam split-
ters). Thus, the degree of nonclassicality of the input state
can be measured by the output-state entanglement by applying
standard entanglement measures [92], e.g., the negativity, the
concurrence, or the relative entropy of entanglement [91,93].

To be more specific, the nonclassicality of a single-mode
state ρ̂ ≡ ρ̂in can be quantified, according to Ref. [91], by the
entanglement of the output state ρout of an auxiliary lossless
balanced BS with the state ρ̂ and the vacuum |0〉 at the inputs,
i.e.,

ρ̂out = ÛBS(ρ̂in ⊗ |0〉〈0|)Û †
BS, (34)

where ÛBS is the unitary transformation of a balanced (50:50)
lossless beam splitter,

ÛBS = exp
[
−i

π

2
(â†

1â2 + â1â†
2)

]
, (35)

and â1,2 (â†
1,2) are the annihilation (creation) operators of the

input modes. We apply here the EP based on the negativity
(N) [91,92]:

EP(ρ̂in ) ≡ EN (ρ̂out ) = log2[N (ρ̂out ) + 1]

= log2

∣∣∣∣ρ̂�
out

∣∣∣∣
1, (36)

which is given in terms of the trace norm ||ρ̂�||1 of the
partially transposed statistical operator ρ̂� , and the logarith-
mic negativity EN . We note that the negativity and, thus,
the corresponding entanglement potential determine, e.g.,
(i) the entanglement cost Ecost ≡ EN under operations pre-
serving the positivity of the partial transpose (at least for
single-PB entangled states) [92] and (ii) the dimensionality of
entanglement, which is the number of the degrees of freedom
of entangled beams [35,94].

The entanglement potential, defined in Eq. (36), for the
DSTS is given by the following simple formula [91]:

EP[ρ̂(α, ξ, nth )] = r − r0

ln 2
, (37)

where the critical parameter r0 is given in Eq. (24). This en-
tanglement potential is plotted in Fig. 12(a) together with the
squeezing variance, which is another nonclassicality measure
of the DSTS. Indeed, in Fig. 12(b), we plotted the truncated
squeezing variance defined as [95]

Ṽ ≡ min[0,−〈: (�X̂ϕ0 )2 :〉], (38)

where the squeezing variance for the DSTS is (see
Appendix E)

〈(�X̂ϕ0 )2〉 = 1
2

(
1
2 + nth

)
exp(−2r) = 1

4 exp[−2(r − r0)],
(39)

and 〈: (�X̂ϕ0 )2 :〉 = 〈(�X̂ϕ0 )2〉 − 1/4. We note that, in gen-
eral, squeezing for an optimal phase ϕ0 is referred to as princi-
pal squeezing [76,83] and its geometrical interpretation can be
provided by Booth’s elliptical lemniscates [84]. Figure 12(b)
clearly shows the same nonclassical and classical regimes
of the DSTS, as those in Fig. 12(a) for the entanglement
potential, as explained in greater detail in Appendix E.
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FIG. 12. Nonclassicality measures of the displaced squeezed
thermal states: (a) entanglement potential, EP, of ρ̂(α, ξ, nth ) and
(b) the truncated squeezing variance Ṽ , defined in Eq. (38), vs
the squeezing parameter r = |ξ | for different values of the mean
numbers of thermal photons nth. The EP and squeezing variance
are independent of the displacement parameter α and the squeezing
phase θ . It is seen that the critical values r0 (specifically, r0 =
0, 0.0912, 0.1682) of the squeezing parameter r increase with in-
creasing nth (i.e., nth = 0, 0.1, 0.2), according to Eq. (24) as indicated
by the vertical thin solid lines.

By comparing Eqs. (37) and (39), it is seen that the EP is a
monotonic function of the squeezing variance for the DSTS,
i.e.,

EP = − 1
2 log2 〈(�X̂ϕ0 )2〉 − 1. (40)

Note that these quantities are also monotonically related to the
nonclassical depth for the DSTS [87].

The nonclassicality of an arbitrary two-mode Gaussian
state ρ̂out (which includes an arbitrary single-mode state ρ̂in

studied in this paper) can also be analyzed by applying a
numerically efficient nonclassicality invariant proposed in
Ref. [96]. That quantifier is invariant under any global unitary
photon-number-preserving transformations of the covariance
matrix of a Gaussian state.

Thus, we have shown that not all our numerical predictions
of PIT and other photon-number correlations correspond to
quantum states, but only those for r > r0 are nonclassical
for the DSTS. To make this distinction clearer, we plotted in
Figs. 5 and 12 the borderline at r = r0 between the classical
and nonclassical regimes of the DSTS. We emphasize that
all SCS with nonzero squeezing parameter r are nonclassical,
which is a special case of the DSTS for nth = 0. Thus, all our
numerical predictions shown in Figs. 4 and 10 correspond to
nonclassical states.

VI. CONCLUSIONS

Single- and two-photon blockades have been usually stud-
ied in a driven nonlinear cavity [see Fig. 1(b)] or cavities [see
Fig. 1(c)] coupled to a harmonic reservoir (a thermal bath).
Only a few works (including Refs. [74,75]) were devoted to
the analysis of single-photon blockade via quantum nonlinear
reservoir engineering.

In this paper we showed that a driven harmonic cavity
coupled to a squeezed reservoir, as schematically shown in
Fig. 1(a), can generate light exhibiting various types of photon
blockade and related phenomena. These include two-photon
blockade (as defined in Sec. II A), three-photon tunneling
(defined in Sec. I D), and three nonstandard types of single-
photon blockade (defined in Sec. II C), in addition to standard
single-photon blockade. Our theoretical interest in studying
two-photon blockade [53] has been stimulated by a recent
experiment of the Rempe group [44].

As shown in Refs. [97,98], the roles of the Kerr nonlinear
interaction and two-photon dissipation can be interchanged in
the steady states of the systems undergoing these processes.
This might explain why the linear system shown in Fig. 1(a),
being coupled to a squeezed reservoir, enables the generation
of photon blockade analogously to the standard Kerr nonlinear
systems shown in Figs. 1(b) and 1(c) in the dispersive limit.
Indeed, a squeezed reservoir allows for two-photon dissipa-
tion.

We considered various types of nonstandard photon-
number-correlation effects by analyzing different properties
of second- and third-order single-time correlation functions
(as listed in Table II), and two-time correlations described by
g(2)(τ ).

We also simulated these multiphoton effects with squeezed
coherent states and displaced squeezed thermal states,
inspired by the prediction [75] of single-photon blockade in
a linear system with nonlinear damping. The relation between
the squeezed-state simulations of these effects and their gen-
eration via squeezed reservoir is explained in Appendix B.

Photon blockade in nonlinear systems coupled to thermal
reservoirs has already attracted considerable interest, as con-
firmed by a number of experimental demonstrations [37–46].
Thus, we hope that the described method of quantum reservoir
engineering, which enables the generation of multiphoton
blockade, photon-induced tunneling, and related phenomena,
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can also stimulate further theoretical and experimental re-
search in optical and microwave photonics [17].
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APPENDIX A: STANDARD SYSTEMS FOR STUDYING
CONVENTIONAL AND UNCONVENTIONAL

PHOTON BLOCKADE

For a better comparison of the proposed PB system shown
in Fig. 1(a), we briefly recall here the prototype systems for
generating conventional [see Fig. 1(b)] and unconventional
[see Fig. 1(c)] PB effects.

(1) Conventional PB is usually studied in a driven Kerr
nonlinear system described by the Hamiltonian

Ĥa = ωcâ†â + ε(âeiωd t + â†e−iωd t ) + χ â†â†ââ, (A1)

where χ is a Kerr nonlinearity proportional to the third-order
susceptibility χ (3), and the other terms of this Hamiltonian
are the same as in Eq. (15). The Hamiltonian (A1) can be
effectively derived (see, e.g., Ref. [53] and references therein)
from the Jaynes-Cummings model in the dispersive limit (i.e.,
far off resonance) describing a driven cavity interacting with a
two-level system (qubit) under the rotating wave approxima-
tion. Thus, the system shown schematically in Fig. 1(b) can
be given by the Hamiltonian

Ĥq
a = 1

2ωσ̂z + ωcâ†â + g(σ̂+â + â†σ̂−)

+ ε(âeiωd t + â†e−iωd t ), (A2)

where σ̂− (σ̂+) is the qubit lowering (raising) operator; σz =
|e〉〈e| − |g〉〈g| is a Pauli operator; and |g〉 (|e〉) is the ground
(excited) state of the two-level system.

(2) The prototype Hamiltonian for generating unconven-
tional PB is given by [47–50]

Ĥab = Ĥa + Ĥb + Jâ†b̂ + J∗âb̂†, (A3)

where

Ĥb = ω′
cb̂†b̂ + ε′(b̂eiω′

d t + b̂†e−iω′
d t ) + χ ′b̂†b̂†b̂b̂, (A4)

where b̂ (b̂†) is the annihilation (creation) operator of the op-
tical mode in the second cavity, χ ′ is the Kerr nonlinearity of
the second cavity, and the quantities ω′

c, ω′
d , and ε′ correspond,

respectively, to ωc, ωd , and ε in Eq. (15), but for the second
cavity.

In analogy to the derivation of the conventional Kerr-
nonlinear Hamiltonian in Eq. (A1) from Eq. (A2), also
Eq. (A3) can be derived from the two linearly coupled driven
Jaynes-Cummings systems in the dispersive limit. Such a
two-cavity system can be described by

Ĥq
ab = Ĥq

a + Ĥq
b + Jâ†b̂ + J∗âb̂†, (A5)

where Ĥq
b is defined analogously to Ĥq

a in Eq. (A2), but for
the mode b̂ of the second cavity. This two-atom system can be
simplified to include only one atom, which is the case shown
in Fig. 1(c).

The dissipative evolution of such PB systems has been
usually studied assuming their coupling to a thermal reservoir
within the Lindblad master equation,

d ρ̂

dt
= −i[Ĥ, ρ̂] + 1

2
γ {(nth + 1)�1[â]ρ̂ + nth�1[â†]ρ̂},

(A6)
for the reduced density matrix ρ̂, where the Lindblad super-
operator �1[x̂]ρ̂ is defined in Eq. (B2) in Appendix B, γ is the
damping rate, and nth = {exp[h̄ω/(kBT )] − 1}−1 is the mean
thermal photon number.

APPENDIX B: MASTER EQUATION FOR THE
SQUEEZED-VACUUM RESERVOIR

Here, we show more explicitly the relation between
squeezed states and a squeezed reservoir by studying the
master equation for the squeezed-vacuum reservoir, given in
Eq. (17) in its special case for |M| = √

n(n + 1). Our presen-
tation is based on Refs. [80–82] (see also, e.g., Ref. [99]).

The master equation in Eq. (17), with the system Hamilto-
nian Ĥ in Eq. (16), can be rewritten more compactly as

d ρ̂

dt
= −i[Ĥ , ρ̂] + 1

2
γ {(n + 1)�1[â]ρ̂ + n�1[â†]ρ̂

− M�2[â]ρ̂ − M∗�2[â†]ρ̂}, (B1)

using the superoperators defined as

�1[x̂]ρ̂ = 2x̂ρ̂x̂† − x̂†x̂ρ̂ − ρ̂x̂†x̂, (B2)

�2[x̂]ρ̂ = 2x̂ρ̂x̂ − x̂x̂ρ̂ − ρ̂x̂x̂. (B3)

This master equation can be derived by considering a system
described by Ĥ ′ in Eq. (15) or, equivalently, Ĥ in Eq. (16),
with its cavity mode â being linearly coupled to an infinite
set of reservoir modes b̂k [99]. We assume that the reservoir
modes b̂k are initially in the squeezed vacuum states,

|�ξ 〉 =
∏

k

|ξk〉 =
∏

k

Ŝk (ξ )|0k〉, (B4)

where the kth-mode squeezing operator is given by

Ŝk = exp (ξ ∗b̂k0+kb̂k0−k − H.c.), (B5)

where k0 = ωc/c, ξ = r exp(iθ ) is the usual complex squeez-
ing parameter, and H.c. denotes the corresponding Hermitian-
conjugate term. Thus, Ŝk in Eq. (B5) is a two-mode squeezing
operator for each k. Note that the master equation in Eq. (B1)
can also be derived for a single-mode squeezing operator
acting on each reservoir mode k [81]. The total initial state
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is assumed to be ρ̂T = ρ̂(0) ⊗ |�ξ 〉〈�ξ |, and the total system-
reservoir Hamiltonian reads

ĤT = Ĥ ′ +
∑

k

ωkb̂†
kb̂k +

∑
k

gk (âb̂†
k + â†bk ), (B6)

where gk is the coupling strength between the system mode â
and the reservoir mode b̂k . The standard procedure of deriving
the equation of motion for the reduced density matrix ρ̂ under
the Markov approximation results in the master equation,
given in Eq. (B1) in the interaction picture, where

〈b̂†
kb̂k′ 〉 = nδkk′ = sinh2(r)δkk′ ,

(B7)
〈b̂k b̂k′ 〉 = −M∗δk′k′′ = − cosh (r) sinh (r)eiθ δk′k′′ ,

with k′′ = 2k0 − k. By applying the Bogoliubov transforma-
tion,

âs = Ŝ†âŜ = cosh (r)â − sinh (r)eiθ â†,
(B8)

â†
s = Ŝ†â†Ŝ = cosh (r)â† − sinh (r)e−iθ â,

where Ŝ(ξ ) is the squeezing operator defined in Eq. (19),
the master equation in Eq. (B1) for � = 0 reduces, in the
squeezed-vacuum frame, to the standard-form master equa-
tion without �2 terms, i.e.,

d ρ̂

dt
= −i[Ĥs, ρ̂] + γ

2
�1[âs]ρ̂, (B9)

or, equivalently,

d ρ̂s

dt
= −i[Ĥ, ρ̂s] + γ

2
�1[â]ρ̂s, (B10)

where ρ̂s = ŜρŜ† and

Ĥs = Ŝ†Ĥ Ŝ = ε(â†
s + âs). (B11)

As mentioned above, the resonant case � = 0 is assumed
here. Note that for � �= 0 terms proportional to â2 and (â†)2

should be added to the master equations in (B9) and (B10).

APPENDIX C: NONCLASSICALITY
OF PHOTON BLOCKADE

Here we recall that PB is a nonclassical effect. First we
show this for single-PB using the P-function approach. And
then we apply another approach for any multi-PB.

We first recall that (â†)2â2 = n̂(n̂ − 1) =: n̂2 :, where ::
means the normal ordering of the creation and annihilation
operators. The photon-number variance 〈: (�n̂)2 :〉 is simply
related to g(2)(0) as follows:

〈: (�n̂)2 :〉 = 〈: n̂2 :〉 − 〈n̂〉2 = [g(2)(0) − 1]〈n̂〉2, (C1)

where �n̂ = n̂ − 〈n̂〉. So, g(2)(0) < 1 if and only if the vari-
ance is negative:

〈: (�n̂)2 :〉 =
∫

d2β P(β, β∗)(|β|2 − 〈n̂〉)2 < 0. (C2)

Because the terms (|β|2 − 〈n̂〉)2 � 0 and 〈: (�n̂)2 :〉 < 0, then
P(β, β∗) must also be negative in some regions of phase
space. This means that the state ρ̂, which exhibits single-PB, is
described by a non-positive-semidefinite P(β, β∗), and, thus,
has to be nonclassical.

The nonclassicality of single- and multi-PB can be shown
even faster by recalling the following facts: (1) classical states
of light are either coherent states or their mixtures; (2) co-
herent states are characterized by g(k)(0) = 1, for any k � 1;
(3) k-PB requires g(k+1)(0) < 1, or even the sharper condition
g(k+1)(0) < A ≡ exp(−〈n̂〉) � 1, according to the refined PB
criterion 1 in Eq. (8). So, single- and multi-PB can occur
only for photon-number distributions which are sharper [79]
than that of a coherent state and, therefore, also sharper
than any mixtures of coherent states. This completes our
proofs.

APPENDIX D: CLASSICAL SIMULATION
OF PHOTON-INDUCED TUNNELING WITH

THERMAL STATES

Here we show that usual thermal states can simulate the
PIT of an arbitrary number of photons.

The thermal-state probability Pn of measuring n pho-
tons can be compactly written as Pn = yxn, where x =
〈n̂〉y, y = 1/(1 + 〈n̂〉), and 〈n̂〉 ≡ n̄th = {exp[h̄ω/(kBT )] −
1}−1. Then the geometric series for the second- and higher-
order correlation functions g(k)(0) can be easily calculated
as

g(2)(0) = y

〈n̂〉2

∑
n

xnn(n − 1) = 2,

g(3)(0) = y

〈n̂〉3

∑
n

xnn(n − 1)(n − 2) = 6. (D1)

These values can also be obtained from Eqs. (25) and (26) in
their special cases for α = r = 0.

By induction, we conclude that for any order k > 1 the
correlation function g(k)(0) for the thermal state with the mean
photon number 〈n̂〉 becomes

g(k)(0) = 〈n̂〉−k
∑

n

Pnn[k] = k!, (D2)

where n[k] = n(n − 1) · · · (n − k + 1). This implies that for
any k > 1 and 〈n̂〉 > 0 the following holds:

1 < g(k)(0) < g(k+1)(0). (D3)

Thus, thermal states can simulate the PIT of any number of
(thermal) photons. In particular, this includes two- and three-
PT, which are characterized by the conditions 1 < g(2)(0) and
Eq. (3), respectively.

APPENDIX E: NONCLASSICAL AND CLASSICAL
REGIMES OF DISPLACED SQUEEZED THERMAL STATES

For completeness of our presentation, we show explicitly
that the DSTS, given by ρ̂(α, ξ, nth ), are nonclassical if the
inequality |ξ | > r0, given in Eq. (24), is satisfied.

By defining a phase-dependent quadrature operator

X̂ϕ = 1
2 [â exp(iϕ) + â† exp(−iϕ)], (E1)
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the minimum value of the normally ordered variance
〈: (�X̂ϕ )2 :〉 for the DSTS is given by

min
ϕ

〈: (�X̂ϕ )2 :〉 ≡ 〈: (�X̂ϕ0 )2 :〉 = 1
4 exp[−2(r − r0)] − 1

4 ,

(E2)
where ϕ0 denotes the optimal value of the quadrature phase ϕ.
In particular, ϕ0 = 0 for the squeezing phase θ = 0. More-
over, :: denotes normal ordering and �X̂ϕ = X̂ϕ − 〈X̂ϕ〉. It
is seen that Eq. (E2) is independent of the displacement
parameter α and, thus, equivalent to the variance for the
squeezed thermal states first derived in Ref. [100].

Squeezing occurs if 〈: (�Xϕ )2 :〉 < 0. This normally
ordered variance can be directly calculated from the
corresponding P function:

〈: (�Xϕ0 )2 :〉 =
∫

d2β P(β, β∗)[Xϕ0 (β, β∗) − 〈X̂ϕ0〉]2 < 0,

(E3)
where

Xϕ0 = 1
2 [β exp(iϕ0) + β∗ exp(−iϕ0)]. (E4)

Because the term [...]2 is non-negative and 〈: (�Xϕ0 )2 :〉 is
negative for any squeezed state, then P(β, β∗) has to be
negative in some regions of phase space. This means that the
DSTS for r > r0 are nonclassical. This result is confirmed
by Eq. (37) for the entanglement potential, and shown in
Fig. 12. Thus, the requirement r > r0 is the necessary and suf-
ficient condition of the P-function-based nonclassicality for
the DSTS. This implies that any nonclassical DSTS exhibits
quadrature squeezing.

In a special case of the SCS, given by |α, ξ 〉 =
D̂(α)Ŝ(ξ )|0〉, we recover the well-known result that r0 = 0,
which means that any SCS with a nonzero squeezing parame-
ter is nonclassical [3].

Thus, to show the nonclassicality of the DSTS, we have
plotted the entanglement potential and the squeezing variance
in Figs. 12(a) and 12(b), respectively. Moreover, we plotted
the red vertical line at r = r0 in Fig. 5 to show more explicitly
the borderline between the classical and nonclassical regimes
of the DSTS.

[1] V. Dodonov, “Nonclassical” states in quantum optics: A
‘squeezed’ review of the first 75 years, J. Opt. B: Quant.
Semiclass. Opt. 4, R1 (2002).

[2] D. F. Walls, Squeezed states of light, Nature (London) 306,
141 (1983).

[3] R. Loudon and P. Knight, Squeezed Light, J. Mod. Opt. 34,
709 (1987).

[4] Theory of Nonclassical States of Light, edited by V. Dodonov
and V. Man’ko (Taylor & Francis, London, 2002).

[5] Quantum Squeezing, edited by P. D. Drummond and Z. Ficek
(Springer-Verlag, Berlin, 2004).

[6] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs,
30 years of squeezed light generation, Phys. Scr. 91, 053001
(2016).

[7] E. H. Kennard, Zur Quantenmechanik einfacher Bewe-
gungstypen, Z. Phys. 44, 326 (1927).
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[32] W. Leoński and R. Tanaś, Possibility of producing the one-
photon state in a kicked cavity with a nonlinear Kerr medium,
Phys. Rev. A 49, R20(R) (1994).

[33] Y.-X. Liu, A. Miranowicz, Y. B. Gao, J. Bajer, C. P. Sun,
and F. Nori, Qubit-induced phonon blockade as a signature of
quantum behavior in nanomechanical resonators, Phys. Rev. A
82, 032101 (2010).

[34] N. Didier, S. Pugnetti, Y. M. Blanter, and R. Fazio, Detecting
phonon blockade with photons, Phys. Rev. B 84, 054503
(2011).

[35] A. Miranowicz, J. Bajer, N. Lambert, Y.-X. Liu, and F. Nori,
Tunable multiphonon blockade in coupled nanomechanical
resonators, Phys. Rev. A 93, 013808 (2016).

[36] X. Wang, A. Miranowicz, H.-R. Li, and F. Nori, Method for
observing robust and tunable phonon blockade in a nanome-
chanical resonator coupled to a charge qubit, Phys. Rev. A 93,
063861 (2016).

[37] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an optical
cavity with one trapped atom, Nature (London) 436, 87 (2005).

[38] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J.
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[47] W. Leoński and A. Miranowicz, Kerr nonlinear coupler and
entanglement, J. Opt. B 6, S37 (2004).

[48] A. Miranowicz and W. Leoński, Two-mode optical state
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Chapter 4

Pure dephasing in the ultrastrong
coupling regime

4.1 Chapter outline

In this chapter, I provide a summary of article [P4] and describe how quantum
system behave in the ultrastrong coupling (USC) and deep-strong coupling (DSC)
regimes. Furthermore, I introduce the main result of the article. This results explain
how to correctly define the perturbation Hamiltonian describing pure dephasing of
subsystems in the USC regime based on the adopted gauge.

4.1.1 Popular introduction

The evolution of a closed quantum system is reversible. However, in practice systems
are not isolated and undergo some form of decoherence. In particular, control and
readout of a quantum system additionally also requires coupling to an external
environment.

Understanding how the decoherence of subsystems affects the performance of
a hybrid quantum system (here a two-level system (TLS) interacting with a single-
mode cavity field) is a fascinating problem with possible implications for enhancing
the capabilities of quantum devices [22,23]1. Hybrid light-matter quantum systems
play a central role in cavity- and circuit-quantum electrodynamics (QED) and have
already been at the forefront of quantum technology development.

Relaxation and pure dephasing generate decoherence in a quantum system. In
particular, pure dephasing affects the off-diagonal elements of the system density

1This and other references in this chapter correspond to those cited in [P4].
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matrix. The description of dephasing in cavity- and circuit-QED systems is the focus
of article [P4] and this chapter. In the fields of QED, the interaction between an atom
and a cavity field is typically described by the quantum Rabi model (QRM).

The QRM describes the light-matter interaction even in the ultra-strong coupling
(USC) and deep-strong coupling (DSC) regimes, where the interaction strength
is comparable or even exceeds the bare transition frequencies of the subsystems.
This model reduces to the Jaynes-Cummings (JC) model to the strong-coupling
(SC) regime, where the rotating-wave approximation (RWA) is applicable. Whether
the coupling is strong (weak) is determined by whether the coupling strength g is
greater (smaller) than the system losses. However, the standard definition of the USC
compares g to the system’s bare frequencies ωi, while dissipation rates should just
be much smaller than ωi, the same as in the SC regime [31,32]. A significant amount
of theoretical and experimental research has been conducted in the weak-coupling
and SC regimes. Nevertheless, as the demand for quantum technologies relying
on light-matter interactions grows, experimental efforts have successfully achieved
stronger coupling strengths. In particular, the new regimes of rapidly growing
interest are the USC and DSC regimes in which g > 0.1ωi and g > ωi, respectively.

In the QRM, when the coupling rate increases, the counter-rotating terms start to
play an important role in the USC regime, where the RWA is no longer applicable.
The counter-rotating terms induce processes that do not conserve the number of
excitations in an USC light-matter system, leading to its ground state that contains
virtual excitations.

Moreover, the description of the light-matter interaction depends on the chosen
gauge. For example, in the context of QED one often works in the so-called Coulomb
gauge or the dipole gauge. However, the principle of gauge invariance dictates that
physical outcomes cannot depend on the choice of gauge. The QRM in the Coulomb
gauge seems to break the principle of gauge invariance in the USC regime [40,41].
This issue has been linked to the two level approximation of the matter system in
the QRM. In the above cited paper, Salvatore Savasta from Messina University and
Franco Nori from RIKEN in Wakoshi with their groups proposed a way to obtain
light-matter Hamiltonians in reduced Hilbert spaces, which can give correct gauge-
invariant physical results even when the light-matter interaction is very strong as in
the USC and DSC regimes.

Moreover, the standard master equation that correctly describes the open quan-
tum system dynamics ranging from the weak to strong coupling regimes also ap-
pears to fail in the USC. One notable issue arising from the standard quantum optics
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master equation in the USC and DSC regimes involves unrealistic effects in the
relaxation and dephasing of both cavity and qubit.

In particular, the dissipation terms tend to bring the qubit-cavity system to the
ground state |g0⟩ of the JC Hamiltonian. However, in the USC regime, this is not
correct, because the ground state of the qubit-cavity system is not |g0⟩ anymore and
contains virtual photons and atom excitations. Therefore, if we use the standard
master equation in USC regime, one obtains an incorrect result for the steady-state
state of qubit-cavity systems.

To tackle this problem, a new master equation has been derived that properly
describes the dissipation in terms of the dressed state basis of the atom-cavity system
[22,23].

Importantly however, it is not a priori clear whether this new master equation is
gauge invariant in general. In article [P4], we considered this problem and showed
that the standard description of pure dephasing in this master equation is indeed
not gauge invariant. We have provided means of correctly solving this problem
by studying the case of pure dephasing in systems described by the QRM and the
Hopfield model describing collective (bosonic) matter excitations interacting with a
single mode light field.

4.1.2 Motivation

The generalized master equation in the dressed picture mentioned above was con-
sidered in article [P4] in the context of pure dephasing. A prominent issue of this
equation is that the original formulation by A. Blais et al. [22] considers stochastic
Hamiltonian for pure dephasing that are not affected by the strength of light-matter
interaction. We explicitly demonstrated that this is a severe limitation: the form of
the pure dephasing Hamiltonian is gauge dependent and the interaction between
light and matter can significantly affect the form of the stochastic perturbation de-
scribing the dephasing of one of the components of the hybrid system depending on
the adopted gauge. Effects associated with this subtlety are most significant in the
USC and DSC regimes.

4.1.3 Main results

We derive the correct pure dephasing rate of subsystems in the QRM and Hopfield
model in the USC and DSC regimes. To do this derivation correctly we needed to
expand a perturbation Hamiltonian that modeled pure dephasing of subsystems
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in the master equation in the dressed-state picture, while we took into account the
appropriate form of this noise Hamiltonian according to the adopted gauge.

It has been shown that the QRM in the Coulomb gauge violates gauge invariance
[40,41]. The generalized minimal coupling replacement in the form of a unitary
transformation, which correctly constrains the light-matter interaction within a trun-
cated subspace, resolves the gauge invariant issue that occurs in the Coulomb gauge
[41]. Therefore, the correct Coulomb-gauge Hamiltonian for the QRM can be ob-
tained by applying generalized minimal coupling as an appropriate transformation
of the free field and matter Hamiltonians. This study has shown that the dipole and
Coulomb gauge Hamiltonians of the QRM are related by a suitable unitary gauge
transformation (ĤD = Û †ĤCÛ ) in the USC regime.

Furthermore, light-matter interaction can change the form of quantum operators
that describe physical observables, and these changes are usually gauge dependent.
It means that different gauges (e.g., the Coulomb gauge and the dipole gauge) have
different effects on how the particle’s physical momentum and the field momentum
are defined concerning the light-matter interaction. For instance, in the Coulomb
gauge, in contrast with the field momenta, the matter momenta are modified by the
light-matter interaction as

σ̂C
z = Û σ̂zÛ † = σz cos[2η(â + â†)] + σ̂y sin[2η(â + â†)],

where η is the normalized qubit-cavity coupling strength. On the other hand, in
the dipole gauge the electric-field operator transformed and we have the gauge
transformation of the cavity operators as

âD = Û † âÛ = â + iησ̂x,

while the matter momenta remain unaffected. So, the light-matter interaction can
modify the form of quantum operators describing physical observables, and these
changes are usually gauge dependent. Given this explanation, the light-matter
interaction affects the form of the perturbation Hamiltonian describing the dephasing
of subsystems in the USC and DSC regimes, depending on the adopted gauge.

We show that one must apply the generalized minimal coupling replacements
discussed above to pure-dephasing perturbations of subsystems to obtain accurate
descriptions of pure dephasing effects and gauge-invariant results in the presence of
light-matter interactions in the USC and DSC regimes. Beside, the master equation
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in the dressed basis should be used to study the dynamics of quantum systems in
the USC regime.

We demonstrated that by solely expanding the perturbation Hamiltonian (e.g.,
Ĥdep = f (t)σ̂z) in the dressed basis is insufficient to ensure accurate results. We
derived the pure dephasing rate of subsystems considering the adopted gauges by
applying the minimal coupling replacement to the perturbation Hamiltonian related
to each subsystem.

We analyzed pure dephasing effects on the two lowest transitions in the QRM:
α± = (1̃±, 0̃) considering only the qubit pure dephasing and the cavity pure de-
phasing separately. Our results show that, for example, in the case of qubit pure
dephasing, the lowest energy transition becomes dephasing free. However, if we do
not consider gauge dependency, the results show a wrong and large pure dephasing
rate for the lowest energy transition. Therefore, our results explicitly demonstrate
the importance of correctly calculating the pure dephasing rate in the QRM in cavity
QED. We also performed an analogous analysis for polaritons in the simplest form
of the Hopfield model describing the interaction of a single-mode electromagnetic
resonator with a bosonic matter field. Similar to what was explained in the QRM,
our studies show that while the two-level approximation can work well in the dipole
gauge, but it fails to provide the correct spectra in the Coulomb gauge in this model.
We use the generalized minimal coupling replacements on the Hamiltonian of a
single-mode electromagnetic resonator with a bosonic matter field to obtain the cor-
rect Hamiltonian in each gauge. By diagonalizing the Hamiltonians in the polariton
basis we obtained the polariton operators (lower and upper polaritons) which are
gauge dependent, because their Hopfield coefficients are gauge dependent.

Similar to what is explained for the QRM here indeed, when using the Coulomb
gauge, the matter operator b̂, after applying the unitary transformation
T̂ = exp

[
iλ(â + â†)(b̂ + b̂†)

]
, where λ is the normalized coupling strength, becomes

b̂C = T̂†b̂T̂ = b̂ − iλ(â + â†), since the minimal coupling is applied to the matter
system. On the contrary, when using the dipole gauge, the minimal coupling is
applied to the photonic system, and the photonic operator becomes âD = T̂âT̂† =

â + iλ(b̂ + b̂†).
Clearly, the perturbation Hamiltonian describing pure dephasing also is gauge

dependent. For example, in the article, we analyzed the pure dephasing rates of
the lower and upper polaritons, originating from exciton dephasing. Our results
demonstrate the importance to use a proper perturbation Hamiltonian, such as
ĤD

dep = fx(t)b̂†b̂ in the dipole gauge, and ĤC
dep = fx(t)b̂†

C b̂C in the Coulomb gauge.
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Our findings reveal that by using a proper gauge, the pure dephasing effects
in the lower polaritons tend to be reduced in the USC and DSC regimes. Instead,
the influence of pure dephasing increases for the upper polaritons by increasing
coupling strengths. The upper polaritons clearly display a larger line broadening
with respect to the lower polaritons, which is in agreement with the number of
experiments (see [54] and references therein). This interesting behavior of the lower
and upper polaritons in the USC and DSC regimes in the Hopfield model could be
of interest to experimentalists in the field.

We compared the behavior of the correct (using the appropriate gauge transforma-
tion) and wrong (when not considering the gauge transformation) pure dephasing
rates in the USC and DSC regimes of both the QRM and the Hopfield model. We em-
phasized the importance of using the correct description of the pure dephasing rate
in two prototypical models: the QRM and the Hopfield model, and demonstrated
that neglecting this issue can lead to wrong and unphysical results in both the USC
and DSC regimes.

In brief conclusion, one can say that in the USC and DSC regimes, the generalized
minimal coupling replacements have to be also applied to any perturbation affecting
the matter or light subsystems.

4.1.4 My contribution and importance of the work

Exploring the interaction between light and matter in the USC and DSC regimes
is of paramount importance. These regimes can be achieved in many different
systems, such as organic molecules, polaritons in different materials, magnons,
Landau polaritons, and superconducting circuits. These systems can cover a wide
range of frequencies from microwave to ultraviolet radiation. The effects of pure
dephasing are common in spectroscopy and quantum condensed matter physics
and have a lot of applications in quantum technologies.

This work broadens the knowledge of dephasing in cavity QED beyond the
conventional weak and strong coupling regimes, and the results can be readily
tested with state-of-the-art experimental techniques.

Alberto Mercurio and I conducted all numerical and analytical calculations,
created plots, and played a significant role in interpreting the results. As affirmed
by all coauthors (refer to the enclosed signed coauthors’ statements at the end of the
thesis), Alberto Mercurio and I have made equal and substantial contributions to
this work.
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Pure dephasing originates from the nondissipative information exchange between quantum systems and
environments, and plays a key role in both spectroscopy and quantum information technology. Often pure
dephasing constitutes the main mechanism of decay of quantum correlations. Here we investigate how pure
dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system
transitions. We find that, in turn, the interaction, in the case of a light-matter system, can significantly affect
the form of the stochastic perturbation describing the dephasing of a subsystem, depending on the adopted
gauge. Neglecting this issue can lead to wrong and unphysical results when the interaction becomes
comparable to the bare resonance frequencies of subsystems, which correspond to the ultrastrong and deep-
strong coupling regimes. We present results for two prototypical models of cavity quantun electrody-
namics: the quantum Rabi and the Hopfield model.
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Introduction.—In reality, there is no perfectly isolated
quantum system. For example, the coupling of a radiating
atom with the infinitely many modes of a free electromag-
netic field results in decoherence and spontaneous emis-
sion. Such interaction determines an energy relaxation time
T1 associated to a given optical transition. If the population
of an excited state decays, so does the polarization too,
which results in decoherence. In the presence of only
energy relaxation mechanisms, such transverse relaxation
time is T2 ¼ 2T1 [1,2]. However, quantum systems, dis-
playing optical transitions, do not only interact with an
electromagnetic field, but can be affected by additional
dephasing mechanisms inducing the decay of the dipole
coherence without changing the populations of the systems.
These pure dephasing effects can originate from fluctua-
tions in the environmental fields affecting the phases of the
emitter wave functions; see, e.g., Refs. [3–8]. In general,
the phase (transverse) relaxation time is most often shorter
than twice the energy relaxation time: T2 ≤ 2T1. In optical
spectroscopy, the full width at half maximum (FWHM) of
homogeneous broadening corresponds to 2=T2.
It is well known that decoherence tends to destroy

quantum coherence and quantum correlations [9,10]. It
is known that this mechanism becomes faster with the
increase of the size of a quantum system [11]. This explains
the absence of quantum superpositions in the macroscopic
world [12]. Decoherence can, thus, strongly affect and limit
quantum information processing (QIP) [13,14]. Depending
on the specific environment, mechanisms to protect

qubits from dephasing have been proposed (see, e.g.,
Refs. [14–18]).
Devices for QIP, secure communication, and high-

precision sensing were implemented combining different
systems ranging from photons, atoms, and spins to meso-
scopic superconducting and nanomechanical structures.
Complementary functionalities of these hybrid quantum
systems can be essential for the development of new quan-
tum technologies [19–21]. Understanding how decohe-
rence of one or more subsystems can affect the performance
of the whole system is an interesting problem, relevant for
improving the performance of quantum devices [22,23].

FIG. 1. Pictorial representation of a two-level system interact-
ing with a single-mode cavity field, when both subsystems are
affected by pure dephasing.
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Cavity [10] and circuit [24,25] quantum electrodynamics
(QED) systems are among the most studied hybrid quan-
tum systems. They are playing a key role in quantum optics
and in the development of new quantum technologies
[26–29]. Pure dephasing can significantly affect the per-
formance of these systems, not necessarily in a negative
way. For example, it has been shown that pure dephasing is
a promising resource for solid-state emitters, since it can
improve the performance of nanophotonic devices, such as
single-photon sources and nanolasers [30].
Decoherence effects in hybrid quantum systems are often

introduced by using the standard quantum optics master
equation, where the coupling of a multicomponent system
with the environment is introduced by neglecting the
interaction between the subsystems. When such interaction
is not negligible compared with the bare transition frequen-
cies of the components, as in the light-matter ultrastrong
coupling (USC) or deep-strong coupling (DSC) regimes
[31,32], this approximation can give rise to unphysical
results. These regimes can give rise to new physical effects
and applications (see, e.g., [33–39]), and they also chal-
lenge our understanding of fundamental aspects of cavity
QED, like a proper definition of subsystems, their quantum
measurements, and the structure of the light-matter ground
states, leading also to gauge ambiguities [40–46,48].
A master equation method for cavity QED systems,

describing both losses and pure dephasing, and taking into
account light-matter interaction, has been proposed in
Refs. [22,23]. However, these models, as well as previous
ones, consider perturbation Hamiltonians for pure dephas-
ing which are not affected by light-matter interaction. Here
we show that the interaction between light and matter can
significantly affect the form of a stochastic perturbation
describing the dephasing of one of the components. We
find that neglecting this issue can lead to wrong and
unphysical results in both USC and DSC regimes. We
present results for two prototypical models of cavity QED:
the quantum Rabi model (QRM) and the Hopfield model.
However, the approach here considered can also be applied
to describe more complex light-matter systems.
Quantum Rabi model.—Pure dephasing effects on both

the qubit and electromagnetic field can be described by
introducing two zero-mean stochastic functions fcðtÞ, fqðtÞ
modulating their resonance frequency (Fig. 1). The per-
turbation Hamiltonian can be written as

V̂dep ¼ fcðtÞâ†âþ fqðtÞσ̂z: ð1Þ

By expanding V̂dep in the basis of the eigenstates of the total
system Hamiltonian, a master equation describing the
effects of qubit dephasing on the system dynamics can
be obtained [22]. For the sake of simplicity, we consider
stochastic functions with a low-frequency spectral density
(with respect to the relevant transition frequencies of the

system). The resulting master equation can be written as
(ℏ ¼ 1) [47]

d
dt

ρ̂ðtÞ ¼ −i½Ĥs; ρ̂� þ
γðqÞϕ

2
D½Φ̂�ρ̂þ γðcÞϕ

2
D½Ξ̂�ρ̂; ð2Þ

where Ĥs is the Hamiltonian of the total system and

D½Ô�ρ̂ ¼ 1

2
ð2Ô ρ̂ Ô† − ρ̂Ô†Ô −O†Ô ρ̂Þ ð3Þ

is the Lindbladian superoperator, while Φ̂ ¼ P
jσ

jj
z jjihjj

and Ξ̂ ¼ P
j ĥjjâ†âjjijjihjj, with jji being the eigen-

states of Ĥs, and σjjz ¼ hjjσ̂zjji. The bare dephasing rates
γxϕ ¼ 2Sfð0Þ are determined by the low-frequency spectral

densities SðxÞf ðωÞ of fxðtÞ, with x ¼ q, c. Additional
dephasing terms can appear, when the spectral density
functions SfðωÞ are not negligible at the transition frequen-
cies of the system (see the Supplemental Material [49]).
We apply the above procedure to the simplest model of

cavity QED, i.e., the QRM. Its Hamiltonian in the dipole
gauge can be written as ĤD ¼ Ĥph þ Ĥq þ V̂D, where
Ĥq ¼ ωqσ̂z=2, and the free field Hamiltonian is Ĥph ¼
ωcâ†â, where σ̂j (j ¼ x, y, z) are the Pauli operators, and â
and â† are the photon destruction and creation operators.
Neglecting the constant term η2ωc, the interaction term can
be written as V̂D ¼ −iηωcðâ − â†Þσ̂x, where η is the
normalized qubit-cavity coupling strength. It has been
shown that the standard quantum Rabi Hamiltonian in
the Coulomb gauge violates gauge invariance [40]. The
correct Coulomb-gauge quantum Rabi Hamiltonian [41]
can be obtained by writing the sum of the free field and
matter Hamiltonians and then by applying a suitable
unitary transformation (generalized minimal coupling) to
the free matter Hamiltonian [41]: ĤC ¼ Ĥph þ ÛĤqÛ

†,

where Û ¼ exp½iÂσ̂x�, with Â ¼ ηðâþ â†Þ. We obtain

ĤC ¼ Ĥph þ
ωq

2
½σ̂z cosð2ÂÞ þ σ̂y sinð2ÂÞ�: ð4Þ

The dipole and Coulomb gauge Hamiltonians are related by
the unitary gauge transformation ĤD ¼ Û†ĤCÛ; thus the
dipole gauge Hamiltonian can also be obtained by applying
a generalized minimal coupling replacement to the free
field Hamiltonian: ĤD ¼ Û†ĤphÛ þ Ĥq.
Following the standard approach, pure dephasing effects

can be directly introduced by using Eqs. (1) and (2), which
provides gauge invariant expectation values, as can be
easily shown [50]. However, this is not sufficient to ensure
that the obtained results are physically correct. However,
we will show below that this naive approach can pro-
vide incorrect and/or gauge dependent results, especially
when the light-matter interaction strength is very strong.
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Actually, light-matter interaction can modify the form of
quantum operators describing physical observables, and
these changes are usually gauge dependent [51]. For
example, in the Coulomb gauge the form of the physical
momentum of the particle is affected by light-matter
interaction, while in the dipole gauge it is interaction
independent. On the contrary, the dipole gauge affects
the definition of the field momentum. As a consequence, in
this gauge, the canonical momentum is no more propor-
tional to the electric field operator. We may thus expect that
the form of operators describing pure dephasing shall be
modified by light-matter interaction too. In order to obtain
correct descriptions of pure dephasing effects, as well as
gauge-invariant results, in the presence of light-matter
interactions one has to apply the generalized minimal
coupling replacements considered above to pure dephasing
perturbations in Eq. (1) too. In the Coulomb and dipole
gauge, respectively, we obtain

V̂C
ϕ ¼ fqðtÞσ̂Cz þ fcðtÞâ†â; ð5Þ

V̂D
ϕ ¼ fqðtÞσ̂z þ fcðtÞâ†DâD; ð6Þ

where σ̂Cz ¼ Ûσ̂zÛ
† and âD ¼ Û†â Û ¼ âþ iησ̂x are

atomic and field operators modified by the light-matter
interaction in the Coulomb and dipole gauge, respectively.
In the following, we label the QRM states by general-

izing the notation of the Jaynes-Cummings (JC) model. In
particular, j0̃i denotes the ground state, and jñ�i the states
that tend to the JC states jn�i, when the coupling vanishes.
Moreover, we use not-primed (primed) states to indicate the
Coulomb (dipole) gauge states. As an example we analyze
pure dephasing effects on the two lowest transitions in the
QRM: α� ≡ ð1̃�; 0̃Þ, and considering only qubit pure
dephasing [fcðtÞ ¼ 0]. In the interaction picture, from
Eq. (2), we obtain [49]

_̃ρα0�ðtÞ ¼ −ðγα0�ϕ =2Þρ̃α0�ðtÞ; ð7Þ

with

γ
α0�
ϕ ¼ γðqÞϕ

2
jσ1̃0�;1̃0�z − σ0̃

0;0̃0
z j2: ð8Þ

We observe that the obtained dephasing rates are gauge

invariant (γ
α0�
ϕ ¼ γα�ϕ ), because the expectation values are

unitary invariant, when transforming both operator and

states: γα�ϕ ¼ γðqÞϕ jσC;1̃�;1̃�z − σC;0̃;0̃z j2=2. Figure 2(a) displays
the normalized pure dephasing rate γ1̃0�;0̃=γ

0
ϕ for the two

lowest energy transitions, considering a small qubit-cavity
detuning δ ¼ 3 × 10−3 and in the case of only qubit pure
dephasing. In the limit of negligible coupling strength,
where j1̃0þi → je; 0i and j1̃0−i → jg; 1i, the standard results

are recovered, and only ð1̃0−; 0̃0Þ is affected by the qubit pure
dephasing. When the coupling becomes comparable to the
detuning, as expected, pure dephasing is shared among the
two transitions, since the energy eigenstates j1̃0�i tend to
become an equally weighted superposition of je; 0i and
jg; 1i. For the normalized coupling strengths η > 0.1 (the
USC regime), pure dephasing becomes less effective for the
transition ð1̃0−; 0̃Þ, until at stronger couplings (the DSC
regime), both the transitions tend to become dephasing free.
This behavior reflects the fact that, when the coupling rate
is larger than the bare qubit frequency, a fluctuation at the
qubit resonance frequency can have a very low impact on
the dressed-state energies. On the contrary, Fig. 2(b) shows
a wrong large pure dephasing rate for the lowest energy
transition. Analogous calculations can be carried out for the
case of cavity pure dephasing [49].
Hopfield model.—A similar analysis can be carried out

for polaritons. We consider the simplest version of the
Hopfield model [52], describing the interaction of a single-
mode electromagnetic resonator with a bosonic matter field
(with the bosonic annihilation b̂ and creation b̂† operators)
modeling some kind of collective matter excitations. The
system Hamiltonian in the dipole gauge reads as

ĤD ¼ Ĥ0 þ iλωcðâ† − âÞðb̂þ b̂†Þ þ ωcλ
2ðb̂þ b̂†Þ2; ð9Þ

where Ĥ0 ¼ ωcâ†âþ ωxb̂
†b̂, and λ is the normalized

coupling strength. An equivalent model can be obtained
in the Coulomb gauge [53]:

ĤC ¼ Ĥ0 − iωxλðb̂† − b̂Þðâ† þ âÞ þDðâ† þ âÞ2; ð10Þ

where D ¼ ωxλ
2. These two Hamiltonians can be directly

obtained by generalized minimal coupling replacements:
HC¼ωcâ†âþωxÛb̂†b̂Û† and HD ¼ ωcÛ

†â†â Ûþωxb̂
†b̂,

where Û ¼ exp½iλðâþ â†Þðb̂þ b̂†Þ�. As is well known, the
interaction gives rise to polaritonic resonances, which
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FIG. 2. Quantum Rabi model. Normalized pure dephasing rate
for the two lowest energy transitions, for a small qubit-cavity
detuning δ ¼ 3 × 10−3 and considering only the qubit pure
dephasing. (a) Correct gauge-invariant versus (b) wrong
Coulomb gauge results.
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results from the mixing of the two bosonic modes. It is
possible to diagonalize the system expressing the photon
and exciton operators in terms of polaritonic (bosonic)
operators [52]. For μ ¼ 1, 2 (lower and upper polariton,
respectively), we have

ŷ ¼
X2

μ¼1

ðUμ
yP̂μ − Vμ

yP̂†
μÞ; ðŷ ¼ â; b̂Þ. ð11Þ

The diagonalization procedure determines both polariton
eigenfrequencies Ωμ, which are gauge invariant, and the
Hopfield coefficients, which are gauge dependent. As a
consequence, also the polariton operators are gauge de-
pendent. We use primed operators and coefficients for the
dipole gauge.
By neglecting issues related to the light-matter inter-

action, dephasing effects can be modeled by introducing
the perturbation Hamiltonian

V̂depðtÞ ¼ fcðtÞâ†âþ fxðtÞb̂†b̂; ð12Þ

describing the stochastic fluctuation of the resonance
frequencies of the components. Following the reasoning
of the previous section, when including the light-matter
interaction, it turns out that Eq. (12) is incorrect, and its
corrected form is gauge dependent:

V̂D
depðtÞ ¼ fcðtÞâ†DâD þ fxðtÞb̂†b̂; ð13Þ

V̂C
depðtÞ ¼ fcðtÞâ†âþ fxðtÞb̂†Cb̂C; ð14Þ

where âD ¼ T̂ â T̂† ¼ âþ iλðb̂þ b̂†Þ and b̂C ¼ T̂†b̂ T̂ ¼
b̂ − iλðâþ â†Þ. Notice that here âD (b̂C) is the physical
photonic (excitonic) annihilation operator in the dipole
(Coulomb) gauge. By physical, we mean the operators that
describe the annihilation of the physical quanta of the fields
[53]. The polariton pure dephasing rates can be obtained by
expanding Eqs. (13) and (14) in terms of the polariton
operators, and then applying the standard master equation
method to obtain the Lindbladian terms, in analogy
with the results of the previous section [49]. From the
obtained master equation, the equations of motion for the
mean values of the polariton operators are ∂thP̂μi ¼
ð−iΩμ − γμϕ=2ÞhP̂μi, where

γμϕ ¼ γ0cðjUμ
aj2 þ jVμ

aj2Þ þ γ0xðjUμ0
b j2 þ jVμ0

b j2Þ: ð15Þ

This result can be very different from what could be
obtained starting from Eq. (12) and ignoring the modifi-
cations in the perturbation Hamiltonian induced by the
light-matter interaction. Figure 3(a) shows the normalized
pure dephasing rates for the two polariton modes (γμϕ=γ

0
x),

for the case of the zero photonic noise (γ0c ¼ 0), and

considering three different values of the exciton-cavity
detuning δ. We observe that, at large coupling rates,
independently of the detuning, the lower polariton dephas-
ing rate tends to zero. This effect is a direct consequence of
the fact that the lower polariton resonance frequency tends
rapidly to zero for λ → ∞ [see Fig. 4(c)], independently of
the detuning. This implies that any small fluctuation of the
resonance frequencies of the components does not induce
fluctuations and, hence, dephasing in the polariton mode.
For comparison, Figs. 4(a)–4(b) display the wrong result
γμϕ=γ

0
x ¼ jUμ

bj2 þ jVμ
bj2, obtained by neglecting the changes
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FIG. 3. Hopfield model. Normalized pure dephasing rate of the
lower and upper polaritons, originating from exciton dephasing,
versus the normalized coupling strength, obtained for different
exciton-cavity detunings, and considering only the matter pure
dephasing.
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dephasing rates of the lower and upper polaritons, originating
from exciton dephasing, versus the normalized coupling
strength, obtained for two different exciton-cavity detunings,
and considering only the matter pure dephasing (a),(b). (c)
Frequencies of the two polariton modes for a qubit-cavity
detuning δ=ωc ¼ 3 × 10−3.
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of the form of subsystems-observables, which can be
induced by the interaction, as calculated for two different
detunings. Evident differences emerge when entering the
USC regime with λ ∼ 0.1. Moreover, at larger coupling
rates, in the DSC regime, the behavior of the lower and
upper polaritons is clearly inverted.
Conclusions.—We have shown how to calculate cor-

rectly the pure dephasing rate in cavity QED systems,
considering two prototypical models: the QRM and the
Hopfield model. In the latter model, we found that pure
dephasing effects in the lower polariton branch tend to be
reduced in the USC regime, and tend to get suppressed
increasing further the coupling [see Fig. 3(a)]. On the
contrary, the influence of pure dephasing increases at
increasing coupling strengths for upper polaritons. We
hope that these results will stimulate experimental tests
for various polariton systems, where these interaction
regimes have been observed [31]. In a number of experi-
ments, it was observed that the upper polariton clearly
displays a larger line broadening with respect to the lower
one [54–57] in agreement with the results presented here.
However, since in these systems different broadening
mechanisms enter into play, further investigations are
required. The approach shown here can be applied to more
complex light-matter systems and/or to full quantum
models of pure dephasing [22,58]. The general lesson is
that when the light-matter interaction rate becomes com-
parable to the bare resonance frequencies of the relevant
bare transitions of the system components, the generalized
minimal coupling replacements introducing the light-mat-
ter interaction have to be also applied to any perturbation
affecting the matter or light subsystems.
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COMPARISON OF THE BASIC FORMULAS IN THE COULOMB AND DIPOLE GAUGES FOR THE
QUANTUM RABI AND HOPFIELD MODELS.

Hamiltonians & operators Coulomb gauge Dipole gauge

Rabi Hamiltonian ĤC in Eq. (M-4) ĤD = T̂ ĤC T̂ † above Eq. (M-4)

with T̂ = exp
[
−iÂσ̂x

]

Rabi annihilation operators âC = â âD = T̂ âT̂ † = â+ iησ̂x below Eq. (M-6)
Rabi perturbation Hamiltonian

for pure dephasing V̂C
ϕ in Eq. (M-5) V̂D

ϕ below Eq. (M-4)

Hopfield Hamiltonian ĤC in Eq. (M-10) ĤD = T̂ ĤC T̂ † in Eq. (M-9)

with T̂ = exp
[
−iλ(â+ â†)(b̂+ b̂†)

]

Hopfield annihilation operators âC = â âD = T̂ âT̂ † = â+ iλ(b̂+ b̂†) below Eq. (M-14)

b̂C = T̂ †âT̂ = b̂− iλ(â+ â†) below Eq. (M-14) b̂D = b̂
Hopfield perturbation Hamiltonian

for pure dephasing V̂ C
dep in Eq. (M-14) V̂ D

dep in Eq. (M-13)

TABLE I. Comparison of the basic formulas in the Coulomb and dipole gauges for the quantum Rabi and Hopfield models.
Note the label M- is introduced to refer to equations number in the main text.

PURE DEPHASING IN THE QUANTUM RABI MODEL

Here we analyze how to describe the correct and gauge invariant pure dephasing effects in the quantum Rabi
model (QRM), following the procedure described in Ref. [S1] and considering both cavity and qubit decoherence. We
start by considering the quantum Rabi Hamiltonian with an additional zero-mean stochastic modulation of the qubit
resonance frequency V̂q

dep = fq(t)σ̂z. Expressing the Hamiltonian in the dressed basis and moving to the interaction

picture with respect to V̂q
dep, we obtain

V̂q
dep(t) = f(t)

∑

j,k

⟨j|σ̂z|k⟩ |j⟩⟨k| eiωjkt , (S1)

94 Pure dephasing in the ultrastrong coupling regime



S2

where |j⟩ are the eigenstates of the total Hamiltonian and ωjk are the transition frequencies. Expressing f(t) in terms
of its Fourier decomposition, and assuming that the main contribution to dephasing results from a small frequency
interval around ωjk [S1], we obtain

V̂q
dep(t) =

∑

j,k

σjk
z |j⟩⟨k| f−ωjk

(t) , (S2)

where

fωjk
(t) =

√
Sf (ωjk)ξωjk

(t) , (S3)

Sf (ω) is the spectral density of f(t), and ξ(ω) such that ⟨ξ(ω)⟩ = 0 and ⟨ξ(ω)ξ(ω′)⟩ = δ(ω − ω′) (i.e., corresponding
to white noise). If the transition frequencies ωjk are well-separated, we can treat each term of the above summation
as an independent noise [S1].

We are now able to write down the dressed Lindbladian in case of qubit pure dephasing:

Ldr· = D


∑

j

Φj |j⟩⟨j|


 ·+

∑

j,k ̸=j

Γjk
ϕ D [|j⟩ ⟨k|] · , (S4)

where

Φj =

√
γϕ(0)

2
σjj
z , (S5)

and

Γjk
ϕ =

γϕ(ωkj)

2

∣∣σjk
z

∣∣2 . (S6)

The whole procedure described above can also be applied to the case of cavity pure dephasing, by considering the QRM
Hamiltonian with an additional zero-mean stochastic modulation of the cavity resonance frequency V̂c

dep = fc(t)â
†â.

In this case, this stochastic perturbation, expressed in the dressed basis and in the interaction picture, becomes

V̂c
dep(t) =

∑

j,k

⟨j|â†â|k⟩ |j⟩⟨k| f−ωjk
(t) , (S7)

while the Lindbladian remains in the same form of Eq. (S4), with the only difference of Φj and Γjk
ϕ , which become

respectively,

Φj =

√
γϕ(0)

2
⟨j|â†â|j⟩ , (S8)

Γjk
ϕ =

γϕ(ωkj)

2

∣∣ ⟨j|â†â|k⟩
∣∣2 . (S9)

However, we have seen in the main text that the approach described above does not reproduce the correct results. In
particular, we have shown that, if one uses the Coulomb or dipole gauge, significantly different results can be obtained.
For example, when using the Coulomb gauge, the bare σ̂z operator becomes σ̂C

z = T̂ †σ̂zT̂ , since the minimal coupling

is applied to the matter system, while the photonic operator â†â becomes â†DâD = T̂ â†âT̂ † in the dipole gauge. Thus,
to correctly describe pure dephasing effects, we need to substitute in the Lindbladian given in Eq. (S4): σ̂z → σ̂C

z in

the Coulomb gauge, and â†â→ â†DâD in the dipole gauge.

Analytical derivation of the pure dephasing rates

By adopting the procedure described above, we are able to derive analytically the pure dephasing rates of both
cavity and qubit. Starting from the Coulomb gauge and using Eq. (S4), we discard the off-diagonal terms Γjk

ϕ since
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this contribution is significant only if the dephasing bath has a spectral weight at the potentially high frequency ωjk,
leading to the following equation:

˙̂ρ = −i
[
ĤC , ρ̂

]
+
γϕ(0)

2
D


∑

j

σC,jj
z |j⟩⟨j|


 ρ̂ , (S10)

where σC,jj
z = ⟨j|σ̂z|j⟩. We now expand the Lindblad dissipator

D


∑

j

σC,jj
z |j⟩⟨j|


 ρ̂ =

1

2


2
∑

j

∑

j′

σC,jj
z σC,j′j′

z |j⟩⟨j| ρ̂ |j′⟩⟨j′| −
∑

j

∑

j′

σC,jj
z σC,j′j′

z |j′⟩ ⟨j′|j⟩ ⟨j| ρ̂ (S11)

−
∑

j

∑

j′

σC,jj
z σC,j′j′

z ρ̂ |j′⟩ ⟨j′|j⟩ ⟨j|


 , (S12)

and we focus on the matrix element of the density matrix relative to the transition (1̃−, 0̃), but the same procedure
can be applied to all the other transitions. The corresponding equation (in the interaction picture) for that matrix
element becomes

d

dt
ρ̂
(I)

1̃−,0̃
=

γϕ(0)

4

〈
1̃−
∣∣

2
∑

j

∑

j′

σC,jj
z σC,j′j′

z |j⟩ ⟨j| ρ̂(I) |j′⟩ ⟨j′| −
∑

j

|σC,jj
z |2 |j⟩ ⟨j| ρ̂(I) −

∑

j

|σC,jj
z |2ρ̂(I) |j⟩ ⟨j|


 ∣∣0̃

〉

=
γϕ(0)

4


2
∑

j

∑

j′

σC,jj
z σC,j′j′

z

〈
1̃−
∣∣j
〉
⟨j| ρ̂(I) |j′⟩

〈
j′
∣∣0̃
〉
−
∑

j

|σC,jj
z |2

〈
1̃−
∣∣j
〉
⟨j| ρ̂(I)

∣∣0̃
〉

−
∑

j

|σC,jj
z |2

〈
1̃−
∣∣ ρ̂(I) |j⟩

〈
j
∣∣0̃
〉



=
γϕ(0)

4

[
2σC,1̃−1̃−

z σC,0̃0̃
z

〈
1̃−
∣∣ ρ̂(I)

∣∣0̃
〉
− |σC,1̃−1̃−

z |2
〈
1̃−
∣∣ ρ̂(I)

∣∣0̃
〉
− |σC,0̃0̃

z |2
〈
1̃−
∣∣ ρ̂(I)

∣∣0̃
〉]

= −γϕ(0)
4

∣∣∣σC,1̃−1̃−
z − σC,0̃0̃

z

∣∣∣
2

ρ̂
(I)

1̃−,0̃
. (S13)

By choosing the dipole gauge, one should replace σC,jj
z → σjj

z . The same procedure is valid also for cavity pre

dephasing, where we need to use â†â in the Coulomb gauge and â†DâD in the dipole gauge.

PURE DEPHASING IN BOSONIC SYSTEMS

We now consider pure dephasing effects in bosonic systems. First, we consider a simple non-interacting harmonic
oscillator, then we analyze the Hopfield model.

Non-interacting harmonic oscillator

Here we consider a single-mode bosonic field described by the harmonic oscillator Hamiltonian Ĥ0 = ω0â
†â affected

by pure dephasing. Analogously to what we described in previous sections, in order to consider the dephasing effects,
we introduce an additional zero-mean stochastic modulation of the resonance frequency V̂h

dep = fh(t)â
†â. Moving to

the interaction picture, we notice that this component does not rotate, since it has a zero-frequency oscillation. Thus,
transforming fh(t) in its Fourier components, and assuming that the main contribution to dephasing comes from a
small frequency interval around ω = 0 [S1], we obtain

V̂ h
dep(t) = f0(t)â

†â , (S14)

where f0(t) =
√
Sf (0)ξ0(t). This equation is quite similar to Eq. (S2) with the only difference that here we do not

have the expansion in the dressed basis (since we are not considering a hybrid quantum system), and that we have only
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the zero-frequency contribution (since V̂h
dep rotates at zero frequency in the interaction picture). These considerations

allow us to write the Lindbladian describing this pure dephasing effect as

L· =
√
γϕ(0)

2
D
[
â†â
] · , (S15)

with γϕ(0) = 2Sf (0).

Hopfield model

Here we analyze pure dephasing effects in the Hopfield model, following the procedure described in the previous
sections and extending the results of Ref. [S1]. Moreover, we consider both light and matter decoherence. First, it
is useful to diagonalize the Hopfield Hamiltonian using the polaritonic operators [S2], where the lower and upper
polariton operators (µ = 1, 2) can be defined as

P̂µ = Uµ
b b̂+ Uµ

a â+ V µ
b b̂

† + V µ
a â

† . (S16)

Using the property

|Uµ
b |2 + |Uµ

a |2 − |V µ
b |2 − |V µ

a |2 = 1 , (S17)

which guarantee the correct polariton commutation rules [S2], we can invert Eq. (S16) in order to obtain

â =
2∑

µ=1

(
Uµ
a P̂µ − V µ

a P̂
†
µ

)
, (S18a)

b̂ =
2∑

µ=1

(
Uµ
b P̂µ − V µ

b P̂
†
µ

)
. (S18b)

To describe the matter pure dephasing, we consider an additional zero-mean stochastic modulation of the matter
resonance frequency V̂ x

dep = fx(t)b̂
†b̂. In terms of the polaritonic operators we have

b̂†b̂ = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (S19)

with

Aµ = |Uµ
b |

2
+ |V µ

b |2 (S20)

B12 = B∗
21 = U1 ∗

b U2
b + V 1

b V
2 ∗
b , (S21)

where we have included only the terms which do not oscillate in time, or oscillate at low frequency, corresponding to
applying the rotating wave approximation (RWA), and we have eliminated the constants derived from commutation
rules, which have no dynamical consequences. Moving to the interaction picture, this contribution becomes

V̂ x
dep(t) = fx(t)

[
A1P̂

†
1 P̂1 +A2P̂

†
2 P̂2 + e−iω21tB12P̂

†
1 P̂2 + eiω21tB21P̂

†
2 P̂1

]
, (S22)

where ω21 = ω2−ω1 with the polaritonic eigenfrequencies ωi. Equation (S22) can be written in a more compact form
as

V̂ x
dep = fx(t)

[
D̂12 + e−iω21tM̂12 + eiω21tM̂†

12

]
,

with

D̂12 = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 , (S23)

M̂12 = B12P̂
†
1 P̂2 , (S24)

and using the results presented in the previous sections, we obtain

V̂ x
dep(t) = f0(t)D̂12 + fω21

(t)M̂12 + f−ω21
(t)M̂†

12 , (S25)
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with fω(t) expressed in Eq. (S3). Thus, the resulting Lindbladian in the case of matter pure dephasing is

L· = 1

2
γϕ(ω21)D[M̂12] ·+

1

2
γϕ(−ω21)D[M̂†

12] ·+
1

2
γϕ(0)D[D̂12]· , (S26)

with γϕ(ω) = 2Sf (ω).
The same procedure, as described above, can also be applied to the case of cavity pure dephasing, by considering

an additional zero-mean stochastic modulation of the cavity resonance frequency V̂ c
dep = fc(t)â

†â. The procedure
remains the same for the matter dephasing case, except that now we consider

â†â = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (S27)

where

Aµ = |Uµ
a |2 + |V µ

a |2 , (S28)

B12 = B∗
21 = U1 ∗

a U2
a + V 1

a V
2 ∗
a . (S29)

This yields a Lindbldian of the same form of Eq. (S26) with the only difference for the polariton coefficients expressed
in Eqs. (S28) and (S29).

However, we have seen in the main text that this approach can lead to wrong results, depending on the chosen
gauge. Indeed, when using the Coulomb gauge, the matter operator b̂ becomes b̂C = T̂ †b̂T̂ , since the minimal coupling
is applied to the matter system. On the contrary, when using the dipole gauge, the minimal coupling is applied to
the photonic system, and the dressed photonic operator becomes âD = T̂ âT̂ †. This consideration leads us to note
that the polariton diagonalization leads to different Hopfield coefficients if we choose the Coulomb or dipole gauge.
In particular, in the dipole gauge, we have

b̂ =
2∑

µ=1

(
Uµ′
b P̂

′
µ − V µ′

b P̂ ′†
µ

)
, (S30)

where P ′
µ are the polariton operators obtained by diagonalizing the Hopfield Hamiltonian in the dipole gauge. While

in the Coulomb gauge we have

b̂C = T̂ †
[

2∑

µ=1

(
Uµ′
b P̂

′
µ − V µ′

b P̂ ′†
µ

)]
T̂

=

2∑

µ=1

(
Uµ′
b T̂

†P̂ ′
µT̂ − V µ′

b T̂ †P̂ ′†
µ T̂
)

=
2∑

µ=1

(
Uµ′
b P̂µ − V µ′

b P̂ †
µ

)
, (S31)

which contains the polariton operators obtained by diagonalizing the Hamiltonian in the Coulomb gauge, but with
the same coefficients of the dipole gauge. To obtain Eq. (S31), we have used the relation

P̂µ = T̂ †P̂ ′
µT̂ , (S32)

which, although intuitively obvious, can be rigorously demonstrated using the definition of polaritonic operators; in
particular, those operators that, each in its specific gauge, enable the diagonalization of the gauge-correspondent
Hamiltonian. For example, we have:

[P̂µ, ĤC ] = ΩµP̂µ , (S33a)

[P̂ ′
µ, ĤD] = ΩµP̂

′
µ . (S33b)

In order to demonstrate Eq. (S32), we can calculate how Eq. (S33a) transforms from the Coulomb to dipole gauge.
Gauge invariance implies that the final result has to be equal to Eq. (S33b). We obtain:

T̂ [P̂µ, ĤC ]T̂
† = ΩµT̂ P̂µT̂

† , (S34a)

T̂ [P̂µ, ĤC ]T̂
† = T̂ (P̂µĤC − ĤC P̂µ)T̂

† (S34b)

= T̂ P̂µĤC T̂
† − T̂ ĤC P̂µT̂

†

= T̂ P̂µT̂
†T̂ ĤC T̂

† − T̂ ĤC T̂
†T̂ P̂µT̂

†

= T̂ P̂µT̂
†ĤD − ĤDT̂ P̂µT̂

† = [T̂ P̂µT̂
†, ĤD] .
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Combining the results of Eqs. (S34a) and (S34b), we obtain:

[T̂ P̂µT̂
†, ĤD] = ΩµT̂ P̂µT̂

† , (S35)

which is the definition of the polariton operators P̂ ′
µ in the dipole-gauge (which are the operators that allow the

diagonalization of ĤD) given by Eq. (S33b). Hence, Eq. (S32) is the correct gauge transformation for the polaritonic
operators.

The whole analysis described above can be summarized as follows: in the case of matter pure dephasing, the
stochastic perturbation is: V̂ x

dep = fx(t)b̂
†b̂ in the dipole gauge, and V̂ x

dep = fx(t)b̂
†
C b̂C in the Coulomb gauge, where

b̂†b̂ = A′
1P̂

′†
1 P̂

′
1 +A′

2P̂
′†
2 P̂

′
2 +B′

12P̂
′†
1 P̂

′
2 +B′

21P̂
′†
2 P̂

′
1 (S36)

and

b̂†C b̂C = A′
1P̂

†
1 P̂1 +A′

2P̂
†
2 P̂2 +B′

12P̂
†
1 P̂2 +B′

21P̂
†
2 P̂1 , (S37)

with

A′
µ =

∣∣Uµ′
b

∣∣2 +
∣∣V µ′

b

∣∣2 , (S38)

B′
12 = B′ ∗

21 = U1′ ∗
b U2′

b + V 1′
b V 2′ ∗

b . (S39)

As a result, to correctly describe the matter pure dephasing, we need to use the dipole coefficients, given in Eqs. (S38)
and (S39), in the Lindbladian expressed in Eq. (S26), even when using the Coulomb gauge. On the contrary, for the

photonic pure dephasing, the stochastic perturbation is: V̂ c
dep = fc(t)â

†â in the Coulomb gauge, and V̂ c
dep = fc(t)â

†
DâD

in the dipole gauge. Thus, we need to use the Coulomb polariton coefficients in the Lindbladian even when using the
dipole gauge.
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FIG. S1. Quantum Rabi model: Normalized pure dephasing rate for the two lowest energy transitions, for a small qubit-cavity
detuning δ = 3× 10−3 assuming only the cavity pure dephasing. (a) Correct gauge-invariant results versus (b) wrong Coulomb
gauge results.
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FIG. S2. Hopfield model: Pure dephasing rate of the lower and upper polaritons, originating from exciton dephasing, versus
the normalized coupling strength, obtained for different exciton-cavity detunings, and considering only cavity pure dephasing.
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Chapter 5

Quantum exceptional points of
non-Hermitian systems via quantum
process tomography

5.1 Chapter outline

This chapter is intended to give a summary of article [P5]. I explain here one of
the intriguing features of non-Hermitian systems, which are quantum Liouvillian
exceptional points (LEPs), and how quantum process tomography (QPT) can be
used to reveal and control them, through the introductory and motivation sections.
Moreover, I concentrate below on the main findings of the paper, which show the
experimental evidence of observing LEPs in a lossy single-qubit system using QPT.

5.1.1 Popular introduction

Hermitian Hamiltonian systems are isolated, conservative, and exhibit time-reversal
symmetry. However, the majority of physical systems interact with their surround-
ings. To describe them properly, non-Hermitian Hamiltonians (NHHs) can be used.
These are mathematical operators that partially capture the dynamics of quantum
systems that are not isolated, and they play a pivotal role in describing the dynamics
of open systems in non-Hermitian quantum mechanics formulated by Carl Bender
et al. [1] 1, as well as in the quantum-trajectory method [115], which is also known

1This and other references in this chapter correspond to those cited in [P5].
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as the quantum-jump method [117], Monte Carlo wave-function method [116], or
the wave-function approach to dissipative processes [114].

Non-Hermitian systems that experience energy gain or loss can behave very
differently from Hermitian systems that conserve energy. The most noticeable
difference is the appearance of exceptional points (EPs), which occur when two or
more eigenvalues and their associated eigenvectors coalesce to form degenerate
NHH systems [12-14].

A particular family of NHHs are the so-called parity-time (PT) symmetric systems
[1,2,3], which have real energy spectra, same as those of Hermitian Hamiltonians.
A Hamiltonian H is PT-symmetric if and only if it commutes with the PT operator,
that is, [H, PT] = 0, where the time operator T denotes complex conjugation and the
parity operator P denotes the reflection with respect to the center of symmetry.

One of the interesting effects, associated with PT-symmetry, is their phase tran-
sition arising at an EP [105,106]. At these transitions, the eigenvalue spectrum of
these systems from real becomes complex, unveiling its non-Hermitian nature. The
EP of an NHH called Hamiltonian EP (HEP) refers to the degenerate eigenvalues
of the NHH, which correspond to coalescent eigenvectors. The eigenspectra of
the effective Hamiltonian, is determined, by Heff |En⟩ = En |En⟩, where Heff is the
Hamiltonian of a given NHH system and En, |En⟩ are, respectively, the eigenvalues
and the corresponding eigenvectors of the system.

A multitude of intriguing properties associated with systems at HEPs have
been predicted, including stimulated emission [46-51], spontaneous emission [52],
chirality [53-55], unidirectional invisibility [56], control of whispering-gallery micro-
cavities [57, 58], exceptional Kerr effect [59], and related exceptional photon blockade
[60], as well as the generation of higher-order HEPs [31, 61-63]. For recent reviews
on HEPs, consult the articles in Nature Materials [12] and Science [13].

However, the Hamiltonian-based definition of exceptional points neglects quan-
tum jumps in the evolution of quantum systems. The effects of quantum jumps can
be accounted for by considering a master equation and the corresponding Liouvil-
lian and its exceptional points (LEPs), as proposed in 2019 [76-77] (These works are
coauthored by the two supervisors of this thesis).

The master equation, given by ˙̂ρ = Lρ(t), using the Liouvillian superoperator
L, describes the evolution of a reduced density matrix ρ̂. The quantum trajectory
interpretation of the master equation provides an intuitive understanding of the
system dynamics, highlighting the role of effective non-Hermitian Hamiltonians
in describing energy, coherence, and information losses in the system. In quantum
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trajectory method, the standard Gorini-Kossakowski-Sudarshan-Lindblad master
equation is written in the form

˙̂ρ = Lρ(t) = −i
[

Ĥeffρ̂(t)− ρ̂(t)Ĥ†
eff

]
+ ∑

µ

Γ̂µρ(t)Γ̂†
µ. (5.1)

where Γ̂µ is a quantum jump operator, and

Ĥeff = Ĥ − i
2 ∑ Γ̂†

µΓ̂µ, (5.2)

is the effective NHH for a given Hermitian Hamiltonian H. This form of the mas-
ter equation includes two types of terms: the continuous non-unitary dissipation
evolution described by Ĥeff and the quantum-jump term that captures the sudden
changes in the wave function.

The master equation describes how a system changes over time under the in-
fluence of a Liouvillian superoperator, which is a non-Hermitian matrix that can
exhibit EPs. These EPs are called quantum EPs (QEPs) or LEPs because they are
degeneracies of quantum Liouvillians.

The spectrum of the Liouvillian L is given by Lρ̂i = λiρ̂i, where λi and ρ̂i repre-
sent the eigenvalues and right eigenmatrices of the Liouvillian superoperator, re-
spectively. The eigenmatrices of the Liouvillian superoperator L are not necessarily
normalized by default. But one can normalized them by using the Hilbert-Schmidt
norm as ⟨ρ̂i, ρ̂i⟩ = Tr[ρ̂†

i ρ̂i]. Moreover, since a Liouvillian does not need to be a
Hermitian superoperator, in general different ρ̂i (and ρ̂j) will not be orthogonal.

LEPs are different from HEPs, which are degeneracies of non-Hermitian Hamil-
tonians. LEPs take into account both the continuous nonunitary dissipation and
discrete quantum jumps that can occur in an open quantum system, whereas HEPs
only consider the dissipation part. LEPs have attracted growing attention in both
theoretical and experimental realms. Notably, recent experiments with a single
superconducting qubit (reported in PRL [34, 35]) and a single trapped ion (reported
in Nature Communication [78] and PRL [79]) have been conducted.

Quantum process tomography (QPT), also known as a quantum channel to-
mography, is a powerful technique for experimentally characterizing an unknown
quantum process, channel, or quantum device [85–87]. The purpose of QPT is the
reconstruction of a unknown Liouvillian superoperator, which fully describes the
dynamics of the quantum process under investigation. QPT is considered an ex-
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tension of quantum state tomography (QST) [88], where quantum output states are
reconstructed for different input states.

QPT can be used for determining how a quantum system changes when it
interacts with its surroundings. For example, when qubits pass through a quantum
gate or quantum channel, they may be affected by noise and lose their quantum
properties. This can cause errors in the quantum information that needs to be stored
or processed. QPT allows us to discern the actual behavior of a quantum gate or
channel, facilitating a subsequent comparison with the ideal process. This can help
us to improve quantum control and reduce decoherence. To perform QPT, we do
not need to use all possible input states for the system, but only a limited number.
Then, we can see what output states we obtain after the system undergoes the
quantum process. By comparing the input and output states, we can determine a
given quantum process [89].

To our knowledge, the LEPs of reconstructed Liouvillians via QPT have not yet
been studied. Hence, the primary objective of this study is to ascertain the LEPs
via QPT for a given simple system, which is a single qubit experiencing dissipation
across three channels.

5.1.2 Motivation

Exceptional points are exotic degeneracies of non-Hermitian systems, for which at
least eigenvalues and corresponding eigenvectors simultaneously coalesce in the
parameter space. They exhibit a special topological structure that leads to various
counterintuitive phenomena and novel applications. HEPs and LEPs show their
equivalence in the semiclassical regime, but can exhibit fundamental differences in
the quantum regime [76]. Studying LEPs can help us to develop novel quantum de-
vices for sensing, communication, and computation. QPT has now been established
as an indispensable method for characterizing quantum processes, including quan-
tum information processing. In this article, we reconstructed Liouvillians via QPT
and subsequently found LEPs both theoretically using three equivalent methods
introduced in this article and experimentally on IBM quantum processors.

5.1.3 Summary of the main results

We demonstrated theoretically and experimentally (on an IBMQ processors) how
standard QPT, which reveals the dynamics of a quantum system, can be readily
applied to reveal and characterize LEPs of non-Hermitian systems.
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It is important to note that QST has been experimentally applied to reveal LEPs
in Refs. [34, 35] (see also [33]). However, to our knowledge, QPT has not yet been
applied to reveal LEPs and HEPs to date. In particular, a LEP-based quantum heat
engine was studied experimentally in [78, 79], but neither QST nor QPT was applied.

We analyzed a prototype model of a single qubit decaying through three com-
peting channels to demonstrate how to tune system parameters for observing LEPs,
although the model does not exhibit HEPs. Specifically, we tomographically recon-
structed the corresponding experimental Liouvillian and its LEPs by applying single-
and two-qubit operations on an IBM quantum processor.

We believe that QPT can become an indispensable tool for precisely monitoring
and controlling LEP-based quantum devices, including quantum heat engines [78,
79].

5.1.4 More details on the applied methods

Here I explain our method and some results in a greater detail.
As explained above, QPT is a technique that aims to identify unknown operations.

The foundation for QPT is QST, which is a technique that reconstructs an unknown
quantum state from a set of measurements. The standard QPT method consists of
the following steps:

1. Prepare a complete basis of input states ρn
in = |ψn

in⟩ ⟨ψn
in|. For example, for

a single qubit, one can choose the eigenstates of the three Pauli operators:
|ψn

in⟩ ∈ {|0⟩ , |1⟩ , 1√
2
(|0⟩ ± |1⟩), 1√

2
(|0⟩ ± i |1⟩)}.

2. Apply the unknown process E to each input state.

3. Apply QST to reconstruct the output states E(ρn
in) for each ρn

in.

The goal of QPT is to find the process E that maps the input states to the output
states. However, not every process is physically valid. A physically valid process
must be a completely positive map (CP-map), which is a linear map that preserves
the positivity of operators in any Hilbert space [125,126]. A CP-map also must be
trace-preserving, which means that it preserves the total probability of quantum
states. However, due to experimental noise and using a limited number of mea-
surements, the reconstructed process E may not be a CP-map. Therefore, some
methods (like maximum likelihood estimation, MLE) are needed to ensure that the
QPT results are physically valid. In this study, we aimed to use QPT to identify the
LEPs of the Liouvillian, which is a CP-map of the discussed open single qubit.
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Studies have shown that LEPs can be calculated via the standard superopera-
tor formalism, but here, we introduced three equivalent experimentally feasible
methods of finding LEPs via QPT for a lossy single qubit. We have experimentally
implemented one of the methods, which according to our simulations gives the
highest fidelity of the reconstruction on a IBMQ processor. Each of these three QPT
approaches enables us to reconstruct the Liouvillian of our proposed system, which
is a single qubit model which evolves under the influence of the three different
decay channels (σx,σy, and σ−). In this study, we show that these three approaches
are analytically and numerically equivalent. We explained that these approaches
theoretically showed the ideal QPT of Liouvillians. However, performing QPT for
Liouvillians is experimentally quite challenging because there can be many sources
of errors in the experiments, such as imperfect preparation or measurement of the
quantum states, or unwanted interactions with other qubits or other systems. We
discussed the possible sources of error through the QPT for our system.

In our study, we implemented our CP-map on an extended Hilbert space and
designed a quantum circuit using Qiskit for QPT to reconstruct the Liouvillians of a
single-qubit model theoretically and experimentally, which was implemented on a
quantum processor using IBMQ platform [103]. We calculated the eigenspectra of
both theoretical and experimental Liouvillians, and then demonstrated the LEPs of
our system.

It should be noted that we demonstrated the spectral properties of the Liouvillian
by calculating the imaginary and real parts of the Liouvillian eigenvalues as a
function of γx/ω. Moreover, we demonstrated the scalar product of eigenvectors as
a function of γx/ω, where γx is decaying rate through the channel σx.

The QPT quantum circuit, designed using Qiskit, includes three qubits to re-
construct the Liouvillians of a lossy single qubit. In our QPT circuit design, we
considered that the two qubits act as a noisy environment for the single qubit that
we aimed to reconstruct its Liouvillian.

We performed experiment first on noiseless simulator then on simulator with
a chosen noise model for a selected IBM quantum processor and, finally, on real
IBM quantum processors consisting of up to seven qubits. I should mention that
the results demonstrated in the article were chosen from the results of experiment
done using the Open Quantum Assembly Language (OpenQASM) simulator and
ibm Nairobi.

Three sets of experimental results are presented and discussed in the article. The
first case, which is the main setup, is the result of the quantum circuit of the three
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qubits. In this case, the results were noisy even when we used error mitigation for
our experimental results. However, our results showed that it is still possible to
observe an LEP, as expected, which is similar to the theoretical result, but very noisy.

To obtain better results, we removed one of the qubits from our designed ex-
perimental QPT quantum circuit to reduce the noise. In this case, in the quantum
circuit of two quantum registers, only one qubit plays the role of environmental
noise. Consequently, the experimental results are in very good agreement with the
theory, and the reduction in noise is significant.

Moreover, we performed a QPT experiment with a quantum circuit having only
one qubit register as the input, in which we removed two other qubits from the
circuit. Then we obtained experimental results with the best agreement with the
theory. All the three methods confirmed the theoretical predictions of LEPs for our
single lossy qubit by QPT.

5.1.5 My contribution and importance of the work

We anticipate that exploring LEPs may result in the development of more robust
readout techniques. This advancement could prove valuable, particularly in mitigat-
ing readout errors in quantum computers. We are confident that QPT, as applied in
article [P5] for the first time in research related to LEPs, has the potential to become
an essential tool in this area of research. Arguably, QPT is superior in many ways
to QST for precise monitoring and controlling LEP-based quantum devices, which
can find applications for quantum metrology and quantum thermodynamics, to
mention quantum heat engines.

I and Patrycja Tulewicz have executed all the experiments for this work on IBMQ
using different processors. Ultimately, the paper exclusively incorporates only my
experimental data. I have conducted both analytical and numerical calculations,
inclusive of data postprocessing, with thorough validation by other co-authors.
The first version of the paper was written by me and subsequently refined through
collaborative revision by all authors. Moreover, I have made significant contributions
to the interpretation of the obtained experimental results.
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Hamiltonian exceptional points (HEPs) are spectral degeneracies of non-Hermitian Hamiltonians
describing classical and semiclassical open systems with gain and/or loss. However, this defini-
tion overlooks the occurrence of quantum jumps in the evolution of open quantum systems. These
quantum effects are properly accounted for by considering Liouvillians and their exceptional points
(LEPs) [Minganti et al., Phys. Rev. A 100, 062131 (2019)]. Here, we explicitly describe how stan-
dard quantum process tomography, which reveals the dynamics of a quantum system, can be readily
applied to reveal and characterize LEPs of non-Hermitian systems. We conducted experiments on
an IBM quantum processor to implement a prototype model simulating the decay of a single qubit
through three competing channels. Subsequently, we performed tomographic reconstruction of the
corresponding experimental Liouvillians and their LEPs using both single- and two-qubit opera-
tions. This example underscores the efficacy of process tomography in tuning and observing LEPs,
despite the absence of HEPs in the model.

Introduction.—Systems with dissipation and/or ampli-
fication can be described by non-Hermitian Hamiltoni-
ans (NHHs) whose eigenvalues are either real or com-
plex conjugate pairs depending on whether the system is
operated in the exact or broken parity-time (PT ) sym-
metric phase, respectively. This result, which was theo-
retically demonstrated by Bender and Boettcher [1] (see
also Refs. [2, 3] for early reviews), has triggered im-
pressive interest in studying non-Hermitian quantum me-
chanics [4, 5]. Indeed, over the past two decades, PT -
symmetric systems have evolved from a mathematical cu-
riosity to a powerful resource for controlling electromag-
netic waves and their interactions with matter by judi-
ciously engineering loss-imbalance in passive (i.e., with-
out amplification) non-Hermitian (NH) systems, and dis-
sipation vs amplification rates in active NH systems, as
well as dissipation vs the coupling strength between sub-
systems. Early demonstrations involved optical [6, 7],
electronic [8], plasmonic [9], metamaterial [10], and op-
tomechanical [11] systems.

The exact and broken PT -symmetric phases are sep-
arated by the so-called Hamiltonian exceptional points
(HEPs), where two or more of the eigenvalues of the ef-
fective non-Hermitian Hamiltonian (NHH) describing a
given system, and their associated eigenvectors, become
degenerate, leading to dimensionality reduction [12–14].
Numerous studies, focused on PT -symmetry and/or
HEPs, of engineered non-Hermitian systems have been
reported in diverse fields, including: optics [6, 7, 14–20],
electronics [8], plasmonics [9, 21, 22], acoustics [11, 23–
27], cavity optomechanics [11, 28–31], atom optics [32],

∗ shsavan@gmail.com
† bark@amu.edu.pl
‡ adam.miranowicz@amu.edu.pl

circuit quantum electrodynamics (QED) [33–35], and
cavity QED [36–38], for various systems, e.g.: pho-
tonic [15–18] and atomic [32] lattices, metamaterials [10,
39–42]), exciton-polaritons [43], atomic vapours [44], and
trapped ions [45].

A plethora of intriguing properties of such systems in-
duced or enhanced at HEPs (or near them) have been
predicted, including stimulated emission [46–51], spon-
taneous emission [52], chirality [53–55], unidirectional
invisibility [56], control of whispering-gallery microcav-
ities [57, 58], exceptional Kerr effect [59] and related
exceptional photon blockade [60], or the generation of
higher-order HEPs [31, 61–63]. The existence of HEPs
in the absence of the PT -symmetry was studied in [64].
Various applications of HEPs in photonics have been
proposed aiming at enhanced quantum sensing, i.e., an
increased response of non-Hermitian system to external
perturbations in the vicinity of its HEPs [61, 65–75].

While effective NHHs and HEPs are sufficient to de-
scribe coherent nonunitary evolution of the dynamics of
classical and semi-classical systems, they fell short in de-
scribing the evolution of quantum systems which involves
quantum jumps and associated noise. To address this
shortcoming, LEPs, which are the exceptional points of
the Liouvillian superoperator describing the evolution of
the density operator of the quantum system, were pro-
posed [76]. LEPs are a natural generalization of HEPs
by taking into account quantum jumps and, thus, they
provide a consistent description of decoherence and noise
in quantum systems in which the canonical commutation
relations are satisfied.

Quantum Liouvillian exceptional points (LEPs) are de-
fined as degeneracies of quantum Liouvillians associated
with their coalescing eigenvalues and eigenvectors [76].
LEPs depend not only on a continuous nonunitary dis-
sipation of a given system (as described by NHHs), but

ar
X

iv
:2

40
1.

14
99

3v
1 

 [
qu

an
t-

ph
] 

 2
6 

Ja
n 

20
24

5.2 Preprint of article [P5] 109



2

also on its quantum jumps. By contrast to LEPs, HEPs
are not affected by quantum jumps, so in that sense can
be considered classical. The connection between HEPs
and LEPs can be explicitly shown both theoretically and
experimentally via a proper postselection of quantum
trajectories following the hybrid-Liouvillian formalism of
Ref. [77]. Recent experiments with a single supercon-
ducting qubit [34, 35] and a single trapped ion [78, 79]
have indicated the importance of LEPs by revealing, for
example, the pivotal significance of quantum jumps in
generalizing the applications of classical non-Hermitian
systems to open quantum systems for sensing and con-
trol [34] and “LEP-enabled control of quantum heat en-
gines and of thermodynamic processes in open quantum
systems” [79]. The discussed formalism of finding LEPs
is based on the Lindblad master equation, so relies on
the standard formalism of quantum mechanics eliminat-
ing the need to track the evolution of a system-dependent
metric [80, 81]. Without calculating this metric, viola-
tions of no-go theorems in quantum mechanics can be
wrongly predicted.

Since the introduction of the concept of LEPs in [76],
there has been a growing theoretical interest, which
is stimulated by experimental progress [33–35, 78, 79],
in observing, understanding, and utilizing quantum as-
pects of Liouvillian singularities. The progress includes
also closely related concepts of Liouvillian diabolical
points (i.e., spectral degeneracies, where eigenvalues co-
alesce, but the associated eigenvectors remain orthogo-
nal) [82], hybrid LEPs (which interpolate between HEPs
and LEPs) [34, 77], and higher-order eigenspectrum de-
generacies exhibiting hybrid properties of both diabolical
and exceptional points [83] (see also [84]).

Quantum process tomography (QPT) is a procedure
that enables a complete experimental characterization of
an unknown quantum device (which can be considered
a quantum black box) or, in mathematical terms, the
reconstruction of the Liouvillian superoperator, which
completely characterizes the dynamics of an unknown
quantum process. QPT is often considered a quantum-
channel tomography, because any physical operation that
describes the dynamics of quantum states can be inter-
preted as a quantum channel. QPT was introduced in
the late 1990s in [85–87] as a generalization of quantum
state tomography (QST) [88] for reconstructing quantum
channels via reconstructing quantum output states for
various input states. Similarities between QPT and QST
include even the use of maximum-likelihood estimation
to guarantee that an experimentally reconstructed Liou-
villian superoperator (or density matrix) really describes
a physical process (or state) [89, 90]). First experimen-
tal demonstrations of QPT were reported for character-
izing two-qubit gates using nuclear-magnetic-resonance
(NMR) spectroscopy [91], and single- [92, 93] and two-
qubit [94–96] gates using linear optics and conditional
measurements. As already mentioned in [93], a multi-
qubit (say n qubit) QPT can, in principle, be realized
by replicating (n times) a given experimental setup for a

single-qubit QPT. Of course, the dimension of a recon-
structed Liouvillian superoperator (and, thus, the com-
plexity of QPT itself) grows exponentially with the num-
ber of qubits. QPT has now been established as an
indispensable method for characterizing quantum pro-
cesses, including quantum information processing (for
a review see [97]). Recent experimental implementa-
tions of QPT include: trapped-ion qubit gates [98], su-
perconducting quantum processors [99, 100], and pho-
ton polarization damping channels (see, e.g., [101] and
references therein), or a plasmonic metamaterial as the
polarization-dependent loss channel in quantum plas-
monics [102], among many other experimental quantum
platforms and processes. However, to our knowledge,
finding LEPs of the Liouvillians reconstructed via QPT
has not been demonstrated in detail yet.

Here we analyze and experimentally implement QPT
and reveal LEPs on simple single- and two-qubit su-
perconducting systems using an IBM quantum proces-
sor [103]. We argue that various experimental methods
used for single-qubit QST [33] and QPT (e.g., [99, 104])
can be modified to induce and reveal LEPs along the
lines described here. QPT can enable experimental find-
ing not only LEPs but also quantum diabolical points,
which are defined via degenerate eigenvalues of Liouvil-
lians for which the corresponding eigenvectors are orthog-
onal. Such points can reveal dissipative phase transitions
and Liouvillian spectral collapses [105, 106].

We note that QST has been applied across LEPs in [34,
35] (see also [33]). But to our knowledge QPT has not
been applied to reveal LEPs yet. In particular, a LEP-
based quantum heat engine was studied experimentally
in [78, 79], but neither QST nor QPT was applied.

Our method can be readily applied for finding LEPs
of multi-qubit processes via multi-qubit QPT, which cor-
responds to taking tensor products of single-qubit pro-
jectors. The method of finding LEPs can also be ap-
plied to QPT of infinite-dimensional systems (continuous
variable) with [87] or without [107] homodyne detection.
However, such an infinite-dimensional QPT is not dis-
cussed here.

Let us consider the dissipative evolution of a quantum
system within the Lindblad master equation. Thus, we
make the standard assumption that the system weakly
interacts with a Markovian environment. In the case
of the QPT of composite systems (e.g., a qubit and a
cavity mode), it is usually also assumed that the in-
teraction between the subsystems (e.g., light and mat-
ter) is weak. Therefore, each of the subsystems dissi-
pates through its own coupling to the environment (i.e.,
via a separate dissipative channel) rather than combined
channels, which would require applying generalized mas-
ter equations [108–110]. Moreover, the expected photon
output rate in the ultrastrongly coupled light-matter sys-
tems is not directly related to the number of photons in a
cavity [111]. Thus, a generalized QPT should be applied.

A general-form Lindblad master equation can be ex-
pressed via the Liouvillian superoperator L [112, 113]
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(ℏ = 1):

∂

∂t
ρ̂ = Lρ̂(t) = −i[Ĥ, ρ̂(t)] +

∑

µ

D[Γ̂µ]ρ̂(t), (1)

acting on the density matrix ρ̂(t) of the system described
by a Hermitian Hamiltonian Ĥ at an evolution moment
t. The Lindbladian dissipators D[Γ̂µ] are given by

D[Γ̂µ]ρ̂(t) = Γ̂µρ̂(t)Γ̂
†
µ − 1

2
[Γ̂†

µΓ̂µρ̂(t) + ρ̂(t)Γ̂†
µΓ̂µ], (2)

where Γ̂µ can be interpreted as a quantum jump operator
within the quantum trajectory approach (also known as
the wave-function Monte Carlo method) [114–118]. Fol-
lowing that approach, one can also introduce an effective
NHH,

Ĥeff = Ĥ − i

2

∑
Γ̂†
µΓ̂µ, (3)

and, thus, the Liouvillian in Eq. (1) can be rewritten as

Lρ̂(t) = −i
[
Ĥeff ρ̂(t)− ρ̂(t)Ĥ†

eff

]
+
∑

µ

Γ̂µρ̂(t)Γ̂
†
µ. (4)

Thus, the master equation includes two types of terms
and corresponding evolutions [113, 119]: the terms, which
describe a continuous non-unitary dissipative evolution
via Ĥeff , and the quantum-jump term, which describes
a sudden stochastic change of the wave-function due to
the effect of the measurement on the state of the studied
system [113, 120, 121]. It is seen that this quantum-
trajectory interpretation of the master equation is physi-
cally very intuitive and reveals the importance of effective
NHHs, which are used in standard quantum mechanics
and not limited to PT -symmetric systems. They de-
scribe continuous losses of energy, coherence, and quan-
tum information of the system into the environment.
Moreover, this master-equation interpretation also re-
veals the crucial role of quantum jumps. Their omission
can be justified in the semiclassical limit or by applying
a proper postselection of quantum trajectories.

The eigenspectra of the effective NHH, Ĥeff , and the
Liouvillian, L, in Eq. (4) are determined, respectively, by

Ĥeff |En⟩ = En|En⟩, (5)
Lρ̂n = λnρ̂n, L†σ̂n = λ∗nσ̂n, (6)

where En and |En⟩ are the eigenvalues and eigenvectors
of the NHH operator; while λn, ρ̂n, and σ̂n are the eigen-
values and the right and left eigenmatrices of the Liou-
villian superoperator, respectively. With these eigenspec-
tra, HEPs and LEPs can be found. Note that ρ̂n and σ̂n
for a given n are mutually orthonormal. However, dif-
ferent ρ̂n (as well as σ̂n) are not, in general, orthogonal.
The time evolution of a given density matrix ρ̂(t) can be
expressed in the eigenmatrix basis {ρ̂n} or {σ̂n}. The
real part of λn for any n is non-positive and describes a

relaxation rate towards the system steady state [112]. By
representing (i.e., flattening) the eigenmatrices ρ̂n and σ̂n
as vectors |ρ̃n⟩ and ⟨σ̃n|, respectively, and treating the Li-
ouvillian superoperator L as a matrix L̃, Eq. (6) can be
rewritten as

L̃|ρ̃n⟩ = λn|ρ̃n⟩, ⟨σ̃n|L̃ = λn⟨σ̃n|, (7)

where L̃ can be measured (reconstructed) by a given QPT
method. Then, the LEPs of L̃ can be calculated by apply-
ing the standard superoperator formalism as described in
Ref. [76]. Such LEPs can be easily found experimentally
via the QPT based on 6 × 6 projectors, i.e., assuming
that the input and output states (or projections) are the
eigenstates of all the Pauli operators:

|ini⟩, |outj⟩ ∈ {|x+⟩, |x−⟩, |y+⟩, |y−⟩, |z+⟩, |z+⟩}, (8)

where |x±⟩ = 1√
2
(|0⟩ ± |1⟩), |y±⟩ = 1√

2
(|0⟩ ∓ i|1⟩), and

|z+⟩ ≡ |0⟩ (|z−⟩ ≡ |1⟩). These projections can be used
for the QPT of a transmon qubit, where |0⟩ (|1⟩) corre-
sponds to its ground (excited) state. Thus, for a dissipa-
tive and/or amplified process described by the Lindblad
master equation with a Liouvillian L, one can measure
all its elements

Lij = ⟨outj |L
(
ρ̂ = |ini⟩⟨ini|

)
|outj⟩, (9)

and, thus, one can reconstruct the full 6 × 6 transfor-
mation matrix L = [Lij ], which represents L. Other
approaches to QPT, as described in the Supplement Ma-
terial [122], can also be used to reveal the same LEPs.

The dynamics of an open quantum system is governed
by the master equation in Eq. (1). For short evolution
steps dt this can be expressed as

ρ̂(t+ dt) = (Ldt+ 1)ρ̂(t) ≡ Sρ̂(t). (10)

This corresponds to the short-time evolution of a quan-
tum system ρ̂(t) under the non-Hermitian dynamics,
where S is the effective quantum operation, which is the
subject of quantum tomography. Note that S has the
same spectral decomposition as L up to an affine trans-
formation for all eigenvalues related to scaling by dt and
translation by 1. Thus, by performing QPT on S we
can study LEPs. Next, we perform the QPT of a pro-
cess S by choosing a dt which depends on the specific
form of L, and is small enough to realize the dynamics
corresponding to the master equation in Eq. (1). If this
quantum operation S is applied to a system n times, the
evolution of the system is effectively described by the
Lindblad master equation with a given Liouvillian L for
the evolution time ndt.

Driven lossy qubit.—In our experimental demonstra-
tion on an IBM quantum processor [103], we applied
QPT to reveal LEPs in a driven lossy single-qubit (spin-
1/2) prototype model, which exhibits LEPs but not
HEPs [76, 77]. Specifically, the system is described by
the Hamiltonian Ĥ = ω

2 σ̂z, and decays through three
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competing channels (σ̂x, σ̂y, and σ̂−), as described by
the Liouvillian,

Lρ̂(t) = −i[Ĥ, ρ̂(t)]+
(
γ−D[σ̂−]+γxD[σ̂x]+γyD[σ̂y]

)
ρ̂(t),

(11)
which includes the effects of three dissipation channels,
where σ̂x, y, z are the Pauli matrices, and σ̂± = (σ̂x ∓
iσ̂y)/2 are the qubit lowering and raising operators, re-
spectively. The Liouvillian, given by Eq. (11), is invariant
under the exchange σ̂− → −σ̂−, indicating a Z2 symme-
try [123, 124]. The relaxation rate towards the steady
state is influenced by the Hamiltonian oscillations, the
dissipation channels along the x and y axes, and the spin
flips described by σ̂−. We note that some typos in the
corresponding equation in [76] have been corrected here
to ensure that the numerical results can be accurately
reproduced. In addition, the oscillations induced by the
Hamiltonian, the dissipation occurring along the x and y
axes and the spin flipping that the σ̂− operator describes
can compete for how quickly the system reaches a steady
state.

The NHH structure is straightforward, as the effective
Hamiltonian Ĥeff is already in the diagonal form in the
standard computational basis. Additionally, the matrix
representation of Ĥeff can be written as:

Ĥeff =
1

2
diag([ω− iγx− iγy− iγ−,−ω− iγx− iγy]), (12)

which has no HEP as there is no way to adjust the
parameters to make the two eigenvalues equal. How-
ever, despite this, the Liouvillian still exhibits LEPs.
Specifically, one finds [76] the eigenvalues: λ0 = 0,
λ3 = γ− − 2 (γy + γx), and

λ1,2 = −γ−
2

− γx − γy ± Ω, (13)

together with the corresponding right eigenmatrices:




ρ̂0 ∝ diag([γx + γy, γx + γy + γ−])
2γx + 2γy + γ−

,

ρ̂1, 2 ∝
(

0 −iω ± Ω
γx − γy 0

)
,

ρ̂3 ∝ diag([−1, 1]),

(14)

where Ω =
√
γ2x + γ2y − 2γxγy − ω2. For brevity, the left

eigenmatrices σ̂n are not shown here. Therefore, in the
case γy > ω, this Liouvillian exhibits two LEPs at γ±x ≡
γy ± ω. We study this configuration experimentally by
setting γ− = 0 and γy = 2ω. Figure 1 shows the theoret-
ical eigenvalues λ1,2, given by Eq. (13) (see blue dashed
curves), and modified eigenvalues (black solid curves),
which are obtained via a more-realistic QPT simula-
tion assuming white noise. Specifically, any experimental
pure-like states, which are the input states for QPT, are
effectively mixed with white noise. Thus, this undesired
effect has been included in our refined simulations, as

discussed in [122]. These simulated eigenvalues are com-
pared with the experimental eigenvalues λexpn obtained in
our single-qubit [in panels (a,b)] and two-qubit [in panels
(c,d)] experiments. The observed bifurcations of the ex-
perimental eigenvalues near γ±x = (2± 1)ω are in a good
agrement with our theoretical predictions. In Fig. , we
show the scalar products (overlaps) Oexp

12 = |⟨σ̃exp
1 |ρ̃exp2 ⟩|

between the experimental right and left eigenmatrices,
σ̃exp
1 and ρ̃exp2 , compared to Oth

12 = |⟨σ̃(0)
1 |ρ̃(0)2 ⟩| for the

ideal theoretical case. It is seen that σ̃exp
1 and ρ̃exp2 are

practically coalescent (as Oexp
12 ≈ 1) near γ±x confirming

the generation of LEPs.

LEP

LEP

LEP LEP

LEPLEP

LEP

LEP

FIG. 1. Spectra of the experimental Liouvillians L (and,
thus, L) reconstructed from single-qubit (a,b) and two-qubit
(c,d) measurements performed on an IBM quantum proces-
sor [103] (red and green squares) and the corresponding the-
oretical predictions including white noise (black solid curves)
and without it [blue dashed curves obtained from Eq. (13)].
Panels (a,c) show the real part of the eigenvalues λi of
the Liouvillians L, while (b,d) show their imaginary part.
Each measurement was carried out with 20 000 shots and
ωdt = 1/15.

Implementing completely positive (CP) maps with uni-
tary gates.—To implement non-Hermitian dynamics us-
ing only unitary operations, we purify (coherify) the
quantum process by embedding it in a larger Hilbert
space, where the joint evolution of the system and its
environment is unitary. In particular, starting with the
superoperator S, we find its Choi representation χ̂. De-
pending on the number of nonzero eigenvalues of the Choi
matrix, we choose the dimension of the required ancil-
lary system. This approach to implement completely
positive maps is well known (see, e.g., Ref. [125]). As
we can implement an arbitrary unitary operation on
a programmable quantum computer, we use this ap-
proach to demonstrate LEPs experimentally with a noisy
intermediate-scale quantum (NISQ) processor.
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LEPLEP LEPLEP

FIG. 2. Overlaps O12 = |⟨σ̃1|ρ̃2⟩| of the Liouvillian vector-
ized eigenmatrices ⟨σ̃1| and |ρ̃2⟩ measured in our single- (a)
and two- (b) qubit experiments on an IBM quantum proces-
sor [103] (blue squares) and compared to the corresponding
theoretical predictions including white noise (black curves).
It is seen that the experimental overlap O12 approaches 1 at
the LEPs in both panels.

CP maps, are linear maps that preserve the positivity
of density matrices. To express a CP map EH between
the Hilbert spaces H and K as a unitary operator we can
use the Choi-Jamiolkowski isomorphism [126, 127] be-
tween the map and operator χ̂. The associated quantum
operation can be expressed as

ρ̂out = trH
[
χ̂ρ̂Tin ⊗ 1̂1K

]
, (15)

where the operator isomorphic to the map reads χ̂ =

EH ⊗ IH(|ϕ⟩⟨ϕ|), trK[χ̂] = 1̂1H, and |ϕ⟩ =∑dimH
j=1 |j⟩1|j⟩2

where, I is an identity map and 1̂1H denotes the identity
operator on H. Alternatively, a given CP map can be
expressed via the Kraus decomposition [125]:

ρ̂out = E(ρ̂in) =
∑

l

Âlρ̂inÂ
†
l . (16)

with
∑

l Â
†
l Âl = 1̂H, which can be rewritten, using the el-

ements of the matrix A(l)
ki ≡ ⟨k|Âl|i⟩, as

∑
k,lA

∗(l)
ki A

(l)
kj =

δij . The number of Âl operators corresponds to the num-
ber of the nonzero eigenvalues of the χ̂matrix. In the real
case, the χ̂ matrix and the operators Âl can be related to
each other by the eigenvalues rl and the eigenstates |πl⟩
of the χ̂ operator,

A
(l)
ki =

√
rl⟨k|⟨i|πl⟩, (17)

where |i⟩ ∈ H and |k⟩ ∈ K are the states in the input
and output Hilbert spaces, respectively. Finally,

ρ̂out = trenv[Û ρ̂in ⊗ (|0⟩⟨0|)envÛ†], (18)

where Û =
∑

l Âl ⊗ (|l⟩⟨0|)env is the unitary operation
decomposable into quantum gates.

Implementation complexity.—For the discussed driven
lossy qubit model, l = 0, ..., 4 which is the number of the
nonzero eigenvalues of the Choi matrix. The simplest
single-qubit circuit implementing the CP map applies a
unitary operation corresponding to A(l) at random with

probability rl, as described by Eq. (16). When applied
repeatedly to the initial quantum state, the resulting final
state approximates the time-evolved quantum state of the
simulated system. However, this is not a fully quantum
simulation of the quantum dynamics, i.e., we need an
external random number generator.

The second simplest experiment is embedded in a two-
qubit Hilbert space and utilizes two-qubit unitary oper-
ations and a single-qubit environment, ρ̂(1)env, and reads
as

ρ̂out ⊗ ρ̂(1)env =
∑

m=0,2

Âm (ρ̂in ⊗ |0⟩⟨0|) Â†
m, (19)

where Âm =
∑

l=0,1 Âl+m ⊗ |l⟩⟨0|, which requires using
two random two-qubit operations (labelled as m = 0, 2).
Finally, a completely coherent quantum three-qubit ex-
periment requires applying a single unitary operation and
a two-qubit environment, as described by Eq. (18).

Handling experimental errors.—When working with a
programmable quantum computer, we are mostly limited
to applying noisy unitary operations and imperfect read-
out. There are many approaches towards implementing
qubits on quantum computers. Here we focus on trans-
mon qubits, which are nowadays commonly used in su-
perconducting quantum processors. These processors are
able to implement sets of elementary instructions con-
taining both single- and two-qubit unitary operations.
Not every two qubits in a quantum chip are coupled di-
rectly. This requires transpiling a given unitary opera-
tion into elementary gates according to a coupling map
of a given quantum processor. While the fidelities of two-
qubit and single-qubit operations are typically high, the
gate errors can accumulate to an unacceptable level. Ad-
ditionally, if the time required to execute all the gates
is comparable to the coherence time T2 of the applied
transmons, then the results are largely affected by de-
coherence. These all limitations should be taken into
account when designing an experiment. It is evident
that the experimentally reconstructed dynamics is usu-
ally perturbed with respect to the expected one. The
effective perturbations in the eigenvalues (δλ) and eigen-
matrices (|δρ̃n⟩ and ⟨δσ̃n|) of an experimental Liouvillian
Lexp = L0 + δL, with the eigenspectrum obtained exper-
imentally, compared to the ideal unperturbed Liouvillian
L0 and its eigenspectrum [denoted with superscript (0)],
can be estimated as [122, 128]:

δλn ≈ ⟨σ̃(0)
n |δL|ρ̃(0)n ⟩, (20)

|δρ̃n⟩ ≈ −
∑

i (i ̸=n)

(
⟨σ̃(0)

i |δL|ρ̃(0)n ⟩
λ
(0)
i − λ

(0)
n

)
|ρ̃(0)i ⟩, (21)

⟨δσ̃n| ≈ −
∑

i (i ̸=n)

(
⟨σ̃(0)

n |δL|ρ̃(0)i ⟩
λ
(0)
i − λ

(0)
n

)
⟨σ̃(0)

i |. (22)

Thus, based on these estimations, we can select the most
noise-robust experimental strategy. The error bars δλn
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for the experimental eigenvalues λexpn shown in Fig. 1 are
calculated by Eq. (20). While the error bars δOexp

12 for
the experimental scalar products Oexp

12 in Fig. are cal-
culated in [122] based on Eqs. (21) and (22). Moreover,
the uncertainties of γx, as plotted in Figs. 1 and , are
estimated in [122].

Experiment.—In our experiments the system ρ̂in ≡
ρ̂(t) was prepared in one of six input states. Then, the
evolution under a given map was applied. Finally, we
measure ρ̂out ≡ ρ̂(t + dt) in the x, y, and z bases to
reconstruct L (and, consequently, L) The results of the
experiment, conducted on an IBM quantum processor
(i.e., Nairobi) [103] are shown in Figs. 1 and . Measure-
ments were performed for 30 points with 20,000 shots per
experiment, and the evolution step was chosen such that
ωdt = 1/15. Quantum processors are error-sensitive due
to their susceptibility to noise and decoherence. In order
to mitigate errors in our system, we used one of the pop-
ular correction methods, i.e., dynamic decoupling. The
method involves applying a sequence of pulses to each
qubit to protect it from ambient noise. The idea behind
the method is to repeatedly apply a series of inversion
or refocussing pulses that reverse the effect of ambient
noise on a qubit. These pulses effectively separate the
qubit from its environment and can increase the qubit
coherence time. This method is conceptually similar to
the spin-echo method.

Our experiments for demonstrating NHH dynamics are
challenging even for simple systems due to highly entan-
gling three-qubit operations Û (3) =

∑
l Âl ⊗ |l⟩⟨0| imple-

mented by quantum circuits. The results of our three-
qubit experiments on IBM quantum processors [103] are
quite noisy and not shown here. Although our main ex-
perimental results, presented in Figs. 1 and , are limited
to single- and two-qubit experiments, they show the po-
tential of QPT for revealing and manipulating LEPs.

Conclusions.—We have demonstrated how to engineer

and tune a quantum process to approach and detect
LEPs via QPT. The operations for all the experiments
are automatically transpiled into a sequence of single-
and two-qubit gates, which were physically implemented
on a given quantum processor. The physical qubits are
selected based on their quality and connectivity, which
contribute to the optimal performance of the quantum
circuit. To suppress the noise even more, we have ex-
plored the state-of-the-art noise-canceling techniques for
quantum processors. While we applied experimentally
various methods, we found the dynamical decoupling
technique to be most useful. Various equivalent QPT
methods can be used for revealing LEPs as discussed
in the Supplementary Material [122]. However, we ob-
served the least perturbed Liouvillians when applying the
QPT method described in the main text. We expect that
working with LEPs could lead to developing more robust
readout techniques. This could be useful, e.g., in limit-
ing the readout errors in quantum computers. We believe
that QPT can become an indispensable tool for precise
monitoring and controlling LEP-based quantum devices,
including quantum heat engines [78, 79].
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Supplementary Material for “Liouvillian Exceptional Points of Non-Hermitian
Systems via Quantum Process Tomography”

In this Supplementary Material, we provide more technical details on our experimental methods. Ad-
ditionally, we present the measured Liouvillians in comparison to our theoretical simulations including
experimental noise.

I. MATRIX REPRESENTATION OF SUPEROPERATORS

To understand the basic idea of quantum Liouvillian exceptional points (LEPs) and their relation to quantum process
tomography (QPT), we recall the matrix formalism of superoperators which, in particular, applies to Liouvillians. A
general matrix Ô can be formally vectorized (or flattened) with a function F as

Ô =
∑

m,n

Omn|m⟩⟨n| → |Õ⟩ = F(Ô) =
∑

m,n

Omn|m⟩ ⊗ |n∗⟩, (S1)

where ∗ denotes complex conjugate and, for clarity, flattened quantities are henceforth marked by tilde. Thus, a
single-qubit matrix ρ̂ can be flattened as

ρ̂ =

(
ρ00 ρ01
ρ10 ρ11

)
−→ |ρ̃⟩ = F(ρ̂) = [ρ00, ρ10, ρ01, ρ11]

T , (S2)

where T denotes transposition. The inverse function F−1(|ρ̃⟩) gives the standard form of the density matrix ρ̂. Arbi-
trary right-hand-side (RHS) and left-hand-side (LHS) acting superoperators, say R[Ô1] and L[Ô1], can be represented
by matrices R̃[Ô1] and L̃[Ô1], defined, respectively, as:

R̃[Ô1]|Õ⟩2 = (1N ⊗ ÔT
1 )|Õ⟩2,

L̃[Ô1]|Õ⟩2 = (Ô1 ⊗ 1N )|Õ⟩2, (S3)

where 1N is the identity operator of dimension N = size(Ô1). By applying this convention, the Liouvillian in the
Linblad master equation can be represented as

L̃ = −i
(
Ĥ ⊗ 1N − 1N ⊗ ĤT

)
+
∑

n

Γ̂n ⊗ Γ̂∗
n − 1

2

(
Γ̂†
nΓ̂n ⊗ 1− 1⊗ Γ̂T

n Γ̂
∗
n

)
, (S4)

or, equivalently,

L̃ = −i
(
Ĥeff ⊗ 1− 1⊗ ĤT

eff

)
+
∑

n

Γ̂n ⊗ Γ̂∗
n, (S5)

in terms of the effective Hamiltonian Ĥeff defined by:

Ĥeff = Ĥ − i

2

∑

µ

Γ†
µΓµ. (S6)

The last term in Eq. (S5) represents the effect of quantum jumps on the system evolution. And this effect can
decreased or even completely removed by a proper postselection of quantum trajectories, as described by a hybrid
Liouvillian formalism [S2].

II. EQUIVALENT QPT METHODS FOR FINDING EXCEPTIONAL POINTS

LEPs can be calculated via the standard superoperator formalism as described in Ref. [S3]. Here we consider three
equivalent methods of finding LEPs via QPT methods for a single qubit.
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a. Method #1: Formally the simplest approach to find LEPs is via the QPT based on the following 4 × 4 non-
Hermitian input/output projectors (k, l = 1, ..., 4):

ρ̂in,k, ρ̂out,l ∈ {|0⟩⟨0|, |0⟩⟨1|, |1⟩⟨0|, |1⟩⟨1|}. (S7)

By measuring all the elements

Lkl = tr
[
L (ρ̂in,k)

†
ρ̂out,l

]
, (S8)

one can reconstruct the 4× 4 transformation matrix L, which represents L. The method, although formally straight-
forward, it is usually experimentally challenging.

b. Method #2: From an experimental point of view, it is more precise to search for LEPs via the QPT based
on 6 × 6 projectors, i.e., assuming that the input and output states (projections) are the eigenstates of all the Pauli
operators (i, j = x+, x−, y+, y−, z+, z−):

|ini⟩, |outj⟩ ∈ {|x+⟩, |x−⟩, |y+⟩, |y−⟩, |z+⟩, |z−⟩}, (S9)

where |x+⟩ = 1√
2
(|0⟩+ |1⟩) , |x−⟩ = 1√

2
(|0⟩ − |1⟩) , |y−⟩ = 1√

2
(|0⟩+ i|1⟩) , |y+⟩ = 1√

2
(|0⟩ − i|1⟩) , and |z+⟩ ≡ |0⟩ and

|z−⟩ ≡ |1⟩. These are arguably the most popular projectors used for QST and QPT of photon polarization qubits, but
can also be applied to transmon qubits. Thus, for an amplified-dissipative process, described by the Lindblad master
equation with a given Liouvillian L, one can measure all its elements

L′
ij = ⟨outj |L (ρ̂ = |ini⟩⟨ini|) |outj⟩, (S10)

and, thus, we can reconstruct the 6× 6 transformation matrix L′, which represents L.
c. Method #3: LEPs can equivalently be calculated via the QPT for all the Pauli operators (k = x, y, z), i.e.,

σ̂k = |k+⟩⟨k+| − |k−⟩⟨k−|, (S11)
σ̂0 = |z+⟩⟨z+|+ |z−⟩⟨z−| = 11,

(S12)

which can be obtained via the projections on their eigenstates, given in Eq. (S9). Thus, by measuring all the elements
(m,n = 0, ..., 3):

L′′
mn =

1

2
tr [L (σ̂m) σ̂n] , (S13)

where σ̂1 ≡ σ̂x, σ̂y ≡ σ̂2, and σ̂3 ≡ σ̂z, we can reconstruct the 4× 4 Liouvillian matrix L′′ representing L.
d. Equivalence of Methods #1, #2, and #3: Let us demonstrate that all the matrices L,L′, and L′′ have the

same eigenspectra (up to trivial values). The spectral decomposition of L reads L = UAV, where A is a diagonal
matrix of the singular values of L and the matrices U and V are unitary matrices constructed from the left and right
eigenmatrices. It can be verified via direct calculations and using the linearity and the definitions of the Liouvillians
L′ and L′′ that L = U ′′L′′(U ′′)†, where the respective unitary matrices read

U ′′ =
1√
2



1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1


 . (S14)

Hence,

L′′ = [(U ′′)†U ]A[V U ′′] = (U ′′)†LU ′′ (S15)

is a spectral decomposition of L′′ with the same eigenspectrum as L given by A, but with possibly different left and
right eigenmatrices given by unitary matrices (U ′′)†U and V (V ′′)†.

Similarly, we can write a transformation U ′ for L′′ = U ′L′(U ′)T as

U ′ =
1√
2



1 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 −1 0 0 0 0


 , (S16)

where (U ′)T and UT are their respective pseudoinverse matrices. In the next section, by deriving and applying the
unitary version of U ′, we demonstrate that L′′ and L′ have equal ranks. We also demonstrate that L′′ and L′ have
the same eigenvalues. Thus, up to the two trivial eigenvalues of L′, the spectra of L, L′, and L′′ coincide. This is
confirmed by our numerical calculations.
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III. DERIVATIONS OF TRANSFORMATION MATRICES FOR EQUIVALENT QPT METHODS

A. Relation between the Liouvillian matrices L and L′′

Using the Einstein summation convention, L used in Method #1 can be expressed as Lkl = UkmL
′′
mnVnl, where L′′

is given by Method #3. We can derive the expressions for the transformation matrix expressing Lkl in terms of the
Pauli matrices used in Method #3 as:

|z+⟩⟨z+| =
σ̂0 + σ̂z

2
, |z+⟩⟨z−| =

σ̂x + iσ̂y
2

,

|z−⟩⟨z+| =
σ̂x − iσ̂y

2
, |z−⟩⟨z−| =

σ̂0 − σ̂z
2

. (S17)

Here, for simplicity, we use the following notation:

X̂0 ≡ σ̂0 + σ̂z
2

, X̂1 ≡ σ̂x + iσ̂y
2

, X̂2 ≡ σ̂x − iσ̂y
2

, X̂3 ≡ σ̂0 − σ̂z
2

. (S18)

Now, by expanding Eq. (S8) and substituting the input/output projectors, given in Eq. (S17), the matrix elements
Lkl and L′′

mn can be related as:

L00 = tr

[
L
(
X̂0

)† (
X̂0

)]
=

1

2
(L′′

00 + L′′
30 + L′′

03 + L′′
33) ,

L01 = tr

[
L
(
X̂0

)† (
X̂1

)]
=

1

2
[L′′

01 + L′′
31 + i(L′′

02 + L′′
32)] ,

L10 = tr

[
L
(
X̂1

)† (
X̂0

)]
=

1

2
[L′′

10 + L′′
13 − i(L′′

20 + L′′
23)] ,

L02 = tr

[
L
(
X̂0

)† (
X̂2

)]
=

1

2
[L′′

01 + L′′
31 − i(L′′

02 + L′′
32)] ,

L20 = tr

[
L
(
X̂2

)† (
X̂0

)]
=

1

2
[L′′

10 + L′′
13 + i(L′′

20 + L′′
23)] ,

L03 = tr

[
L
(
X̂0

)† (
X̂3

)]
=

1

2
(L′′

00 + L′′
30 − L′′

03 − L′′
33) ,

L30 = tr

[
L
(
X̂3

)† (
X̂0

)]
=

1

2
(L′′

00 + L′′
03 − L′′

30 − L′′
33) ,

L11 = tr

[
L
(
X̂1

)† (
X̂1

)]
=

1

2
[L′′

11 + L′′
22 − i(L′′

21 − L′′
12)] ,

L12 = tr

[
L
(
X̂1

)† (
X̂2

)]
=

1

2
[L′′

11 − L′′
22 − i(L′′

12 + L′′
21)] ,

L21 = tr

[
L
(
X̂2

)† (
X̂1

)]
=

1

2
[L′′

11 − L′′
22 + i(L′′

21 + L′′
12)] ,

L13 = tr

[
L
(
X̂1

)† (
X̂3

)]
=

1

2
[(L′′

10 − L′′
13 − i(L′′

20 − L′′
23)] ,

L31 = tr

[
L
(
X̂3

)† (
X̂1

)]
=

1

2
[L′′

01 − L′′
31 + i(L′′

02 − L′′
32)] ,

L22 = tr

[
L
(
X̂2

)† (
X̂2

)]
=

1

2
[L′′

11 + L′′
22 + i(L′′

21 − L′′
12)] ,

L23 = tr

[
L
(
X̂2

)† (
X̂3

)]
=

1

2
[L′′

10 − L′′
13 + i(L′′

20 − L′′
23)] ,
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L32 = tr

[
L
(
X̂3

)† (
X̂2

)]
=

1

2
[L′′

01 − L′′
31 − i(L′′

02 − L′′
32)] ,

L33 = tr

[
L
(
X̂3

)† (
X̂3

)]
=

1

2
(L′′

00 − L′′
03 − L′′

30 + L′′
33) . (S19)

For all k, l = 0, 1..3 we have

Lkl = UkmL
′′
mnVnl, (S20)

where the transformation matrices V and U can be obtained as explained below. For simplicity, consider k = l = 0:

L00 =
1

2
(L′′

00 + L′′
30 + L′′

03 + L′′
33) = U00L

′′
00V00 + U03L

′′
30V00 + U00L

′′
03V30 + U03L

′′
33V30. (S21)

In this case, we can immediately infer which products vanish, U0mVn0 = 0, and list the following relations:

∵ U00V00 =
1

2
⇒ U00 = V00 =

1√
2
,

∵ U03V00 =
1

2
⇒ U03 =

1√
2
,

∵ U03V30 =
1

2
⇒ V30 =

1√
2
, (S22)

where we apply the symbols ⇒ (therefore) and ∵ (because) to describe our reasoning in a compact form. The
remaining relations between the elements of the transformation matrices can be analyzed in the same way, i.e.:

L01 = U0mL
′′
mnVn1 = U00L

′′
01V11 + U03L

′′
31V11 + U00L

′′
02V21 + U03L

′′
32V21

=
1

2
[L′′

01 + L′′
31 + i(L′′

02 + L′′
32)] ,

∵ U00V11 =
1

2
, U00V21 =

i

2
, U03V11 =

1

2
, U03V21 =

i

2
,

⇒ V11 =
1√
2
, V21 =

i√
2
,

L10 = U1mL
′′
mnVn0 = U11L

′′
10V00 + U11L

′′
13V30 + U12L

′′
20V00 + U12L

′′
23V30

=
1

2
[L′′

10 + L′′
13 − i(L′′

20 + L′′
23)] ,

∵ U11V00 =
1

2
, U11V30 =

1

2
, U12V00 =

−i
2
, U12V30 =

−i
2
,

⇒ U11 =
1√
2
, U12 =

−i√
2
,

L02 = U0mL
′′
mnVn2 = U00L

′′
01V12 + U03L

′′
31V12 + U00L

′′
02V22 + U03L

′′
32V22

=
1

2
[L′′

01 + L′′
31 − i(L′′

02 + L′′
32)] ,

∵ U00V12 =
1

2
, U03V12 =

1

2
, U00V22 =

−i
2
, U03V22 =

−i
2
,

⇒ V12 =
1√
2
, V22 =

−i√
2
,

L20 = U2mL
′′
mnVn0 = U21L

′′
10V00 + U21L

′′
13V30 + U22L

′′
20V00 + U22L

′′
23V30

=
1

2
[L′′

10 + L′′
13 + i(L′′

20 + L′′
23)] ,

∵ U21V00 =
1

2
, U21V30 =

1

2
, U22V00 =

i

2
, U22V30 =

i

2
,

⇒ U21 =
1√
2
, U22 =

i√
2
,
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L03 = U0mL
′′
mnVn3 = U00L

′′
00V03 + U03L

′′
30V03 + U00L

′′
03V33 + U03L

′′
33V33

=
1

2
(L′′

00 + L′′
30 − L′′

03 − L′′
33) ,

∵ U00V03 =
1

2
, U03V03 =

1

2
, U00V33 = −1

2
, U03V33 = −1

2
,

⇒ V03 =
1√
2
, V33 = − 1√

2
,

L30 = U3mL
′′
mnVn0 = U30L

′′
00V00 + U30L

′′
03V30 + U33L

′′
30V00 + U33L

′′
33V30

=
1

2
(L′′

00 + L′′
03 − L′′

30 − L′′
33) ,

∵ U30V00 =
1

2
, U30V30 =

1

2
, U33V00 = −1

2
, U33V30 = −1

2
,

⇒ U30 =
1√
2
, U33 = − 1√

2
,

L11 = U1mL
′′
mnVn1 = U11L

′′
11V11 + U12L

′′
22V21 + U12L

′′
21V11 + U11L

′′
12V21

=
1

2
[L′′

11 + L′′
22 − i(L′′

21 − L′′
12)] ,

L12 = U1mL
′′
mnVn2 = U11L

′′
11V12 + U12L

′′
22V22 + U11L

′′
12V22 + U12L

′′
21V12

=
1

2
[L′′

11 − L′′
22 − i(L′′

12 + L′′
21)] . (S23)

It can be easily verified that the inferred relations in Eq. (S23) are compatible with

L21 = U2mL
′′
mnVn1 = U21L

′′
11V11 + U22L

′′
22V21 + U22L

′′
21V11 + U21L

′′
12V21

=
1

2
[L′′

11 − L′′
22 + i(L′′

21 + L′′
12)] ,

L13 = U1mL
′′
mnVn3 = U11L

′′
10V03 + U11L

′′
13V33 + U12L

′′
20V03 + U12L

′′
23V33

=
1

2
[L′′

10 − L′′
13 − i(L′′

20 − L′′
23)] ,

L31 = U3mL
′′
mnVn1 = U30L

′′
01V11 + U33L

′′
31V11 + U30L

′′
02V21 + U33L

′′
32V21

=
1

2
[L′′

01 − L′′
31 + i(L′′

02 − L′′
32)] ,

L22 = U2mL
′′
mnVn2 = U21L

′′
11V12 + U22L

′′
22V22 + U22L

′′
21V12 + U21L

′′
12V22

=
1

2
[L′′

11 + L′′
22 + i(L′′

21 − L′′
12)] ,

L23 = U2mL
′′
mnVn3 = U21L

′′
10V03 + U21L

′′
13V33 + U22L

′′
20V03 + U22L

′′
23V33

=
1

2
[L′′

10 − L′′
13 + i(L′′

20 − L′′
23)] ,

L32 = U3mL
′′
mnVn2 = U30L

′′
01V12 + U33L

′′
31V12 + U30L

′′
02V22 + U33L

′′
32V22

=
1

2
[L′′

01 − L′′
31 − i(L′′

02 − L′′
32)] ,
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L33 = U3mL
′′
mnVn3 = U30L

′′
00V03 + U30L

′′
03V33 + U33L

′′
30V03 + U33L

′′
33V33

=
1

2
(L′′

00 − L′′
03 − L′′

30 + L′′
33) . (S24)

Thus, we conclude that U = V † is a unitary matrix given explicitly as

U =




1√
2

0 0 1√
2

0 1√
2

−i√
2

0

0 1√
2

i√
2

0
1√
2

0 0 − 1√
2


 , (S25)

which results in

L = UL′′U†. (S26)

Note that the above-presented reasoning leads to constraints only for the nonzero matrix elements of U . Conversely,
all the remaining matrix elements can be set to zero.

B. Relation between the transformation matrices L′ and L′′

Given L′
kl in Method #2 and L′′ in Method #3, we can express the relation between the respective matrix repre-

sentations of a given Liouvillian as

L′′
mn = U ′

miL
′
ijV

′
jn. (S27)

The eigenstates of all the Pauli operators are the input states (|ini⟩) and the output projections (|outi⟩) used in
Method #2. Hence, we can express the Liouvillian matrix L′ as:

L′
z+z+ = ⟨z+|L (|z+⟩⟨z+|) |z+⟩, L′

z+z− = ⟨z−|L (|z+⟩⟨z+|) |z−⟩,
L′
z−z+ = ⟨z+|L (|z−⟩⟨z−|) |z+⟩, L′

z−z− = ⟨z−|L (|z−⟩⟨z−|) |z−⟩
(S28)

Using Eq. (S12) we can expand L′′ as:

L′′
00 =

1

2
tr [L (σ0)σ0] =

1

2
tr [L (|z+⟩⟨z+|+ |z−⟩⟨z−|) (|z+⟩⟨z+|+ |z−⟩⟨z−|)]

=
1

2
[⟨z+|L (|z+⟩⟨z+|) |z+⟩+ ⟨z−|L (|z+⟩⟨z+|) |z−⟩+ ⟨z+|L (|z−⟩⟨z−|) |z+⟩+ ⟨z−|L (|z−⟩⟨z−|) |z−⟩]

=
1

2

[
L′
z+z+ + L′

z+z− + L′
z−z+ + L′

z−z−

]
,

L′′
01 =

1

2
tr [L (σ0) σ̂x] =

1

2
tr [L (|z+⟩⟨z+|+ |z−⟩⟨z−|) (|x+⟩⟨x+| − |x−⟩⟨x−|)]

=
1

2
[⟨x+|L (|z+⟩⟨z+|) |x+⟩ − ⟨x−|L (|z+⟩⟨z+|) |x−⟩+ ⟨x+|L (|z−⟩⟨z−|) |x+⟩ − ⟨x−|L (|z−⟩⟨z−|) |x−⟩]

=
1

2

[
L′
z+x+

− L′
z+x− + L′

z−x+
− L′

z−x−

]
. (S29)

In the same way for the other elements we have:

L′′
10 =

1

2
tr [L (σ̂x)σ0] =

1

2

[
L′
x+z+ − L′

x−z+ + L′
x+z− − L′

x−z−

]
,

L′′
11 =

1

2
tr [L (σ̂x) σ̂x] =

1

2

[
L′
x+x+

− L′
x+x− − L′

x−x+
+ L′

x−x−

]
,

L′′
12 =

1

2
tr [L (σ̂x) σ̂y] =

1

2

[
L′
x+y+

− L′
x+y− − L′

x−y+
+ L′

x−y−

]
,

L′′
21 =

1

2
tr [L (σ̂y) σ̂x] =

1

2

[
L′
y+x+

− L′
y+x− − L′

y−x+
+ L′

y−x−

]
,
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L′′
22 =

1

2
tr [L (σ̂y) σ̂y] =

1

2

[
L′
y+y+

− L′
y+y− − L′

y−y+
+ L′

y−y−

]
,

L′′
13 =

1

2
tr [L (σ̂x) σ̂z] =

1

2

[
L′
x+z+ − L′

x+z− − L′
x−z+ + L′

x−z−

]
,

L′′
31 =

1

2
tr [L (σ̂z) σ̂x] =

1

2

[
L′
z+x+

− L′
z+x− − L′

z−x+
+ L′

z−x−

]
,

L′′
32 =

1

2
tr [L (σ̂z) σ̂y] =

1

2

[
L′
z+y+

− L′
z+y− − L′

z−y+
+ L′

z−y−

]
,

L′′
23 =

1

2
tr [L (σ̂y) σ̂z] =

1

2

[
L′
y+z+ − L′

y+z− − L′
y−z+ + L′

y−z−

]
,

L′′
02 =

1

2
tr [L (σ0) σ̂y] =

1

2

[
L′
z+y+

− L′
z+y− + L′

z−y+
− L′

z−y−

]
,

L′′
20 =

1

2
tr [L (σ̂y)σ0] =

1

2

[
L′
y+z+ + L′

y+z− − L′
y−z+ − L′

y−z−

]
,

L′′
03 =

1

2
tr [L (σ0) σ̂z] =

1

2

[
L′
z+z+ − L′

z+z− + L′
z−z+ − L′

z−z−

]
,

L′′
30 =

1

2
tr [L (σ̂z)σ0] =

1

2

[
L′
z+z+ + L′

z+z− − L′
z−z+ − L′

z−z−

]
,

L′′
33 =

1

2
tr [L (σ̂z) σ̂z] =

1

2

[
L′
z+z+ − L′

z+z− − L′
z−z+ + L′

z−z−

]
. (S30)

By using (S27) we can find the elements of the unitary matrices U ′
mi and V ′

jn starting with

L′′
00 = U ′

0z+L
′
z+z+V

′
z+0 + U ′

0z+L
′
z+z−V

′
z−0 + U ′

0z−L
′
z−z+V

′
z+0 + U ′

0z−L
′
z−z−V

′
z−0, (S31)

which is equivalent to

L′′
00 =

1

2

[
L′
z+z+ + L′

z+z− + L′
z−z+ + L′

z−z−

]
, (S32)

as given by (S29). By comparing (S31) with (S32), we obtain:

∵ U ′
0z+V

′
z+0 =

1

2
⇒ U ′

0z+ = V ′
z+0 =

1√
2
,

∵ U ′
0z+V

′
z−0 =

1

2
⇒ V ′

z−0 =
1√
2
,

∵ U ′
0z−V

′
z+0 =

1

2
⇒ V ′

01 =
1√
2
. (S33)

In the same way we can find the remaining nonzero matrix elements of S and T as:

L′′
01 = U ′

0iL
′
ijV

′
j1 = U ′

0z+L
′
z+x+

V ′
x+1 + U ′

0z+L
′
z+x−V

′
x−1 + U ′

0z−L
′
z−x+

V ′
x+1 + U ′

0z−L
′
z−x−V

′
x−1

=
1

2

[
L′
z+x+

− L′
z+x− + L′

z−x+
− L′

z−x−

]

∵ U ′
0z+V

′
x+1 =

1

2
, U ′

0z+V
′
x−1 = −1

2
, U ′

0z−V
′
x+1 =

1

2
, U ′

0z−V
′
x−1 = −1

2

⇒ V ′
x+1 =

1√
2
, V ′

x−1 = − 1√
2
,

L′′
10 = U ′

1iL
′
ijV

′
j0 = U ′

1x+
L′
x+z+V

′
z+0 + U ′

1x−L
′
x−z+V

′
z+0 + U ′

1x+
L′
x+z−V

′
z−0 + U ′

1x−L
′
x−z−V

′
z−0

=
1

2

[
L′
x+z+ − L′

x−z+ + L′
x+z− − L′

x−z−

]

∵ U ′
1x+

V ′
z+0 =

1

2
, U ′

1x−V
′
z+0 = −1

2
, U ′

1x+
V ′
z−0 =

1

2
, U ′

1x−V
′
z−0 = −1

2

⇒ U ′
1x+

=
1√
2
, U ′

1x− = − 1√
2
,
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L′′
11 = U ′

1iL
′
ijV

′
j1 = U ′

1x+
L′
x+x+

V ′
x+1 + U ′

1x+
L′
x+x−V

′
x−1 + U ′

1x−L
′
x−x+

V ′
x+1 + U ′

1x−L
′
x−x−V

′
x−1

=
1

2

[
L′
x+x+

− L′
x+x− − L′

x−x+
+ L′

x−x−

]

⇒ U ′
1x+

V ′
x+1 =

1

2
, U ′

1x+
V ′
x−1 = −1

2
, U ′

1x−V
′
x+1 = −1

2
, U ′

1x−V
′
x−1 =

1

2
,

L′′
12 = U ′

1iL
′
ijV

′
j1 = U ′

1x+
L′
x+y+

V ′
y+2 + U ′

1x+
L′
x+y−V

′
y−2 + U ′

1x−L
′
x−y+

V ′
y+2 + U ′

1x−L
′
x−y−V

′
y−2

=
1

2

[
L′
x+y+

− L′
x+y− − L′

x−y+
+ L′

x−y−

]

∵ U ′
1x+

V ′
y+2 =

1

2
, U ′

1x+
V ′
y−2 = −1

2
, U ′

1x−V
′
y+2 = −1

2
, U ′

1x−V
′
y−2 =

1

2

⇒ V ′
y+2 =

1√
2
, V ′

y+2 = − 1√
2
,

L′′
21 = U ′

2iL
′
ijV

′
j1 = U ′

2y+
L′
y+x+

V ′
x+1 + U ′

2y+
L′
y+x−V

′
x−1 + U ′

2y−L
′
y−x+

V ′
x+1 + U ′

2y−L
′
y−x−V

′
x−1

=
1

2

[
L′
y+x+

− L′
y+x− − L′

y−x+
+ L′

y−x−

]

∵ U ′
2y+

V ′
x+1 =

1

2
, U ′

2y+
V ′
x−1 = −1

2
, U ′

2y−V
′
x+1 = −1

2
, U ′

2y−V
′
x−1 =

1

2

⇒ V ′
x+1 =

1√
2
, U ′

2y+
=

1√
2
, U ′

2y− = − 1√
2
,

L′′
22 = U ′

2iL
′
ijV

′
j2 = U ′

2y+
L′
y+y+

V ′
y+2 + U ′

2y+
L′
y+y−V

′
y−2 + U ′

2y−L
′
y−y+

V ′
y+2 + U ′

2y−L
′
y−y−V

′
y−2

=
1

2

[
L′
y+y+

− L′
y+y− − L′

y−y+
+ L′

y−y−

]

⇒ U ′
2y+

V ′
y+2 =

1

2
, U ′

2y+
V ′
y−2 = −1

2
, U ′

2y−V
′
y+2 = −1

2
, U ′

2y−V
′
y−2 =

1

2
,

L′′
13 = U ′

1iL
′
ijV

′
j3 = U ′

1x+
L′
x+z+V

′
z+3 + U ′

1x+
L′
x+z−V

′
z−3 + U ′

1x−L
′
x−z+V

′
z+3 + U ′

1x−L
′
x−z−V

′
z−3

=
1

2

[
L′
x+z+ − L′

x+z− − L′
x−z+ + L′

x−z−

]

∵ U ′
1x+

V ′
z+3 =

1

2
, U ′

1x+
V ′
z−3 = −1

2
, U ′

1x−V
′
z+3 = −1

2
, U ′

1x−V
′
z−3 =

1

2

⇒ V ′
z+3 =

1√
2
, V ′

z−3 = − 1√
2
,

L′′
31 = U ′

3iL
′
ijV

′
j1 = U ′

3z+L
′
z+x+

V ′
x+1 + U ′

3z+L
′
z+x−V

′
x−1 + U ′

3z−L
′
z−x+

V ′
x+1 + U ′

3z−L
′
z−x−V

′
x−1

L′′
31 =

1

2

[
L′
z+x+

− L′
z+x− − L′

z−x+
+ L′

z−x−

]

∵ U ′
3z+V

′
x+1 =

1

2
, U ′

3z+V
′
x−1 = −1

2
, U ′

3z−V
′
x+1 = −1

2
, U ′

3z−V
′
x−1 =

1

2

⇒ U ′
3z+ =

1√
2
, U ′

3z− = − 1√
2
,

L′′
32 = U ′

3iL
′
ijV

′
j2 = U ′

3z+L
′
z+y+

V ′
y+2 + U ′

3z+L
′
z+y−V

′
y−2 + U ′

3z−L
′
z−y+

V ′
y+2 + U ′

3z−L
′
z−y−V

′
y−2

∵ U ′
3z−V

′
y−2 =

1

2

⇒ V ′
y+2 =

1√
2
, V ′

y−2 = − 1√
2
, V ′

y+2 =
1√
2
,
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L′′
23 = U ′

2iL
′
ijV

′
j3 = U ′

2y+
L′
y+z+V

′
z+3 + U ′

2y+
L′
y+z−V

′
z−3 + U ′

2y−L
′
y−z+V

′
z+3 + U ′

2y−L
′
y−z−V

′
z−3

L′′
23 =

1

2

[
L′
y+z+ − L′

y+z− − L′
y−z+ + L′

y−z−

]

∵ U ′
2y+

V ′
z+3 =

1

2
, U ′

2y+
V ′
z−3 = −1

2
, U ′

2y−V
′
z+3 = −1

2
, U ′

2y−V
′
z−3 =

1

2

⇒ V ′
z+3 =

1√
2
, V ′

z−3 = − 1√
2
, U ′

2y− = − 1√
2
,

L′′
02 = U ′

0iL
′
ijV

′
j2 = U ′

0z+L
′
z+y+

V ′
y+2 + U ′

0z+L
′
z+y−V

′
y−2 + U ′

0z−L
′
z−y+

V ′
y+2 + U ′

0z−L
′
z−y−V

′
y−2

L′′
02 =

1

2

[
L′
z+y+

− L′
z+y− + L′

z−y+
− L′

z−y−

]

∵ U ′
0z+V

′
y+2 =

1

2
, U ′

0z+V
′
y−2 = −1

2
, U ′

0z−V
′
y+2 =

1

2
, U ′

0z−V
′
y−2 = −1

2

⇒ V ′
y−2 = − 1√

2
, V ′

y+2 =
1√
2
,

L′′
20 = U ′

2iL
′
ijV

′
j0 = U ′

2y+
L′
y+z+V

′
z+0 + U ′

2y+
L′
y+z−V

′
z−0 + U ′

2y−L
′
y−z+V

′
z+0 + U ′

2y−L
′
y−z−V

′
z−0

L′′
20 =

1

2

[
L′
y+z+ + L′

y+z− − L′
y−z+ − L′

y−z−

]

∵ U ′
2y+

V ′
z+0 =

1

2
, U ′

2y+
V ′
z−0 =

1

2
, U ′

2y−V
′
z+0 = −1

2
, U ′

2y−V
′
z−0 = −1

2

⇒ U ′
2y+

=
1√
2
, U ′

2y− = − 1√
2
,

L′′
03 = U ′

0iL
′
ijV

′
j3 = U ′

0z+L
′
z+z+V

′
z+3 + U ′

0z+L
′
z+z−V

′
z−3 + U ′

0z−L
′
z−z+V

′
z+3 + U ′

0z−L
′
z−z−V

′
z−3

L′′
03 =

1

2

[
L′
z+z+ − L′

z+z− + L′
z−z+ − L′

z−z−

]

⇒ U ′
0z+V

′
z+3 =

1

2
, U ′

0z+V
′
z−3 = −1

2
, U ′

0z−V
′
z+3 =

1

2
, U ′

0z−V
′
z−3 = −1

2
,

L′′
30 = U ′

3iL
′
ijV

′
j0 = U ′

3z+L
′
z+z+V

′
z+0 + U ′

3z+L
′
z+z−V

′
z−0 + U ′

3z−L
′
z−z+V

′
z+0 + U ′

3z−L
′
z−z−V

′
z−0

L′′
30 =

1

2

[
L′
z+z+ + L′

z+z− − L′
z−z+ − L′

z−z−

]

⇒ U ′
3z+V

′
z+0 =

1

2
, U ′

3z+V
′
z−0 =

1

2
, U ′

3z−V
′
z+0 = −1

2
, U ′

3z−V
′
z−0 = −1

2

L′′
33 = U ′

3iL
′
ijV

′
j3 = U ′

3z+L
′
z+z+V

′
z+3 + U ′

3z+L
′
z+z−V

′
z−3 + U ′

3z−L
′
z−z+V

′
z+3 + U ′

3z−L
′
z−z−V

′
z−3

=
1

2

[
L′
z+z+ − L′

z+z− − L′
z−z+ + L′

z−z−

]

⇒ U ′
3z+V

′
z+3 =

1

2
, U ′

3z+V
′
z−3 = −1

2
, U ′

3z−V
′
z+3 = −1

2
, U ′

3z−V
′
z−3 =

1

2
(S34)

Now, we can collect all the matrix elements of U ′ and V ′ as:

U ′ =




1√
2

1√
2

0 0 0 0

0 0 1√
2

− 1√
2

0 0

0 0 0 0 1√
2

− 1√
2

1√
2

− 1√
2

0 0 0 0


 , V ′ =




1√
2

0 0 1√
2

1√
2

0 0 − 1√
2

0 1√
2

0 0

0 − 1√
2

0 0

0 0 1√
2

0

0 0 − 1√
2

0




. (S35)
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It is clear that U ′ = (V ′)T and U ′(U ′)T = 114 and U ′TU = 116, where the identity matrices have dimensions 4 and 6,
respectively. Now, we can rewrite (S27) as

L′′ = U ′L′(U ′)T . (S36)

To demonstrate that L′ and L′′ have a common set of eigenvalues consider an eigenstate |ρ̃′′⟩ of L′′ corresponding to
an eigenvalue λ, i.e.,

L′′|ρ̃′′⟩ = λ|ρ̃′′⟩. (S37)

Now, let us apply (U ′)T to the LHS of this equation to arrive at

U ′TL′′|ρ̃′′⟩ = U ′Tλ|ρ̃′′⟩,
U ′TL′′U ′(U ′T |ρ̃′′⟩) = λ(U ′T |ρ̃′′⟩),

L′|ρ̃′⟩ = λ|ρ̃′⟩, (S38)

where we used L′′ = U ′L′U ′T ⇒ L′ = U ′TL′′U ′ and U ′U ′T = U ′TU ′ = 116. The same procedure can be repeated
starting with

L′|ρ̃′⟩ = λ|ρ̃′⟩, (S39)

and arriving at

L′′(U ′|ρ̃′⟩) = λ(U ′|ρ̃′⟩). (S40)

Hence, L′ has the same eigenvalues as L′′, but different eigenmatrices. Moreover, the rank of L′ and L′′ is at most 4.

C. More properties of L′

To convert the matrix (U ′)T to a unitary matrix, we expand it by adding two columns in a way that the columns
form an orthonormal set of vectors, i.e.,

(Ū ′)T =




1√
2

0 0 1√
2

0 0
1√
2

0 0 − 1√
2

0 0

0 1√
2

0 0 1√
2

0

0 − 1√
2

0 0 1√
2

0

0 0 1√
2

0 0 1√
2

0 0 − 1√
2

0 0 1√
2




. (S41)

This unitary matrix (Ū ′)T can be used to express L′ in a form containing a 4× 4 block equivalent to L′′, i.e.,

Ū ′L′(Ū ′)T =

(
L′′ B

B† C

)
, B† =

(
B00 B10 B20 B30

B01 B11 B21 B31

)
, C =

(
C00 C01

C10 C11

)
, (S42)

where

B00 = 1
2

[
L′
z+x− + L′

z+x+
+ L′

z−x− + L′
z−x+

]
, B01 =

1

2

[
L′
z+y+

+ L′
z+y− + L′

z−y+
+ L′

z−y−

]
,

B10 = 1
2

[
L′
x+x− + L′

x+x+
− L′

x−x− − L′
x−x+

]
, B11 =

1

2

[
L′
x+y+

+ L′
x+y− − L′

x−y+
− L′

x−y−

]
,

B20 = 1
2

[
L′
y+x− + L′

y+x+
− L′

y−x− − L′
y−x+

]
, B21 =

1

2

[
L′
y+y+

+ L′
y+y− − L′

y−y+
− L′

y−y−

]
,

B30 = 1
2

[
L′
z+x− + L′

z+x+
− L′

z−x− − L′
z−x+

]
, B31 =

1

2

[
L′
z+y+

+ L′
z+y− − L′

z−y+
− L′

z−y−

]
,

C00 = 1
2

[
L′
x−x− + L′

x−x+
+ L′

x+x− + L′
x+x+

]
, C01 =

1

2

[
L′
x−y+

+ L′
x−y− + L′

x+y+
+ L′

x+y−

]
,

C10 = 1
2

[
L′
y+x− + L′

y+x+
+ L′

y−x− + L′
y−x+

]
, C11 =

1

2

[
L′
y+y+

+ L′
y+y− + L′

y−y+
+ L′

y−y−

]
. (S43)
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Now, we are able to use the unitary matrix

D =




√
3
3 0 0 0 0

√
6
3

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0√
3
3 0 0 0 −

√
2
2 −

√
6
6√

3
3 0 0 0

√
2
2 −

√
6
6



,

to rearrange the elements of Ū ′L′(Ū ′)T without chaining its spectrum as

D†Ū ′L′(Ū ′)TD =




3L00

√
3L01

√
3L02

√
3L03 0 0√

3L10 L11 L12 L13 0 0√
3L20 L21 L22 L23 0 0√
3L30 L31 L32 L33 0 0

0 0 0 0 0 0

0 0 0 0 0 0



. (S44)

It is evident that L′ is a rank-4 matrix. By subtracting the null space from Eq. (S44) can be rewritten as

L̄′ = D†Ū ′L′(Ū ′)TD =




3L00

√
3L01

√
3L02

√
3L03√

3L10 L11 L12 L13√
3L20 L21 L22 L23√
3L30 L31 L32 L33


 . (S45)

Note that

det(L̃′) = 3 det(L′′). (S46)

It is straightforward to show that matrices L′, L̃′, and L′′ have the same rank. This is evident by obtaining L′′

dividing both the first row and column of L̃′ by
√
3, which are, rank-conserving operations. The rank of L′ is the

same as that of L̃′, as implied by the rank-nullity theorem [S4].

IV. ESTIMATION OF ERRORS IN THE EIGENSPECTRA OF EXPERIMENTAL LIOUVILLIANS

Here, we estimate, based on the derivation of Ref. [S5], how much experimental (or numerical) perturbations can
affect the eigenspectra of an Liouvillian superoperator. Let us consider an experimental Liouvillian Lexp, with the
eigenspectra,

Lexp|ρ̃expn ⟩ = λexpn |ρ̃expn ⟩,
⟨σ̃exp

n |Lexp = λexpn ⟨σ̃exp
n |, (S47)

which slightly differ from the spectra of an ideal Liouvillian L0,

L0|ρ̃(0)n ⟩ = λ(0)n |ρ̃(0)n ⟩,
⟨σ̃(0)

n |L0 = λ(0)n ⟨σ̃(0)
n |. (S48)

So, one can write

Lexp = L0 + δL, (S49)

assuming that δL is a small perturbation. Note that the completeness relation,
∑

n |ρ̃
(0)
n ⟩⟨σ̃(0)

n | = 114, and the
orthonormality condition, ⟨σ̃(0)

n |ρ̃(0)m ⟩ = δnm, are satisfied for L0, and analogously for the corresponding eigenmatrices
of Lexp. Thus, if the Liouvillians are diagonalizable (i.e., a way from their LEPs), we have

f(L0) =
∑

i

f(λ
(0)
i )|ρ̃(0)i ⟩⟨σ̃(0)

i |, (S50)

f(Lexp) =
∑

i

f(λexpi )|ρ̃expi ⟩⟨σ̃exp
i |. (S51)
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for any well-behaved functions f of the Liouvillians. Assuming small perturbations in L and in related quantities, we
consider their power-series expansions:

Lexp = L0 + ϵL1 + . . . ,

λexpn = λ(0)n + ϵλ(1)n + . . . ,

|ρ̃expn ⟩ = |ρ̃(0)n ⟩+ ϵ|ρ̃(1)n ⟩+ . . . ,

⟨σ̃exp
n | = ⟨σ̃(0)

n |+ ϵ⟨σ̃(1)
n |+ . . . , (S52)

in some perturbation parameter ϵ. For simplicity, hereafter, we omit all the terms with higher powers of ϵ. So, we
can assume that δL ≈ ϵL1. By inserting these expansions into Eq. (S47), one instantly obtains Eq. (S48) for all the
terms independent of ϵ. Moreover, by collecting all the terms proportional to ϵ in these equations, one obtains:

F (0)
n |ρ̃(1)n ⟩ = −F (1)

n |ρ̃(0)n ⟩, (S53)

⟨σ̃(1)
n |F (0)

n = −F (1)
n ⟨σ̃(0)

n |, (S54)

where F (k)
n = Lk −λ(k)n 114 for k = 0, 1. Multiplying Eq. (S53) by ⟨σ̃n| from the LHS, one obtains λ(1)n = ⟨σ̃(0)

n |L1|ρ̃(0)n ⟩,
or, equivalently,

δλ ≡ λexpn − λ(0)n ≈ ϵλ(1)n = ⟨σ̃(0)
n |(ϵL1)|ρ̃(0)n ⟩,

≈ ⟨σ̃(0)
n |δL|ρ̃(0)n ⟩. (S55)

By applying Eq. (S50), with f(L0) = F
(0)
n , to Eq. (S53), one obtains

|ρ̃(1)n ⟩ ≈ −
∑

i (i̸=n)

(
⟨σ̃(0)

i |L1|ρ̃(0)n ⟩
λ
(0)
i − λ

(0)
n

)
|ρ̃(0)i ⟩, (S56)

which leads to

|δρ̃n⟩ ≡ |ρ̃expn ⟩ − |ρ̃(0)n ⟩ ≈ |δρ̃(1)n ⟩ = ϵ|ρ̃(1)n ⟩. (S57)

Analogously, by using Eq. (S54), one arrives at

⟨σ̃(1)
n | = −

∑

i (i̸=n)

(
⟨σ̃(0)

n |L1|ρ̃(0)i ⟩
λ
(0)
i − λ

(0)
n

)
⟨σ̃(0)

i |, (S58)

which leads to

⟨δσ̃n| ≡ ⟨δσ̃exp
n | − ⟨δσ̃(0)

n | ≈ ⟨δσ̃(1)
n | ≡ ϵ⟨σ̃(1)

n |, (S59)

as derived in [S5].
Thus, the error bars Oexp

12 of the scalar products (overlaps) Oexp
12 = |⟨σ̃exp

1 |ρ̃exp2 ⟩| of the experimental eigenmatrices
⟨σ̃exp

1 | and |ρ̃exp1 ⟩, which are shown in Fig. 2 in the main text, are obtained as

δOexp
12 =

∣∣⟨σ̃exp
1 |ρ̃exp2 ⟩ − ⟨σ̃(0)

1 |ρ̃(0)2 ⟩
∣∣ =

∣∣⟨δσ̃1|ρ̃(0)2 ⟩+ ⟨σ̃(0)
1 |δρ̃2⟩+ ⟨δσ̃1|δρ̃2⟩

∣∣. (S60)

Note that these error bars are affected by the phase factors from the overlaps, which can be arbitrary and depend on
the applied diagonalization method. Thus, to avoid this phase dependence, one can redefine δOexp

12 as:

δŌexp
12 =

[∣∣⟨δσ̃1|ρ̃(0)2 ⟩
∣∣2 +

∣∣⟨σ̃(0)
1 |δρ̃2⟩

∣∣2 +
∣∣⟨δσ̃1|δρ̃2⟩

∣∣2
]1/2

. (S61)

These error bars are depicted in Fig. S1, and can be compared with those in Fig. 2 in the main text. Note that the
point at γx = 0 in Fig. 2(b) is fully consistent with our theoretical prediction using this redefined error bar, δS̄exp,
but it is not the case for δSexp.
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LEPLEP LEPLEP

FIG. S1. Overlaps O12 = |⟨σ̃1|ρ̃2⟩| of the Liouvillian vectorized eigenmatrices ⟨σ̃1| and |ρ̃2⟩ measured in our single- (a) and two-
(b) qubit experiments on an IBM quantum processor (blue squares) and compared to the corresponding theoretical predictions
including white noise (black curves). Same as Fig. 2 in the main text, but the error bars δŌexp

12 are given here by Eq. (S61).

V. ANALYTICAL FORMULAS FOR A LOSSY DRIVEN QUBIT

Here we show analytical results on the QPT of the lossy driven qubit model analyzed in the main text.
Case 1: Assuming γ− = 0, we have

L′ =
ω

4




−4 4 −1 1 0 0

4 −4 1 −1 0 0

1 −1 −2x 2x 0 0

−1 1 2x −2x 0 0

0 0 0 0 −y2 y2
0 0 0 0 y2 −y2



, (S62)

where x = γ/ω and yk = 2(x+ k). The eigenvalues of L′ are:

λ′1 = −2ω(2 + x),

λ′2 = −ω(2 + x− z),

λ′3 = −ω(2 + x+ z), (S63)

where z =
√
x2 − 4x+ 3, while the other three eigenvalues are zero. The corresponding eigenmatrices are:

|ρ̃′1⟩ = [0, 0, 0, 0,−1, 1]T ,

|ρ̃′2⟩ = [2− x− z,−2 + x+ z,−1, 1, 0, 0]T ,

|ρ̃′3⟩ = [2− x+ z,−2 + x− z,−1, 1, 0, 0]T . (S64)

Analogously, we find

L′′ = ω




0 0 0 0

0 −4 −1 0

0 1 −2x 0

0 0 0 −y2


 , (S65)
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for which the nonzero eigenvalues of L′′ are the same as those of L′: λ′k = λ′′k (k = 1, 2, 3), but their eigenmatrices:

|ρ̃′′1⟩ = [0, 0, 0, 1]T ,

|ρ̃′′2⟩ = [0,−2 + x+ z, 1, 0]T ,

|ρ̃′′3⟩ = [0,−2 + x− z, 1, 0]T , (S66)

are, in general, different from those of the corresponding ρ′k.
Case 2: Assuming γ− = ω, we have

L′ =
ω

4




−9 9 −2 2 2 −2

9 −9 2 −2 2 −2

2 −2 −4x− 1 4x+ 1 2 −2

−2 2 4x+ 1 −4x− 1 2 −2

0 0 0 0 −2y2 2y2
0 0 0 0 2y3 −2y3



, (S67)

having the nonzero eigenvalues equal to:

λ′1 = −ω(2x+ 5),

λ′2 = −ω
2
(2x+ 5 + 2z),

λ′3 = −ω
2
(2x+ 5− 2z), (S68)

and the corresponding eigenmatrices:

|ρ̃′1⟩ =

[ −1

2(x+ 2)
,

−1

2(x+ 2)
,

−1

2(x+ 2)
,

−1

2(x+ 2)
,−
(
x+ 3

x+ 2

)
, 1

]T
,

|ρ̃′2⟩ = [2− x− z,−2 + x+ z,−1, 1, 0, 0]T ,

|ρ̃′3⟩ = [2− x+ z,−2 + x− z,−1, 1, 0, 0]T . (S69)

Analogously, we find

L′′ =
ω

2




0 0 −2 0

0 −4x− 1 0 2

0 0 −4x− 10 0

0 −2 0 −9


 . (S70)

As in the case 1, the nonzero eigenvalues of L′′ are the same as those of L′: λ′k = λ′′k (k = 1, 2, 3), but their
eigenmatrices are different as:

|ρ̃′′1⟩ =

[
1

2x+ 5
, 0, 1, 1

]T
,

|ρ̃′′2⟩ = [0,−2 + x+ z, 0, 1]T ,

|ρ̃′′3⟩ = [0,−2 + x− z, 0, 1]T . (S71)

VI. EXAMPLES OF RECONSTRUCTED LIOUVILLIANS INCLUDING EXPERIMENTAL ERRORS

Examples of quantum circuits and calibration data for the quantum processors are shown in Fig. S2. Our ex-
periments were implemented on a seven-qubit IBM processor (ibm_nairobi) [S1] and we used the Qiskit Runtime
environment, which provides a controllable error mitigation and suppression to perform our experiment. Note that,
we also performed experiments on several other quantum processors from IBM, which we selected based on their
coupling maps. However, ibm_nairobi resulted in the best results compared to our theoretical predictions and the
lowest experimental errors.

The theoretical and reconstructed process matrices S, at the first LEP in Figs. 1(a) and 1(b) in the main text, are
shown in Fig. S3 for a single-qubit experiment. Analogously, Fig. S4 shows S for the two-qubit experiment for the
first LEP in Figs. 1(c) and 1(d).
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FIG. S2. Examples of the calibration data of the seven-qubit IBM quantum processor (i.e., ibm_nairobi) for (a) single- and
(b) two-qubit experiments, as completed on 18 and 22 April, 2023, respectively. Source: [S1]. In the single-qubit case, we
applied the Qiskit optimization level 1, which enables a dynamical decoupling error suppression, and the resilience level 1,
which enables readout error mitigation. In the two-qubit experiments, we used the optimization level 3 and the resilience
level 1. Moreover, we experimentally tested different qubits to find that the best results were obtained for: Qubit #0 in the
single-qubit experiment and Qubits #4 and #5 for the two-qubit experiments. The number of shots used in both experiments
are set to 20 000. Here, H stands for the Hadamard gate. See Table VI for more experimental characteristics of chosen qubits
and gates.

Qubit T̄1(µs) T̄2(µs) Frequency Anharmonicity Single-qubit CNOT Basic gates
(GHz) (GHz) gate error error

#5 109.41± 14.12 75.92± 7.4 5.18 -0.34 2.98× 10−4 6.5× 10−3 I, RZ , X,
√
X, CNOT

#4 154.72± 23.15 20.34± 0.6 5.29 -0.34 2.68× 10−4

#0 125.58± 14.89 32.63± 2 5.26 -0.34 2.27× 10−4 — I, RZ , X,
√
X

TABLE I. Calibration data of the ibm nairobi superconducting processor used for our experiments with 1 and 2 qubits. Here, Rz

is a single-qubit rotation around the z-axis for various angles, while T̄1 and T̄2 are, respectively, the relaxation and decoherence
times of a given qubit averaged for a few days (i.e., 14–16.04.2023). Qubit numbers #n refer to those in Fig. S2. Source: [S1].

VII. ERROR BARS IN γ/ω

In our experiments, we intended to prepare quantum circuits to be initially in pure states |ψ(γ)⟩, where the
dependence on γ is given by the simulated quantum model. However, due to random errors, the prepared states are
not exactly the intended pure states. Instead, we observe that the curves associated with the prepared input states
fit the experimental data best, if we assume the input state to be

ρ = (1− w)|ψ(γ)⟩⟨ψ(γ)|+ w

d
11d, (S72)

where d is the dimension of the Hilbert space and w stands for the level of white noise. On the other hand, there
are infinitely many ways to decompose unity or to express the noisy input ρ in a way that is compatible with our
observations. In particular, for a given γ, the associated noisy state ρ can be expressed as

ρ =

∫ γ+γR

γ−γL

p(γ + γ′)|ψ(γ + γ′)⟩⟨ψ(γ + γ′)|dγ′, (S73)

where p(γ) is a semipositive function defined on [γ − γL, γ + γR], such that ρ is normalized. To simplify the notation,
let us set γ = 0 and ω = 1 in our model. Both expressions for ρ should result in the same fidelity with respect to the
target input state |ψ(γ)⟩, i.e.,

∫ γR

−γL

P (γ′)|⟨ψ(γ)|ψ(γ′)⟩|2dγ′ = 1− w(1− 1/d) (S74)

132
Quantum exceptional points of non-Hermitian systems via quantum process

tomography



16

FIG. S3. Theoretical (a) and experimental (b) matrix elements Sij = L′
ijdt+ 11, corresponding to the Liouvillian elements L′

ij ,
for our single-qubit experiment performed for ωdt = 1/15 and γ/ω = 0.96. These matrices correspond to the first (left) LEP
shown in Figs. 1(a) and 1(b) in the main text. Comparison of the cross-sections of figures (a) and (b) for chosen input states:
|x+⟩ (c) and |y−⟩ (d).

FIG. S4. Same as in Fig. S3, but for our two-qubit experiment. These matrices correspond to the first LEP shown in Figs. 1(c)
and 1(d) in the main text.
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Let the integrand vanish for γ ≥ γR and γ ≤< γL:

p(γ′)|⟨ψ(γ)|ψ(γ′)⟩|2 = 0 ⇒ p(γR) = p(−γL) = 0. (S75)

Let p(γ) reach its maximum at γ = 0, which can be interpreted as preparing the target state with a maximum
likelihood. If we assume that p is a triangular distribution, we arrive at

∫ 0

−γL

(aLγ
′ + b)|⟨ψ(γ)|ψ(γ′)⟩|2dγ′ +

∫ γR

0

(aRγ
′ + b)|ψ(γ′)⟩|2dγ′ = 1− w(1− 1/d), (S76)

where aL = b
γL
, aR = −b

γR
, and P (0) = b. We find b from the normalization condition and γL,R are found numerically

from

b

∫ γR

−γL

|⟨ψ(γ)|ψ(γ′)⟩|2dγ′ +
∫ 0

−γL

aL|⟨ψ(γ)|ψ(γ′)⟩|2γ′dγ′ +
∫ γR

0

aR|⟨ψ(γ)|ψ(γ′)⟩|2γ′dγ′ = 1− w(1− 1/d). (S77)

In this way, we estimated the maximum uncertainty in setting γ. In general, we end up with γL ̸= γR, which
corresponds to asymmetric uncertainties. We estimate the left and right uncertainties (error bars for γ), respectively,
as for two independent triangular distributions to be PLγL/

√
6 and PRγR/

√
6 [S6], where

PL =

∫ 0

−γL

p(γ′)dγ′ and PR =

∫ γR

0

p(γ′)dγ′. (S78)
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Chapter 6

Conclusion

In this thesis, I discussed quantum correlations in the dissipative quantum systems
based on various approaches that we used in our research articles.

In Chapter 1, I discussed the results of article [P1], in which we studied quantum
correlations for the Werner and generalized Werner states (GWSs) as two-qubit
quantum systems that contain environmental noise (i.e., white noise). We showed
that it is experimentally feasible to demonstrate the hierarchy of quantum correla-
tions such as quantum entanglement, EPR steering, and Bell nonlocality without the
need for full quantum state tomography (QST) for some classes of states, including
the Werner states and GWSs. As far as we know, all previous demonstrations of
such hierarchies relied on the application of complete QST. Finally, we reported an
experiment revealing the hierarchy of these quantum correlations for the Werner
states without QST.

Photon blockade (PB) and photon-induced tunneling (PIT) are two nonclassi-
cal phenomena that I discussed in Chapter 2 based on article [P2]. Specifically,
we studied a novel type of hybrid photon-phonon blockade in a hybrid mode of
a proposed dissipative system. We found such parameter regimes to observe a
strong hybrid photon-phonon blockade, which is, however, not accompanied by the
photon or phonon blockade effects in separate modes. In this article, we used two
approaches to study the dynamics of our system, i.e., those based on the standard
master equation and a non-Hermitian Hamiltonian (NHH). In both approaches,
we calculated the steady-state solution of the system to obtain the second-order
correlation function of the system. The blockade in a hybrid mode is explained by
the destructive interference of both photonic and phononic modes at the balanced
linear coupler. Our study explored how photons and phonons interact and how
this can lead to a new type of blockade in the hybrid photon-phonon mode. We
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also observed different types of the blockade and tunneling effects in the photon,
phonon, and hybrid modes that occur because of a nonlinearity induced in the sys-
tem or a destructive interference. Moreover, we introduced two setups to measure
the second-order correlation function in the hybrid mode, which can inspire more
research on quantum engineering with hybrid modes of photons and phonons.

Nonlinearity is the key quantum resource to induce and observe PB and PIT in
dissipative quantum systems. In Chapter 3, I discussed the results of article [P3], in
which we showed that it is possible to observe unconventional single- and multi-
photon blockade effects in a linear quantum system that dissipates into a nonlinear
reservoir. To study the dynamics of our system interacting with a squeezed reservoir,
we introduced a more general form of the standard master equation containing a
two-photon process in addition to a one-photon process as in the standard master
equation. Our results showed that the roles of the Kerr nonlinear interaction and
two-photon dissipation are interchanged in the steady states of our systems. The
results also showed that it is possible to observe two-PB just according to refined
criteria. We showed that by preparing the cavity in squeezed coherent states and
displaced squeezed thermal states, it is also possible to obtain similar results in some
specific squeezing parameter regimes as expected. Furthermore, we discussed the
nonclassicality of the studied effects and states.

In Chapter 4, I discussed open quantum light-matter systems in the ultrastrong-
coupling (USC) and deep-strong-coupling (DSC) regimes, based on the results of
article [P4]. In this article, we mainly studied pure dephasing of two well-known
models of light-matter interactions: the quantum Rabi model and the Hopfield
model according to adopted gauge. Our results showed the importance of gauge
consideration for the noise Hamiltonian that describes pure dephasing in these
two models. To calculate the pure dephasing rate in these two models, we used a
master equation in a dressed basis. We highlighted the importance of using a correct
description of pure dephasing rate by comparing how it behaves with or without
the gauge transformation in the USC and DSC regimes.

Quantum exceptional points, including their experimental generation and de-
tection, were discussed in Chapter 5 based on my article [P5], which includes both
theoretical and experimental results. Non-Hermiticity arises in open quantum
systems due to their interaction with environment leading to dissipation and/or
incoherent gain. Unlike Hermitian systems, non-Hermitian ones can have both real
eigenvalues (for PT-symmetrical systems) or complex eigenvalues (for systems with
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broken PT-symmetry), which lead to novel phenomena including the occurrence
exceptional points.

A general experimental method, proposed by us in [P5], involves the generation
and control of Liouvillian exceptional points (LEPs) through quantum dissipative
engineering. Subsequently, we demonstrated that LEPs can be revealed using
quantum process tomography. As an illustration, the method has been applied on
an IBMQ processor to simulate the dissipative dynamics of a single superconducting
qubit at and in the vicinity of LEPs.

In conclusion, this thesis delves into novel quantum effects and advances the
control methods of quantum correlations in dissipative systems through innovative
theoretical and experimental approaches. I aspire for my work to serve as an
inspiration for future research in the exploration of dissipative quantum systems,
uncovering novel phenomena under specific conditions.

In my upcoming research, I aim to explore two key areas: non-Hermitian dy-
namics in quantum systems and the development of robust theoretical models for
scaling up the number of qubits in superconducting circuits.
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148 Abbreviations

1PB single-photon blockade
2MS two-measurement scenario (in steering protocols)
2PB two-photon blockade
2PT two-photon tunneling
3MS three-measurement scenario (in steering protocols)
3PT three-photon tunneling
BS beam splitter
CHSH Clauser-Horne-Shimony-Holt (e.g., inequality)
CP map completely positive map
DSC deep-strong coupling
DSTS displaced squeezed thermal state
EP exceptional point or entanglement potential
EPR Einstein, Podolsky, and Rosen
FEF fully entangled fraction
GWS generalized Werner state
HBT Hanbury Brown and Twiss
HEP Hamiltonian exceptional point
JC Jaynes-Cummings (e.g. model)
LEP Liouvillian exceptional point
LIGO Laser Interferometer Gravitational-wave Observatory
multi-PB multi-photon blockade
NHH non-Hermitian Hamiltonian
NPB nonstandard photon blockade
OpenQASM Open Quantum Assembly Language
PAB photon antibunching
PB photon blockade
PIT photon-induced tunneling
PT parity-time (e.g., symmetry)
QD quantum drum
QED quantum electrodynamics
QEP quantum exceptional point
QPT quantum process tomography
QRM quantum Rabi model
QST quantum state tomography
RWA rotating-wave approximation
SC strong coupling
SCS squeezed coherent state
SMR superconducting microwave resonator
SV squeezing variance
TLS two-level system
UPB unconventional photon blockade
USC ultra-strong coupling
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