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Abstract

Magnetic materials have been known for thousands of years. They play an important role in
today’s world, thanks to their widespread use in devices such as motors, sensors, and computers,
as well as regular fridge magnets. Great hopes are given to the application of waves in the
ferromagnetic materials, i.e., spin waves. Nowadays, the majority of computing units are based
on electronic devices. However, further miniaturization of integrated circuits may soon be
impossible due to the limitations associated with the use of high power densities and high
voltages. The big advantage of the spin waves is their very low energy, which, combined with
the wavelengths of several hundreds or even tens of nanometers in microwave frequencies, gives
the possibility to design nanoscale devices with significantly lower energy consumption than
electronic devices. In the last two decades, the scientists have put special emphasis on the design
of basic magnonic devices such as directional couplers, diodes, transistors, or logic gates, which
can find the application in the magnonic integrated circuits. In these systems, the control of the
interaction between the elements is crucial to take a full advantage of the spin-wave properties.

In this Thesis, I study the ferromagnetic multilayers which can find application in the
magnonic systems. I start the Thesis with the introduction of magnetism. This is followed
by the explanation of micromagnetism, the interactions governing the magnetic systems, the
magnetization textures, and the spin waves, concluding with the currently intensively studied
topics of magnonic crystals and spin-wave computing. Then, I explain the numerical methods
used in the Thesis with a detailed presentation of the problem implementation. In the first
part of the research, I show how the non-reciprocal interactions can be used to design non-
reciprocal devices. The Dzyaloshinskii–Moriya interaction was used to induce the asymmetry
of the dispersion relation, which was further used to design a spin-wave diode and circulator.
In the second study, the surface character of the Damon–Eshbach mode resulting from the
dipolar interaction was used to design a four-port device that can have different functionalities—
circulator, directional coupler, or reflector—for different excitation frequencies. The next study
shows how the Dzyaloshinskii–Moriya interaction together with the perpendicular magnetic
anisotropy can lead to the neglect of the interaction between layers at the distance of 1 nm, which
can be further used to design systems of densely packed non-interacting waveguides. In the
third part, I will focus on using the interaction between the layers to couple the material with
magnetization texture and the material with good spin-wave propagation properties to make
a magnonic crystal. The first system is a layer with weak perpendicular magnetic anisotropy
in which the stripe domains are induced, which interact with the permalloy layer. Due to the
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interaction, the stripe-domain structure is imprinted on the permalloy layer, giving the system
the character of a magnonic crystal with a non-reciprocal dispersion relation. Moreover, we
show how the dispersion relation of the system can be controlled by changing the magnetization
direction. The second system was a permalloy waveguide over which the chain of dots with the
Dzyaloshinskii–Moriya interaction is placed. In the dots, it is possible to stabilize the single-
domain state and the skyrmion state. I show that the dispersion relation changes with the change
of the configuration of the dot. Due to different character of excitation of the single-domain
state and the skyrmion, the system with skyrmions in dots can interact at lower frequencies.
Furthermore, I show that one part of the skyrmion modes hybridize with the waveguide modes,
sometimes inducing additional band gaps in the spectrum, while the second part does not interact,
forming bound states.



Streszczenie

Materiały magnetyczne są znane od tysiącleci. Dzięki ich szerokiemu zastosowaniu w urządzeni-
ach takich jak silniki, sensory, komputery czy też nawet jako zwykłe magnesy na lodówkę, pełnią
one istotną rolę w dzisiejszym świecie. Duże nadzieje aplikacyjne wiązane są z falami w ferro-
magnetykach, tj. falami spinowymi. Obecnie wykorzystywane jednostki obliczeniowe bazują
głównie na urządzeniach elektronicznych, jednakże dalsza miniaturyzacja układów scalonych
może być wkrótce niemożliwa ze względu na ograniczenia dotyczące wysokich gęstości mocy i
napięć. Ogromną zaletą fal spinowych jest ich niska energia, która w połączeniu z długościami
fal rzędu setek, a nawet dziesiątek nanometrów w zakresie częstotliwości mikrofalowych daje
możliwość stworzenia urządzeń w nanoskali o dużo mniejszym zużyciu energii od urządzeń
elektronicznych. W ostatnich dwóch dekadach naukowcy kładą duży nacisk na projektowanie
podstawowych magnonicznych urządzeń logicznych takich jak sprzęgacz, dioda, tranzystor czy
bramki logiczne, które mogłyby znaleźć zastosowanie w magnonicznych układach scalonych. W
takich układach ważna jest kontrola oddziaływania pomiędzy elementami, aby następnie mieć
możliwość wykorzystania pełnego potencjału fal spinowych.

W tej rozprawie doktorskiej badam ferromagnetyczne układy wielowarstwowe, które mogłyby
znaleźć zastosowanie w układach magnonicznych. Rozprawę rozpoczynam od wprowadzenia
do magnetyzmu. Dalej zostają wyjaśnione pojęcie mikromagnetyzmu, oddziaływania rządzące
układami magnetycznymi, tekstury magnetyczne oraz fale spinowe, kończąc na obecnie inten-
sywnie badanych kryształach magnonicznych i obliczeniach z wykorzystaniem fal spinowych.
Następnie wyjaśniam metody numeryczne wykorzystane w pracy doktorskiej wraz ze szcze-
gółowym przedstawieniem implementacji problemów. W pierwszej części badań pokazuję
jak oddziaływania o nieodwracalnym charakterze mogą być wykorzystane do zaprojektowania
urządzeń o asymetrycznych działaniu. Oddziaływanie Działoszynskiego-Moriyi zostało wyko-
rzystane do wyindukowania asymetrii w relacji dyspersji fal spinowych, co następnie posłużyło
do zaprojektowania diody oraz cyrkulatora dla fal spinowych. W drugim badaniu, powierzch-
niowy charakter modów Damona-Eshbacha pochodzący od oddziaływań dipolowych został
wykorzystany do stworzenia czteroportowego urządzenia, które w zależności od częstotliwości
pełni różne funkcje takie jak cyrkulator, sprzęgacz czy reflektor. Kolejne badanie pokazuje jak
oddziaływanie Działoszynskiego-Moriyi wraz z prostopadłą anizotropią magnetyczną może
przyczynić się do zaniku oddziaływania pomiędzy warstwami na dystansie zaledwie jednego
nanometra, co może być wykorzystane do stworzenia układów nieoddziałujących falowodów. W
trzeciej części skupiam się na wykorzystaniu oddziaływania pomiędzy warstwami do sprzężenia
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materiałów z teksturą magnetyzacji z materiałami o niskim tłumieniu fal spinowych w celu
stworzenia kryształów magnonicznych. Pierwszym układem jest warstwa ze słabą prostopadłą
anizotropią magnetyczną, w której indukują się domeny paskowe, które oddziałują z warstwą
permaloju. Dzięki oddziaływaniu, tekstura domen paskowych nadrukowuje się na permaloj,
dzięki czemu układ ma charakter kryształu magnonicznego, którego relacja ma charakter nieod-
wracalny i którą można kontrolować poprzez zmianę kierunku magnetyzacji permaloju. Drugim
układem był falowód z permaloju, nad którym umieszczony został łańcuch dysków z odd-
ziaływaniem Działoszynskiego-Moriyi. W dyskach może być ustabilizowana konfiguracja
jednodomenowa oraz skyrmion. Pokazuję, że relacja dyspersji zmienia się wraz ze zmianą kon-
figuracji w dysku. Ze względu na inny charakter wzbudzeń konfiguracji jednodomenowej oraz
skyrmionu, układ ze skyrmionami może oddziaływać na niższych częstotliwościach. Ponadto
pokazuję, że jedna część modów skyrmionowych hybrydyzuje z modami falowodowymi, czasem
indukując dodatkowe przerwy pasmowe, zaś druga część nie oddziałuje, tworząc stany związane.
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Preface

For decades, the electronics is on the leading edge in the field of computing devices. The
invention of the complementary metal–oxide–semiconductor (CMOS) technology, which led
to the design and further development of the semiconductor-based transistor, was responsible
for the rapid progress in this field. The current "3 nm" manufacturing process is associated
with the gate pitch of about 48 nm [1]. The size of the gate is no longer decreasing at the
rate of the last decades, and further decrease may soon be impossible due to the limitations
associated with the use of high power densities and high voltages. Despite that, the International
Roadmap for Devices and Systems predicts that the semiconductor technology will still maintain
the rate of progress in the next decade [1]. Since a significant slowdown in the development of
the electronic-based computing seems to be ultimately inevitable, scientists all over the world
are searching for a technology that can surpass or at least significantly complement CMOS
technology, making the further development of computing possible.

Magnonics is believed to be a strong contender in this field. A major advantage of spin waves
is that their propagation does not require the motion of electrons, but only the precession of
spins, hence the energy consumption can be significantly reduced in comparison to electronics.
Another important aspect is the very high frequency of spin waves, which is usually in the
GHz range, but can be even extended to the THz range. In addition, this spin-wave frequency
range is associated with the wavelengths in the nm range, which opens the possibility of fast
high-frequency operations in the nanoscale. Moreover, spin waves can be easily controlled by
magnetic and electric fields. It should be noted that the spin wave, as a wave phenomenon,
is governed by different physics than electronics, therefore, the existing computing schemes
may not be be the best for spin waves. However, it does not have to be seen as a disadvantage,
since it opens the way for the use of non-Boolean logic schemes, analog computing, or even
unconventional computing paradigms such as quantum computing or neural networks, where
magnonics seems to have great potential. To be able to compete with such a developed field as
electronics, the physical mechanisms governing the spin-wave dynamics must be thoroughly
studied, the logic devices proposed, and the spin-wave circuits designed. I believe that magnonics
has a big chance to become an important element of the computing units in the near future.

The main goal of the Thesis is to study the spin-wave dynamics in the systems of interacting
layers with their possible use in the device applications. I would like to focus on the systems
that have not been thoroughly studied yet, i.e., the systems with nonreciprocal couplers, systems



x Preface

with strong Dzyaloshinskii–Moriya interaction, and magnonic crystals based on non-collinear
magnetization texture.

In this Thesis, I would like to verify the following research hypotheses:

• Dzyaloshinskii–Moriya interaction in the bilayer system can lead to the presence of the
effect of unidirectional coupling of spin waves;

• rotating modes in the resonator can couple asymmetrically with spin waves in the film;

• unidirectional coupling and rotating modes can form a basis for the design of magnonic
devices such as diode or circulator;

• two thin magnetic layers with different perpendicular magnetic anisotropies can form a
system of non-interacting spin-wave conduits;

• the layer with perpendicular magnetic anisotropy interacting with a thin magnetic layer
forms a stable regular stripe-domain pattern;

• magnonic crystal can be based on the magnetic stripe-domain structure and it has rich
dispersion relation;

• waveguide and skyrmion in the dot can interact statically and dynamically;

• waveguide with a periodic chain of dots with skyrmions inside can form a magnonic crystal
with a complex band structure.

I believe that these hypotheses are proven by my Thesis containing a series of 5 research articles
of which I am the main co-author. Four of these articles have been published in the peer-reviewed
physics journals, and one has been published as a preprint and is currently under review.

The Thesis contains an English and a Polish abstract, acknowledgments, a preface, five
chapters, and a note about the Author. Chapter 1 introduces the phenomenon of magnetism
with particular reference to ferromagnetism. Chapter 2 explains in detail the micromagnetic
approach, presenting the most fundamental interactions governing the motion of spins and
the equation of motion itself. It continues with the definition of the magnetic domain and the
domain wall, focusing on two systems considered in the research articles: the stripe-domain
pattern and skyrmions. In the next section, the spin waves are introduced and their dynamics
are pictured first in bulk materials and thin films in the magnetostatic approximation and then in
the dipole–exchange regime, extending the description by the multilayer systems and magnonic
crystals. At the end, the state-of-the-art in the spin-wave computing is presented. Chapter 3
deals with the numerical simulations. First, the approaches used in magnonics are presented.
Next, all the implementations used by the Author are explained in detail. Chapter 4 presents
the research articles containing the main results of the Thesis. The first two papers, Spin-wave
diode and circulator based on unidirectional coupling and Multifunctional operation of the
double-layer ferromagnetic structure coupled by a rectangular nanoresonator, show the designs
of the spin-wave diode, the spin-wave circulator, and the multifunctional device, which can
find the application in the future spin-wave circuits. The next paper, Nonreciprocal spin-wave
dynamics in Pt/Co/W/Co/Pt multilayers, presents the system of two non-interacting spin-wave
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conduits separated by only 1 nm, showing the promise for application in nanoscale devices.
The last two publications, Reconfigurable magnonic crystals based on imprinted magnetization
textures in hard and soft dipolar-coupled bilayers and Reconfigurable spin-wave platform based
on interplay between nanodots and waveguide in hybrid magnonic crystal, show two different
designs of magnonic crystals with non-collinear magnetization textures, with the possibility of
using them to control the spin-wave propagation. The last chapter, Chapter 5, summarizes the
results.
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Chapter 1

Introduction to magnetism

Magnetism has a very long history. The existence of the permanent magnets in nature could not
be ignored by the curiosity of the human kind. The possibility of two separate objects to interact
with each other at a distance had to be seen as something remarkable by the ancient people. The
first to take advantage of magnetism were the Chinese, who found that if you carved a piece of
lodestone into the shape of a spoon, it would point south. In the 11th century, they found that
iron could become a permanent magnet after heating, which was later used to design the first
compass. The importance of this device is beyond doubt. The exploration of the Earth would
not have been so easy without a compass that could point north day and night in any weather
conditions. Since then, magnetic materials have found numerous applications in many fields.
The phenomenon of magnetism, which has pronounced effects at the macroscale, has its roots at
the nanoscale.1

1.1 Magnetic states

Magnetism emerges as an intrinsic property of all matter. All the particles from which the
atoms are made—protons, neutrons, and electrons—have a property called magnetic moment
which is an elementary quantity describing the strength of magnetism of an object. Among
them, the electrons have the largest magnetic moment, by many orders of magnitude, making
the contribution of protons and neutrons negligible. In fact, crucial for the magnetic effects are
the electrons placed in the last orbital according to Hund’s rules. As a consequence of the Pauli
principle, all electrons in the inner shells must compensate their magnetic moment, resulting in a
zero net magnetic moment. In the outer shell, the electrons do not have to compensate and an
atom can have a non-zero magnetic moment.

The primary magnetic phenomena in materials are categorized basing on their response to an
external magnetic field. The first effect, diamagnetism, is present in all materials. It manifests
itself as the repulsion of the magnetic field from the material. This results in a net magnetic
moment of the material that is opposite to the external field. This is the weakest magnetic effect

1This chapter was based on the book Magnetism and magnetic materials by J.M.D. Coey [2].
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and it is the only one that occurs in the materials with compensated electrons in the atoms or
molecules. These materials are called diamagnets or diamagnetic materials.

In the materials where the electrons are unpaired, the effect of the magnetic field is opposite.
The magnetic moments of the unpaired electrons try to align with the magnetic field, resulting
in a net magnetic moment of the whole material in the direction of the magnetic field. This
effect, called paramagnetism, is almost always stronger than diamagnetism. When the external
magnetic field disappears, the net magnetic moment disappears with it. The reason for this is the
thermal motion. The magnetic moment of the electron is constantly changing direction due to
thermal fluctuations, so the material reacts almost instantaneously to any change in the external
field. Also, due to thermal energy being much stronger than the magnetic energy, the response
of the paramagnetic material is very weak—the magnetic field produced by the net magnetic
moment of the material is orders of magnitude smaller than the external field.

There is a class of materials, in which the magnetic forces can be stronger than thermal fluc-
tuations in a certain temperature range. In this case, the magnetic moments of the electrons can
be ordered even in the absence of the external magnetic field. We can distinguish 3 fundamental
types of ordering, depending on the strength and mutual orientation of the magnetic moments:

• ferromagnetism, where all magnetic moments point in the same direction,

• antiferromagnetism, where the magnetic moments are equal and point in the opposite
direction to their neighbors,

• ferrimagnetism, where the magnetic moments are not equal and point in the opposite
direction to their neighbors.

This classification is related to the crystalline materials. For the amorphous materials, their
counterparts are called asperomagnetism, speromagnetism, and sperimagnetism, respectively,
but usually the original names for the crystalline materials are also used in this case.

Due to different characteristics, these materials have different properties. Antiferromagnets
have a zero magnetic moment in the absence of the external magnetic field, while ferro- and
ferrimagnets have a non-zero magnetic moment (generally much stronger for ferromagnets).
Ferrimagnets always consist of different atoms (or at least different ions), because identical atoms
always have the same magnetic moment. On the other hand, ferromagnets and antiferromagnets
can be made of identical atoms, but does not have to be.

This Thesis will deal with the materials with non-zero net magnetic moment, focusing mainly
on ferromagnetic materials.

1.2 Ferromagnetism

The magnetic moment M is an extensive quantity, i.e., it depends on the volume of the material.
It will be useful to derive an intensive quantity based on the magnetic moment. This quantity, the
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Figure 1.1 The dependence of the magnetization (a) over the external magnetic field in the ferromagnetic
material and (b) over the temperature in the absence of the external magnetic field.

magnetization M, is defined as the time-averaged magnetic moment ⟨M⟩ over a small volume
δV

M = ⟨M⟩/δV. (1.1)

The unit of the magnetization is A/m, the same as the magnetic H-field.
The presence of the net magnetic moment in the absence of the external magnetic field results

in an interesting dependence of the magnetization on the magnetic field, which is shown in
Figure 1.1a. Starting from zero field, the magnetic material can have zero magnetic moment. It is
because even the magnetic moments are aligned parallel in the short range, the magnetic domains
are usually present in the magnetic material. After the magnetic field is applied, the magnetization
increases, and for the large magnetic field it will reach the maximum magnetization value for
a given material, which is called the saturation magnetization Ms. From this point on, the
decrease of the magnetic field will cause a slow decrease of the magnetization, usually through
the formation of magnetic domains. At the zero magnetic field, the magnetization usually has a
non-zero value, which is called the remanent magnetization Mr. The magnetic field can then be
further reduced to negative values. For a certain value of the magnetic field, called the coercive
field Hc (or simply the coercivity), the magnetization will reach zero. The coercivity depends
mainly on the anisotropy of the magnetic material. If the field is further decreased, the material
will reach a negative saturation. When the magnetic field is increased back to large positive
values, the magnetization of the material will take another path, which is usually symmetric to the
previous path with respect to the center of the coordinate system. Therefore, the information of
the magnetic field value will not give the information of the magnetization value – the knowledge
of history of the magnetic field evolution is required. This effect is called hysteresis and the
characteristic plot of magnetization as a function of magnetic field – hysteresis loop. Such an
effect is not present in paramagnets, where the magnetization is a linear function of the magnetic
field.

Based on coercivity, ferromagnetic materials can be divided into two main groups: hard and
soft magnets. Hard magnets have a very high coercivity, reaching values as high as 107 A/m. On
the other hand, soft magnets have very low coercivity, reaching values as low as 10−1 A/m. This
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division is also the most fundamental division of magnetic materials based on the application.
Hard magnets are used as permanent magnets in many devices such as sensors, motors, actuators,
etc., as well as in regular fridge magnets. Soft magnets are used as magnetic cores in transformers,
microwave devices, and spintronic devices such as sensors [3, 4] and magnetoresistive random
access memory (MRAM) [5]. Their properties are also favorable for the computing devices.
There is also a group of materials used in magnetic recording devices whose effective anisotropy
field is much smaller than the magnetization.

As mentioned above, the ferromagnets are characterized by their magnetic forces being
stronger than thermal fluctuations, which results in the magnetic ordering. However, the thermal
energy can always overcome the magnetic energy of the material. The magnetization as a
function of temperature is shown in Figure 1.1b. The maximum value of the magnetization is at
0 K and with increasing temperature, the magnetization decreases. Above a well-defined critical
temperature Tc, the magnetic materials lose the ordering of the magnetic moments and undergo
a phase transition, becoming paramagnetic. For ferro- and ferrimagnets, this temperature is
called the Curie temperature while for antiferromagnets – the Néel temperature. According to
the Ehrenfest classification of the phase transitions, this is a second-order transition – since the
magnetization is an order parameter, this means that it gradually decreases to zero when the
critical temperature is reached, without any abrupt change in its value. The dependence of the
magnetization on the temperature is given by the Bloch law:

Ms(T ) = Ms(0)(1− (T/Tc)
3/2), (1.2)

where Ms(0) is the saturation magnetization at absolute zero. This law gives an approximation
of the magnetization changes at temperatures much lower than Tc. Close to the phase transition,
this dependence changes to

Ms(T ) = Ms(0)(1− (T/Tc)
α)β , (1.3)

where α and β are the critical exponents of the phase transition which depends on the material.
In the next Chapter, the intrinsic properties of ferromagnetic materials will be presented. It

will be explained which magnetic interaction is responsible for the ferromagnetism, how other
magnetic interactions affect the magnetization ordering in the ferromagnetic materials, what is
the physics of the spin precession, how it can lead to the collective motion of spin—the spin
wave, and what is the current state-of-the-art in spin-wave computing.



Chapter 2

Micromagnetism

The theory of magnetism is based on a quantum phenomenon such as spin, therefore, the dynam-
ics of the magnetization are described by quantum theory. A variety of magnetic interactions
makes even small systems exhibit complex behavior, making them very difficult to rigorously
describe. However, many effects, even at the nanoscale, can be described classically or approxi-
mated using classical theories when the length scales governing the effects are much larger than
the distance between the atoms. In this case, the magnetic moments on the atomic lattice can be
described as a continuous magnetic medium using the continuum approximation. This approach,
called micromagnetism, is a very useful tool for solving many problems related to magnetic
materials. In this Chapter, the theory of micromagnetism will be explained with the description
of the most important problems from the magnetization statics and dynamics.

2.1 Magnetic energy and equation of motion

The total energy of a magnetic system Etotal is a sum of energies coming from many different
interactions:

Etotal = Eex +Ed +EZ +Eanis +EDMI +(...), (2.1)

the most fundamental of which are the exchange energy Eex, the dipolar energy Ed, and the
Zeeman energy EZ. In the studies described in the Thesis, there is also an important contribution
of the anisotropy energy Eanis, the Dzyaloshinskii–Moriya energy EDMI, and the Ruderman–
Kittel–Kasuya–Yosida interaction, which gives the contribution to the boundary conditions in
the multilayer systems. The other interactions such as magnetoelastic [6, 7] and electromagnetic
[8] coupling, or spin-transfer torque [9, 10] do not contribute to the effects presented in the
Thesis and, therefore, are not described here. However, it is worth mentioning their existence as
it shows the complexity of the interactions governing the magnetic systems.
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From the energy, it is possible to calculate the effective magnetic field Heff by calculating the
functional derivative of the energy over the magnetization:

Heff =− 1
µ0

δE
δM

, (2.2)

where µ0 is the vacuum permeability. As will be shown later, the use of Heff is advantageous for
describing the motion of the magnetic moment.

2.1.1 Exchange interaction

The exchange interaction is a strong short-range interaction responsible for ordering the magnetic
moments of neighboring atoms in the lattice, giving rise to ferromagnetism, as described in
Chapter 1. It has its source in the interplay between the Pauli exclusion principle and the Coulomb
repulsion of electrons. If the spins are antiparallel, the electrons can occupy the same orbital.
This is not the case for the parallel spins, since it is forbidden by the Pauli principle, and, as a
result, the Coulomb force between the electrons is reduced. therefore, these two configurations
have different energies [11].

In the semi-quantum representation, where the spin is treated in the classical way as a vector,
the energy of the exchange interaction is represented by the following Hamiltonian:

Ĥex =−2∑
i, j

Ji j Si ·S j, (2.3)

where the Si( j) represents the ith ( jth) magnetic moment and Ji j is the exchange interaction
strength between the ith and jth magnetic moment. This interaction decreases very fast with the
distance, therefore, it is sufficient in most cases to take into account only the nearest neighbors
(n.n.) to the calculation of the energy. Moreover, in the crystal structure, the interaction between
the nearest neighbors often has the same strength, e.g., in the cubic crystals, so we can assume that
the exchange constant does not depend on the electron index, Ji j = J. After these assumptions,
the Hamiltonian can be written as

Ĥex =−2J Si · ∑
j=n.n.

S j. (2.4)

The sign of the exchange constant J determines the type of ordering. For a positive value of the
constant, the magnetic moments are parallel to each other and the material is ferromagnetic. For
a negative value, the magnetic moments are aligned antiparallel to each other and the material is
antiferromagnetic or ferrimagnetic.

In the continuum approximation, the Hamiltonian is changed to the form of energy. Assuming
the arbitrary magnetization configuration, after expanding the Hamiltonian into the Taylor series
and truncating it after the first position-dependent term, the final form of the exchange energy
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Eex in the continuum approximation is

Eex =
Aex

M2
s

∫
V
(∇M)2 d3r, (2.5)

where Aex = MsJSZa2/6gµB
1 is the exchange constant [12], S is the spin quantum number, Z is

the number of nearest neighbors, a is the distance between the nearest neighbors, g is the g-factor,
and µB is the Bohr magneton. Finally, from the energy it is possible to derive the exchange field
using Eq. 2.2

Hex =
2Aex

µ0M2
s

∇2M. (2.6)

It is useful to define a characteristic distance associated with the exchange interaction, called
the exchange length lex, which is defined as [13]

lex =

√
2Aex

µ0M2
s
. (2.7)

For the monoatomic magnetic materials, its value is in the range of several nanometers, but in
ferrimagnetic garnets it can reach values as high as 82 nm [14].

2.1.2 Dipolar interaction

The dipolar interaction results from the interaction of a magnetic moment with the magnetic field
produced by other magnetic moment(s). The dipolar field Hd generated by a magnetic moment is

Hd =− 1
4π

(
M

|r|3 −
(M · r)r
|r|5

)
. (2.8)

If we consider the interaction between two magnetic moments, the dipolar energy of their
interaction can be calculated as Ed =−µ0Hd,1 ·M2 =−µ0Hd,2 ·M1. After substituting Eq. 2.8
into this formula, we get the dipolar energy of two interacting dipoles

Ed =
µ0

4π

(
M1 ·M2

|r|3 − 3(M1 · r)(M2 · r)
|r|5

)
. (2.9)

In contrast to the exchange interaction, the dipolar interaction is weaker, but the field goes
as the inverse cube of the distance, making it to work over long distances. The change of the
direction of a single magnetic moment will significantly affect not only the nearest neighbors but
also distant magnetic moments, making this interaction highly non-local and complicating the
calculation of the total field distribution, which requires the summation of the contribution of all
magnetic moments everywhere.

1This formula is true only for cubic crystals.
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In the continuum approximation, this field can be calculated from the Maxwell’s equations.
Assuming the magnetostatic approximation (the absence of free currents and time-dependent
electric fields), the Maxwell’s equations take the form

∇ ·B = 0, (2.10)

∇×H = 0. (2.11)

Knowing that for any arbitrary scalar function f , ∇×∇ f = 0, it is possible to define the magnetic
scalar potential ϕ from Eq. 2.11 as H = −∇ϕ . Further, knowing that B = µ0(H+M) =

µ0(−∇ϕ +M), we get from Eq. 2.10 the equation for the magnetic scalar potential

∇2ϕ = ∇ ·M. (2.12)

The right side of Eq. 2.12, ∇ ·M =−ρv gives the volume magnetic charge density. From the
boundary condition M ·n = ρs, we get the surface magnetic change density. Finally, the magnetic
scalar potential can be calculated as [13]

ϕ(r) =
1

4π

(∫
V

ρv(r′)
|r− r′|d

3r′+
∮

S

ρs(r′)
|r− r′|d

2r′
)
, (2.13)

where V is the volume of the magnetic material and S is the surface of the magnetic material.
The dipolar field Hd can then be calculated directly from −∇ϕ .

The dipolar energy in a continuum approximation can be calculated in two ways—if the
dipolar field is known in all space, or if the dipolar field and magnetization are known in the
magnetic material:

Ed =−µ0

2

∫
V

M ·Hd d3r =
µ0

2

∫
Vall space

H2
d d3r. (2.14)

For ellipsoids, in which the magnetization is uniform, it is useful to calculate the dipolar field
using the approach of demagnetizing tensor N̂ [13]

Hd =−N̂ ·M, (2.15)

where

Nxx =
1
2

abc
∫ ∞

0

[
(a2 +η)

√
(a2 +η)(b2 +η)(c2 +η)

]−1

dη , (2.16)

and a,b,c are the dimensions of the ellipsoid in the x-, y-, and z-direction, respectively. Analogous
formulas exist for Nyy and Nzz. In general, the demagnetizing tensor has a form of a symmetric
matrix with the property Tr(N̂) = 1 [15, 16]. Only for ellipsoids, only the diagonal components
have a non-zero value and are position-independent. The following list shows the diagonal
components of the demagnetizing tensor for the simple geometries:

• infinite film with thickness along z-axis
Nxx = Nyy = 0, Nzz = 1,
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• infinitely long round cylinder along z-axis
Nxx = Nyy = 1/2, Nzz = 0,

• finite sphere
Nxx = Nyy = Nzz = 1/3.

Note that these values can be calculated from Eq. 2.16—the infinite film is a limiting case of an
ellipsoid with a,b → ∞ and the infinitely long cylinder for an ellipsoid with c → ∞.

2.1.3 Zeeman interaction

The Zeeman interaction represents the interaction of the magnetic system with the external
magnetic field. The Zeeman energy is simply represented by a scalar product of magnetization
and external magnetic field:

EZ =−µ0

∫
V

H0 ·M d3r. (2.17)

The external magnetic field H0 contributes directly to the effective magnetic field.

2.1.4 Anisotropy

The anisotropic character of the magnetic field can be found already in the dipolar interaction
which was described in Section 2.1.2. Not without reason the effect connected to the inhomo-
geneity of the dipolar field inside the magnetic material due to its shape is called the shape
anisotropy. However, there are other sources of the anisotropy of magnetic materials. The most
fundamental is related to the crystal lattice and comes from the fact that the orbitals of the
electrons in the crystal may not be spherically symmetric. Other anisotropies can be induced by
lattice defects, strains, or at the surfaces or interfaces [13]. Two fundamental types of anisotropy
are uniaxial and cubic anisotropy.

Uniaxial anisotropy

The anisotropy of uniaxial character is present in the hexagonal, tetragonal, and orthorhombic
crystals. Moreover, the uniaxial anisotropy can usually describe the contribution of surface and
interface anisotropies [17]. The energy density for the uniaxial anisotropy can be written as

Wanis = Ku1 sin2 θ +Ku2 sin4 θ + ...

=
Ku1

M2
s

(
1− (u ·M)2)+ Ku2

M4
s

(
1− (u ·M)4)+ ...

(2.18)

where Ku1 and Ku2 are the first- and second-order uniaxial anisotropy constants and θ is the angle
between the magnetization and the anisotropy vector u which has length of 1 (|u|2 = 1). For
the surface and interface anisotropies, only the first term with Ku1 should be taken into account
[13]. In the case where only the first-order anisotropy constant is considered, it is usually simply
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referred to as Ku. Since the uniaxial anisotropy is uniform throughout the magnetic material, the
energy can be calculated by simply multiplying the energy density by the volume Eanis =WanisV .

From the energy and Eq. 2.2, the uniaxial anisotropy field can be derived as

Hanis =
2Ku1

µ0M2
s
(u ·M)u+

4Ku2

µ0M4
s
(u ·M)3u. (2.19)

There is an important parameter related to the uniaxial perpendicular magnetic anisotropy in
thin films and it is called the quality factor Q. It is defined as the ratio of the intrinsic anisotropy
energy and the shape anisotropy energy

Q =
Eanis

Ed
=

2Ku

µ0M2
s
, (2.20)

where Ed is calculated by applying Eq. 2.15 for a thin film to Eq. 2.14. For the value Q < 1, the
thin film has an in-plane easy axis, while for the value Q > 1, the easy axis is in the out-of-plane
direction. The situation where Q = 1 describes the situation where the dipolar and anisotropy
energies are equal and there is no highlighted axis in the system.

Cubic anisotropy

In the cubic crystals, the anisotropy has a more complex form. The energy density can be written
as

Wanis =
Kc1

M4
s
(M2

i M2
j +M2

j M2
k +M2

k M2
i )+

Kc2

M6
s

M2
i M2

j M2
k + ... (2.21)

where Kc1 and Kc2 are the first- and second-order cubic anisotropy constants and i, j,k mark the
anisotropy easy axes. The cubic anisotropy field for the first term with Kc1 can be written as

Hanis =− Kc1

µ0M4
s

∂
∂M

(M2
i M2

j +M2
j M2

k +M2
k M2

i ). (2.22)

2.1.5 Dzyaloshinskii–Moriya interaction

In 1958, Igor Dzyaloshinskii proved that the weak "ferromagnetism" in the antiferromagnetic
oxides is caused by the relativistic spin–lattice and magnetic dipole interactions [18]. Two years
later, Toru Moriya showed that this effect is a result of the exchange interaction of antisymmetric
character [19], later called the Dzyaloshinskii–Moriya interaction (DMI). The Hamiltonian of
the DMI has the form

ĤDMI = ∑
i, j

Di j · (Si ×S j), (2.23)

where Di j is the Dzyaloshinskii vector. This form is similar to the Hamiltonian of the ordinary
exchange interaction shown in Eq. 2.3 with the scalar product being replaced with the vector
product of magnetic moments. From the analysis of Eq. 2.23, the lowest energy configuration
is the one in which the spins are perpendicular to each other. It is important to notice that
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this form favors certain chirality of spins. The DMI in bulk materials can be present in non-
centrosymmetric B20 crystals [20, 21], but it was found to be much weaker than the ordinary
exchange.

In 1990, Albert Fert suggested that the DMI can also be induced by asymmetry of the
spin–orbit coupling at the interface [22], which was later proven theoretically by Crepieux and
Lacroix [23]. The first evidence of the interfacial DMI has emerged when the spin spiral with
very short period has been found in Fe/W multilayer [24]. The interfacial DMI can be stronger
than its bulk counterpart, being the strongest in the ferromagnetic layers of thickness of about
1 nm (a few monolayers). The studies in this Thesis are focusing on the interfacial DMI and it
will be described in the following part.

In the continuum approximation, the Dzyaloshinskii vector Di j can be simplified to the DMI
constant D, assuming that the DMI is isotropic over the entire interface. If the normal to the
interface n ∥ ẑ, the interfacial DMI energy density takes the form [25]

WDMI =
D

M2
s
[Mz(∇ ·M)− (M ·∇)Mz] . (2.24)

From Eqs. 2.2 and 2.24, it is possible to derive DMI field

HDMI =
2D

µ0M2
s

[
∂Mz

∂x
x̂+

∂Mz

∂y
ŷ−

(
∂Mx

∂x
+

∂My

∂y

)
ẑ
]
. (2.25)

2.1.6 Landau–Lifshitz–Gilbert equation

The magnetic moment is in the stable configuration when it is aligned parallel to the magnetic
field (M ∥ B). If the magnetic moment (or the magnetic field) changes direction, as a result, the
torque

T =M×B (2.26)

will appear. The torque T = dJ/dt describes the time evolution of the total angular momentum
J = L+S (where L is the orbital angular momentum), which is connected to the magnetic
moment by the constant called the gyromagnetic ratio γ , so that M=−γJ. The gyromagnetic
ratio also connects the frequency of the magnetic moment precession with the magnetic field,
ω =−γB, which is called the Larmor frequency. For the free electrons where L = 0, its value
can be calculated as γ = qe

2me
ge ≈ 28.025GHz/T, where qe is the electron charge, me is the

electron mass, and ge ≈ 2 is the electron g-factor. In most of the ferromagnetic materials, the
gyromagnetic ratio is slightly larger due to the contribution from the orbital angular momentum
L. For example, for Co the effective g-factor is g = 2.22 [12].

Putting all the dependencies in Eq. 2.26, we get

∂M
∂ t

=−γM×B. (2.27)
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𝑴

𝑯𝐞𝐟𝐟

−𝑴×𝑯𝐞𝐟𝐟
−𝑴×𝑴×𝑯𝐞𝐟𝐟

Figure 2.1 The schematic of the spin precession. The magnetization M is evolving around the effective
magnetic field Heff due to the precession torque T =−M×Heff, but it is also constantly approaching Heff
due to the damping torque Td =−M×M×Heff.

In terms of the magnetization and effective magnetic field, Eq. 2.27 takes the form

∂M
∂ t

=−γµ0M×Heff. (2.28)

This equation is known as the Landau–Lifshitz equation. In this form, the equation has no
dissipative mechanism. Once the non-zero angle between the magnetization and the magnetic
field is present, it is conserved, but the magnetization will constantly precess around the magnetic
field vector in the direction given by the vector product. However, losses are always present
in the magnetic systems and they cause the magnetization to slowly align with the effective
magnetic field direction. Dissipation occurs by several mechanisms. These include spin–spin
relaxation, in which the magnon is exchanged for another magnon by interaction with the crystal
lattice or defects, and the generation of phonons, which ultimately leads to dissipation as heat.
Landau and Lifshitz have taken losses into account by adding a phenomenological damping
torque to Eq. 2.28 [26]

∂M
∂ t

=−γLµ0M×Heff +
γLµ0

M2
s

λM×M×Heff, (2.29)

where λ is the Landau–Lifshitz damping constant. The magnetization precession is shown
schematically in Figure 2.1. While the precession torque −M×Heff forces the magnetization to
revolve around the effective magnetic field Heff, the damping torque −M×M×Heff pushes it
towards Heff, causing the spin to asymptotically reach the equilibrium state for which T = 0.
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In 1956, Thomas L. Gilbert modified the damping term to include a time derivative of the
magnetization [27]. This form is called the Landau–Lifshitz–Gilbert equation:

∂M
∂ t

=−γGµ0M×Heff +
α
Ms

M× ∂M
∂ t

, (2.30)

where α is a dimensionless damping constant. These equations are connected by the relations
γL = γG

1+α2 and λ = αMs
1+α2 .

Both equations are equivalent and the choice of the formulation depends on the user. In all
the calculations presented in this Thesis where damping was taken into account, the Landau–
Lifshitz–Gilbert equation (Eq. 2.30) was chosen.

2.1.7 Boundary conditions

The presence of the second space derivative in the exchange field in Eq. 2.6 requires the definition
of a boundary condition for Eq. 2.30 for bounded systems as, e.g., thin films. The boundary
condition can be derived from the Landau–Lifshitz equation by applying the Green’s theorem
[28].

The most commonly used condition is the free boundary condition [29], which states

∂M
∂n

= 0, (2.31)

where n is the direction normal to the boundary. This condition is true if there are no surface or
interface anisotropies in the system.

The general boundary condition, which takes into account the possible presence of the surface
or interface anisotropy at the boundary, was first derived by Rado and Weertman [28] and it says

2Aex

M2
s

M× ∂M
∂n

+Tsurf = 0, (2.32)

where Tsurf is the total surface torque density.

2.1.8 Ruderman–Kittel–Kasuya–Yosida interaction

In the 1960s it was found that the ferromagnetic films are coupled when in contact [30, 31]. It was
shown that this coupling is of exchange character [32]. Hoffmann et al. proposed the theoretical
model to describe the interlayer exchange coupling between the ferromagnetic layers in contact
[33, 34]. In the 1980s it was shown that such a coupling of the exchange character can also
exist when the layers are separated by a thin non-magnetic metallic layer [35, 36]. Later, it was
proposed that this coupling has the character of the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction [37, 38], which originally explained the broadening of the nuclear spin resonance lines
by the indirect exchange coupling of the magnetic moments of the nuclei through conduction
electrons [39–41]. Eventually, the theoretical formulation given by Hoffmann was also used to
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describe the interlayer exchange coupling of the separated layers in a micromagnetic approach
[42]. The RKKY interaction is implemented by extending the general boundary conditions to
include the interlayer exchange constant A12 [42]

2A(1)
ex(

M(1)
s

)2 M(1)× ∂M(1)

∂n(1)
+T(1)

surf

∣∣∣∣∣
z=z1

+
2A12

M(1)
s M(2)

s

M(1)×M(2)

∣∣∣∣∣
z=z2

= 0, (2.33)

2A(2)
ex(

M(2)
s

)2 M(2)× ∂M(2)

∂n(2)
+T(2)

surf

∣∣∣∣∣
z=z2

+
2A12

M(1)
s M(2)

s

M(2)×M(1)

∣∣∣∣∣
z=z1

= 0, (2.34)

where (1) and (2) indicate the parameter of the first and second layer, respectively, and z1 and z2

are the interface positions of the first and second layer from the side of the second and first layer,
respectively.

2.2 Magnetization textures

In the magnetic materials, different interactions compete with each other, wanting to force
the magnetization to reach different equilibrium states. The exchange interaction wants the
magnetic moments to align parallel or antiparallel to their neighbors. The Dzyaloshinskii–Moriya
interaction prefers perpendicular alignment. The Zeeman and uniaxial anisotropy try to force
the magnetic moments to align in the direction of their magnetic fields. Last but not least,
there is dipolar interaction with its long-range, highly anisotropic character and susceptibility to
the shape of the object. The mixture of these components leads to the equilibrium states with
complex magnetization configurations. Here I would like to put special emphasis on two systems
considered in the papers included in the Thesis—a regular stripe-domain pattern [P4] and a
skyrmion [P5]. Before that, it is worth describing two fundamental elements of the magnetization
textures: the domain and the domain wall.

2.2.1 Magnetic domain and domain wall

A magnetic domain is a uniformly magnetized region in a ferromagnetic material, which borders
with other domains of different orientation of magnetization. Domains are separated from each
other by a non-uniform magnetization textures called domain walls.

The whole gamut of magnetic domain types can exist in the magnetic objects. They can
differ depending on the material characteristics with particular reference to the type of anisotropy,
the anisotropy strength defined by the quality factor Q, and the shape and size of the object.
However, the classification of the magnetic domain structures is beyond the scope of this Thesis.
It is splendidly described with the support of great pictures in Chapter 5 of the book Magnetic
domains by Alex Hubert and Rudolf Schäfer [13].

The domains exist due to the competition between anisotropy, dipolar, and exchange inter-
actions. It is easy to understand the presence of magnetic domains for an example of a thin
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Figure 2.2 Thin magnetic film with out-of-plane anisotropy in (a) the uniformly out-of-plane magnetized
state, (b) the antiparallel state, and (c) the domain state. Black arrows denote the magnetic moments, red
pluses and blue minuses – the positive and negative magnetic charges, and orange arrows – the exchange
interaction.

film with strong uniaxial out-of-plane anisotropy, as shown in Fig. 2.2. If the film is saturated
out of plane (Fig. 2.2a), the magnetic moments will produce inside the film a strong dipolar
field opposite to direction of the magnetic moments, or in other words, the magnetic charges of
opposite polarity will gather on opposite film surfaces, creating a high-energy state. On the other
hand, if the magnetic moments are aligned antiparallel to their nearest neighbors (Fig. 2.2b),
the dipolar energy is minimized, but the exchange energy is maximized. Since the exchange
interaction works only in a short range and the dipolar interaction works in a long range, the
minimum energy state contains domains separated by domain walls (Fig. 2.2c).

Two fundamental types of domain walls can be distinguished, as shown in Fig. 2.3. In the
Bloch domain wall (Fig. 2.3a), the magnetic moments rotate in a plane perpendicular to the plane
on which the magnetic moments are lying. In the Néel domain wall (Fig. 2.3b), the rotation is in
the same plane as the one produced by the rotating magnetic moments. Bloch domain walls are
usually present in bulk materials and thick films while Néel domain walls – in very thin films
with thickness less than the exchange length lex [11]. It is worth noting that the systems with
DMI also favor the Néel domain wall, however, DMI prefers a certain domain wall chirality,
while in the systems without DMI both chiralities have the same energy.

(a) (b)

Figure 2.3 The schematic representation of (a) the Bloch domain wall and (b) the Néel domain wall.
Orange rectangles denote the planes in which the magnetic moments rotate.
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The domain wall width is mainly determined by the competition between the exchange
interaction and anisotropy. The domain wall consisting of two antiparallel magnetic moments
minimizes the anisotropy energy while the exchange energy is maximal. On the other hand,
a very wide domain wall is beneficial for exchange but not for anisotropy. The minimum of
the sum of exchange and anisotropy energies is given for the domain wall described by the
equation x =

√
Aex/Ku ln tan(θ/2) where θ is the angle of magnetization. This formula gives

the approximate width of the domain wall ∆ = π
√

Aex/Ku [2].

2.2.2 Regular stripe-domain pattern

Stripe domains are a type of magnetic domains that occur in thin films in the form of long,
narrow channels which can be magnetized in an arbitrary direction depending on the external
field and the character of a magnetic material. They were first predicted theoretically [43, 44],
and soon later observed experimentally [45–47]. Stripe domains usually form a well-ordered
texture of parallel domains. However, these textures are often far from regular patterns because
the domains can have different widths and the density of defects is high.

It was found that the thin films with quality factor Q ≪ 1 can retain stripe-domain textures of
high regularity [48–56]. Such a stripe-domain pattern is shown in Figure 1(b) in [P4] (Section 4.4).
The critical parameters for the stripe-domain pattern [57] are the critical film thickness

dc =
2π

1−h

√
Aex

Ku
(2.35)

and the critical stripe-domain width

wc = dc

√
1−h
1+h

, (2.36)

where h = H0µ0Ms/2Ku. These values give a good approximation in the limit Q < 0.1. The
critical thickness dc gives the minimum value of the thickness for which the film can hold stripe
domains. The critical width wc is the width of a single stripe domain at a critical thickness.
For h = 0, these parameters simplify to dc = 2π

√
Aex/Ku and wc = dc. For the films thicker

than dc, the stripe-domain width becomes smaller than wc. On the other hand, for Q > 0.1, the
stripe-domain width increases with the increase of Q.

2.2.3 Skyrmion

Skyrmion is a topologically protected field configuration, which was first described in particle
theory by Tony Skyrme [58], who used it as a model of nucleon. It was later implemented in
many fields of physics including magnetism.

The magnetic skyrmion represents the configuration of the magnetization field [59]. It is
a topological soliton having a form of a very small domain, usually stabilized by the DMI (in
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Figure 2.4 The schematic representation of (a) the Néel-type skyrmion with Qc =−1, Qh = 1, and Qh = 0
and (b) the Bloch-type skyrmion with Qc =−1, Qh = 1, and Qh = π/2. Licensed under CC BY-SA 3.0.
Authors: Karin Everschor-Sitte and Matthias Sitte. Original figure was rearranged.

contrast to the so-called bubble domains, which are large and stabilized by dipolar interactions).
The topological protection of the skyrmion is important for its stability. The creation or annihi-
lation of a skyrmion requires passing through a Bloch point, where the neighboring spins are
antiparallel, which is connected with a very large exchange energy [60]. It is worth noting that
such a transition is possible thanks to the discrete nature of matter—in the continuous model, the
creation/annihilation of a Bloch point requires infinite energy and is therefore not possible.

Magnetic skyrmions were first proposed by Pokrovsky [61]. Later, the possibility of their
stabilization in systems with DMI was confirmed in the works of Bogdanov et al. [62–65]. The
presence of the DMI is very important as, due to the competition with symmetric exchange
interaction, the spin rotation becomes beneficial for the energy minimization. Skyrmions can
be stabilized with bulk DMI in B20 crystals, where they can form skyrmion lattices at very low
temperatures [66–68] or with interfacial DMI, where they can exist even at the room temperature
[69–72]. It has also been shown that in the confined geometries, such as nanodisk, it is possible
to create a skyrmion without DMI [73].

Two types of 2D skyrmions can be distinguished: the Néel-type skyrmion (Figure 2.4a) and
the Bloch-type skyrmion (Figure 2.4b). The connection of their names with domain walls is not
accidental—if a cross-section of the skyrmion is taken along its radius, that of the Néel-type
skyrmion has a Néel domain wall, and the one of the Bloch-type skyrmion—a Bloch domain
wall. The formation of Néel-type skyrmion is preferred in the systems with interfacial DMI,
while Bloch-type skyrmion is preferred in the systems with bulk DMI and confined systems
without DMI. Skyrmions are just one element of a class of topological solitons, which includes
other magnetic textures such as vortex, meron, antiskyrmion, biskyrmion, skyrmionium, chiral
bobber [74, 75], and hopfion [76].

There are three characteristic values which describe two-dimensional topological solitons—
topological charge, vorticity, and helicity [75]. The first one, the topological charge, is defined
as

Qc =
1

4π|M|3
∫

M ·
(

∂M
∂x

× ∂M
∂y

)
dxdy. (2.37)

Skyrmions have a topological charge Qc =±1. The positive or negative value depends on the
polarity p, which defines the direction of the core: p = 1 if the core has spins pointing up and
p = −1 for spins pointing down (as in Figure 2.4). For skyrmions, Qc = p. Other systems
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can also be described with a topological charge, e.g., antiskyrmion has Qc = ±1, vortex and
meron—Qc =±1/2, skyrmionium—Qc = 0, biskyrmion—Qc =±2, and also non-topological
textures such as single-domain state and onion state which has Qc = 0. In contrast to skyrmions,
for antiskyrmions the connection between topological charge and polarity yields Qc =−p.

Another parameter, vorticity, describes the in-plane spin texture and is defined as

Qv =
1

2π

∮
C

dφ , (2.38)

where φ is the in-plane angle of the magnetization and the intergration goes over the contour C
determined by the line of in-plane spins. This is another parameter that separates skyrmions (for
which Qv = 1) from antiskyrmions (Qv =−1).

The last parameter, helicity Qh, defines the phase of the magnetic texture. This parameter is
different for Néel-type skyrmion (Qh = 0 or π) and Bloch-type skyrmion (Qh = π/2 or 3π/2).

2.3 Spin waves

When the magnetic moment is pushed out of the equilibrium, it will begin to precess around the
effective magnetic field. However, this will also cause a change in the magnetic field, which will
push other spins further out of equilibrium. This disturbance can form a collective excitation of
spins propagating through the magnetic material, which is called a spin wave. The spin-wave
dynamics is governed by the Landau–Lifshitz–Gilbert equation (Eq. 2.30). In many cases, the
angle of the precession of magnetic moments is very small, so that assuming the magnetization
along the z-direction, Mx,My ≪ Mz ≈ Ms. In such a case, Eq. 2.30 can be linearized and solved
only for Mx and My, which reduces the problem significantly. Due to anisotropic character of
the dipolar interaction and its competition with exchange interaction and other phenomena, the
spin-wave dynamics show much more complicated dispersion relation than electromagnetic
waves, which are usually described by a linear dependence of the frequency on the wavevector.
In this Section, the dispersion relations of spin waves for different systems and geometries are
presented.

2.3.1 Magnetostatic waves

In the first approximation, it is sufficient to limit the interactions to dipolar and Zeeman inter-
actions only. In this case, the total energy from Eq. 2.1 simplifies to the form Etotal = EZ +Ed.
For the case where the exchange interaction is neglected, the spin waves are usually called
magnetostatic waves. This approximation gives realistic results for long waves, much longer
than the exchange length, λ ≫ lex.
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Bulk magnetic material

In the bulk ferromagnetic materials, where the dimensions are much larger than the wavelength
of the magnetostatic wave, the dispersion relation is represented as [77]

f =
γµ0

2π

√
H0

(
H0 +Ms sin2 θk

)
, (2.39)

where θk is the angle between the magnetization and wavevector. As you can see, the frequency
depends only on the direction of propagation, but not on the wavevector itself. The frequency is
the highest for the propagation perpendicular to the magnetization and the lowest for the parallel
propagation.

The situation changes in thin films, where the dispersion relation becomes dependent on the
wavevector. This is due to the presence of the surface and volume magnetic charges coming
from the dynamic magnetic field. We can distinguish three main geometries of the magnetostatic
waves in the uniformly magnetized thin film.

In-plane magnetized thin film: propagation parallel to magnetization

For the case when the film is magnetized in the plane and we consider the propagation in the
direction parallel to the magnetization, the dispersion relation can be written as [78]

f =
γµ0

2π

√
H0

(
H0 +Ms

1− e−kd

kd

)
. (2.40)

It is shown with the blue lines in Figure 2.5. The frequency in the limit of zero wavevector goes
to the ferromagnetic resonance (FMR) frequency fk→0 = fFMR = γµ0

2π
√

H0 (H0 +Ms), while in
the limit of infinite wavevector, fk→∞ = f0 =

γµ0
2π H0. The frequency decreases with the increase

of the wavevector, which means that while the phase velocity vph = ω/k is positive, the group
velocity vgr = dω/dk is negative. These dependencies give the wave a backward character, as
the phase is propagating in the opposite direction to the wavefront. Regarding the spin-wave
amplitude, it has a volume character. The mode is delocalized at k ≈ 0 and with the increase
of the wavevector, its amplitude in the center increases [79]. Because of this character, this
geometry is called the backward volume geometry.

In-plane magnetized thin film: propagation perpendicular to magnetization

The situation changes when the magnetostatic wave propagates in the direction perpendicular to
the magnetization. In this case, the dispersion relation is given by the formula [80]

f =
γµ0

2π

√
H0 (H0 +Ms)+

M2
s

4
(
1− e−2kd

)
. (2.41)
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Figure 2.5 The dispersion relation of magnetostatic waves in the backward volume (blue lines), Damon–
Eshbach (orange lines), and forward volume (green lines) geometries for the permalloy layer with
Ms = 800kA/m. The value of the external magnetic field H0 is (a) 0.1Ms and (b) 0.5Ms for the backward
volume and the Damon–Eshbach geometries and (a) 1.1Ms and (b) 1.5Ms for the forward volume geometry.
On top, the sketches of the magnetostatic wave geometries with the directions of magnetization and
wavevector marked.

It is shown with the orange lines in Figure 2.5. In contrast to the propagation parallel to the
magnetization, here the magnetostatic wave is a forward wave. The zero-k frequency is the
same as for the backward volume geometry while for the limit of very large wavevectors,
fk→∞ = fM = γµ0

2π (H0+Ms/2). This wave also differs in the case of amplitude localization. This
mode is localized on the surface, hence the name of the geometry – the surface geometry or, from
the names of the authors of the paper describing this effect [80], the Damon–Eshbach geometry.

The propagation of the spin wave for the in-plane magnetized film can be considered in any
direction, but the solution is more complex since it is the mixture of the surface wave and the
volume wave. It is described in more detail in Ref. [79].

Out-of-plane magnetized thin film

Due to the shape anisotropy, the thin film is magnetized in-plane in the absence of the external
magnetic field. To magnetize it out of the plane, it is necessary to overcome the demagnetizing
field Hd =−NzzMs =−Ms, so the external field H0 ≥ Ms has to be applied. It also affects the



2.3 Spin waves 21

frequency of the spin wave. The dispersion relation is described by the formula [78]

f =
γµ0

2π

√
(H0 −Ms)

(
H0 −Ms

1− e−kd

kd

)
. (2.42)

It is shown with the green lines in Figure 2.5. Similar to the Damon–Eshbach geometry,
the frequency increases with the wavevector. The frequency for very small wavevectors is
fk→0 =

γµ0
2π (H0 −Ms) while for very large wavevectors, fk→∞ = γµ0

2π
√

H0(H0 −Ms). The spin-
wave amplitude of this mode is distributed over the volume of the film. Because of the character,
this geometry is called the forward volume geometry.

2.3.2 Dipole–exchange regime

Adding the exchange interaction to the magnetostatic dispersion relation is generally not a trivial
task. In the case of the bulk materials, the solution still has a simple form, but already for thin
films there is no strict formula and the solution requires solving complex matrices.

Spin waves in bulk

For bulk materials, the inclusion of the exchange interaction can be done by making a simple
transformation H0 → H0 +Msl2

exk2 [77]. Eq. 2.39 changes to

f =
γµ0

2π

√
(H0 +Msl2

exk2)
(
H0 +Msl2

exk2 +Ms sin2 θk
)
. (2.43)

The effect of the exchange interaction is that the dispersion relation gains a parabolic character.
This will also be the most pronounced effect in other systems.

Spin waves in thin film

As mentioned earlier, the derivation of the dispersion relation of a thin film in the dipole–
exchange regime is a complex task. All explicit formulas available in the literature are only
approximations. Two methods have been proposed to obtain strict solutions to the problem.

The first is the partial-wave approach proposed by De Wames and Wolfram [81, 82]. In
this method, the magnetization and the magnetic scalar potential are represented by a set of
plane-wave solutions, which are then substituted into the Landau–Lifshitz equation and the
equation for the scalar potential. The final solution is based on zeroing of the determinant of
a 6x6-matrix. This method has been also used to solve the dispersion relation of cylindrical
nanowires [83, 84]. Its strength is that it provides a complete solution directly. However, this
method is rarely used due to its limitations as it can only be solved in systems with unbroken
symmetry.

This gave an advantage to a second method proposed by Kalinikos and Slavin [85, 86]
– the spin-wave mode approach. Here, the demagnetizing field is represented in the integral
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Figure 2.6 Analysis of the impact of different parameters on the spin-wave dispersion relation—(a) ex-
ternal magnetic field B0, (b) saturation magnetization Ms (keeping constant l2

ex), (c) film thickness d, (d)
exchange constant Aex, (e) perpendicular magnetic anisotropy in terms of quality factor Q, and (f) DMI
constant D. The reference film (plotted with a thick blue line) is a 30 nm-thick permalloy film with
Ms = 800kA/m, Aex = 13pJ/m, Q = 0, and D = 0 in the external field B0 = 50mT. In (a)-(e), the left
side of the plot presents the dispersion in the backward volume geometry and on the right side in the
Damon–Eshbach geometry. In (f), the dispersion relation is shown only for the Damon–Eshbach geometry
but for positive and negative wavevectors. Also, the dispersion is shown for the layer thickness of 1 nm.
The results shown in this figure were calculated using COMSOL.
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form and, applied to the Landau–Lifshitz equation, it is transformed into an integro-differential
equation. This method is versatile as it can be applied to many more systems than the partial-
wave approach, making this method much more commonly used. However, even if the solution
using the spin-wave mode approach is strict, it is not really possible to obtain. The magnetization
is represented by an infinite series, which is followed by the solution of the determinant of an
infinite matrix. In reality, it is necessary to truncate the series to make it finite and then solve a
finite matrix, which already makes the solution only an approximation. However, this method can
provide simple formulas that give a good approximation of the complete solution. This is done
using the diagonal approximation in which the interaction between modes is neglected. However,
this approximation has to be used carefully as it can lead to significant discrepancies with the
complete solution, especially in the Damon–Eshbach geometry [87]. Due to the complexity of
the analytical solution, an alternative approach can be to use the numerical simulations to solve
the problem. This approach is described in detail in Chapter 3.

It is worth analyzing how different parameters can affect the spin-wave dispersion relation.
In Figure 2.6 such an analysis is provided for 6 parameters—external magnetic field B0 = µ0H0,
saturation magnetization Ms, film thickness d, exchange constant Aex, perpendicular magnetic
anisotropy in terms of quality factor Q, and DMI constant D. The 30 nm-thick permalloy film with
Ms = 800kA/m, Aex = 13pJ/m, Q = 0, and D = 0 in the external field B0 = 50mT was chosen
as a reference. With the increase of the external magnetic field (Figure 2.6a), the dispersion
relation shifts up. In the backward volume geometry, the backward wave character is present only
in higher fields, with the dispersion well becoming deeper. In the Damon–Eshbach geometry, the
dispersion relation with the external field flattens significantly for small wavevectors. With the
increase of the saturation magnetization Ms (Figure 2.6b), the dispersion curve shifts up. For
Damon–Eshbach geometry, it also leads to a significantly larger slope at small wavevectors. The
dispersion evolution with the layer thickness is complex (Figure 2.6c). The frequency at k = 0
does not change. In the backward volume geometry, the dispersion shifts down with thickness,
causing the deepening of the dispersion well. In the Damon–Eshbach geometry, the dispersion
slope increases with thickness at small wavevectors, but then flattens out so that the slope for
larger wavevectors is larger for smaller thicknesses. Interestingly, for 100 nm thickness (purple
curves), the fundamental mode crosses with two higher-order modes that are quantized over the
thickness. With the increase of the exchange constant Aex (Figure 2.6d), the dispersion slope
increases more with the increase of wavevector. It does not affect the frequency at k = 0. With
the increase of the quality factor Q (Figure 2.6e), the dispersion shifts down. The most significant
shift is present at large wavevectors. Interestingly, in the Damon–Eshbach geometry, it leads
to the backward wave behavior for Q = 0.5 (red line), with the local frequency minimum at
about 60 rad/µm. The presence of the DMI (Figure 2.6f) causes the dispersion relation in the
Damon–Eshbach configuration to "twist" with respect to k = 0. The twist amplitude depends on
the absolute value of D but the twist direction depends on the sign of D—positive sign increases
the frequency at the positive wavevectors and decreases at negative wavevectors; the opposite is
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true for negative sign of D. The DMI has no effect on the dispersion relation in the backward
volume geometry (not shown here).

As shown in Figure 2.6, the spin waves offer a complex dispersion relation that can be
controlled by many parameters, with each parameter having a unique influence on the spin-wave
propagation. This gives the possibility to control the dispersion relation in a way not seen in
other wave phenomena such as electromagnetic or acoustic waves.

2.3.3 Multilayer systems

Despite the fact that the spin waves can propagate only in the magnetic materials, they can
interact and transfer between the separated elements through the non-magnetic media (which
includes not only solids, but also liquids and gases) by the magnetic field as it can exist in any
material. The primary way is the coupling through the dipolar field [88]. The dipolar interaction
is a long-range interaction and it allows coupling between the magnetic materials at a distance
approximately equal to the spin-wave wavelength. The second option is the RKKY interaction
[42]. However, the range of this interaction does not exceed a few nanometers, while it has
significant strength up to only about 1 nm of separation between ferromagnetic materials [89].

The spin-wave mode interaction in the ferromagnetic multilayer systems has been studied
since the 1970s [82, 90]. The investigations intensified in the 1980s with the work of Peter
Grünberg on the interaction between dipolar modes in double-layer systems [88, 91], and
continued by in-plane magnetized multilayers [92–94], out-of-plane magnetized multilayers [95],
also the exchange modes’ interaction in multilayers [96–98], and RKKY-coupled double layers
[99], finishing with the work of Burkard Hillebrands for multilayers in the dipole–exchange
regime from 1990 [42]. This comprehensive study combines not only the effect of dipolar and
exchange interactions, but it also adds the contribution of surface and interface anisotropies and
interlayer exchange coupling. Recently, the study of the spin-wave interaction between magnetic
multilayers has been extended to the presence of the interfacial DMI [100].

To present the effect of the dipolar coupling between the ferromagnetic layers, the dispersion
relation is shown in Figure 2.7 for two systems: two identical 10 nm-thick Py layers and two
different layers—10 nm-thick Co layer and 20 nm-thick CoFeB layer. For the case of identical
layers (Figure 2.7a), the fundamental branch separates into two branches. The distance between
the branches decreases with the increase of the separation between the layers since the dipolar
field produced by the spin wave decreases. For 300 nm-thick spacer (purple lines), there is only
a small splitting for very small wavevectors. For 30 nm-thick spacer (red lines), the splitting
is large for small wavevectors, but decreases to almost zero for large wavevectors. For 3 nm-
thick spacer (green lines), the splitting is large in entire investigated range of wavevectors. As
mentioned above, the range of coupling between the layers is of about one spin-wave wavelength.
For the spacer thickness of 300 nm, this is associated with the wavevector k = 21rad/µm. In this
case, the frequency difference between the branches at k = 21rad/µm is only 9 MHz, very small
in comparison to the maximum calculated value of 625 MHz at k = 2rad/µm, but much larger
than at k = 42rad/µm, where the frequency difference is only 17 kHz. The situation is slightly
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Figure 2.7 Dispersion relation of a double-layer system in the Damon–Eshbach geometry with (a)
homogeneous layers of 10 nm-thick permalloy and (b) heterogeneous system with 20 nm-thick CoFeB
layer and 10 nm-thick Co layer. The dispersions for double layer are shown with solid lines for three
different separations: 3 nm, 30 nm, and 300 nm, assuming the separation by a nono-magnetic (NM) spacer.
The reference dispersions for isolated single layers are shown as dashed lines. Material parameters—Py:
Ms = 800kA/m and Aex = 13pJ/m; CoFeB: Ms = 1300kA/m and Aex = 15pJ/m; Co: Ms = 1400kA/m
and Aex = 30pJ/m . The external field B0 = 50mT. The results shown in this figure were calculated using
COMSOL.

different for the system of heterogeneous ferromagnetic layers (Figure 2.7b). The dispersion
relation is asymmetric with respect to k = 0 due to the asymmetry of the surface waves. The
coupling is stronger for negative wavevectors, which has reflection in a stronger splitting of
the branches. Also, since the dispersion relations of the isolated single layers are different, the
relatively strongest interaction is present at the point of dispersion crossing at k =±40rad/µm.
This is especially visible for the 30 nm-thick spacer (red lines).

2.3.4 Magnonic crystals

Systems with periodic modulation of the material found interest in physics due to their ability
to manipulate wave propagation, including the appearance of forbidden frequency bands [101].
These systems to some extent mimic the behavior of the atomic crystal lattices and, therefore,
they borrowed the name crystal. Despite the fact that periodic systems were studied analytically
before, the first experimental evidence of their ability to form band gaps came for electromagnetic
waves with works of Yablonovitch [102] and John [103] in 1987, the year that marks the invention
of photonic crystals.

Periodic modulation of magnetic material, i.e., magnonic crystal [104], was already studied in
the 1970s [105, 106]. Józef Barnaś developed the transfer-matrix approach for one-dimensional
periodic systems [107, 108]. The analytical studies intensified in the 2000s [109–114]. They were
followed by the experimental studies which showed the presence of band gaps in the spin-wave
spectrum [115–117], proving the existence of magnonic crystals. Besides the before-mentioned
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Figure 2.8 Dispersion relation of a magnonic crystal based on a corrugated permalloy layer (solid red
lines) in the Damon–Eshbach configuration. The long grooves with the width of 100 nm and depth of
10 nm were made in the 20 nm-thick layer with the periodicity 200 nm. As a reference, the dispersion
relation for uniform 15 nm-thick permalloy layer is shown with dashed gray lines. Parameters of Py:
Ms = 800kA/m and Aex = 13pJ/m. The external magnetic field B0 has been set to 50 mT. The results
shown in this figure were calculated using COMSOL.

works of thin-film systems with a periodic pattern present along one direction, the magnonic
crystal behavior has also been shown for two-dimensional thin-film systems [118, 119], including
artificial spin ices [120, 121].

Interestingly, in contrast to atomic crystal lattices, the artificial crystals can be designed
to have a reconfigurable structure and thus reconfigurable wave spectra. This property is
particularly easy to implement in magnetic materials, where the magnetization can be controlled
by the external stimuli, e.g., bias magnetic field, electric and spin current, or laser pulse. The
reconfigurable magnonic crystal has been demonstrated for the first time with a system of long
nanowires with possible parallel and antiparallel ordering of magnetic moments [122, 123].

Recently, the periodically arranged systems have been studied from a different point of view.
The magnonic crystal behavior was shown in the systems without the artificial patterning, where
the only source of periodicity came from the regular stripe-domain structure, which additionally
has the property of reconfigurability [P4] or from the external magnetic field periodically modified
by the Abrikosov vortices in the superconductor [124]. Also, the magnonic quasicrystals [125]
and space–time crystals [126] have been demonstrated.

The exemplary dispersion relation of a magnonic crystal is shown in Figure 2.8. It is
constructed by making long grooves of the 100 nm width and 10 nm depth periodically every
200 nm in the 20 nm-thick Py layer. The dispersion of this system is shown by solid red lines.
As a reference, the dispersion of a uniform 15 nm-thick Py layer is shown with dashed gray
lines assuming the artificial lattice constant of 200 nm. In the magnonic crystal, the band gaps
appear in the dispersion relation. They are slightly shifted to the left from the edges (odd gaps)
and centers (even gaps) of the Brillouin zone. Moreover, the dispersion relation is asymmetric.
This is because of the asymmetry between the top and the bottom surface which induces an
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asymmetry in the spin-wave propagation in the Damon–Eshbach configuration. The band gaps
vary greatly in size. Interestingly, the third band gap is very small, not visible at this scale. In the
crystal band structure, some of the gaps can close for the certain values of the periodic parameter,
in this case, the groove width. The dispersion relation of a reference layer is similar, but there are
significant differences besides the presence of band gaps. The discrepancy will be much smaller
for smaller modulation of the material, e.g., if the layer will be 16 nm thick and the grooves will
be 2 nm deep. However, smaller modulation of the layer will lead to significantly smaller band
gaps.

2.4 Spin-wave computing

The dominance of electronics in the computing market is gigantic. The continuous development
of complementary metal–oxide–semiconductor (CMOS) technology has led to tremendous
progress in computing. However, electronics faces many difficulties. Further miniaturization of
electronic devices is hampered by the inevitable approach to the dimensions where the quantum
effects will play a significant role. Moreover, large amounts of heat are generated during
operation, which raises the problem of cooling of computing systems.

For these reasons, a great emphasis is put on the development of the computing devices
and methods based on other physical phenomena. In recent years, magnonics has found an
increasing attention of scientists [127–129]. Spin waves have many advantages that make them a
promising carrier for the future computing devices. As listed by Chumak et al. [129], "among
the key advantages offered by magnons for data processing are the scalability down to atomic
dimensions, the compatibility with existing CMOS and spintronic technologies, the operations
in the frequency range from several GHz to hundreds of THz, the possibility to process data in
the wide temperature range from ultra-low temperatures to room temperature, and the access to
pronounced nonlinear phenomena". One should not forget another advantage, which is the very
low energy consumption of spin waves, since only the rotation of the spin is required comparing
to the movement of electrons in electronic systems, which requires significantly more energy.

2.4.1 Computational methods

The question has to be asked about how to perform computations on the spin waves. The
information can be carried in the spin-wave amplitude, phase, wavelength, frequency, or a few
of these options combined, with the first two being the most commonly used in the design of
devices. The most common mode of operation follows the widely used approach of von Neumann
architecture, where the central processing unit (CPU) and the memory unit function as individual
systems which are connected by a data bus. While the research on the CPU elements is very
active (and will be described later), the literature on spin-wave-based memory and interconnects
is limited [130–136]. Spin waves also show the possibility of interconnection with current
CMOS devices. Another way is to take advantage of the wave properties for the realization
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of analog computing, which has been used for tasks like data processing, prime factorization,
or Fourier transform [135, 137, 138]. Intensive studies are underway in quantum magnonics,
with work already done in single-magnon detection [139], Bose–Einstein condensation [140],
polarons [141], entangled magnons [142], photon-to-magnon coupling [143], and the coupling
with superconducting qubits [144]. Recently, the neural networks have received attention with
the increasing interest in the artificial intelligence all around the world. Here, the spin waves
seem to show potential for applications in neuromorphic computing [145–149] and reservoir
computing [150–152].

2.4.2 Spin-wave devices

The basis of any spin-wave device is a wave conduit. Low damping is essential in such systems
to be able to process the spin wave at a sufficiently long distance, therefore, the fabrication of
waveguides involves the materials like yttrium iron garnet (YIG) [153], Heusler alloys [154], and
magnetic atoms (Fe, Co, Ni) and their alloys such as permalloy (Ni80Fe20) [155], CoFeB, and
CoFe. They are usually magnetized in plane, but also the systems with out-of-plane magnetization
have been studied [156]. However, the main disadvantage of such systems is their relatively
higher damping. Another interesting proposal involves the use of domain walls as spin-wave
conduits [157, 158].

One of the key challenges is to be able to change the direction of spin-wave propagation.
This is usually done using curved waveguides [159, 160], also in three-dimensional systems
[161]. However, the curvature contributes to additional energy losses. They can be overcome
by different methods like graded index [162–164] or using spin textures [165]. The control of
spin-wave propagation can also be achieved by manipulating the dispersion relation, for example,
by using magnonic crystals (described in Section 2.3.4). Another important point is to gain the
possibility of the spin-wave amplification. This can be done by spin-transfer or spin–orbit torque
[166], spin-wave pumping by antenna [167], voltage-controlled magnetic anisotropy [168], or
magnetoelectric effect [169]. An alternative way to increase the spin-wave amplitude is to use
the spin-wave repeater [134, 170].

The circuits of the computing systems usually contain many different devices. The basic
device characteristic for the von Neumann architecture is the transistor, which acts both as a
switch and an amplifier. It was experimentally demonstrated for spin waves by Chumak et al.
[171, 172] in a macroscale YIG sample. Other typical devices are logic gates, which, for the
waves, seem to be more convenient than transistors. For the amplitude-based calculations, the
logic is based on Boolean logic, in particular, it can be reduced to only the NAND and NOR
gates, which are sufficient to design any logic operation. There are several demonstrations of
these gates for spin waves [168, 173–175], as well as other gates including NOT [173, 176],
XOR [176], XNOR [174–176], AND and OR [130]. Most of these devices are based on the
Mach–Zehnder interferometer which is controlled by the current [173, 174, 176], but there
are also proposals that rely on the voltage-controlled magnetic anisotropy [168, 175]. The
phase-based computations require a different type of logic gate, in particular the majority gate,
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which consists of three or more inputs and the result at its output depends on the phase of the
majority of the inputs, hence the name. After first theoretical proposals [170, 177], the spin-wave
majority gate has been experimentally demonstrated [178–180].

Important complementary devices to logic gates are phase shifters [181, 182], which provide
the possibility to manipulate the phase of the propagating wave. Another important device is an
adder, which makes it possible to perform a summation of numbers. There is an experimental
demonstration of a spin-wave half adder [183], as well as a design of a more complex ripple-
carry adder [184]. They are based on directional couplers, which give the ability to couple
the waveguides at a distance thanks to the dipolar interactions. The first spin-wave directional
couplers were proposed in the macroscale [185, 186], with later demonstration also in the
nanoscale [183, 187]. The other devices include diodes [P1] [188–191] and circulators [P1,P2]
[192], which increase the control of the spin-wave propagation, and multiplexers [193] and
demultiplexers [194], which enable frequency- and wavelength-based computations.

The next step in the spin-wave computing is to combine the devices into a spin-wave circuit.
Several proposals have been advanced [130, 132, 170, 195], however, we are still waiting for the
experimental demonstration. There are several challenges associated with the implementation of
the circuits. The design of a circuit requires the possibility to use the output as an input of another
device or even several devices, the output should not affect its original input, and the signal
should not degrade during the whole process [127]. Ensuring all these properties is a challenging
task for spin waves. On the one hand, the generally high damping of spin waves considerably
hampers the possibility of transmitting a signal of considerable amplitude through the whole
circuit without amplification. Moreover, the spin wave is several orders of magnitude slower than
the electrically-transmitted information. The isolation from the reverse signal between inputs and
output can be done using diodes, but they must have high transmission in the forward direction to
minimize losses. Another problem is the signal transfer from a single output to multiple inputs.
This can be done by converting to an electrical signal and then back to a spin wave, but this
requires significant signal amplitude at the input and can be effectively energy-consuming.





Chapter 3

Micromagnetic simulations

With the development of magnetism, the magnetic systems studied experimentally become more
and more complex in terms of the geometry and the magnetization configuration. Analytical
methods can usually provide only an approximate solution to the problem. As mentioned in
Chapter 2, even a problem as fundamental as spin-wave dynamics in the uniformly magnetized
thin ferromagnetic film requires solving a 6x6 matrix to obtain an exact solution, to say nothing
of verifying the performance of a spin-wave device. The use of numerical simulations offers the
possibility to study systems of considerable complexity and on a large scale. As the implementa-
tion is based on the general differential equations, such a model is a universal tool to calculate
different problems requiring only the change of system geometry and parameters. Thanks to the
rapid growth of the speed of computational units and algorithms, the numerical methods find the
continuously increasing attention not only in magnetism, but also in other fields of physics, as
well as in other areas of science and engineering. This Chapter presents the numerical simulation
tools that have found the attention of researchers in magnetism, especially those working in the
nano- and microscale, with a focus on the method and implementation used by the Author.

3.1 Numerical methods

Two different numerical methods, which found the implementation in the micromagnetism, can
be distinguished. The first is the finite-difference method. It is based on the approximation of the
differential equations to a system of linear equations. The continuous system is discretized with
a regular grid, representing the infinitesimal evolution by finite differences. The main advantage
of this method is its relative simplicity of implementation compared to other numerical methods.
However, one of the problems is the inaccurate discretization of curved geometries, as the system
can only be represented by cuboid elements. Moreover, the system with many bodies scattered in
the large area faces the calculation of large amount of unnecessary elements, as the whole volume
of the system must be calculated with a constant difference, so there is no possibility to reduce
the difference in the most important areas. In the micromagnetism, the most used numerical
tools taking advantage of the finite-difference method are MuMax3 [196] and OOMMF [197].
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The second method, which is also the method used in the Thesis, is the finite-element method.
In this case, the system is divided into irregularly shaped elements of different sizes. In two-
dimensional systems, these are usually triangles and quadrangles, while in three-dimensional
systems they are tetrahedrons and cuboids, which can be mixed together. Each element has
defined material parameters and physical properties.

The generation of the elements starts with the positioning of their nodes. The density of the
nodes is defined by the user. The objects that need to be calculated with high precision can be
meshed finer. On the other hand, areas of lesser importance can be meshed coarsely. In this way,
the computing power is allocated more effectively. This method shows its advantages in systems
with curved geometries, as the curvature can be reconstructed with good efficiency. Moreover,
the creation of the mesh with different sizes of elements allows of the proper discretization of
scattered systems and the capture of local effects.

In order to solve the problem, the system of partial differential equations is simplified to
algebraic equations (for the steady-state problems) or ordinary differential equations (for time-
evolving systems) which are then solved by numerical integration using techniques such as the
Runge–Kutta method. Another advantage is the possibility to solve the problem using the weak
formulation, in which the differential equations are transformed into integral equations. In this
way, the order of the equation can be reduced which allows the problem to be solved faster.

Among the finite-element method solvers dedicated for magnetism one can find tetmag2
[198], FinMag [199], Tetrax [200, 201], FastMag [202], or magnum.fe [203]. In addition, a
Micromagnetics module has been added to COMSOL Multiphysics [204].

In the studies presented in the Thesis, the implementation in COMSOL Multiphysics was used.
COMSOL Multiphysics is a commercial program made by COMSOL AB – a company founded
in 1986 in Stockholm, Sweden [205]. The first version of the program was released in 1998
under the name FEMLAB. It is a multipurpose software with the implementation of numerous
problems of physics, chemistry, and engineering. In addition to the basic Multiphysics module,
the current version has more than 30 additional modules covering the problems of mechanics,
electrodynamics, thermodynamics, hydrodynamics, wave physics, and chemical engineering.
The software covers the entire simulation process, from the preparation of the system (including
the generation of geometry and mesh, and the definition of materials, parameters, and physics),
through the solution of the problem, to the post-processing of the obtained results. All these
functionalities are available through a simple graphical user interface. A major advantage of
COMSOL is the ability to couple different physics modules and solve them together, allowing
the user to solve complex multi-physics problems. It also allows the user to define their own
system of equations.

In the following section, the implementations used in the studies of the Thesis are described
in detail.
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3.2 Implementation in COMSOL Multiphysics

The implementation was developed by scientists from the Department of Physics of Nanostruc-
tures, Faculty of Physics, Adam Mickiewicz University, Poznań, to which the Author belongs.
The authors of the current implementations are Piotr Graczyk, Grzegorz Centała, and the Author
himself. The authors of the previous versions—Michał Mruczkiewicz and Justyna Rychły-
Gruszecka—should also be mentioned, as their work significantly contributed to the development
of the currently used models. The implementation consists of many different models for different
geometries and has been improved over the years to include new physical phenomena. Parts of
the implementations have been presented in Refs. [84, 206–209].

Three different models have been used in the studies presented in the Thesis. In publications
[P1], [P2], and [P3], the linearized Landau–Lifshitz–Gilbert equation adapted to the Damon-
Eshbach geometry of spin waves is implemented in the two-dimensional model (Implementation
1). In publication [P4], the full Landau–Lifshitz–Gilbert equation is implemented in the two-
dimensional model (Implementation 2). In publications [P5], the full Landau–Lifshitz–Gilbert
equation is implemented in the three-dimensional model (Implementation 3).

The basis of each implementation described in this Thesis is the basic version of COMSOL.
No additional modules are needed. The implementation starts with the Landau–Lifshitz–Gilbert
equation (Eq. 2.30) and the dipolar field in the form of a magnetic scalar potential (Eq. 2.12).
Both are implemented using the Coefficient Form PDE1 interface.

Firstly, let’s focus on the COMSOL interface. The Coefficient Form PDE is an interface that
provides the possibility to implement the partial differential equations based on coefficients. The
implementation is based on the equation

ea
∂ 2u
∂ t2 +da

∂u
∂ t

+∇ · (−c∇u−αu+ γ)+β ·∇u+au = f (3.1)

where ea,da,c,α,γ,β ,a, f are the coefficients. Since the symbols of some of the coefficients are
the same as the parameters used in the Thesis, they are enclosed in square brackets for clarity,
e.g., [ea]. The form of the coefficients and other parameters depends on the implementation. All
three implementations are described in detail below.

Implementation 1 (publications P1, P2, and P3)

In Implementation 1, the Landau–Lifshitz–Gilbert equation is solved with the effective magnetic
field in the form:

Heff = H0ẑ+
2Aex

µ0M2
s

∇2M+
2D

µ0M2
s

ẑ× ∂M
∂x

+
2Ku

µ0M2
s

Myŷ−∇ϕ, (3.2)

1For clarity, the COMSOL functions have been written in sans-serif font and the expressions in monospace font.
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with ∇ = (∂x,∂y), while the equation for the magnetic scalar potential in the form

∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 =−∂mx

∂x
− ∂my

∂y
(3.3)

inside the magnetic material and
∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 = 0 (3.4)

outside the magnetic material.
The coefficients in the Coefficient Form PDE for the Landau–Lifshitz–Gilbert equation are

defined as follows

[c] =
0 P*Aex

-P*Aex 0

[a] =
0 gamma*mu0*H0-P*Koop+P*Kip

-gamma*mu0*H0-P*Kip 0

[ f ] =
gamma*mu0*Ms*phiy

-gamma*mu0*Ms*phix

[da] =
1 alpha

-alpha 1

[β ] =

P*D 0
0 0

0 P*D
0 0

where [u] = (Mx,My)
T → (m1,m2)T and [∇] = (∂x,∂y), Ms is the saturation magnetization Ms, Aex

is the exchange constant Aex, gamma is the gyromagnetic ratio γ , mu0 is the vacuum permeability
µ0, alpha is the damping constant α , Koop is the out-of-plane anisotropy KOOP, Kip is the in-
plane anisotropy KIP (the last two are defined as uniaxial anisotropies Ku in different directions),
D is the DMI constant D, and P is the proportionality constant 2γ/Ms. All other coefficients are
set to zero. In the main node, the unit of the dependent variable is defined as A m−1, while the
unit of source as A m−1 s−1.

Note that the dependent variables sometimes appear with an additional letter at the end, e.g.,
m1y or phix. This is COMSOL abbreviated notation of the derivative, e.g., m1y is ∂mx/∂y and
phix is ∂ϕ/∂x.

In the Coefficient Form PDE node for the magnetic scalar potential, there must be two
internal Coefficient Form PDE nodes. In the first one, only the ferromagnetic materials should
be selected in the geometry. Here, the coefficients have the form

[c] = 1
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[γ] =
m1

m2

In the second Coefficient Form PDE node, only the non-magnetic materials in the geometry
should be selected and

[c] = 1

All other coefficients are set to zero. In this case, [u] = ϕ → phi. In the main node, the unit
of the dependent variable is defined as A, while the unit of the source is defined as A m−2.

The free boundary conditions at the magnetic material boundaries are automatically satisfied
by the Zero Flux node.

Additionally, in the Coefficient Form PDE interface for the magnetic scalar potential, a
Dirichlet Boundary Condition with ϕ = 0 is added to the top and the bottom boundary of the
computational cell. This is done by checking the box Prescribed value of phi and writing 0 in the
field of the parameter [r]. This condition guarantees that the magnetic field far from the magnetic
material is equal to zero.

Eigenfrequency study

The geometry in these studies consists of Rectangle nodes. Due to the implementation of
the Bloch boundary conditions, the width of all rectangles is constant. It is set to 5π nm.
Thus, the reciprocal-space vector is integer and is equal to k = 400rad/µm. Apart from the
Rectangle nodes for the ferromagnetic layers, the Rectangle representing the non-magnetic
surrounding (which includes the non-magnetic layers and the air around) is required for the
correct distribution of the dipolar field. The height of the non-magnetic region should be at
least two wavelengths of the longest calculated wave (excluding the ferromagnetic resonance of
λ → ∞), for example, if the minimum calculated wavevector is 1rad/µm, then the cell should
have the height h ≥ 2λmax = 4π/kmin ≈ 12.5µm. The ferromagnetic layers should be placed in
the center of the non-magnetic area.

The simulations of the eigenproblem require the implementation of the Bloch boundary
conditions. They are implemented using the Pointwise Constraint boundary node in the Co-
efficient Form PDE interface and the Linear Extrusion coupling operator in Definitions. The
function implemented in the Pointwise Constraint node is, for the example of mx component,
linext1(m1)-m1*exp(i*k*a) in the Constraint expression field and test(linext1(m1)*
exp(i*k*a)-m1) in the Constraint force expression field, where linext1 is the automatic
name of the first Linear Extrusion operator created in the program, k is the wavevector, a is
the width of the calculation cell, and test is the test function in the weak form formulation.
The implementation of the Linear Extrusion operator is shown in Figure 3.1a for an example
from publication [P1]. The image shows the geometry of the system, which consists of 5 gray
rectangles. The two rectangles with the dot in the middle represent the ferromagnetic layers.
The implementation is shown for the Co layer. In the Linear Extrusion, the orange boundary is
selected. The Source Vertices are marked in purple while the Destination Vertices are marked in
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orange. The order of the vertices is important. If the Source vertex 1 is the top purple vertex,
then Destination vertex 1 must be the top orange vertex. Next, in the Pointwise Constraint node,
the boundary placed between the orange vertices is selected. The Linear Extrusion operators and
Pointwise Constraint nodes must be applied to each ferromagnetic layer touching the left and
right sides of the geometry, separately for the m1 and m2 variables, in the Coefficient Form PDE
interface for the Landau–Lifshitz–Gilbert equation and for the whole geometry for the variable
phi in the Coefficient Form PDE interface for the magnetic scalar potential.

To study of the dispersion relation, the Study node contains the Eigenfrequency study with
Search for eigenfrequencies around taken to value of 1 Hz and Eigenfrequency search method
around shift is set to Larger real part. This will filter out the possible numerical errors. The
Parametric Sweep with the sweep over the wavevector k is added to the study. In the Parameter
value list, the function range(-pi/a,0.01*pi/a,pi/a) (which is 101 steps between the edges
of the Brillouin zone) is set, where the following values give the start, step, and stop of the range
function. Predefined settings in the Solver Configurations are used.

In the publication [P3], the RKKY interaction is also added. The first step, the Linear
Extrusion coupling operator, is similar to the Bloch boundary conditions, but instead of being
used at the left and right boundaries, it is used at the inner boundaries of the double-layer system.
Let the Linear Extrusion operator be named linextTop for the top layer and linextBottom for
the bottom layer. For the RKKY interaction, the Flux/Source boundary node is used instead of
the Pointwise Constraint node. The coefficient in the Flux/Source for the bottom boundary of
the top layer has the form

[g] =
P/2*J*(linextBottom(m2)-m2)

-P/2*J*(linextBottom(m1)-m1)

where J is the RKKY constant A12. The coefficient [q] is set to zero. A similar Flux/Source node
should be applied to the top boundary of the bottom layer, only by replacing linextBottom
with linextTop.

Time-domain study

Similar to the eigenfrequency study, the geometry in the time-domain study consists of Rectangle
nodes. The rules for height are the same. In the case of the width, it must be enough to cover all
the required elements such as the resonator in [P2], the antenna (tens of nanometers), the area
to measure the spin-wave intensity (a few spin-wave wavelengths), and the area with increased
damping to suppress the spin wave and prevent the reflection from both edges (at least one
spin-wave wavelength from both sides). Also, the antenna must be added as an additional
Rectangle. Its width should not be larger than half of the wavelength.

Damping near the boundary is implemented using Ramp functions in Definitions. In the
Slope field, the value should be equal to at most 1/λ , but can be smaller for better spin-wave
attenuation. Let the Ramp functions be named leftRamp and rightRamp, with the Location field
marking the left and right sides of the geometry. To implement the damping boundary conditions
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(a) (b)

Figure 3.1 (a) Screen from the COMSOL program for the Eigenfrequency study in publication [P1]. It
shows the geometry as viewed from the Linear Extrusion operator. (b) Screen from the COMSOL program
showing the geometry of the system investigated in publication [P5].

for the equations in the Coefficient Form PDE for the Landau–Lifshitz–Gilbert equation, they
are added to the Source node. It says

[ f ] =
rightRamp(x)*m2t+(1-leftRamp(x))*m2t

-rightRamp(x)*m1t-(1-leftRamp(x))*m1t

The antenna is also added as another Source node to the Coefficient Form PDE for the
Landau–Lifshitz–Gilbert equation. Assuming that the excitation antenna generates the ac
external magnetic field of the amplitude hac = (hx,hy)→ (h1,h2), it is implemented as

[ f ] =
-gamma*mu0*Ms*h2*sin(2*pi*fr*t)

gamma*mu0*Ms*h1*sin(2*pi*fr*t)

where fr is the excitation frequency which should be defined in Global Definitions>Parameters.
The Study node contains the Time Dependent study. The Times field should be set to cover

the spin-wave propagation through whole system with a constant step. For this purpose, it
is good to use the range function. For example, in publication [P1] the Times field is set to
range(0,0.01,3) with Time unit set to ns. Predefined Solver Configurations are used.

Implementation 2 (publication P4)

In Implementation 2, the Landau–Lifshitz–Gilbert equation is solved with the effective magnetic
field in the form:

Heff = H0x̂+
2Aex

µ0M2
s

∇2M+
2KPMA

µ0M2
s

Mzẑ+
2KIMA

µ0M2
s

Mxx̂−∇ϕ, (3.5)
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while the equation for the magnetic scalar potential in the form

∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 =−∂mx

∂x
− ∂my

∂y
(3.6)

inside the magnetic material and
∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 = 0 (3.7)

outside the magnetic material.
The coefficients in the Coefficient Form PDE for the Landau–Lifshitz–Gilbert equation are

defined as follows

[c] =

0 P*Aex*m3 -P*Aex*m2

-P*Aex*m3 0 P*Aex*m1

P*Aex*m2 -P*Aex*m1 0

[a] =

0 gamma*mu0*Hz0 -gamma*mu0*Hy0

-gamma*mu0*Hz0 0 gamma*mu0*Hx0

gamma*mu0*Hy0 -gamma*mu0*Hx0 0

[ f ] =

gamma*mu0*m3*phiy

-gamma*mu0*m3*phix

gamma*mu0*(m1*phiy-m2*phix)

[da] =

1 alpha*m3/Ms -alpha*m2/Ms

-alpha*m3/Ms 1 alpha*m1/Ms

alpha*m2/Ms -alpha*m1/Ms 1

where [u] = (Mx,My,Mz)
T and [∇] = (∂x,∂y,∂z), Hx0,Hy0,Hz0 are the x-, y-, and z-components

of the external field, and P is the proportionality constant, which in this case is different from the
Implementation 1 and is equal to 2γ/M2

s .
Magnetic anisotropy is implemented separately using a Source node, which is implemented

on the magnetic domain where the anisotropy is present. It is added as an extra term to [ f ] as

[ f ] =

P*Ku*(nK1*m1+nK2*m2*nK3*m3)*(nK2*m3-nK3*m2)

P*Ku*(nK1*m1+nK2*m2*nK3*m3)*(nK3*m1-nK1*m3)

P*Ku*(nK1*m1+nK2*m2*nK3*m3)*(nK1*m2-nK2*m1)

where nK1,nK2,nK3 are the x-, y-, and z-components of the anisotropy vector u as defined in
Section 2.1.4.

In Implementation 2, the implementation of the magnetic scalar potential is identical to
Implementation 1.

The geometry of the system is created in the same way as the eigenfrequency study in
Implementation 1. The same applies to the implementation of the free boundary conditions,
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Dirichlet boundary conditions, and Bloch boundary conditions. In the case of the Bloch boundary
conditions, one must not forget about the implementation for the variable m3, which is analogous
to m1 and m2.

Relaxation of magnetic state

For the relaxation of the magnetic state, the Study node contains the Time Dependent study.
In all cases, the Times field is set to 1000 ns. This value is sufficient to completely relax the
system. The Relative tolerance is set to 0.0001. In the Solver Configurations > Solution >
Time-Dependent Solver > Direct node, the PARDISO solver is used.

An important element of the Time Dependent study of the relaxation is the choice of the
parameter coupling. This can be set in Solver Configurations > Solution > Time-Dependent
Solver node. One option is the Fully Coupled node, where all variables are solved together. The
other is the Segregated node, where the calculation of a step can be divided into substeps for
certain groups of variables. The optimal method of simulating the relaxation is to start with
the Segregated node enabled, with the first step calculating m1, m2, and m3, and the second step
calculating only phi, and then switching to finish with the Fully Coupled node enabled. The
change of the nodes should happen at the moment when the magnetic state is about to reach the
final state. It is because the simulation with the Segregated node is faster but at some point, the
simulation time step often can’t increase beyond a certain value, which is not the case for the
Fully Coupled node.

For the study of the relaxation, the damping parameter alpha must be set to a high value
between 0.5 and 1.

In the Coefficient Form PDE for the Landau–Lifshitz–Gilbert equation, it is useful to define
the initial state in the Initial Values node.

Eigenfrequency study

For the study of the dispersion relation, the Study node contains the Eigenfrequency study and
the implementation is analogous to Implementation 1. However, there is an important difference
as the final magnetic state from the relaxation has to be used. To do this, in the Values of the
linearization point, the Settings field should be set to User controlled, the Method field to
Solution, from the Study field, the study with the magnetic state relaxation should be selected,
and the Time field should be set to Last.
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Implementation 3 (publication P5)

In Implementation 3, the Landau–Lifshitz–Gilbert equation is solved with the effective magnetic
field in the form:

Heff = H0 +
2Aex

µ0M2
s

∇2M+
2KPMA

µ0M2
s

Mzẑ−∇ϕ+

+
2D

µ0M2
s

(
∂Mz

∂x
x̂+

∂Mz

∂y
ŷ−

(
∂Mx

∂x
+

∂My

∂y

)
ẑ
)
,

(3.8)

while the equation for the magnetic scalar potential in the form

∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 =−∂mx

∂x
− ∂my

∂y
(3.9)

inside the magnetic material and
∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 = 0 (3.10)

outside the magnetic material.
The coefficients in the Coefficient Form PDE for the Landau–Lifshitz–Gilbert equation are

defined as follows

[ f ] =

gamma*mu0*(m2*phiz-m3*phiy)

gamma*mu0*(m3*phix-m1*phiz)

gamma*mu0*(m1*phiy-m2*phix)

[α] =

-P/2*D*m3 0 0
0 0 0
0 -P/2*D*m2 -P/2*D*m3

0 -P/2*D*m3 0
0 0 0
0 0 0

P/2*D*m1 P/2*D*m2 0
0 0 0
0 0 P/2*D*m3
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[β ] =

P/2*D*m3 0 -P/2*D*m1
0 0 0
0 0 0

0 P/2*D*m3 -P/2*D*m2
0 0 0
P/2*D*m2 -P/2*D*m1 0

0 0 0
0 0 0
P/2*D*m3 0 -P/2*D*m1

where [u] = (Mx,My,Mz)
T and [∇] = (∂x,∂y,∂z), and P = 2γ/M2

s is a proportionality constant.
The implementation of the coefficients [c], [a], and [da], as well as the implementation of the
magnetic anisotropy as an additional Source node, is identical to Implementation 2.

In the Coefficient Form PDE node for the magnetic scalar potential, there must be two
internal Coefficient Form PDE nodes. In the first one, only the ferromagnetic materials should
be selected from the geometry. Here, the coefficients have the form

[c] = 1

[γ] =
m1

m2

m3

In the second Coefficient Form PDE node, only the non-magnetic materials in the geometry
should be selected and

[c] = 1

All other coefficients are set to zero.
The geometry of the system follows the rules analogous to Implementations 1 and 2, but

for the three-dimensional system. The Rectangle elements are replaced by the Block elements.
Additionally, in the study presented in publication [P5], as shown in Figure 3.1b, two Cylinder
elements are used. One, barely visible at this scale, is used to create a nanodot. The second
Cylinder element replaces the Rectangle node for the non-magnetic area. The bases of the
Cylinder are where the Bloch boundary conditions are applied. The Dirichlet boundary condition
is applied on the side of the Cylinder.

The implementation of the free boundary conditions, Dirichlet boundary conditions, and
Bloch boundary conditions is created in the same way as in the eigenfrequency study in Imple-
mentation 1.

All studies in Implementation 3 are identical to Implementation 2 and the rules presented in
the subsections Relaxation of magnetic state and Eigenfrequency study should be followed.





Chapter 4

Research

In this Chapter, I present the results of my studies on the impact of the interactions between
ferromagnetic layers on the spin-wave dynamics in the form of five research articles. Four
of these articles have been published in peer-reviewed journals, while the last one has been
published as a preprint and is currently under review. Each research article is preceded by an
introduction describing the main results of the article and the contribution of the Author. The
Chapter ends with the presentation of the outlook and other studies carried out during the doctoral
studies.

4.1 [P1] Spin-wave diode and circulator based on unidirec-
tional coupling

The Dzyaloshinskii–Moriya interaction leads to the non-reciprocity of the dispersion relation
of a thin film in the Damon–Eshbach configuration as shown in Figure 2.6f, while the other
interactions do not. The idea of this paper was to study a double-layer system where one layer is
in contact with a heavy metal layer inducing DMI while the other layer is not. In such a case, the
dispersion relation of the first layer is asymmetric, while the second is symmetric. The main point
was to select the layers so that on one side of the dispersion relation, the branches of isolated
layers are far apart, while on the opposite side of the dispersion, the branches cross or even
overlap in the wide frequency range. As shown in Figure 2.7b, the interaction between the spin
waves in a heterogeneous double-layer system is the strongest at the crossing of the dispersions
of isolated layers, or at least when they are close to each other. Therefore, in this system, the
layers should interact strongly with each other for the spin waves propagating in one direction,
while they will interact weakly in the opposite direction. We called this effect the unidirectional
coupling. It was successfully obtained in the multilayer system Py(3)/NM(5)/Co(2)/Pt1, where
it was observed in a very wide frequency range of about 10 GHz. The asymmetric character
of the effect suggested its possible use in the design of non-reciprocal devices, which task was

1NM is the non-magnetic layer, numbers in brackets are thicknesses of layers in nanometers
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perfomed as well. The designs of a spin-wave diode and a spin-wave circulator of nm size were
demonstrated. The design of the diode was possible thanks to the high damping usually present
in the Co/Pt systems. In the diode forward direction, the spin wave was not coupled between the
layers and passed through the system. In the reverse direction, the spin wave was transmitted
from Py to Co and strongly attenuated there, so that the transmission was very low. For the
spin-wave circulator, the four-port circulator was demonstrated and the design of the three-port
circulator was proposed. It was also shown that these devices can work efficiently in a wide
range of frequencies.

Contribution of the Author

In this publication, I have participated in all steps, starting from the idea, the problem definition
(together with M. Krawczyk and G. Gubbiotti), the execution of all numerical simulations,
their interpretation and discussion (together with all co-authors), the preparation of the whole
manuscript, the submission of the manuscript and the correspondence with the journal.
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In magnonics, a fast-growing branch of wave physics characterized by low energy consumption, it is
highly desirable to create circuit elements useful for wave computing. However, it is crucial to reach the
nanoscale so as to be competitive with the electronics, which vastly dominates in computing devices.
Here, based on numerical simulations, we demonstrate the functionality of the spin-wave diode and the
circulator to steer and manipulate spin waves over a wide range of frequency in the GHz regime. They
take advantage of the unidirectional magnetostatic coupling induced by the interfacial Dzyaloshinskii-
Moriya interaction, allowing the transfer of the spin wave between thin ferromagnetic layers in only one
direction of propagation. Using the multilayered structure consisting of Py and Co in direct contact with
heavy metal, we obtain submicrometer-size nonreciprocal devices of high efficiency. Thus, our work con-
tributes to the emerging branch of energy-efficient magnonic logic devices, giving rise to the possibility
of application as a signal-processing unit in the digital and analog nanoscaled spin-wave circuits.

DOI: 10.1103/PhysRevApplied.14.034063

I. INTRODUCTION

A diode and a circulator are electronic and microwave
components, which have found wide applications in many
devices for signal processing. A diode allows the flow of
signal in only one direction, and for microwaves, it is also
known as an isolator. It already has equivalents in optics
[1], heat transfer [2,3], acoustics [4,5], and spin Seebeck
effect [6]. Diodes for spin waves (SWs) relying on the
dipolar [7–9] or interfacial Dzyaloshinskii-Moriya interac-
tion (IDMI) [10] were recently proposed. In circulators, the
signal going from one port is always directed only to the
nearest port, according to the same sense of rotation. It usu-
ally consists of three or four ports. Apart from microwaves
and photonics, where the circulators have found applica-
tions [11–14], they have been recently demonstrated also
for acoustic waves [15], while a demonstration for SWs
is still missing. Circulators used in industry are mostly
macroscopic devices. Their miniaturization with the pos-
sibility of implementation to real-life systems is a crucial
point of the present studies.

*krzysztof.szulc@amu.edu.pl
†krawczyk@amu.edu.pl

Antisymmetric exchange interaction was described by
Dzyaloshinsky [16] and Moriya [17] about 60 years ago.
Recently, it has found interest due to induced chirality of
the magnetization configuration [18,19] and nonreciproc-
ity in the SW propagation [20–25]. The DMI can exist in
bulk noncentrosymmetric crystals [26] or at the interface
between ferromagnetic and heavy-metal layers (IDMI).
The IDMI is of high interest due to a larger DMI constant
value [27,28], flexibility in shaping its strength, and the
possibility of working at the nanoscale.

In this paper, we propose a layered sequence of ultrathin
ferromagnetic films where the presence of IDMI over one
layer leads to asymmetric or even unidirectional coupling
of SWs between the layers. Interestingly, the multilayer
composition can work as a SW diode or a three- or four-
port SW circulator, in dependence on the particular struc-
turization. The proposed SW diode, based on Py (Ni80Fe20)
and Co ultrathin films, offers isolation of SW signal in
the reverse direction reaching 22 dB with respect to the
transmission in the forward direction. From the application
point of view, the functionality of the device is preserved
for a broad GHz-frequency range. We investigate the cou-
pling between SWs in a heterogeneous ultrathin bilayer
by numerical frequency-domain and time-dependent sim-
ulations. Then we discuss the coupling strength and the

2331-7019/20/14(3)/034063(12) 034063-1 © 2020 American Physical Society
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spin-wave propagation

(a)

(b)

H

M

FIG. 1. (a) Schematic representation of the multilayer stack
and the geometry considered. The layer sequence consists of two
ferromagnetic films, FM1 and FM2, separated by the nonmag-
netic layer (NM). In FM2, the IDMI is induced by the proximity
with the heavy metal (HM). Generally, this structure under-
lies the unidirectional coupling in a wide range of frequency.
(b) Definition of the transmission lengths xtr and xtr2 on the basis
of the SW in the coupled FM bilayer system.

SW transmission between the layers in the framework
of the coupled-mode theory. Finally, we present possi-
ble realizations of the SW devices—the SW diode and
the four-port circulator, with in-depth analysis of their
efficiency.

The considered multilayer stack consists of two ferro-
magnetic (FM) layers separated by a nonmagnetic spacer,
and heavy-metal layer in contact with one of the FM
layers [Fig. 1(a)]. We consider SW propagation in the
Damon-Eshbach geometry, where the magnetization M
and the external magnetic field H0 are aligned in plane
of the films and perpendicular to SW propagation defined
by the wavevector k.

II. THEORETICAL MODEL

Magnetization dynamics in the systems under investiga-
tion are described by the Landau-Lifshitz-Gilbert equation:

∂M
∂t

= −γμ0M × Heff + α

MS
M × ∂M

∂t
, (1)

where M = (mx, my , mz) is the magnetization vector, γ is
the gyromagnetic ratio, μ0 is the magnetic permeability of
vacuum, and Heff is the effective magnetic field, which is
given as follows:

Heff = H0ẑ + 2Aex

μ0M 2
S
∇2M + 2D

μ0M 2
S

(
ẑ × ∂M

∂x

)
− ∇ϕ,

(2)

where Aex is the exchange stiffness constant, D is the IDMI
constant, and ϕ is the magnetic scalar potential fulfilling

Maxwell equations in a magnetostatic approximation:

∇2ϕ = ∇ · M. (3)

Equations (1) and (3) are solved numerically in the
linear approximation, i.e., assuming mx, my � mz ≈ MS,
where MS is saturation magnetization, using the finite-
element method in COMSOL Multiphysics environment
[29]. Frequency-domain simulations are carried out to cal-
culate the SW dispersion relation in the system of coupled
FM layers. Time-domain simulations are performed to
demonstrate the functionality of the designed devices. A
dynamic magnetic field is used to excite the system sinu-
soidally at the desired frequency. We use triangular mesh
with a maximum element size of 1 nm inside the FM lay-
ers and a growth rate of 1.15 outside of the FM layers.
We assume that the NM spacer is made from a dielectric
material. The metallic layer, such as Cu or Au, can screen
the dipolar microwave field [30], causing the reduction of
the dipolar interaction between the layers and changing the
dispersion relation. However, the effect is negligible for the
thin spacer.

In the first step of calculations, we consider a multilayer
of the Py(3 nm)/NM(5 nm)/Co(2 nm)/Pt composition.
For the Co layer we assume MS = 956 kA/m, exchange
stiffness constant Aex = 21 pJ/m [31], Gilbert damping
constant α = 0.05, IDMI constant D = −0.7 mJ/m2 [32],
and for Py layer MS = 800 kA/m, Aex = 13 pJ/m, α =
0.005, D = 0. External static magnetic field H0 is fixed to
50 mT.

A. Coupled-mode theory with damping

The SWs propagating in the system composed of two
FM layers separated by a NM layer are magnetostatically
coupled. We can describe this phenomenon using general
coupled-mode theory [33,34] based only on the wave prop-
erties. To describe the interaction between propagating
modes, we use coupling-in-space formalism. The differen-
tial equation describing the scalar wave ψl propagating in
a single layer l is

dψl

dx
= −iβlψl, (4)

with

βl = k′
l − iαlk′′

l (5)

denoting the complex wavevector, where the real part cor-
responds to the propagation, and the imaginary part to the
attenuation of the wave. For the waves propagating in two
coupled layers, we get the mutually dependent differential
equations:

dψ1

dx
= −iβ1ψ1 + κ12ψ2, (6)
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dψ2

dx
= −iβ2ψ2 + κ21ψ1, (7)

where for the codirectional coupling, i.e., coupling of the
waves propagating in the same direction

κ12 = −κ21 = 1
2
(|kP − kCP| − |k1 − k2|) (8)

are the coupling coefficients. kP and kCP are wavevectors
of the in-phase and in-counterphase modes of the coupled
bilayered system, respectively. Generally, the waves can
be described by the complex numbers with the coupling
magnitude described with the right side of Eq. (8). In our
case, we are only interested in the magnitude of coupling,
and not the phase of the wave, which derives from the
argument of κ12.

The system of differential equations [Eqs. (6) and (7)]
can be reduced to the homogeneous linear equations.
Assuming that the solutions are in the form of e−iβx, the
solvability condition requires that

β2 − (β1 − β2)β + (β1β2 + κ12κ21) = 0. (9)

The solutions of this equation are

β± = β̄ ± B, (10)

where

β̄ = β1 + β2

2
, B =

√
	β2 + |κ12|2, and

	β = β1 − β2

2
.

Substituting the solutions of Eq. (10) to Eqs. (6) and (7)
and assuming the initial conditions as ψ1(0) = A and
ψ2(0) = 0, we end with the general solutions for the
coupled wave functions

ψ1(x) = A
(

cos Bx − i
	β

B
sin Bx

)
e−iβ̄x, (11)

ψ2(x) = A
κ21

B
sin Bx e−iβ̄x. (12)

In the synchronous state k′
1 = k′

2 = k′, so we can determine
transmission length xtr of the wave from layer 1 to layer 2
[see Fig. 1(b)] from zeroing of the term in the brackets in
Eq. (11):

xtr = 1
B

(
π

2
− arctan

i	β
B

)
. (13)

In the synchronous state, 	β = −i(α1k′′
1 − α2k′′

2), so the
term in the arctangent is real. In the case when the wave is
transferred from the layer with lower damping to the layer
with higher damping, the transmission length becomes
larger, while in the opposite case, it becomes smaller. If
−	β2 > |κ12|2, then the parameter B becomes imaginary,
and if α1k′′

1 < α2k′′
2 then xtr < 0 and complete transmission

cannot be achieved (the structure behaves like an over-
damped harmonic oscillator), while if α1k′′

1 > α2k′′
2 then

xtr > 0 and complete transmission can be achieved but
only once.

We can also extract “there and back transmission” length
xtr2 considering the length at which the wave transfers from
layer 1 to layer 2 and then transfers back from layer 2 to
layer 1 [see Fig. 1(b)]. The solution comes from zeroing of
the sine term in Eq. (12). The lowest positive solution is

xtr2 = π

B
. (14)

At this point, we have to introduce the SW parameters
to the coupled-mode theory. Knowing that ω′ = vphk′ and
ω′′ = vgrk′′ [35], where vph is the phase velocity and vgr –
the group velocity of the SW, Eq. (5) is transformed into

βl = 1
vph,l

ω′
l − iαl

vgr,l
ω′′

l , (15)

where the real ω′ and imaginary ω′′ parts of the frequency
of a single layer in the Damon-Eshbach geometry are
defined as [21,35]

ω′ = γμ0

⎛
⎝

√(
H0 + MS

4
+ 2Aex

μ0MS
k2

) (
H0 + 3MS

4
+ 2Aex

μ0MS
k2

)
− e−4|k|dM 2

S

16
(
1 + 2e2|k|d) + 2D

μ0MS
k

⎞
⎠ , (16)

ω′′ = γμ0

(
H0 + MS

2
+ 2Aex

μ0MS
k2 + 2D

μ0MS
k
)

. (17)
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The value of the κ12 is determined from the dispersion rela-
tion of the coupled bilayer system obtained in the numer-
ical simulations. The parameters in Eq. (8) are calculated
for the given frequency ω′.

B. Coupling parameters

To describe the coupling between the SWs propagating
in a bilayered structure, we define the two coupling param-
eters between the FM layers. The first is the power-transfer
factor FP, which relies upon the dispersion relation. From
the coupled-mode theory, we get that the power-transfer
factor is [34]

FP = f 2
coup

f 2
coup +	f 2 , (18)

where

	f = |f1 − f2|, and (19)

fcoup = fP − fCP −	f , (20)

f1 = ω1/2π , f2 = ω2/2π are frequencies of the SWs in the
single layers, fP and fCP are frequencies of SWs, related to
the in-phase and in-counterphase oscillations of the ampli-
tude in the coupled layers, respectively, discussed later in
more details.

The second parameter is the energy-distribution factor
FE . We assume that the mode energy of fully coupled
SWs is shared equally between both FM layers. The mode
energy for uncoupled SWs is accumulated only in one of
the layers. The total energy density in the ith layer is

Ei = Ei,dip + Ei,ex, (21)

where the dipolar-energy density Edip is defined as

Ei,dip = 1
Li

1
2μ0

∫∫
Si

m · ∇ϕ dy dx, (22)

and the exchange-energy density Eex

Ei,ex = 1
Li

Aex

M 2
S

∫∫
Si

(∇m)2 dy dx, (23)

where Li is the length of the FM layer in the simulations,
Si = diLi, where di is the thickness of FM layer, and m =
(mx, my) is a dynamical component of the magnetization.

The energy-distribution factor is defined as follows:

FE = 1 − 1
2

∣∣∣∣EP
1 − EP

2

EP
1 + EP

2

∣∣∣∣ − 1
2

∣∣∣∣ECP
1 − ECP

2

ECP
1 + ECP

2

∣∣∣∣ . (24)

Values of FP and FE are in the range [0,1], where we inter-
pret 0 as no coupling and 1 as a full coupling between SWs
propagating in the FM layers.

III. RESULTS

A. Unidirectional coupling in the wide range of
frequency

The first step of the investigation of the SW dynamics
is the calculation of a dispersion relation. In Fig. 2, we
plot the dispersion relations of the Py(3)/NM(5)/Co(2)/Pt
multilayer (solid lines) and uncoupled Co(2)/Pt (dashed
lines) and Py(3) (dotted lines) layers for two different
values of IDMI constant. For D = 0 [Fig. 2(a)] all disper-
sion relations are almost symmetric with respect to k = 0
with only small asymmetry related to dipolar interaction.
A small change of the dispersion relation for the multi-
layer, in comparison to the uncoupled layers, is the effect
of weak coupling between the FM layers. Taking the
nonzero IDMI constant, we introduce strong nonreciproc-
ity to the SW dispersion of the mode related to the Co
layer. Interestingly, for D = −0.7 mJ/m2 [see Fig. 2(b)]
the dispersion relation for the Co layer almost overlaps
with the dispersion relation for Py in the broad range of
positive wavevector. Since both modes have almost the
same frequency (resonance) and wavevector (phase match-
ing), one can expect strong interaction between them in
the multilayer system [34]. Two interacting modes are
hybridized forming collective excitations, with in-phase (at
frequency fP) [see inset 3 in Fig. 2(b)] and in-counterphase
(at frequency fCP) [see inset 4 in Fig. 2(b)] SW modes
at a higher and lower frequency, respectively [29,36].
Indeed, we can see the repulsion of the dispersion branches
related to the in-phase and in-counterphase modes for pos-
itive k in the multilayer [see the red and blue curves
in Fig. 2(b)], being the effect of strong dipolar coupling
between modes in Py and Co. For the negative wavevec-
tors, the dispersions for the uncoupled FM layers are well
separated, and in the multilayer, they follow the same
lines pointing at the weak coupling between FM layers
[see insets 1 and 2 in Fig. 2(b)]. Comparing both dis-
persions in Figs. 2(a) and 2(b), we conclude that adding
IDMI to the Co layer can lead to strong SW coupling
between FM layers for the waves propagating in one (+k)
direction, while in the structure without IDMI, the cou-
pling is weak and symmetrical. The general procedure
for achieving unidirectional coupling is described in the
Appendix.

At this point, we can look at the SW propagation in the
Py(3)/NM(5)/Co(2)/Pt multilayer. The model of the inves-
tigated structure is shown in Fig. 2(c). The antenna located
in the Py layer excites the SW at 15.2-GHz frequency.
Over the antenna, we made the indent in the Co/Pt layer to
avoid the excitation coming from the dipolar field. It comes
from the dispersion relation in Fig. 2(b) that a SW propa-
gating in +x direction should be influenced by the strong
coupling between Co and Py layer while propagating in
−x direction should go through the Py layer only weakly
interacting with the Co layer. Indeed, on the right side
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(a)

(c)

(b)

FIG. 2. (a),(b) Dispersion relation of SWs as a function of wavevector k in the Py(3)/NM(5)/Co(2)/Pt multilayer for the IDMI
constant in the Co layer (a) D = 0 and (b) D = −0.7 mJ/m2. For reference, we show the dispersion relation of SWs in the uncoupled
Pt/Co and Py layers with dashed and dotted lines, respectively. In the insets in (b), we show the mx amplitude of the SWs propagating
in both directions at 15.2 GHz. For D = 0, the dispersion relation is almost symmetrical with respect to k = 0. For D = −0.7 mJ/m2,
the IDMI breaks the symmetry leading to strongly coupled modes in the +k range (insets 3 and 4) and single-layer excitation in
the −k range (insets 1 and 2). The highest coupling occurs in the region of overlapping of the dispersion relation of the uncoupled
layers. (c) Propagation of the SW at 15.2-GHz frequency in the Py(3)/NM(5)/Co(2)/Pt multilayer. The antenna is located in the Py
layer, below the indent in the Co/Pt layer. SW propagating in the +x direction transfers back and forth between Py and Co layer. The
transmission to the Co layer in the −x direction is weak, and most of the SW intensity remains in the Py layer.

of Fig. 2(c) a SW appears alternately in Co and Py layer
being the effect of the interference between in-phase and
in-counterphase modes. On the left side, most of the SW
intensity remains in the Py layer, with only weak transfer
to the Co layer being the effect of weak dynamic coupling.
We term this effect as a unidirectional coupling.

For further investigations, the determination of the SW
coupling in a broad spectrum is the crucial point. For
this purpose, we use the coupling parameters defined in
Eqs. (18) and (24). In Fig. 3, we plot FP (vertical axis) and
FE (color of the points) in the Pt/Co(2)/NM/Py(3) multi-
layer with D = −0.7 mJ/m2 for different thicknesses of
NM layer in dependence on the wavevector of the SW.
On the positive k side, both coupling parameters are very
close to the maximum value in the range between two
dispersion crossing points (1.6 × 107 and 6.3 × 107 m−1).
That means the SWs are nearly fully coupled in a wide
range of wavevector and frequency. On the negative k side,
the coupling is significant only in the long-wavelength
range, reaching its maximum for k ≈ −2 × 107 m−1. The
increase of the thickness of the NM spacer leads to a
decrease of coupling parameters, except the range of strong
coupling between the dispersion crossing points. It is

ascribed to the weaker dipolar interaction between the
layers.

Another important parameters associated with the cou-
pling between the two layers are the transmission lengths
defined in Eqs. (13) and (14). Many parameters affect
these physical quantities. We focus on two of them, which
are important in our study—the damping constant and
the NM-layer thickness. In Fig. 4(a), we show the trans-
mission length in the Py(3)/NM(5)/Co(2)/Pt multilayer
depending on the damping constant in the Co layer. In
the simulations, the SW source emitting the SW at fre-
quency ω′/2π = 15.2 GHz is located in the Py layer. From
Eq. (17), we get ω′′/2π = 20.6 GHz for the Co layer
and 19.2 GHz for the Py layer. Results from the numer-
ical simulations are compared with Eqs. (13) and (14)
derived from the coupled-mode theory. We get a satis-
fying agreement between these approaches. Both xtr and
xtr2 are increasing with the increase of the damping con-
stant. However, xtr is growing faster than xtr2 leading to
the conclusion that the transmission length from the layer
with higher damping (Co layer) to the layer with lower
damping (Py layer) is decreasing with the increase of the
damping constant. In Fig. 4(b), we show the transmission
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FIG. 3. Power-transfer factor FP (the vertical axis) and
energy-distribution factor FE (color scale) as a function of the
wavevector in the Py(3)/NM(t)/Co(2)/Pt multilayer with the
IDMI constant in the Co layer D = −0.7 mJ/m2 for three differ-
ent thicknesses of the NM layer. We reach coupling parameters
close to a maximum value of 1 in the range between 1.6 × 107

and 6.3 × 107 m−1 (marked with dashed lines). In the negative k
range, the coupling is weak and reduces with the increase of the
NM-layer thickness.

length in the Py(3)/NM(t)/Co(2)/Pt multilayer depending
on the NM-layer thickness t. We assume αCo = αPy = 0.
The transmission length is increasing with the exponen-
tial character of growth. When 	β = 0, Eq. (13) reduces
to the form xtr = π/(2|κ12|). Thus, the coupling coeffi-
cient is decreasing exponentially with the increase of the
separation between the layers [37].

B. Spin-wave diode

Taking into account the unidirectional coupling dis-
cussed above, we can design the SW diode. The proposed
structure is shown in Fig. 5. It consists of continuous
Py film, which is the medium where the SWs propagate
from the input to the output and Co/Pt stripe, which is a
functional element of a diode where IDMI introduces non-
reciprocal interaction. They are separated by a 5-nm-thick
NM spacer, which is sufficient to neglect Ruderman-Kittel-
Kasuya-Yosida interaction. We chose the frequency of the
SW from the crossing point of the dispersion relation of
uncoupled layers shown in Fig. 2(b) to get the full cou-
pling between FM layers. The width of the Co/Pt stripe is
matched to the transmission length xtr, which is related to
the coupling strength and the damping in the layers. To
determine the efficiency of the device, we calculate the
power loss dP = 10 log (Ein/Eout), where Ein is the energy
measured in the steady state in front of the device and Eout
behind the device, calculated according to Eq. (21).

The operation of the diode is depicted in Figs. 5(a)
and 5(b), which shows results from the time-domain sim-
ulations of SW continuously excited at the 15.2-GHz fre-
quency in Py at the antenna (A). We fix the width of the

(a)

(b)

NM-layer thickness

FIG. 4. Transmission-length dependence on (a) the damping
constant in the Co layer in the Py(3)/NM(5)/Co(2)/Pt multilayer
with the damping in the Py αPy = 0.005 and (b) the thickness
of NM layer in the Py(3)/NM(t)/Co(2)/Pt multilayer. The source
of the SW of 15.2 GHz is located in the Py layer. In (a), the
simulations (Sim) results are compared with Eqs. (13) and (14)
from the coupled-mode theory (CMT). In (b), we present only
the simulation results for xtr.

Co/Pt stripe to 320 nm. The signal for efficiency analy-
sis is collected from the areas marked as input and output
ports, which are located at a distance of 20 nm from the
Co/Pt stripe edges. Due to weak coupling between the SWs
propagating in the −x direction [Fig. 5(a), see also the
animation, Movie S1, within the Supplemental Material
[38] ], the transmission to the Co stripe is small, and the
SW passes the diode retaining its intensity. The total power
loss in this direction reaches 3.3 dB, and it is mainly due to
the Gilbert damping in Py (2.2 dB). On the other hand, the
SW propagating in the +x direction [Fig. 5(b), see also the
animation, Movie S2, within the Supplemental Material
[38] ] transfers almost entirely to the Co stripe where it is
strongly attenuated due to the high damping. Some residual
intensity at the output is the effect of incomplete transfer to
Co and return transfer from Co after reflections from the
boundaries of the stripe. In fact, along the reverse direc-
tion, the total power loss increases to 25 dB. To sum up,
the difference in the SW energy in the forward and reverse
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(a)

(b)

(c)

(d)

Amplitude
(arb. units)

FIG. 5. (a),(b) Propagation of the SW (mx component) in a
diode at 15.2-GHz frequency in Py(3)/NM(5)/Co(2)/Pt in (a) for-
ward and (b) reverse direction for the width of the Co/Pt stripe
320 nm. In (a), the SW propagation direction is opposite to the
coupling direction, so that the SW transfers weakly to the Co
stripe, and we get a signal of high intensity in the output. In (b),
the SW propagation direction is the same as the coupling direc-
tion, so that the SW transfers to the Co stripe, where is strongly
damped, leading to the low intensity of the signal at the output.
(c) The power loss in the forward and reverse direction in depen-
dence on the frequency. In a broad frequency range of 7 GHz,
the SW diode preserves its strong isolating properties. (d) The
power loss in the forward and reverse direction in dependence on
Co stripe width.

direction equals 21.7 dB. The change of the position of
the ports impacts the power loss only by the damping in the
Py layer, thus it is not changing the difference between
the forward and reverse direction.

We investigate the efficiency of the Py(3)/NM(5)/Co(2)/
Pt SW diode in the wide range of frequency. Obtained
results of the power loss in both directions of propaga-
tion are collected in Fig. 5(c). Although SW transmission
length varies in dependence on the frequency, the struc-
ture preserves strongly asymmetric transmission in a broad
range of frequency. In the forward direction, the diode
works as well as in nominal frequency. The power loss is
decreasing with the frequency due to the decrease of the
coupling for negative wavevectors as shown in Fig. 3. The
power loss in the reverse direction is reduced but remains
significantly higher than in the forward direction. Esti-
mated relative frequency range in which the device works
is 	ω′/ω′

0 ≈ 0.5 (at ω′
0/2π = 15.2 GHz).

Additional simulations are made to check the efficiency
of the diode for different widths of the Co stripe at 15.2
GHz. The results are presented in Fig. 5(d). The power
loss in the forward direction is mainly associated with the
damping in the Py layer. A small negative slope reflects
the increasing distance between the input and output. In
the reverse direction, the most substantial effect on the
results come from the SW transmission between the Py
and Co layers. The curve reaches the first minimum for
300 nm, being close to xtr = 320 nm, then increases up
to xtr2 = 515 nm, and decreases again, reaching the sec-
ond minimum near xtr2 + xtr = 835 nm. The power loss in
the reverse direction at xtr2 is significantly higher than in
the forward direction because the SW intensity strongly
decreases during the propagation through the Co stripe.
Moreover, we perform detailed investigations in the vicin-
ity of xtr in Fig. 5(d) to check if the resonance effect in Co
stripe plays any role in the coupling. Indeed, the local max-
ima and minima in both forward and reverse directions are
present with an approximate period of λ/2 = 50 nm, con-
firming the influence of the resonance on the power-loss
value. However, its impact is small in comparison with the
interlayer SW transmission. In conclusion, we show that
the SW diode is efficient in a wide range of the Co stripe
width.

Moreover, we investigate the SW diode working with
SWs of longer (390 nm) wavelength, which should sim-
plify the detection of the effect experimentally. We select
another crossing point from Fig. 2(b), located at 8.2-GHz
frequency. The width of the Co stripe is set to 190 nm.
We obtain a power loss of 6.7 dB in the forward direc-
tion and 14.6 dB in the reverse direction. In this case, we
distinguish three mechanisms responsible for the smaller
efficiency of the diode. First, SWs of longer wavelength
are coupled stronger than SWs of shorter wavelength. This
effect is shown in Fig. 3. The SW at 8.2 GHz corresponds
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to k = 1.6 × 107 m−1. The coupling for negative k reaches
its maximum in the vicinity of this point. This effect leads
to an additional decrease in the signal in the forward direc-
tion. Second, the width of the Co stripe is too small to
attenuate the SWs in reverse direction effectively. Third,
the SW tends to reflect partially inside the Py layer in the
points where the Co layer has its boundaries, which leads
to additional losses. Besides these limitations, which can
be further optimized, the structure is still efficient enough
to be considered as a diode.

C. Four-port spin-wave circulator

Next, we exploit the unidirectional coupling further to
design a SW circulator. The schematic structure of the
four-port circulator is shown in Fig. 6. As compared with
the structure of the diode, an additional FM layer is present
on the opposite side of the stripe, playing the role of two
additional ports. To get the functionality of the circula-
tor, we need the stripe, which is unidirectionally coupled
with both top and bottom layers but in opposite directions
of SW propagation. We achieve this condition by taking
identical outer layers having opposite IDMI constant and
the inner stripe lacking IDMI. In our case, we propose
to use Py as an IDMI-free coupling stripe and Co/Pt as
guiding layers with swapped order in the bottom and top
layers. The separation between the stripe and the layer is
increased to 15 nm to reduce the dipolar coupling between
the Co layers. We keep the width of the Py stripe suffi-
cient to transfer the SW fully from one layer to another,
thus for 15.2 GHz, we assume 440 nm. The SW is excited
by antenna A, and the SW energy is measured by the ports
located 20 nm from the device. Moreover, we perform sim-
ulations with assuming no damping to check the efficiency
in the ideal case, while the effect of the damping constant is
presented further. The structure has a center of symmetry,
therefore, the ports on the same diagonal, i.e., P1 and P3
as well as P2 and P4, work identically, and it is sufficient
to investigate only two cases—propagation in the coupling
and the noncoupling direction.

In the noncoupling case, antenna A is located in the
upper-right corner and emits the SWs at 15.2 GHz prop-
agating to the left, as shown in Fig. 6(a) [see also the
animation, Movie S3, within the Supplemental Material
[38] ]. We observe very weak transfer of energy to the
Py stripe, so the SW propagates mainly in the top Co
layer. The SWs of low intensity in the bottom Co layer
result from direct magnetostatic coupling between Co lay-
ers. In the lossless structure, the power loss in port P2
reaches 0.2 dB, port P3—12.8 dB, and port P4—19.4 dB.
The coupling direction is shown in Fig. 6(b) [see also the
animation, Movie S4, within the Supplemental Material
[38] ]. Here, antenna A is located in the upper-left corner.
The SW is transferred to the Py stripe, and it reflects from
the right edge of the stripe. After the reflection, the SW

is coupled with the bottom Co layer, and, as a result, is
transferred to it. In the lossless structure, the power loss
in port P3 reaches 0.1 dB, port P4—24.9 dB, and port
P1—16.1 dB.

The SW circulator can also be used as a SW diode. How-
ever, it benefits the mechanism of the redirection rather
than the attenuation of a SW. Considering port P1 and P2
as the input-output ports, the transmission from port P1 to
port P2 works as a forward direction and the transmission
from port P2 to port P1 as a reverse direction. In that case,
the difference in the SW energy in the forward and reverse
direction equals 15.9 dB.

Figures 6(c) and 6(d) show the power loss in the circu-
lator as the function of NM-layer thickness for the input
port P1 and P2, respectively. We assume αCo = αPy = 0 to
focus on the principle transmission properties of the sys-
tem. The width of the Py stripe is set to the transmission
length, which is plotted in Fig. 4(b). In the noncoupling
case [Fig. 6(c)], the power loss in the target port P2 is
decreasing, reaching almost no loss for about 10 nm, while
in port P3 and P4, we see the oscillations. This is the result
of the resonance in the Py stripe. This behavior is even
more relevant in Fig. 6(d) representing the coupling case.
The power loss in the target port P3 is oscillating in coun-
terphase with respect to port P1. The points with large
power loss in port P3 correspond to the width w of the Py
stripe fulfilling the resonance condition w = Nλ/2, where
λ = 100 nm. In the resonance, the SW is reflecting from
the left side of the Py stripe, and it is coupled with the top
Co layer. As a result, we observe the increase of the inten-
sity of the SW in port P1 and, simultaneously, decrease of
the intensity in port P3. Interestingly, the effect of negative
power loss occurs in Fig. 6(d). It comes from the unwanted
effect of the weak direct coupling between Co layers. For
the thin NM layer, the coupling is significant enough to
reach weak SW transmission from the top to bottom Co
layer. In that case, we measure the SW energy in the range
where we get the maximum value of the transmission.
Moreover, the method of calculating the SW energy does
not distinguish between the SW propagating in the left and
right direction, which can fix this misleading effect. More-
over, because of the weak direct transmission between Co
layers, the power loss can vary depending on the posi-
tion of the antenna, as well as the position of the ports.
However, the effect is relatively small for assumed separa-
tion between the outer layers, and the circulator preserves
its properties even for ports located far away from the Py
stripe edges.

The effect of the damping in the Co layers on the SW
circulator functionality is shown in Figs. 6(e) and 6(f). The
damping constant in the Py layer is set to 0.005. In the
noncoupling direction [Fig. 6(e)], the power loss in port P4
is almost constant, ultimately reaching the value of power
loss in target port P2 for αCo ≈ 0.035. The mechanism is
identical to the one described in Fig. 6(d). The Co layers
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(a) (b)

(c) (d)

(e) (f)

NM-layer thickness NM-layer thickness

FIG. 6. (a),(b) Model of the four-port SW circulator based on the multilayered structure with unidirectional coupling. Propaga-
tion of the SW (mx component) of 15.2-GHz frequency in the lossless Pt/Co(2)/NM(15)/Py(3)/NM(15)/Co(2)/Pt circulator in the
(a) noncoupling direction and (b) coupling direction. In (a), the antenna A is located in the upper-right corner. The SW transfers
weakly to the Py layer, so it goes mainly to port P2. In (b), the antenna A is located in the upper-left corner. The SW transfers from the
upper Co layer to Py, and after the reflection from the right side of Py, it transfers to the lower Co layer, reaching port P3 in the end. A
small-amplitude signal visible at isolated ports is a result of weak direct magnetostatic coupling between Co layers. (c),(d) The power
loss measured in the output ports in regard to the input port in dependence on the NM-layer thickness for the input located in (c) port
P1 and (d) port P2. In (c), the power loss in the target port P2 is increasing and in the rest of the ports is decreasing with the increase
of NM-layer thickness. In (d), the power loss in the target port P3 and port P1 is fluctuating due to the resonance in the Py stripe. The
minima of the power loss are corresponding to the Py stripe width fulfilling the resonance condition. (e),(f) The power loss measured
in dependence on the damping constant in the Co layer for the input located in (e) port P1 and (f) port P2. In (e), the power loss in
port P4 is almost constant, ultimately reaching the value in the target port P2. In (f), the power loss in the target port P2 is significantly
larger than in the other ports. The SW circulator is not working properly for αCo > 0.025.

are coupled, which leads to the additional SW energy in
port P4 coming from the SW going into the circulator.
The power loss in port P4 exceeds 35 dB when the SW
going into the circulator is excluded from the calculations

of the power loss using the reference simulations without
the Py stripe. In the coupling direction [Fig. 6(f)], the
power loss in port P1 is decreasing with increasing αCo and
approaches the value of the power loss in target port P3.
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FIG. 7. Three-port SW circulator in (a)–(d) easy-input and (e)–(h) easy-output port P3 configurations. We present the models (a),(e)
and the way of acting when the input of SWs is localized in (b),(f) port P1, (c),(g) port P2, and (d),(h) port P3. The coupling direction
determines the direction in which the SW will be transmitted from one layer to another. The orange arrows directing from one layer to
another denote the SW transmission.

This effect comes from the fact that the SW has to be trans-
mitted from Co to Py as well as from Py to Co. The sign
of 	β in Eq. (13) is opposite for these two cases, and with
increasing the difference between the transmission lengths
in both directions, the circulator becomes less efficient. In
comparison with the SW diode, the damping is, in gen-
eral, an adverse effect in the SW circulator, so the materials
with strong IDMI and low damping are highly desirable. A
recent paper indicates Co/Ru as a possible low-damping
alternative of Co/Pt bilayers [28,32]. The SW circulator
remains efficient for the damping constant αCo = 0.017
reported in Ref. [32].

D. Three-port spin-wave circulator

Along with the four-port circulator, we can propose the
three-port circulator with a slightly modified structure, as
shown in Fig. 7. As compared to the structure of the four-
port circulator, here the upper Co/Pt layer length is reduced
and consists now from one port. Furthermore, this layer has
to fully cover the Py stripe to preserve the possibility of
complete transfer of the SW between the layers. The three-
port device does not have any symmetries, therefore, we
have to take three cases into account independently. More-
over, the number of cases is doubled due to the reversal of
the coupling directions. We can distinguish them by con-
sidering the efficiency of port P3 localized in the upper Co
layer. If the coupling direction between the upper Co layer
and Py stripe is directed onto the port P3, we can consider
it as an easy-output port because the SW coming from the
Py stripe will be directed straight into port P3 [Fig. 7(f)].
On the other hand, with the opposite coupling direction,
the SW coming from port P3 will be transmitted directly to
the Py stripe [Fig. 7(d)], and port P3 becomes an easy-input
port. Figure 7 shows that the wave propagating from port
P2 or P3 in the easy-input or easy-output configuration,

respectively, have to reflect two times before reaching the
output port [Figs. 7(c) and 7(h)]. On the other hand, in the
four-port circulator, only one reflection is needed. It means
that the phenomenon in the three-port circulator requires
very efficient reflections of SWs from the edges of the
stripe. Further investigations are required to optimize its
functionality.

IV. CONCLUSIONS

To sum up, we show the effect of unidirectional magne-
tostatic coupling between the SW modes, which arises due
to the IDMI-induced nonreciprocity in the ultrathin multi-
layer system. The modes related to each layer are strongly
coupled in only one direction of the SW propagation in a
broad GHz range of frequency. In the opposite direction,
within the same range of frequency, the SW modes propa-
gate in only one layer. We propose to exploit this effect for
the realization of the magnonic devices in the submicrome-
ter scale. In the Py/NM/Co/Pt structure, limiting the Co/Pt
stripe width to the length required to transfer the SW from
the Py layer to the stripe, the possibility to get the diode
effect is arising. In the forward direction, the SW propa-
gates through the stripe area with small losses associated
mainly with the Gilbert damping in Py, while in the reverse
direction, the SW transmits to the Co stripe, in which the
strong damping significantly reduces the SW intensity in
the output. The device works efficiently in a broad range
of microwave frequencies, as well as a broad range of Co
stripe width. The SW diode can be further improved by
opening the possibility to control the magnetization direc-
tion in the Co layer and thus becoming the SW transistor
[39–45]. The main advantage of the transistor based on the
unidirectional coupling is that it will work immediately,
so that the time of operation is limited only by the SW
velocity and the time needed to reach the steady state.
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Another proposed type of the magnonic device, which
bases on the same effect, is the SW circulator. It uses the
two extended Co layers with Pt inducing IDMI as the
waveguides with the input and output ports and the Py
stripe in between as a coupler. In each possible case, we
get efficient SW transfer to the target port with the strongly
suppressed signal at the other ports. The high damping in
the Co/Pt films suppresses transmission to the required port
of the circulator. To preserve the functionality, the damp-
ing constant in the layer shall be smaller than 0.025 and
as close as possible to the damping of the Py stripe. In the
circulator, the isolation effect in the selected output ports
is achieved without involving losses. Moreover, the SW
circulator can also work as a diode. A diode and a cir-
culator take a place among the signal processing devices,
thus demonstrating unidirectional coupling and proposing
magnonic devices open the possibility for further devel-
opment of energy-efficient, miniaturized beyond-CMOS,
magnonic logic components [46–49].

ACKNOWLEDGMENTS

The study has received financial support from the
National Science Center of Poland, Projects Nos. UMO-
2018/30/Q/ST3/00416 and UMO-2018/28/C/ST3/00052.
M.M. acknowledges funding from the Slovak Grant
Agency APVV, No. APVV-16-0068 (NanoSky) and
APVV-19-0311 (RSWFA). G.G. acknowledges the finan-
cial support by the European Metrology Programme for
Innovation and Research (EMPIR), under the Grant Agree-
ment 17FUN08 TOPS.

APPENDIX: PROCEDURE FOR ACHIEVING THE
UNIDIRECTIONAL COUPLING IN A WIDE

FREQUENCY RANGE

The effect of unidirectional coupling of SWs in a wide
frequency range can be obtained according to the following
procedure. We limit our approach to the Landau-Lifshitz
equation consisting of the Zeeman, exchange, magneto-
static, and Dzyaloshinskii-Moriya terms [Eq. (1) ].

At first, we assume that the external magnetic field is
uniform. Next, one should fulfill a condition, that

if MS,FM1 > (<) MS,FM2,

then Aex,FM1/MS,FM1 > (<) Aex,FM2/MS,FM2.

It yields the noncrossing of the dispersion relation between
noninteracting bilayers. If this condition is not fulfilled, we
always will get crossing of the dispersion relations, and
the coupling can be only asymmetric rather than unidi-
rectional. Moreover, it is difficult to obtain the effect of
coupling in a wide frequency range without fulfilling this
condition. In the last step, the DMI parameter has to be
fitted to get proper matching of dispersion relations for
noninteracting layers.
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This study was done together with Pierre Roberjot, who came from University Rennes 1 in France
for one semester as part of the double-diploma program. For this time, he joined our group and I
was his research co-supervisor. This work is the continuation of the research presented in the
article [P1]. The effect presented there was based on the non-reciprocity of the dispersion relation
in the system with Dzyaloshinskii–Moriya interaction. As shown in Figure 2.7, the asymmetry
can also be induced by only the dipolar coupling of two different layers in the Damon–Eshbach
geometry. This was also the case for the system in [P1], but thicknesses of the layers were very
small and the asymmetry resulting from the dipolar interaction alone was not pronounced. In
this study, we decided to use thicker layers to obtain stronger coupling. We also decided to start
with the system that could work as a device. This was achieved by taking the system with two
Co layers acting as spin-wave conduits, separated by a thick non-magnetic layer in which the
resonator in the form of a long Py strip was placed. Such a system forms a four-port device. The
numerical simulations in the time domain showed that, depending on the frequency of the spin
wave, this system can act as a circulator, a directional coupler, or a reflector. We attributed this
character to the behavior of the resonator. We found that in the Damon–Eshbach configuration,
the resonator has only one standing mode and the other modes are rotating modes. In such a
case, the excitation of a rotating mode can lead to the redirection of a spin wave to the particular
output.

Contribution of the Author

In this publication, I defined the problem together with M. Krawczyk, performed the numerical
simulations in COMSOL of the eigenfrequency problem, supervised the simulations performed
by P. Roberjot, participated in the interpretation and discussion of results, prepared Figures 2 and
3, wrote part of the description of the results, prepared the Supplementary Material, and made
corrections to the manuscript.
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ABSTRACT

The use of spin waves as a signal carrier requires developing the functional elements allowing for multiplexing and demultiplexing
information coded at different wavelengths. For this purpose, we propose a system of thin ferromagnetic layers dynamically coupled by a
rectangular ferromagnetic resonator. We show that single and double, clockwise and counterclockwise, circulating modes of the resonator
offer a wide possibility of control of propagating waves. Particularly, at frequency related to the double-clockwise circulating spin-wave mode
of the resonator, the spin wave excited in one layer is transferred to the second one where it propagates in the backward direction.
Interestingly, the wave excited in the second layer propagates in the forward direction only in that layer. This demonstrates add-drop filtering
and circulator functionality. Thus, the proposed system can become an important part of future magnonic technology for signal routing.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046001

A modern society is experiencing a rapidly growing demand for
interconnected wireless facilities, known as Internet of Things
(IoTs),1,2 which requires the development of faster ways to communi-
cate and lower energy consumption to satisfy the environmental sus-
tainability.3 IoTs are devices receiving and sending back information
using microwaves, and thus, the spin waves (SWs) are perfect candi-
dates to be used in these developments.4 This is due to the same range
of frequencies as microwaves and a few orders shorter wavelengths,
enabling miniaturization down to the nanoscale. The SWs allow proc-
essing both the analog and digital signals at low energy cost, being
inductively coupled to microwaves and compatible with CMOS
technology.5–7

A possibility of frequency-dependent SW routing in a multiport
device is essential to build any complex magnonic system.8 Therefore,
implementation of the magnonic counterpart of the channel add-drop
filter, which was demonstrated in photonics,9,10 is highly desirable.
The crucial element of the add-drop filter is the resonator, e.g., a dot, a
stripe, or a ring, where the resonant modes mediate the coupling
between the waves in unconstrained conduits. The resonance related
to the fundamental mode of the stripe is widely explored to control the
SW propagation, and the interesting effects related to the chirality of

the magnetostatic-stray-field coupling have already been demon-
strated.11–13 On the other hand, the ring-shaped resonators, exten-
sively investigated in photonics, have been tested as a coupler between
two SW waveguides, only recently.14 However, a single solid element
with the circulating modes for SW routing remains unexplored.

In our paper, we investigate theoretically a system composed of
two Co ferromagnetic films coupled through a multimode resonant
element—a stripe of the rectangular cross section made from Py
(Ni80Fe20). We observe various kinds of SW eigenmodes in the stripe.
In particular, we found resonance modes in the form of single and
double, clockwise (CW) and counterclockwise (CCW), circulating
waves. Our study goes along the exploitation of these modes for vari-
ous functionalities, including add-drop filtering and a circulator. Our
study is in line with recent activities in magnonics aiming in prototyp-
ing functional magnonic devices, like diodes,15 circulators,16 cou-
plers,17,18 multiplexers,19 and logic gates.20–24

This paper is organized as follows. First, we present the geometry
of the structure. Then, we describe the dispersion relations of the sub-
systems and analyze the eigenmode spectra. Finally, we demonstrate
the operation of the system at different frequencies and present a
summary.
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We consider a system composed of two parallel, infinitely
extended in the xy-plane, 5 nm-thick Co films and a resonant element
in the form of a Py stripe of thickness 50 nm and width 100nm placed
between the films and oriented along the z-axis, as presented in
Fig. 1(a). The stripe is separated from the films by the 10nm-thick
nonmagnetic spacers. The system is magnetized by a uniform in-plane
bias magnetic field of magnitude l0H0 ¼ 0:05 T directed along the
stripe and perpendicular to the direction of SW propagation. We
assume the magnetization saturation and the exchange constant of Co
to be MS¼ 1100 kA/m and A¼ 20 pJ/m, respectively, and for Py
MS¼ 850 kA/m and A¼ 13 pJ/m. The gyromagnetic ratio for
the whole structure is c ¼ 175:95� 109 rad/(sT). We consider the
Damon–Eshbach geometry, where the SW group velocity and the
magnetostatic coupling are significant.5

We consider the system shown in Fig. 1(a) as a four-terminal
magnonic device, from which one is selected as an input (I1 or I3) and
the others as outputs (O1, O2, O3, and O4), as shown in Fig. 1(b). We
want to guide the signal between pairs of selected terminals through
the stripe element by properly tuning the frequency of the excited SW.

To describe the propagation in the system, we solve numerically
the Landau–Lifshitz–Gilbert equation,

@M
@t
¼ �cl0M�Heff þ

a
MS

M� @M
@t

; (1)

where M ¼ ðmx;my;mzÞ is the magnetization vector, l0 is the mag-
netic permeability of vacuum, a is the dimensionless damping parame-
ter, andHeff is the effective magnetic field,

Heff ¼ H0 þHm þHex; (2)

which is a sum of the external magnetic fieldH0 ¼ H0ẑ , the magneto-
static field Hm ¼ �ru, and the exchange field Hex ¼ 2A

l0M
2
S
r2M. u is

the scalar magnetic potential that fulfills Maxwell equations in the
magnetostatic approximation,

r2u ¼ r �M: (3)

We linearized Eq. (1), assuming the harmonic time dependence
exp ð�ixtÞ and H0 saturating the sample. We split the magnetization
and the magnetostatic field into the static components parallel to the
z-axis, mz¼MS, Hm;z ¼ 0, and the dynamic components lying in the
xy-plane, m ¼ ½mx;my; 0�; Hm ¼ ½�@xu;�@yu; 0�. With these
approximations, we have performed the finite-element method (FEM)
simulations of the magnetization dynamics using COMSOL
Multiphysics.

First, we solve the eigenproblem based on linearized Eq. (1) using
the frequency-domain solver in order to obtain the dispersion relation
of SWs. In these simulations, the Floquet–Bloch boundary conditions
are applied along the x-direction at the edges of the unit cell, which
reproduce the effect of infinite layers. We neglect damping in these
studies.

In the second approach, we solve linearized Eq. (1) in the time
domain and for the finite structure. We used this approach to demon-
strate functionality of the proposed devices. We excite the SWs in the
input port with an antenna positioned 20nm from the stripe edge.
The antenna generates a dynamic magnetic sinusoidal signal of small
amplitude,

SantðtÞ ¼ 10�7cl0M
2
S sin ð2pf0 tÞ; (4)

where f0 is the frequency of excitation and the antenna’s width
want ¼ p=kz0, with kz0 being a wavenumber at the excitation fre-
quency determined numerically from the dispersion relation obtained
in frequency-domain simulations. In order to avoid reflection of the
SWs from the system edges, we assume a linearly increasing damping
at the edges of the Co layers. The excitation lasts 3 ns, which is suffi-
cient to observe the SW propagation and a resonant behavior, if
present.

In order to understand the impact of the stripe on the propaga-
tion of the SWs in the bilayered structure, we calculate the dispersion
relations and the eigenmode spectra for two additional systems. The
first one is made of two 5nm-thick Co layers, separated by 70nm-
thick nonmagnetic material. The second one is a single Py stripe of
width 100 nm and thickness 50 nm, i.e., the system in Fig. 1(a) without
the Co layers.

The dispersion relation of the Co bilayer without a resonator is
shown in Fig. 2. There are two bands with the frequency difference
proportional to the dynamical coupling between the SWs in the
layers.16,25,26 The low- (blue) and high-frequency (red) modes can be
assigned to antisymmetric and symmetric oscillations in the top and
the bottom Co layer, respectively. We notice that these branches are
getting closer with the increase in the frequency (and the wavevector),
which means that the coupling between the two layers is getting
weaker with the decreasing wavelength of the propagating waves. This
magnetostatic coupling between layers means that the SW excited in
one layer will transfer between the layers periodically during the prop-
agation. The distance on which the SW migrates between the layers is
defined by the coupling strength. This effect was exploited in the direc-
tional couplers.17,18,26–28

The spectrum of the eigenmodes of the second subsystem is pre-
sented in Fig. 2 with dashed black lines and indicates SW resonant
modes of the infinitely long Py stripe with the magnetization saturated
along the z-axis. In the investigated frequency range, the six modes are

FIG. 1. (a) The geometry of the bilayer structure under investigation. The system
consists of two Co layers and a Py stripe separated by a nonmagnetic material.
The separation between the layers and the stripe is 10 nm, the thickness and the
width of the stripe are 50 nm and 100 nm, respectively, and the thickness of the
layers is 5 nm. (b) Schematic representation of the four-terminal device. The possi-
ble positions for the inputs, i.e., the sources of SWs, are marked in green, while the
four outputs in gray.
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present with two pairs of the modes very close in frequency, at about
15 and 19GHz. To analyze the types of resonant excitations, we plot
in Fig. 3 the amplitude and phase of the y-component of the magneti-
zation, Abs(my) and Arg(my), respectively. We can see a fundamental
mode with the in-phase oscillations in the stripe cross section at
15.28GHz. Interestingly, all other modes are CW or CCW circulating
SWs, as indicated by the continuous change of the SW phase in
Fig. 3(b) and marked with the white arrows. We also found the modes
composed of the two CCW (at 15.01GHz) or two CW (19.43GHz)
circulated oscillations, and we will call them double-CCW and

double-CW circulating modes, respectively. All considered CCW
modes have lower frequency, than the corresponding CW modes,
which points at the presence of a nonreciprocity in this system. As
shown in Fig. 3(b), the double circulating modes present circulations
possessing a relative phase shift by 180� at the top and the bottom
edges of the stripe. These two properties shall cause different coupling
of the circulating resonant modes to the modes propagating in the
same direction in the upper and lower ferromagnetic layers or, alterna-
tively, a different coupling between the modes propagating in the same
layer, but in the opposite directions. Indeed, this feature is used to con-
trol waves in the waveguides coupled with the ring resonators and
whispering gallery modes in photonics29–31 and magnonics.14,32 We
will use this property for demonstration of the SW circulator.

The gradient of the phase on the sides of the resonator depends
on the number of circulation areas, which is one for single CW/CCW
and two for double-CW/double-CCW modes [see Fig. 3(b)]. We
expect that if the gradient of the phase at the top and bottom edge of
the resonator matches the wavenumber and the phase change of the
SW propagating in the ferromagnetic layer, there will be an enhanced
transmission of the SW in one and suppressed in the opposite direc-
tion of propagation.

Before studying the transfer of SWs between Co layers at fre-
quencies close to the circulating resonances of the Py stripe, we also
analyzed the dispersion relation of the base system, i.e., bilayered struc-
ture with the Py stripe in-between, with periodic boundary conditions
along the x-axis. The spectra (shown in the supplementary material,
Sec. 1) have many bandgaps between more or less dispersive bands,
and it is significantly different from the spectra of the two Co layers
shown in Fig. 2. This indicates a strong and complex coupling between
the propagating modes in the bilayer and the resonant modes of the
Py stripe.

To demonstrate how different resonances in the Py stripe influ-
ence the coupling and transfer of SWs between the Co layers, we
perform time-domain simulations for the four cases. For case 1 at
15GHz, it is around the resonance of the fundamental and the
double-CCW mode. For case 2, we selected the frequency 19GHz,
which is close to the double-CW circular mode of the stripe (mode at
19.43GHz in Fig. 3). Case 3, 13GHz, was chosen to be close to the
single-CCW circulating mode of the stripe (12.87GHz in Fig. 3), and
case 4, at 17GHz, was the frequency close to the single-CW circulating
mode (mode 17.42GHz).

Case 1 at 15GHz is shown in Figs. 4(a) and 4(b) for the SW
source placed in the top and the bottom layer, respectively. The SW is
transferred to the Py resonator but then transfers back to the Co layer,
propagating in the same direction. We can observe two phenomena.
First, the SW changes its phase upon the movement through the reso-
nator. Second, the transfer between Co layers is delayed. During prop-
agation, the SW transfers between the layers coupled by the stray
dynamic magnetic field, similar to the directional couplers.17,26,27,33

Such behavior is also present at low frequencies, i.e., below the funda-
mental mode of the resonator, where the dynamical magnetostatic
coupling between Co layers is strongest, and thus, the period of the
transfer between the layers is shortest.

Case 2 is add-drop filtering and circulator. In this case, we found
a functionality analogous to the circulator, as demonstrated in
Figs. 4(c) and 4(d). In this device, the wave excited in one terminal has
to be transferred only to one of the remaining terminals according to

FIG. 2. Dispersion relation of SWs in the subsystem composed of two Co layers
separated by 70-nm-thick nonmagnetic material (red and blue solid lines) and the
eigenfrequencies of the Py stripe of width 100 nm and thickness 50 nm (horizontal
dashed black lines).

FIG. 3. Amplitude (a) and phase (b) of the my component of the magnetization in
the isolated Py stripe for the modes shown by dashed black lines in Fig. 2. The CW
and CCW modes are indicated in (b) with the continuous phase change. The two
zeros of the amplitude at 15.01 and 19.43 GHz indicate double CCW and CW circu-
lating modes, respectively.
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the assumed clockwise or counterclockwise circulation rule.16 We
found the 19 GHz frequency optimal for such a functionality, close to
the double-CW circulating mode resonance of the Py stripe (Fig. 3,
mode at 19.43GHz). At this frequency, the wave propagating from the
antenna can excite the resonant mode of the stripe, which will act as
an energy harvester due to the magnetization circulating mode.
Indeed, when the wave is excited on the left side of the top layer (input
port I1) [Fig. 4(c)], the Py resonator redirects it to the bottom layer as
a wave propagating to the left, to the output port O3. Importantly, an
isolation of ports O2 and O4, exceeding 5 times of the signal directed
to O3, exists over the 600MHz range. When the input port is placed
in the bottom layer on the left (I3) from the resonator [Fig. 4(d)], the
wave propagates directly to port O4 in the same layer. For the wave
excited in I4, the resonator redirects to O2, while excited in I2 will
propagate to O1. We also observe similar functionality at 13GHz but
with larger leakage of the energy to the other ports. The presented
operation can be used for a design of a magnonic circulator or add-
drop filtering.

Case 3 at 13 GHz is shown in Fig. 4(e). The wave introduced in
port I1 couples with the single-CCW circulating mode in the Py stripe,
which allows us to make transfer to the bottom layer and forms waves
propagating to the both ports located there, O3 and O4. Although the
intensity of the waves reaching ports O3 and O4 differs, the clear split-
ting of the wave propagating in the top layer has been demonstrated.

In case 4, we introduce the wave at 17GHz in port I1. As can be
seen from Fig. 4(f), the excited wave is transferred to the Py stripe and
the circulating mode passes it to different ports but mostly go back to
top-left output O1. The Py resonance involved in this operation is
related to a single-CW circulating mode, and thus, the functionality

can be expected to be similar to the coupling with the ring resonators14

or of the circulator shown in case 2. However, the mismatch between
the wavelength of the propagating SW and the resonance length
results in a weak coupling and unclear operation.

Interestingly, the coupling of SWs excited in the left part of the bot-
tom Co layer (I3 port) with the Py stripe is suppressed at all considered
frequencies. We attribute this to the unidirectional magnetization pre-
cession and the chirality of the magnetostatic stray field coupling.11,12

The investigations presented above were made without damping
in order to have clear visualization of the coupling processes. We also
performed the same simulations, but with a damping, we assume in
Co layers aCo ¼ 0:01 and in Py stripe aPy ¼ 0:005. We observed the
presence of the same phenomena only with an attenuation. The results
are presented in the supplementary material, Fig. S2.

Using a stripe of width 100nm and thickness 50 nm, we have
demonstrated some of the possibilities to control the propagation of
the SWs in thin ferromagnetic films at different frequencies. The
energy-density plots shown in the supplementary material (Sec. 3)
additionally support these demonstrations. However, the demonstra-
tions were done for selected materials, the one with relative magnetiza-
tion orientation and at the fixed geometrical parameters. The
functionality of the resonance element depends on the wavelength of
the propagating wave and its relation to the size of the stripe and chi-
rality of the magnetization precession, and thus, further investigations
and model developing are necessary to optimize the operation of the
proposed solutions.

In conclusion, we explored numerically the SW behavior in a
structure composed of two 5nm-thick Co layers separated by a rectan-
gular Py stripe, all homogeneously magnetized parallel to the stripe
axis. We show that its dispersion relation is significantly different as
compared to a bilayer structure due to dynamical coupling of propa-
gating SWs in Co layers with the resonant modes of the Py stripe.
Interestingly, the low-frequency part of the isolated-stripe spectra con-
sists of the fundamental mode and a number of single and double,
non-degenerated CW and CCW circulating modes. The interaction
between propagating SWs in layers and modes circulating in the reso-
nator allows for design add-drop filters and circulators for SWs.

In particular, we show that depending on the direction of the SW
propagation and on the excitation frequency, the SWs can transmit in
four possible routs: direct propagation between the two Co layers, cir-
culation (SWs are propagating from one layer to the other keeping the
direction of propagation), reflection (forth and back to the excitation
point), and uncoupled propagation (SWs are propagating in the one
layer only). Specifically effective is the use of double-CW circulating
mode of the stripe, allowing us to demonstrate the functionality of the
magnonic circulator. This shows that the circulating modes in the fer-
romagnetic stripe are promising for design of signal-processing mag-
nonic devices—especially multiplexers and demultiplexers.

See the supplementary material for the analysis of the spin-wave
band structure of the considered system (Sec. 1), the demonstration of
the system functionality with the damping (Sec. 2), and the analysis of
the spin-wave energy density distribution in the system (Sec. 3).

The research leading to these results received funding from the
Polish National Science Centre, Project No. UMO-2018/30/Q/ST3/
00416.

FIG. 4. Dynamic out-of-plane magnetization component my plots showing propaga-
tion in the investigated structure at selected excitation frequencies after reaching
the steady state to demonstrate different functionalities. The wave excited in the top
(a) or bottom (b) layer at 15 GHz weakly couples with the resonator. The observed
transfer of the wave from the top to the bottom layer is an effect of the direct
coupling between the Co layers. This is case 1. (c) The excitation at 19 GHz in the
top-left part of the layer is transferred via the resonator to the bottom layer and
propagates to the left. (d) The excitation is located in the bottom layer on the left,
and the wave propagates straight to the right without coupling. This is operation of
the magnonic add-drop filter and circulator, case 2. (e) The wave excited at 13 GHz
is transferred through the resonator to the bottom layer and propagates in both
directions, case 3. (f) The wave excited in the top layer at 17 GHz is reflected back
from the resonator, case 4.
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I. ANALYSIS OF THE DISPERSION RELATIONS FOR
THE SYSTEMS UNDER INVESTIGATIONS WITH
PERIODIC BOUNDARY CONDITION

In order to understand the impact of the stripe on the prop-
agation of the spin waves (SWs) in the bilayered structure
under investigation, we calculate the dispersion relations for
three systems with the same periodic boundary conditions
(PBC) along the propagation direction, i.e., the x-axis: (i) the
first one consists of the two Co layers with thickness 5 nm and
separated by 70 nm nonmagnetic material, (ii) the second one
is a single Py stripe of width 100 nm and thickness 50 nm,
i.e., the system in Fig. 1 (main text) without the Co layeres,
and (iii) for the bilayered structure with the Py resonator in
between. The assumed period in all simulations is 250 nm
and the structures are schematically shown at the top insets of
Fig. S1.

For the Co bilayer without resonator, we obtain the disper-
sion relation shown in Fig. S1(a). This is the same structure
and the dispersion relation as one shown in Fig. 2 of the main
text, i.e., there are two bands with the frequency difference
proportional to the dynamical coupling between the SWs in
the layers.1–3 Due to the PBC, the folding effect is observed
at the Brillouin zone borders k = ±π/a (a = 250 nm), thus
the crossing points in the dispersion relation are artificial. We
notice that these branches are getting closer with the increase
of the frequency which means the coupling between the two
layers is getting weaker with increasing frequency, which cor-
responds to the increase of the wavevector in extended Bril-
louin zone scheme. This means that the SW excited in one
layer will transfer between the layers periodically during the
propagation. The distance on which the SW migrate between
the layers is defined by the coupling strength. This effect is
exploited in directional couplers.2,4–6

As expected, the dispersion relation of the second subsys-
tem presented in Fig. S1(c) is very close to the energy spectra
of the isolated Py stripe shown in Fig. 2 of the main text, and
consists of the flat bands being indicative for the SWs confined
to the Py stripes and a lack of the coupling between the mode
in successive copies of the system. The only mode, marked
as 3c, shows a small dispersion near the Brillouin zone center,

a)Author to whom correspondence should be addressed: Krzysztof Szulc,
krzysztof.szulc@amu.edu.pl
b)Author to whom correspondence should be addressed: Maciej Krawaczyk,
krawczyk@amu.edu.pl

Figure S1: Dispersion relation of SWs for three systems as
indicated by the insets at the top of the figure; (a) The

subsystem composed of two Co layers separated by 70 nm of
nonmagnetic material; (b) The main structure, the two Co

layers with the Py stripe in between. The horizontal
red-dashed lines indicate the frequencies used in

time-domain simulations; (c) The Py stripe of 100-nm width
and 50-nm thickness. In simulations, we assume the

Floquet-Bloch periodic boundary conditions (PBC) along the
direction of the SW propagation (the x-axis), with lattice

constant of 250 nm.

k = 0. Thus, the bands and their frequencies can be directly
related to the SW resonant modes of the infinitely-long Py
stripe saturated along its axis. Looking at the amplitude of
the SWs shown in Fig. 3 of the main text, we can see that the
only dispersive mode, 3c in Fig. S1(c), is a fundamental mode
creating sufficiently strong stray field to couple magnetization
oscillations between the stripes in the successive unit cells.

The dispersion relation of the base system, i.e., bilayered
structure with the Py stripe in-between, with PBCs is shown in
Fig. S1(b). The spectra has many band gaps between more or
less dispersive bands and it is significantly different from the
spectra of the two Co layers shown in Fig. S1(a). Neverthe-
less, we can distinguish the dispersion lines originating from
the coupled modes of the two Co layers and also from the res-
onant modes of the Py stripe, both modified by the hybridiza-
tion between them. Due to PBCs the presence of hybridiza-
tions is coming from the interaction of resonant Py modes
and the propagating modes in Co layers from the neighbor-
ing Brillouin zones, folded back to the first Brillouin zone in
Fig. S1(b).
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Figure S2: SW amplitude plots showing propagation in the investigated structure at selected excitation frequencies.
Reproduction of Fig. 4 in the main text with the non-zero damping. The damping constant in Co αCo = 0.01 and in Py

αPy = 0.005. (a,b) Excitation of the SW of the 15-GHz frequency with the antenna located in the top (a) and bottom (b) Co
layer. (c,d) Excitation of the SW of the 19-GHz frequency with the antenna located in the top (c) and bottom (d) Co layer. (e)

Excitation of the SW of the 13-GHz frequency with the antenna located in the top Co layer. (f) Excitation of the SW of the
17-GHz frequency with the antenna located in the top Co layer.

II. INFLUENCE OF THE DAMPING ON DISPERSION
RELATION

Figure 4 presented in the main text was reproduced with the
non-zero damping taken into account. The results are present
in Fig. S2. It is clear that the assumed damping (αCo = 0.01,
αPy = 0.005) does not influence the coupling between the Co
layers and Py resonator. All functionalities are reproduced
with satisfactory agreement, the only observed result of the
damping is the SW attenuation.

III. SPIN-WAVE ENERGY DENSITY

SW amplitude is not a perfect way to show the SW propa-
gation, as the value changes in time and for the complicated
structures (as the Py resonator) a frame of one of the magnetic
components is not sufficient to fully describe the SW propaga-
tion. Therefore, we calculated the energy density of the SWs.
The total energy density can be calculated as

E = Edip +Eex, (S1)

where the dipolar energy density Edip is defined as

Edip =
1

2µ0
m ·∇ϕ (S2)

and the exchange energy density Eex as

Eex =
Aex

M2
S
(∇m)2. (S3)

Results are presented in Fig. S3. In all of the investigated
cases, the functionality is confirmed. In the case 1 [Fig. S3(a,
b)], the energy is transferred forward through the resonator.
Interestingly, the SW excited on the top-left side [Fig. S3(a)]
is absorbed to the resonator and then pumped back, while the
SW excited in the bottom-left side [Fig. S3(b)] is locally am-
plified by the resonator. In the case 2 [Fig. S3(c, d)], the SW
circulator is showed. The circulation of the wave excited in
the top-left side [Fig. S3(c)] is clearly connected to the SW
resonance in the Py stripe. The energy is concentrated at the
top- and bottom-right corners. The SW energy is transferred
partially to the stray-field energy in the process. For the SW
excited in the bottom-left side [Fig. S3(d)], the resonance in
the Py stripe is not excited. In the case 3 [Fig. S3(e)], the cir-
culating mode in the resonator is also present. However, it is
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Figure S3: SW energy density plots at selected excitation frequencies taken from the average over 200 timesteps between 2 and
3 ns. Results corresponding to the one presented in Fig. 4 in the main text. (a,b) Excitation of the SW of the 15-GHz frequency

with the antenna located in the top (a) and bottom (b) Co layer. (c,d) Excitation of the SW of the 19-GHz frequency with the
antenna located in the top (c) and bottom (d) Co layer. (e) Excitation of the SW of the 13-GHz frequency with the antenna
located in the top Co layer. (f) Excitation of the SW of the 17-GHz frequency with the antenna located in the top Co layer.

concentrated at the front of the stripe instead of the end as in
the case 2. In the case 4 [Fig. S3(f)], the energy is concen-
trated mostly in the top-left side as the resonance in the Py
stripe reverses back the SW.
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4.3 [P3] Nonreciprocal spin-wave dynamics in Pt/Co/W/Co/Pt
multilayers

This study started in 2018 with the proposal of collaboration with G. Gubbiotti from CNR in
Perugia, Italy. He performed the Brillouin light scattering (BLS) spectroscopy measurements
on the set of Pt/Co/W and Pt/Co/W/Co/Pt samples provided by the group of M. Becherer at the
Technical University of Munich. The characteristic feature of the double-layer sample was that
the thicknesses of the Co layers were chosen so that they are both close to Q = 1, but one has an
in-plane effective anisotropy (Q < 1) and the other an out-of-plane effective anisotropy (Q > 1).
Moreover, due to the interface with the Pt layer from different sides, both Co layers should be
characterized by DMI constants of opposite sign. Surprisingly, the frequency difference between
the two lowest spin-wave modes was massive – about 15 GHz. We expected the difference
to be no more than a few GHz. Our initial hypothesis that interlayer exchange coupling was
responsible for such a strong frequency split was rejected. My numerical simulations showed
that the RKKY interaction must be very strong to split the frequencies so far apart. Moreover,
the RKKY-coupled layers should have significantly modified the dispersion relation; it was not
the case for these samples, whose dispersion curves were characteristic of uncoupled layers. To
confirm the results of the numerical simulations, the alternating gradient force magnetometer
(AGFM) measurements were performed. They showed that the layers are indeed not exchange
coupled, confirming the second hypothesis that the order of deposition of the layers is crucial
for the strength of the anisotropy. The reference layers had only the Pt/Co/W stack, while the
double layers had both Pt/Co/W and W/Co/Pt stacks. The combined results of BLS and AGFM
measurements confirmed that despite the same thickness of the Co layer and the same interfaces,
the Co layer in the W/Co/Pt stack has significantly lower anisotropy than in the Pt/Co/W stack.
Moreover, the results showed that despite the ultrathin W spacer of 0.95 nm thickness, the Co
layers were almost completely uncoupled; the effect of coupling was not pronounced in either the
BLS or the AGFM measurements. Only from the numerical simulations could it be concluded
that the layers are very weakly coupled. The results showed that this system can be used as
densely packed spin-wave conduits.

Contribution of the Author

In this publication, I performed the numerical simulations in COMSOL, extended the numerical
model to include the RKKY interaction, participated in the interpretation and discussion of the
experimental and numerical results, wrote the Theoretical and Numerical Methods and Results
sections, prepared Figures 2, 3e-h, and 4e-l, corrected the manuscript, was responsible for the
manuscript submission and the correspondence with the journal.
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We present a detailed study of the spin-wave dynamics in single Pt/Co/W and double Pt/Co/W/Co/Pt
ferromagnetic layer systems. The dispersion of spin waves was measured by wave-vector-resolved Brillouin light
scattering spectroscopy while the in-plane and out-of-plane magnetization curves were measured by alternating
gradient field magnetometry. The interfacial Dzyaloshinskii-Moriya interaction induced nonreciprocal disper-
sion relation was demonstrated for both single and double ferromagnetic layers and explicated by numerical
simulations and theoretical formulas. The results indicate the crucial role of the order of layers deposition on
the magnetic parameters. A significant difference between the perpendicular magnetic anisotropy constant in
double ferromagnetic layer systems conduces to the decline of the interlayer interactions and different dispersion
relations for the spin-wave modes. Our study provides a significant contribution to the realization of the
multifunctional nonreciprocal magnonic devices based on ultrathin ferromagnetic/heavy-metal layer systems.

DOI: 10.1103/PhysRevB.103.134404

I. INTRODUCTION

High demand for improvement in storage and comput-
ing devices and decrease of their power consumption leads
to continued interest in spintronic phenomena. Recently,
the interfacial Dzyaloshinskii-Moriya interaction (iDMI) [1]
brought the attention of the researchers as it permits us to
stabilize topological magnetic solitons, e.g., skyrmions and
radial vortices [2]. The iDMI is an asymmetric exchange
interaction and can be induced in ultrathin multilayer sys-
tems where the inversion symmetry is broken between both
interfaces of the ferromagnetic layer. It is induced by large
spin-orbit coupling between a ferromagnet and heavy-metal
atoms at one of the interfaces of an ultrathin ferromagnet.
The energy contribution of iDMI is minimized when spins
are aligned perpendicularly in a specific direction, described
by the equation EDMI = −∑

i, j Di j · (Si × S j ), where Di j is
the Dzyaloshinskii-Moriya vector. Therefore, the orientation
of the Di j determines whether right-handed or left-handed
rotation sense between neighboring spins is the configuration
of lower energy. Even if the iDMI favors noncollinear align-
ment of spins when it is strong, the single-domain state can
be achieved at high magnetic fields. Then, the chiral property
of the iDMI is exhibited in nonreciprocal spin-wave dynamics
[3–6] and can be used to tailor the magnon dispersion relation,

*krzysztof.szulc@amu.edu.pl

and thus used to extend the functionality of the magnonic
devices [7].

The iDMI value is one of the highest in Pt/Co systems,
which are also characterized by strong perpendicular mag-
netic anisotropy (PMA). Thus, many of the iDMI systems are
based on Pt/Co ultrathin films with broken inversion sym-
metry, e.g., Pt/Co/AlOx [8,9], Pt/Co/MgO [10] Pt/Co/Ta
[11], Pt/Co/(W,Ta,Pd) [12], Pt/Co-Ni/Ta [13], Ir/Fe/Co/Pt
[14], Pt/Co/Cu/AlOx [15], Pt/Co/Os/Pt [16], Pt/Cu/Co/Pt
[17]. In Ref. [18] the implications of asymmetric multilayers
[Pt/Co/Ir]5 with broken inversion symmetry on domain wall
chirality, skyrmion stability, and its dynamics were reported.
Interestingly, weak iDMI was also present in symmetric
Pt/Co/Pt multilayers [19] due to different quality of the Co
interfaces. The influence of the surface quality can also have
a significant impact on the anisotropy of the sample [20].

Most of the studies, also cited above, considered struc-
tures with sandwich multilayers, where the unit Pt/Co/X
was repeated n times, and magnetic parameters of Co layers
had negligible differences. Nevertheless, the stack of layers
with deliberately different magnetic properties of magnetic
materials across the thickness might also have interesting
properties especially related to the magnetization and spin-
wave dynamics, useful for applications in spintronics and
magnonics as indicated by recent studies. For example, in
the antiferromagnetic-exchange-coupled symmetric bilayer
CoFeB/Ru/CoFeB, the measured Ru thickness-dependent
nonreciprocity was related to the difference between

2469-9950/2021/103(13)/134404(10) 134404-1 ©2021 American Physical Society
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TABLE I. Magnetic parameters of the SFL and DFL samples.

Abbrev. Sample MS (kA/m) [48] Meff (kA/m) Ku (kJ/m3) D (mJ/m2)

SFL1 Co(1.95)/W(0.95) 1100 28 741 0.74
SFL2 Co(1.6)/W(0.95) 1050 −235 848 0.84
DFL1 Co(1.6)/W(0.95)/Co(1.95) 1100 774 225 −0.64

1050 −194 821 0.72
DFL2 Co(1.6)/W(0.95)/Co(1.6) 1050 626 280 −0.49

1050 −246 855 0.84

perpendicular interface anisotropy of the bottom and top
CoFeB layer [21]. Thus, in this paper, we will investigate the
spin-wave properties in systems composed of two ferromag-
netic layers, i.e., double ferromagnetic layer (DFL) systems.

DFL systems with opposite sign of iDMI in the limit
of noninteracting layers shall exhibit two nonreciprocal
dispersion-relation branches that are mirror images at wave
vector k = 0. Therefore, having a dispersion resembling the
electronic Rashba splitting is expected [22–24]. Addition-
ally, the coupling strength between the layers can be tuned
by Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction or
dipolar interaction [25,26]. Also, interlayer DMI interaction
in the DFL system, competing with RKKY interaction, was
recently shown [27]. These works point out that magnonic
dispersion can be tailored in many ways in the DFLs and
multilayers with varied iDMI, magnetic properties of the sub-
layers, and the coupling strength between them.

The strength of iDMI can be quantified by several methods,
such as domain-wall velocity [28,29], asymmetric hysteresis
loop method [30], and magnetic force microscopy [31]. A de-
tailed review of the different techniques used to measure iDMI
in ultrathin films has been recently published by Kuepferling
et al. [32]. Among them, Brillouin light scattering (BLS)
spectroscopy has demonstrated to be a powerful and reliable
technique since it combines the high sensitivity to detect sig-
nals from spin waves in magnetic monolayers [33–40], and
the possibility to explore a wide range of wave vectors (0–25
rad/μm) and frequencies (1–500 GHz). The estimation of
iDMI constant from experimental measurements was studied
also for complex multilayers [41].

In this work we study Pt/Co/W/Co/Pt DFL systems and,
as the reference samples, the Pt/Co/W single ferromagnetic
layer (SFL) systems. Hysteresis loops were measured using
the alternating gradient force magnetometer (AGFM). BLS is
used to measure the dispersion relation of spin waves and to
extract the iDMI constant by measuring the frequency asym-
metry (� f ) between the spin waves propagating in opposite
directions. The numerical simulation in the time and fre-
quency domain provides an interpretation of the experimental
results and allows us to extract effective magnetization and
anisotropy constant of the Co layers. In particular, we found
that in DFL samples, the Co layers have an opposite sign
of iDMI due to the inversion of interfaces and significantly
different anisotropies due to a different order of the layers de-
position. With these properties we aim to demonstrate systems
with two, almost independent spin-wave dispersion relations
possessing nonreciprocal properties.

II. EXPERIMENTAL METHODS

The characterized thin films were deposited at room tem-
perature via confocal rf-magnetron sputtering (base pressure
<2 × 10−7 mbar) onto n− doped silicon (100) substrates with
an in-house grown thermal oxide (thickness ≈ 20 nm). Before
the deposition, residual water was removed from the samples
using a 300 eV Ar+ ion beam. All materials were deposited at
a constant argon pressure 4 μbar (≈ 3 mTorr) except for the
Ta adhesive, which was deposited at 2 μbar (≈ 1.5 mTorr).
The rf power applied to the 2-in. targets was identical for
all materials (40 W). To reduce contaminants the dead times
between elements during the automated deposition were gen-
erally kept below 1s. All multilayer stacks feature a standard
adhesive (1.5 nm Ta), seed (6 nm Pt), and capping (3 nm Pt)
layer. The stacks are, therefore, solely addressed by their mag-
netic layer compositions with thicknesses given in nanometers
[e.g., Co(1.6)/W(0.95)/Co(1.95)]. Single ferromagnetic Co
layers having a thickness of 1.6 and 1.95 nm have also been
grown on Pt films and used as reference samples. The set of
four fabricated samples is listed in Table I.

Hysteresis loops were measured by the AGFM, applying
a magnetic field up to 15 kOe in the directions parallel and
perpendicular to the film plane.

BLS spectra were recorded at room temperature in
the backscattering configuration using a (3+3)-tandem
Sandercock-type interferometer [42]. About 200-mW p-
polarized monochromatic light from a solid-state laser λ =
532 nm was focused onto the sample surface. An in-plane
magnetic field H was applied parallel to the sample surface
and perpendicular to the plane of incidence of light in the
so-called Damon-Eshbach configuration. A schematic repre-
sentation of the scattering geometry is represented in Fig. 1.
Due to in-plane momentum conservation, the wave vector k
of spin waves entering into the scattering process is given by
k = (4π/λ) sin θ . Spin waves traveling in the −x and +x di-
rections appear as peaks in the Stokes and anti-Stokes side of
the spectra, respectively. BLS measurements were performed
in two different configurations: (1) by changing the magnitude
of the external magnetic field applied in the sample plane at
normal incidence of light upon the sample surface (θ = 0◦),
i.e., k = 0; and (2) by sweeping the wave vector k in the range
from 0 to 20 rad/μm at fixed applied field H = ±5.5 kOe
[43]. Reversing the direction of the external magnetic field
from +5.5 to −5.5 kOe is equivalent to reverse the direction
of the propagating spin waves. The frequency asymmetry
induced by iDMI is proportional to the sine function of the
in-plane angle φ between the applied field and the wave vector
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FIG. 1. Schematic drawing of the BLS scattering geometry in the
Damon-Eshbach configuration. The incident light makes an angle θ

with respect to the sample normal. Measurements are performed in
the backscattering configuration, where the same camera objective
is used to focus laser light upon the sample surface and to collect
scattered light sent to the interferometer for the frequency analysis.
A magnetic field H is applied in the sample plane and perpendicular
to the incidence plane of light.

direction [5]. In the Damon-Eshbach configuration (φ = 90◦),
� f is maximum.

III. THEORETICAL AND NUMERICAL METHODS

Motion of the spin is described by the Landau-Lifshitz
equation:

∂M
∂t

= −γμ0M × Heff, (1)

where M = (mx, my, mz ) is the magnetization vector, γ is
the gyromagnetic ratio, μ0 is the magnetic permeability of
vacuum, and Heff is the effective magnetic field, which is given

as follows:

Heff = H ẑ + 2Aex

μ0M2
S

∇2M + 2D

μ0M2
S

ẑ × ∂M
∂x

+ 2Ku

μ0M2
S

myŷ − ∇ϕ, (2)

where H is the external magnetic field, MS is the saturation
magnetization, Aex is the exchange stiffness constant, D is the
iDMI constant, Ku is the PMA constant, and ϕ is the magnetic
scalar potential fulfilling Poisson-like equation

∇2ϕ = ∇ · M. (3)

In the DFL structures, the RKKY interaction is applied as
the boundary conditions on the inner interfaces of the ferro-
magnetic layers [44] along with the boundary condition for
the exchange interaction

0 = 2Aexẑ × ∂M1(2)(y)

∂y

∣∣∣∣
y=yin

1(2)

− J ẑ × [
M2(1) − M1(2)

(
yin

1(2)

)]
, (4)

where J is the RKKY constant and subscripts numerate bot-
tom and top layers in DFL samples. The boundary condition
on the outer interfaces consist only of the exchange interaction
term

0 = 2Aexẑ × ∂M1(2)(y)

∂y

∣∣∣∣
y=yout

1(2)

. (5)

Spin-wave dynamics are calculated numerically using
the finite-element method in COMSOL Multiphysics [45].
The system was implemented to a two-dimensional model
with Floquet boundary conditions to simulate an infinite
plane with finite thickness. Time-domain simulations were
used to simulate the hysteresis loops of the DFL system.
Frequency-domain simulations were carried out to calculate
the spin-wave dispersion relation of the DFL system. Eigen-
frequency problem employs a linear approximation of Eqs. (1)
and (3), i.e., assuming mx, my � mz ≈ MS . Triangular mesh
with a maximum element size of 1 nm inside the ferro-
magnetic layers and a growth rate of 1.15 outside of the
ferromagnetic layers was used.

In the SFL system, the spin-wave dispersion relation was
fitted using the analytical formula [46,47]

f = γμ0

2π

{√(
H + MS

d|k|
2

+ 2Aex

μ0MS
k2

)[
H + MS

(
1 − d|k|

2

)
+ 2Aex

μ0MS
k2 − 2Ku

μ0MS

]
+ 2D

μ0MS
k

}
. (6)

The frequency difference between the Stokes and anti-Stokes
peaks � f can be derived from Eq. (6) as

� f = f+k − f−k = γ

2π

4D

MS
k. (7)

The field dependence of the frequency was measured at
normal-incidence angle θ = 0◦, therefore, Eq. (6) simplifies

to the following formula:

f = γμ0

2π

√
H

(
H + MS − 2Ku

μ0MS

)
, (8)

which describes the sample saturated in the film plane.
The field dependence for the saturation out of the plane is
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FIG. 2. AGFM hysteresis loops measured in the in-plane configuration and out-of-plane configuration. The purple dashed lines represent
the fitting using the numerical simulations. In the inset plots, the zoom to low external fields is shown. On top of the figure, the schematic
representation of the samples is shown.

described by the formula

f = γμ0

2π

√(
MS − 2Ku

μ0MS

)2

− H2. (9)

Based on Eq. (8), the effective magnetization Meff can be
defined as

Meff = MS − 2Ku

μ0MS
. (10)

MS values are extracted from the out-of-plane magnetization
curves obtained by Mendisch et al. [48]. For Co(1.6) is MS =
1050 kA/m while for Co(1.95) is MS = 1100 kA/m.

IV. RESULTS

A. AGFM hysteresis loops

The AGFM hysteresis loops measured in the film plane
(green curves) and perpendicular to the plane (blue curves)
are shown in Fig. 2. The results were used to determine Meff

values of the layers in all of the samples. Hard-axis hysteresis
loops were fitted with the numerical simulations. The satu-
ration field values obtained from the simulations should be
consistent with the Meff values. The beginning of the magneti-
zation reversal process is sharp, so the extracted Meff values
are considered to be well defined. At this point, the effect
of the RKKY interaction between the layers is neglected. Its
effect is explained in Sec. IV C. Using the predefined MS from
Ref. [48], we also determined the PMA constant Ku using
Eq. (10). They are collected in Table I.

In the Co(1.95)/W(0.95) (SFL1) sample [Fig. 2(a)] the par-
allel loop has a square shape while the perpendicular loop has
the typical S-shape behavior characterized by an almost linear
dependence on the applied field, indicating an in-plane easy
axis. The magnetic saturation in the perpendicular direction
is reached in a field much lower than μ0MS , thus indicating
that a strong PMA is present in this sample, which competes
with the shape anisotropy. Ku is slightly lower than the value

required to get a change from an in-plane to an out-of-plane
easy magnetization axis, which is 760 kJ/ m3, and the sample
remains in the in-plane configuration in the remanence. In-
plane and perpendicular coercivity values are low, but both
loops close at higher field values, i.e., around 0.2–0.3 kOe.

The Co(1.6)/W(0.95) (SFL2) sample [Fig. 2(b)] shows
a clear PMA contribution, which dominates over the mag-
netostatic in-plane contribution, giving rise to an easy
magnetization direction perpendicular to the film plane. The
hysteresis loop measured with the field applied in the film
plane shows a transcritical shape with a saturation field around
3 kOe, low coercivity, but an open loop up to a higher field
(approximately 1.2 kOe). The latter feature might depend on
a secondary phase with a tilted easy magnetization axis. The
hysteresis loop measured in the perpendicular direction shows
a square shape with a larger coercive field compared to the
in-plane direction.

In the DFL samples [Figs. 2(c) and 2(d)], the PMA con-
tribution is evident. The hysteresis loops along the in-plane
and perpendicular directions clearly show the contribution
of two magnetic components: one with an easy magneti-
zation axis in the film plane and the other with an easy
magnetization axis perpendicular to the film plane. In the
Co(1.6)/W(0.95)/Co(1.95) (DFL1) sample [Fig. 2(c)], the
in-plane easy-axis part appears to have a larger magnetic
moment, indicating that it is associated with the Co(1.95)
layer, while the out-of-plane easy-axis is present in the
Co(1.6) layer. In the Co(1.6)/W(0.95)/Co(1.6) (DFL2) sam-
ple [Fig. 2(d)], the in-plane and out-of-plane parts carry the
same magnetic moment because of the same thicknesses of
the ferromagnetic layers. Also, comparing the magnetic pa-
rameters in the DFL and SFL samples, we can ascribe a larger
Ku value to the bottom Co layer and smaller Ku to the top
Co layer. We associate this effect with the order of the layers
deposition. Even though the Co layer has the same vicinity (Pt
and W), the effect on the magnetic parameters is different if
the material plays the role of the seed or capping layer [49] as
well as depends on the growth conditions [50]. Moreover, in
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FIG. 3. (a)–(d) The sequence of BLS spectra measured at k = 0 (θ = 0◦) and different magnitudes of the externally applied field for all the
investigated samples. (e)–(h) The spin-wave frequency measured by BLS in the function of the external field H and fitting with the theoretical
formula in Eqs. (8) and (9).

both DFL samples, the coercive-field values are larger in the
perpendicular direction.

B. Field-dependent BLS measurements

Figures 3(a)–3(d) present the sequences of measured BLS
spectra and Figs. 3(e)–3(h) present the frequency values plot-
ted as a function of H at k = 0 for all of the investigated
samples. BLS spectra were measured starting from H = 8
kOe and decreasing it down to zero, i.e., along the descending
branches of the in-plane loops in Fig. 2. For SFL samples,
only one peak is observed. For the SFL1 sample, it has a
monotonic dependence on H , while for the SFL2 sample,
it first decreases, reaching a minimum at 2.4 kOe, and then
increases again. For DFL samples, two peaks are visible on
both the Stokes and anti-Stokes sides of the spectra. Here the
field dependence is more complicated since the frequency of
high-frequency mode monotonously decreases with decreas-
ing H while the low-frequency peak first decreases, reaches a
minimum, and then increases. Since the spectra are measured
at k = 0, the frequency position of the peaks are symmetric
( fS = fAS) on both the Stokes and anti-Stokes sides of the
spectra. Based on PMA constants derived from the AGFM
hysteresis loops, we used Eq. (8) to determine the gyromag-
netic ratio γ of the analyzed samples. We reached satisfying
fitting for γ = 192 rad/(Ts), as shown in Figs. 3(e)–3(h) with

solid lines. These results, together with the values of the
saturation fields derived from the AGFM measured loops,
permit us to unambiguously affirm that above 4 kOe the
magnetization is saturated and aligned parallel to the sample
plane. Therefore, we performed the wave-vector-dependent
measurements for an externally applied field of ±5.5 kOe.

C. Role of RKKY interaction in DFL samples

The numerical simulations were used to check the presence
of the RKKY interaction in the DFL samples. First, Ku,1 and
Ku,2 were fitted to the hysteresis loops from Fig. 2 in the
function of the RKKY constant J . The results show that the
difference between Ku,1 and Ku,2 increases with the RKKY
constant. However, the hysteresis loop does not change its
character. The shape is identical to the shape of the loop
of the noninteracting layers. The possible cause is the large
difference between Meff. In the next step, the RKKY constant
(along with related to it Ku,1 and Ku,2) was fitted to the field
dependence of the frequency results obtained from the BLS
measurements shown in Figs. 3(e)–3(h). The gyromagnetic
ratio γ was used to fit the low-frequency mode, and the
RKKY constant was fitted to the high-frequency mode. The
value of the RKKY constant for DFL1 equals −100 μJ/m2

for γ = 195 rad/(Ts) and for DFL2 equals 20 μJ/m2 for
γ = 190 rad/(Ts). However, the best fit assuming the absence
of the RKKY is as far as 1 GHz from the satisfactory fit.
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FIG. 4. (a)–(d) Measured BLS spectra at k = 18.1 rad/μm (θ = 50◦) and for two different orientations of the external field: H = +5.5 and
−5.5 kOe. Black points represent the measured spectra, while red curves are the Lorentzian fitting of the peaks. (e)–(h) Dispersion relations
measured by the BLS spectroscopy in the external field of ±5.5 kOe and fitted using finite-element method simulations. (i)–(l) Frequency
asymmetry plots measured by the BLS spectroscopy with the linear regression fitting based on Eq. (7).

It lies within the error range, which considers the reading
of Meff from the hysteresis loops and instrument errors. In
general, the frequency shift is small even for a large value
of the RKKY constant (exceeding ±100 μJ/m2). Moreover,
the shape of the hysteresis loops and the field dependence
of the frequency with RKKY are identical to the case of the
noninteracting layers. Therefore, the presence of the RKKY
interaction cannot be confirmed when the difference between

Meff of the layers in the bilayered structure is too large, and
thus its effect is neglected in the analysis of the results.

D. Wave-vector-dependent BLS measurements

In order to derive the iDMI constant, we measured the BLS
spectra for different wave-vector values in the range from 0
to 20 rad/μm for H fixed at +5.5 and −5.5 kOe. Typical
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BLS spectra measured at these fields for k = 18.1 rad/μm
are shown in Figs. 4(a)–4(d) for all the investigated samples.
Because of the small sample thickness, both the Stokes and
anti-Stokes peaks, corresponding to spin waves propagating in
opposite directions, are simultaneously observed with slightly
different intensity. Frequencies of the spin-wave modes were
extracted by fitting the peaks in the BLS spectra [displayed in
Figs. 4(a)–4(d) by the red curves] with Lorentzian functions
and were plotted as a function of their respective wave vectors
k in Figs. 4(e)–4(h). It is noteworthy that on reversing the
direction of the applied magnetic field, the respective center
frequencies and intensities of the Stokes and anti-Stokes peaks
interchange due to the fact that reversing the magnetization is
equivalent to a reversal operation. For that reason, the follow-
ing discussion will pertain to the results in positive external
magnetic field. The dispersions were calculated by the finite-
element method simulations in COMSOL Multiphysics. We
set the exchange stiffness Aex = 15 pJ/m. The values of MS

and Ku used in simulations are written in Table I. The iDMI
constant D was the free parameter in the fitting procedure for
each sample separately.

In the SFL samples [Figs. 4(e) and 4(f)], the frequency
dependence is close to linear and has a positive slope. A
more detailed analysis of Eq. (6) allows explaining the char-
acter of the dispersion relation. First, the effect of the dipolar
interaction is significantly weakened by the PMA as MS ≈
2Ku/μ0MS and so Meff ≈ 0. In fact, when Meff < 0, the sur-
face wave propagates backward, and the dispersion relation
has a negative slope even with the absence of iDMI, until
the effect of the exchange interaction starts to dominate. The
small thickness of the layer leads to the additional flattening
of the dispersion. In the BLS range of the wave vector, the
effect of the exchange interaction is small, and so the disper-
sion relation is close to linear. The slope of the dispersion is
directly connected to the iDMI.

The dispersion relations of the DFL samples [Figs. 4(g)
and 4(h)] show two branches of a different character. Compar-
ing the dispersion relations with the systems of noninteracting
layers, the frequency is changing by less than 100 MHz,
indicating very weak dipolar coupling between the layers.
The lowering of the dipolar-coupling influence on frequency
is caused by the large difference between the PMAs of the
layers. Interestingly, it allows us to use the approximation
of the noninteracting layers, even for separations as small as
1 nm. The low-frequency mode is close to linear with the
positive slope. Its character is identical to the single-layer dis-
persion confirming the connection with the bottom layer. The
high-frequency mode is flat on the positive wave vectors’ side
and has a negative slope on the negative wave vectors’ side.
The flattening is the result of the compensation of dynamic
dipolar interaction by the iDMI.

Figures 4(i)–4(l) show the frequency difference � f be-
tween the Stokes and the anti-Stokes peaks measured as a
function of the wave vector k. The values for positive wave
vectors represents the measurements in the positive external
field and negative wave vectors—in the negative external field.
The frequency asymmetry exhibits a linear dependence as
a function of k, agreeing with the theoretical prediction of
Eq. (7). The frequency-difference plots were fitted using the
linear regression method based on Eq. (7), and the values

of iDMI constant D are collected in Table I. The values are
in agreement with values presented in the literature for the
similar thickness of Co layer [9], where the iDMI constant is
about 1 mJ/m2 for 1.6 nm Co thickness and lower for larger
thicknesses of Co.

In the DFL samples [Figs. 4(k) and 4(l)], the frequency
asymmetry always has a linear dependence on k, but for the
two modes, it has an opposite sign since the Co layers have Pt
as a bottom or top layer. However, the iDMI constants in the
layers differ. This effect can come from the different thick-
nesses of the Pt layers, as well as in the DFL1 sample [Fig.
4(k)], from the different thicknesses of the Co layers. The
sputtering order of the layers can also affect the iDMI constant
absolute value, as it is observed for the PMA constant.

V. CONCLUSIONS

We have studied the iDMI and spin-wave dynamics in
Pt/Co/W/Co/Pt DFL structures with the opposite arrange-
ment of Co and Pt layers and Pt/Co/W SFL samples. AGFM
hysteresis loops show a strong PMA contribution, leading to
a resultant out-of-plane easy magnetization axis in Co(1.6)
layer and in-plane easy magnetization axis in Co(1.95) layer
with small effective magnetization. Hysteresis loops of DFL
samples indicate both in-plane and out-of-plane anisotropy
contributions, also pointing at a significant difference between
the PMA constants of the Co layers. Field-dependent mea-
surements of the BLS spectra at normal incidence confirm
the presence of strong PMA in the Co layers. Numerical
simulations were made to check the presence of the RKKY
interaction through the W spacer. We find that AGFM and
BLS results can be fitted without this interaction taken into
account, which does not confirm the presence of the RKKY
interaction in the DFL samples.

Wave-vector-dependent BLS measurements were made in
a large external field of ±5.5 kOe to reach the in-plane
configuration of magnetization. The results show the iDMI-
dominated linear dispersion in SFL samples and two-mode
dispersion in DFL samples related to the two Co layers in
the studied system. The strong asymmetry between the Stokes
and anti-Stokes peaks is present. In the DFL samples, the
slope of the two branches and thus the signs of the iDMI
constant are opposite due to the opposite arrangement of Co
and Pt layers. The iDMI constant values vary between 0.49
and 0.84 mJ/m2, being in line with the values known from
the literature.

In DFL samples, the linear low-frequency mode is dom-
inated by iDMI and resembles the dispersions measured in
SFLs. The asymmetric high-frequency mode consists of a flat
branch for positive wave vectors and a strongly dispersive
branch for the negative wave vectors at the selected orien-
tation of the external magnetic field. A comparison with the
system of noninteracting layers points out a significant weak-
ening of the interlayer coupling via the dynamic dipolar field.
This uncoupling of spin waves between the Co layers sepa-
rated by only 0.95-nm-thick nonmagnetic spacer arises from
the significantly different frequencies of oscillations in both
layers, with the difference equaling 15.5 GHz at k = 0 for
both DFL1 and DFL2 samples. Such a significant difference
in frequencies in nominally very similar Co films is attributed
to the different PMAs originating in different deposition se-
quences for the bottom and top Co layers.

134404-7

73



KRZYSZTOF SZULC ET AL. PHYSICAL REVIEW B 103, 134404 (2021)

To sum up, we design the system based on ultrathin lay-
ers composed of the same set of materials, operating at two
frequency ranges, both possessing nonreciprocal spin-wave
dispersion relations but with different characteristics. We
demonstrated that SWs in pair of closely-placed magnetic
layers can propagate without interactions due to difference in
anisotropy and opposite sign of DMI. Because of the differ-
ence in magnetic parameters, the effect of dipolar interaction
is lowered and communication between the SW channels is
negligible. The presented system, having two independent
nonreciprocal paths for the spin waves, is important for design
and miniaturization of 3D multilevel magnonic networks.
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This research was carried out in collaboration with the groups of S. Tacchi at CNR in Perugia,
Italy, L. M. Álvarez-Prado at Universidad de Oviedo, Spain, and D. Schmool at CNRS in
Versailles, France. The collaboration started in 2019. The NdCo/Al/Py samples were prepared
by the Oviedo group. Thin NdCo films are characterized by a low perpendicular magnetic
anisotropy, which allows the system to stabilize the stripe domains, as explained in Section 2.2.2.
However, this class of materials is characterized by high damping, making them inefficient for
the spin-wave transmission. The idea was to couple this layer to a layer of a soft magnetic
material with low damping like permalloy. In such a case, the stripe domains from the NdCo
layer have been imprinted on the Py layer, making it the spin-wave conduit with a modified
magnetization configuration. Additionally, since the Py layer has a low coercivity, it was possible
to change its magnetization direction without modifying the stripe-domain pattern in the NdCo
layer, making the system reconfigurable. The samples were measured by BLS spectroscopy by
S. Tacchi from Perugia. The results show a spin-wave mode with very strong asymmetry. The
asymmetry was opposite for the systems with reversed magnetization in the Py layer. In addition,
the second mode was partially visible in large wavevectors for the samples with thin Al spacer.
The role of our group was to use the numerical simulations to investigate how the the thickness of
the Al spacer affects the magnetization configuration of the system, whether the stripe domains
are responsible for the strong dispersion asymmetry, and what is the source of the second mode.
Together with P. Graczyk, I extended the COMSOL model to solve the eigenfrequency problem
in the systems with non-collinear magnetization. The results of the numerical simulations not
only confirmed the important role of the stripe domains, but also demonstrated that the second
mode comes from the interaction with a mode from the neighboring Brillouin zone, showing that
this system acts as a magnonic crystal. The simulations were also crucial for understanding the
role of damping on the dispersion relation; the magnonic crystal behavior was not pronounced in
the system with thicker Al spacer due to high damping in the NdCo layer.
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ABSTRACT: Reconfigurable magnetization textures offer con-
trol of spin waves with promising properties for future low-
power beyond-CMOS systems. However, materials with
perpendicular magnetic anisotropy (PMA) suitable for stable
magnetization-texture formation are characterized by high
damping, which limits their applicability in magnonic devices.
Here, we propose to overcome this limitation by using hybrid
structures, i.e., a PMA layer magnetostatically coupled to a low-
damping soft ferromagnetic film. We experimentally show that a
periodic stripe-domain texture from a PMA layer is imprinted
upon the soft layer and induces a nonreciprocal dispersion
relation of the spin waves confined to the low-damping film.
Moreover, an asymmetric bandgap features the spin-wave band
diagram, which is a clear demonstration of collective spin-wave dynamics, a property characteristic for magnonic crystals with
broken time-reversal symmetry. The composite character of the hybrid structure allows for stabilization of two magnetic states
at remanence, with parallel and antiparallel orientation of net magnetization in hard and soft layers. The states can be switched
using a low external magnetic field; therefore, the proposed system obtains an additional functionality of state
reconfigurability. This study offers a link between reconfigurable magnetization textures and low-damping spin-wave
dynamics, providing an opportunity to create miniaturized, programmable, and energy-efficient signal processing devices
operating at high frequencies.
KEYWORDS: spin waves, magnonic crystal, magnetic stripe domains, perpendicular magnetic anisotropy, magnetic bilayers

INTRODUCTION
The use of nonuniform magnetic textures to control the
propagation of spin waves (SWs) has attracted considerable
interest in recent years.1,2 This approach has many advantages
over conventionally used nanostructured systems at saturation.
Their use reduces the negative impact of edge heterogeneity
and defects, which can appear in nanofabrication processes. It
has been shown that SWs can be guided along domain walls,
serving as narrow graded-index waveguides.3−8 Domain-wall
propagation also removes the limitations related to the bending
of SW flow in the in-plane magnetized thin films, existing due
to the strong anisotropy of SW dispersion.6−11 Particularly
interesting in this context are systems with perpendicular
magnetic anisotropy (PMA), in which naturally stable Bloch-
type domain walls can be very narrow with widths of less than
10 nm, whereas nanostructuring of 50 nm-wide waveguides is

still a technological challenge.12,13 From an application point of
view, the utilization of magnonic circuits with stable magnetic
configuration in the absence of the external magnetic field is
highly desirable,14,15 and one of the best-suited methods to
achieve this is to use PMA.16 Moreover, it is often possible to
achieve various stable magnetic configurations as a medium for
the propagation of SWs in the same system, which provides the
possibility of reprogrammability.6,10,17,18 For instance, in
magnetic films with PMA characterized by a quality factor Q
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= 2KPMA/μ0MS
2 smaller than one (where KPMA is the PMA

constant and MS is the saturation magnetization), and above a
certain critical thickness, it is possible to stabilize a pattern of
aligned stripe domains with alternating up and down out-of-
plane magnetization component, having lattice constants of
100 nm and smaller, which can be controlled by the layer
thickness.18−27 Nevertheless, the thicker the system, the more
complex the internal structure of domains and domain walls
across the film thickness.21,28 However, for Neél- or Bloch-type
walls, up and down domains are separated by flux-closure
domain walls resembling vortices with cores directed along the
domain wall axes.18,29 Domain walls in this type of system may
also have different chiralities with respect to the polarity of the
domain wall that can support nonreciprocal effects for SW
propagation.18,28,29

Analytical calculations and micromagnetic simulations have
indicated that in periodic magnetization textures, the nonlocal
dipole field arising from the finite film thickness leads to the
formation of a band structure.30 More recently, the role of the
dipolar field has been also confirmed by Laliena et al.31 In this
work, the authors have shown theoretically that Bloch domain
walls, which are transparent to the SWs propagation when the
dipolar interaction is neglected, are able to reflect SWs if the
dipolar interaction is taken into account properly.
Periodic stripe domains has been shown to be suitable to

control SW dynamics and function as magnonic crys-
tals.18,28,32−35 Hitherto, the band-gap openings have only
been demonstrated theoretically arising from small lattice
constants causing the Brillouin-zone (BZ) edge to lie beyond
the experimentally measurable range of wavevectors using
conventional techniques. However, the magnonic advantages
of thin ferromagnetic films with PMA are limited by the high
SW damping usually present in this class of materials. There
are a few exceptions to this, such as ferrimagnetic materials
with very low saturation magnetization, e.g., bismuth-doped
yttrium−iron garnet or thulium−iron garnet.36−38

Here we propose an approach, which enables us to avoid
high damping of PMA materials while still harnessing the
advantages of the magnetization texture for the efficient
guiding and control of the SW propagation. For this purpose,
we use a hybrid system consisting of a soft ferromagnetic film,
which is dipolar-coupled to a hard layer exhibiting a stripe-
domain pattern.39−41 In previous studies, it has been shown
that in this kind of hybrid system, the stripe-domain pattern
from the hard magnetic layer is transferred to the soft
one.40,42−45 Interestingly, in the bilayer system with one layer
possessing an out-of-plane component of the static magnet-
ization, the static stray field affects both static and dynamic
properties of the second medium.46 With this approach, we
aim to combine the advantages of regular magnetization
textures in PMA films with low-damping thin films, which can
be used as an effective low-damping conduit of SWs to advance
magnonics.
Moreover, in dipolar-coupled magnetic bilayers, one can

achieve nonreciprocal SW propagation so that, for a given
frequency, oppositely propagating SWs have different wave-
lengths.47−50 Furthermore, the alternation of the SW
amplitude between the layers can be achieved, enabling one
to design co- and contra-directional couplers51 or utilize the
effects to design magnonic diodes and circulators.52

In this work, we perform a combined experimental and
theoretical study of SW dynamics in a trilayer consisting of a
permalloy (Py) film coupled through an Al interlayer (of

varying thicknesses) to a NdCo7.5 layer with weak PMA, with a
ground-state periodic stripe-domain pattern. The static proper-
ties of the system have been measured using vibrating sample
magnetometry (VSM) and magnetic force microscopy
(MFM), whereas SW dynamics have been measured by
Brillouin light scattering (BLS) spectroscopy. The experimen-
tal results are reproduced and interpreted using finite-element
method simulations, which have been further developed to
treat the nonuniform magnetic textures. Two different
configurations have been stabilized in remanence, and it is
possible to switch between them by applying a small external
magnetic field: (i) in the parallel state, the magnetization in the
Py layer follows the magnetic configuration of the NdCo stripe
domains, while (ii) in the antiparallel state, the in-plane
magnetization component along the Py stripes axis is
antiparallel to that of the NdCo stripes.
The SW dispersion in the Py film is found to be strongly

affected by the periodic pattern of the stripe domains in both
the parallel and the antiparallel state. In particular, the band
structure is characterized by a significant frequency asymmetry
induced by the dipolar coupling between the Py and NdCo
layer, which becomes more marked with a reduction of the
thickness of the Al layer. Moreover, in the sample with the
thinnest Al spacer, the opening of a band gap, induced by the
hybridization between the fundamental mode in Py from
neighboring BZs, has been experimentally observed at the
boundary of the first BZ. Interestingly, due to the strong
frequency asymmetry of the band structure, the band gap is
shifted from the edge of the BZ and occurs only on one side of
the experimental dispersion, and is on opposite sides for the
parallel and antiparallel state.

RESULTS AND DISCUSSION
Static Magnetic Properties. The investigated trilayer

samples (Figure 1a) consist of an amorphous 64 nm-thick
NdCo7.5 film and a 10 nm-thick Py film coupled through an Al
spacer of varying thickness (t = 2.5, 5, 10 nm). The fabrication
of the samples is described in the Experimental Section. The
static magnetic properties of the samples have been studied by
means of VSM. Figure 1c shows the hysteresis loop measured
by applying a magnetic field along the in-plane easy direction
(x-axis) for the sample with a 10 nm-thick Al spacer. Similar
hysteresis loops have been measured for the other samples. As
can be seen, coming from positive saturation, the magnet-
ization curve exhibits the typical “transcritical shape”,
characterized by the presence of a linear reversible region
starting around 120 mT, corresponding to the formation of
stripe domains. When the magnetic field is reversed, a small
drop in magnetization, associated with the reversal of the Py
magnetization component parallel to the external field, occurs
at about −15 mT. Then a plateau is observed until about −25
mT, where the Py and NdCo7.5 net magnetizations are aligned
along opposite directions, realizing an antiparallel ground state
of the system. Next, a second drop can be seen and is ascribed
to the reversal of the NdCo7.5 magnetization component
parallel to the external field. Finally, negative saturation, where
stripe domains disappear, is reached at about −120 mT.
Furthermore, the minor hysteresis loop (orange curve) has
been measured by increasing the magnitude of the applied field
in the positive direction once the first plateau, due to the
magnetization reversal of Py, has been reached. As can be seen,
the state of antiparallel alignment between the Py and the
NdCo7.5 magnetization remains stable when the magnetic field
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returns to zero coming from −20 mT (H = −0). Moreover, it
is possible to recover the parallel alignment of the magnet-
ization in the Py and NdCo layers by applying an in-plane
magnetic field H = +20 mT and going back to zero (H = +0).
This shows that we can easily switch between the parallel and
antiparallel state by applying a small external magnetic field.
The stripe-domain structure was imaged at remanence by
MFM. Figure 1b shows an MFM image of the sample with the
10 nm-thick Al spacer. Very regular stripe domains, aligned
along the in-plane direction of the last saturating magnetic
field, are observed on top surface, i.e., the Py layer, confirming
the dipolar interaction between the magnetic layers. From the
fast Fourier transform (FFT) of the MFM image, we obtained
a stripe domains period (consisting of a couple of ”up” and
”down” domains) of (146 ± 10) nm. A similar stripe-domain
pattern has been observed for the other samples (not shown
here).
To gain a deeper insight into the magnetization config-

uration of stripe domains at remanence, numerical simulations
(for details see Experimental Section) have been performed to
visualize the domain structure corresponding to the parallel (H
= +0) and antiparallel (H = −0) remanent states. For the
parallel state (Figure 2, left panels), one can observe a
magnetic structure in the NdCo film composed of stripe
domains, which are alternately magnetized up and down
(along the z-axis) with respect to the surface plane, separated
by Bloch-type domain walls, with the domain-wall cores in-
plane magnetized along the saturation direction (+x-direction).
Flux-closure domains with the in-plane magnetization along
the y-axis are found at the film surfaces. Note that the flux-
closure domain pattern from the top surface of NdCo is

transferred to the soft Py layer whose magnetization follows
the magnetic configuration of the NdCo stripe domains.
Interestingly, in the numerical simulations, the period of the

stripe-domain pattern is found to only slightly increase when
the Al thickness decreases, changing from 132 nm [for Al(10)]
to 138 nm [for Al(2.5)] due to the increase of the dipolar
interaction. Furthermore, with a reduction of the spacer layer
thickness, the enhanced imprint of the domain structure in the
Py film causes the domain structure itself to expand along the
sample thickness and the domain-wall core to shift up toward
the Py layer. This effect can be considered as an increase of the
effective thickness of the NdCo layer and becomes more
pronounced with an increase of the dipolar coupling between
the two ferromagnetic layers. Note that the simultaneous
increase of the effective thickness of the NdCo layer and of the
stripe-domain period is in agreement with the fact that in low-
PMA films, the single-domain width should be equal to the
thickness of the layer.19

For the antiparallel state, the stripe-domain structure in the
NdCo film remains stable, maintaining a period identical to
that of the parallel state, while in the Py layer, the in-plane
magnetization component mx is observed to reverse along the
−x-direction. This magnetization configuration has an
antiparallel alignment of the mx magnetization component in
Py and NdCo. As in the parallel configuration, the domain-wall
core is observed to shift upward into the Py layer when the
thickness of the Al spacer is reduced.
Spin-Wave Dynamics in the Saturated State. Spin-

wave propagation in the trilayer samples has been investigated

Figure 1. (a) Sketch of the investigated samples. (b) MFM image
of the stripe domains taken at remanence after saturation along the
x-direction for the sample with the 10 nm-thick Al layer. (c) VSM
hysteresis loop measured for the sample with the 10 nm-thick Al
layer (blue curve). The orange curve refers to the minor loop
along which BLS measurements have been performed. The point
indicated with H = +0 (H = −0) marks the remanent state with
parallel (antiparallel) longitudinal component of the magnet-
ization (mx) in adjacent stripes.

Figure 2. Equilibrium magnetization state calculated for the single
unit cell of the trilayer system at remanence for the parallel (left
column) and the antiparallel (right column) alignment of the x-
component of magnetization in Py and NdCo. The results are
shown for the samples with the Al layer thickness of (a, b) 10 nm,
(c, d) 5 nm, and (e, f) 2.5 nm. The arrows represent the projection
of the magnetization in the yz-plane, while the component mx is
given by a color code.
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by the BLS technique. First, the SW dispersion relation has
been measured when both the Py and NdCo7.5 films are
saturated with an in-plane magnetic field H = +200 mT along
the in-plane easy direction (x-axis). BLS measurements (see
the Experimental Section for details) have been performed in
the Damon-Eshbach configuration, sweeping the in-plane
transferred wavevector k along the perpendicular direction
(y-axis). Figure 3a shows the measured frequencies (points) of

the Stokes peaks (which arise from SWs propagating with
positive k) and the anti-Stokes peaks (which arise from SWs
propagating with negative k) as a function of the SW
wavevector. As can be seen, the two peaks exhibit different
dispersion relations, and the mode propagating with −k is
characterized by a larger gradient. This is clearly visible in the
BLS spectra shown in Figure 3b, where we observe a significant
frequency asymmetry between the Stokes and the anti-Stokes
peaks. Such a frequency difference between Damon-Eshbach
modes propagating in opposite directions is well reproduced
by theoretical calculations (lines) and can be ascribed to the
dipolar interaction between the Py and NdCo layers produced
by the dynamic components of the magnetization.49 A similar
frequency difference is present in the calculated dispersion of
the modes localized in the NdCo layer. The absence of these
modes in the experimental BLS spectra can be explained taking
into account that the signal from NdCo layer is much weaker
than from Py due to both the finite penetration depth of the
laser light in the BLS measurements and the high damping
constant of NdCo that leads to a broadening of the BLS peaks.

Figure 3c shows the measured (points) and the calculated
(lines) frequency difference Δf between the Stokes and the
anti-Stokes peak as a function of the wavevector. When the Al
thickness is reduced, the increase of the dipolar coupling
causes an increase of the frequency asymmetry. For the sample
with a 2.5 nm-thick Al spacer, Δf increases almost linearly as a
function of wavevector, reaching a value of about 1.4 GHz at k
= 21.4 rad/μm. Increasing the thickness of the Al spacer, Δf
assumes lower values and its slope is reduced for large
wavevectors. This effect stems from the decreasing range of the
dynamic stray field for large wavevectors, resulting from a
weaker dynamic dipolar interaction,49 and thus in reaching the
maximum value of the nonreciprocity at relatively short
wavelengths.
Interestingly, a significant increase of the measured SW

frequencies with decreasing the Al spacer thickness can be
observed. However, for saturated Py and NdCo layers,
interacting only via dipolar coupling, the SW frequency at k
= 0 is not expected to be affected by the thickness of the Al
spacer.49 Therefore, the above-mentioned behavior can be
ascribed to a reduction of the effective magnetization of the Py
film due to the increase of the surface roughness when the
thickness of the Al spacer increases. This is confirmed by X-ray
reflectivity measurements of Si/Al/Py samples with different
thickness of the Al layer. A progressive deterioration of the Al/
Py interface with increasing the Al thickness, due to the
increase of the roughness of the Al layer, is observed.
Spin-Wave Dynamics at Remanence. As a second step

of our BLS investigation, the SW dispersion has been measured
at remanence, when the stripe domains are aligned along the
in-plane easy direction (x-axis). Also, in this case, the in-plane
wavevector has been swept along the y-axis, i.e., in the
direction perpendicular to the axis of the stripe domains.
Figure 4 shows typical BLS spectra recorded in the parallel
state (top row) and the antiparallel state (bottom row). For
the samples with the 10 nm-thick and 5 nm-thick Al spacer,
only one peak, characterized by a sizable frequency asymmetry
between the Stokes and the anti-Stokes side, is observed in the
BLS spectra. For the sample with the 2.5 nm-thick Al spacer, a
second peak is present at higher frequencies in the anti-Stokes
(Stokes) part of the BLS spectra for parallel (antiparallel) state
for wavevectors larger than about 15 rad/μm.
The comparison between the calculated (color map) and the

measured (white crosses) SW dispersion at remanence is
reported in Figure 5 for all of the investigated samples. Since
the dynamic magnetization component perpendicular to the
film surface gives the main contribution to the BLS cross-
section, only the magnetization component mz was taken into
account for the SW intensity calculated using eq 5 (see
Experimental Section) and presented with a color map in
logarithmic scale. The calculated band structures are very
feature-rich and characterized by a marked influence of the
periodic pattern of the stripe domains in both the parallel and
the antiparallel states. In particular, the band diagram is
characterized by a significant frequency asymmetry induced by
the dipolar coupling, and this is confirmed by the measured
BLS data that correspond to the most intense peak in the
calculated dispersion relation. Note that only the first BZ is
accessible by BLS, because the maximum wavevector value
achievable by this technique is limited to about 22 rad/μm.
Interestingly, the bands are present only every second BZ (e.g.,
the parabolic highest-intensity mode marked with cyan and
green lines in Figure 5c,f) as if the period of the domain

Figure 3. (a) Measured (points) and calculated (lines) SW
dispersion relations in the Damon-Eshbach configuration for
three samples with different thicknesses of the Al spacer, saturated
by an external field H = 200 mT. Points at positive (negative)
wavevectors are the frequencies collected from the Stokes (anti-
Stokes) peaks in the BLS spectra. (b) Absolute frequency of the
Stokes and anti-Stokes peaks in BLS spectra measured at k = 15.2
rad/μm for the Al(2.5) sample. (c) Frequency difference Δf
between anti-Stokes and Stokes peaks as a function of wavevector
k.
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structure is two times smaller. Indeed, if one considers a period
being a single-domain width, the mx component is periodic
while my and mz components are antiperiodic. We have
calculated the dispersion relation considering the contribution
to the intensity from other dynamic magnetization compo-
nents. Interestingly, the antiperiodic my and mz components
give similar results while the dispersion relation for the
periodic mx component is shifted by the reciprocal space vector

along the wavevector axis. We found that this effect is indeed
the result of periodicity of magnetization components
combined with the conservation of the spin precession
direction in the stripe-domain structure. A detailed analysis
of each magnetization components is presented in the
Supporting Information.
In Figure 6, we present a more-detailed comparison between

the calculated band structure (this time in linear scale) and the
experimental points, in a restricted range of wavevector values.
It can be seen that for the sample with a 2.5 nm-thick Al
spacer, the formation of two stationary modes with a band gap
having a width of about 1.6 GHz has been experimentally
observed near the boundary of the first BZ. Moreover, it is
important to note that the opening of the band gap occurs only
on one side of the BZ, depending on the magnetic
configuration of the system. Specifically, it appears at negative
wavevectors for the parallel state and at positive wavevectors
for the antiparallel one. This behavior can be explained by
taking into account that the band-gap formation is caused by
the hybridization of the highest-intensity mode (marked with a
dashed cyan line in Figure 5c,f) and the folded branches
(marked with a dashed green lines) induced by the stripe-
domain periodicity. Due to the strong frequency asymmetry of
the band structure, in the parallel (antiparallel) state, the mode
hybridization is shifted from the edge of the BZ and occurs
only for negative (positive) wavevectors, resulting in an
asymmetrical opening of the frequency gap. One can see that
in the antiparallel state, the numerical simulations reproduce
very well the opening of the experimentally observed band gap,
while a small discrepancy between the experimental results and
the calculated band diagram is found for the parallel state. The
lack of quantitative agreement can be ascribed to the fact that
the numerical simulations have been performed using the same
values of the NdCo magnetic parameters for all of the
investigated samples.

Figure 4. BLS spectra measured at k = 22.2 rad/μm and k = 15.2
rad/μm for parallel state (top row) and antiparallel state (bottom
row), respectively, for the samples with a (a, c) 10 nm-thick and
(b, d) 2.5 nm-thick Al spacer. The numbers in parentheses denote
the thickness of the Al spacer in nm.

Figure 5. Measured (white crosses) and calculated (color map) dispersion relations for the three investigated samples in two magnetic
configurations: (a−c) parallel and (d−f) antiparallel. The color map represents the intensity of the SWs in the Py layer in logarithmic scale
obtained from numerical simulations taking into account only the perpendicular dynamic magnetization component (mz). Vertical dashed
black lines mark the Brillouin-zone boundaries. Dashed cyan and green lines depict the approximate shape of a parabolic fundamental mode
in Py.
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We further note that the highest-intensity mode hybridizes
only with a few modes, despite crossing many other modes.
This behavior can be ascribed to the high damping of the
NdCo layer that does not only affect the intensity of modes
localized in the NdCo layer but also causes the hybridizations
to diminish52 (see Supporting Information).
We further illustrate the characteristics of the calculated

modes, see Figure 6g and h, where the spatial distribution of
the SW amplitude of selected modes, for both parallel and
antiparallel states, is presented for the sample with the 2.5 nm-
thick Al spacer. At k = 0, the mode having the largest intensity
is mainly localized in the Py layer and exhibits an almost
uniform spatial distribution for both the parallel (point 4) and
the antiparallel (point 8) states. However, with increasing
wavevector, this mode couples more strongly to the NdCo
layer, and it exhibits a positive dispersion for both positive and
negative wavevectors. Moreover, it is characterized by a sizable
frequency asymmetry, with a larger slope in the negative
wavevectors range, due to dynamic dipolar coupling between
the Py and NdCo layers. On the other hand, in the antiparallel
state, this mode shows a positive (negative) dispersion in the
positive (negative) wavevector range, due to the reversal of the
magnetization component mx in the Py layer, where the mode
is mainly localized. We further note that upon reducing the
thickness of the Al layer, this mode shows a frequency increase
in both the parallel and antiparallel state, caused by the
stronger influence of the stray field produced by the NdCo film
on the Py layer. Furthermore, we analyze the character of the

modes involved in the band-gap formation at the boundary of
the first BZ. In both the parallel and the antiparallel state, the
two stationary modes have different spatial localizations in the
Py layer: the mode at higher frequency has its maximum
amplitude in the area where the local magnetization is directed
along the y-axis (points 2 and 10), while the mode at lower
frequency is mainly localized in the region magnetized along
the x-axis (points 3 and 9). On the opposite side of the BZ
with respect to the band gap (points 5 and 7), the calculated
amplitude of the modes is almost uniform in the Py layer. To
complete the analysis of the modes, we observe a highly
dispersive mode which is present for negative wavevectors in
both the parallel and antiparallel state for all of the investigated
samples. This mode is localized in the area magnetized along
the x-axis in both the NdCo and the Py layers and has a
maximum amplitude at the top surface of NdCo (points 1 and
6). Such a spatial localization of intensity and its strongly
dispersive character indicate that this mode originates from the
Damon-Eshbach surface mode in the NdCo film. Its absence in
the BLS spectra can be ascribed to the high damping in the
NdCo layer, as discussed in detail in the Supporting
Information.

CONCLUSIONS
Detailed experimental and numerical investigations of the
magnetization texture and SW dynamics in NdCo7.5(64 nm)/
Al(2.5, 5, 10)/Py(10) trilayers have been performed and their
usefulness for magnonic applications was discussed. In this

Figure 6. Top panels: dispersion relations of the three investigated samples in two magnetic configurations: (a−c) parallel and (d−f)
antiparallel. The color map represents the intensity of the SWs in the Py layer in linear scale obtained with numerical simulations and blue
crosses indicate the experimental results. Bottom panels: amplitude of the selected SW modes of the structure with 2.5 nm-thick Al layer in
(g) parallel and (h) antiparallel state. Modes are marked with black circles on the dispersion relation plots (c) and (f). The numbers near
black circles correspond to the numbers in the bottom-left corners of the sketches. The arrows in the mode amplitude pictures represent the
static configuration of the magnetization.
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system, the hard magnet with PMA develops a stable stripe-
domain structure at remanence, which imprints the magnet-
ization stripe texture onto a dipolar-coupled soft magnetic thin
film. Two stable configurations, corresponding to the parallel
and antiparallel alignment of the Py and NdCo magnetization
component along the stripe domains axis, can be achieved at
remanence by minor-loop switching at a small magnetic bias
field of the order of 20 mT. BLS measurements have shown a
marked influence of the imprinted magnetization texture on
the dispersion relation of SWs in the Py film. A strongly
asymmetric dispersion relation has been found in both
configurations, though with opposite asymmetry. Moreover,
in the sample with the thinnest Al layer, where the influence of
the stray field produced by the NdCo film on the Py layer is
more pronounced, the opening of a band gap at the boundary
of the first BZ has been experimentally observed. The
hybridization measured by BLS in the parallel and antiparallel
state was identified as a complex process involving the Py film
SW band folding from the second BZ. This demonstrates the
formation of a magnonic band structure in the Py film and thus
represents a magnonic crystal in the homogeneous Py film by
imprinting the magnetization texture from the NdCo layer. It is
noteworthy that the band-gap opening occurs only on one side
of the first BZ due to the nonreciprocal SW band structure.
Such results can find applications in reconfigurable and
nonreciprocal magnonic devices based on complex magnet-
ization textures.

EXPERIMENTAL SECTION
Sample Preparation. The NdCo/Al/Py trilayer samples were

deposited by magnetron sputtering on thermally oxidized Si wafers.
Between the Si/SiO2 substrate and the NdCo7.5 layer, a 5 nm-thick Al
film was deposited. The deposition rate of Co, Nd, Py, and Al was
0.72, 0.6, 1.14, and 0.44 Å/s, respectively. Py, Nd, and Al (Co) were
deposited at an angle of incidence of 36° (0°) with respect of the
substrate normal, under a 10−3 mbar Ar pressure.
Brillouin Light Scattering Spectroscopy. BLS experiments

from thermally excited SWs were performed in the backscattering
configuration by focusing a monochromatic laser beam of wavelength
λ = 532 nm on the sample surface through a camera objective of
numerical aperture NA = 0.24. The scattered light was frequency
analyzed by a Sandercock-type (3 + 3)-tandem Fabry−Perot
interferometer. The SW dispersion was measured at a fixed magnetic
field H = 200 mT and at remanence by sweeping the wavevector in
the range between 0 and 22.2 rad/μm.
Numerical Simulations. The SW dynamics are described by the

Landau-Lifshitz-Gilbert equation:

= | | × + ×
t M t

M
M H M

M
0 eff

S (1)

where M = (mx, my, mz) is the magnetization vector, γ is the
gyromagnetic ratio, μ0 is the magnetic permeability of vacuum, Heff is
the effective magnetic field, α is the damping constant, and MS is the
saturation magnetization. The effective magnetic field Heff is described
as follows:
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where H is the external magnetic field, Aex is the exchange stiffness
constant, KPMA is the perpendicular magnetic anisotropy constant,
KIMA is the in-plane magnetic anisotropy constant, and φ is the scalar
magnetostatic potential, which can be determined from the
magnetostatic Maxwell equations in the form of Poisson-like
equation:

= × M2 (3)

The finite-element method simulations were performed using
COMSOL Multiphysics. A 2D model was used assuming an infinite
uniform structure along the x-axis. The structure in the saturated state
was analyzed with the 2D Landau-Lifshitz-Gilbert equation using the
linear approximation of eq 1 assuming my, mz ≪ mx ≈ MS.

51 The
dispersion relation was calculated by numerically solving the
eigenproblem of eqs 1 and 3 for each wavevector separately.53 The
structure in the parallel and antiparallel states was analyzed using the
full 3D Landau-Lifshitz-Gilbert equation. First, time-domain simu-
lations were used to relax a single unit cell with the predefined domain
structure [ mx = MS|cos(2πy/a)|, my = MS sin(2πy/a) in the NdCo
layer, mx = +(−)MS in the Py layer in parallel (antiparallel) state] as a
function of the lattice constant a to find the configuration of the
minimum energy. In the second stage, eigenproblem was solved to
calculate the dispersion relation, analogously to the saturated state.

The expected BLS intensity of the nth SW mode of the frequency f n
is calculated as

=I f m iky y z( ) exp( ) d dn
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where zPy,bottom and zPy,top are the positions of the bottom and top
interface at the Py layer. Then every value is turned into the BLS-like
peak using the Lorentzian function:
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At the end, the intensities from every mode obtained in the
simulations are summed up to create a 2D array of the intensities at
any given wavevector and frequency, all of which are then converted
into colormaps. The intensity is calculated only in the Py layer to
reproduce the effect of small penetration depth of the laser light in the
BLS measurements. The SW amplitude associated with a particular
mode with frequency f i and wavenumber ki is estimated as

= | | + | | + | |A m m mk f x y z,
2 2 2

i i (6)

For the sake of validation, the results from frequency-domain finite-
element method simulations were crosschecked with results from
micromagnetic simulations in MuMax3. Overall, a good quantitative
agreement between these two methods was obtained. However,
frequency-domain finite-element method simulations were signifi-
cantly faster and provided much clearer spectra.
Material Parameters. The magnetic parameters of Py (reported

in Table 1) have been estimated from BLS measurements in the

saturated state. The effective magnetization Meff = MS − 2KPMA/μ0MS
(resulting from the competition between the shape anisotropy energy
and the perpendicular anisotropy field), the in-plane uniaxial
anisotropy constant KIMA, and the effective gyromagnetic ratio γ
have been estimated from the measurements of the SW frequency as a
function of both the intensity and direction of a saturating in-plane
magnetic field, while the exchange constant Aex has been estimated
from the measurement of the dispersion relation. Meff and Aex (KIMA)
are found to decrease (increase) upon increasing the Al thickness.
This behavior can be ascribed to the increase of the surface roughness
when the thickness of the Al spacer increases. The gyromagnetic ratio
γ, instead, is independent of the Al thickness and equals 1.85 × 1011
rad/s/T. The Gilbert damping was fixed to the value of α = 0.01.

Table 1. Magnetic Parameters of Py Layer in the Samples
Investigated in the Paper

structure Meff (kA/m) Aex (pJ/m) KIMA (kJ/m3)

NdCo(64)/Al(10)/Py(10) 465 7 3.5
NdCo(64)/Al(5)/Py(10) 525 9 3.5
NdCo(64)/Al(2.5)/Py(10) 590 10 1.2
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The magnetic parameters of NdCo7.5 were determined from both
the simulation of the static magnetic configuration and the dispersion
relations in the parallel and antiparallel states: MS = 1100 kA/m, Aex =
10 pJ/m, KPMA = 130 kJ/m3, KIMA = 10 kJ/m3, α = 0.1, and γ = 1.85 ×
1011 rad/s/T.
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Effect of damping in NdCo on spin-wave dynamics in Py 
 

We have investigated the effect of damping in the NdCo layer on the dispersion relation in the Py layer for 

the parallel and antiparallel states at remanence. The simulations were performed for three values of 𝛼NdCo =

0.01, 0.1, and 0.2. We restrict the analysis to the Al(2.5) sample, but the effects described below can be 

directly extended to larger Al thicknesses. The results are shown in Figure S1. Lower damping allows the 

observation of more modes in the dispersion relation. Every mode is approximated by the Lorentzian function 

described in Equation 5. The imaginary part of the frequency, which describes the full width at half maximum 

of the peak, depends on the value of the damping. The larger the damping, the broader the peak and, 

therefore, lower intensity of lines in Figure S1. As the peak of the highest intensity mode is almost 

independent of the NdCo damping (as it is concentrated in the Py layer), it produces an almost constant 

ambient intensity. If the damping is large enough, the modes concentrated in the NdCo layer are below this 

ambient intensity and disappear from the plots. Moreover, the damping has a large impact on the 

hybridizations between the modes. For 𝛼NdCo = 0.2, the mode of the highest intensity has almost no 

hybridizations except for the hybridization between its corresponding modes from neighboring Brillouin 

zones (Figure S1c) and hybridization with the low-frequency mode (Figure S1f). When the damping is lower, 

the hybridizations with the other modes appear and should be detectable in the experiment. Interestingly, 
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the hybridization in the antiparallel state of the Al(2.5) sample (Figure S1f), which is visible in the experiment, 

seems to involve also the mode originating from the oscillations of the domain structure in the NdCo layer. 

It also affects the amplitude of the mode (see Figure 6h plots 9 and 10). However, the hybridization between 

the Py modes from different Brillouin zones are the only visible hybridizations in the BLS spectra, indicating a 

large damping constant in the NdCo layer. 

 

 

Figure S1. Influence of the damping in the NdCo layer on the dispersion relation of the Py layer in the Al(2.5) 

sample obtained from numerical simulations. 
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Double periodicity effect in the spin-wave dynamics in a stripe-domain structure  
 

The dispersion relations for the three components of the dynamic magnetization are shown in Figure S2. The 

dispersion relations of the 𝑚𝑥 and 𝑚𝑦 components were calculated by replacing the 𝑚𝑧 term in Equation 4 

with the 𝑚𝑥 and 𝑚𝑦 , respectively. As can be seen, the dispersion for 𝑚𝑦 and 𝑚𝑧 are very similar and exhibit 

the same features as a function of the wavevector, while in the dispersion of the longitudinal component 𝑚𝑥 

all the bands are rigidly shifted by a reciprocal-space vector. This behavior has been also found in an 

investigation of Co/Pd multilayers1, but its origin was not discussed. In the following, we provide a detailed 

explanation based on the analysis of the spin precession in adjacent stripe domains. 

 

 

Figure S2. Contribution of the dynamic magnetization components—𝑚𝑥 (left column), 𝑚𝑦 (middle column), 

and 𝑚𝑧 [right column, see Figure 5c,f]—to the dispersion relation in the Al(2.5) sample in the parallel (a-c) 

and antiparallel (d-f) state. 

 

Figure S3 shows a basic model of the stripe domain structure where the magnetization component 

perpendicular to the film plane is zero: the local magnetization is parallel to the 𝑥-axis in the center of the 

domain walls, while it is directed in the ±𝑦-direction between the domain walls. This structure is analogous 

to the one imprinted onto the Py layer (see Figure 2), that gives the main contribution to the measured band 

structure as discussed in the main text, but the magnetization rotates by exactly 90°. Let us now analyze the 

spin dynamics of the uniform mode with 𝑘 = 0 along the 𝑦-axis (perpendicular to the stripe domains) in a 

single period of the stripe domain pattern visible in top-left corner of Figure S3. The spin-precession direction 

is counter-clockwise as defined by the Landau-Lifshitz-Gilbert equation. At 𝑡 = 0, all of the dynamic 

components are directed along the +𝑧-direction, since the mode is uniform and the static component lies in 

the 𝑥𝑦-plane. At 𝑡 = 𝑇/4, where 𝑇 is the period of the spin wave, the dynamic component rotates by 90°. 

                                                           
1 Banerjee, C.; Gruszecki, P.; Klos, J. W.; Hellwig, O.; Krawczyk, M.; Barman, A. Magnonic band structure in a Co/Pd stripe domain 
system investigated by Brillouin light scattering and micromagnetic simulations. Phys. Rev. B 2017, 96, 024421. 
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The spins aligned in the +𝑥-direction have their dynamic component directed in the −𝑦-direction, while the 

spins directed in the ±𝑦-direction have their dynamic component directed in the ±𝑥-direction. Similarly, at 

𝑡 = 3𝑇/4, the spins directed in the ±𝑦-direction have their dynamic component directed in the ∓𝑥-direction, 

while the spins aligned along the +𝑥-direction have their dynamic component directed in the +𝑦-direction. 

It implies that the 𝑚𝑦 and 𝑚𝑧 components oscillate in-phase (hence correspond to 𝑘 = 0), whereas, the 𝑚𝑥 

component is shifted by 180° in adjacent domains and, therefore, behaves like a standing wave of 

wavenumber 𝑘 = 2𝜋/𝑎. 

 

 

Figure S3. Magnetization dynamics of the fundamental mode at 𝑘 = 0 in a direction perpendicular to the 

stripe domains (area marked by the white rectangle in the sketch in the top-left corner).  
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4.5 [P5] Reconfigurable spin-wave platform based on inter-
play between nanodots and waveguide in hybrid magnonic
crystal

This work was the continuation of the work of M. Zelent et al. [210], in which they found
that the skyrmion confined to the magnetic nanodot and placed over the magnetic layer is no
longer circular—it becomes egg-shaped due to the dipolar interaction between the layer and
the nanodot. The idea of the study was to take a nanodot, make a chain of them, and place it
over a waveguide made of a low-damping material. In this way, we created a magnonic crystal.
Moreover, we assumed that the configuration in the nanodots can be modified to be not only
the skyrmion but also the single-domain state. The numerical simulations confirmed that both
states in the nanodots can be stabilized in this hybrid system. We then investigated the spin-wave
dynamics of the system. First of all, the dispersion relations of both systems have the markings
of a magnonic crystal. Interestingly, the systems differ significantly in the band-gap sizes. Also,
the system with skyrmions has many low-frequency modes (not present in the system with
single-domain states) related to the dynamics of the skyrmion. We decided to study the system in
more detail to quantitatively test the coupling between the waveguide and the nanodots. As a test
parameter, we chose the spin-wave localization – the measure that compares the intensities of the
spin-wave modes in both subsystems. It turned out to be a very useful parameter. We were able
to separate the dispersion relation into ranges of isolated modes from the mode-mixing ranges
and to pinpoint specific regions of strong coupling between the subsystems. This allowed us to
identify hybridized and bound skyrmion modes.

Contribution of the Author

In this publication, I performed the numerical simulations, participated in the interpretation and
discussion of the numerical results, wrote the Methods, Results and Discussion, and Conclusions
sections, prepared the Supplementary Materials, prepared Figures 2-4, and was responsible for
the manuscript submission and the correspondence with the journal.



Reconfigurable spin-wave platform based on interplay between nanodots and
waveguide in hybrid magnonic crystal
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We present a hybrid magnonic crystal composed of a chain of nanodots with strong perpendicular
magnetic anisotropy and Dzyaloshinskii–Moriya interaction, positioned above a permalloy waveg-
uide. The study examines two different magnetization states in the nanodots: a single-domain
state and an egg-shaped skyrmion state. Due to the dipolar coupling between the dot and the
waveguide, a strongly bound hybrid magnetization texture is formed in the system. Our numerical
results show complex spin-wave spectra, combining the effects of periodicity, magnetization texture,
and hybridization of the propagating waves in the waveguide with the dot/skyrmion modes. The
systems are characterized by different band gap sizes. For the skyrmion state, the azimuthal modes
confined to the skyrmion domain wall lead to the formation of flat bands at low frequencies, while
at higher frequencies we identify among them modes interacting with the propagating waves, which
can introduce additional non-Bragg band gaps, as well as isolated modes leading to the formation
of bound states. On the other hand, the system with a single-domain state in nanodots offers a
wide range of frequencies where the spin waves are predominantly in the waveguide. Thus, the
study shows that the proposed hybrid magnonic crystals have many distinct functionalities, high-
lighting their reconfigurable potential, magnon–magnon couplings, mode localization, and bound
states overlapping with the propagating waves. This opens up potential applications in analog and
quantum magnonics, spin-wave filtering, and the establishment of magnonic neural networks.

I. INTRODUCTION

Over the past decade, spin-wave (SW) computing has
been extensively researched as a potential candidate to
complement and surpass CMOS-based technologies [1,
2] for digital [3] or analog signal processing [4, 5] and
neural network implementation [6, 7]. This is because
SWs offer high-frequency operation, even at tens of GHz,
miniaturization down to the nanoscale, well below 100
nm, and most importantly, ultralow power consumption,
as low as 1 aJ per operation. Moreover, they can locally
interact with magnetic solitons, i.e. domain walls in 1D
and magnetic vortices or skyrmions in 2D, and thus can
hybridize with, be excited by, and be controlled by soliton
dynamics [8–10].

Magnetic skyrmions are topologically protected 2D
magnetization textures, known for their stability and
very small size, especially Néel skyrmions in thin ferro-
magnetic films, which are stabilized by Dzyaloshinskii–
Moriya interaction (DMI) [11]. Their dynamics can be
driven by external forces such as magnetic field, electric
current, structural stress, thermal fluctuations, or laser
pulses [12], which expands their possible applications also
in magnonics, e.g., to control wave propagation [13], scat-
ter SWs [14], form SW frequency combs [15], or to excite
propagating SWs [16] in thin films. This makes them
promising candidates for information storage and pro-
cessing [17–20]. In particular, their potential has at-
tracted considerable interest in non-Boolean logic and

∗ krzysztof.szulc@amu.edu.pl

unconventional computing devices [21–23]. However, due
to the high damping of SWs in multilayers possessing
DMI [24, 25], with a few exceptions those effects remain
mainly numerical demonstrations [26].

In a skyrmion within confined geometry, three types
of eigenmodes have been observed [27, 28]: gyroscopic,
breathing, and azimuthal modes. The gyroscopic mode
refers to the rotational motion of the skyrmion core [29].
The breathing mode involves the radial oscillation of
the size of the skyrmion [30]. Azimuthal modes are
SWs propagating along the skyrmion circumference [31–
33]. Their quantization is described by an azimuthal
wave number, with clockwise (CW) and counterclock-
wise (CCW) degeneracy lifted by the asymmetric ex-
change interaction. When the dots are arranged in a
chain or array, bands of collective skyrmion excitations
can be formed [34]. However, the dynamic dipolar cou-
pling between the skyrmions is rather weak, especially
between the azimuthal modes, and the non-zero band-
widths have been numerically demonstrated only for gy-
rotropic or breathing modes [31].

Hybrid structures are commonly used to obtain sys-
tems that combines two, usually mutually exclusive, ma-
terial properties, such as ferromagnetism and supercon-
ductivity [35]. This is also true for magnonics and
skyrmions. The former requires long propagation dis-
tances and thus low damping, while the latter requires
DMI resulting from spin–orbit interactions and heavy
neighboring metals, which is associated with increased
damping. The bilayer structure composed of yttrium iron
garnet and the Co/Pt multilayer with the skyrmion has
been proposed as a point source to excite short SWs with
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tens of nm wavelength [36].
We propose a hybrid structure consisting of a SW con-

duit made of a low-damping material (Py) and a chain
of (Ir/Co/Pt) nanodots of 300 nm diameter, forming a
hybrid magnonic crystal (HMC) that serves as a multi-
functional platform for SW applications. Such an HMC
structure has shown an extended range of DMI values,
which facilitates Néel-type skyrmion stabilization at com-
paratively lower DMI values [37]. Using micromagnetic
simulations, we show that this HMC exhibits several in-
teresting properties arising from the coupling between
the subsystems relevant to control SWs. These include
flat magnonic bands both below and above the bottom of
the SW spectrum in Py, and a reprogrammable magnonic
band structure, where the width of the band gaps is mod-
ified by the magnetization texture in the dots at the re-
manence: skyrmion or single-domain state. The former
property provides a system for the realization of bound
states in the continuum in a magnonic domain [38], the
latter for the SW filtering or Bose–Einstein condensa-
tion realization [39]. Moreover, the dynamic coupling
between SWs propagating in the waveguide and SWs
confined to the domain wall of the skyrmion results in
band anticrossing, making this system suitable for ex-
ploiting the magnon–magnon coupling, and thus useful
for quantum magnonics applications [40]. Taking into
account the multifunctionality, the proposed HMCs rep-
resent a promising platform for magnonic artificial neural
networks, as proposed in Ref. [41], or where the waveg-
uide serves as synapses connected by propagating SWs,
and interacting resonant neurons, i.e. nanodots on the
waveguide with the rich spectra of SW modes [42]. The
complex interactions between propagating SWs and nan-
odisks discussed in this paper open avenues for creating
tunable artificial neurons.

II. METHODS

The system under investigation is presented in Fig. 1.
It consists of the infinitely-long waveguide made of
permalloy (Py, Ni80Fe20) with a width of 300 nm and a
thickness of 4.5 nm and a chain of Co dots with a 300 nm
diameter and 1.5 nm thickness. The dots are laying cen-
trally above the waveguide with a relative separation of
50 nm, resulting in the periodic structure with a lattice
constant of 350 nm. The waveguide and the dots are
separated by a 3 nm-thick nonmagnetic layer.

The magnetization dynamics of the system are de-
scribed by the Landau–Lifshitz–Gilbert equation:

∂M

∂t
= −|γ|µ0M×Heff +

α

MS
M× ∂M

∂t
, (1)

where γ is the gyromagnetic ratio, µ0 is the magnetic
permeability of vacuum, Heff is the effective magnetic
field, α is the damping constant, and MS is the satura-
tion magnetization. The effective magnetic field Heff is

Figure 1. The visual representation of the system under con-
sideration. The Ir/Co/Pt multilayer dot is separated from
the 4.5 nm-thick Py strip by a 3 nm-thick nonmagnetic layer.
In the dot, an egg-shaped Néel-type skyrmion is stabilized by
the magnetostatic coupling to the skyrmion imprint on the
in-plane magnetized strip. The arrows and their color (ac-
cording to the HSL-cone color scale) indicate the direction of
magnetization. Note that the figure is not to scale.

described as follows:

Heff = H0 +
2Aex

µ0M2
S

∇2M+
2KPMA

µ0M2
S

Mz ẑ−∇φ+

+
2D

µ0M2
S

(
∂Mz

∂x
x̂+

∂Mz

∂y
ŷ −

(
∂Mx

∂x
+

∂My

∂y

)
ẑ

)
,

(2)

where H0 is the external magnetic field, Aex is the ex-
change stiffness constant, KPMA is the perpendicular
magnetic anisotropy constant, D is the Dzyaloshinskii–
Moriya constant, and φ is the magnetic scalar potential,
which can be determined from the formula

∇2φ = ∇ ·M, (3)

which is derived from Maxwell equations in the magne-
tostatic approximation.

The system was studied using the finite-element
method simulations in COMSOL Multiphysics [43]. The
simulations were performed in the 3D model with the im-
plementation of Eqs. (1) and (3). The static magnetiza-
tion configuration was stabilized in the time-domain sim-
ulation with periodic boundary conditions placed at the
ends of the unit cell perpendicular to the x-axis to intro-
duce the periodicity into the system. For the proper cal-
culation of the stray magnetic field, the condition φ = 0
is applied at a distance of 10 µm from the system. As
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an initial magnetization configuration, the waveguide is
uniformly magnetized along the x-axis while the dots are
uniformly magnetized along the z-axis (for the study of a
single-domain state configuration) or have a skyrmion in-
side (for the study of skyrmion state) [44]. The magnetic
state relaxation lasts 1 µs. The dispersion relation was
calculated using the eigenfrequency solver. For this pur-
pose, the Landau–Lifshitz–Gilbert equation is solved in
its linearized form, where the total magnetization vec-
tor M = M0 + m eiωt is splitted to a static compo-
nent M0 = (M0x,M0y,M0z) and a dynamic component
m = (mx,my,mz). The equation takes the form of an
eigenvalue equation, where the complex eigenvalues give
the frequencies, the dynamic magnetization m and the
dynamic magnetic scalar potential are the eigenvectors,
and the wavevector is a sweep parameter. Here, the peri-
odic boundary conditions are replaced by Bloch bound-
ary conditions. The tetrahedral mesh is used with a max-
imum size of 5 nm in the dot and 7 nm in the waveguide.
Outside the magnetic material, the mesh grows with ra-
tio 1.4. On the sides where Bloch boundary condition is
applied, we prepared identical triangular meshes.

The material parameters of Py are MS = 800 kA/m,
Aex = 13pJ/m, D = 0, KPMA = 0, α = 0.005. The
magnetic dot is defined with an effective-medium ap-
proach [45–48] as a structure with DMI and PMA, where
the three repetitions of the 0.5 nm-thick Ir/Co/Pt mul-
tilayer are simulated as a single Co layer with an effec-
tive thickness. The effective parameters of the dot are
MS = 956 kA/m, Aex = 10pJ/m, D = −1.6mJ/m2,
KPMA = 717 kJ/m3, α = 0.02. In all calculations, the
external magnetic field H0 = 0.

III. RESULTS AND DISCUSSION

A. Static magnetization texture

First, let us consider the waveguide and nanodot sub-
systems separately, focusing on the static magnetic con-
figuration of the system in the absence of an external
magnetic field. In the multilayer nanodot, characterized
by strong PMA and DMI, various magnetization states
can be stabilized, including an out-of-plane single-domain
state, a Néel-type skyrmion, a double-domain structure,
and a worm-like domains [49]. In this paper, we are fo-
cusing on two of the above-mentioned configurations—
a single-domain state (SD) and a skyrmion state (Sk).
While the literature is well-versed in the static and dy-
namic behavior of these structures in isolation [33, 50],
their static and dynamic properties become complex in a
compact hybrid system [37].

Figure 2 presents the static magnetic configuration of a
single unit cell of the HMC. Here, we consider hybrid sys-
tems with two different magnetization configurations—
the waveguide (W) with a chain of dots with the single-
domain out-of-plane magnetization state (W/SD) and
the waveguide with a chain of dots with skyrmions
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Figure 2. Configuration of the magnetization in the unit cell
of the coupled system of waveguide with the chain of dots in
(a,b) the single-domain state and (c,d) skyrmion state. The
magnetization is shown in the xy-planes crossing (a,c) the
center of the dot and (b,d) the center of the waveguide. The
color map shows the M0z component of the magnetization,
and the in-plane component M0xy is presented with the ar-
rows.

(W/Sk). The magnetization texture is shown on the
xy-planes crossing the center of the dot (a,c) and the
center of the waveguide (b,d), respectively. In the HMC,
the magnetization configuration differs from that of iso-
lated subsystems. This change, induced by the dipolar
coupling, is mainly caused by the competition between
the strong PMA in the dots, which favors magnetization
along the z-axis, and the shape anisotropy inherent in the
waveguide, which induces a preference for magnetization
along the x-axis.

In the W/SD system, the most pronounced effect of
dipolar interaction between the subsystems manifests
just beneath the edges of the dot, as illustrated in
Fig. 2(b). Here, the peak deviation in magnetization
reaches max |M0y| = 216 kA/m along the y-axis and
max |M0z| = 23 kA/m along the z-axis. Notably, within
the nanodot itself, the magnetization deviation of ap-
proximately 2% is present close to the dot edge.

The static magnetic texture in the W/Sk system un-
dergoes more significant modification. Unlike the con-
figurations observed in the individual subsystems, the
skyrmion is not only imprinted in the waveguide, but
also takes on an egg-like shape instead of being circu-
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lar. This static effect has already been demonstrated in
the system with a single dot and finite strip in Ref. [37].
Please note that the imprint intensity is stronger in the
W/Sk system than in the W/SD system. The average net
magnetization along the easy axis in the W/Sk system
decreases by 20 kA/m in comparison with only 5 kA/m
for W/SD system. Also, the maximum deviation reaches
max |M0y| = 475 kA/m and max |M0z| = 59 kA/m.

B. Spin-wave dynamics

Following the analysis of the static magnetization con-
figurations of the system, we performed numerical sim-
ulations of the SW dynamics. The dispersion relations
of W/SD and W/Sk systems are depicted in Fig. 3(a)
and Fig. 3(b), respectively, where the color map indicates
the intensity I of the out-of-plane dynamic magnetization
component mz across the entire system. The intensity of
each mode is quantified as follows:

Imode(k, fn(k)) =

∣∣∣∣
∫∫∫

V

mz(fn(k))e
ikx dxdy dz

∣∣∣∣
2

, (4)

where V denotes the volume of magnetic material within
a single unit cell and fn(k) is the frequency of the nth
mode at wavevector k. Next, the intensities of all modes
are converted into the Lorentzian function and then
summed to give the total intensity I

I(k, f) =
∑

n

Imode(k, fn(k))

Im[fn(k)]

(
1 +

(
f−Re[fn(k)]
Im[fn(k)])

)2
) (5)

at wavevector k and frequency f . This method of quan-
tifying intensity makes these results comparable to the
Brillouin light scattering measurement results [51]. For
comparison, the dispersion relation of an isolated waveg-
uide without a chain of dots is illustrated with dashed
black lines. The comparison between the dispersion rela-
tion of the isolated waveguide and the frequencies of the
SW modes in the isolated dot in the single-domain and
skyrmion states is presented in Section S1 of the Supple-
mentary Materials.

The dispersion relations of both systems contain com-
plex mode dependencies, caused by the interaction be-
tween the dots and their imprints in the waveguide. The
highest-intensity mode follows the fundamental mode of
an isolated waveguide. The antisymmetric waveguide
modes are barely visible in the plots due to the na-
ture of the intensity calculation. Above the third waveg-
uide mode, the intensity distribution is unclear and only
the fundamental modes are recognizable. The reflected
branches and band gaps are present as a result of the
periodicity induced by the arrangement of the dots.

However, there are significant differences in the band-
gap width of the Bragg gaps among the systems. The
zoom-ins of the dispersions of W/SD and W/Sk systems
are shown in Fig. 3(c) and Fig. 3(d), respectively, with

gray strips marking the positions of the band gaps. The
widths of the first five band gaps are listed in Fig. 3(e).
The W/SD system is characterized by larger low-order
gaps, with the size exceeding 400 MHz. The size of
higher-order gaps is much smaller, with gap 5 already
being similar in size to the linewidth of the modes (which
is 77 MHz), making it barely noticeable. In contrast, the
W/Sk system is characterized by larger sizes of higher-
order band gaps, i.e., third and higher. Interestingly, the
first band gap is completely absent. Due to the back-
ward wave character of the mode at low wavevectors,
the edge of the first Brillouin zone lies close to the fre-
quency minimum. As a result, the first and second bands
share the same character. In the W/SD system, the
stronger interaction between the modes pushes the first
band much below the frequency of the isolated waveg-
uide (see Fig. 3(a)). In the W/Sk system, this inter-
action is weaker, which causes the first band maximum
to be at a higher frequency than the second band mini-
mum, leading to the absence of the band gap, as visible
in Fig. 3(d). These properties clearly demonstrate the re-
programmable nature of the proposed HMC system. By
preserving the frequency positions of the band gaps, we
can modify their width and even close or open the first
band gap simply by changing the magnetization state in
the dots.

Another difference is the presence of numerous flat
bands in the dispersion of the W/Sk system, which lie
below the waveguide modes and begin at frequencies be-
low 1 GHz. These modes are directly connected to the
dynamics of the skyrmion domain wall in the dots which
starts at the level of hundreds of MHz (see, Fig. S1 in
the Supplementary Materials). At higher frequencies,
some of the skyrmion modes hybridize with the waveg-
uide modes. Interestingly, one of these modes leads to
the generation of an additional band gap with a width
of 53 MHz, marked as gap 3a in Fig. 3(d). The modified
spectra indicate that the presence of skyrmions in dots
can directly affect the dynamics of SWs propagating in
the waveguide. Obviously, such modes are not present
in the W/SD system since the lowest resonant mode of
the dot in a single-domain state is at the frequency of 9
GHz, which is above the third waveguide mode. These
results show that the change of a magnetization configu-
ration of the dots can induce additional flat bands in the
SW spectrum and also magnon–magnon coupling, effects
which are currently under intense investigation and also
important from an application point of view. In the next
section, we will explore these properties, focusing on un-
derstanding of the physical mechanisms involved.

C. Mode localization

In order to deepen the analysis of the SW dynamics in
both systems, we calculated the localization of the modes
and plotted it on the dispersion relation folded to the first
Brillouin zone as shown in Fig. 4(b) and (c). We define
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Figure 3. Dispersion relation of (a) the W/SD system and (b) the W/Sk system. Color maps show the intensity measured
for the out-of-plane component of the magnetization mz. Intensity is scaled logarithmically. Dashed black lines show the
dispersion relation of waveguide itself without dots. Subfigures (c) and (d) are zoom-ins of the W/SD and W/Sk systems’
dispersion relations as marked by blue rectangles in subfigures (a) and (b), respectively. Gray rectangles mark the Bragg gaps
in the dispersion relation. (e) Bar chart collecting band-gap widths for both W/SD and W/Sk systems.

the mode localization as a measure of how much of the
intensity of a given mode comes from a given subsystem
(in this case – a waveguide). It is calculated as

L(k, fn) =
Iw

Iw + Id
, (6)

where Iw and Id are the intensity of the mode in the
waveguide and dot, respectively. Intensity is measured
as

Iw(d)(k, fn) =

∫∫∫

Vw(d)

|m(k, fn)|2 dxdy dz (7)

where Vw(d) is the volume of the waveguide (dot) in a
unit cell. The mode fully localized in the dot has a value
of L = 0 and is marked in Figs. 4(b,c) with light blue
color, while the mode fully localized in the waveguide
has a value of L = 1 and is marked with light brown
color.

The mode localization for the W/SD system is shown
in Fig. 4(b). The SW profiles of 5 selected modes (W/SD-
1–W/SD-5) are presented in the first row of Fig. 4(e).
Additionally, we plot the frequency as a function of local-
ization in Fig. 4(a). In the range I, the lowest mode has a
frequency above 3 GHz, and all modes up to 8.9 GHz are
predominantly confined to the waveguide with minimal

amplitude in the dot. The lowest localization value in
this region is L = 0.89. This result is consistent with the
simulations of eigenstates of an isolated dot, where the
lowest mode was observed at 9 GHz (see Section S1 in
the Supplementary Materials). Therefore, any excitation
in the dot below this frequency is only a forced oscilla-
tion. Most of the modes in this area resemble typical
waveguide modes, e.g. mode W/SD-3. However, other
modes, such as W/SD-1 and W/SD-2, are significantly
distorted. Despite the Bragg gap being present only at
the edge of the Brillouin zone, their branches are coupled
throughout the entire range of the zone. This results in
a non-uniform SW amplitude, even at zero k.

Above 8.9 GHz, the dispersion relation is densely popu-
lated with modes of mixed localization. In this frequency
range, marked as range II, the modes have a mixed char-
acter, with a localization value in the range between 0.14
and 0.96, with the upper limit decreasing to 0.83 above
10.5 GHz. Among them, there are modes localized pre-
dominantly in the dot (e.g. mode W/SD-4), which origi-
nate from the resonant modes in the dot. However, there
is always significant energy leakage to the waveguide. On
the other hand, the propagating waveguide modes, such
as mode W/SD-5, also have significant amplitude in the
dot. The presence of the dot also strongly modifies the

97



6

Figure 4. The dispersion relation in the first Brillouin zone presents the localization of modes in both (b) W/SD and (c) W/Sk
systems. Each mode localization value is indicated by the color of the point on the dispersion. The corresponding plots with
the localization value are shown in (a) for the W/SD system and in (d) for the W/Sk system. Here, the color of the point
marks the absolute value of the wavevector. Dashed black vertical lines mark the limits of ranges. (e) SW mode profiles for
5 modes in the W/SD system and 9 modes in the W/Sk system. The modes are marked on the dispersion relations with a
square point and a label. In each mode profile, the left color map displays the my magnetization component in the xy-plane
at the center of the dot, while the right color map displays my in the xy-plane at the center of the waveguide. The intensity is
normalized so that the maximum value of |my| is 1 for each of the mode profiles. All profiles are labeled and their wavevector
and frequency are given. The animated version of this figure is available in [52].

wavefront of the SW propagating in the waveguide (see
mode W/SD-5). This effect can be used to excite propa-
gating SWs in the waveguide by exciting the dots them-
selves, similar to the excitation of short-wavelength SWs
with 2D diffraction couplers [53].

The W/Sk system exhibits different behavior, as pre-

sented in Fig. 4(c). The SW profiles of 9 selected modes
are presented in two bottom rows of Fig. 4(e). Addition-
ally, we plot the frequency as a function of localization
in Fig. 4(d).

Range I spans the frequencies from 100 MHz to
3.5 GHz, which is below the frequency of the lowest
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waveguide band. It contains 15 flat bands related to the
modes localized in dots, which are clockwise and counter-
clockwise azimuthal modes of the skyrmion domain wall,
similar to the skyrmion in an isolated dot (see Fig. S1
in Supplementary Materials) [33]. The lowest frequency
mode, W/Sk-1, is a 3rd order counterclockwise mode.
The skyrmion breathing mode, W/Sk-2, has a frequency
of 1.226 GHz and is only the ninth lowest mode. The
largest localization in this range is L = 0.08. The modes
in this range have very small bandwidths ranging from
9 kHz to 34 MHz (breathing mode, W/Sk-2). This is
because these modes can only interact through dipolar
interactions or evanescent SWs, which are the only ones
that can exist in the waveguide at such low frequencies.
The simulation of the dot chain in the skyrmion state
but without the waveguide (see Table 1 in Section S2 of
the Supplementary Materials) shows that the bandwidths
of most of the bands are significantly smaller in the ab-
sence of the waveguide, except for the breathing mode (of
comparable bandwidth, 33 MHz) and the fourth counter-
clockwise mode, which is larger than in the system with
the waveguide (further details on this comparison can
be found in Section S2 of the Supplementary Materials).
This suggests the coupling of the skyrmion modes from
the range I through the evanescent waves in the waveg-
uide. Such an effect is similar to the enhanced SW trans-
mission in bi-component 1D MC at frequencies below the
FMR frequency of one of the constituent materials [54].
However, here it is theoretically predicted for 1D HMC
consisting of a homogeneous film and a chain of dots in
the skyrmion state, the system easily extendable to a 2D
array. The effects described above could be exploited
for the design of frequency-selective magnonic devices,
enabling precise control over signal modulation and pro-
cessing at the nanoscale. The distinct localization and
narrow bandwidths of these modes offer opportunities to
create highly-efficient filters or oscillators that operate
within a precisely-defined frequency range. Furthermore,
these weakly dispersive bands can be used to exploit the
flat-band physics recently demonstrated in 1D MCs with
periodic modulation of a DMI [39, 55].

Starting from 3.5 GHz, similarly to W/SD system,
modes localized in the waveguide start to appear but they
coexist with skyrmion modes in this range (marked as
range II). Interestingly, the skyrmion is always slightly
excited even if the mode is strongly localized in the
waveguide (see mode W/Sk-3 with localization 0.925).
On the one hand, the clockwise skyrmion modes hy-
bridize with the waveguide modes, resulting in mixed
modes that are confined to both the waveguide and
the dot. In Fig. 4(d), these modes form characteris-
tic horizontally-aligned points with localization between
0.05 and about 0.55. As it was shown before, such a hy-
bridization leads to the presence of an additional band
gap marked as gap 3a in Fig. 3(d), whose modes are
labeled W/Sk-4 and W/Sk-5. Thus, it is possible to
excite propagating modes in the waveguide with a spe-
cific wavelength by excitation of specific skyrmion modes,

and study the recently intensively explored physics of
the dynamically coupled systems, in particular magnon–
magnon coupling [56–58]. Moreover, the resonant cou-
pling offers a possibility for the realization of artificial
neural networks [41, 42], where the propagating SWs act
as synapses connecting neurons, playing through the nan-
odot in skyrmion or single-domain state. However, this
requires the activation of neurons by propagating SWs.
Such a nonlinear property can be achieved by slightly in-
creasing the SW amplitude so that the static magnetic
component decreases, resulting in a change of the res-
onance frequency (e.g. around the modes W/Sk-4 and
W/Sk-5 or around 4 GHz, with a change of just about
10 MHz) [59–61] and, depending on the realization, acti-
vating or deactivating of the resonance effect.

On the other hand, counterclockwise skyrmion modes
form a vertical line of points in Fig. 4(d) and have a
strong localization in dots with L not exceeding 0.02. The
interaction between counterclockwise modes and waveg-
uide modes is negligible. Modes W/Sk-6 and W/Sk-7
differ in frequency only by 1 MHz but their localiza-
tion values are 0.97 and 0.01, respectively. Moreover,
the small amplitude in the dot for mode W/Sk-6 is not
connected with the skyrmion mode W/Sk-7, confirming
a lack of coupling between them. It points to the possi-
bility of exploiting these modes, which are strongly local-
ized in the dot or waveguide but are uncoupled, as bound
states in the continuum. This effect that has been exten-
sively studied in photonics but has yet to be explored in
magnonics [38].

The last range, marked as range III, starts at 10 GHz,
from where the dispersion is densely populated with
modes having mixed localization. These modes include
bulk dot modes, where the skyrmion core and the magne-
tization outside are excited (modes W/Sk-8 and W/Sk-9)
and are coupled with the waveguide. However, counter-
clockwise skyrmion modes with very low localization and
bandwidth below 10 kHz still exist in this range. Ex-
cluding them, the localization ranges from 0.13 to 0.96.
Above 11.5 GHz, it ranges from 0.23 to 0.82. Range III
starts at a higher frequency than the analogical range
II in the W/SD system. This is due to the presence of
skyrmion in the dot, which induces specific confinement
of the resonant modes in the dot, leading to an increase
in their frequency.

IV. CONCLUSIONS

We have studied a one-dimensional HMC consisting of
an infinitely-long Py waveguide and a chain of nanodots
with PMA and DMI (Ir/Co/Pt), in which we consider
two different magnetic states: a skyrmion and a single-
domain state. The static magnetization configuration in
the HMC differs from that of its isolated subsystems. The
configuration of the dot imprints the magnetization tex-
ture upon the waveguide, at the same time, the skyrmion
shape becomes strongly distorted, taking on an egg-like
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shape. This makes a SW dynamic in an HMC complex
while increasing the skyrmion stability and offering mul-
tifunctional properties for advancing magnonics.

The dispersion relations of both systems exhibit char-
acteristic features of magnonic crystals, such as folded
branches and band gaps. However, there is a substan-
tial difference in the sizes of the band gaps. Addition-
ally, the W/Sk system has a large number of flat low-
frequency skyrmion modes. These modes are azimuthal
rotating modes, both clockwise and counterclockwise, lo-
calized in the skyrmion domain wall and are character-
ized by very narrow bandwidths ranging from single kHz
to single MHz. Interestingly, the bandwidths are signifi-
cantly larger compared to those of the dot chain without
waveguide, indicating evanescent-wave coupling between
the skyrmions in W/Sk system. The flat bands may also
overlap with the waveguide modes at higher frequencies
and, interestingly, depending on their sense of rotation,
can hybridize with them, sometimes even leading to ad-
ditional band gaps in the spectrum, or be uncoupled. In
the same frequency range in the W/SD system, all modes
are almost exclusively localized in the waveguide.

At frequencies above 9 GHz, the resonant modes of
the dots begin to appear and strongly hybridize with the
waveguide modes, causing the localization of the modes
to become mixed. However, in the W/Sk system, some of

the modes (localized in the skyrmion domain wall) still
can not interact with the waveguide at high frequencies,
which promises the realization of the bound state in the
continuum in magnonics.

The above-mentioned properties offer several useful
functionalities for magnonics, including reconfigurability,
filtering, magnon–magnon hybridizations, uncoupled SW
modes in the band structure, as well as SW-skyrmion
bands together with their evanescence coupling. These
functionalities are suitable for the realization of magnonic
artificial neural networks.

DATA AVAILIBILITY

The raw data files that support this study are available
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Supplementary Materials
Reconfigurable spin-wave platform based on interplay between nanodots and

waveguide in hybrid magnonic crystal

Krzysztof Szulc,∗ Mateusz Zelent, and Maciej Krawczyk
Institute of Spintronics and Quantum Information,

Faculty of Physics, Adam Mickiewicz University, Poznań,
Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

We present a hybrid magnonic crystal composed of a chain of nanodots with strong perpendicular
magnetic anisotropy and Dzyaloshinskii–Moriya interaction, positioned above a permalloy waveg-
uide. The study examines two different magnetization states in the nanodots: a single-domain
state and an egg-shaped skyrmion state. Due to the dipolar coupling between the dot and the
waveguide, a strongly bound hybrid magnetization texture is formed in the system. Our numerical
results show complex spin-wave spectra, combining the effects of periodicity, magnetization texture,
and hybridization of the propagating waves in the waveguide with the dot/skyrmion modes. The
systems are characterized by different band gap sizes. For the skyrmion state, the azimuthal modes
confined to the skyrmion domain wall lead to the formation of flat bands at low frequencies, while
at higher frequencies we identify among them modes interacting with the propagating waves, which
can introduce additional non-Bragg band gaps, as well as isolated modes leading to the formation
of bound states. On the other hand, the system with a single-domain state in nanodots offers a
wide range of frequencies where the spin waves are predominantly in the waveguide. Thus, the
study shows that the proposed hybrid magnonic crystals have many distinct functionalities, high-
lighting their reconfigurable potential, magnon–magnon couplings, mode localization, and bound
states overlapping with the propagating waves. This opens up potential applications in analog and
quantum magnonics, spin-wave filtering, and the establishment of magnonic neural networks.

S1. THE DYNAMICS OF ISOLATED
SUBSYSTEMS

Figure S1(a) shows the comparison between the dy-
namics of the isolated subsystems. The dispersion rela-
tion of an isolated waveguide is shown with solid blue
lines. The resonant modes of a dot are shown with hori-
zontal dashed lines: orange line for an isolated dot in the
single-domain state and green line for an isolated dot in
the skyrmion state.

The lowest zero-k frequency of the waveguide is 4.04
GHz and it reaches a minimum of 3.76 GHz for k =
9.0 rad/µm. Higher-order modes have their minima at
6.19 GHz, 8.17 GHz, 9.92 GHz, and 11.57 GHz, respec-
tively. First four modes exhibit a backward-wave regime
at small wavevectors, while higher modes can only prop-
agate forward.

In case of the dot, its static configuration has a very
large impact on the frequency of resonant modes. In a
single-domain state, the lowest mode has a frequency of
8.89 GHz and it is a fundamental mode (SD-1). Modes
with higher frequencies are clockwise (CW) [e.g. SD-
2] and counterclockwise (CCW) [e.g. SD-3] azimuthal
modes, as well as higher-order radial modes (e.g. SD-4).

The skyrmion state exhibits numerous low-frequency
modes, which are all CW (e.g. Sk-1) and CCW (e.g.
Sk-3) azimuthal modes in the skyrmion domain wall, ex-
cept of one skyrmion breathing mode (Sk-2) (which can

∗ krzysztof.szulc@amu.edu.pl

be considered the 0th order azimuthal mode). The first
mode not associated with the skyrmion domain wall is
the fundamental mode of a skyrmion core (Sk-4) at the
frequency 9.47 GHz. The higher-frequency modes in-
cludes higher-order azimuthal and radial modes, which
can be localized either in the skyrmion core (e.g. Sk-5),
outside the skyrmion (e.g. Sk-7) or in both the core and
outside (e.g. Sk-6). Interestingly, some of the skyrmion
domain wall modes in this range can also be strongly
excited outside the skyrmion (e.g. Sk-8).

S2. COMPARISON BETWEEN W/SK SYSTEM
AND A DOT CHAIN

In order to investigate the contribution of the dipo-
lar interaction between the dot and the waveguide to the
bandwidth of the skyrmion domain wall modes, we stud-
ied a one-dimensional chain of dots in skyrmion state,
which is a subsystem of the W/Sk system. Additionally,
as a reference, we studied a single dot in a skyrmion state.

Table I shows the simulation data for the modes within
the frequency range I of the W/Sk system, as depicted in
Fig. 4(c,d) in the main manuscript. This range contains
15 modes, ranging from the 2nd CW to the 12th CCW
mode. Modes at higher frequencies may be significantly
impacted by interaction with waveguide modes and are
therefore not included in Table I.

First of all, it is important to note that the static con-
figurations of these systems are different. In a single dot,
the skyrmion is round. In a dot chain, the dipolar inter-
action between the dots is very small so the skyrmion re-
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Figure S1. (a) Dispersion relation of an isolated waveguide (solid blue lines) and frequencies of the resonant modes of a dot in
a single-domain state (horizontal dashed orange lines) and in a skyrmion state (horizontal dashed green lines). Solid orange
and green lines correspond to the modes which profiles are shown in (b). Please note that the resonant modes are characterized
solely by their frequencies and they are not connected with the wavevector presented on the horizontal axis. The division
of the single-domain state and skyrmion modes on the negative and positive wavevector sides is made solely for the sake of
presentation clarity. (b) Resonant mode profiles of the dot of four modes in the SD state and eight modes in the Sk state.
Please note that all SD modes and Sk-4 – Sk-8 modes are presented with my component (top color bar), while modes Sk-1 –
Sk-3 are presented with mz component (bottom color bar). All modes are normalized to the maximum absolute value of the
mode. The animated version of this figure is available in [52].

mains round. In the W/Sk system, the skyrmion changes
its shape to an egg-like shape, as shown in Fig. 2(c) in
the main manuscript. This change in shape significantly
impacts the mode frequencies. As shown in Table I, the
frequencies of modes in a single dot and an array of dots
are very similar, differing by no more than 65 MHz. On
the other hand, modes in the W/Sk system can differ
from a single dot modes as much as 516 MHz for the 1st
CW mode. However, for the higher-order CCW modes,
this difference is strongly reduced.

When comparing the bandwidths of the same modes

in different systems, it is clear that the dipolar inter-
action between the dot and the waveguide significantly
contributes to this value. The bandwidths of all modes,
except of the 4th CCW mode, are larger in W/Sk system,
indicating that the presence of the waveguide enhance the
interaction between the skyrmions. This effect is partic-
ularly noticeable for higher-order CCW modes (5th order
and higher), whose bandwidths are orders of magnitude
larger in the W/Sk system. However, it is difficult to dis-
tinguish the contribution of modified static configuration
of a skyrmion and dynamic dipolar interaction through
the waveguide.
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Table I. The comparison of the skyrmion domain wall modes in three different systems: single dot, dot chain, and W/Sk system
as defined in the main manuscript. For a single dot, we present the value of the mode frequency, while for dot chain and W/Sk
system, we show the lowest and the highest frequency of the band and the bandwidth. Please note that the frequencies are in
MHz, while bandwidths are in kHz.

Single dot Dot chain W/Sk system
f fmin fmax Bandwidth fmin fmax Bandwidth

Mode (MHz) (MHz) (MHz) (kHz) (MHz) (MHz) (kHz)
CW 2 2628 2627 2628 1309.06 3065 3078 13085.05
CW 1 1528 1542 1549 7533.08 2023 2044 21187.33

breathing 734 747 780 33223.62 1192 1226 34143.46
CCW 1 266 290 296 5996.20 482 490 8453.12
CCW 2 91 106 107 354.05 238 239 1061.96
CCW 3 54 64 64 42.51 107 108 533.27
CCW 4 106 117 117 264.79 132 133 178.41
CCW 5 235 237 237 13.78 303 304 728.22
CCW 6 441 438 438 2.25 505 505 208.15
CCW 7 729 719 719 1.99 780 781 265.48
CCW 8 1101 1083 1083 0.96 1140 1140 26.74
CCW 9 1561 1534 1534 8.47 1586 1586 36.19
CCW 10 2113 2075 2075 0.10 2122 2122 9.06
CCW 11 2760 2710 2710 0.08 2750 2750 11.54
CCW 12 3504 3440 3440 0.01 3474 3474 54.62
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4.6 Outlook

It is worth discussing the possibilities of continuing the studies presented in the Thesis. The
devices presented in articles [P1] and [P2] have been demonstrated only in simulations. I believe
it is possible to make their experimental demonstration. These systems can be measured using
propagating spin-wave spectroscopy or micro-focused Brillouin light scattering spectroscopy.
The latter can be particularly useful in this case, as it can measure spin waves with very large
wavevectors [211]. Moreover, in collaboration with Olena Tartakivska, I studied the fundamentals
of the rotating modes in the rectangular resonator. The manuscript is in preparation. Thanks
to the invitation of Andrii Chumak, I prepared a subsection to the Roadmap on Spin-Wave
Computing [129], where I presented the results of the articles [P1] and [P2]. The continuation of
the article [P3] has taken a different path. In my project entitled Three-dimensional magnonic
structures for analog computing: interaction analysis and device development, I study the
coupled waveguides in the backward volume geometry. I found that for the system of two
vertically-stacked waveguides, at a certain frequency they are not coupled and the spin wave
is not transmitted between them. This property can be used to isolate the waveguides in the
three-dimensional systems. The research from article [P4] has also found its continuation. We
are currently studying the system with different spin-wave conduits in order to achieve stronger
coupling with the layer with the stripe-domain pattern. In the case of article [P5], the study
of the system can go in the direction of simulating of the spin-wave transmission through the
system. Moreover, there is also the possibility of experimental demonstration of this device. A
similar system with the array of nanodots in the vortex state above the thin film has been studied
experimentally by the group of Prof. Sebastiaan van Dijken from Aalto University in Finland,
and I am responsible for the fitting of the experimental results by the numerical simulations.

4.7 Other research

In addition to the five articles presented in the Thesis, I am the co-author of 6 research articles
and 1 roadmap as listed in the note about the author at the end of the Thesis. The first publication
[212] is about the magnetization reversal analysis in the periodic and quasiperiodic arrays of
cuboids and it was finished before the beginning of the doctoral studies. In the next paper [208] I
contributed to the experimental work of the group of M. Urbánek at CEITEC in Brno, Czech
Republic. They prepared a new method to measure spin-wave propagation called variable-gap
propagating spin-wave spectroscopy. They demonstrated the method on a single CoFeB layer
which showed an unexpectedly strong hybridization of Damon–Eshbach mode with higher-order
modes. This coupling enhancement was attributed to the partial pinning of the spin waves at the
boundary. I was responsible for extending the COMSOL model to include the partial pinning
conditions and performing of the numerical simulations that confirmed the critical role of pinning.
This study led to a deeper investigation of the partial pinning of the spin waves, which further
led to the publication of a paper in which the effects of the partial pinning are described in
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detail using my numerical simulations and analytical formulas developed by J. Kharlan and P.
Bondarenko [209]. In the study of M. Moalic et al. [213], I contributed to the explanation of
the coupling between the bulk modes and rim modes in an antidot lattice with modified rims. I
also started working in the field of solar cells, where I wrote a program in COMSOL to solve
the problem of the electron and hole dynamics in the ps range in the thin film perovskite solar
cells [214]. The numerical simulations helped to fit the crucial parameters of the solar cells to
the experimental results of the broadband transient absorption. Another direction in which I am
going in is superconductivity, especially to combine it with magnetism and magnonics. In the
paper by J. Kharlan et al. [215], the confinement of a spin-wave mode in a magnetic field well
created by the superconducting strip in the Meissner state was studied. I was responsible for the
implementation of the London equation in COMSOL and its solution for the system investigated
in this work. Moreover, this topic is continued and the spin-wave propagation is studied in the
system with the periodic array of superconducting strips over the ferromagnetic film, system
functioning as a magnonic crystal. The manuscript is currently in preparation.

There are other ongoing research projects in which I am involved. Except for the studies
mentioned in Section 4.6, where I mentioned the continuation of papers [P2], [P3], [P4], and [P5],
I am also working on the tasks of my PRELUDIUM project. One of the studies is mentioned as a
continuation of [P3]. In another one, I found that it is possible to design a broadband directional
coupler by aligning two waveguides not exactly one over another, but with a small offset between
them. Another work is a continuation of the publication [209]. I found that using the partial
pinning, it is possible to design a spin-wave diode using only a single ferromagnetic layer. In
the study in collaboration with M. Gołębiewski, he performed the numerical simulations of the
ferromagnetic thin-film gyroid structures and found that the ferromagnetic resonance mode is
localized, which is not the case for the regular thin films. I helped in the interpretation of this
phenomenon, which is a result of the interplay between the demagnetizing field in complex
structures and the exchange interaction. The manuscript is currently in preparation.





Chapter 5

Summary

In the Thesis, I wanted to show how the spin-wave dynamics can be affected by the interaction
between the layers, with an emphasis on contributing to the field of the spin-wave computing.
The results were collected in five research articles, four of which have been published in peer-
reviewed journals and one of which is currently under review.

In [P1], it was shown that it is possible to couple two ultrathin layers, one with Dzyaloshinskii–
Moriya interaction and one without, and obtain the effect of unidirectional coupling of spin
waves in a wide frequency range. This effect was used to design the broadband spin-wave diode
and circulator. In [P2], two thin films were coupled with a long permalloy strip. Due to the
rotating character of the resonant modes in the strip, such a system acts as a multifunctional
device, performing at different frequencies different functions such as circulator, directional
coupler, and reflector. In [P3], two ultrathin Co films with opposite sign of the DMI constant
were separated by a W spacer of only 0.95 nm. Despite that, their coupling is negligible, resulting
in non-interacting nanoscale spin-wave conduits. In [P4], the NdCo layer characterized by a
stripe-domain structure was coupled with the soft, low-damping Py layer to create a hybrid
system with a complex magnetization texture and good spin-wave properties. It was shown
that this system functions as a reconfigurable magnonic crystal with non-reciprocal dispersion
relation. In [P5], the chain of nanodots in the single-domain or skyrmion state was coupled to
the waveguide to create a reconfigurable magnonic crystal. The results showed the significant
differences between the spin-wave dynamics of these systems, such as different band-gap sizes,
low-frequency modes present only in the skyrmion state, and different coupling mechanisms
including hybridized and bound skyrmion modes in the skyrmion state and the range of pure
waveguide modes in the single-domain state.

I believe that the results presented in the Thesis prove all the hypotheses stated in Preface.
I also believe that these articles make a significant contribution to the field of magnonics,
in particular to spin-wave computing. They have already found the interest of the scientific
community, being cited a total of 75 times (as of 13 June 2024 according to Scopus). I believe
that the field of spin-wave computing will continue to grow in the coming years, that the spin-
wave circuit will finally be demonstrated, and that the spin-wave devices will be present in future
computing units.
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[208] M. Vaňatka, K. Szulc, O. Wojewoda, et al., “Spin-wave dispersion measurement by variable-gap
propagating spin-wave spectroscopy”, Physical Review Applied 16, 054033 (2021).

[209] K. Szulc, J. Kharlan, P. Bondarenko, E. V. Tartakovskaya, and M. Krawczyk, “Impact of surface
anisotropy on the spin-wave dynamics in a thin ferromagnetic film”, Physical Review B 109,
054430 (2024).

[210] M. Zelent, M. Moalic, M. Mruczkiewicz, et al., “Stabilization and racetrack application of
asymmetric Néel skyrmions in hybrid nanostructures”, Scientific Reports 13, 13572 (2023).
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5. M. Vaňatka, K. Szulc, O. Wojewoda, C. Dubs, A. V. Chumak, M. Krawczyk, O. V.
Dobrovolskiy, J. W. Kłos, M. Urbánek
Spin-wave dispersion measurement by variable-gap propagating spin-wave
spectroscopy
Physical Review Applied 16, 054033 (2021)

6. A. V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A. O. Adeyeye, J. Åkerman, F.
G. Aliev, A. Anane, A. Awad, C. H. Back, A. Barman, G. E. W. Bauer, M. Becherer, E. N.
Beginin, V. A. S. V. Bittencourt, Y. M. Blanter, P. Bortolotti, I. Boventer, D. A. Bozhko, S.
A. Bunyaev, J. J. Carmiggelt, R. R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba,
O. V. Dobrovolskiy, C. Dubs, M. Elyasi, K. G. Fripp, H. Fulara, I. A. Golovchanskiy, C.
Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko,
A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H.
Huebl, M. Huth, E. Iacocca, M. B. Jungfleisch, G. N. Kakazei, A. Khitun, R. Khymyn,
T. Kikkawa, M. Kläui, O. Klein, J. W. Kłos, S. Knauer, S. Koraltan, M. Kostylev, M.
Krawczyk, I. N. Krivorotov, V. V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun,
Y. Li, M. Lindner, R. Macêdo, S. Mayr, G. A. Melkov, S. Mieszczak, Y. Nakamura, H. T.
Nembach, A. A. Nikitin, S. A. Nikitov, V. Novosad, J. A. Otálora, Y. Otani, A. Papp, B.
Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-
Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K.
Schultheiss, A. A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T.
Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I.
Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S.
P. Wolski, and X. Zhang
Advances in Magnetics Roadmap on Spin-Wave Computing
IEEE Transactions on Magnetics 58, 1-72 (2022)
(Co-author of Section VI-A together with J. W. Kłos, M. Krawczyk, and P. Graczyk)

7. K. Szulc, S. Tacchi, A. Hierro-Rodríguez, J. Díaz, P. Gruszecki, P. Graczyk, C. Quirós, D.
Markó, J. I. Martín, M. Vélez, D. S. Schmool, G. Carlotti, M. Krawczyk, L. M. Álvarez-



Bibliography 123

Prado
Reconfigurable magnonic crystals based on imprinted magnetization tex-
tures in hard and soft dipolar-coupled bilayers
ACS Nano 16, 14168-14177 (2022)

8. K. Szulc, K. Pydzińska-Białek, M. Ziółek
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6. Polish Scientific Network 2019, Poznań, 19–21.09.2019
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