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Abstract

The thesis presents a novel application of named entity recognition and information extraction methods

during the processing of documents of various types. The thesis consists of four scientific articles that have

been published and presented at conferences of international scope.

Chapter 1 describes the research problem, motivation and results obtained, as well as the structure and scope

of the thesis. It also includes an overview and a brief summary of the included articles. Each description is

preceded by information about the authors, the venue and type of presentation, and the contribution of the

thesis author.

Chapters 2 and 3 present research work related to the application of named entity recognition methods,

which served as part of the solution to problems defined in competitions held at international conferences.

Chapter 2 includes a description of the translation system developed as part of the WMT 2022 conference.

Chapter 3 presents new models for lemmatization of named entities that were used in the solution of the

competition organized as part of the Slavic NLP 2023 workshop.

Chapters 4 and 5 focus on articles presenting neural network models developed as part of participation in

the Industrial PhD program. Chapter 4 describes the TILT model created as part of the work on extracting

information from documents with a two-dimensional structure (text and vision layer). Chapter 5 presents the

STable model, which is an evolution of the TILT model and is used to extract tabular data.

At the end of the thesis, the appendices include three certificates received from the organizers of the ICDAR

2019, WMT 2022 and Slavic NLP 2023 conferences, as well as the first pages of two patents obtained related

to the TILT and STable models. Lastly, declarations of the contributions of the co-authors of each article

presented in the thesis are included.





Streszczenie

Rozprawa doktorska prezentuje nowatorskie wykorzystanie metod rozpoznawania jednostek nazwanych i ek-

strakcji informacji podczas przetwarzania dokumentów różnego typu. Praca składa się z czterech artykułów

naukowych, które zostały opublikowane i zaprezentowane na konferencjach o zasięgu międzynarodowym.

Rozdział 1 opisuje problem badawczy, motywację i uzyskane efekty, a także strukturę i zakres rozprawy.

Zawiera również przegląd oraz krótkie podsumowanie załączonych artykułów. Każdy opis poprzedzony jest

informacją o autorach, miejscu i typie prezentacji oraz o wkładzie autora rozprawy.

Rozdziały 2 i 3 przedstawiają prace badawcze związane z wykorzystaniem metod rozpoznawania jed-

nostek nazwanych, które posłużyły jako część rozwiązania problemów zdefiniowanych w konkursach

organizowanych w ramach międzynarodowych konferencji. Rozdział 2 zawiera opis systemu tłumaczenia

powstałego w ramach konferencji WMT 2022. W rozdziale 3 zaprezentowano nowe modele lematyzacji

jednostek nazwanych, które zostały zastosowane w rozwiązaniu konkursu organizowanego w ramach

warsztatu Slavic NLP 2023.

Rozdziały 4 i 5 skupiają się na artykułach prezentujących modele sieci neuronowych powstałe w ramach

prac wdrożeniowych. Rozdział 4 opisuje model TILT powstały w ramach prac nad ekstrakcją informacji

z dokumentów o dwuwymiarowej strukturze (warstwa tekstowa i wizyjna). W rozdziale 5 przedstawiono

model STable będący rozwinięciem modelu TILT i służący do ekstrakcji danych tabelarycznych.

Na końcu pracy znajdują się załączniki, w których zawarte są trzy certyfikaty otrzymane od organizatorów

konferencji ICDAR 2019, WMT 2022 i Slavic NLP 2023, a także pierwsze strony dwóch uzyskanych patentów

związanych z modelami TILT i STable. Jako ostatnie zamieszczone zostały deklaracje o wkładzie współautorów

każdego z artykułów przedstawionego w rozprawie.
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1.1 Establishing the Context: A Brief Overview

Nowadays, there is an increasing shift away from storing documents

in paper form. Instead, documents are being created or brought into

digital formats, making them easily accessible and ready for processing

by computers. However, this type of document processing presents many

challenges, as natural language must be understood by machines and

interpreted correctly.

Natural Language Processing (NLP) is a field of computer science that

aims to bridge the gap between human language and machine understand-

ing. Thanks to emerging solutions, computers can extract meaningful

information from structured and unstructured text data, as well as from

images and audio or video files. Tasks such as named entity recognition,

information extraction, text classification, and text summarization help

process and understand various types of documents. Through advanced

algorithms and machine learning models, NLP automates tasks such as

document categorization, information and keyword extraction, and con-

tent summarization, thereby increasing the efficiency and effectiveness

of information retrieval and analysis processes.

Named Entity Recognition (NER) is a fundamental task in NLP, which in-

volves identifying and categorizing named entities within text data. These

named entities can include various types such as persons, organizations,

locations, events, dates, products, quantities, and more. In document

processing, NER is crucial for extracting important information and facil-

itating a deeper understanding of the text. For example, in a news article,

NER can recognize the names of people, organizations, and locations

mentioned, enabling to quickly grasp the key entities involved. However,

NER also comes with its limitations. It can struggle with ambiguous

entities, misspellings, or entities that are not present in its training data.

Additionally, NER may have difficulty recognizing named entities in

languages other than those they were trained on or in domains with

specialized terminology. Despite these challenges, NER significantly

enhances the efficiency and effectiveness of document processing and

analysis.

Information extraction (IE) is another key task in NLP, which involves

identifying and extracting structured data or knowledge from unstruc-

tured textual sources, such as digital documents, web pages, or social

media posts. In this context, information serves as the basis for various

tasks, including question answering, summarization, and knowledge

graph construction. In particular, in question answering systems, informa-

tion is extracted and organized to provide accurate and relevant answers

to user queries. For example, in financial documents, IE can be used to

automatically extract customer data such as names, addresses, account

numbers, and transaction histories from scanned documents or digital

forms. This extracted information can then be used to populate and

update databases, allowing banks to maintain comprehensive records of
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their customers and their financial activities. While IE offers significant

advantages in automating data collection processes, it also comes with

challenges. These challenges can include handling different document

formats, ensuring data privacy and security, and accurately interpreting

handwritten or poorly structured text. Despite these limitations, using

NLP to extract information in banks and other organizations can improve

administrative workflows, increase data accuracy, and ultimately support

customer service and compliance.

NER and IE are essential tasks for structuring and understanding text

data. The introduction of transformer architectures (Vaswani et al., 2017),

exemplified by models such as BERT (Bidirectional Encoder Representa-

tions from Transformers (Devlin et al., 2019)) and T5 (Text-To-Text Transfer

Transformer (Raffel et al., 2020)), catalyzed a paradigm shift in how these

tasks are approached and performed. Traditionally, NER and IE have

relied on sequential models, limiting their ability to capture long-range

dependencies and contextual nuances in text. Transformers, however,

leverage attention mechanisms, enabling parallelized processing of input

sequences and facilitating more effective contextual understanding. In

the case of BERT, pre-training on large corpora allows the model to learn

complex linguistic patterns, significantly improving NER accuracy by

capturing contextual clues and relationships between words. Similarly, T5

has revolutionized IE by treating both input and output data as text, thus

enabling more flexible and accurate extraction of structured information

from unstructured text data. Overall, transformer architectures have rev-

olutionized NER and IE by providing more context-aware and accurate

models, thereby enhancing the ability of NLP systems to structure and

extract valuable information from textual data.

The overarching goal of this thesis is to advance the state-of-the-art in

NLP by focusing on NER and IE from various document sources. In

particular, the work aims to develop robust NER models tailored to news

articles and IE techniques capable of handling both scanned and digital

documents. In the context of NER, the extracted named entities will not

only improve machine translation tasks but will also be lemmatized to

enable linguistic analysis that will contribute to a deeper understanding

of the text. Also, the thesis attempts to explore novel approaches in

IE by integrating neural network models that leverage textual, layout,

and visual modality to extract structural information more accurately

and comprehensively. By addressing these challenges and pushing the

boundaries of NER and IE techniques, this thesis aims to facilitate more

efficient and effective processing of textual data in various fields.

1.2 Exploring the Why: Motivation and Outcome

The thesis represents the culmination of the Industrial PhD (Polish:

doktorat wdrożeniowy) program, which was established by the Polish

government in 2017. This unique program is tailored to emphasize applied

research, fostering close collaboration between the doctoral candidate, a

university, and an industry partner. Unlike traditional PhD programs,

an Industrial PhD is specifically structured to address industry-specific

challenges and opportunities, bridging the gap between academia and

the business sector. Through this program, students are afforded the
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invaluable chance to conduct research that directly addresses the practical

needs of industry, while simultaneously gaining the requisite skills and

expertise for successful careers in both industry and academia.

This thesis is the outcome of a fruitful partnership between Adam

Mickiewicz University and Applica, a renowned company recognized for

its innovative document information extraction system. Throughout the

Industrial PhD program, a pioneering neural network model known as

TILT (Powalski et al., 2021) was developed and improved by the Applica

Research Team. TILT represents a significant advancement in this field,

being one of the first models designed to enable efficient processing of

digitized documents. Unlike its predecessors, TILT works seamlessly

with both textual and visual features of a document, thus enhancing its

ability to extract information in a precise and effective manner.

The success of the research part of this thesis owes much to the collabora-

tive efforts with colleagues from Adam Mickiewicz University. Together,

we embarked on a scientific journey aimed at enhancing machine transla-

tion (MT) models through the integration of Named Entity Recognition

(NER) technology. This collaboration resulted in the development of

an MT model (Nowakowski et al., 2022) adapted to the translation of

news articles, which achieved first place in the prestigious WMT 2022

General MT Task, particularly in the Ukrainian ↔ Czech translation

directions. Furthermore, our joint efforts extended to the lemmatization

of named entities extracted from news articles in Polish, Czech, and

Russian languages. The outcome of this project is the creation of the first

open-source Polish lemmatization model
*

(Pałka & Nowakowski, 2023),

based on the state-of-the-art T5 architecture. Through this collaborative

endeavor, we have not only advanced the frontiers of machine translation

but also contributed to the development of valuable linguistic resources

for the research community.

1.3 Charting the Course: Structure and Scope

Due to the title’s nature, this doctoral thesis is structured into two parts:

Named Entity Recognition Papers and Information Extraction Papers.

The section containing Named Entity Recognition Papers consists of two

articles that are directly connected to research and participation in

shared tasks. The papers in this section showcase innovative solutions

adapted to address challenges in low-resource languages. One paper

focuses on enhancing translation quality by leveraging NER techniques.

Another paper introduces an approach utilizing the T5 model for the

lemmatization of named entities.

Within the Information Extraction Papers section, two papers present

pioneering advancements in the field of document information extraction.

The first introduces the TILT model, which integrates textual and visual

features from documents for precise information extraction. The second

presents the STable model, an evolution of TILT designed for efficient

table extraction from various documents.

*
https://huggingface.co/amu-cai

https://huggingface.co/amu-cai
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A comprehensive list of papers featured in the thesis is available in

table 1.1 presented in section 1.4. This table provides details on the publi-

cation venue and the awarded MEiN points for each paper. Additionally,

section 1.5 offers an overview, detailing the motivation behind each

paper’s development, its results, and a summary of key findings.

In addition, Appendix A includes certificates from winning competitions,

providing evidence of the solutions’ success, while Appendix B presents

the first pages of patent applications related to the TILT and STable

models, offering insight into their innovative contributions. The patents

can be fully accessed from Google Patents (https://patents.google.com):

TILT Patent No. US 11,763,087 B2 and STable Patent No. US 11,860,848
B2.

1.4 List of Published Papers

Table 1.1: List of published papers included in the thesis

Title Authors Venue MNiSW Points
Adam Mickiewicz University at WMT

2022: NER-Assisted and Quality-Aware

Neural Machine Translation

A. Nowakowski, G. Pałka,

K. Guttmann, M. Pokrywka

WMT 2022

(EMNLP 2022)

140

Exploring the Use of Foundation Mod-

els for Named Entity Recognition and

Lemmatization Tasks in Slavic Lan-

guages

G. Pałka, A. Nowakowski Slavic NLP 2023

(EACL 2023)

140

Going Full-TILT Boogie on Document

Understanding with Text-Image-Layout

Transformer

R. Powalski, Ł. Borchmann,

D. Jurkiewicz, T. Dwojak,

M. Pietruszka, G. Pałka

ICDAR 2021 140
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1.5 Papers Overview

The papers included in this thesis were prepared and published between

the years 2021-2024. All papers were presented as posters at international

conferences related to NLP.

As the main author of the first two papers included in the thesis, I was

responsible for the conceptualization and methodology of the research

work in each of them. As co-author of the next two papers included in the

thesis, I was responsible for the review and preparation of datasets and

conducting experiments. Specific contributions to each paper are listed in

the overview and in the declarations of contribution (see Appendix C).

https://patents.google.com
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1.5.1 Named Entity Recognition Papers

1. Adam Mickiewicz University at WMT 2022: NER-Assisted and
Quality-Aware Neural Machine Translation

Authors:
Artur Nowakowski

*
, Gabriela Pałka

*

* and † denote equal contribution groups

, Kamil Guttmann
†
, Mikołaj

Pokrywka
†

Venue:
Seventh Conference on Machine Translation (Abu Dhabi, United

Arab Emirates)

Presentation type, date (presenters):
Poster presentation, 07.12.2022 (Artur Nowakowski, Gabriela

Pałka, Kamil Guttmann, Mikołaj Pokrywka)

Published paper URL (accessed 1.09.2023):
https://aclanthology.org/2022.wmt-1.26

Author contribution:
Conceptualization and methodology of the research work, im-

plementation of the NER processing module, the conduct of

the experiments with NER-assisted translation, integration of

NER annotations as source factors into the model architecture,

and writing of the paper.

In this paper, Adam Mickiewicz University (AMU) presents its

submissions to the constrained track of the WMT 2022 General MT

Task, focusing on translation between Ukrainian and Czech. The

shared task of translating news articles presents unique challenges

due to the large number of named entities in these documents.

Named entities such as people, organizations, locations, and dates

are common in news articles and are critical to conveying accurate

information. However, translating such entities can be particularly

difficult due to issues of disambiguation and case sensitivity. Dis-

ambiguation of named entities involves determining the correct

translation based on context, which can be ambiguous in articles

that contain multiple references to similar entities. For instance,

translating the named entity "Washington" could refer to the city

in the United States or the state, or the person, depending on the

context. Additionally, case sensitivity is a challenge, especially

when translating between languages with different alphabets, such

as Czech (Latin) and Ukrainian (Cyrillic). Maintaining the correct

letter size when translating named entities is crucial to preserving

the meaning and readability of the text. Therefore, successfully

addressing these challenges is critical to achieving high-quality

translations in the context of news articles.

In this context, utilizing effective NER models is essential for

accurately translating text across different languages. For Czech,

we used the Slavic BERT model (Arkhipov et al., 2019), a state-of-

the-art model designed for Slavic languages. This model effectively

https://aclanthology.org/2022.wmt-1.26


6 1 Introduction

marks entities such as persons, locations, organizations, prod-

ucts, and events in the text. However, we encountered a challenge

when translating the Ukrainian text due to the lack of support for

Ukrainian in the Slavic BERT model. To solve this problem, we

turned to Stanza’s NER module (Qi et al., 2020), which is capable

of detecting entities in Ukrainian text, including people, locations,

organizations, and miscellaneous elements. Using these off-the-

shelf NER solutions, we proceeded to label our corpora.

Previously, source factors (Sennrich & Haddow, 2016) have been

utilized in neural machine translation systems to consider various

word characteristics during translation, including morphological

information, part-of-speech tags, and syntactic dependencies, en-

hancing translation quality. Similarly, incorporating information

about named entities detected in the text (Modrzejewski et al., 2020)

can aid in accurately translating them. Based on this, we assigned

numerical labels to the named entities, making it easy to integrate

the relevant source factors into the translation process. These source

factors were then seamlessly transferred to sub-words, ensuring

their integration into the translation model in a straightforward

manner. Figure 1.1 simply illustrates the inclusion of named entity

information by adding these factors to word embeddings.

Figure 1.1: The illustration shows an ex-

ample of including named entity infor-

mation. Two named entities were recog-

nized in the sentence given to the system:

George Washington (person) and the United
States (location). To the word embeddings

were added the trained category embed-

dings of the recognized named entities.

To measure the quality of MT systems, the COMET (Cross-lingual

Optimized Metric for Evaluation of Translation (Rei et al., 2020))

metric was used. It provides a nuanced approach to assessing trans-

lation quality, diverging from traditional metrics like BLEU (Pap-

ineni et al., 2002) and chrF (Popović, 2015). Unlike these metrics,

which primarily focus on surface-level comparisons between trans-

lated and reference texts, COMET utilizes large language models

to capture deeper aspects of translation quality, including meaning,

grammar, and fluency. Table 2.4 in chapter Adam Mickiewicz Univer-
sity at WMT 2022: NER-Assisted and Quality-Aware Neural Machine
Translation presents the results of our experiments. It illustrates the

increase in string-based evaluation rates (chrF and BLEU), while
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COMET scores show a steady level. This finding is consistent with

research by Amrhein and Sennrich, 2022, which indicates that

COMET models are not sensitive to discrepancies in named entities.

This means that they might not penalize translations as heavily for

errors in named entities, even if these errors are significant.

Our experiments, encompassing various MT enhancement methods

such as transfer learning, back-translation, NER-assisted translation,

document-level translation, weighted ensembling, quality-aware

decoding, and on-the-fly domain adaptation, demonstrated signifi-

cant improvements in translation quality. This solution emerged

as the top performer among all participants in the shared task, as

confirmed by both automatic and human evaluations (Kocmi et al.,

2022). Our system’s performance surpassed all others, falling short

only when compared to human translations, which were evalu-

ated anonymously alongside other submissions. This achievement

is further confirmed by the WMT 2022 organizing committee’s

certificate, provided in Appendix A.
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2. Exploring the Use of Foundation Models for Named Entity
Recognition and Lemmatization Tasks in Slavic Languages

Authors:
Gabriela Pałka, Artur Nowakowski

Venue:
9th Workshop on Slavic Natural Language Processing 2023

(Dubrovnik, Croatia)

Presentation type, date (presenters):
Poster presentation, 06.05.2023 (Gabriela Pałka, Artur Nowakow-

ski)

Published paper URL (accessed 1.09.2023):
https://aclanthology.org/2023.bsnlp-1.19

Author contribution:
Conceptualization and methodology of the research work, idea

behind the solution as a whole, code implementation of the NER

processing module, conducting the experiments, and writing a

paper.

The competition is centered around the analysis of named entities

(NEs) in web documents across Polish, Czech, and Russian, with

a focus on recognizing, classifying, and linking named entities

across documents and languages. This task poses several serious

challenges. First, the inherent complexity of Slavic languages, char-

acterized by rich inflection, free word order, and derivation, poses

significant obstacles to accurate NE identification, especially when

compared to more structurally simple languages. Moreover, the

task requires NE extraction at the document level, which requires

systems to understand NEs in the context of entire documents

rather than individual words or phrases. Lematization, the pro-

cess of normalizing NEs to their basic forms, becomes a critical

requirement for ensuring consistent identification and linking

across documents and languages. Finally, the complex task of

cross-linguistic linking further complicates the NE identification

process, as systems must accurately identify and link NEs that

refer to the same real-world entities in different linguistic contexts.

Therefore, successfully meeting these challenges is crucial to achiev-

ing high-quality NE analysis systems in the context of news articles.

In our research work, we have decided to focus on recognition and

lemmatization without addressing the problem of linking NEs. Our

priority was to develop the first open model for lemmatization of

the Polish language based on the T5 (Raffel et al., 2020) architecture.

To achieve this, we not only used data provided by the organizers

but also leveraged existing datasets. In the case of identifying and

classifying NEs, it was possible to find resources for all three lan-

guages. Unfortunately, all additional data for lemmatization was

only available for Polish, and we decided to use OPUS-MT (Tiede-

mann & Thottingal, 2020) to machine translate all the samples we

https://aclanthology.org/2023.bsnlp-1.19
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Table 1.2: The table presents the datasets employed in the experiments, with """ denoting availability for a given language and "%"

indicating unavailability.

Dataset name Polish Czech Russian

NER
Collection3 (Mozharova & Loukachevitch, 2016) % % "

MultiNERD (Tedeschi & Navigli, 2022) " % "

Polyglot-NER (Al-Rfou et al., 2015) " " "

WikiNEuRal (Tedeschi et al., 2021) " % "
Lemmatization
SEJF (Czerepowicka & Savary, 2018) " % %

SEJFEK (Savary et al., 2012) " % %

PolEval 2019: Task 2 (Marcińczuk & Bernaś, 2019) " % %

found. Table 1.2 shows the external datasets used in the experi-

ments.

The solution entailed fine-tuning foundation models with task-

specific adjustments and additional training data. Several monolin-

gual BERT models were utilized in the named entity recognition

task to accommodate the linguistic intricacies of individual Slavic

languages, including HerBERT (Mroczkowski et al., 2021) for Pol-

ish, Czert (Sido et al., 2021) for Czech, and RuBERT (Kuratov &

Arkhipov, 2019) for Russian. Multilingual BERT models such as

Slavic BERT (Arkhipov et al., 2019) and XLM-RoBERTa (Conneau

et al., 2020) were also employed for comparison. The lemmatiza-

tion task was approached as a text-to-text problem, with the T5

model receiving inflected phrases or named entities as input and

producing their base, normalized forms as output. To address the

absence of dedicated models for Czech and Russian, both mono-

lingual and multilingual T5 models were employed, including

plT5 (Chrabrowa et al., 2022) for Polish and mT5 (Xue et al., 2021)

for multilingual experiments. Additionally, experiments were con-

ducted on varying sizes of the T5 models for comparison.

The results of all experiments are detailed in Section 3.4 in Chapter

Exploring the Use of Foundation Models for Named Entity Recognition
and Lemmatization Tasks in Slavic Languages. In our evaluation of the

NER solution, monolingual models exhibited superior performance

for Polish and Czech, while multilingual models demonstrated

significant advantages for Russian. A likely reason for this is the

deficiency of sufficient data to train a monolingual model for

Russian, with multilingual models showing the ability to learn

common rules for presented Slavic languages, thus compensating

for shortcomings in the language-specific datasets. In the case of

lemmatization, the results indicate a significant enhancement in

the quality of the model designed for the Polish language with

the addition of each external dataset, while the inclusion of data

from PolEval 2019 also improves results for the multilingual model.

However, the incorporation of data from machine-translated lex-

icons from the SEJF and SEJFEK datasets results in a decline in

model performance for Czech and Russian, possibly due to transla-
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tion quality issues. Additionally, lemmatization quality generally

improves with larger model sizes.

This solution emerged as the leading performer in the lemma-

tization task, confirmed by automated evaluations (Yangarber et al.,

2023). Moreover, it closely followed other participants in most

NER metrics, demonstrating its competitiveness. This accomplish-

ment is further affirmed by the certificate provided by the Slavic

NLP 2023 organizing committee, available in Appendix A. We

released all our lemmatization models and made them available at:

https://huggingface.co/amu-cai.

https://huggingface.co/amu-cai.
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1.5.2 Information Extraction Papers

1. Going Full-TILT Boogie on Document Understanding with Text-
Image-Layout Transformer

Authors:
Rafał Powalski

*
, Łukasz Borchmann

*

* and † denote equal contribution groups

, Dawid Jurkiewicz
†
, Tomasz

Dwojak
†
, Michał Pietruszka

†
, Gabriela Pałka

Venue:
16th International Conference on Document Analysis and Reco-

gnition (Lausanne, Switzerland)

Presentation type, date (presenters):
Poster presentation, 9.09.2021 (Łukasz Borchmann, Dawid Jur-

kiewicz, Michał Pietruszka, Gabriela Pałka)

Published paper URL (accessed 1.09.2023):
https://link.springer.com/chapter/10.1007/978-3-030-86331-9_-

47

Author contribution:
Review and preparation of the datasets, running experiments,

and editing the manuscript.

The process of digitizing documents and their subsequent process-

ing involves several successive steps. Initially, physical documents

are scanned for conversion to digital format. Next, optical charac-

ter recognition (OCR) systems are used to extract text from the

scanned images. Once the text is extracted, relevant features are

identified and extracted from the digitized documents. Finally,

various algorithms are used to analyze, interpret, or manipulate

the extracted data to gain meaningful insights or perform specific

tasks. In the early era of sequence-to-sequence models, the main

source of feature extraction methods was limited to textual content.

However, this approach faced challenges, particularly with OCR

systems encountering problems such as inaccuracies in reading

sequence, especially for complex layouts such as two-column text,

or difficulties in recognizing handwritten characters. In addition,

graphical elements commonly found in documents, such as charts,

figures, tables, and checkboxes, presented further obstacles to accu-

rate extraction. As a result, it was becoming increasingly clear that

the information embedded in the images was equally, if not more,

important than the text itself. This realization underscored the

need to incorporate visual data alongside textual content to com-

prehensively understand and process documents. To meet these

expectations, we decided to create a neural network model that

combines information extracted from text (NLP), image (computer

vision), and document structure (layout analysis).

Our model, Text-Image-Layout Transformer (TILT), design drew

inspiration from the Transformer architecture (Vaswani et al., 2017),

with a particular focus on leveraging the capabilities of the T5

https://link.springer.com/chapter/10.1007/978-3-030-86331-9_47
https://link.springer.com/chapter/10.1007/978-3-030-86331-9_47
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Figure 1.2: The diagram shows a simplified process of how the TILT model fully works. The document can be considered according

to different modalities. In this case: unstructured text returned by OCR (text), vision layer (image), and spatial relationships between

bounding boxes (layout).

model (Raffel et al., 2020). Our architecture not only considers the

internal relationships between tokens in text (sequential bias) but

also extends these considerations to the spatial placement of tokens

in images (positional bias). Our approach takes into account the

relative position of text tokens in images by calculating both their

vertical and horizontal coordinates relative to each other. We also

introduced Contextualized Image Embeddings to mirror the capabili-

ties of Contextualized Word Embeddings by capturing nuanced

semantics within the visual domain, presenting a sequence of

vectors that encapsulate the essence of an entire image context. Our

approach involved leveraging a convolutional network U-Net (Ron-

neberger et al., 2015) as the backbone visual encoder network.

The U-Net architecture provides a distinct advantage by not only

processing information from nearby regions of a token, including

font and style nuances but also extending its reach to encompass

distant areas of the image page. This broader perspective proves

invaluable, particularly in scenarios where text interacts with other

structural elements, such as providing descriptions for accompa-

nying images. Moreover, we seamlessly integrated these visual

embeddings with textual embeddings to create a comprehensive

multimodal representation, enriching the model with an under-

standing of the interaction between textual and visual elements.

A simplified process of how the model works is shown in Figure 1.2.

Regarding the training process, it consists of three main stages.

Firstly, the model is initialized with standard T5 model weights and

pre-trained on a varied collection of documents in an unsupervised

fashion. Subsequently, it is trained on a carefully curated selection

of supervised tasks. Lastly, the model is fine-tuned solely using

the dataset relevant to the specific task. In addition, we made a

strategic decision to improve processes related to key tasks such as

information extraction, question answering, and document classifi-
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cation using a unified format. The approach was to treat these tasks

as standardized tuples, each consisting of three basic elements: the

question being asked, the context in which the question is formu-

lated, and the corresponding answer. By adopting this structured

approach, we aimed to increase the efficiency and effectiveness of

our methodologies across tasks, facilitating a more consistent and

integrated workflow in document processing applications.

A comprehensive presentation of our research findings is detailed

in Table 4.3 within Chapter Going Full-TILT Boogie on Document
Understanding with Text-Image-Layout Transformer. The TILT model

demonstrated superior performance, surpassing previous bench-

marks in three out of the four tasks examined. Our findings validate

that unsupervised pretraining, incorporating layout and visual

context awareness, significantly enhances performance on down-

stream tasks, particularly those involving the interpretation of

complex structures like tables within documents. Moreover, we

effectively utilized supervised training on diverse datasets, includ-

ing plain-text corpora and those containing layout information,

further contributing to the model success.

Finally, with the model ready, we decided to verify its effective-

ness in the Competition On Document Visual Question Answering
(DocVQA): Task 3 - Infographics VQA organized as part of the ICDAR

2021 conference. This task focuses on answering questions posed

on an infographic image, where visual information is crucial for

comprehension. Unlike the main DocVQA task, which is purely

QA-centered on simple information extraction from documents,

infographic VQA permits answers that are not explicitly extracted

from the image. For example, in an infographic illustrating the

diabetic count by gender, featuring icons symbolizing men and

women, the relevant question might be: What is the count of women
with diabetes? (see Figure 1.3). The response involves extracting

details from the visual representation, specifically the icon repre-

senting women, and presenting a numerical or percentage value

Figure 1.3: Example of an infographic.
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indicating the diabetic count for that gender. Moreover, answers

can take various forms: a contiguous piece of text from the image,

a list of items separated by commas, a span from the question itself,

or a numerical value.

Leveraging the rich information embedded within the text, images,

and infographic layout, our approach achieved an exceptionally

high score, securing the top position in the automatic evaluation

metric (Tito et al., 2021). Our solution reached an ANLS score of

0.6120, significantly outperforming the second-place entry, which

scored 0.3854. This success is further substantiated by the certifi-

cate issued by the competition organizers, which can be found in

Appendix A.
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2. STable: Table Generation Framework for Encoder-Decoder Mod-
els

Authors:
Michał Pietruszka

*
, Michał Turski

*

* and † denote equal contribution groups

, Łukasz Borchmann
*
, Tomasz

Dwojak, Gabriela Nowakowska, Karolina Szyndler, Dawid Jur-

kiewicz, Łukasz Garncarek

Venue:
The 18th Conference of the European Chapter of the Association

for Computational Linguistics (St. Julian’s, Malta)

Presentation type, date (presenters):
Poster presentation, 18.03.2024 (Michał Turski)

Published paper URL (from ACL Anthology Preview):
https://aclanthology.org/2024.eacl-long.151

Author contribution:
Review and preparation of the datasets, baselines implemen-

tation, running experiments, participation in discussions and

brainstorms, and editing the manuscript in its initial version

Meeting the diverse requirements of business customers adds an-

other layer of complexity to the information extraction problem.

Besides extracting information in textual form, there is a growing

need to extract structured information, such as tables, for improved

data representation or direct integration with database systems.

However, effectively representing structured tabular data in the out-

put of a neural network model is a real challenge. Traditionally, this

has been solved by decoding table text in formats such as HTML or

JSON. Existing approaches involve generating the table row by row

or column by column. Unfortunately, this method is error-prone,

especially when the model makes decoding errors in the initial

cells of the table, leading to cumulative inaccuracies throughout

the decoding process. Moreover, another challenge arises when

extracting tables from documents with complex layouts or nested

structures. This introduces an additional layer of difficulty, requir-

ing innovative solutions to accurately capture and represent such

nuanced information. Our solution introduces a comprehensive

approach to text-to-table neural models, facilitating tasks such

as extraction of line items, joint entity and relation extraction, or

knowledge base population, with a permutation-based decoder

that processes information from all cells in a table comprehensively.

Taking into consideration that our customers will use our system

to process digitized documents, we decided to base our solution

on the TILT model (Powalski et al., 2021) introduced before. As

previously, on input, the model receives a query (this time for

a specific table), and on output, it generates a structure in the

appropriate format. Following our predecessors (Chen et al., 2021;

Townsend et al., 2021), we decided to represent the table received

in the output as code, using column (< 𝐶𝑜𝑙𝑢𝑚𝑛 >, < /𝐶𝑜𝑙𝑢𝑚𝑛 >)

https://aclanthology.org/2024.eacl-long.151
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and cell (< 𝐶𝑒𝑙𝑙 >, < /𝐶𝑒𝑙𝑙 >) tags. To avoid errors associated

with the linear order of cell generation, we proposed a modification

to the decoder that allows the random order of cell generation and

selects only the most likely paths.

Consider an email from an animal shelter detailing pet food orders.

Suppose we wish to extract information about the dog food ordered

from a passage like Poultry and beef BestDogFood, each weighing 10
kg, and AllergicDogFood for dogs with allergies were ordered. The last
one with a weight of 5 kg. Our model operates under the assumption

that, in addition to knowing the table name, we are aware of the

columns we seek to extract - in this case,type, name, and weight of

dog food. Initially, the model employs a linear layer to predict the

number of rows to be generated; in our example, the table has three

rows. Having this information, we can prepare the first prompt for

the decoder, including details about the table and its as-yet-unfilled

cells. In the first step, the decoder generates potential values for

each cell in the table. Based on the probability of the received

values, the top 𝑘 cells with the highest score are selected. where

top 𝑘 is the criterion in our example and 𝑘 = 3. These selected cells

are then incorporated into the initial empty table, forming a new

prompt that guides the generation of the remaining cells in subse-

quent steps. This iterative process continues until the final table is

produced. Below is a visualization of the example described.

(1) first prompt
type name weight

(2) first decoder pass
type name weight
poultry 0.9 BestDoggieFood 0.7 10 kg 0.4

beef 0.9 BestDogFood 0.85 10 kg 0.3

not presented 0.2 AllergicFood 0.3 10 kg 0.2

(3) second prompt
type name weight
poultry

beef BestDogFood

(4) second decoder pass, etc.

expected table after last decoder pass
type name weight
poultry BestDogFood 10 kg

beef BestDogFood 10 kg

allergic AllergicDogFood 5 kg

With the transition to a permutation-based decoder and the inclu-

sion of a regression head for row prediction, the model objective

undergoes a notable shift. As a result, we foresaw the need for a
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model adaptation phase, encompassing a pretraining stage similar

to that conducted with the TILT model. This stage is further ex-

panded to include the Natural Questions dataset (Kwiatkowski et

al., 2019) and the WebTables
*

dataset. The effects of our experiments

are presented in table 5.1 and Appendix D within Chapter STable

Table Generation Framework for Encoder-Decoder Models.

The proposed STable model demonstrates high practical value,

achieving state-of-the-art results and outperforming linear models

in various datasets, as well as performing better than reference

models in several confidential datasets.

*
https://webdatacommons.org/webtables

https://webdatacommons.org/webtables
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Abstract
This paper presents Adam Mickiewicz University’s (AMU) submis-

sions to the constrained track of the WMT 2022 General MT Task.

We participated in the Ukrainian ↔ Czech translation directions.

The systems are a weighted ensemble of four models based on the

Transformer (big) architecture. The models use source factors to

utilize the information about named entities present in the input.

Each of the models in the ensemble was trained using only the data

provided by the shared task organizers. A noisy back-translation

technique was used to augment the training corpora. One of the

models in the ensemble is a document-level model, trained on

parallel and synthetic longer sequences. During the sentence-level

decoding process, the ensemble generated the n-best list. The n-best

list was merged with the n-best list generated by a single document-

level model which translated multiple sentences at a time. Finally,

existing quality estimation models and minimum Bayes risk decod-

ing were used to rerank the n-best list so that the best hypothesis

was chosen according to the COMET evaluation metric. According

to the automatic evaluation results, our systems rank first in both

translation directions.

2.1 Introduction

We describe Adam Mickiewicz University’s submissions to the con-

strained track of the WMT 2022 General MT Task. We participated in the

Ukrainian ↔ Czech translation directions – a low-resource translation

scenario between closely related languages.

The data provided by the shared task organizers was thoroughly cleaned

and filtered, as described in section 2.2.

The approach described in section 2.3 is based on combining various

MT enhancement methods, including transfer learning from a high-

resource language pair (Aji et al., 2020; Zoph et al., 2016), noisy back-

translation (Edunov et al., 2018), NER-assisted translation (Modrzejewski

et al., 2020), document-level translation, model ensembling, quality-aware

decoding (Fernandes et al., 2022), and on-the-fly domain adaptation (Fara-

jian et al., 2017).

The results leading to the final submissions are presented in section 2.4.

Additionally, we performed a statistical significance test with paired

bootstrap resampling (Koehn, 2004), comparing the baseline solution

with the final submission on the test set reference translations released

by the shared task organizers. According to the automatic evaluation

results based on COMET (Rei et al., 2020) scores, our systems rank first

in both translation directions.
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Table 2.1: Statistics of the total available corpora and the corpora used for system training after filtering.

Data type Sentences Corpora

Monolingual cs

available 448,528,116 News crawl, Europarl v10, News Commentary, Common

Crawl, Extended Common Crawl, Leipzig Corporaused 59,999,553

Monolingual uk

available 70,526,415 News crawl, UberText Corpus, Leipzig Corpora, Legal

Ukrainianused 59,152,329

Parallel cs-uk

available 12,630,806

OPUS, WikiMatrix, ELRC – EU acts in Ukrainian

used 8,623,440

2.2 Data

In the initial stage of system preparation, the sentence-level data was

cleaned and filtered using the OpusFilter (Aulamo et al., 2020) toolkit.

With the use of the toolkit, language detection filtering based on fast-

Text (Joulin et al., 2016) was performed, duplicates were removed, and

heuristics based on sentence length were applied. In particular, we re-

moved sentence pairs with a length ratio over 3 and long sentences

(> 200 words). Then, using Moses (Koehn et al., 2007) pre-processing

scripts, punctuation was normalized and non-printing characters re-

moved. Finally, the text was tokenized into subword units using Senten-

cePiece (Kudo & Richardson, 2018) with the unigram language model

algorithm (Kudo, 2018). For Ukrainian→Czech and Czech→Ukrainian

models trained from scratch, we used separate vocabularies for the source

and the target language. Each vocabulary consisted of 32,000 units.

We used concatenated data from the Flores-101 (Goyal et al., 2022)

benchmark (flores101-dev, flores101-devtest) for our development set, as

provided by the task organizers.

Table 3.2 shows statistics for the total available corpora in the constrained

track and the corpora used for system training after filtering.

2.3 Approach

We used the Marian (Junczys-Dowmunt et al., 2018) toolkit for all of our ex-

periments. Our model architecture follows the Transformer (big) (Vaswani

et al., 2017) settings. For all model training, we used 4x NVIDIA A100

80GB GPUs.

2.3.1 Transfer Learning

For our initial experiments, we used transfer learning (Aji et al., 2020;

Zoph et al., 2016) from the high-resource Czech→English language pair.

We used only the parallel data provided by the organizers to train the

model in this direction. In this case, we created a single joint vocabulary

for three languages (Czech, English, Ukrainian), consisting of 32,000 units.

The Czech→English model was fine-tuned for the Ukrainian→Czech and

Czech→Ukrainian language directions. Our later experiments showed

that there were no gains in translation quality compared with models

trained from scratch using separate vocabularies for source and target
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languages – the upside was that the models took less time to converge

during training.

2.3.2 Noisy Back-Translation

We used models created by the transfer learning approach to produce

synthetic training data through noisy back-translation (Edunov et al.,

2018). Specifically, we applied Gumbel noise to the output layer and

sampled from the full model distribution. We used monolingual data

available in the constrained track, which included all ~59M Ukrainian

sentences after filtering and ~60M randomly selected Czech sentences.

After training the model with concatenated parallel and back-translated

corpora, we replaced the training data with filtered parallel data and

further fine-tuned the model. We kept the same settings as in the first

training pass, training the model until it converged on the development

set.

2.3.3 NER-Assisted Translation

Translation in domains such as news, social or conversational texts,

and e-commerce is a specialized task, involving such challenges as

localization, product names, and mentions of people or events in the

content of documents. In such a case, it proved helpful to use off-the-shelf

solutions for recognizing named entities. For Czech, the Slavic BERT

model (Arkhipov et al., 2019) was used, with which entities such as

persons (PER), locations (LOC), organizations (ORG), products (PRO),

and events (EVT) were tagged. Due to the lack of support for the Ukrainian

language in the Slavic BERT model, the Stanza Named Entity Recognition

module (Qi et al., 2020) was used to detect entities in the Ukrainian

text, recognizing persons (PER), locations (LOC), organizations (ORG),

and miscellaneous items (MISC). With these ready-made solutions, the

parallel and back-translated corpora were tagged. The named entity

categories were then numbered to assign appropriate source factors to

words in the text, supporting the translation process. The source factors

were later transferred to subwords in a trivial way.

Source factors (Sennrich & Haddow, 2016) have previously been used to

take into account various characteristics of words during the translation

process. For example, morphological information, part-of-speech tags,

and syntactic dependencies have been added as input to neural machine

translation systems to improve the translation quality.

In the same way, it is possible to add information about named entities

found in the text (Modrzejewski et al., 2020), making it easier for the

model to translate them correctly. However, the AMU machine translation

system does not distinguish between inside-outside-beginning (IOB)

tags (Ramshaw & Marcus, 1995), treating the named entity tag names as

a whole. Specifically, we introduce the following source factors:

▶ p0: source factor denoting a normal token,

▶ p1: source factor denoting the PER category,

▶ p2: source factor denoting the LOC category,

▶ p3: source factor denoting the ORG category,
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▶ p4: source factor denoting the MISC category,

▶ p5: source factor denoting the PRO category,

▶ p6: source factor denoting the EVT category.

An example of a tagged sentence is shown in Figure 2.1.

Models were trained in two settings: concatenation and sum. In the first

setting, the factor embedding had a size of 16 and was concatenated with

the token embedding. In the second setting, the factor embedding was

equal to the size of the token embedding (1024) and was summed with

it.

As shown in Table 2.4, we observe an increase in the string-based

evaluation metrics (chrF and BLEU) while COMET scores remain about

the same. This is in accordance with Amrhein and Sennrich (2022), who

show that COMET models are not sufficiently sensitive to discrepancies

in named entities.

Table 2.2 presents the numbers of recognized named entity categories in

the training, development and test data.

Hlavní|p0 inspektor|p0 organizace|p0 RSPCA|p3 pro|p0 Nový|p2 Jižní|p2 Wales|p2
David|p1 O’Shannessy|p1 televizi|p0 ABC|p5 sdělil|p0 ,|p0 že|p0 dohled|p0 nad|p0
jatky|p0 a|p0 jejich|p0 kontroly|p0 by|p0 měly|p0 být|p0 v|p0 Austrálii|p2
samozřejmostí|p0 .|p0

_Hlavní|p0 _inspektor|p0 _organizace|p0 _R|p3 SP|p3 CA|p3 _pro|p0 _Nový|p2 _Jižní|p2
_Wales|p2 _David|p1 _O|p1 ’|p1 S|p1 han|p1 ness|p1 y|p1 _televizi|p0 _A|p5 BC|p5
_sdělil|p0 ,|p0 _že|p0 _dohled|p0 _nad|p0 _ja|p0 tky|p0 _a|p0 _jejich|p0 _kontroly|p0
_by|p0 _měly|p0 _být|p0 _v|p0 _Austrálii|p2 _samozřejmost|p0 í|p0 .|p0

Figure 2.1: An example of a sentence tagged with NER source factors before and after subword encoding.

Table 2.2: The number of recognized named entity categories in the training, development and test data. The training data statistics are

split into train-bt, which was created by noisy back-translation, and train-parallel, which is the filtered parallel training data.

cs uk
Category train-bt train-parallel dev test train-bt train-parallel dev test
PER 33,633,602 1,545,658 747 306 30,778,893 1,623,370 827 478

LOC 24,552,404 1,954,319 1,191 454 18,178,736 1,912,604 1,197 771

ORG 29,380,436 1,997,685 566 314 24,117,485 2,221,371 544 606

MISC - - - - 4,140,394 893,867 168 76

PRO 5,452,326 1,104,860 172 59 - - - -

EVT 1,150,301 111,563 83 10 - - - -

2.3.4 Document-Level Translation

Our work on document-level translation is based on a simple data

concatenation method, similar to Junczys-Dowmunt (2019) and Scherrer

et al. (2019).

As our training data, we use parallel document-level datasets (GNOME,

KDE4, TED2020, QED), as well as synthetically created data, concatenat-

ing random sentences to match the desired input length. Specifically, we

merge datasets created in the following ways as a single, large dataset:

▶ Curr → Curr: sentence-level parallel data,
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▶ Prev + Curr → Prev + Curr: previous sentence given as a context,

▶ 50T → 50T: a fixed window of 50 tokens after subword encoding,

▶ 100T → 100T: a fixed window of 100 tokens after subword encoding,

▶ 250T→ 250T: a fixed window of 250 tokens after subword encoding,

▶ 500T→ 500T: a fixed window of 500 tokens after subword encoding.

By concatenating such datasets, we allow the model to gradually learn

how to translate longer input sequences. It is also capable of sentence-

level translation. To separate sentences from each other, we introduced a

<SEP> tag. An example of a document-level input sequence is shown in

Figure 2.2. All data used to train the document-level model were tagged

with NER source factors, including the back-translated data.

Netvrdím, že bakteriální celulóza jednou nahradí bavlnu, kůži, nebo jiné látky.
<SEP> Ale myslím, že by to mohl být chytrý a udržitelný přírůstek k našim stále
vzácnějším přírodním zdrojům. <SEP> Možná že se nakonec tyto bakterie neuplatní
v módě, ale jinde. <SEP> Zkuste si třeba představit, že si vypěstujeme lampu,
židli, auto, nebo třeba dům. <SEP> Má otázka tedy zní: Co byste si v budoucnu
nejraději vypěstovali vy?

Figure 2.2: An example document consisting of five sentences separated with <SEP> tags.

2.3.5 Weighted Ensemble

We created a weighted ensemble of four best-performing models. It

consisted of the following model types:

▶ (A) sentence-level models trained with NER source factors (concat

16),

▶ (B) sentence-level model trained with NER source factors (sum),

▶ (C) document-level model trained with NER source factors (concat

16).

In this case, the document-level model was used only for the sentence-

level translation. The optimal weights for each model were selected

using a grid search method. For the specific language pairs, we used the

following model and weight combinations:

▶ Czech → Ukrainian: 1.0 · (2×A) + 0.8 · (B) + 0.6 · (C),

▶ Ukrainian → Czech: 1.0 · (2×A) + 0.8 · (B) + 0.4 · (C).

2.3.6 Quality-Aware Decoding

Having the final model ensemble, we created an n-best list containing 200

translations for each sentence with beam search. Then we merged it with

a second n-best list containing 50 translations for each sentence, created

by a single document-level model with document-level decoding. The

idea behind it was that the hypotheses produced by the document-level

decoding take into account the context of surrounding sentences, which

is not the case with the ensemble. This enabled the use of quality-aware

decoding (Fernandes et al., 2022).

We applied a two-stage quality-aware decoding mechanism: pruning

hypotheses using a tuned reranker (T-RR) and minimum Bayes risk

(MBR) decoding (Kumar & Byrne, 2002, 2004), as shown in Figure 2.3.
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Figure 2.3: A two-stage (T-RR → MBR)

quality-aware decoding process. 200 hy-

potheses generated by the ensemble are

merged with 50 hypotheses generated

by the document-level model. A tuned

reranker is used to prune the total num-

ber of hypotheses to 50, and these are

then used as input for minimum Bayes

risk decoding.

First, we tuned a reranker on the development set, using as features NMT

model scores, as well as existing QE models based on TransQuest (Ranas-

inghe et al., 2020) and COMET (Rei et al., 2020), which are based on

Direct Assessment (DA) (Graham et al., 2013) scores or MQM (Lommel

et al., 2014) scores. Specifically, we used:

▶ model ensemble log-likelihood log 𝑝𝜃(𝑦 |𝑥) scores,

▶ TransQuest QE model trained on DA scores (monotransquest-da-

multilingual),

▶ COMET QE model trained on MQM scores (wmt21-comet-qe-mqm),

▶ COMET QE model trained on DA scores (wmt21-comet-qe-da).

We tuned the feature weights to maximize the COMET reference-based

evaluation metric value using MERT (Och, 2003).

After tuning the reranker, we used it to prune the n-best list from 250

to 50 hypotheses per input sentence. The resulting n-best list was used

for minimum Bayes risk decoding, using the COMET reference-based

metric as the utility function. Minimum Bayes risk decoding seeks, from

the set of hypotheses, the hypothesis with the highest expected utility.

𝑦̂mbr = arg max

𝑦∈Ȳ
𝔼𝑌∼𝑝𝜃(𝑦 |𝑥)[𝑢(𝑌, 𝑦)]︸                 ︷︷                 ︸
≈ 1

𝑀

∑𝑀
𝑗=1
𝑢(𝑦(𝑗) , 𝑦)

(2.1)

Equation 2.1 shows that the expectation can be approximated as a Monte

Carlo sum using model samples 𝑦(1) , . . . , 𝑦(𝑀) ∼ 𝑝𝜃(𝑦 |𝑥). In practice, the

translation with the highest expected utility can be chosen by comparing

each hypothesis 𝑦 ∈ Ȳwith all other hypotheses in the set.

The described two-stage quality-aware decoding process allowed us to

further optimize our system for the COMET evaluation metric, which has

been shown to have a high correlation with human judgements (Kocmi

et al., 2021).

2.3.7 Post-Processing

The final step involved post-processing. We applied the following post-

processing steps for each best obtained translation:

▶ transfer of emojis from the source to the translation using word

alignment based on SimAlign (Jalili Sabet et al., 2020),

▶ restoration of quotation marks appropriate for a given language,
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1: COMET scores were computed with

the wmt20-comet-da model.

2: BLEU signature:

nrefs:1|case:mixed|eff:no|tok:13a

|smooth:exp|version:2.0.0

3: chrF signature:

nrefs:1|case:mixed|eff:yes|nc:6|nw:0

|space:no|version:2.0.0

▶ restoration of capitalization (e.g. if the source sentence was fully

uppercased),

▶ restoration of punctuation, exclamation and question marks (if a

source sentence ends with such a mark, we make the translation

do likewise),

▶ replacement of three consecutive dots with an ellipsis,

▶ restoration of bullet points and enumeration (e.g. if the source

sentence starts with a number or a bullet point),

▶ deletion of consecutively repeated words.

Approach Sim. score COMET chrF
Baseline - 0.8322 0.5263

Default 0.4 0.8316 0.5260

Best-334 0.19 0.8322 0.5259

Best-133 0.25 0.8323 0.5262

Table 2.3: Results of the on-the-fly adap-

tation method on the development set.

The default approach is based on Fara-

jian et al. (2017). However, only 11 sen-

tence pairs were found in this scenario.

The experiments denoted as best-334 and

best-133 used the learning rate values of

0.002 and 10 epochs. In our development

set containing 2009 sentence pairs, 334

matching sentences were found in best-
334 and 133 in best-133.

2.3.8 On-The-Fly Domain Adaptation

The General MT Task tests the MT system’s performance on multiple

domains. Therefore, we investigated the possibility of improving our

translation system with the on-the-fly domain adaptation method.

This experiment was based on Farajian et al. (2017). Our idea was to

retrieve similar sentences from the training data for each input sentence

and to fine-tune the model on their translations. After the translation of a

single sentence is complete, the model is reset to the original parameters.

We used Apache Lucene (McCandless et al., 2010) as our translation

memory to search for similar sentences. We indexed all of the training

data and used the Marian dynamic adaptation feature. We compared

the translation quality with and without the retrieved context. The

experiments were carried out with a different similarity score used to

choose similar sentence pairs for the fine-tuning process. We empirically

modified the learning rate and the number of epochs to find optimal

values that improved the translation quality.

Table 2.3 shows the results of the aforementioned experiments on the

full development set. We found that only a small number of sentences in

the training data were similar to those present in the development set.

The results showed that tuning the model on similar sentences from the

training data did not significantly improve translation quality. In the end,

we decided not to use this method in our WMT 2022 submission.

2.4 Results

The results of our experiments are presented in Table 2.4. We evaluated

our models with the COMET
1

(Rei et al., 2020), chrF (Popović, 2015) and

BLEU (Papineni et al., 2002) automatic evaluation metrics. ChrF and

BLEU scores were computed with the sacreBLEU
23

(Post, 2018) tool. We

also include scores for the document-level model. In this case, the scores
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include improvements added by back-translation, NER source factors

and fine-tuning. The document-level evaluation was split into sentence-

level decoding and document-level decoding. In the first scenario, the

model translates a single sentence at a time, which is not different from

a sentence-level model. In the second scenario, the model translates

concatenated chunks of at most 250 subword tokens at a time.

We found that the largest gain in the COMET value was achieved due

to the quality-aware decoding method, at the cost of BLEU value. The

chrF value remained the same in the Ukrainian→Czech translation

direction, while it increased slightly in the Czech→Ukrainian direction.

As discussed in section 2.3.3, the inclusion of NER source factors helped

the model with the translation of named entities, which is not well

reflected in the COMET value, as this metric is not sufficiently sensitive

to discrepancies in named entities (Amrhein & Sennrich, 2022).

Table 2.5 shows results for our final submissions compared with the

baseline. We performed a statistical significance test with paired bootstrap

resampling (Koehn, 2004), running 1000 resampling trials to confirm that

our submissions are statistically significant (p < 0.05).

Table 2.4: Results of COMET, chrF and BLEU automatic evaluation metrics on the concatenated datasets flores101-dev and flores-101-

devtest. ChrF and BLEU metrics were computed with sacreBLEU. Document-level model evaluation includes added back-translation,

NER source factors (concat 16) and fine-tuning.

System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8622 0.5229 24.29 0.7818 0.5175 22.64

+back-translation 0.9053 0.5309 25.41 0.8356 0.5280 23.14

+ner

concat 16 0.9003 0.5314 25.62 0.8362 0.5309 24.28

sum 0.8991 0.5323 25.87 0.8421 0.5302 23.91

+fine-tune

concat 16 0.9021 0.5344 25.94 0.8387 0.5330 24.51

sum 0.8990 0.5357 25.99 0.8456 0.5321 24.24

+ensemble 0.9066 0.5376 26.36 0.8522 0.5373 24.85
+quality-aware 0.9874 0.5376 25.42 0.9238 0.5384 24.50

+post-processing 0.9883 0.5392 25.89 0.9240 0.5388 24.63

Document-level

sent-level dec. 0.8942 0.5326 25.47 0.8350 0.5289 23.92

doc-level dec. 0.8920 0.5324 25.44 0.8356 0.5297 23.78

Table 2.5: Results of COMET, chrF and BLEU automatic evaluation metrics on the test set. ChrF and BLEU metrics were computed with

sacreBLEU. The final submission results are statistically significant (p < 0.05).

System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8315 0.5627 31.79 0.8008 0.5849 31.43

Final submission 1.0488 0.6066 37.03 0.9944 0.6153 34.74

2.5 Conclusions

We describe Adam Mickiewicz University’s (AMU) submissions to the

WMT 2022 General MT Task in the Ukrainian ↔ Czech translation

directions. Our experiments cover a range of MT enhancement methods,

including transfer learning, back-translation, NER-assisted translation,

document-level translation, weighted ensembling, quality-aware decod-

ing, and on-the-fly domain adaptation. We found that using a combination
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of these methods on the test set leads to a +0.22 (26.13%) increase in

COMET scores in the Ukrainian→Czech translation direction and a +0.19

(24.18%) increase in the Czech→Ukrainian direction, compared with the

baseline model. According to the COMET automatic evaluation results,

our systems rank first in both translation directions.
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Abstract

This paper describes Adam Mickiewicz University’s (AMU) solu-

tion for the 4th Shared Task on SlavNER. The task involves the

identification, categorization, and lemmatization of named entities

in Slavic languages. Our approach involved exploring the use of

foundation models for these tasks. In particular, we used models

based on the popular BERT and T5 model architectures. Addi-

tionally, we used external datasets to further improve the quality

of our models. Our solution obtained promising results, achiev-

ing high metrics scores in both tasks. We describe our approach

and the results of our experiments in detail, showing that the

method is effective for NER and lemmatization in Slavic languages.

Additionally, our models for lemmatization will be available at:

https://huggingface.co/amu-cai.

3.1 Introduction

Named entity recognition and lemmatization are important tasks in

natural language processing. Fine-tuning pre-trained neural language

models has become a popular approach to achieve the best results in these

tasks. However, the performance of this method can vary across languages

and language families. In this paper, we investigate the performance of

fine-tuned, language-specific neural language models in named entity

recognition and lemmatization in a set of Slavic languages and compare

them with multilingual solutions.

We describe Adam Mickiewicz University’s (AMU) solution for the 4th

Shared Task on SlavNER, which is a part of The 9th Workshop on Slavic

Natural Language Processing (Slavic NLP 2023). Our solution is based on

foundation models (Bommasani et al., 2021). In particular, we used models

based on the popular BERT and T5 model architectures. To increase the

effectiveness of our approach, we conducted experiments with different

versions of monolingual and multilingual models, investigating the

potential benefits of each model variant for specific tasks. The data

provided by the organizers and external resources used for named

entity recognition and lemmatization were processed and prepared as

described in section 3.2. Specific details regarding the approach are

further discussed in section 3.3.

In order to evaluate the effectiveness of our method, we performed several

experiments on the previous Shared Task edition test set. This particular

set was chosen because it is a well-known benchmark for named entity

recognition and lemmatization in Slavic languages. The results of our

experiments are described in section 3.4.

https://huggingface.co/amu-cai
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3.2 Data

This section provides a brief description of the datasets used in our

solution. In addition to the data released by the organizers, we also used

external datasets for named entity recognition and lemmatization. All

training and validation samples containing named entities were converted

to a CoNLL-2003 dataset format (Tjong Kim Sang & De Meulder, 2003).

3.2.1 Shared Task Dataset

The 4th Shared Task on SlavNER focuses on recognition, lemmatization,

and cross-lingual linking of named entities in Polish, Czech and Russian

languages. The training and validation data provided by the organizers

come from the previous editions of the Shared Task and consist of

news articles related to a single entity or event such as Asia Bibi, Brexit,

Ryanair, Nord Stream, COVID-19 pandemic and USA 2020 Elections. The

documents contain annotations of the following named entities: person

(PER), location (LOC), organization (ORG), event (EVT) and product

(PRO) (Piskorski et al., 2021).

To obtain NER training and validation samples in the CoNLL-2003

format, we processed the data using the code provided by the Tilde

team (Vı̄ksna & Skadina, 2021)
*
.

3.2.2 External NER Datasets

One way to improve the performance of NER models is to use external

NER datasets to increase the volume of the training data. These datasets

contain pre-labeled documents that have been annotated with named

entities, and can be used to fine-tune existing models. This technique

allows the model to learn from the additional data, which can provide a

more comprehensive understanding of the context and complexities of

the named entities.

Collection3

The Collection3 dataset (Mozharova & Loukachevitch, 2016) is based on

Persons-1000, a publicly available Russian document collection consisting

of 1,000 news articles. Currently, the dataset contains 26,000 annotated

named entities (11,000 persons, 7,000 locations and 8,000 organizations).

MultiNERD

The MultiNERD dataset (Tedeschi & Navigli, 2022) covers 10 languages,

including Polish and Russian, and contains annotations of multiple NER

categories, from which we extracted categories present in the Shared Task.

The labels were obtained by processing the Wikipedia and Wikinews

articles. In addition, the sentences were tagged automatically, in a way

that can also be adapted to the Czech language.

*
https://github.com/tilde-nlp/BSNLP_2021

https://github.com/tilde-nlp/BSNLP_2021
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Polyglot-NER

A Polyglot-NER dataset (Al-Rfou et al., 2015) covers 40 languages, in-

cluding Polish, Czech and Russian. The annotations were automatically

generated from Wikipedia and Freebase. The obtained entity categories

are: person, location and organization.

WikiNEuRal

The WikiNEuRal dataset (Tedeschi et al., 2021) consists of named entities

in the following categories: person, location, organization and miscel-

laneous. Wikipedia was used as the source for the labels, which were

automatically obtained using a combination of knowledge-based ap-

proaches and neural models. The datasets cover 9 languages, including

Polish and Russian.

3.2.3 External Lemmatization Datasets

Lemmatization, the process of reducing a word or phrase to its base

form, is an essential component, especially for tasks such as information

retrieval and text mining. External lemmatization datasets can improve

the quality of lemmatization models by providing additional training

samples that contain more inflectional variants of phrases. Such data

consists of inflected words, collocations or phrases with corresponding

lemmatized forms.

SEJF

SEJF (Czerepowicka & Savary, 2018) is a linguistic resource consisting

of a grammatical lexicon of Polish multi-word expressions. It contains

two modules: an intensional module, which consists of 4,700 multiword

lemmas assigned to 100 inflection graphs, and an extensional module,

which contains 88,000 automatically generated inflected forms annotated

with grammatical tags.

SEJFEK

SEJFEK (Savary et al., 2012) refers to a lexical and grammatical resource

related to Polish economic terms. It contains a grammatical lexicon

module with over 11,000 terminological multi-word units and a fully

lexicalized shallow grammar with over 146,000 inflected forms, which

was produced by an automatic conversion of the lexicon.

PolEval 2019: Task 2

PolEval 2019: Task 2 (Marcińczuk & Bernaś, 2019) is a part of a workshop

focusing on natural language processing in the Polish language. The

main goal of this task was to lemmatize proper names and multi-word

phrases. The train set consists of over 24,000 annotated and lemmatized
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phrases. The validation set and the test set contain 200 and 1,997 phrases,

respectively.

Machine Translation of External Datasets

Due to the lack of external Czech and Russian datasets dedicated to

lemmatization tasks, we decided to use OPUS-MT (Tiedemann & Thottin-

gal, 2020), which is a resource containing open-source machine translation

models. We machine translated all the samples prepared from the three

aforementioned datasets.

3.3 Approach

We participated in the two subtasks of the Multilingual Named Entity

Recognition Task - Named Entity Mention Detection and Classification
and Named Entity Lemmatization. The solution involved fine-tuning the

foundation models using task-specific modifications and additional

training data. All models used in the experiments can be found on the

Hugging Face Hub
†
.

3.3.1 Named Entity Recognition

Recently, the BERT (Devlin et al., 2019) model architecture has been

adapted to address Slavic languages such as Polish, Czech and Russian,

among others. These languages present unique challenges because of their

complex grammatical structures, declensions and inflections, making

NLP tasks even more difficult. However, the application of BERT to

these languages has resulted in significant improvements in language

processing and understanding.

In our solution, we used several monolingual BERT models to better

handle the specific linguistic nuances of individual Slavic languages. In

particular, we employed of the following models: HerBERT (Mroczkowski

et al., 2021) for Polish, Czert (Sido et al., 2021) for Czech and RuBERT (Ku-

ratov & Arkhipov, 2019) for Russian. For comparison, we also used

multilingual BERT models that can handle multiple languages, including

Slavic BERT (Arkhipov et al., 2019) and XLM-RoBERTa (Conneau et al.,

2020).

In the experiments, we also added a Conditional Random Fields (CRF)

layer on the top of each BERT model. A similar approach of combining

CRF with neural networks has been used previously (Lample et al.,

2016), as the CRF layer can capture the dependencies between neighbor-

ing tokens and provide a smoother transition between different entity

types.

†
https://huggingface.co/models

https://huggingface.co/models


3.4 Results 41

3.3.2 Lemmatization

Models based on the T5 (Raffel et al., 2020) model architecture have

achieved state-of-the-art results in various natural language processing

challenges and can be fine-tuned for specific tasks. One of the applications

of T5 can be lemmatization, the process of reducing a word or phrase

to its basic form (lemma). In Slavic languages such as Polish, Czech and

Russian, lemmatization is particularly important due to the complex

inflection of these languages.

We approached the lemmatization task as a text-to-text problem. The

input to the model is an inflected phrase or named entity, which can

consist of several word forms. For example, it can consist of nouns in

singular or plural form, or verbs in different tenses. The output of the

model is the base, normalized form of the phrase or named entity.

To address the lack of dedicated models for Czech and Russian, we used

one monolingual and a multilingual T5 model. Specifically, we chose

plT5 (Chrabrowa et al., 2022) for Polish and mT5 (Xue et al., 2021) for

multilingual experiments. For comparison purposes, we also conducted

our experiments on the small, base and large sizes of the above models.

In the multilingual experiments, we included a language token (»pl«,

»cs«, »ru«) as the first token of the source phrases, depending on the

language of the phrase. Our preliminary experiments have shown that

incorporating the language token improves the results, increasing the

exact match by approximately 2 points in each language. We noticed that

the model sometimes tends to change the grammatical number from

plural to singular - possibly due to the fact that singular named entities

occur more often in the training data.

3.4 Results

3.4.1 Named Entity Recognition Results

Table 3.1: Results of case-sensitive F1 score for named entity recognition on the COVID-19 and USA 2020 Elections test sets from the 3rd

Shared Task on SlavNER. For each language in a given test set, the best score for the monolingual and multilingual solution is shown in

bold. In addition, the best score for each language in a given test set is underlined.

Model

original data + external datasets

COVID-19 USA 2020 Elections COVID-19 USA 2020 Elections

pl cs ru pl cs ru pl cs ru pl cs ru

HerBERTBASE 79.50 - - 89.27 - - 78.70 - - 84.63 - -

HerBERTBASE + CRF 80.11 - - 90.16 - - 80.86 - - 87.43 - -

HerBERTLARGE 81.18 - - 91.71 - - 81.29 - - 89.83 - -

HerBERTLARGE + CRF 81.75 - - 92.13 - - 82.33 - - 89.20 - -

Czert - 84.10 - - 88.82 - - 73.05 - - 84.06 -

Czert + CRF - 84.22 - - 90.29 - - 71.36 - - 83.70 -

RuBERT - - 62.06 - - 76.97 - - 58.51 - - 77.63

RuBERT + CRF - - 61.80 - - 77.69 - - 59.55 - - 76.72

Slavic-BERT 79.06 78.67 61.42 89.07 90.31 78.21 73.73 68.22 59.32 83.72 78.16 77.29

Slavic-BERT + CRF 78.15 80.68 63.08 89.97 90.13 78.72 77.76 69.12 58.08 86.76 80.51 77.05

XLM-RoBERTaBASE 79.53 77.89 62.12 88.30 89.51 77.56 76.92 68.46 60.45 83.25 80.89 77.21

XLM-RoBERTaBASE + CRF 81.10 78.80 65.94 88.48 90.88 77.58 79.45 73.42 58.86 87.02 84.20 76.87

XLM-RoBERTaLARGE 81.43 80.58 66.26 90.36 91.62 80.22 81.12 75.35 61.95 87.46 86.96 77.60

XLM-RoBERTaLARGE + CRF 81.81 81.20 64.95 89.37 91.53 79.93 80.72 75.01 61.80 86.78 87.66 77.73
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The results of our named entity recognition experiments are presented in

table 3.1. We evaluated our models with a case-sensitive F1 score, which

is a standard span-level metric calculated on the ConLL-2003 dataset

format. As test sets, we choose COVID-19 and USA 2020 Elections subsets

of the 3rd Shared Task on SlavNER.

We tested our solution in two approaches: monolingual and multilingual.

For Polish and Czech, we found that monolingual models perform

better for language-specific data. In the case of Russian, multilingual

models strongly outperform language-specific solutions. We assume that

this is due to the lack of sufficient data for this language. In addition,

multilingual models can learn common rules in Slavic languages to

overcome weaknesses related to insufficient data.

We also found that adding a CRF layer significantly improves the quality

of the models in most cases. However, including external datasets worsens

the results in almost all cases. We suspect that this is due to the specific

domain of the test sets, which are news articles. In addition, some

annotation errors can be found in all datasets presented in the 3.2.2

section.

3.4.2 Lemmatization Results

Table 3.2: Results of the case-insensitive exact match for lemmatization on the COVID-19 and USA 2020 Elections test sets from the 3rd

Shared Task on SlavNER. For each test set, the best score in a given language is shown in bold and underlined.

original data + PolEval 2019 + Lexicon

pl cs ru pl cs ru pl cs ru

COVID-19
Model Size
plT5 small 86.36 - - 91.15 - - 92.02 - -

base 89.99 - - 93.03 - - 80.70 - -

large 94.05 - - 94.78 - - 95.36 - -

mT5 small 74.46 73.75 70.17 86.80 80.98 73.83 81.13 75.45 71.84

base 87.66 85.44 76.96 91.00 86.29 76.10 90.42 83.32 75.30

large 90.57 88.84 79.09 93.76 89.80 77.30 93.03 89.27 77.16

USA 2020 Elections
Model Size
plT5 small 83.37 - - 87.47 - - 86.65 - -

base 85.22 - - 87.89 - - 76.80 - -

large 90.97 - - 90.76 - - 91.38 - -

mT5 small 71.46 70.03 72.18 78.85 75.86 76.18 74.54 69.76 68.92

base 83.98 80.37 80.51 84.19 81.97 80.27 85.63 78.78 78.25

large 88.71 88.33 82.86 89.12 87.27 82.50 89.94 86.74 81.76

The results of our lemmatization experiments are presented in the

table 3.2. We evaluated our models with a case-insensitive exact match

on the same test sets as for named entity recognition, but only on the

data specific to this task.

We tested our solution based on two models: a monolingual plT5 (only

for the Polish language), and a multilingual mT5 model. We observed

that the addition of each external dataset significantly improves the

quality of the Polish language-specific model. Moreover, the addition of

the data from PolEval 2019 also improves the results for the multilingual
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model. Unfortunately, the addition of data from the lexicon generated by

machine translation of the SEJF and SEJFEK datasets causes a decrease in

the model performance for the Czech and Russian languages. We assume

that this is due to the quality of the translation of the phrases into these

languages.

We also noticed that the quality of the lemmatization improves as the

size of the model increases in almost all cases. However, for Polish, the

small model trained on all available data is better than the base model.

Furthermore, it is only 3 points worse than the large model, so it can be

used efficiently considering the hardware limitations.

3.4.3 The 4th Shared Task on SlavNER Results

Table 3.3: Results of our systems on the released test set for named entity recognition and normalization (lemmatization). The scores are

computed as case-insensitive strict matching for recognition and case-insensitive F1 score for normalization. All scores were received

from the organizers.

Submission

Recognition Normalization
pl cs ru pl cs ru

System 1 83.33 88.08 84.30 80.27 76.62 79.32

System 2 85.37 89.70 86.16 82.37 76.89 81.27

System 3 83.40 85.19 82.77 80.32 73.06 81.47
System 4 83.33 81.70 79.20 80.27 71.11 76.84

The current edition of the shared task features news articles about the

Russian-Ukrainian war, and the test set includes raw texts in Polish,

Czech and Russian languages.

As a solution, we submitted four systems consisting of the following

fine-tuned models with an additional CRF layer for named entity recog-

nition:

▶ System 1: HerBERTLARGE for Polish trained on all available data,

Czert for Czech and RuBERT for Russian trained only on the data

provided by the organizers,

▶ System 2: XLM-RoBERTaLARGE for all languages trained only on

the data provided by the organizers,

▶ System 3: XLM-RoBERTaLARGE for all languages trained on all

available data,

▶ System 4: HerBERTLARGE for Polish, Czert for Czech and RuBERT

for Russian trained on all available data.

In all the systems mentioned above, we used the following lemmatization

models: plT5LARGE for Polish (trained on all available data) and mT5LARGE

for Czech and Russian (trained on the data provided by the organizers

and the data from PolEval 2019 Task 2).

The best solution for recognizing and categorizing named entities turned

out to be System 2, which also achieved the best results for normalization

(lemmatization). In addition, the normalization scores are highly depen-

dent on the NER results, since only recognized entities are normalized.
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3.5 Conclusions

We described the Adam Mickiewicz University’s (AMU) participation in

the 4th Shared Task on SlavNER for named entity recognition and lemma-

tization tasks. Our experiments encompassed various foundation models,

including monolingual and multilingual BERT and T5 models. We found

that incorporating a CRF layer enhanced the quality of our named entity

recognition models. Additionally, our results indicate that the use of T5

models for lemmatization yields high-quality lemmatization of named

entities. We will release the lemmatization models to the community and

make them available at: https://huggingface.co/amu-cai.
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Abstract
We address the challenging problem of Natural Language Com-

prehension beyond plain-text documents by introducing the TILT

neural network architecture which simultaneously learns layout

information, visual features, and textual semantics. Contrary to pre-

vious approaches, we rely on a decoder capable of unifying a variety

of problems involving natural language. The layout is represented

as an attention bias and complemented with contextualized visual

information, while the core of our model is a pretrained encoder-

decoder Transformer. Our novel approach achieves state-of-the-art

results in extracting information from documents and answering

questions which demand layout understanding (DocVQA, CORD,

SROIE). At the same time, we simplify the process by employing an

end-to-end model.

Keywords: Natural Language Processing · Transfer learning · Docu-

ment understanding · Layout analysis · Deep learning · Transformer.

4.1 Introduction

Most tasks in Natural Language Processing (NLP) can be unified under

one framework by casting them as triplets of the question, context, and

answer (Khashabi et al., 2020; Kumar et al., 2016; McCann et al., 2018). We

consider such unification of Document Classification, Key Information

Extraction, and Question Answering in a demanding scenario where

context extends beyond the text layer. This challenge is prevalent in

business cases since contracts, forms, applications, and invoices cover a

wide selection of document types and complex spatial layouts.

Importance of Spatio-Visual Relations.

The most remarkable successes achieved in NLP involved models that

map raw textual input into raw textual output, which usually were

provided in a digital form. An important aspect of real-world oriented

problems is the presence of scanned paper records and other analog

materials that became digital.

Consequently, there is no easily accessible information regarding the

document layout or reading order, and these are to be determined as part

of the process. Furthermore, interpretation of shapes and charts beyond

the layout may help answer the stated questions. A system cannot rely

solely on text but requires incorporating information from the structure

and image.

Thus, it takes three to solve this fundamental challenge — the extraction

of key information from richly formatted documents lies precisely at

the intersection of NLP, Computer Vision, and Layout Analysis (Fig-

ure 4.1). These challenges impose extra conditions beyond NLP that we
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Figure 4.1: The same document per-

ceived differently depending on modali-

ties. Respectively: its visual aspect, spa-

tial relationships between the bounding

boxes of detected words, and unstruc-

tured text returned by OCR under the

detected reading order.
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sidestep by formulating layout-aware models within an encoder-decoder

framework.

Limitations of Sequence Labeling.

Sequence labeling models can be trained in all cases where the token-

level annotation is available or can be easily obtained. Limitations of this

approach are strikingly visible on tasks framed in either key information

extraction or property extraction paradigms (Dwojak et al., 2020; Huang

et al., 2019). Here, no annotated spans are available, and only property-

value pairs are assigned to the document. Occasionally, it is expected

from the model to mark some particular subsequence of the document.

However, problems where the expected value is not a substring of the

considered text are unsolvable assuming sequence labeling methods.
*

As a result, authors applying state-of-the-art entity recognition models

were forced to rely on human-made heuristics and time-consuming rule

engineering.

Take, for example, the total amount assigned to a receipt in the SROIE

dataset (Huang et al., 2019). Suppose there is no exact match for the

expected value in the document, e.g., due to an OCR error, incorrect

reading order or the use of a different decimal separator. Unfortunately,

a sequence labeling model cannot be applied off-the-shelf. Authors

dealing with property extraction rely on either manual annotation or

the heuristic-based tagging procedure that impacts the overall end-to-

end results (Garncarek et al., 2021; Hong et al., 2021; Liu et al., 2019;

Stanisławek et al., 2021; Xu, Xu, et al., 2020; Xu, Li, et al., 2020). Moreover,

when receipts with one item listed are considered, the total amount is

equal to a single item price, which is the source of yet another problem.

Precisely, if there are multiple matches for the value in the document, it

is ambiguous whether to tag all of them, part or none.

Another problem one has to solve is which and how many of the de-

tected entities to return, and whether to normalize the output somehow.

Consequently, the authors of Kleister proposed a set of handcrafted rules

for the final selection of the entity values (Stanisławek et al., 2021). These

and similar rules are either labor-intensive or prone to errors (Palm et al.,

2017).

Finally, the property extraction paradigm does not assume the requested

value appeared in the article in any form since it is sufficient for it to be

inferable from the content, as in document classification or non-extractive

question answering (Dwojak et al., 2020).

*
Expected values have always an exact match in CoNLL, but not elsewhere, e.g., it is the

case for 20% WikiReading, 27% Kleister, and 93% of SROIE values.
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Resorting to Encoder-Decoder Models.

Since sequence labeling-based extraction is disconnected from the final

purpose the detected information is used for, a typical real-world scenario

demands the setting of Key Information Extraction.

To address this issue, we focus on the applicability of the encoder-

decoder architecture since it can generate values not included in the

input text explicitly (Hewlett et al., 2016) and performs reasonably well

on all text-based problems involving natural language (Raffel et al.,

2020). Additionally, it eliminates the limitation prevalent in sequence

labeling, where the model output is restricted by the detected word order,

previously addressed by complex architectural changes (Section 4.2).

Furthermore, this approach potentially solves all identified problems of

sequence labeling architectures and ties various tasks, such as Question

Answering or Text Classification, into the same framework. For example,

the model may deduce to answer yes or no depending on the question

form only. Its end-to-end elegance and ease of use allows one to not

rely on human-made heuristics and to get rid of time-consuming rule

engineering required in the sequence labeling paradigm.

Obviously, employing a decoder instead of a classification head comes

with some known drawbacks related to the autoregressive nature of

answer generation. This is currently investigated, e.g., in the Neural

Machine Translation context, and can be alleviated by methods such as

lowering the depth of the decoder (Kasai et al., 2020; Ren et al., 2020).

However, the datasets we consider have target sequences of low length;

thus, the mentioned decoding overhead is mitigated.

The specific contribution of this work can be better understood in the

context of related works (Figure 4.2).

4.2 Related Works

We aim to bridge several fields, with each of them having long-lasting

research programs; thus, there is a large and varied body of related

works. We restrict ourselves to approaches rooted in the architecture of

Transformer (Vaswani et al., 2017) and focus on the inclusion of spatial

information or different modalities in text-processing systems, as well as

on the applicability of encoder-decoder models to Information Extraction

and Question Answering.

Encoder
-decoder

Spatial

Multi-modal

LayoutLM

Our work

LAMBERT

BERTgrid

T5

BART

VisualBERT VL-BERT Figure 4.2: Our work in relation to

encoder-decoder models, multi-modal

transformers, and models for text that

are able to comprehend spatial relation-

ships between words.
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Spatial-aware Transformers.

Several authors have shown that, when tasks involving 2D documents are

considered, sequential models can be outperformed by considering layout

information either directly as positional embeddings (Garncarek et al.,

2021; Ho et al., 2019; Xu, Li, et al., 2020) or indirectly by allowing them to

be contextualized on their spatial neighborhood (Denk & Reisswig, 2019;

Herzig et al., 2020; Yin et al., 2020). Further improvements focused on the

training and inference aspects by the inclusion of the area masking loss

function or achieving independence from sequential order in decoding

respectively (Hong et al., 2021; Hwang et al., 2020). In contrast to the

mentioned methods, we rely on a bias added to self-attention instead of

positional embeddings and propose its generalization to distances on

the 2D plane. Additionally, we introduce a novel word-centric masking

method concerning both images and text. Moreover, by resorting to an

encoder-decoder, the independence from sequential order in decoding is

granted without dedicated architectural changes.

Encoder-decoder for IE and QA.

Most NLP tasks can be unified under one framework by casting them as

Language Modeling, Sequence Labeling or Question Answering (Keskar

et al., 2019; Radford et al., 2019). The QA program of unifying NLP frames

all the problems as triplets of question, context and answer (Khashabi

et al., 2020; Kumar et al., 2016; McCann et al., 2018) or item, property

name and answer (Hewlett et al., 2016). Although this does not necessarily

lead to the use of encoder-decoder models, several successful solutions

relied on variants of Transformer architecture (Dwojak et al., 2020; Lewis

et al., 2020; Raffel et al., 2020; Vaswani et al., 2017). The T5 is a prominent

example of large-scale Transformers achieving state-of-the-art results on

varied NLP benchmarks (Raffel et al., 2020). We extend this approach

beyond the text-to-text scenario by making it possible to consume a

multimodal input.

Multimodal Transformers.

The relationships between text and other media have been previously

studied in Visual Commonsense Reasoning, Video-Grounded Dialogue,

Speech, and Visual Question Answering (Chuang et al., 2020; Han et al.,

2021; Le et al., 2019). In the context of images, this niche was previously

approached with an image-to-text cross-attention mechanism, alterna-

tively, by adding visual features to word embeddings or concatenating

them (Lee et al., 2018; Li et al., 2019; Ma et al., 2019; Su et al., 2020; Xu, Li,

et al., 2020). We differ from the mentioned approaches, as in our model,

visual features added to word embeddings are already contextualized

on an image’s multiple resolution levels (see Section 4.3).

4.3 Model Architecture

Our starting point is the architecture of the Transformer, initially proposed

for Neural Machine Translation, which has proven to be a solid baseline
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for all generative tasks involving natural language (Vaswani et al., 2017).

Let us begin from the general view on attention in the first layer of the

Transformer. If 𝑛 denotes the number of input tokens, resulting in a

matrix of embeddings 𝑋, then self-attention can be seen as:

softmax

(
𝑄𝑋𝐾

⊤
𝑋√

𝑛
+ 𝐵

)
𝑉𝑋 (4.1)

where 𝑄𝑋 , 𝐾𝑋 and 𝑉𝑋 are projections of 𝑋 onto query, keys, and value

spaces, whereas 𝐵 stands for an optional attention bias. There is no 𝐵

term in the original Transformer, and information about the order of

tokens is provided explicitly to the model, that is:

𝑋 = 𝑆 + 𝑃 𝐵 = 0𝑛×𝑑

where 𝑆 and 𝑃 are respectively the semantic embeddings of tokens and

positional embedding resulting from their positions (Vaswani et al., 2017).

0𝑛×𝑑 denote a zero matrix.

In contrast to the original formulation, we rely on relative attention biases

instead of positional embeddings. These are further extended to take

into account spatial relationships between tokens (Figure 4.3).

Spatial Bias.

Authors of the T5 architecture disregarded positional embeddings (Raffel

et al., 2020), by setting 𝑋 = 𝑆. They used relative bias by extending self-

attention’s equation with the sequential bias term 𝐵 = 𝐵1D
, a simplified

form of positional signal inclusion. Here, each logit used for computing

the attention head weights has some learned scalar added, resulting from

corresponding token-to-token offsets.

We extended this approach to spatial dimensions. In our approach, biases

for relative horizontal and vertical distances between each pair of tokens

are calculated and added to the original sequential bias, i.e.:

𝐵 = 𝐵1D + 𝐵H + 𝐵V

(A) Vanilla Transformer (B) T5 Architecture

KQ V

(C) Our model

Pairwise
1+2D
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Semantics Contextualized
Vision

×

×+

+

Sequential
word index

KQ V

Semantics

×

×

+

KQ V

Pairwise
sequential
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Semantics

×

×+

Figure 4.3: T5 introduces sequential bias,

separating semantics from sequential dis-

tances. We maintain this clear distinction,

extending biases with spatial relation-

ships and providing additional image se-
mantics at the input.
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Figure 4.4: Document excerpt with distin-

guished vertical buckets for the Amount
token.

Amount: 100.00

2020 

 

relative
distance

Such bias falls into one of 32 buckets, which group similarly-distanced

token-pairs. The size of the buckets grows logarithmically so that greater

token pair distances are grouped into larger buckets (Figure 4.4).

Contextualized Image Embeddings.

Contextualized Word Embeddings are expected to capture context-

dependent semantics and return a sequence of vectors associated with

an entire input sequence (Ethayarajh, 2019). We designed Contextualized

Image Embeddings with the same objective, i.e., they cover the image

region semantics in the context of its entire visual neighborhood.

To produce image embeddings, we use a convolutional network that

consumes the whole page image of size 512×384 and produces a feature

map of 64×48×128. We rely on U-Net as a backbone visual encoder

network (Ronneberger et al., 2015) since this architecture provides access

to not only the information in the near neighborhood of the token, such

as font and style but also to more distant regions of the page, which is

useful in cases where the text is related to other structures, i.e., is the

description of a picture. This multi-scale property emerges from the skip

connections within chosen architecture (Figure 4.5). Then, each token’s

bounding box is used to extract features from U-Net’s feature map with

ROI pooling (Dai et al., 2016). The obtained vector is then fed into a linear

layer which projects it to the model embedding dimension.

In order to inject visual information to the Transformer, a matrix of contex-

tualized image-region embeddings𝑈 is added to semantic embeddings,

i.e. we define

𝑋 = 𝑆 +𝑈

in line with the convention from Section 4.3 (see Figure 4.3).

Figure 4.5: Truncated U-Net network.

■ conv ■max-pool ■ up-conv

■ residual
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4.4 Regularization Techniques

In the sequence labeling scenario, each document leads to multiple train-

ing instances (token classification), whereas in Transformer sequence-to-

sequence models, the same document results in one training instance with

feature space of higher dimension (decoding from multiple tokens).

Since most of the tokens are irrelevant in the case of Key Information

Extraction and contextualized word embeddings are correlated by de-

sign, one can suspect our approach to overfit easier than its sequence

labeling counterparts. To improve the model’s robustness, we introduced

a regularization technique for each modality.

Case Augmentation.

Subword tokenization (Kudo, 2018; Sennrich et al., 2016) was proposed

to solve the word sparsity problem and keep the vocabulary at a rea-

sonable size. Although the algorithm proved its efficiency in many NLP

fields, the recent work showed that it performs poorly in the case of

an unusual casing of text (Powalski & Stanislawek, 2020), for instance,

when all words are uppercased. The problem occurs more frequently in

formated documents (FUNSD, CORD, DocVQA), where the casing is

an important visual aspect. We overcome both problems with a straight-

forward regularization strategy, i.e., produce augmented copies of data

instances by lower-casing or upper-casing both the document and target

text simultaneously.

Spatial Bias Augmentation.

Analogously to Computer Vision practices of randomly transforming

training images, we augment spatial biases by multiplying the horizontal

and vertical distances between tokens by a random factor. Such transfor-

mation resembles stretching or squeezing document pages in horizontal

and vertical dimensions. Factors used for scaling each dimension were

sampled uniformly from range [0.8, 1.25].

Affine Vision Augmentation.

To account for visual deformations of real-world documents, we augment

images with affine transformation, preserving parallel lines within an

image but modifying its position, angle, size, and shear. When we

perform such modification to the image, the bounding box of every

token is updated accordingly. The exact hyperparameters were subject to

an optimization. We use 0.9 probability of augmenting and report the

following boundaries for uniform sampling work best: [−5, 5] degrees for

rotation angle, [−5%, 5%] for translation amplitude, [0.9, 1.1] for scaling

multiplier, [−5, 5] degrees for the shearing angle.
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Table 4.1: Comparison of datasets considered for supervised pretraining and evaluation process. Statistics given in thousands of

documents or questions.

Dataset Data type Image Docs (k) Questions (k)

CORD (Park et al., 2019) receipts + 1.0 —

SROIE (Huang et al., 2019) receipts + 0.9 —

DocVQA (Mathew et al., 2021) industry documents + 12.7 50.0

RVL-CDIP (Harley et al., 2015) industry documents + 400.0 —

DROP (Dua et al., 2019) 
Wikipedia pages

− 6.7 96.5

QuAC (Choi et al., 2018) − 13.6 98.4

SQuAD 1.1 (Rajpurkar et al., 2016) − 23.2 107.8

TyDi QA (Clark et al., 2020) − 204.3 204.3

Natural Questions (Kwiatkowski et al., 2019) − 91.2 111.2

WikiOps (Cho et al., 2018) Wikipedia tables − 24.2 80.7

CoQA (Reddy et al., 2019) various sources − 8.4 127.0

RACE (Lai et al., 2017) English exams − 27.9 97.7

QASC (Khot et al., 2020) school-level science − — 10.0

FUNSD (Jaume et al., 2019) RVL-CDIP forms + 0.1 —

Infographics VQA infographics + 4.4 23.9

TextCaps (Sidorov et al., 2020) Open Images + 28.4 —

DVQA (Kafle et al., 2018) synthetic bar charts + 300.0 3487.2

FigureQA (Kahou et al., 2018) synthetic, scientific + 140.0 1800.0

TextVQA (Singh et al., 2019) Open Images + 28.4 45.3

4.5 Experiments

Our model was validated on series of experiments involving Key In-

formation Extraction, Visual Question Answering, classification of rich

documents, and Question Answering from layout-rich texts. The follow-

ing datasets represented the broad spectrum of tasks and were selected

for the evaluation process (see Table 4.1 for additional statistics).

The CORD dataset (Park et al., 2019) includes images of Indonesian

receipts collected from shops and restaurants. The dataset is prepared for

the information extraction task and consists of four categories, which fall

into thirty subclasses. The main goal of the SROIE dataset (Huang

et al., 2019) is to extract values for four categories (company, date,

address, total) from scanned receipts. The DocVQA dataset (Mathew

et al., 2021) is focused on the visual question answering task. The RVL-

CDIP dataset (Harley et al., 2015) contains gray-scale images and assumes

classification into 16 categories such as letter, form, invoice, news article,

and scientific publication. For DocVQA, we relied on Amazon Textract

OCR; for RVL-CDIP, we used Microsoft Azure OCR, for SROIE and

CORD, we depended on the original OCR.

4.5.1 Training Procedure

The training procedure consists of three steps. First, the model is ini-

tialized with vanilla T5 model weights and is pretrained on numerous

documents in an unsupervised manner. It is followed by training on a

set of selected supervised tasks. Finally, the model is finetuned solely

on the dataset of interest. We trained two size variants of TILT models,
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starting from T5-Base and T5-Large models. Our models grew to 230M

and 780M parameters due to the addition of Visual Encoder weights.

Unsupervised Pretraining.

We constructed a corpus of documents with rich structure, based on

RVL-CDIP (275k docs), UCSF Industry Documents Library (480k),
†

and

PDF files from Common Crawl (350k). The latter were filtered according

to the score obtained from a simple SVM business document classifier.

Then, a T5-like masked language model pretraining objective is used, but

in a salient span masking scheme, i.e., named entities are preferred rather

than random tokens (Guu et al., 2020; Raffel et al., 2020). Additionally,

regions in the image corresponding to the randomly selected text tokens

are masked with the probability of 80%. Models are trained for 100, 000

steps with batch size of 64, AdamW optimizer and linear scheduler with

an initial learning rate of 2𝑒 − 4.

Supervised Training.

To obtain a general-purpose model which can reason about documents

with rich layout features, we constructed a dataset relying on a large

group of tasks, representing diverse types of information conveyed by

a document (see Table 4.1 for datasets comparison). Datasets, which

initially had been plain-text, had their layout produced, assuming some

arbitrary font size and document dimensions. Some datasets, such as

WikiTable Questions, come with original HTML code – for the others, we

render text alike. Finally, an image and computed bounding boxes of all

words are used.

At this stage, the model is trained on each dataset for 10,000 steps or 5

epochs, depending on the dataset size: the goal of the latter condition

was to avoid a quick overfitting.

We estimated each dataset’s value concerning a downstream task, as-

suming a fixed number of pretraining steps followed by finetuning. The

results of this investigation are demonstrated in Figure 4.6, where the

group of WikiTable, WikiOps, SQuAD, and infographicsVQA performed

robustly, convincing us to rely on them as a solid foundation for further

experiments.
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Figure 4.6: Scores on CORD, DocVQA,

SROIE and RVL-CDIP compared to the

baseline without supervised pretraining.

The numbers represent the differences in

the metrics, orange text denote datasets

chosen for the final supervised pretrain-

ing run.

†
http://www.industrydocuments.ucsf.edu/

http://www.industrydocuments.ucsf.edu/
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Table 4.2: Parameters used during

the finetuning on a downstream

task. Batch size, learning rate and

scheduler were subject of hyper-

parameter search with considered

values of respectively {8, 16, ..., 2048},
{5e − 5, 2e − 5, 1e − 5, 5e − 4, ..., 1e − 3},
{constant, linear}. We have noticed that

the classification task of RVL-CDIP

requires a significantly larger bath size.

The model with the highest validation

score within the specified steps number

limit was used.

Dataset Batch size Steps Learning rate Scheduler

SROIE 8 6,200 1e-4 constant

DocVQA 64 100,000 2e-4 linear

CORD 8 36,000 2e-4 linear

RVL-CDIP 1,024 12,000 1e-3 linear

Model pretrained in unsupervised, and then supervised manner, is at

the end finetuned for two epochs on a downstream task with AdamW

optimizer and hyperparameters presented in Table 4.2.

4.5.2 Results

The TILT model achieved state-of-the-art results on three out of four

considered tasks (Table 4.3). We have confirmed that unsupervised layout-

and vision-aware pretraining leads to good performance on downstream

tasks that require comprehension of tables and other structures within the

documents. Additionally, we successfully leveraged supervised training

from both plain-text datasets and these involving layout information.

DocVQA.

We improved SOTA results on this dataset by 0.33 points. Moreover,

detailed results show that model gained the most in table-like categories,

i.e., forms (89.5 → 94.6) and tables (87.7 → 89.8), which proved its ability

to understand the spatial structure of the document. Besides, we see

a vast improvement in the yes/no category (55.2 → 69.0).
‡

In such a

case, our architecture generates simply yes or no answer, while sequence

labeling based models require additional components such as an extra

classification head. We noticed that model achieved lower results in the

image/photo category, which can be explained by the low presence of

image-rich documents in our datasets.

Table 4.3: Results of selected methods in relation to our base and large models. Bold indicates the best score in each category. All

results on the test set, using the metrics proposed by dataset’s authors. The number of parameters given for completeness thought

encoder-decoder and LMs cannot be directly compared under this criterion.

Model

CORD SROIE DocVQA RVL-CDIP Size variant

F1 F1 ANLS Accuracy (Parameters)

LayoutLM (Xu, Li, et al., 2020)

94.72 94.38 69.79 94.42 Base (113-160M)

94.93 95.24 72.59 94.43 Large (343M)

LayoutLMv2 (Xu, Xu, et al., 2020)

94.95 96.25 78.08 95.25 Base (200M)

96.01 97.81 86.72 95.64 Large (426M)

LAMBERT (Garncarek et al., 2021) 96.06 98.17 — — Base (125M)

TILT (our)

95.11 97.65 83.92 95.25 Base (230M)

96.33 98.10 87.05 95.52 Large (780M)

‡
Per-category test set scores are available after submission on the competition web page:

https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1.

https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1
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RVL-CDIP.

Part of the documents to classify does not contain any readable text.

Because of this shortcoming, we decided to guarantee there are at least

16 image tokens that would carry general image information. Precisely,

we act as there were tokens with bounding boxes covering 16 adjacent

parts of the document. These have representations from U-Net, exactly

as they were regular text tokens. Our model places second, 0.12 below

the best model, achieving the similar accuracy of 95.52.

CORD.

Since the complete inventory of entities is not present in all examples, we

force the model to generate a None output for missing entities. Our model

achieved SOTA results on this challenge and improved the previous best

score by 0.3 points. Moreover, after the manual review of the model

errors, we noticed that model’s score could be higher since the model

output and the reference differ insignificantly e.g. "2.00 ITEMS" and

"2.00".

SROIE.

We excluded OCR mismatches and fixed total entity annotations discrep-

ancies following the same evaluation procedure as Garncarek et al. (Gar-

ncarek et al., 2021).
§

We achieved results indistinguishable from the

SOTA (98.10 vs. 98.17). Significantly better results are impossible due to

OCR mismatches in the test-set.

Though we report the number of parameters near the name of the model

size variant, note it is impossible to compare the TILT encoder-decoder

model to language models such as LayoutLMs and LAMBERT under this

criterion. In particular, it does not reflect computational cost, which may

be similar for encoder-decoders twice as big as some language model

Raffel et al., 2020, Section 3.2.2. Nevertheless, it is worth noting that our

Base model outperformed models with comparable parameter count.

4.6 Ablation study

In the following section, we analyze the design choices in our architecture,

considering the base model pretrained in an unsupervised manner and

the same hyperparameters for each run. The DocVQA was used as the

most representative and challenging for Document Intelligence since

its leaderboard reveals a large gap to human performance. We report

average results over two runs of each model varying only in the initial

random seed to account for the impact of different initialization and data

order (Dodge et al., 2020).

§
Corrections can be obtained by comparing their two public submissions.
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Table 4.4: Results of ablation study. The

minus sign indicates removal of the men-

tioned part from the base model.

Model Score Relative change

TILT-Base 82.9 ± 0.3 —

– Spatial Bias 81.1 ± 0.2 −1.8
– Visual Embeddings 81.2 ± 0.3 −1.7
– Case Augmentation 82.2 ± 0.3 −0.7
– Spatial Augmentation 82.6 ± 0.4 −0.3
– Vision Augmentation 82.8 ± 0.2 −0.1
– Supervised Pretraining 81.2 ± 0.1 −1.7

Significance of Modalities.

We start with the removal of the 2D layout positional bias. Table 4.4

demonstrates that information that allows models to recognize spatial

relations between tokens is a crucial part of our architecture. It is consistent

with the previous works on layout understanding (Garncarek et al., 2021;

Xu, Xu, et al., 2020). Removal of the UNet-based convolutional feature

extractor results in a less significant ANLS decrease than the 2D bias.

This permits the conclusion that contextualized image embeddings are

beneficial to the encoder-decoder.

Justifying Regularization.

Aside from removing modalities from the network, we can also exclude

regularization techniques. To our surprise, the results suggest that the

removal of case augmentation decreases performance most severely. Our

baseline is almost one point better than the equivalent non-augmented

model. Simultaneously, model performance tends to be reasonably in-

sensitive to the bounding boxes’ and image alterations. It was confirmed

that other modalities are essential for the model’s success on real-world

data, whereas regularization techniques we propose slightly improve the

results, as they prevent overfitting.

Impact of Pretraining.

As we exploited supervised pretraining similarly to previous authors, it

is worth considering its impact on the overall score. In our ablation study,

the model pretreated in an unsupervised manner achieved significantly

lower scores. The impact of this change is comparable to the removal of

spatial bias or visual embeddings. Since authors of the T5 argued that

pretraining on a mixture of unsupervised and supervised tasks perform

equally good with higher parameter count, this gap may vanish with

larger variants of TILT we did not consider in the present paper (Raffel

et al., 2020).

4.7 Summary

In the present paper, we introduced a novel encoder-decoder framework

for layout-aware models. Compared to the sequence labeling approach,
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the proposed method achieves better results while operating in an end-

to-end manner. It can handle various tasks such as Key Information

Extraction, Question Answering or Document Classification, while the

need for complicated preprocessing and postprocessing steps is elimi-

nated.

Although encoder-decoder models are commonly applied to generative

tasks, both DocVQA, SROIE, and CORD we considered are extractive. We

argue that better results were achieved partially due to the independence

from the detected word order and resistance to OCR errors that the

proposed architecture possesses. Consequently, we were able to achieve

state-of-the-art results on two datasets (DocVQA, CORD) and performed

on par with the previous best scores on SROIE and RVL-CDIP, albeit

having a much simpler workflow.

Spatial and image enrichment of the Transformer model allowed the

TILT to combine information from text, layout, and image modalities. We

showed that the proposed regularization methods significantly improve

the results.
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Abstract

Since the output structure of database-like tables can cover a wide

range of NLP tasks, we propose a framework for text-to-table neural

models applicable to, e.g., extraction of line items, joint entity and

relation extraction, or knowledge base population. The permutation-

based decoder of our proposal is a generalized sequential method

that comprehends information from all cells in the table. The training

maximizes the expected log-likelihood for a table’s content across all

random permutations of the factorization order. During the content

inference, we exploit the model’s ability to generate cells in any

order by searching over possible orderings to maximize the model’s

confidence and avoid substantial error accumulation, which other

sequential models are prone to. Experiments demonstrate a high

practical value of the framework, which establishes state-of-the-art

results on several challenging datasets, outperforming previous

solutions by up to 15%.

5.1 Introduction

It has been previously shown that encoder-decoder models are capable of

unifying a variety of problems involving natural language. In this setting,

unification is achieved by casting different tasks as Question Answering

with a plain-text answer, i.e., assuming the text-to-text (Khashabi et al.,

2020; Kumar et al., 2016; McCann et al., 2018; Raffel et al., 2020) or

document-to-text scenario (Kim et al., 2022; Powalski et al., 2021). We

argue that the restriction of output type to raw text is suboptimal for the

plethora of NLP problems and propose a decoder architecture able to

infer aggregate data types such as a list of ordered tuples or a database-like

table (see Figure 5.1).

Though the encoder-decoder architecture was formerly used to infer

lists (Powalski et al., 2021), named tuples (Dwojak et al., 2020), or even

more complex structures (Townsend et al., 2021), it was often achieved in

an autoregressive manner, without any architectural changes. A model

intended for the generation of unstructured text in natural language was

used to infer an output with formal structure. In contrast, we exploit

regularities and relationships within the output data and employ a

grammar-constrained decoding process (Section 5.2.5).

Specifically, we focus on the text-to-table inference with applications to

problems such as extraction of line items, key information extraction of

multiple properties, joint entity and relation extraction, or knowledge

base population. Tables as we understand them are equivalent to database

tables and defined as a set of values structured in horizontal rows and

vertical columns identifiable by name.

From receipts and invoices, through paycheck stubs and insurance loss

run reports, to scientific articles, real-world documents contain explicitly

or implicitly tabular data to be extracted. These are not necessarily
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Input OutputDocument, e.g.: Task-dependent data structure, e.g.:

Subject Object Relation

Riddarhuset Sweden country

Royal Court Orchestra Royal Opera part of

Entities and relations / knowledge base records

Description Quantity Unit price Total

Ice cream 2 5 10

Bread 1 2 2

Soda 1 3 3

Extracted line items

Plain text news

Wikipedia articleInvoice

Encoder-decoder 
model

Key information / property-value pairs

Property Value

Date of birth 1915-01-15

Place of birth Saint Petersburg

Citizenship Russian Empire

Figure 5.1: Reinterpreting diverse tasks under a unified paradigm: all these tasks essentially require generating a table based on a given

context. While they were not previously seen in this light, we reinterpret them as text-to-table tasks, bringing them together under a

single paradigm and directly model the table in the output. This unification has led to significant improvements in each task.

represented as a table per se within the input document, e.g., the currency

name on the invoice or policy number on the loss run can be mentioned

once and be related to all the line items within. In other cases, the

evidence one intends to comprehend and represent as a table may be

available in free-text only, as can be found in problems of joint entity and

relation extraction (see Figure 5.1-5.2). Finally, the data may require some

postprocessing, such as the normalization of dates, before returning

them to the end-user.

5.1.1 Limitation of Current Approaches

Admittedly, models based on the transformer encoder-decoder or decoder

achieve remarkable results in generating complex, formalized outputs,

such as computer programs or JSON files (Chen et al., 2021; Townsend

et al., 2021). Nevertheless, we hypothesize that changes leading to the

explicit modeling of structured data can outperform the said implicit
decoding that models long-range syntax dependencies sequentially and

does not guarantee the formal validity of produced outputs.

While generating in a particular predefined order (e.g., left-to-right, row-

by-row), such approaches have a few drawbacks. Firstly, error propagation

that causal models may show after skipping some cells or answering them

incorrectly. This flaw may start a chain reaction and directly influence

the subsequent cells’ generation, causing error propagation and a rapid

decline in table quality. Strikingly, an error propagation issue is known in

Neural Machine Translation when the right part of the generated sentence

used to be worse than the left one (L. Wu et al., 2018). Therefore, previous

approaches to table generation employed preventive measures to keep

the table layout under control (X. Wang et al., 2019) and limit the negative

effect of error propagation. Secondly, the answers are forced; the model

that cannot give a proper answer consistently has lower confidence and

dispersed probability over multiple possibilities. Therefore, we use logit-

based confidence to guide the generation process, emergently achieving

the property of abstaining from generating answers when the model does

not indicate high confidence. Thirdly, the formatting of the table plays
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Input

Output

Name Surname Place of birth

Auguste Lumière Besançon

Luis Lumière

Charles Lumière

Besançon

NULL

People

Auguste and Luis Lumière were born in
Besançon, France, to Charles and Jeanne.

Jeanne Lumière NULL

Figure 5.2: Example of text-to-table gen-

eration given plain text input. Concur-

rent extraction and grouping of the de-

tected entities simplifies the process and

may mitigate error accumulation.

a role, and the order of columns may be treated as a hyperparameter

in the previous approaches (Dwojak et al., 2020; X. Wang et al., 2019).

For example, performing generation in a predefined and not optimized

order may lead to the case when the model is asked about, e.g., date of

birth of the person that still needs to be specified. Therefore, we want

the model to learn the optimal order of the generation as part of the task

itself without any implicit human guidance.

Significantly, the advantage the encoder-decoder framework has is that it

can cover problems mentioned above in one end-to-end trainable process,

thus simplifying the pipeline and reducing the accumulation of errors

along the way. At the same time, since extracted data is already in the

form the end user requires, one is able to use it directly for downstream

application without further processing steps.

5.1.2 Contribution and Related Works

The specific contribution of this work includes (1) equipping transformer

models with permutation-based decoder training to allow comprehend-

ing complex, role-dependent relationships in a series of similar objects

we represent as a table, (2) a sequential, grammar-constrained decoding

mechanism which generates table content cell-by-cell, in a dynamic,

data-dependent order, and (3) introduction of tabular attention bias to

the decoder. The novelty of our approach can be better understood in

the context of related works.

Decoding of data structures. A few authors attempted the problem of

table generation in the encoder-decoder framework. Zhong et al. (2020)

proposed a table recognition model consuming input images and decou-

pled the problem into unconstrained table and cell content generation. In

comparison, (1) we use a single constrained decoder comprehending both

table structure and its content; (2) we tackle problems of text-to-table

inference where the presence of a table at the model input is optional.

Recently, X. Wu et al. (2022) introduced a model relying on constrained

decoding of table and tabular embeddings similar to ours. We share their

motivation and idea but differ as (1) our method is not restricted to a
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predefined, row-by-row decoding order and uses a permutation-based

training procedure aligned with the use of optimal, model-guided cell

permutation during inference; (2) we assume the explicit prediction of

the number of rows upfront (before the table decoding starts), instead of

allowing the model to stop the generation process after any completed

row. The advantage of this approach is discussed in Section 5.2 and

proven by a series of experiments reported in Section 5.3.

The encoder-decoder model was previously used as is, to infer lists and

tuples separated with special characters (Dwojak et al., 2020; Powalski

et al., 2021). Similarly, Townsend et al. (2021) experimented with the

generation of more complex data types represented as XML, JSON, or

Python’s string representation. In contrast to previous approaches, we

do not rely on implicit modeling of the formal structure of the output but

opt for explicit structure generation.

Finally, a text-to-structure approach was recently taken by Lu et al. (2021)

for event extraction. The authors used trie-based constrained decoding

with event schema injected as the decoder prompt. It resembles our

approach to constrained table generation, though they rely on only one

proper decoding order resulting from the assumed tree linearization

strategy. Moreover, the authors found it challenging to train the structure

generation model directly and thus trained it on simple event substruc-

tures first. In contrast, we can directly train the structure decoder, and our

permutation-based method allows one to generate the structure flexibly,

in an arbitrary order dynamically guided by the decoding algorithm.

Flexible generation. Even though permutation-based training, which

allows for output generation in any order, is of minor usability in the

task of LM, it was validated by Stern et al. (2019) for machine translation

and by Song et al. (2021) for summarization. Accordingly, Stern et al.

(2019) proposed to equip a transformer with the insertion operation,

realized by interpreting an additional number generated with the token

as the position in the output sequence to which the insertion should

be performed. This framework allows for the flexibility of the decoding

process, understood as the possibility of stubbing the output sequence

with tokens that the model recognizes with high confidence first and

then gradually adding more details in the later iterations. In contrast,

since the whole output sequence is passed through the decoder anyway,

our one cell-decoding step is implemented by sampling all cells at once

and then choosing the best-scored ones to be inserted at its location while

disregarding others. In the ablation studies we evaluate how the number

of cells inserted at once influence the decoding speed and quality, as

higher values indicate more cells generated in parallel.

Permutation-based language modeling. The effectiveness of the permutation-

based language modeling objective was demonstrated by Yang et al. (2019)

who conditioned the BERT-like model to work with the AR objective.

However, while the nature of the LM task allowed them to perturb the

factorization order of the input sequence arbitrarily, our table-decoding

problem requires additional constraints to account for the fact that each

cell may consist of several tokens. Thus, the factorization order of blocks

of tokens (representing cells) is permuted, while causal order is assumed



5.2 STable — Text-to-Table Framework 71

© 2022 Snowflake Inc. All Rights Reserved

Recall the Challenges

23

Color Shape

 red  circle

green  square

blue triangle

Color Shape

 red  circle

green  square

blue triangle

Figure 5.3: A comparative illustration of

the training examples under linearized

versus permuted cell ordering. The left

panel depicts a typical linearized order-

ing, following a top-down, left-to-right

progression. The right panel presents a

permuted ordering example where cells

are filled in a non-sequential order.

within the cell. For permutation-invariance and table-awareness on re-

versed tasks (i.e., table-to-text), we refer the reader to (F. Wang et al.,

2022).

5.2 STable — Text-to-Table Framework

Serialized representation of the table permits to treat it as a text sequence,

and hence, use text-centric methods to perform an autoregressive genera-

tion of the output sequence by employing a vanilla Transformer decoder.

However, this approach does not exploit the two-dimensional structure

of the table as it expands the answer sequentially and utilizes only

uni-directional context.

Consequentially, two challenging problems arise. Firstly, how to approach

the fact that some information in the table may depend on other cells

(e.g., name and surname or the same tax rate for similar items on a

receipt) while some may not be dependent (prices of different articles on

the shopping list). In general, a model possesses flexibility with respect

to this dependence-independence assumption when it can leverage

dependencies during decoding but is not forced to do so in any specific

order. Our idea (presented in Figure 5.3) is to solve this problem by

delaying the generation of the most challenging and complex answers to

later stages and conditioning them on the already generated answer.

Moreover, the decoding must remain free of train-inference discrepancies.

Generally, the train-inference alignment means that the state of the

table at every step while decoding a particular example must also be

possible to achieve in the training phase. Formulating the training that

allows for flexible cell generation without providing any additional

information remains a non-trivial problem. We rise up to the challenge

and demonstrate the solution below.

5.2.1 Decoding Invariant Under Cell Order

Instead of generating the cell values in a top-down, left-to-right man-

ner as previously seen in the literature (e.g., X. Wu et al., 2022), we

perform the pretraining by maximizing the expected log-likelihood of

the sequence of cell values over all possible prediction orders. More

specifically, suppose that we are given a document containing a table

with row labels r = (𝑟1 , . . . , 𝑟𝑁 ),* and column labels c = (𝑐1 , . . . , 𝑐𝑀),

*
In practice, usually there are no row labels; however, in the decoder, the special tokens

used for distinguishing rows take this role.
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Figure 5.4: A training example depict-

ing how the answer red is produced

based on the partially filled cells con-

taining circle and triangle. (A) The

highlighted cell denotes a position where

the expected red </Cell> should be pre-

dicted autoregressively starting from a

<Cell> token. A successfully decoded

cell will lead to the state visible in (C),

i.e., the partially decoded gold standard

table (B). The generation order of a table

is random for each example in the train-

ing.

(B) Gold standard

Color Shape

 red  circle

triangle

Color Shape

 red  circle

green  square
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(C) Output after current step

(A) Decoder prompt

(D) Expected output

red </Cell>
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which we will collectively denote h = (r, c). A linear ordering of the table

cells can be represented with a bĳection

𝜎 : {1, 2, . . . , 𝐶} → {1, . . . , 𝑁} × {1, . . . , 𝑀},

where 𝐶 = 𝑁𝑀 is the number of cells, so that 𝜎(𝑛) = (𝑖 , 𝑗) are the row

and column coordinates of the 𝑛-th cell in the ordering. Given such a 𝜎
and cell values v = (𝑣𝑖 𝑗)𝑖≤𝑁,𝑗≤𝑀 , we factorize the likelihood of v given h
as

𝑝𝜃(v|h) =
𝐶∏
𝑛=1

𝑝𝜃
(
𝑣𝜎(𝑛)

��(𝑣𝜎(𝑘))𝑘<𝑛 , h) , (5.1)

and using this factorization, we maximize the expected log-likelihood

1

𝐶!

∑
𝜎

𝐶∑
𝑛=1

log 𝑝𝜃
(
𝑣𝜎(𝑛)

��(𝑣𝜎(𝑘))𝑘<𝑛 , h) (5.2)

over 𝜃. The likelihoods 𝑝𝜃
(
𝑣𝜎(𝑛)

��(𝑣𝜎(𝑘))𝑘<𝑛 , h) themselves can be factor-

ized according to the standard auto-regressive approach as

𝑝𝜃
(
𝑣𝜎(𝑛)

��(𝑣𝜎(𝑘))𝑘<𝑛 , h) =
=

ℓ (𝑣𝜎(𝑛))∏
𝑡=1

𝑝𝜃
(
𝑣𝑡𝜎(𝑛)

��(𝑣 𝑖𝜎(𝑛))𝑖<𝑡 , (𝑣𝜎(𝑘))𝑘<𝑛 , h) (5.3)

where ℓ (𝑣𝜎(𝑛)) is the length of 𝑣𝜎(𝑛) represented as a sequence of to-

kens (𝑣 𝑖
𝜎(𝑛))𝑖≤𝐿. In practice, the expected log-likelihood is estimated by

sampling bĳections 𝜎 at random.

Training example is presented in Figure 5.4.

5.2.2 Tabular Attention Bias

We base our attention computation method on the relative bias idea

popularized by the T5 model. Given a text consisting of 𝑇 tokens, in

the vanilla T5 model, raw attention scores 𝛼𝑖 𝑗 for tokens 𝑖 and 𝑗 (with

0 ≤ 𝑖 , 𝑗 < 𝑇) are modified by introducing a bias term: 𝛼′
𝑖 𝑗
= 𝛼𝑖 𝑗 + 𝛽𝑖 𝑗

where 𝛽𝑖 𝑗 = 𝑊(𝑖 − 𝑗) is a trainable weight, depending on the relative

sequential position of these tokens (Raffel et al., 2020).
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Input Decoding steps
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and the circle is in the
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red circle
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(2) Two values from the previous step
     are kept. We generate four candidates.

(1) Decoding starts with an empty table.
     Six candidate values are generated.

(3) Four values from the previous steps
     are kept. We generate two candidates.

(4) Table generation is complete.
     Its final form is presented below.

Outer loop with two candidates kept.

Probability   Candidate value

Probability   High-score candidate

Value kept from the previous step

Legend

Figure 5.5: A possible progression of decoding a table given the text on the input. Since the probabilities guide the decoding order, the

circle’s color that was not explicitly stated in the text is determined at the last step.

We modify the decoder’s self-attention by extending it with two new bias

terms, defined below. The tabular bias 𝜏𝑖 𝑗 encodes the relative position

of table cells in which the tokens lie, while the local sequential bias 𝜆𝑖 𝑗
corresponds to the relative sequential position of tokens belonging to the

same cell.

𝜏𝑖 𝑗 =

{
𝑅(𝑟𝑖 − 𝑟 𝑗) + 𝐶(𝑐𝑖 − 𝑐 𝑗) if 𝑟 𝑗 > 0

𝑅0 + 𝐶(𝑐𝑖 − 𝑐 𝑗) if 𝑟 𝑗 = 0

,

𝜆𝑖 𝑗 =

{
𝐿(𝑖 − 𝑗) if (𝑐𝑖 , 𝑟𝑖) = (𝑐 𝑗 , 𝑟𝑗)
0 otherwise

(5.4)

where (𝑐𝑖 , 𝑟𝑖) are cell coordinates as given by its 1-based column and

row indices (with 0 reserved for the header row/column), and 𝑅(𝑘),
𝐶(𝑘), 𝐿(𝑘) and 𝑅0 are trainable weights. The special case with 𝑟 𝑗 = 0

corresponds to the situation when the key/value token lies in the column

header, in which case we want to use the same bias independent of the

row of the query token, due to the different nature of the relation between

two cells, and a cell and its column header. After these adjustments, the

final attention score takes the form 𝛼′
𝑖 𝑗
= 𝛼𝑖 𝑗 + 𝛽𝑖 𝑗 + 𝜏𝑖 𝑗 +𝜆𝑖 𝑗 , where 𝛽𝑖 𝑗 is

the bias term defined earlier.

5.2.3 Predicting Number of Groups

Although the previous work of X. Wu et al. (2022) assumed the table is

finalized when the appropriate special token explicitly appears in the

output, our systematic study shows that the explicit prediction of the

number of groups yields better results (see Section 5.4 for comparison).

This explicit prediction is achieved with a linear layer that consumes the

first input token’s embedding to perform a prediction on the number of

groups. During the training stage, the layer’s output is scored against the

known number of groups using MSE loss, while during the inference, it

is used as a predictor declaring the number of groups to populate the

template with.
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5.2.4 Inference with Model-Guided Cell Order

Since the model was trained assuming a permuted factorization of cell

ordering, in expectation, the model learned to understand all possible

variants of a partially-filled table and predict values for all empty cells.

Because each step in the generation process implicates uncertainty that

should be globally minimized, we propose to estimate the optimal table

decoding algorithm by greedily finding the cell that minimizes this

uncertainty at each step.

The decoding employs an outer loop that progresses cell-by-cell, an

inner loop that generates each cell that is yet to render, and a selection

heuristics that determine which cell, from all the finalized in the inner

loop, should be added to the outer loop. The heuristic we use selects the

cell containing the token with highest probability among all predicted

(Figure 5.5). The detailed study of this and alternative selection criteria

is presented in Appendix C.

In the inner loop, each cell is decoded until the special token determining

the end of cell generation is placed. As the inner loop generates each

cell autoregressively and independently from other cells, the process

can be treated as generating multiple concurrent threads of an answer

and is well parallelizable. In the worst case, it takes as many steps as the

number of tokens in the most extended cell.

After being selected by a heuristic, the cell from the inner loop is inserted

into the outer loop, and made visible to all other cells, while the cells

that were not selected are to be reset and continuously generated in

the future steps until they are chosen by a heuristic (see pseudocode in

Appendix A).

5.2.5 Grammar-Constrained Decoding

As a result of the model design, incorrect tables cannot be generated. Part

of these rules is explicit (e.g., we overwrite logits, so it is impossible to emit

particular tokens such as the end-of-cell when no cell is opened), whereas

part of the rules results implicitly from the algorithm (template-filling

setting, where the well-formulated table is always ensured).

5.3 Experiments

In addition to state-of-the-art reference and our results, we provide

scores of the same backbone models (T5, T5 2D, and TILT) while a table

linearization strategy follows the assumptions of X. Wu et al. (2022)’s

baselines. Appendix D covers details of training procedure.

Metrics. We rely on the original metrics for all but the DWIE dataset,

i.e., GROUP-ANLS for PWC
⋆

, F1 for CORD, and non-header exact match

cell F1 for Rotowire (other variants proposed by the authors are reported

in Table 5.7 in Appendix D). Use of the original DWIE metric was not

possible, as it assumes a step-by-step process. In contrast, we tackle the

problem end-to-end, i.e., return (object, relation, subject) tuples without
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Table 5.1: Results on public and private datasets assuming task-specific metrics. The results of a sequence-to-sequence baseline that

learns and generates tables as text are provided in the Linearized column. Mean and STD over three runs. The
†

symbol denotes our TILT

training. Underline signifies our model is significantly better than baseline.

Dataset State-of-the-Art Reference Linearized Our Model

PWC
⋆

T5 2D (Borchmann et al., 2021) 26.8 27.8 ± 1.0 30.8 ± 0.5 T5 2D + STable

CORD TILT (Powalski et al., 2021) 96.3 92.4 ± 0.7 95.6 ± 0.2 TILT
†

+ STable

Rotowire

Player Text-to-Table (X. Wu et al., 2022) 86.8 84.5 ± 0.7 84.5 ± 0.2
T5 + STable

Team (BART backbone) 86.3 83.8 ± 0.9 84.7 ± 0.2

DWIE KB-both (Verlinden et al., 2021) 62.9 60.2 ± 1.5 59.2 ± 1.5 T5 + STable

Recipe Composition

TILT
†

71.9 60.1 ± 0.3 75.5 ± 1.6

TILT
†

+ STablePayment Stubs 77.0 72.0 ± 2.3 79.1 ± 0.9

Bank Statements 61.1 58.7 ± 4.9 69.9 ± 4.8

detecting all entity mentions within the document and their locations. To

ensure a fair comparison, we use the F1 score calculated on triples; that

is, we require the model to return the exact match of the triple. Such a

setup is very demanding for encoder-decoder models as the convention

in DWIE is to require object and subject to be returned in the longest form

of appearance in the document.

Pretraining and Adaptation. Due to the switch to permutative training

and the addition of the regression head, there is a significant change in

the model objective. Consequently, we anticipated the necessity of the

model adaptation phase. It consists of the pretraining stage equivalent

to the one conducted by authors of the TILT model (Powalski et al.,

2021) extended by Natural Questions (Kwiatkowski et al., 2019) and

WebTables
†

datasets. To utilize WebTables we rendered webpages, from

which the tables were scraped and taught models to extract table contents

from webpages. The said stage is applied to all T5+STable, T5 2D+STable,

and TILT+STable models.

Complex Information Extraction. The problem of information extrac-

tion involving aggregated data types, where one may expect improvement

within the document-to-table paradigm, is prevalent in business cases.

Nevertheless, the availability of public datasets here is limited to PWC
⋆

(Borchmann et al., 2021; Kardas et al., 2020) and CORD (Park et al.,

2019).

In the case of PWC
⋆

, the goal is to determine model names, metrics,

datasets, and performance, given the machine learning paper as an input.

CORD assumes the extraction of line items from images of Indonesian

receipts, among others. To determine the gain from our STable decoder,

the experiments are conducted with state-of-the-art encoder-decoder

models proposed for these datasets (T5 2D and TILT), assuming the same

training procedure (Borchmann et al. (2021) and Powalski et al. (2021);

see Appendix D for details).

†
https://webdatacommons.org/webtables/
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Additionally, due to the sparsity of public benchmarks of this kind, we

decided to provide results on three confidential datasets. They assume,

respectively, (1) the extraction of payments’ details from Payment Stubs,
(2) Recipe Composition from documents provided by a multinational snack

and beverage corporation, as well as (3) account balances from Bank
Statements. These are covered in details in Appendix E and addressed by

the TILT+STable model with vanilla TILT as a reference.

As summarized in Table 5.1, we outperformed state-of-the-art information

extraction models on several datasets. At the same time, the CORD where

we underperform was previously considered solved, e.g., Powalski et al.

(2021) point that TILT’s output and the reference differed insignificantly.

We used it in the experiment as a safety check to determine whether

the model can maintain almost-perfect scores after applying the STable

decoder. Consequently, we omit it in the ablation studies.

The rest of the experiments were conducted assuming the vanilla T5

model (Raffel et al., 2020) equipped with the STable decoder of our

proposal.

Joint Entity and Relation Extraction. To demonstrate the broad applica-

bility of the model, we consider the problem of a joint entity and relation

extraction on the example of the DWIE dataset (Zaporojets et al., 2021).

Here, the tuples consisting of entities and one of the sixty-five relation

types are to be determined given a plain-text news article. Despite not

outperforming a multi-step state-of-the-art model, we achieved high

scores and were the first to prove that the problem can be successfully

approached end-to-end using an encoder-decoder framework. Here, the

T5+STable’s errors and issues reflect the very demanding assumptions of

DWIE, where it is required to return object and subject in the longest form

of appearance in the document.

Reversed Table-to-Text. Finally, following X. Wu et al. (2022) we eval-

uate our approach on the Rotowire table-to-text dataset in a reverse

direction, i.e., generate tables from text (Wiseman et al., 2017). Conse-

quently, the complex tables reporting teams and player performance are

generated given the game description. Results from Table 5.1 show that

our T5+STable model can deliver an improvement over the Linearized T5

model on Rotowire Team. The fact that Linearized BART from X. Wu et al.

(2022) outperforms our Linearized T5 baselines on Rotowire Team and

Player datasets by 2.5 and 2.1 points, respectively, suggests that it has a

better capacity as a backbone for this task. Several of the ablation studies

from the next section were designed to shed light on this subject.

The results of our model (Table 5.1) demonstrate a significant improve-

ment over the simple sequence-to-sequence generation of tables linearized

as sequences on three out of five public datasets. As expected, it yields

better results in cases where there is a considerable interdependency

between values in a row and no clear, known upfront name distinguishes

it from other rows. Note that, e.g., in Rotowire, it suffices to correlate all

statistics with team or player name, which is always inferred first due to

the employed linearization strategy. The order of columns being decoded

is a hyperparameter in the case of linearization. In contrast, the power of

STable comes from learning it from the data itself.
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5.4 Ablation Studies

Models were trained three times with different random seeds on the

Rotowire, DWIE, and PWC
⋆

datasets. To reduce the computational cost,

we relied on base variants of the models reported in Section 5.3 – please

refer to Appendix D for detailed specifications and results. While results

on a single dataset can be considered noisy, aggregation over a diverse

set of them helps diminish the randomness’s impact and stabilize results

on the new ones.

Model Score Change

Complete STable 62.9 ± 1.0 —

Semi-templated expansion 61.4 ± 0.1 −1.5 (1)

Fixed causal order 60.0 ± 0.4 −2.9 (2)

Decoding constraint (3)

Column-by-column 62.4 ± 0.6 −0.5
Row-by-row 62.1 ± 0.6 −0.8
L→R and T→B 62.0 ± 0.5 −0.9
No distant rows 62.2 ± 0.5 −0.7

Sequential decoder bias only 3.9 ± 0.1 −59.0 (5)

Sequential and header bias 33.2 ± 0.3 −29.7

Table 5.2: Results of studies (1), (2), (3),

and (5). Modified models in relation to

complete STable. See Appendix D for per-

dataset results.
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Figure 5.6: Results of decoding ablation

(4). Three runs for 1, 2, 3, 5, and 10 cells

decoded in parallel.

(1) Semi-templated Expansion. To compare our method of group

prediction with a regression-free alternative, we allow the model to work

in a semi-templated manner, where the template is infinite, and the

decoding stops when the group with NULL-only tokens is generated.

For this method, we add such a group at the bottom of the table during

the training to comply with the inference. The model performance

is significantly below the STable reference, suggesting explicit group

number prediction superiority.

(2) Non-Permutative Training. To measure the importance of under-

standing the bidirectional contexts within the model, we abstain from
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permutation-based training in our study and choose the predefined

factorization order. Here, a fixed causal order model that reads tables from

left to right and from top to bottom is evaluated. This alternative is in line

with text-to-table approach of X. Wu et al. (2022). As shown in Table 5.3,

the lack of permutative training we introduced in Section 5.2 leads to

significantly worse scores.

(3) Constrained Cell Order. Whereas the permutation-based training

allows for great flexibility, the questions posed here are whether limiting

the model’s ability to discover new cells can be of any value. Methods

in this group assure either that the column-by-column constrained model

predicts the whole column before decoding a new one, the row-by-row
constrained model predicts the whole row before entering a new one,

whereas L→R and T→B is a combination of both (ensures row-by-row

inference from left to right). The no distant rows constraint forces the

decoding to have empty cells only on the bottom of each column, thus

avoiding skipping cells in the decoding while moving down.

As shown in Table 5.3, all but column-by-column constraint lead to a

decreased scores. At the same time, the mentioned performs on par with

STable’s model-guided inference (Section 5.2.4), and both are better than

the method with left-to-right decoding order. These results suggest that

(1) our method does not require constraining the decoding order, (2) it

seems to implicitly incorporate the column-by-column constraint, and

(3) it is helpful to be elastic w.r.t. decoding order within the column.

(4) Parallelization of Cell Decoding. As outlined in Section 5.2.4, one

may allow multiple candidates to be kept in each decoding step to

shorten the inference time while expecting the performance to degrade

to some extent. Results of experiments that follow this observation are

presented in Figure 5.6. One may notice that processing time varies

across the considered datasets since it depends mainly on the input

sequence length (ranging from 1𝑘 for Rotowire to 6𝑘 for PWC) and

the sizes of the table to infer (we infer as many as 320 cells for the

Player table). Parallelization of cell decoding significantly reduces the

total per-document processing time — up to five times for DWIE in

the conducted experiments. Interestingly, speed-up does not necessarily

lead to a decrease in scores; e.g., in the case of the Team table, there is

four times better processing time when ten cells are inferred at once,

whereas the scores achieved by the model remain comparable. It can be

attributed to the fact that there are almost no inter-cell dependencies

and always only two rows to infer — one for each team playing. Since

the performance changes w.r.t. this parameter is heavily data-dependent,

its value should be obtained experimentally for each dataset separately.

Additionally, we argue that it is beneficial to use large values to speed

up the train-time validation as it maintains a correlation with higher-

scoring lower parameter values that can be employed during test-time

inference.

(5) Tabular Attention Biases. In comparison with the initially intro-

duced two relations (between cells and within cells), removing them

and using only 1D global bias disrupts the permutation-based training
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as the model scores degrade since it cannot assign answers to correct

columns. However, additional incorporation of the header name (by

attending only to row with headers, 𝑟 𝑗 = 0 in Equation 5.4) leads to

significant improvement, but it is still below the full model. Detailed

analysis showed that the model could not benefit from 1D global bias, as

(1) the distance between cells and header is too large for the first cells in

the training since they are randomly chosen from any position within the

table, and (2) a table itself is considerably bigger, as in permutation-based

training we assumed that every cell in the table is generated, while for

the linearized model, the headers are generated by the model, and a

part of them can be skipped, thus reducing the size of the table. The

consistent improvements on four datasets indicate that proposed tabular

attention biases enhance table-modeling efforts.

5.5 Limitations

The state-of-the-art performance of STable is its foremost advantage,

while the constraining factors come from different aspects. Of them, the

generated sequence’s length seems to incure the most long-term cost

during inference, while the increase in training time per example is a

short-term obstacle. The underlying issue is that the full table context

negatively influences the computational cost of the attention on the

decoder side. This however is also the case for the family of encoder-

decoder models generating the whole table such as these proposed by

X. Wu et al. (2022) or Townsend et al. (2021). A possible solution here

is a model with table context limited to the row and column a given

table cell belongs to. Such a change would have a positive impact on

the memory consumption in the decoder, as self-attention complexity

decreases from O(𝑁𝑀) to O(𝑁 +𝑀), where 𝑁, 𝑀 denotes the number

of rows and columns respectively. The exploitation of this optimization

is an interesting future direction.

To navigate the intricacy of the order employed by the STable framework,

we performed a systematical analysis that did not conclude in finding

a visible decoding pattern that could be described formally beyond the

observation already provided in Figure 5.5 and in constrained-decoding

ablations. Studying the generation order in the context of data calls for

designing a new explainability-related method, which is not in the scope

of this work.

5.6 Summary

We equipped the encoder-decoder models consuming text (T5, T5 2D)

and documents (TILT) with the capabilities to generate tables in a

data-dependent order. Firstly, an aligned training procedure based on

permuting factorization order of cells was presented, and secondly, the

parallelizable decoding process that fills the table with values in a flexible

and unconstrained order was proposed. The important design choices

for both contributions were motivated by an extensive ablation study.

The proposed STable framework demonstrates its high practical value by

yielding state-of-the-art results on PWC
⋆

and outperforming linearized
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models on CORD and Rotowire Team datasets, as well as outperforming

reference models on several confidential datasets. The highest gains due

to the permutative training were accomplished on the PWC
⋆

dataset,

where 4.0 points (26.8 → 30.8) amounts to 14.9% relative improvement,

while the 8.8 point gain on Bank Statements (61.1 → 69.9) exceeds 14.4%

relative improvement.
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Appendix

A Table Decoding Algorithm

The algorithm presented above operates on the output of the encoder

model and reuses the cached encoded representations that are consid-

ered to be a part of the DecoderModel for brevity. Another important

characteristic of the DecoderModel introduced for conciseness of the

pseudocode is that it produces all cell tokens and handles the sequential

text decoding on its own.

The decoding employs an OuterLoop, parametrized by the 𝑘 parameter

(denoting the parallelization of cell decoding) that progresses cell-by-cell,

the InnerLoop function that generates each cell that is yet to render, and

OuterCriterion — a selection heuristics that determine which cell, from

all the finalized in the inner loop, should be added to the outer loop.

The InnerCriterion is a heuristic we utilize that selects the cell with the

maximum probability for its tokens’ predictions (Figure 5.5).

In the InnerLoop, each cell is decoded until the special token determining

the end of cell generation is placed. As the InnerLoop generates each

cell autoregressively and independently from other cells, the process

can be treated as generating multiple concurrent threads of an answer

and is well parallelizable. In the worst case, it takes as many steps as the

number of tokens in the most extended cell.

After the selection by the OuterCriterion heuristic, the cell from the inner

loop is inserted into the outer loop, and made visible to all other cells,

while the cells that were not selected are to be reset and continuously

generated in the future steps until they are chosen by the OuterCriterion

heuristics.



Algorithm 1 Table Decoding Algorithm of our proposal.

1: procedure OUTERLOOP(k)
2: T  0n,m,l . n⇥m table with l padding tokens per cell
3: C  0n,m . current cell status (decoded or not)
4: while SUM(C) < nm do . while there is a cell to decode
5: T 0, L INNERLOOP(T, C) . create complete table candidate T 0 and cell scores
6: B  OUTERCRITERION(L) . sequence of coordinates sorted according to scores
7: for c 1, k do . for k best cells from T’
8: i, j  Bc . get coordinates
9: Ti,j  T 0

i,j . ...copy values to table T accordingly
10: Ci,j  1 . ...and mark the appropriate cell as already decoded
11: end for
12: end while
13: return T
14: end procedure
15:

16: procedure INNERLOOP(T, C)
17: L 0n,m . scores for each cell in n⇥m table
18: T 0  T . inner loop’s table copy
19: parfor i 1, n do . for each table row
20: parfor j  1, m do . ...and each table cell processed in parallel
21: if Ci,j = 0 then . ...if it was not decoded yet
22: s, t DECODERMODEL(T, i, j) . produce cell tokens t and their scores s
23: Li,j  INNERCRITERION(s) . aggregate per-token scores into cell score
24: T 0

i,j  t . update table copy
25: end if
26: end parfor
27: end parfor
28: return (T 0, L)
29: end procedure
30:

31: procedure INNERCRITERION(s)
32: /* Any Rn ! R function. STable assumes max, but we test other in the ablation studies. */
33: end procedure
34:

35: procedure OUTERCRITERION(L)
36: /* Some Rm⇥n ! (N⇥ N)mn function returning a permutation of indices of the input
37: matrix L. STable assumes sort of matrix coordinates according to descending values of its
38: elements, but we test other functions in the ablation studies. */
39: end procedure
40:

84 5 STable Table Generation Framework for Encoder-Decoder Models
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Figure 5.7: Change in training illustrated as augmentation of permuted sub-tables from the original table.

B Negative Result: Prevention of Column Order Leakage

In the approach outlined in Section 5.2, the sequence of column labels c,

on which the likelihoods are conditioned, may leak additional unwanted

information to the decoder. If the data in the document are indeed

formatted as a table, and the order of labels in c matches the column

order, the model might learn to extract cells by location, instead of using

the actual semantics of the cell label. However, during inference, while

we know which entities we want to extract from the document, we are

not given the order in which they appear, which can be perceived as a

serious train-inference discrepancy.

To remedy this problem, we tried to further modify the training objective

(See Figure 5.7). Denote by C the set of all non-empty sequences of

distinct column labels. Instead of all the cells v, we can predict only the

cells vc corresponding to a sequence c ∈ C of columns, in the order

defined by the order of columns in c. The expected log-likelihood over

all c ∈ C can be then expressed as

log 𝑝𝜃(v|h) =
1

|C|
∑
c∈C

log 𝑝𝜃(vc |r, c), (5.5)

where 𝑝𝜃(vc |r, c) decomposes according to the discussion in Section 5.2.

In practice, we found it to have no relevant impact on the training process.

It did not lead to significant changes in evaluation scores when used in

the supervised pretraining stage or on a downstream task. Consequently,

we abandoned the idea and did not use it for any of the models reported

in the paper. This study helps us state that the model learns the semantics

of the cell labels without a need for regularization.

C Inner/Outer Loop Decision Criteria

The heuristic we test selects the cell in the outer loop based on the minimal

or maximal inner score. Such inner score is calculated in three different

ways: by taking the minimal, maximal, and mean of the token’s logits

score. The results, presented in Table 5.3, point to the lesser importance

of choosing the inner scoring method, while the choice of the outer loop

heuristics impacts results more significantly. The former is the desired

behavior since the algorithm we proposed in Section 5.2.4 is based on

the assumption that it is beneficial to decode cells starting from those

with the model’s highest confidence. On the other hand, as there is a
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Table 5.3: Results of studies on decision

criteria. Modified models in relation to

complete STable. See Appendix D for per-

dataset results.

Model Score Change

Complete STable 62.9 ± 1.0 —

Criteria (inner, outer)

min max 61.7 ± 0.7 −1.2
mean max 62.7 ± 0.7 −0.2
mean min 60.8 ± 0.7 −2.1
min min 62.1 ± 0.4 −0.8
max min 61.2 ± 0.2 −1.7

significant variance depending on the dataset chosen (see Appendix D),

these and other inference parameters can be subject to cost-efficient,

task-specific hyperparameter optimization.

D Details of Experiments and Ablation Studies

All models were trained three times with different random seeds. We

relied on large variants of the models for experiments in Table 5.1, and

on base variants for the ablation studies. These are analyzed in Table 5.3

given the average results over Rotowire, PWC
⋆

, and DWIE datasets (see

Table 5.4 for detailed scores).

Hyperparameters. We use task-independent hyperparameters that

roughly follow these proposed by the authors of the T5 model for its

finetuning, as during our initial experiments, they turned out to be a

robust default (see Table 5.5).

Maximal input sequence lengths were chosen in such a way a fair

comparison with reference models was ensured. In particular, we use

T5+2D’s limit despite the fact one can achieve better results when

consuming a more significant part of the input document. Similarly, the

max number of updates follows the limit in reference models except for

the DWIE dataset, where the state-of-the-art solution is based on the

Table 5.4: Per-dataset results of studies (1), (2), (3), and (4). Modified models in relation to Complete STable.

Model RW Player RW Team PWC
⋆

DWIE

Complete STable (reference) 82.7 ± 0.3 84.1 ± 0.7 27.5 ± 2.2 56.0 ± 1.4

Semi-templated expansion 80.4 ± 0.5 84.1 ± 0.5 25.0 ± 0.8 56.1 ± 1.0 (1)

Fixed causal order 83.2 ± 0.4 84.3 ± 0.3 26.3 ± 1.6 46.5 ± 0.5 (2)

Decoding constraint (3)

Column-by-column 82.5 ± 0.4 84.0 ± 0.5 28.4 ± 1.5 54.8 ± 0.8

Row-by-row 80.2 ± 0.4 83.8 ± 0.4 27.6 ± 1.6 56.8 ± 0.8

L→R and T→B 83.1 ± 0.5 84.1 ± 0.7 27.7 ± 1.8 53.2 ± 0.5

No distant rows 82.7 ± 0.5 83.8 ± 0.6 28.1 ± 1.0 54.2 ± 1.2

Decision criteria (inner × outer) (4)

min max 81.9 ± 0.4 83.7 ± 0.5 26.5 ± 2.0 54.2 ± 0.8

mean max 83.0 ± 0.3 83.8 ± 0.8 27.8 ± 1.4 56.1 ± 1.1

mean min 81.2 ± 1.1 83.7 ± 0.6 26.4 ± 1.9 51.9 ± 0.5

min min 82.8 ± 0.6 83.8 ± 0.5 27.6 ± 1.3 54.0 ± 0.5

max min 82.3 ± 0.3 84.5 ± 1.0 20.7 ± 1.6 52.7 ± 0.4

Sequential decoder bias only 0.3 ± 0.1 0.6 ± 0.3 14.1 ± 0.3 0.6 ± 0.1 (5)

Sequential and header bias 16.0 ± 0.4 45.1 ± 0.4 27.7 ± 2.0 44.2 ± 1.2
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Table 5.5: Task-independent hyperparameters used across all experiments.

Hparam Dropout Batch Learning rate Weight decay Label smoothing Optimizer

Value .1 64 1e-3 1e-5 .1 AdamW

incomparable multi-step pipeline. See Table 5.6 for these task-specific

details.

Software and hardware. All experiments and benchmarks were per-

formed on DGX-A100 servers equipped with eight A100-SXM4-80GB

GPUs that feature automatic mixed precision. Our models and references

were implemented in PyTorch 1.8.0a0 (Paszke et al., 2019) with CUDA

11.4 and NVIDIA drivers 470.82.01.

E Business Datasets

Due to the sparsity of public benchmarks for complex information extrac-

tion, we decided to provide results on three confidential datasets. They

assume, respectively, (1) the extraction of payments’ details from Payment
Stubs, (2) Recipe Composition from documents provided by multinational

snack and beverage corporation, as well as (3) account balances from

Bank Statements. Their details are covered in the present section and

Table 5.8.

Recipe Composition. The problem faced is extracting proprieties of

food ingredients from confidential food manufacturer’s documentation.

This dataset contains 165 annotated fragments from 55 documents,

three pieces for each document, with annotations sourced from the

corporation’s CRM system.

For each file, there are five tables to be extracted. The first one describes

the ingredient’s physical and chemical parameters (i.e., parameter name,

testing method, range of allowed values, unit of measurement, and

testing method details). The second one describes sub-components of

the ingredient (i.e., its quantity, name, allergens, ingredient function,

and country of origin). The third table informs about the presence of

allergens (e.g., their names and binary information about their presence).

The last two tables contain a quantity of the allergens (e.g., names

and their qualities) as sub-components and caused by contamination

retrospectively.

Dataset

Max steps Max input

Ablation Final length

PWC
⋆

500 1,000 6,144
∗

Rotowire 3,000 8,000 1,024

CORD — 36,000 1,024

DWIE 4,000 8,000 2,048

Recipe Composition — 400 2600

Payment Stubs —

Bank Statements — 200 7000

Table 5.6: Task-dependent hyperparame-

ters and training details. (
∗
) Length equal

to the one consumed by the baseline

model.
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Table 5.7: Detailed results of experiments on reversed Rotowire dataset. See X. Wu et al. (2022) for metrics’ specification.

Row header F1 Column header F1 Non-header F1

Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT

Team 94.9 95.2 97.8 88.9 85.8 88.7 84.7 85.6 90.3

Player 93.5 95.3 95.1 88.1 91.2 94.5 84.5 86.8 90.4

Table 5.8: Summary of the confidential datasets.

Recipe Composition Payment Stubs Bank Statements

train documents 119 80 111

val documents 16 10 10

test documents 30 20 10

avg doc len (words) 0.6k 0.3k 1.3k

max doc len (words) 1.6k 2k 4, 9k

avg doc len (characters) 3.3k 2k 8.3k

max doc len (characters) 10k 14.2k 37.9k

properties total 64 11 10

properties in tables (tables columns) 64 4 4

properties outside of tables 0 7 6

mean number of table rows 12 5 2

max number of rows 60 15 5

mean length of cell (characters) 12 8 9

max length of cell (characters) 308 44 36

The first table needs to be extracted from the first document fragment,

the second table – from the second fragment, and the three last tables –

from the third document fragment. Input documents feature tables and

fulfilled forms, where properties are presented in the form of text or

check-boxes.

The analysis of expected outputs shows a high level of variability con-

cerning the factors of table length (1 to 60 rows) and answer type (either

a binary value, number, complex chemical name, or a more extended

description).

Payment Stubs. The second of our private datasets consists of 110

American payment stubs, i.e., documents obtained by an employee

regarding the salary received.

We aim to extract employee and employer names, dates, and payment

tables, where each row consists of payment type, hours worked, and

payment amount. Since documents come from different companies, their

layouts differ significantly.

Due to the straightforward form of information to be extracted, a single

annotator annotated each document. We state these were annotated

ethically by our paid co-workers.

Bank Statements. The last dataset consists of 131 annotated bank

statements. The goal here is to extract bank and customer name, date of

issue, and table of account balances (e.g., account number, balance at the

beginning of the period, and balance at the end).
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Data to be comprehended is partially presented in the document’s header

and partially in multiple forms (each for one account).

Similar to the Payment Stubs dataset, documents here were issued by

different banks and represent a broad spectrum of layouts. The annotation

process was the same as for the Payment Stubs dataset.

F Adaptation to Table Structure Recognition Task

Our method by design does not generate the table header since we

assume that the names of the datapoints to infer are given in advance.

To tackle problems such as table structure recognition where the set of

possible header values is not limited, one needs to slightly modify the

proposed solution. However, we do not consider it a serious limitation as

the required modification is relatively straightforward, and for the sake

of completeness, we describe it below.

To adjust the proposed method to be applicable to the task of Table

Structure Recognition, one must understand the differences in framing

the problem between the tasks here.

Table Structure Recognition or Table Extraction aims to generate headers

and the table content based on the document with the table provided

explicitly. STable described in the main part of this paper can generate the

table given any text and its position on pages. This capacity generalizes

well to any input, including when the table is provided on the input.

The difference is that the output form in STable assumes the headers are

known upfront, while for Table Structure Recognition, inferring them

is a part of the task. STable can achieve such capabilities to solve the

Table Structure Recognition task by (1) adding a linear layer to predict the

number of columns, (2) treating headers as the values to be inferred in

the first row, (3) using dummy names of the columns, e.g., "first column,"

"second column," and (4) increasing the predicted number of rows by

1.

In this setup, the model will predict the number of columns and the num-

ber of rows, while the first row will represent the values of header names.

The dummy headers will have to be removed during postprocessing, and

the values in the first row should be treated as valid headers.

G Sample Input-Output Pairs

PWC⋆ (Borchmann et al., 2021). Input in the PWC
⋆

consists of born-

digital, multipage PDF files containing an article from the machine

learning field. The expected output is a list of tuples describing achieved

results on arbitrary datasets (see Figure 5.8).

CORD (Park et al., 2019). Input in the dataset is a single scanned or

photographed receipt. From our point of view, the output here is twofold

— there are simple data points that can be considered key-value pairs

and data points that take the structured form of line items. We approach

the problem as the generation of two tables from the document — one

for each data kind (see Figure 5.9).
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Input

Output

Multipage scientific article, e.g.:

Reported results 

Leaderboard entries

Task Dataset Metric Model

Document Classification Reuters En-De Accuracy BilBOWA

Document Classification Reuters De-En Accuracy BilBOWA

Value

86.5

75.0

Figure 5.8: An example from PWC
⋆

dataset considered in the document-to-table paradigm.

Input OutputPhotographed receipt, e.g.: Content of receipt casted as two tables

Simple key-value pairs

Property Value

total.cashprice 100,000

total.changeprice 51,000

total.total_price 49,000

menu.nm menu.cnt menu.price

REDBEAN BREAD 1 10,000

[MD] MINI CASTELLA ORIGIN 1 10,000

Line items

[MD] SOFT STEAMED CHEESEC 1 11,000

[MD] SOFT STEAMED CHOCOCA 2 18,000

Figure 5.9: Sample document from CORD dataset and its expected output as interpreted in our approach.

DWIE (Zaporojets et al., 2021). Input in the dataset is a plain-text

article. The final goal is to extract the normed object, relation, and subject

triples (though the original formulation assumes several intermediate

stages). Triples are always complete (i.e., there are no NULL values, as

we understand them (see Figure 5.10 for an example).

Reversed Rotowire (X. Wu et al., 2022). Input in the reversed Rotowire

dataset, as reformulated by (X. Wu et al., 2022), is a plain-text sport news

article. The task is to generate tables with team and player statistics. The

number of rows in the Team table is from zero (if no team is mentioned in

the text) to two, whereas the number of rows in the Player is highly variable

and content-dependent. Figure 5.11 present sample pair of document and

tables to generate.
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Input Plain-text article, e.g.:

Relations

Final four square off in German Cup semifinals. Bremen's
unprecedented four-match battle with Hamburg gets
underway with the Cup semifinal on Wednesday. But
before that Leverkusen try to seize their last chance for
some silverware against Mainz.
. 

(...)



The visitors will be bolstered by the return of superstar
playmaker Diego who was rested with a perhaps fictional
injury in the league last weekend. Hamburg, meanwhile,
are third in the league and have an outside shot at winning
a triple. But they should beware, if they think they're bound
to be victorious in something. As recently as 2002,
Leverkusen had a chance to win the Bundesliga, the Cup
and the Champions League -- only to emerge, in the end,
empty-handed.


Output Relations between normalized entities

Object Relation Subject

Germany event in0 German Cup

German Cup appears in Bremen

UEFA Cup appears in Bremen

Bundesliga appears in Bremen

Bremen
 member of, player of Diego

...

Figure 5.10: Sample input-output pair from the DWIE dataset. The table was shortened and consisted of 29 rows in our approach.

Suppose multiple relations appear in the same direction between the pair of object-subject. In that case, we predict a list of them in a

single cell, reducing the number of rows generated (see the example of the Bremen-Diego pair).

Input

Output

Plain-text sport-related article, e.g.:

Statistics of teams and players performance

Team statistics  (for values that were not present there is a NULL variable in the column)

Team Losses Total points Wins

Bucks 3

Bulls

The Milwaukee Bucks (1 - 3) defeated the Chicago Bulls (3 - 1), 92 - 90, on a buzzer beating shot
Saturday in Game 4 of their Opening Round Series. In a potential close - out game for Chicago, it
was Milwaukee who did the closing Saturday at the BMO Harris Bradley Center. The Bucks were able
to put Thursday's gutting double overtime defeat behind them with a thrilling win at the buzzer to
extend the series for at least one more game. When O.J Mayo canned a three pointer to put the
Bucks up six with 1:44 remaining, it looked as though the Bucks were on their way to a victory in front
of the home crowd. 

(...)



O.J Mayo led the Bucks in scoring with 18 points in 24 minutes and John Henson had a huge impact
on the defensive end with four blocks and a steal. Henson also pulled down three offensive rebounds
and five boards overall. Three of Milwaukee's bench players scored as many or more points than all
of its starters individually. The Bucks will look to use the momentum from Saturday's victory to stay
alive in the series Monday.

1

92

90

1

3

Points in 1st quarter

NULL

NULL

No. of team assists

NULL

NULL

...

Player statistics  (for values that were not present there is a NULL variable in the column)

Player Assists Blocks

Jimmy Butler

 Derrick Rose

NULL

6

NULL

NULL

3-pointers attempted

NULL

NULL

Turnovers

NULL

8...Nikola Mirotic NULL NULL NULL NULL

John Henson NULL 4 NULL NULL

O.J. Mayo NULL NULL 6 NULL

Points

33

5

NULL

NULL

18

Figure 5.11: Input-output example from the reversed Rotowire dataset. We present shortened forms of tables than in real have 13 columns

for Team and 20 columns for Player tables. Note that there is a NULL value in the column for values not present in the input text.
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The horse face emoji we feature is a part of Noto Emoji distributed under
the Apache License 2.0. Copyright by Google Inc. No animals were harmed

in the making of this article.
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30/11/2022 

 

Dear WMT General MT Task participants, 

 

Artur Nowakowski 

Gabriela Pałka 

Kamil Guttmann 

Mikołaj Pokrywka 

 

On behalf of the organizing committee of the 7th Conference on Machine Translation 

(WMT22), we would like to thank you for your participation in the WMT22 General Machine 

Translation Task. 

 

We are pleased to confirm that your submissions to the Czech to/from Ukrainian language 

pair described in the system description paper:  

“Adam Mickiewicz University at WMT 2022: NER-Assisted and Quality-Aware Neural 

Machine Translation”, Artur Nowakowski, Gabriela Pałka, Kamil Guttmann and Mikołaj 

Pokrywka 

were ranked at the position 2-3 in the official rankings including human references and 

unconstrained submissions, and achieved the highest average direct assessment scores 

among constrained submissions in both language directions. Congratulations on achieving 

your results. 

 

We look forward to your paper presentation at the 7th Conference on Machine Translation 

(WMT22) to be held on December 7-8, 2022, in Abu Dhabi, co-located with EMNLP 2022. 

 

Cordially, 

 

 

Tom Kocmi 

on behalf of the WMT22 organizing committee. 



97

20l06l2023

Dear 4th Shared Task on SlavNER pańicipants,

Gabriela pałka

Ańur Nowakowski

on behalf of the organizing committee of The 9th Workshop on Slavic NaturaI Language
Processing (Slavic NLP 2023), we would like to thank you for your pańicipation in the 4th

Shared Task on SlavNER.

We are pleased to confirm that your submissions to the tasks of recognition and lemmatization
(normalization phase) of named entities described in the system description paper:

"Exploring the lJse of Foundation Models for Named Entity Recognition and Lemmatization

Iasks in Slavic Languages", Gabriela Palka and Artur Nowakowski

were ranked in the official ranking at position 2 and 1, respectively. Congratulations on achieving
your results.

We thank you for your paper presentation at the 9th Workshop on Slavic Natural Language
Processing (Slavic NLP 2023), which was held on May 6,2023, in Dubrovnik, co-located with

EACL 2023.

Cordially,

P-,rqrŁ'
on behalf of the 4th Shared Task on SlavNER organizing committee.
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EACL 2024, 2024 is correctly characterized in the table below (* denote group of equal contribution).

Contributor Description of main tasks

Michał Pietruszka*
Conceptualization and methodology of the research work, idea behind the solution as a
whole, novel algorithm development and implementation, experimental design and
implementation, real-world applications, writing a paper

Michał Turski*
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Dawid Jurkiewicz 2D tabular embeddings (co-invention with Michał Pietruszka), conceptual work
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