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Abstract 

The pursuit of sustainability in all aspects of public life is currently a fundamental global 

responsibility, due to the constantly deteriorating state of the environment. Numerous regulations have 

been introduced in the packaging sector (including the Plastics Directive). Based on these, new 

biodegradable and recyclable food contact materials (FCMs) have appeared on the consumer market, 

which may raise food safety concerns. The doctoral dissertation carried out a comprehensive 

characterization of the interactions between newly introduced FCMs and food. For this purpose, 13 

FCMs (of plant origin, bio-based plastics) were selected and subjected to migration tests under different 

time and temperature conditions, using food or food simulants of different nature. A wide spectrum of 

chemical compounds (untargeted approach) and migration markers (targeted approach) were 

determined using analytical, sensory and statistical tools. This enabled the identification and 

quantification of various organic and inorganic contaminants that can easily migrate from FCMs to food 

and affect its sensory profile and quality.  

The obtained results clearly showed that some plant-based FCMs can distort the sensory profile 

of coffee and tea. Chemical compounds affecting noticeable undesirable changes include saturated and 

unsaturated carbonyl compounds (e.g., Strecker aldehydes: 3-methylbutanal and 2-methylbutanal), and 

saturated alcohols (e.g., hexan-1-ol, heptan-2-ol, octan-3-ol). In order to assess the influence of various 

factors (time and temperature of FCM-food contact, microwave radiation, type of food, chemical 

composition of food) on the intensity of FCM-food interactions, low-molecular-weight carbonyl 

compounds were selected as markers of undesirable changes. These compounds are ubiquitous in the 

environment, are reactive and undergo dynamic changes, and the optimized measurement procedure 

used allowed their monitoring at low concentration levels (ng/L). Consumer exposure to particularly 

hazardous compounds migrating (e.g., formaldehyde, bisphenol-A, toxic elements) from new FCMs to 

food was also estimated using specific migration limits (SML) or tolerable daily intake (TDI). The 

presented results and discussion provide a basis for deepening knowledge and understanding the 

nature of currently popular FCMs and their impact on the environment, and especially on food. 

 

 

 

Keywords: environmental pollution; food contact materials (FCMs); migration studies; food simulants; 

organic and inorganic contaminants; food safety; markers of changes; analytical tools; sensory analysis. 
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Streszczenie 

W obliczu nieustannie pogarszającego się stanu środowiska dążenie do zrównoważonego rozwoju 

w każdym aspekcie życia publicznego stanowi obecnie fundamentalny, globalny obowiązek.  

W sektorze opakowaniowym wprowadzono liczne regulacje prawne (m.in. Dyrektywę Plastikową), na 

mocy których na rynku konsumenckim zaczęły pojawiać się nowe, biodegradowalne i zdatne do 

recyklingu materiały do kontaktu z żywnością (ang. food contact materials; FCMs), co może budzić 

wątpliwości dotyczące bezpieczeństwa żywności. W rozprawie doktorskiej przeprowadzono 

kompleksową charakterystykę interakcji zachodzących między nowo wprowadzanymi FCMs  

a żywnością. W tym celu wybrano 13 FCMs (pochodzenia roślinnego i bioplastiki), które poddano 

badaniom migracji w różnych warunkach czasowych i temperaturowych, z wykorzystaniem żywności lub 

płynów modelowych imitujących żywność o różnym charakterze. W celu oceny bezpieczeństwa FCMs, 

oznaczono szerokie spektrum związków chemicznych (podejście nieukierunkowane) oraz markery 

migracji (podejście ukierunkowane) za pomocą narzędzi analitycznych, sensorycznych i statystycznych. 

Umożliwiło to zidentyfikowanie oraz skwantyfikowanie różnych zanieczyszczeń organicznych  

oraz nieorganicznych, które mogą łatwo migrować z FCMs do żywności i wpływać na jej profil 

sensoryczny i jakość.  

Uzyskane wyniki jednoznacznie wykazały, że niektóre FCMs pochodzenia roślinnego mogą 

zniekształcać profil sensoryczny kawy i herbaty, a do wiodących związków chemicznych wpływających 

na wyczuwalne, niepożądane zmiany można zaliczyć nasycone i nienasycone związki karbonylowe (m.in. 

aldehydy Streckera: 3-methylbutanal i 2-methylbutanal) i nasycone alkohole (np. heksan-1-ol, heptan-

2-ol, oktan-3-ol). W celu oceny wpływu różnych czynników (m.in. czasu i temperatury kontaktu FCM-

żywność, promieniowania mikrofalowego, rodzaju żywności, składu chemicznego żywności) na 

intensywność interakcji FCMs-żywność, wybrano niskocząsteczkowe związki karbonylowe jako markery 

zachodzących, niepożądanych zmian. Związki te są wszechobecne w środowisku, są reaktywne i ulegają 

dynamicznym zmianom, a zastosowana zoptymalizowana procedura pomiarowa pozwoliła na ich 

monitorowanie na niskich poziomach stężeń (ng/L). Oszacowano również narażenie konsumentów na 

szczególnie niebezpieczne związki migrujące (np. formaldehyd, bisfenol-A, pierwiastki toksyczne)  

z nowych FCM do żywności przy użyciu limitów migracji specyficznej (SML) lub tolerowanego dziennego 

pobrania (TDI). Przedstawione wyniki i dyskusja stanowią podstawę do pogłębienia wiedzy i zrozumienia 

natury obecnie popularnych FCMs i ich wpływu na środowisko, a zwłaszcza na żywność. 

Słowa kluczowe: zanieczyszczenie środowiska; materiały do kontaktu z żywnością; badania migracji; 

płyny modelowe; organiczne i nieorganiczne zanieczyszczenia; bezpieczeństwo żywności; markery 

zmian; narzędzia analityczne; analizy sensoryczne.
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PE – polyethylene 
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PLB – palm leaf bowl  
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1. Introduction  

In recent years, a variety of pro-environmental regulations have been introduced in the European 

Union with the overarching goal of protecting and improving the environment (including the Plastics 

Directive; European Commission, 2019). Therefore, the packaging industry has changed the materials 

that are popularly used as food contact materials (FCMs) over the past few years. The promotion of the 

circular economy and the dissemination of environmentally friendly substitutes for fossil-based plastics 

began (Bhuyar, Muniyasamy & Govindan, 2018; Abu Bakar & Othman, 2019; Di Bartolo, Infurna & 

Dintcheva, 2021). Plant-based materials (e.g., wheat bran) and bio-based plastic (e.g., polylactide) have 

become dominant and are treated as “ecological materials”. They are environmentally friendly 

alternatives to fossil-based plastics due to their susceptibility to rapid biodegradation or reusability 

(Steven, Octiano & Mardiyati, 2020). Ecological materials focus on creating a more sustainable world 

with less environmental impact, as they decompose in an optimal time. As a result, they create biomass 

and environmentally friendly chemical compounds, such as carbon dioxide and water. At the same time, 

they have similar properties to traditional conventional materials, which largely determines the global 

demand for these materials (Jabeen, Majid & Nayik, 2015). However, new ecological materials can 

become a source of food contamination. Some of the contaminants migrating from such 

packaging/vessels may become from the environment, due to the natural process of sorption of 

environmental contaminants by plants (phytoremediation). In addition, the limited mechanical strength 

of ecological materials creates the need for reinforcements, such as synthetic fibers, adhesives and 

polymeric protective layers in the manufacturing process. They can degrade into different chemical 

compounds during storage or heating, which may easily migrate into the food. It can often cause 

undesirable changes in the quality and sensory properties of food.  

Therefore, the introduction of new materials on the market can be controversial. Replacing 

plastics with new FCMs may introduce other toxic substances that are hazardous to health and the 

environment (Akouesan et al., 2023). New FCMs are of various origins, which means that the number 

of potential contaminants that can migrate into food is constantly increasing and may still not be fully 

recognized. Moreover, very often materials from different production batches differ from each other. 

This requires constant monitoring, especially if detailed information about the material is not available 

from the manufacturer. Therefore, determining the safety of new, currently popular FCMs on the 

consumer market is a current, urgent challenge. The impact of FCMs on the amount of particularly 

dangerous organic and inorganic contaminants that can migrate from FCMs to food of various nature 

under different contact conditions should be critically assessed. Migration studies will enable a better 

recognition and understanding of the interactions between FCMs and food.   
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2. Theoretical section 

2.1 The global problem of fossil-based plastic waste 

The invention of bakelite in 1909 by Leo Hedrik Baekeland gave rise to the polymer era (Rangel-

Buitrago, Neal & Williams, 2022). The unique and desirable properties of these materials, such as 

lightness, transparency, ease of shaping, relatively low production cost and convenient transportation, 

ensured that plastics rapidly gained a global demand that continues to the present day (Nayanathara 

Thathsarani Pilapitiya & Ratnayake, 2024). According to Plastic Globe (2024) (Plastics Europe, 2024), 

global plastics production is growing year-on-year, reaching more than 413 million tonnes in 2023. The 

leader in global plastics production is Asia (53 %), followed by North America (17.1 %) and Europe 

(12.3 %). The largest sector using plastics is packaging (39.9 %). This sector has recorded accelerated 

growth by the global shift from reusable to disposable containers. As a result, the share of plastics in 

municipal solid waste (by weight) has increased from less than 1 % in 1960 to more than 10 % in 2005 

in the middle- and high-income countries (Geyer, Jambeck & Law, 2017). 

Most used plastics (more than 370 million tonnes) are still fossil fuel-based plastics (based on oil 

or natural gas), which are resistant to degradation and can easily accumulate in the environment. The 

combination of the dynamic, uncontrolled production of such materials and the use of poorly developed 

waste management systems (mainly linear economy, based on actions: take-make-consume-dispose) 

has led to the dumping of huge amounts of waste into the environment, which can finally lead to 

irreversible changes (Gucina, 2023; Beghetto et al., 2023). According to Geyer et al. (2017) and Beghetto 

et al. (2023) over the past 65 years, more than 4,900 Mt of the 8,300 Mt of fossil-based polymers 

produced have been burned, pyrolyzed or dispersed into the environment, e.g., in the packaging 

industry about 32 % of all packaging produced has been “disposed of” in this way. Plastic waste still 

remains in all major ocean basins and can have toxic effects on marine biota as a global result of these 

activities (Yu & Singh, 2023; Tekman et al., 2023). Marine animals often mistake plastic fragments for 

food, leading to problems associated with ingestion, such as gastrointestinal blockages or leaching of 

toxic chemicals into tissues (Simon, 2022). 

One of the largest dumping grounds for plastic waste is the Great Pacific Garbage Patch, which 

was discovered in 1997 by Charles Moore (Rochman, Cook & Koelmans, 2016). The patch is currently 

estimated to consist of 1.8 trillion pieces of plastic (79,000 Mt) and has an area larger than Italy and 

Germany combined (about 660,000 km2) (Lebreton et al., 2018; Beghetto et al., 2023). Plastic fragments 

can form microplastics (sizes ranging from 1 µm to 5 mm) and nanoplastics (sizes less than 1 µm) in the 
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environment, which are harmful to living organisms due to bioaccumulation and possible absorption of 

hazardous contaminants (i.e., heavy metals, hormone-like molecules, hydrocarbons and dioxins) (Fred-

Ahmadu et al., 2020; Gucina, 2023; Mariani et al., 2023).  

Contamination of freshwater systems and land habitats is also increasingly reported (Wagner et 

al., 2014; Dris et al., 2016). Plastic pollution degrades soil quality, disrupts nutrient cycles, plant growth 

and ecosystem dynamics (Dahiya, Kumar, D., Kumar, S., Pandey & Devi, 2024). The presence of 

hazardous polymer waste in the environment contributes to noticeable climate change, including global 

warming and depletion of non-renewable resources (Michelini, Moraes, Cunha, Costa & Ometto, 2017; 

Mora-Contreras et al., 2023). Waste that is disposed of in landfills can produce methane, a greenhouse 

gas with a much greater harmful impact on the environment than carbon dioxide (Ncube, Ude, 

Ogunmuyiwa, Zulkifli & Beas, 2021). The constantly deteriorating state of the environment has led to 

the recognition of the linear economic model as a driving force of unsustainable development, posing a 

threat to environmental security and economic development (Islam et al., 2024). 

 

2.2. Sustainable development regulations 

The urgent global environmental challenges mean that the search/implementation of innovative, 

sustainable economic systems that meet the needs of current and future generations is currently 

required (FAO, 2021). The global threat of the ubiquity of plastics means that European Union (EU) 

directives and regulations related to the production and disposal of plastics need to address several 

pressing aspects. These may include product quality, emissions from industrial production, worker and 

consumer health, food contact requirements, recovery and recycling of post-consumer waste (Beghetto 

et al., 2023). Sustainability efforts include the implementation of various regulations, as presented in 

Fig. 1.  
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Fig. 1. Various regulations of the EU, introducing changes to promote sustainable development over 
the past two decades 
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One of the most important regulation was EU Directive 2019/904 (European Parliament and 

Council, 2019) on reducing the environmental impact of certain plastic products. It was adopted in June 

2019 and entered on 3 July 2021. This document, commonly known as the Single-Use Plastics Directive 

(SUPD), was designed to minimize the global environmental contamination with plastic and to promote 

the use of reusable, biodegradable or recyclable materials. The main objective is to introduce a more 

sustainable and environmentally friendly economy (circular economy; CE) (Poluszyńska, Ciesielczuk, 

Biernacki & Paciorkowski, 2021; Uwalomwa et al., 2025). According to Beghetto et al. (2023), the 

environment is the basis, the economy is the tool and the well-being of society is the main goal in this 

economic model.  

The CE concept is derived from various ideologies that have evolved over the past decades 

(Uwalomwa et al., 2025). The first mentions of sustainability and pro-environmental practices appeared 

in 1966 in the work of Kenneth Boulding (Boulding, 1966), who emphasized the depletion of natural 

resources in the environment and pointed to the need for sustainable development practices and  

a circular economy system. The industrial ecology movement of the 1970s and 1980s (Rosenboom, 

Langer & Traverso, 2022), which launched the term “industrial ecology”, was also an important 

development in the field. The main motive was to design industrial systems that would reflect the 

functioning of natural ecosystems (Frosch & Gallopoulos, 1989). The term “circular economy" was 

officially introduced in 1976 by the European Commission, based on the work of Walter Stahel and 

Genevieve Reday-Mulvey (Stahel & Reday-Mulvey, 1981). 

The global popularity of the CE concept is due to the work of the Ellen MacArthur Foundation 

since 2010. Its main goal is to accelerate the transition of the global economy to CE. Since its inception, 

the foundation has become a global leader in CE and collaboration between academia, business and 

government in this area. CE is a model of sustainability that aims to reduce waste and increase resource 

use. CE focuses on closed systems that promote the reuse, repair, remanufacturing and recycling of 

goods, materials and resources (Kirchherr et al., 2018). The basic principles of the closed-loop economy 

model are based on maximizing the value of resources used, reusing production and consumption waste 

and pursuing renewable energy sources (Didenko, Klochkov & Skripnuk, 2018; Geissdoerfer, Morioka, 

Carvalho, Evans, 2018; Moshood et al., 2022). This creates a material-energy cycle in the economic 

system that considers the closed cycle of goods (Fig. 2). The initial 3R principles (reduce, recycle, reuse) 

have evolved into a more comprehensive 9R framework, including reject (R0), rethink (R1), reduce (R2), 

reuse (R3), repair (R4), refurbish (R5), remanufacture (R6), reuse (R7), recycle (R8) and recover (R9) to 

enhance corporate responsibility and facilitate a smoother transition to CE (Islam et al., 2024). 
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Fig. 2. Flow chart of the circular economy 

 

The formation and functioning of circular economy are supported by various approaches. The 

first one is the design and production in accordance with the “cradle to cradle” philosophy. This means 

considering the entire life cycle of products and promoting the use of materials that can be safely 

reintegrated into the environment or continuously reused in industrial processes (Uwalomwa et al., 

2025). The second approach is the concept of the restorative economy, which emphasizes the need to 

protect and enhance natural resources and encourages economic activities that contribute to 

environmental regeneration and sustainable development (Stahel, 2016). The third approach concerns 

natural capital accounting, which integrates the value of natural resources and ecosystem services in 

financial statements. This helps companies understand their impact on the environment and make 

informed decisions about the use of resources (Uwalomwa et al., 2025).  

According to Jaworski and Grochowska (2017), the product design stage is crucial for meeting the 

main CE assumptions. The product and its entire life cycle are shaped at this stage. The use of practices 

and tools such as resource saving, eco-design, life cycle assessment and eco-labelling can ensure 

compliance with the CE idea. The production stage is associated with the extraction and processing of 

resources, which requires energy input and generates large amounts of waste, especially in highly 

developed companies. Fulfilling the CE principle at this stage can be particularly difficult. It is important 

to meet Good Manufacturing Practice (GMP) principles, strive to improve the efficiency of technological 

processes and introduce innovative solutions using tools such as the environmental technology 
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verification system (ETVS), the eco-management and audit system (EMAS) and the environmental 

footprint.  

The product use stage is associated with consumerism. It requires ecological awareness of society 

and promotion of pro-ecological attitudes. The product should be used in the most effective way, which 

will contribute to minimizing excessive consumption. The final stage is waste management and activities 

are focused on waste prevention and promoting recycling (waste can be recovered and reintroduced 

into circulation and used in the next cycle). Waste that is not suitable for recycling should be subjected 

to other recovery processes (incineration and co-incineration of waste), which allow for a high level of 

energy recovery and processing of waste into solid, liquid or gaseous fuels. The least desirable form of 

waste management is its neutralization (wasting potential), which includes waste storage in landfills and 

thermal processing of waste without significant energy recovery. 

A global popularization of new materials in the packaging sector is currently observed in order to 

achieve the above-mentioned, main objectives of sustainable development. 

 

2.3 New materials used as food contact materials (FCMs) 

Sustainable development strategies (mainly the CE approach) and society’s concern for the 

environment makes it necessary to introduce changes in the packaging sector. Research is currently 

underway to find alternative materials with functional properties similar to fossil-based plastics, but safe 

for the environment. In general, all materials used in packaging can be divided in terms of renewable 

resources and biodegradability, as presented in Fig. 3.  

 

Fig. 3. Division of materials based on renewable resources and biodegradability (adapted from 
European Bioplastics, Bioplastic Materials, 2020; (the abbreviations used are explained in the List of 

Symbols) 
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The most desirable are “double green” materials, which are produced from renewable resources 

and are biodegradable (so-called plant-based materials and bio-based plastics) (Barbale et al., 2021). 

Another important area of research is the search for methods to increase the recycling rate of non-

biodegradable polymers obtained from fossil raw materials. These measures will reduce the use of 

natural resources. Global demand for more environmentally friendly materials has led to an increase in 

the production of these materials and is expected to continue to grow in the next few years. According 

to Plastic Globe (Plastics Europe, 2024), global production of “ecological materials” was almost 

40 million tons (about 10 % of global plastic production) in 2023. More than 36 million tons include 

recyclable materials and about 3 million tons were bio-based plastics. Between 2018 and 2023, 

production of such materials increased by more than 8 million tons. 

 

2.3.1 Characteristic of biodegradable/compostable FCMs  

Based on the definition proposed by the International Union of Pure and Applied Chemistry 

(IUPAC), bio-based plastics are materials derived from “biomass or monomers derived from biomass 

and which, at some stage in its processing into finished products, can be shaped by flow” (McNaught & 

Wilkinson, 1997). Such bio-based plastics contain natural polymers or salt mixtures that biodegrade 

much faster than traditional plastics. Biodegradable plastics are considered environmentally friendly 

because they are produced from renewable agricultural materials (Lomwongsopon & Varrone, 2022). 

They contribute to the conservation of limited natural resources. Biodegradation is the process of 

decomposition of plastics under the activity of microorganisms (bacteria, fungi, algae) under certain 

environmental conditions into natural chemical compounds (biomass, water and carbon dioxide). This 

reduces the impact of such materials on ecosystems (especially marine) and human health. 

Furthermore, the production of bio-based plastics and biomaterials often requires less energy, thus 

reducing greenhouse gas (GHG) emissions (Mahmoud, Yasien, Swilam, Gamil & Ahmed, 2023). The 

biodegradation process of plastics depends on many factors, which are summarized in Fig. 4. 
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Fig. 4. Factors influencing the rate of the biodegradation process 

 

Plastics that biodegrade quickly and under well-defined conditions are called compostable 

polymers. This means that under controlled composting conditions, 90 % of the plastic degrades within 

six months and the compost produced is not harmful to plants. In many countries (e.g., Italy), 

biodegradable bio-based plastics certified as compostable (based on EN 13432:2000) are collected with 

biowaste and processed in anaerobic digestion (AD) plants and composting facilities. According to 

Cucina et al. (2022), the circularity of biosolids is particularly enhanced in AD systems, where they can 

be converted to biogas, generating a corresponding amount of renewable energy and reducing their 

release to the environment. 

 

2.3.2 Characteristic of recyclable FCMs 

The global waste management market was estimated to cost at USD 1,293.70 billion in 2022 and 

is expected to grow at a compound annual growth rate (CAGR) of 5.4 % from 2023 to 2030 (Report ID: 

GVR-4-68039-917-8). In Europe, 23 million tons of plastic packaging are produced per year and current 

forecasts predict 92 million tons by 2050 (Guillard et al., 2018; Ncube et al., 2021). However, recycling 

rates for single-use plastic packaging are currently low. According to Ncube et al. (2021), only 14 % of 
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plastic packaging is collected for recycling and 5 % is successfully recycled into new plastic. The planned 

EU packaging waste targets are related to ensuring that 75 % of packaging is recycled by 2030. 

Therefore, increasing the efficiency of recycling and upcycling of plastic waste is crucial. Recycling can 

reduce the consumption of raw materials and reduce waste through a closed loop. Upcycling is the 

addition of value to plastic waste to produce a higher value product (Jung et al., 2023). The effectiveness 

of recycling and upcycling depends on the functioning of the several system elements, which can 

include: 

-  appropriate legislative policies to promote recycling and the development of waste treatment 

technologies, 

-  the design of goods consisting of homogeneous materials sent for recycling, which facilitate waste 

separation, 

-  the design of products consisting of different materials that will be easily separable, 

-  the design of goods allowing waste to be stored and reused without treatment (or with minimal 

treatment), 

-  proper labelling of packaging and product components, which facilitates recognition and proper 

segregation of waste. 

 

2.3.3 Production of new FCMs 

FCMs made of renewable raw materials (plants) are increasingly appearing on the consumer 

market, due to environmental concerns. The most commonly used plant-based FCMs include sugar cane 

fiber (bagasse), wheat bran, palm leaves, wood and others. In general, the production technology of 

plant-based FCMs is based on the initial cleaning of the raw material, soaking, drying and extrusion of 

the desired shapes (usually using pressure extrusion). Plants are also used as primary raw materials for 

obtaining polysaccharides (Fig. 5).  
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Fig. 5. Main stages of production of plant-based and bio-based plastics FCMs 

 

Starch is a key component in the production of biodegradable (and compostable) plastics due to 

its cost-effectiveness and ease of processing. This raw material has found wide application in packaging 
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(Matheus et al., 2023; Garavito, Peña-Venegas & Castellanos, 2024; Haq et al., 2025). Starch can be 

extracted from cassava, corn, potatoes and beans. It is a natural, crystalline polysaccharide and occurs 

in the form of grains. The production of starch packaging/vessels involves its decomposition 

(destructuring) and chemical modification, such as etherification or esterification. These processes aim 

to improve the mechanical properties, water resistance of starch and compatibility with other polymers 

(Kim & Jung, 2022). Plasticizers (e.g., sorbitol, glycerol) are also often added at the production stage to 

improve the mechanical properties of starch-based products (e.g., increase elasticity) (Kshirsagar & 

Shinde, 2023). The whole is subjected to the action of thermal and mechanical energy, resulting in the 

formation of thermoplastic starch (TS), which can be considered a substitute for polystyrene (PS). Starch 

is most often used for the production of films characterized by high tensile and bending strength. The 

degradation time of starch products in conventional composting plants is 20-45 days (Fazal et al., 2025). 

Another natural polymer is polylactide (PLA) composed of many connected 2-hydroxypropanoic 

acid molecules. This aliphatic polyester is produced by fermentation of starch-rich agricultural by-

products (e.g., potatoes, corn, wheat). There are three known routes for the synthesis of PLA: direct 

condensation polymerization, azeotropic dehydration condensation and ring-opening polymerization 

(ROP), which is the most commonly used, although it requires purification and the use of heavy metal 

catalysts (Singhvi, Zinjarde & Gokhale, 2019; Li et al., 2020; Oliver-Cuenca et al., 2024). 

Several methods are used to process PLA, including extrusion, injection molding, thermoforming 

and foaming (Castro-Aguirre, Iñiguez-Franco, Samsudin, Fang & Auras, 2016). Thermoforming is most 

commonly used in the production of FCMs. The process involves heating PLA to soften it, then using 

compressed air and pressing the material into the mold. The properties of PLA depend on the ratio 

between the two optical isomers of the lactic acid monomer (PLLA and PDLA). In order to improve 

functional properties and flexibility, PLA is often blended with plasticizers (glycerin, polyethylene glycol 

or vegetable oils) (Carbonell-Verdu et al., 2017). PLA can be considered as an ecological substitute for 

high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene terephthalate (PET) 

and polystyrene (PS). PLA is subjected to microbial degradation. In strictly defined environmental 

conditions, enzymes produced by microorganisms (e.g., lipases, proteases) can catalyze the hydrolysis 

of PLA chains. PLA, under the right conditions, degrades within 80 days (Oliver-Cuenca et al., 2024).  

In turn, cellulose has been widely used in the production of recyclable paper products. Cellulose 

fibers can be recovered from wastepaper and further processed into new products (Copenhaver et al., 

2021; Wang et al., 2021; Fazal et al., 2025). Cellulose is obtained from trees, cotton and sugar cane 

stalks. It is a tasteless and odorless solid. It has a linear structure formed from β-D-glucopyranose 
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molecules connected by β-(1,4)-glycosidic bonds. Subsequent layers of the chain overlap, which results 

in the formation of fibers stabilized by hydrogen bonds. This gives the entire structure a very high 

durability and creates major problems in polymer processing. High chemical and mechanical strength 

cause poor solubility in water and organic solvents. Therefore, it is necessary to modify cellulose into 

water-soluble derivatives to obtain paper. For this purpose, an esterification reaction is carried out, 

which produces cellulose ethers and esters (i.e., cellulose acetate). Cellulose packaging is often 

reinforced with synthetic polymer films (e.g., polyethylene (PE)). According to Fazal et al. (2025), the 

process of producing cellulose vessels is environmentally friendly, as it causes the emission of about 

0.2 kg CO2/kg of material (for comparison, the production of PS produces 7.4 kg/kg of material, 

respectively). 

On the other hand, recycling materials involves several important steps that impact a sustainable 

approach to waste management. First, the efficiency of the recycling and the final product is highly 

dependent on the initial collection and sorting stages, as the quality of the input material has a strong 

influence on the efficiency of the waste management and material recovery process. Therefore, many 

techniques have found widespread application in this field, such as near infrared (NIR) (Cimpan, Maul, 

Jansen, Pretz & Wenzel, 2015), Fourier transform infrared, ultrasound, laser-induced breakdown 

spectroscopy or X-ray fluorescence (Rahimi & García, 2017; Singh et al., 2017). Currently, plastics are 

recycled mechanically and chemically. The first one (also called secondary recycling) is for homogeneous 

waste with a low degree of contamination and consists of the following steps: 

I) the recycled plastics have to be separated from the non-plastic components and then the different 

plastics are collected separately using optical, manual, floating/sinking techniques, 

II) grinding and milling – common polymers and/or additives can be added to the recycled material, 

III) extrusion – the efficiency of polymer recycling depends on the sorption properties and inertness 

of the polymer and the diffusion behavior of the polymer. FCMs produced from transparent 

polymers (PET and HDPE) are suitable for recycling in this way, while HDPE is susceptible to sorption 

of contaminants (Clark, Jung & Lamsal, 2014). 

Mechanical recycling is mainly implemented in developing countries because it is a low-cost and 

efficient process. However, this process has some limitations because with each successive recovery 

cycle the material loses its quality. Chemical recycling (also called raw material recycling) is the 

decomposition of polymers in a controlled manner into monomers and oligomers by chemical reactions 

such as pyrolysis, hydrogenation, hydrolysis and hydrocracking. Chemical recycling is considered as a 
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complementary strategy to mechanical recycling and allows to increase the percentage of recycled 

plastic waste (Huang, Veksha, Chan, Giannis & Lisak, 2022). 

Another form of recycling is energy recovery, which is based on waste incineration and recovery 

of heat and electricity. Energy sources are mainly plastics from crude oil, which are characterized by 

high calorific value, e.g., for polyethylene and polypropylene they are about 45 and 46.5 MJ/kg, 

respectively, while the calorific value of crude oil is about 42.5 MJ/kg (Panda, Singh & Mishra, 2010). 

Incineration reduces the volume of waste by about 99 %, but on the other hand it can contribute to the 

emission of harmful chemical compounds into the environment (this requires air quality control) 

(Ferronato & Torretta, 2019). Popular methods of waste-to-energy (WTE) used in developed countries 

are divided into thermal (pyrolysis, incineration and gasification), chemical (esterification) and 

biochemical (fermentation) (Rafey, Prabhat & Samar, 2020). Currently, the efficiency of electricity 

generation using WTE technology is about 80 %. Modern incinerators are equipped with state-of-the-

art air pollution control technologies to minimize emitted air pollutants (Al Qattan et al., 2018; 

Hahladakis, Velis, Weber, Iacovidou & Purnell, 2018). 

 

2.3.4 Advantages and limitations of new FCMs  

The current poor state of the environment requires major changes in the packaging sector. 

Regulations promote investment in bio-based plastic, plant-based and recyclable material technologies, 

which increases market demand (Moshood et al., 2021). Filho et al. (2021) suggest that most consumers 

are aware of the problem of plastic pollution and are committed to reducing plastic consumption by 

using sustainable alternatives to fossil-based plastics. 

According to Mousavi et al. (2024), Mohery, Mindil and Soliman (2024), Fazal et al. (2025), the 

implementation of biodegradable and recyclable materials presents challenges and opportunities. 

Significant opportunities include reducing pollution, promoting sustainable material alternatives and 

supporting new recycling technologies. However, key challenges are related to high production costs 

(compared to conventional plastics) and the need to improve waste management infrastructure. It has 

been estimated that the production of about 1 kg of bio-based plastic requires about 1-2 kg of corn or 

about 5-10 kg of potatoes, which may result in deforestation of the crops used to produce these 

materials (Jeremic, Milovanovic, Mojicevic, Bogojevic & Nikodinovic-Runic, 2020).  

Moreover, plastics recycling processes are difficult to implement. Most plastics (more than 50 % 

of waste) are produced from olefins (e.g., LDPE, HDPE, PP) (Vieyra, Molina-Romero, Calderon-Najera & 
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Santana-Diaz, 2022). Their structure consists of polymer chains with strong covalent C-C bonds. This 

makes their decomposition require high energy inputs and the use of high-performance catalysts (Jung 

et al., 2023). Therefore, the recycling rate of olefin-based polymers is currently low at less than 10 % 

(Chaudhari et al., 2021). Some plastics (e.g., PET) are more given to reuse, as there is an ester bond in 

their structure that is susceptible to decomposition by hydrolysis. However, PET waste currently 

accounts for about 10 % of all plastic waste generated. Mixtures of plastics that are combined within a 

single product are also a major limitation, making the sorting efficiency of such waste low (Roosen et 

al., 2020; Vogt, Stokes & Kumar, 2021; Jung et al., 2023). Furthermore, the use of a wide range of new 

materials as food contact materials (FCMs) may raise food safety concerns. 

 

2.4 Contamination problems in FCMs 

Food contact materials (FCMs) are an important element of packaged/served food because they 

fulfill various functions, i.e., protection, information, marketing and logistics (Kato & Conte-Junior, 

2021). However, not every material can be used as a FCMs, because they must comply with basic food 

safety requirements (European Commissions, 2011, 2018). This means that FCMs should be 

manufactured in compliance with GMP principles in order to limit transfer contaminants into food that 

could adversely affect human health or cause unacceptable changes in the composition or properties 

of foodstuffs (Commission Regulation, 2006).  

However, since the 1970s and 1980s, some researchers have reported that the phenomenon of 

migration of various contaminants from packaging materials (conventional plastics) can significantly 

reduce the quality of food and change its sensory profile (Figge & Koch, 1973; Senich, 1982; Taverdet & 

Vergnaud, 1984; Scriven, Sporns & Wolfe, 1987). The packaging material is often reinforced and 

enriched on the production line by adding various chemical compounds that improve the final 

properties of FCMs, such as light, oxidation and impact resistance, appropriate hardness and the others 

(Rodrigues et al., 2019; Kato & Conte-Junior, 2021; Fengler & Gruber, 2022; Lerch, Fengler, Mbog, 

Nguyen & Granby, 2023; Phelps, Parkinson, Boucher, Muncke & Geueke, 2024). This means that 

interactions between FCMs and food require monitoring and control to assess the safety of popular 

FCMs. 
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2.4.1 Regulations for the served/packed food safety 

Interactions that occur between FCMs and food can lead to significant changes in the quality and 

sensory properties of food. The most undesirable changes may be caused by the bidirectional 

migrations. This phenomenon occurs mainly with molecularly dispersed low-molecular-weight 

substances, which can be easily transferred from FCMs to food and conversely (Kato & Conte-Junior, 

2021). Based on the Fick's law, it can be assumed that the migration of substances occurs by diffusion 

between media of different concentrations, until an equilibrium state is established (Kato & Conte-

Junior, 2021; Wang, Gao, Liu, Lin & Xia, 2020). In general, the stages of migration can be divided into 

desorption of dispersed molecules from the surface of FCMs, sorption of compounds at the FCM-food 

interface and desorption of compounds in food (Bhunia, Sablani, Tang & Rasco, 2013; Schmid & Welle, 

2020). Regulating the safety of served/packaged food requires the establishment of appropriate 

supervisory authorities, which is globally presented in the Fig. 6. 

 

Fig. 6. FCM safety regulators around the world 

 

In the EU, the European Food Safety Authority (EFSA) operates, which is an advisory body to the 

legislator (Commission) in terms of authorizing permitted substances added to plastic products (risk 

assessment). On the other hand, the European Commission establishes regulations on FCMs. One of the 
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most important regulations in this area is Regulation (EU) No. 10/2011 (amendment on September 23, 

2020), which applies to materials and articles intended for contact with food, made of plastics. Annex  

I of this regulation contains a positive list (the so-called Union list) of substances (including monomers, 

auxiliary agents, macromolecules produced by microbiological fermentation and others) that are 

permitted as intentional additives used in the production process of plastic materials and products. 

Although no specific regulations have been established for the use of other, currently popular FCMs yet, 

controlling their safety is subject to the same regulations as plastics. 

 

2.4.2 FCMs safety assessment 

The safety assessment of FCMs consists of several steps, which are summarized in Fig. 7. 

 

Fig. 7. FCM safety assessment steps 

 

Prediction and migration tests are conducted to assess the impact of FCMs on the quality and 

sensory properties of food, in accordance with Commission Regulations (No. 10/2011; No. 213/2018 

and No. 1245/2020). The contact time and temperature between the vessel/packaging material and the 

food should reflect the worst possible conditions (highest temperature and longest time), e.g., if the 

FCM is intended for short-term contact with hot food, then the migration test conditions of 2 h and 

70°C are used. 

The detection and identification methods depend on the substance that can migrate from FCMs 

to food (so called food contact substances (FCS)). They can be defined as “any substance intended for 

use as a component of materials used in the production, packaging, transportation or storage of food, 

where such use of the substance is not intended to have any technical effect on such food.” (Bhunia et 
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al., 2013; Kato & Conte-Junior, 2021). FCS are divided into intentionally added substances (IAS) or non-

intentionally added substances (NIAS). The sources of their migration are several, as presented in the 

Fig. 8. These may include: 

I) antioxidants and UV stabilizers – are added to many FCMs to protect them from photo- or thermo-

oxidation, 

II) antistatic agents – prevent the accumulation of electric charges on the surface of plastics, which 

facilitates the packaging process and prevents dusting, 

III) plasticizers – ensure the appropriate flexibility and strength of FCMs, 

IV) slip agents – facilitate mechanical packaging, 

V) by-products compound – production of starting substances, materials, additives and food 

packaging side reactions can occur, which lead to new, often unknown products, 

VI) degradation products – may be formed as a result of thermal decomposition of polymers; 

decomposition products are the main source of NIAS in FCM. Degradation of polymers and 

additives leads to the formation of new low molecular weight substances that can easily migrate 

into food, 

VII) contaminants from the raw material – these can be any substances left over from the production 

process, e.g., residues of catalysts, solvents, paints; in the case of plant raw materials, these can 

also be contaminants adsorbed by the plant during its growth from a polluted environment 

(phytoremediation process). The processes of migration of various chemical compounds from 

FCMs to food can lead to undesirable changes in the physicochemical properties of food (Groh et 

al., 2019; Kato & Conte-Junior, 2021). 

 

Fig. 8. Examples of intentionally and non-intentionally added substances (IAS and NIAS, respectively) 
in FCMs that can easily migrate into served/packaged foods 
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IAS are included in the positive list of the European Commission, 2011. The specific migration 

limit (SML) has been established for each IAS which allows for the assessment of the migration level and 

consumer exposure. SML determines the maximum concentration of undesirable chemical compounds 

that can be identified in food (mg/kg food or µg/g of food). However, the presence of NIAS may pose 

the greatest concern for food safety, mainly due to the not fully understood and spontaneous 

mechanisms of formation of such substances (Wrona & Nerín, 2020). Although it is impossible to 

establish an SML for them, they are subject to an overall migration limit (OML). This parameter 

represents the general limit of FCM inertness and is established on the basis of gravimetric 

measurements. The OML determines the sum of all substances migrating from the analyzed FCMs under 

test conditions (for non-volatile compounds, it must not exceed 10 mg/dm2 FCM or 60 mg/kg of food). 

Based on the determined concentrations of migrating organic and inorganic contaminants, the safety 

of FCMs can be assessed, which is the final conclusion of the FCMs safety assessment. 

The increasing popularization of new plant-based FCMs and bio-based plastics FCMs, has raised 

questions about their safety and impact on food. To date, there are still few literature reports on the 

safety of new plant-based raw materials, such as wheat bran, palm leaves, bamboo, sugarcane, wood, 

plant residues and bio-based plastics. This is an important research gap, because these materials can 

have particularly effect of food quality. Plant raw materials may contain various environmental 

contaminants. The natural ability of plants to biodegrade, accumulate and inactivate substances from 

the environment means that dangerous chemical compounds can be stored in their tissues. Moreover, 

toxic chemical substances may be produced by plants as secondary metabolites in response to 

environmental stresses, e.g., during shearing. An additional source of contamination is the bio-based 

plastic FCM production process, in which various NIAS can enter FCMs through cross-contamination. 

Therefore, the global production of new FCMs may become a serious food contamination problem and 

cause controversy. This issue is important, especially nowadays, when there are changes in food trends 

and a clear focus on: smaller packages with larger food contact surfaces, more processed foods with 

long shelf life and packaged heated products. Additionally, the group of people potentially exposed is 

also increasing due to the spread of new FCMs in fast food bars, restaurants, schools and hospital 

canteens. 
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3. Goal and scope of doctoral dissertation 

The research objective of the dissertation is to comprehensively characterize the bidirectional 

interactions occurring between plant-based and bio-based plastics food contact materials (FCMs) and 

food or food simulants (imitating foods of different nature). The realization of this objective includes 

conducting migration studies under well-defined conditions (based on current regulations), which will 

allow assessing the impact of currently popular FCMs on the sensory profile and safety of foods.  

In the first part of the study, a wide spectrum of different groups of chemical compounds that 

can easily migrate from FCMs to food was determined (non-targeted analysis). On this basis, the scale 

of diversity of the FCMs studied was assessed and targeted analyses presented in the second part of the 

study were designed. Targeted analyses enabled the assessment of the impact of the FCMs studied on 

the sensory profile of food, the selection of markers for assessing the impact of various factors on the 

intensity of migration processes and the assessment of the impact of new, popular FCMs on food quality 

and safety.  

 

The research assumptions allow to formulate the following research theses: 

- the materials analyzed differ in terms of contaminants released into food depending on their origin,  

- volatile contaminants of low molecular weight can be easily released from FCMs, therefore they can 

be successfully used as markers to assess the effect of different factors on the intensity of FCMs-

food interaction, 

- plant-based FCMs can specifically alter the sensory profile of food, 

- some hazardous compounds can migrate from FCMs into food at concentrations exceeding the 

specific migration limits (SML) or tolerable daily intake (TDI). 
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4. Experimental section 

4.1 Analyzed FCMs 

Commercially available plant- and bio-based plastics FCMs were analyzed. A description of vessel 

material details with the corresponding photo is presented in Table 1. In addition to the presented 

FCMs, glass (GLA) was used as a reference material in some migration studies. 

 

Table 1. Description of the tested FCMs 

Type of FCM Abbreviation 

of the sample 

name 

Average 

weight of 

the entire 

vessel 

(n=10) [g] 

 

Plate of wheat 

bran 

PWB 97.3 

 

Palm leaf bowl PLB 10.8 

 

Bamboo bowl BAM 5.1 

 

Plate of sugar 

cane 

PSC 10.6 
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Wooden bowl WB 1.5 

 

Plant residues 

bowl 

PLR 10.3 

 

Polyethylene 

coated paper 

cup 

PC 13.2 

 

Paper cup 

(white) 

PCW 7.5 

 

Polylactide cup PLA 4.5 

 

Bio-

polypropylene 

cup 

BIOPP 2.8 

 

Thermoplastic 

starch cup 

TS 3.0 
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Expanded 

polypropylene 

bowl 

EPP 12.9 

 

Black bio-

polypropylene 

bowl 

PPB 9.8 

 

4.2 Solids and chemical reagents  

The chemical reagents that were used during the research tasks are presented in Table 2. 

 

Table 2. List of solids and solvents 

Solids / Solvents Company Product Specification 

O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine 

hydrochloride 

Merck Ltd. LiChropur™, purity ≥ 99.0 % 

Tenax Matrix Tenax® TA, 60-80 mesh, 

bottle of 10 g 

Standards of analytes  

(see Tables 6 and 11) 

Merck Ltd. Analytical standards 

Multielement Calibration Standard 3-

10 mg/L in 5 % HNO3 (CAS 7697-37-2) 

Perkin Elmer Pure 

Plus 

Analytical standards 

ICP Standards: Ge and Rh 1000mg/L Merck Ltd. CertiPure 

Anhydrous Sodium Chloride Avantor Performance 

Materials Poland S.A. 

Purity ≥ 99.5 % 

Anhydrous Magnesium Sulfate Chempur® Purity ≥ 99.0 % 

Absolute Ethanol Merck Ltd. Absolute for analysis 

EMSURE® ACS, ISO, Reag. Ph Eur 

Anhydrous Acetic Acid Glacial, ReagentPlus®, purity ≥99 % 
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Hexane Suitable for HPLC, LiChrosolv®, 

purity ≥ 98 % (GC) 

Sulphuric acid Suprapur® 

Methanol Gradient grade, suitable for HPLC, 

LiChrosolv®, reag. Ph. Eur., purity 

≥99.9 % (GC) 

Dichlorometane Puriss. p.a., ACS reagent, reag. ISO, 

purity ≥ 99.9 % (GC) 

63 % nitric acid Trace Metal Grade Suprapur® 

30 % Hydrogen peroxide (Perhydrol TM) for analysis 

EMSURE® ISO 

Acetone P.P.H. “STANLAB”  

Sp. j. 

Purity ≥ 99.0 % 

 

4.3 Apparatus and small laboratory equipment 

Apparatus and small laboratory equipment that were used during the research tasks are presented in 

Table 3. 

 

Table 3. Summary of apparatus and small laboratory equipment 

Type Producer 

GC-TOF/MS Agilent 7890&7820 

GC-O-FID Hewlett 5890, Packard Series II, Wilmington, DE, U.S.A. 

GCxGC-TOF/MS Pegasus 4D, LECO, St. Joseph, MI 

GC-ECD Fisons Series 8000 GC 

GC-FID HEWLETT PACKARD 5890 SERIES II 

HPLC-DAD  Agilent 1100 Series 

ICP-MS Agilent 7700x 

Spring 25 demineralizer HLP Hydrolab Poland 

Laboratory drying oven POL-EKO-APARATURA, SLW 53, 115, 240, 400, 750, 1000; SLN53, 

115, 240. Version 3.0 
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Magnetic heating stirrers VWR®, VMS-C4 Advanced 

Centrifuge UNIVERSAL 320, HETTICH Z 

IKA KS 130 shaker Merck Ltd. 

SAFE with heating controller 

(ESM-3711-H) and vacuum  

(T-Station85) 

Laboplay; Edwards Lifesciences Poland Sp. z o.o. 

Kuderna Danish concentrator Merck Ltd. 

Microwave oven LG; MS-1042G 

Autosorb iQ Station 1 port 

transducer 

Quantachrome® ASiQwin™ Automatic Gas Sorption Data 

Acquisition and Reduction ©1994-2013, Quantachrome 

Instruments version 3.01. 

Rotary Vacuum Evaporator RVO 

200A 

INGOS s.r.o. 

Ball mill Mini-Mill Pulverisette 23, Fritsch, Germany 

High Performance Microwave 

Digestion System 

ETHOS ONE, Italy 

Small laboratory equipment, i.e., 

cellulose thimbles, reflux 

condenser, desiccator, SPME 

fiber, pipettes, volumetric flasks, 

conical flasks, round-bottomed 

flasks (100 ml), vials, 

chromatographic needles (1 µl; 

5 µl) and columns, Petri dishes, 

teflon vessels and others 

Merck Ltd.; Alchem Group Ltd.; LaboService 

 

4.4 Research methodology 

4.4.1 Characteristic of food simulants used in migration studies 

It is complicated and analytically challenged to conduct IAS and NIAS migration studies from FCMs 

to real food due to the complex composition of the food. Therefore, food simulants are commonly used 

in migration studies to simplify control processes. Each of the food simulants represents a different type 

of food (Regulation (EU) No. 10/2011) (Table 4).  
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Pure water was obtained by distilling tap water in a Spring 25 demineralizer (HLP Hydrolab 

Poland). Ethanol solutions of appropriate concentrations (10 %, 20 % and 50 % v/v) were obtained by 

diluting absolute ethanol. Similarly, 3 % acetic acid was obtained by diluting glacial acetic acid. 

Preparation of Tenax for migration studies was carried out similarly to the procedure described in the 

works (Rubio, Sarabia & Ortiz, 2018; Rubio, Valverde-Som, Sarabia & Ortiz, 2019) with the following 

modifications. Five g of Tenax was placed in a cellulose thimble and purified with 70 ml of methanol 

using a reflux condenser for 6 hours before use. The food simulant was then heated to 160°C for 6 h 

using laboratory drying oven and stored in a desiccator. Tenax was mixed to homogenize the material 

before migration studies. 

 

Table 4. List of food simulants commonly used in migration studies (in accordance with Regulation (EU) 

No. 10/2011) 

Symbol of 

food 

simulant 

Name of 

food 

simulant 

Type of simulated 

foods 

Example of simulated 

foods 

A 10 % 

ethanol / 

water 

Neutral foods Mineral waters, honey 

B 3 % acetic 

acid 

Acidic foods Vegetable soups, fruit 

juice 

C 20 % 

ethanol 

Alcoholic foods Wine, bear 

D1 50 % 

ethanol 

Lipophilic foods 

containing more than 

20% alcohol and oil-in-

water emulsions 

Milk and milk-based 

drinks, whole, partially 

dehydrated and 

skimmed or partially 

skimmed 

E Tenax Dry and frozen foods Pasta, groats, rice, ice 

cream 
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4.4.2 Migration studies 

The migration studies were performed depending on the type of food simulant used. The 

analyzed FCMs were weighed, cut into equal pieces (1 cm × 1 cm) and extracted with 200 ml of properly 

liquid food simulant (A: 10 % EtOH, distilled water; B: 3 % acetic acid; C: 20 % EtOH and D1: 50 % EtOH) 

in 70°C for 2 h (in accordance with the recommendations of Commission Regulation (EC) No 10/2011). 

Temperature stability over time was achieved using magnetic heating stirrers with temperature control 

function (Fig. 9 I). One sample contained half of the original weight of the vessel, assuming that half of 

the material is in contact with food at meal time. After the migration tests, the material was separated 

from the simulant (filtered and centrifuged).  

Four g of Tenax per 1 dm2 of surface was used in migration tests, according to the guidelines 

(Commission Regulation (EU) No 10/2011). The analyzed materials were cut into pieces measuring 

5 cm x 5 cm (the surface was 25 cm2), placed on watch glasses and covered with one g of Tenax 

(Fig. 9 II). The sample was wrapped in aluminum foil (to eliminate the possibility of evaporation) and 

placed in an oven heated to 70°C for 2 hours or to 40°C for 10 days, which corresponds to short or long 

contact conditions between food and the vessel (Commission Regulation (EU) No 10/2011). In next step, 

Tenax was extracted twice with 25 mL of extractant (acetone or methanol) within 1 h at ambient 

temperature. The extracts were concentrated to 4 mL by vacuum evaporation (p = 850 hPa) and placed 

in amber glass vials. Blank samples were prepared for all analysis in the same way as tested samples, 

but without the use of FCMs. Three replicates were performed for each sample and blanks.  

 

I 
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II 

Fig. 9. Migration studies of various contaminants from analyzed FCMs to (I) liquid food simulants and 
(II) Tenax 

 

4.4.3 Different approaches in assessing the safety of food contact 

materials (FCMs) 

Currently observed global environmental pollution (air, water, soil) may affect the contamination 

of primary raw materials used for the production of food contact materials. In turn, improving the 

functional properties of new FCMs requires the use of additives and enhancers on the production line. 

As a result of FCM-food interactions, food may be contaminated with various groups of chemical 

compounds (organic and inorganic) that may come from the environment or the production line. 

Therefore, the evaluation of FCMs-food interactions was carried out on a wide group of different, 

currently popular FCMs. Due to the large diversity of the FCMs studied (plant materials, paper, bio-

based plastics), a non-targeted and a targeted approach were used to qualitatively and quantitatively 

assess the migrating contaminants (intentionally added substances – IAS and non-intentionally added 

substances – NIAS). The first approach is intended to group migrating contaminants (e.g., into more-

toxic-less-toxic, organic-inorganic, volatile-non-volatile, odor active-odorless, etc.) from FCMs into 

different food simulants under test conditions. This makes it possible to compare, evaluate and predict 

the effects of FCMs on food simulant (food). It also allows for selecting FCMs that may pose a particular 

risk to food and therefore require detailed control. In addition, the non-targeted approach simplifies 

the selection of markers for targeted analyses. 

In turn, the targeted approach enables quantitative assessment of monitored organic and 

inorganic contaminants (IAS and NIAS) and comprehensive assessment of the impact of various FCMs 

on the sensory profile and quality of the food simulant, using appropriately selected analytical, statistical 
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and sensory methods. It enables searching for the causes of differences in the intensity of FCMs-food 

interactions, depending on the type of FCMs, type of food and other factors. 

 

4.4.3.1 Non-targeted approach in safety assessment of food contact 

materials (FCMs) 

Intentionally added substances (IAS) and non-intentionally added substances (NIAS) in food 

samples were detected using GC/TOF-MS (Agilent 7890&7820). Compounds were determined using  

a capillary column coated with SLB-5MS phase (30 m × 250 μm i.d., 0.25 μm film thickness). One 

microliter of samples was injected in split/splitless mode. The initial oven temperature was held at 40°C 

for 2 min, ramped to 280°C at a rate of 9°C /min and held for 4 min. Helium was used as a carrier gas at 

a constant flow rate of 1 mL/min through the column. The temperatures of the front inlet, transfer line 

and electron impact ion source were set at 250, 280 and 230°C, respectively. The ionization energy was 

70 eV. The mass spectral data was collected in a full scan mode (m/z 33–333) and in selected ion 

monitoring mode. Acquisition delay was 240 sec, rate was 30 spectra/sec and extraction frequency 

were 30 kHz.  

Principal Component Analysis (PCA) was used to determine the groups of key compounds 

migrating from currently popular FCMs into food using SIMCA software. 

 

4.4.3.2 Target approach in safety assessment of food contact 

materials (FCMs) 

Intentionally added substances (IAS) and non-intentionally added substances (NIAS) that may 

migrate from FCMs to food can include toxic elements, which can be formed in natural (erosion of 

metallic minerals) and anthropogenic processes (energy production, metal processing and waste 

management) and polycyclic aromatic hydrocarbons (PAHs), which can be by-products of incomplete 

combustion processes of organic matter in the environment. Plants can easily sorb toxic elements and 

PAHs from contaminated environment through roots and tubers. As a result of FCM-food interactions, 

toxic elements and PAHs can migrate from FCM into food, which is an undesirable phenomenon as they 

exhibit mutagenic, genotoxic and carcinogenic effects on the health (Bansal & Kim, 2015; Joseph, Jun, 

Flora, Park & Yoon, 2019; Ghuniem, Khorshed, El-Safty, Souaya & Khalil, 2020; Sampaio et al., 2021). 
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Some PAHs may be degraded to carbonyl compounds in the environment (William, Pangzhen, Danyang 

& Zhongxiang, 2023).  

Carbonyl compounds (low molecular weight aldehydes and ketones) belong to the group of 

chemicals ubiquitous in the environment (Szeląg-Wasielewska & Dąbrowska 2020; Aznar, Domeño, 

Osorio & Nerin, 2020; Sauter et al., 2021; Werner, et al., 2024). Some of them are classified as by-

products of polymerization process (Cincotta, Verzera, Tripodi & Condurso, 2018; Dehghani, Farhang & 

Zarei, 2018; Abe et al., 2021; Cardozo, Pereira dos Anjos, Campos da Rocha & de Andrade, 2021; Dhaka 

et al., 2022). The presence of low molecular weight carbonyl compounds in food is undesirable and 

requires constant monitoring. Some aldehydes are considered carcinogenic, mutagenic and allergenic, 

such as formaldehyde and acetaldehyde (WHO 2011). In addition, the identification of a mixture of 

carbonyl compounds (saturated C3-C10 aldehydes, ketones) in food may suggest undesirable changes 

in the sensory profile of food, because aldehydes and ketones with simple structure are characterized 

by low sensory thresholds. Migration of carbonyl compounds from the surfaces of FCMs to food may be 

the reason for noticeable changes in the smell and taste of food (Gonzalez, Domenek, Plessis & Ducruet, 

2017; Dehghani et al., 2018; Marín-Morocho, Domenek & Salazar, 2021; McGorrin, 2019; Osorio, Aznar 

& Nerin, 2019; Miralles, Yusa, Sanchis & Coscolla, 2021; Aznar et al., 2020). 

In addition, some manufacturing additives (e.g., bisphenol-A (BPA), bishpenol-S (BPS), 

photoinitiators, phthalates) should be used in moderation because they can exhibit proestrogenic 

effects and are defined as endocrine disrupting compounds (EDCs) (Ma et al., 2019; Dong et al., 2022; 

Heindel et al., 2022; Sawadogo et al., 2023; Prueitt et al., 2023; Topdas, 2023; Tsochatzis et al., 2023; 

Zhu et al., 2024). Due to the undesirable properties of many IAS and NIAS, target approach is needed to 

determine the impact of FCM on food sensory profile and quality. 

 

I) Overall migration study of volatile, odor-active contaminants  

Undesirable interactions between FCMs and food can include change the sensory profile of food 

for two reasons: as a result of migration of odor-active compounds from FCMs into food or sorption of 

key food odor-active compounds by FCMs. To evaluate the effect of FCMs on the sensory profile of food, 

a three-stage experiment was conducted, which include: 

I) determination of odor-active compounds characteristic of FCMs, 
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II) determination of odor-active compounds in coffee or tea whose presence was caused by the FCMs-

food interactions, 

III) sensory evaluation of coffee and tea brewed in different FCMs. 

In all of the above steps, glass was treated as a reference material.  

Firstly, gas chromatography-olfactometry (GC-O) analysis was carried out to identify the volatile 

aroma compounds characteristic of FCMs. GC-O is an analytical technique that combines gas 

chromatography with human sensory detection to identify and evaluate odor-active compounds in 

complex mixtures. In GC-O, trained panelists sniff the effluent directly from the capillary column to 

detect and describe odor-active compounds as they elute from the chromatograph. 

Solvent-assisted flavor evaporation (SAFE), described by Engel, Bahr and Schieberle (1999), has 

found widespread application in the identification of key aroma compounds from various matrices 

(Majcher, Olszak-Ossowska, Szudera-Kończal & Jeleń, 2020; Gąsior et al., 2021). Prior to SAFE extraction, 

samples (50 g) were extracted with methylene chloride (100 mL) for 24 h by shaking in the IKA KS 130 

shaker (Fig. 10). After the volatiles were isolated, the extract was dried over anhydrous sodium sulfate 

and concentrated with a Kuderna Danish concentrator to about 500 μL. 

 

 

Fig. 10. Sample preparation for analysis of odor-active compounds characteristic of FCMs; steps 

included: (I) - extraction with dichloromethane, (II) - SAFE, (III/IV)- concentration, (V) - GC-O analysis 

 

Odor-active compounds were identified from SAFE extracts by GC−O on a HP 5890 

chromatograph (Hewlett-Packard, Wilmington, DE, U.S.A.) using two capillary columns with different 

polarities: SPB 5 (30 m × 0.53 mm × 1.5 μm) and SUPELCOWAX 10 (30 m × 0.53 mm × 1 μm) (Supelco, 

Bellefonte, PA, U.S.A.). GC was equipped with a Y splitter dividing the effluent 1:1 between the 

olfactometry port with humidified air as a makeup gas and a flame ionization detector. The operating 
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conditions were as follows for the SPB-5 column: initial oven temperature of 40°C (1 min) raised at 

6°C/min to 180°C and at 20°C/min to 280°C. Operating conditions for the SUPELCOWAX 10 column were 

as follows: initial oven temperature of 40°C (2 min), raised to 240°C at 6°C/min rate and held for 2 min 

isothermally. The flavor extract (2 μL) was injected into a GC column using splitless mode. Odor-active 

regions were detected by GC-effluent sniffing (GC−O) and three panelists determined the description 

of the volatiles. For all peaks and flavor notes, Kovats Index (KI) were calculated to compare results 

obtained by GC−MS to literature data. KI were calculated for each compound using a homologous series 

of C7−C24 n-alkanes at a concentration 1 mg/mL, which was injected under the same chromatographic 

conditions. The samples were also identified using GC/TOF-MS (Agilent 7890&7820) to confirmed 

results obtained. 

Secondly, it was examined how FCMs affect the sensory profile of coffee and tea. For this 

purpose, coffee (10 g) or tea (1 tea bag ≈ 2 g) was brewed (250 ml water) and introduced to different 

FCMs: glass, palm leaf, paper, wood and wheat bran (covered with a lid of the same material). The 

samples were left for 30 minutes and then presented to the panelists (Figs. 11 I and 11 II). Sensory 

analyses of the coffee and tea samples were evaluated by 8 panel members (6 females and 2 males). 

Odor descriptors were selected according to the Basic Flavor Descriptive Language from Givaudan Roure 

Flavor, Ltd. established in preliminary tests and characterized as grassy, coffee-like, bitter, roasted, 

musty, cereal-like, earthy, woody, cardboard, citrus and fatty and fruity on a scale of 1–5, where 1 means 

“none” and 5 means “very strong”. The sensory tests were carried out in a conditioned room.  

 

  

   I          II 

Fig. 11. Samples of (I) coffee and (II) tea prepared for sensory evaluation 

 

At the same time, volatile compounds were extracted from the coffee or tea samples using 

headspace solid microextraction (HS-SPME). SPME fiber (CAR/PDMS/ DVB; 2 cm) was pre-treated in an 
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injection port at 270°C for 30 min before analysis. Filtered black coffee or tea extracts (5 mL), were 

introduced into 20 ml SPME vials and 5 g salt was added. Extraction was carried out at 50°C for 40 min. 

The fiber compounds were desorbed in the injection port of the GCxGC-TOF/MS apparatus for 5 min 

(Pegasus 4D, LECO, St. Joseph, MI). The GC system was equipped with a DB-5 primary column (25 m × 

0.2 mm × 0.33 µm, Agilent Technologies, Santa Clara, CA) and Supelcowax-10 (1.2 m × 0.1 mm × 0.1 µm, 

Supelco, Bellefonte, PA) as a secondary column. Injector temperature was set at 240°C and injection 

was performed in a splitless mode. Gas flow was set at 0.8 mL/min. The primary oven temperature was 

programmed as follows: 40°C (1 min), 6°C/min to 20°C (0 min), 25°C (1 min) to 235°C (5 min). Secondary 

oven: 65°C (1 min), 6°C /1 min to 225°C (0 min) 25°C 1 min to 260°C (5 min). The transfer line 

temperature was 260°C. The modulation time was 4 sec. Time-of-flight mass spectrometer was 

operating at a mass range of m/z 33-383 and detector voltage – 1700 V at 150 spectra/sec. The data 

were collected and processed using LECO ChromaTOF v.4.40. The total analysis time was about 34 min. 

Three replicates were performed for each material. Volatile compounds were identified based on the 

mass spectra using the NIST library and based on the retention index using Leibniz-LSB@TUM Odorant 

Database. Semi-quantitative analysis was performed using an internal standard naphthalene (D8) 

(15.6 mg/25 mL MeOH).  

 

II) Migration study of volatile markers - carbonyl compounds 

Carbonyl compounds belong to a group of chemical compounds ubiquitous in the surrounding 

environment, in which they undergo dynamic changes and are highly reactive. The use of suitably 

sensitive analytical tools that allow monitoring the concentration levels of low-molecular-weight 

carbonyl compounds makes it possible to observe the changes taking place and establish correlations, 

even at low concentrations (ng/L). This means that these compounds can be successfully used as 

environmental markers. The intensity of migration of carbonyl compounds (and other contaminants) 

from FCMs into food can be determined by various physicochemical factors, e.g., type of FCMs, type of 

food (i.e., pH value), contact time and temperature between FCMs and food. Therefore, migration 

studies of carbonyl compounds (as markers) from FCMs into various food simulants at different times 

(15 min, 30 min, 2h, 5 h and 10 h), temperatures (5°C, 20°C, 60°C and 70°C), pH value (2.75-6.00) were 

carried out. Additionally, heating the food with popularly 700 W microwave radiation may also be an 

important factor that can influence the intensity of migration processes. FCMs with distilled water and 

3 % acetic acid were stored under refrigeration (4°C) for different times (12 h, 24 h, 192 h), after which 

the sample was heated in a microwave oven for different times (1-4 min). 
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Carbonyl compounds dissolve well in polar matrices, therefore the determination of these 

compounds in polar matrices is difficult. Their isolation requires special preparation of samples for 

testing. The qualitative and quantitative determination of migrating carbonyl compounds was carried 

out using the technique proposed by Sclimenti, Krasner, Glaze and Weinberg (1990). The technique is 

based on the use of pre-derivatization of the sample with the reagent O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine (PFBOA), which allows the transformation of carbonyl compounds 

into less polar and more volatile oximes (Table 5). For most aldehydes, two geometric isomers are 

formed: E- and Z-PFBOA, except for symmetrical carbonyls, such as formaldehyde.  

 

Table 5. Formulas of oximes formed by the reaction of carbonyl compounds with the PFBOA reagent, 

their molecular masses, molar volume and density 

Carbonyl 

compound 

Example of derivatization 

process product with 

PFBOA reagent 

Molecular mass 

of oxime (Da)* 

Molar volume 

(cm3/mol)* 

Density 

(g/cm3)* 

formaldehyde 

H
F

F

F

F

F

O
N

H 

225 157.7 ± 7.0 1.42 ± 0.10 

acetaldehyde 

F

F

F

F

F

O
N

H 

239 173.8 ± 7.0 1.37 ± 0.10 

propanal 

F

F

F

F

F

O
N

H 

253 189.9 ± 7.0 1.33 ± 0.10 

butanal 

F

F

F

F

F

O
N

H 

267 206.0 ± 7.0 1.29 ± 0.10 
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pentanal 

F

F

F

F

F

O
N

H 

281 222.1 ± 7.0 1.26 ± 0.10 

hexanal 

F

F

F

F

F

O
N

H 

295 238.2 ± 7.0 1.23 ± 0.10 

heptanal 

F

F

F

F

F

O
N

H 

309 254.3 ± 7.0 1.21 ± 0.10 

octanal 

F

F

F

F

F

O
N

H 

323 270.4 ± 7.0 1.19 ± 0.10 

benzaldehyde 
F

F

F

F

F O
N

H

 

301 226.7 ± 7.0 1.32 ± 0.10 

nonanal 

F

F

F

F

F

O
N

H 

337 286.5 ± 7.0 1.17 ± 0.10 

decanal 

F

F

F

F

F

O
N

H 

351 302.5 ± 7.0 1.16 ± 0.10 
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glyoxal 

H

F

FF

F

F

O

N

H

O

 

253 172.0 ± 7.0 1.47 ± 0.10 

methylglyoxal 

F

FF

F

F

O

N

H

O

 

267 187.2 ± 7.0 1.42 ± 0.10 

acetone 

F

F

F

F

F

O

N

 

253 189.1 ± 7.0 1.33 ± 0.10 

pentan-2-one 

F

F

F

F

F

O

N

 

281 221.3 ± 7.0 1.27 ± 0.10 

hexan-2-one 

F

F

F

F

F

O

N

 

295 237.4 ± 7.0 1.24 ± 0.10 

octan-3-one 

F

F

F

F

F

O
N

 

323 269.5 ± 7.0 1.19 ± 0.10 

*based on the ChemSketch Programme Database 
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1 ml of 2 mg/mL PFBOA aqueous solution was added to 50 mL of food simulants and left at room 

temperature for 1 h. 50 μL of concentrated sulfuric acid was added to complete the derivatization 

reaction. The oximes were extracted by liquid-liquid extraction (LLE) with 1 mL of hexane for 1 min. Then 

the extract was purified with 2 mL of 0.1 M sulfuric acid solution. The hexane extracts were analyzed by 

gas chromatography using a Fisons Instruments 8000 equipped with 63 Ni electron capture detectors 

(GC-ECD). Injections of 0.5 μL of the extract were introduced via “on column” injector into 

chromatographic column. A Rtx-5MS (Restek) fused silica capillary column (30m × 0.25mm i.d. × 0.25µm 

film thickness) was employed for analysis and a Rtx-1301 (Restek) fused silica capillary column (30m × 

0.32mm i.d. × 0.5µm film thickness) was used as a confirmation column. Injector temperature was set 

at 80°C. Gas flow was set at 80 kPa. Helium was used as carrier gas and nitrogen was used as make-up 

gas for the detector. The analysis were carried out in a temperature program starting at 80°C for 4 min, 

then increasing the temperature to 240°C with an increase of 7°C/min and then to 290°C with an 

increase of 20°C/min. DataApex, Clarity 6.2, Czech Republic software was used to collect and process 

chromatographic data. Chromatograms of aldehyde and ketone standards are presented in Fig. 12. 

 

I 

 

II 

Fig. 12. Carbonyl compound standards: (I) aldehydes: (1) formaldehyde; (2) acetaldehyde; (3) propanal; 

(4) butanal; (5) pentanal; (6) hexanal; (7) heptanal; (8) octanal; (9) benzaldehyde; (10) nonanal;  

(11) decanal; (12) glyoxal; (13) methylglyoxal and (II) ketones: (14) acetone; (15) 2-pentanone;  

(16) 2-hexanone; (17) 3-octanone 
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Quantification for carbonyl compounds was performed using an external standard calibration 

curve. All standards were prepared gravimetrically in concentration ranges 1-30 µg/L. The linearity of 

the calibration curve was calculated as the correlation coefficient (R), the value of which is greater than 

0.9996 for all analytes. Limit of detection (LOD) and quantification (LOQ) were determined for each 

analyte using “Regression Statistics”. The precision of the method was evaluated in terms of 

repeatability and expressed as relative standard deviation (RSD %). The RSD% was obtained by analyzing 

the samples in optimized conditions, using three replicates and three points of calibration curve for each 

analyte. The analytical parameters of all migrants analyzed are shown in Table 6. 

 

III) Migration study of high-molecular weight contaminants 

Polycyclic aromatic hydrocarbons were determined by the GC-FID technique (HP 5890II) with 

autosampler and flame ionization detector (FID). The injection volume was 1 µL, injector and detector 

temperature were set at 280°C. The chromatograph was equipped with Rtx 5-W/Integra Guard capillary 

column (30 m × 0.25 mm × 0.25 µm, Restek, USA). The analysis was performed using helium as carrier 

gas at a flow rate of 1.75 mL/min. The initial column temperature was 90°C (hold for 3 min) and then 

ramped at 10°C/min to 270°C. The total analysis time was 21 min.  

Bisphenols and benzophenone derivatives were determined by the HPLC-DAD technique (Agilent 

1100 Series HPLC System with Diode Array Detector). The injection volume was 1 µL. The 

chromatograph was equipped with an Ultra AQ C18 column (5 µm, 250 mm × 4.6 mm; Restek, USA). A 

mixture of acetonitrile and water in a volume ratio of 70:30 was used as the mobile phase in the analysis 

of BPA and BPS and methanol (100 %) was used in the analysis of 2,4-DHBP, 2,2,4,4'-THBP and 2-H-4-

MBP, respectively. The mobile phase flow rate in both analyzes was 1 mL/min in isocratic mode. The 

total analysis time was 3 min for bisphenols and 4 min for benzophenone derivatives, respectively. 

Spectra were collected at a wavelength of λ = 254 nm.  

Quantification for each migrant was performed using an external standard calibration curve. All 

standards were prepared gravimetrically in concentration ranges: for ANT and PHE, 1-10 µg/L; and for 

BPA, BPS and benzophenone derivatives, 0.05-10.00 µg/L, respectively. All chromatographic data were 

obtained analogously to the carbonyl compounds and are presented in Table 6. 
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Table 6. List of tested organic contaminants with IAS/NIAS division and SML values (based on the Commission Regulations No. 10/2011 and No. 2018/213) and 

chromatographic data: retention time (min), standard curve equation (includes measurement errors of parameters a and b and expressed in the form 

y=a(±SE)x+b(±SE)), limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) 

Analytical tools Migrants IAS/NIAS SML Retention 

time (min) 

Calibration curve LOD 

(μg/l) 

LOQ 

(μg/l) 

RSD 

(%) 

GC-ECD formaldehyde IAS 15 5.68 y=41(±2)x + 291(±24) 0.003 0.009 9.8 

acetaldehyde IAS 6 8.10; 8.24 y=82(±3)x + 457(±42) 0.005 0.015 9.1 

acetone NIAS - 8,56 y=184(±10)x + 1217(±158) 0.020 0.060 6.5 

propanal NIAS - 8.94; 9.07 y=37(±2)x + 502(±65) 0.015 0.045 9.8 

butanal NIAS - 10.65; 10.76 y=51(±3)x + 893(±25) 0.020 0.060 9.9 

pentan-2-one NIAS - 11.25; 11.40 y=8(±1)x + 905(±166) 0.012 0.040 6.4 

pentanal NIAS - 12.44; 12.54 y=57(±3)x + 906(±30) 0.020 0.080 9.9 

hexan-2-one NIAS - 12.84; 13.05 y=7(±1)x + 787(±31) 0.020 0.080 6.4 

octan-3-one NIAS - 14.51; 14.76 y=5(±1) + 534(±49) 0.060 0.190 5.2 

hexanal NIAS - 15.15; 15.25 y=210(±4)x+622(±35) 0.003 0.009 6.4 

heptanal NIAS - 16.95; 17.00 y=41(±1)x + 148(±4) 0.003 0.009 6.8 

octanal NIAS - 17.76 y=72(±3)x + 215(±28) 0.010 0.030 9.9 

benzaldehyde NIAS - 20.12 y=38(±2)x - 60(±8) 0.010 0.030 8.8 

nonanal NIAS - 20.38 y=26(±1)x + 122(±9) 0.010 0.030 8.7 

decanal NIAS - 21.00 y=15(±1)x + 148(±6) 0.020 0.090 9.9 
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glyoxal NIAS - 23.23; 23.50 y=48(±2)x + 851(±28) 0.015 0.045 6.8 

methylglyoxal NIAS - 23.84 y=22(±1)x +795(±9) 0.015 0.045 7.5 

GC-FID phenanthrene (PHE) NIAS - 14.67 y=2.70(±0.15)x-1.60(±0.69) 0.88 2.70 8.5 

anthracene (ANT) NIAS - 14.79 y = 1.51(±0.07)x -0.91(±0.34) 0.77 2.30 9.3 

HPLC-DAD bisphenol-A (BPA) IAS 0.05 2.89 y=1.07(±0.02)x + 4.05(±0.57) 0.12 0.36 1.8 

bisphenol-S (BPS) IAS 0.05 2.33 y=1.27(±0.09)x + 2.49(±0.04) 0.13 0.38 1.7 

2,4-

dihydroxybenzophenone 

(2,4-DHBP) 

IAS 6* 3.19 y=3.55(±0.05)x + 0.14(±0.10) 0.13 0.38 2.3 

2,2’,4,4’-

tetrahydroxybenzophenone 

(2,2’,4,4’-THBP) 

NIAS - 2.80 y=1.84(±0.11)x + 0.09(±0.02) 0.52 1.60 9.7 

2-hydroxy-4-

metoxybenzophenone 

(2-H-4-MBP) 

IAS 6* 3.74 y=4.02(±0.16)x + 0.33(±0.03) 0.35 1.10 5.9 

* expressed as total specific migration limit (SML(T)) for 2,4-DHBP and 2-H-4-MBP
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Tenax (food simulant E) is a porous organic polymer that has high chemical stability (up to 350°C) 

(Alfeeli, Taylor & Agah, 2010). However, some studies report disadvantages of Tenax as a food simulant, 

including the cost of the reagent, the need for long-term regeneration and the difficult management of 

Tenax due to static electricity from friction (Rubio et al., 2019). The use of Tenax can also lead to inflated 

IAS and NIAS concentrations compared to actual food samples (Rubio et al., 2019; Baele, Vermeulen, 

Claes, Ragaert & De Meulenaer, 2020). These reports suggest that interpretation of the results of Tenax 

migration studies should be cautious. Therefore, it is important to compare the intensity of FCMs-Tenax 

and FCMs-real food interactions to better understand the factors affecting the migration processes that 

occur. The Brunauer-Emmett-Teller (BET) gas adsorption method has become the most widely used 

standard procedure for determining the surface area of fine-grained and porous materials from 

adsorption data. This method is based on the physical adsorption of a vapour or gas into the surface of 

a solid. The specific surface area and pore size (BET isotherm) of Tenax and food samples (powdered 

milk, baby cereal, oat flakes) were examined, to evaluate the influence of the structure of simulated and 

real foods and the properties of contaminants on the intensity of migration processes. The composition 

of the food analyzed is summarized in Table 7.  

Table 7. Description of the composition of the food samples (expressed in g/100g of product), 

according to the manufacturer's data 

Food sample Content of 

Fat 

(including 

saturated 

fatty acids) 

Carbohydrates 

(including sugars) 

Fiber Protein Salt Mineral 

components 

Granulated, 

non-fat 

powdered 

milk 

0.80 51.00 NS* 35.00 1.20 Calcium 

(1.404) 

Phosphorus 

(1.012) 

Baby cereal 1.40 87.00 2.10 7.60 0.02 Sodium (6.5) 

Whole grain 

oat flakes 

6.90 60.00 9.80 12.00 <0.01 NS* 

NS*: not specified by the manufacturer 
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High-purity nitrogen (> 99.999 %) was used as adsorbate. The powdered materials were pre-

gassed at 100°C for 24 hours. The selection of pre-degassing parameters took into account resistance 

to elevated temperatures, including susceptibility to changes in pore structure. The sample was then 

filled with nitrogen and weighed to determine the real (dry) weight of the sample. The pre-gassed 

sample vial and the weighing vial (empty) were sealed in an Autosorb iQ Station 1 port transducer, 

Quantachrome® ASiQwin™ Automatic Gas Sorption Data Acquisition and Reduction ©1994-2013, 

Quantachrome Instruments version 3.01. and then immersed in liquid nitrogen at 77.35 K. 

Measurement of gas adsorption on the test material consisted of gradually filling the volume of two 

vials with the same amount of nitrogen in the relative pressure range from 0.01 to 0.99 p/p0. 

In the next experiment, the adsorption capacity of Tenax and food samples (powdered milk; 

infant cereal and oatmeal) and the influence of the physical properties of migrant compounds on the 

intensity of migration processes were evaluated, as recovery test. The spiking experiment was 

conducted as follows: 1 mL of standard solutions of the tested migrating compounds (2,4-DHBP, 

2,2',4,4'-THBP; 2-H-4-MBP; PHE and ANT) containing analytes at appropriate concentrations were 

applied to a glass Petri dish to obtain a final concentration of 3 µg/L for 2,4-DHBP, 2,2',4,4'-THBP and 2-

H-4-MBP and 5 µg/L for ANT and PHE. These chemical compounds were chosen because of their similar 

structure, but different molecular weights.  

One g of Tenax or food (powdered milk; baby cereal and oat flakes) was applied to the materials, 

then wrapped in aluminum foil and placed in an oven heated to 70°C for 2 hours. Samples were then 

prepared according to migration tests typical of Tenax, i.e., double extraction with 25 mL of solvent 

(acetone, methanol) within 1 h at ambient temperature and concentration by vacuum evaporation (p = 

850 hPa). The amount of adsorbed contaminants was determined by appropriate chromatographic 

techniques (GC-FID and HPLC-DAD). 

 

IV) Migration study of inorganic contaminants 

Inorganic contaminants pose a particular challenge in food safety control, due to the harmfulness 

of many elements even at low (trace) concentration levels. In order to assess the risk of migration of 

various elements, the total content of elements in FCMs and in food simulants after their contact with 

FCMs (after 30 min and 10h at 60°C) was determined. The steps of the analytical procedure consisted 

of:  
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I) determination of the analytical problem and selection of the appropriate analytical 

technique,  

II) development of sample preparation for ICP-MS analysis, 

III) optimization of ICP-MS - calibration, interference correction, 

IV) validation of the analytical procedure - determination of validation parameters, 

V) performance of analyses and verification of the analytical method,  

VI) statistical processing of the results and their interpretation. 

The sample preparation step is crucial in the analysis. It should be characterized by the highest 

possible efficiency and reproducibility. Two sample preparation methods were used: mineralization and 

extraction, in order to evaluate the elemental composition of analyzed FCMs. 

Pre-preparation of FCMs samples for mineralization consisted of gentle washing with 

demineralized water (cleaning the surface of the raw material from dust) and drying at 40 oC in  

a laboratory dryer. Digestion of the powdered samples of FCMs (homogenous samples) were carried 

out in the EthosOne (Millestone, Italy) closed microwave mineralization system in the next step. For this 

purpose, 0.5000±0.0001 g of FCM samples were placed in a Teflon vessel with 8 mL of concentrated 

(65 %) HNO3 (analytical purity, Merck, Darmstadt, Germany) and 1 mL of H2O2 (Merck, Darmstadt, 

Germany). The program of digestion included the following stages:  

I) first stage - temperature to 80°C, 10 min, power 600 W;  

II) second stage - temperature 140°C, 12 min, power 1200 W;  

III) third stage - temperature 180°C, 15 min, power 1200 W.  

The solutions were and made up to a final volume of 15 mL with deionized water.  

Extraction experiment was conducted in the second step. Elements were determined in food 

simulants: neutral (distilled water) and acidic (3 % acetic acid) after migration studies with FCMs, which 

were conducted in different conditions: 30 min (short contact) and 10 h (long contact) at 60°C (in 

accordance with Regulation (EU) No 10/2011). Based on two experiments, the percentage of migration 

of various elements from FCMs to neutral and acidic food was assessed and the consumer risk 

associated with the consumption of neutral and acidic food served in currently popular FCMs was 

estimated. Procedural blanks and reference materials were carried out in the same way as the samples 

in each digestion run. 

The concentration of 20 elements (Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, 

Sb, Ba, Pb) in samples was carried out using an inductively coupled plasma mass spectrometer (ICP-MS 
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7700×Agilent, Santa Clara, CA, USA) equipped with an octopole reaction system (ORS). MicroMist 

concentric nebulizer and quartz Scott double pass spray chamber, Ni cones and a quadrupole mass 

spectrometer. The ICP-MS technique allows the determination of multiple elements during a single 

analysis due to the possibility of setting individual analytical conditions for an analyte. Optimization of 

the analytical procedure for multi-element analysis, aims to achieve low LOD and LOQ, high precision, 

good sensitivity and linearity of indications over a wide range of concentrations. Optimization of the 

ICP-MS spectrometer is a fundamental activity that has a significant impact on the quality of analytical 

measurement results and the subsequent application of the developed analytical procedure. It is 

important to obtain the highest possible signal intensity for the determined elements and the lowest 

possible background signals during optimization. The daily optimized parameters include: the flow of 

plasma gas, auxiliary gas and sputtering gas, voltage on the focusing lenses. ICP torch settings, mass 

calibration, and plasma generator power are also monitored periodically. High purity argon (99.999 %) 

was used as a nebulizer, auxiliary and plasma gas for the ICP-MS (Linde Gas, Poland). The operating 

conditions for the ICP-MS instrument were daily optimized (using the commercial Tuning Solution, 

(Agilent, USA)) and shown in Table 8. 

 

Table 8. Operating conditions of ICP-MS instrument 

Parameter Setting 

Spectrometrer ICP-QMS, Agilent 7700x 

Nebulizer gas flow (L/min) 1.00 

Auxiliary gas flow (L/min) 0.90 

Plasma gas flow (L/min) 15 

RF power (W) 1550 

Perylstatic pomp rotation speed [rps] 0.10 

Lens voltage [V] 8.50 

Sweeps 1 

Repetition 3 

Integration time [s] 0.10 

Reaction gas flow [mL/min] 3 

Oxides [%] <1.0 

Double ion charged [%] <1.2 
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Calibration process was performed using the matrix-matched standard series method in order to 

determine the dependence of the analytical signal on the concentration of the analyzed elements. 

Calibration solutions were prepared by dilution of 10 mg/L of multielement stock solution in 5 % HNO3 

(Multi-Element Calibration Standard 3, PerkinElmer, MA, USA). The calibration curves were determined 

using the interpolation method and were constructed in the concentration ranges: 0.05–50 µg/L for Al, 

Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Ba, Pb and 5 – 500 µg/L for Na, Mg, Ca and Fe. The 

calibration curves showed satisfactory linearity with correlation coefficients (R) reaching values >0.90 

for macroelements (Ca, Mg, Na) and >0.99 for other elements (Table 9). 

 

Table 9. Calibration curves of the determined elements (y=ax+b) 

Mass Element R a b 

23 Na 0.9668 0.1314 1.0546 

26 Mg 0.9930 0.0095 0.0473 

27 Al 0.9997 0.0505 0.0802 

43 Ca 0.9658 0.0009 0.0137 

47 Ti 0.9989 0.0116 0.0107 

51 V 0.9996 0.1651 0.0044 

52 Cr 0.9997 0.1509 0.0239 

55 Mn 0.9998 0.1914 0.0202 

56 Fe 0.9981 0.1641 4.1977 

59 Co 0.9999 0.1714 0.0007 

60 Ni 0.9996 0.0370 0.0102 

65 Cu 0.9997 0.0405 0.0067 

68 Zn 0.9993 0.0199 0.0175 

75 As 0.9973 0.0290 0.0004 

82 Se 0.9997 0.0021 0.0001 

88 Sr 0.9999 0.2590 0.0102 

111 Cd 0.9999 0.0260 0.0001 

121 Sb 0.9970 0.1037 0.0013 

137 Ba 0.9999 0.0374 0.0009 

207 Pb 0.9999 0.0471 0.0028 
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Interference from matrix components and interferences caused by the reagents used, gases and 

related to the operation of the instrument used should be expected, during the determination of trace 

elements in the analyzed samples. The selection of appropriate isotopes of elements, helium as  

a reaction gas, the internal standard (rhodium solution (20 µg/L)) and sample dilution were used to 

eliminate the adverse effects of factors.  

The next step includes the validation of the analytical procedure. Providing meaningful results is 

the goal of a procedure designed to determine analytes in samples. The precision of the method was 

determined by analyzing samples of certified reference materials (CRMs) with repeatability and 

intermediate precision conditions maintained, as well as using the standard addition method. Table 10 

summarizes the analytical results obtained and the values presented in the CRMs used. The working 

range of a prepared analytical method is the interval bounded by the lowest and highest concentrations 

that can be determined from it. The lower value of the working range refers to the LOQ, and the top 

value is the concentration of the highest standard used for calibration. The resulting working range 

values for the determined elements are also shown in the Table 10. Ensuring measurement consistency 

is a key aspect of analytical procedures. Measurement consistency in the present procedure was 

established using CRMs: SRM 1570a spinach leaves (NIST, USA). The results obtained from the analyses 

performed and the recovery values were comparable and satisfactory, demonstrating the validity and 

reliability of the results obtained (Table 10). Based on the present data, the validated elemental 

determination method was applied to the analysis of real samples. 

 

Table 10. Parameters of analytical procedure for determination of inorganic contaminants by 

ICP/MS- performance quality 

Analyte 

Analytical Procedure Parameters 

MDL 

[mg/kg] dw 

MQL 

[mg/kg] dw 

Measurement 

range (µg/L) 

Trueness 

(%) 

Precision 

CV (%) 
Traceability 

Ca 0.700 2.100 

5-500 

88 4.7 
Provided by 

certified 

reference 

material 

Fe 0.200 0.600 95 4.5 

Mg 0.300 0.900 93 4.2 

Na 2.000 6.000 87 5.0 

Al 0.010 0.031 0.05-100.00 91 3.6 
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As 0.005 0.015 96 2.7 

Ba 0.007 0.021 92 3.8 

Cd 0.003 0.009 95 2.5 

Co 0.004 0.016 96 2.3 

Cr 0.007 0.021 97 2.6 

Cu 0.008 0.024 92 3.1 

Mn 0.005 0.015 94 3.4 

Ni 0.009 0.027 94 2.8 

Pb 0.004 0.012 95 3.2 

Sb 0.005 0.015 96 3.5 

Se 0.009 0.027 90 3.7 

Sr 0.007 0.021 92 3.5 

Ti 0.010 0.030 90 3.8 

V 0.003 0.009 96 2.7 

Zn 0.009 0.027 92 3.5 
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5. Results and discussion 

5.1 Non-targeted approach in safety assessment of food contact materials 

(FCMs) 

Migration studies of contaminants from FCMs to food of various types (represented by food 

simulants) were conducted in the initial stage of the FCM safety assessment. Short contact conditions 

between FCMs and food were used, which were 2h, 70°C (accordingly to Commission Regulation, 2011). 

In order to evaluate the influence of the type of FCMs on the type of contaminants released into food 

simulants, an unsupervised PCA was performed (Fig. 13). Based on the results, it was determined that 

the contaminants migrating from the analyzed FCMs into the food simulants mainly belong to the 

groups of (I) hydrocarbons, (II) carbonyl compounds, (III) alcohols, (IV) esters and (V) carboxylic acids. In 

addition, PCA analysis showed that all the FCMs analyzed could be the source of migration of these 

compounds into food, which means that the FCMs analyzed could affect the sensory profile of food and 

also its quality. A large variation in the quality of released compounds was observed between FCMs 

made from paper (PC and PWC samples) and bio-based plastics (PLA, TS, BIOPP, EPP and PPB).  
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IV 

 

 

V 

Fig. 13. Biplot from principal component analysis (PCA). PC1 and PC2 explain 40 % of the variance. 

Green colors represent different FCM samples (for abbreviation see Table 1) and different colors 

represent different migrating groups of contaminants: (I) hydrocarbons; (II) carbonyl compounds;  

(III) alcohols; (IV) esters and (V) carboxylic acids 
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It can be can be explained that the quality of FCMs used for food packaging and the level of 

contamination can differ significantly depending on the raw material and industrial procedures (Vera, 

Canellas & Nerin, 2020; Asensio, Montañés & Nerín, 2020; Guan, Zhong, Wang, Yu & Hu, 2023). For 

example, Marín-Morocho et al. (2021) classified NIAS migrating from bio-based plastics (PET) into 

several groups: lubricants (e.g., hexadecanoic and octadecanoic acid), plasticizers (mainly phthalates), 

antioxidant degradation products (e.g., 2,4-bis(1,1dimethyl)-phenol, 2,6-di-tert-butyl-1,4-

benzoquinone and 3,5-di-tert butyl-4-hydroxybenzaldehyde), recycling rates (e.g., limonene) and 

thermal degradation products (especially BPA and low-molecular carbonyl compounds). Moreover, 

recycled paper may contain many of the chemicals originally present in recovered paper, including 

fillers, biocides, inks, pigments, photoinitiators, adhesives, plasticisers, mineral oils and other impurities 

generated during recovered paper processing. Paper is one of the heterogeneous porous materials, 

which differs from polymers in terms of sorption, diffusion and partition coefficient values. (Cai et al., 

2017). Vápenka et al. (2016) conducted a non-targeted analysis of paper packaging intended for food 

packaging available on the Czech market. They identified about 100 contaminants, including residues 

from paper pulp processing (e.g., auxiliaries, wood degradation products), substances from printing inks 

or adhesives (photoinitiators, plasticizers, solvents), impregnants and coatings (solvents, hydrocarbons), 

etc. The identified contaminants mainly belonged to the groups of aromatic hydrocarbons, phthalate 

and non-phthalate plasticizers, photoinitiators and bisphenols. Wrona et al. (2023) studied four 

different plant-based FCMs and found that one of the compounds migrating from all the FCMs analyzed 

was diphenyl-(2,4,6-trimethylbenzoyl)-phosphine oxide (TPO), which is commonly used as a UV curing 

agent for polyesters and resins. In addition, TPO can be used as a component of printing inks and wood 

coatings and as a coating whitener (Scientific Committee on Consumer Safety SCCS/1528/14). The 

authors explain that in the case of some FCMs, TPO can be a cross-contamination from the production 

line. In addition, the authors identified the fatty acids palmitoleic and oleic acids and the 

monosaccharide D-(+)-glucose, which is characteristic of plant-based FCMs. In addition, oleic acid can 

be used during production as a surfactant and plasticizer. The authors also identified the presence of 

photoinitiators and UV absorbers, e.g., 2,2-dihydroxy-4–methoxybenzophenone. 

In general, a large proportion of the identified compounds migrating from FCMs into food 

simulants belong to sensory-active compounds, which means that their effects on the sensory profile of 

foods must be determined accordingly. 
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5.2 Targeted approach in safety assessment of food contact materials (FCMs) 

5.2.1 Migration study of odor-active contaminants  

According to Parker (2015), aroma is an important food attribute influencing consumer 

acceptability and appetite (Parker, 2015). FCMs-food interactions can lead to undesirable changes in 

the sensory profile of food (Aznar et al., 2020; Vera et al., 2020; Ashraf, Pati, Fatchurrahman, Amodio & 

Colelli, 2023; Wolf, Hoyer & Simat, 2023). In this area, bio-based plastic FCMs have been widely reported 

in the literature, i.e., Vera et al. (2020) identified forty-six compounds with a characteristic odor that 

were released from various materials: PP, PE used as FCM. The most strongly identified odors migrating 

from PP and PE included acetic, propane, buttery, rancid and fatty odors, which were responsible for 

carbonyl compounds (mainly aldehydes) and low molecular weight carboxylic acids. Similarly, Ashraf et 

al. (2023) showed the impact of packaging made of PP, a polypropylene/polyamide blend (PP/PA) and 

PLA on the migration of volatile organic compounds (VOCs) to artichokes. The VOCs emitted vary 

depending on the FCMs; in particular, PP/PA emitted the highest number of VOCs, most of which 

belonged to the class of branched alkanes and alkenes, such as 4-methylheptane, 2,4- dimethylheptane, 

4-methyl-octane and 2,4-dimethylheptene; PP released acetate, aldehydes and 1-methoxy 2-propanol; 

PLA releases aldehydes and propanoic acid. In turn, Song, Wrona, Nerín, Qin-Bao and Huai-Ning (2019) 

identified a total of 99 volatile and semi-volatile compounds in virgin and recycled expanded polystyrene 

containers and selected 17 compounds as markers of the degree of material processing, including  

o-xylene, acetophenone, ethylbenzene, α-ethylstyrene, 2-phenylpropenal, propylbenzene, 2-phenyl-1-

propene, undecanal, benzoic acid ethyl ester, 2-ethyl-1-hexanol, decanal, benzylcarboxylic aldehyde, 

isopropylbenzene, 2,4-diphenyl-1-butene, dodecanal, benzaldehyde and nonanal.  

In turn, plant-based FCMs have not yet been thoroughly investigated for their odor profile and 

they may have a particular impact on the sensory properties of foods. In order to comprehensively 

understand the aroma profile of the this FCMs, GC-O-FID and GC-MS techniques were used to 

characterize the key odor compounds characteristic of each FCM. Table 11 summarizes the identified 

odor-active compounds with the retention time, CAS number, Kovats Index (experimental and 

literature), odor description and odor threshold for water. The intensity of the perceived odors (low, 

medium, high) was determined based on the odor perception at successive dilutions of the extract, i.e., 

low without diluting, medium (1:1 v/v) and high (1:4 v/v). In total, 72 odor-active compounds belong to 

the group of saturated and unsaturated alcohols, aldehydes, ketones, carboxylic acids and esters with 

different odor intensities were identified. Particular attention was paid to compounds with a high 

intensity index and low odor threshold (OT) (for water). OT indicates the minimum concentration at 

which a compound's smell becomes noticeable. A low OT means the compound is very potent and can 
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be smelled at very low concentrations, while a high OT means it takes a larger amount of the compound 

before it can be detected by the nose. This is important for understanding which compounds 

significantly impact a product’s aroma. 

The highest number of odor-active compounds with high OT was identified for wheat bran (10 

compounds), followed by wood (8 compounds), paper (7 compounds) and palm leaf (6 compounds). In 

general, the dominant odors characteristic of the analyzed FCMs include butter (butane-2,3-dione), 

vinegar (acetic acid), fruit (pentan-1-ol), fat ((E)-non-2-enal, (E,E)-nona-2,4-dienal), grass (hexanal), 

anise (unknown), mushrooms (oct-1-en-3-ol), fish ((Z)-hept-4-enal), citrus (decanal), musty (octanoic 

acid), deep frying ((E,E)-deca-2,4-dienal) and metallic (cis-4,5-epoxy-(E)-dec-2-enal). They may be crucial 

in the case of interactions occurring between FCMs and food and may lead to changes in the sensory 

properties of food.
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Table 11. Identified volatile organic compounds (VOCs) characteristic for plant-based food contact materials (FCMs). Retention time (tR), bibliographic and 

experimental Kovats indexes (KIbib and KIexp), odor description, odor threshold (in water) and compounds odor intensity marked as: Low = the noticeable odor 

without diluting the extract, Medium = the noticeable odor after diluting the extract twice (1:1 v/v) and High = the noticeable odor after diluting the extract four 

times (1:4 v/v)  

No tR 

(min) 

Compound CAS number KIbib KIepx Odor 

description 

OT mg/kg* 

(in water) 

Odor intensity 

Wheat 

bran 

Wood Palm leaf Paper 

1 1.90 acetaldehyde 75-07-0 456 443 Fresh, Green 0.016000a - - Low Low 

2 2.10 acetone 67-64-1 503 498 Solvent-like, 

Pungent 

0.832000b Low - Low Low 

3 2.25 butane-2,3-dione 431-03-8 513 525 Butter-like 0.003000a High High High High 

4 2.50 2-methylpropanal 78-84-2 563 575 Malty 0.000490a Low Low - - 

5 2.80 acetic acid 64-19-7 634 627 Vinegar-like 5.600000a Low Low Medium High 

6 3.00 3-methylbutanal 590-86-3 656 643 Malty 0.000400a - Low Low Low 

7 3.20 2-methylbutanal 96-17-3 661 686 Malty 0.001500a Low Low Low Low 

8 3.25 pentan-2-one 107-87-9 687 697 Fruity, Banana-

like 

2.300000a Low Low Low Low 

9 3.45 pentanal 110-62-3 717 705 Green, Fatty, 

Moldy 

0.012000b Low Low Low Low 

10 4.32 pentan-1-ol 71-41-0 765 755 Fruity, Etheral 0.150200b Low Low High Low 
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11 4.80 hex-1-en-3-one 1629-60-3 775 782 Rubber-like, 

Pungent 

0.000001a - - Low - 

12 5.00 pent-1-en-3-one 616-25-1 800 801 Pungent, Milk-

like 

0.000940a - - Low - 

13 5.20 hexanal 66-25-1 803 804 Green, Grassy 0.002400a High Medium Low Low 

14 5.60 butanoic acid 107-92-6 820 819 Sweaty 1.000000a Low Low Medium Low 

15 6.50 furfural 98-01-1 835 855 Sweet, Cereal-

like 

0.282000b Low Low Low Low 

16 6.60 (E)-hex-2-enal 6728-26-3 854 855 green apple-

like, bitter 

almond-like 

0.110000a Low - - - 

17 6.90 3-methylbutanoic 

acid 

503-74-2 869 872 Sweaty 0.490000a Medium Low Low Low 

18 7.00 2-methylbutanoic 

acid 

116-53-0 869 876 Malty, Fruity, 

Sweaty 

3.100000a Medium - Medium Low 

19 7.24 hexan-1-ol 111-27-3 872 878 Grassy, 

Marzipan-like 

0.0056000b Low Low Low Low 

20 7.40 heptan-2-one 110-43-0 892 892 Fruity, Soapy 0.140000b Low Low Low Low 

21 7.55 γ-butyrolactone 96-48-0 900 898 Sweet, 

Aromatic 

1.000000b Medium Low Low Low 
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22 7.70 (Z)-hept-4-enal 6728-31-0 901 904 Fish-like, train 

oil-like 

0.000060a High Low Low - 

23 7.80 heptanal 111-71-7 903 908 Citrus-like, 

Fatty 

0.006100a Low Low Low - 

24 8.30 pentanoic acid 109-52-4 911 910 Sweaty, fruity 11.000000a Low - Low - 

25 8.35 pentyl acetate 628-63-7 916 920 Fruity 0.0430000b - - - Low 

26 8.40 methyl hexanoate 106-70-7 923 932 Fruity, Musty 0.090000a Low Low Medium - 

27 8.52 α-pinene 7785-70-8 934 933 Fir needle-like 0.041000b - Low - - 

28 8.85 camphene 79-92-5 951 950 Terpene-like 1.860000b - Low - Low 

29 8.90 unknown - 952 - Aniseed-like, 

Licorice-like 

- - - High - 

30 9.10 3-methylpentanoic 

acid 

105-43-1 958 953 Cheesy, Sweet 0.046000b - Medium - Low 

31 9.83 benzaldehyde 100-52-7 968 981 Bitter almond-

like 

0.150000a Low Low Low Low 

32 10.06 oct-1-en-3-ol 3391-86-4 983 988 Mushroom-like 0.045000a High High Low Low 

33 10.10 octan-3-ol 589-98-0 986 989 Citrus-like, 

soapy 

0.078000b - - - Low 

34 10.20 octan-2-one 111-13-7 991 990 Soapy, Fruity 0.150000a Medium Low Low Low 

35 10.45 octanal 124-13-0 1006 1006 Citrus-like, 

Green 

0.003400a Low Low Low Low 
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36 10.65 hexanoic acid 142-62-1 1015 1016 Sweaty 3.000000a Low Low Low Low 

37 10.90 (E,E)-hepta-2,4-

dienal 

4313-03-5 1015 1026 Fatty, Floral 0.015400b Low - - Low 

38 11.10 limonene 138-86-3 1028 1026 Citrus-like 0.013000a - Low - High 

39 11.15 1,8-cineole 

(eucalyptol) 

470-82-6 1031 1029 Eucalyptus-like 0.001100b - Low - Low 

40 11.20 benzyl alcohol 100-51-6 1037 1035 Bitter almond-

like, Fruity 

2.546210b - Low Low Low 

41 11.52 oct-3-en-2-one 1669-44-9 1041 1040 Floral, Spicy 0.250000b Low Low Medium Low 

42 11.76 (E)-oct-2-enal 2548-87-0 1059 1049 Fatty, Nutty 0.004000a Low - - Low 

43 11.80 (E,E)-octa-3,5-dien-

2-one 

30086-02-3 1059 1051 Musty, Fatty 0.1000000b Medium Low Low Medium 

44 12.90 heptanoic acid 111-14-8 1086 1081 Rancid, Sweaty 0.640000b Low - Low Low 

45 13.10 nonan-2-one 821-55-6 1095 1099 Fruity, Musty 0.041000b Medium High - - 

46 13.10 methyl benzoate 93-58-3 1097 1099 Starfruit-like, 

Sweet 

0.073000a - - Low Medium 

47 13.25 nonanal 124-19-6 1104 1103 Citrus-like, 

Soapy 

0.002800a Low Low Medium Low 

48 13.40 maltol 118-71-8 1108 1110 Caramel-like, 

Burned 

5.000000a - - Low - 

49 13.53 (E,E)-octa-2,4-dienal 30361-28-5 1111 1115 Fatty 0.010000b - - Low Low 
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50 13.80 unknown - 1125 - Fatty - High High High High 

51 13.90 methyl octanoate 111-11-5 1131 1130 Fruity, Musty 0.200000b - - Low Low 

52 14.00 (E)-non-3-en-2-one 18402-83-0 1138 1136 Green, Fatty 0.800000b Low - - - 

53 14.40 (Z)-non-2-enal 60784-31-8 1147 1146 Green, Fatty 0.000020b - - High High 

54 14.45 camphor 76-22-2 1154 1148 Camphor-like 0.250000b - - Low Low 

55 14.50 (E,Z)-nona-2,6-dienal 557-48-2 1155 1150 Cucumber-like 0.000010b - - - High 

56 14.60 (E)-non-2-enal 18829-56-6 1160 1154 Fatty, Green 0.000080b High High High High 

57 14.70 isoborneol 124-76-5 1162 1162 Earthy, Moldy 0.002500b - Low - Low 

58 14.85 borneol 507-70-0 1173 1173 0.014000a - Low - Low 

59 15.30 dec-1-en-3-one 56606-79-2 1182 1180 mushroom-like 0.080000a - - - Medium 

60 15.40 decan-2-one 693-54-9 1185 1184 Fruity, Floral 0.003000b Low - Medium - 

61 15.60 α-terpineol 98-55-5 1191 1189 Floral, Citrus-

like 

1.200000a - Low - - 

62 15.80 decanal 112-31-2 1204 1199 Soapy, Citrus-

like 

0.009300a High - - - 

63 16.35 (E,E)-nona-2,4-

dienal 

5910-87-2 1216 1222 Fatty, Green 0.000062a High High Low Low 

64 16.50 3-carene 13466-78-9 1220 1224 Terpene-like 0.770000b - - - Low 

65 16.60 benzothiazole 95-16-9 1224 1226 Rubber-like, 

Cabbage-like 

0.080000b Low - - - 
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66 17.30 octanoic acid 124-07-2 1263 1260 Carrot-like, 

Musty 

0.190000a High - - - 

67 17.40 (E)-dec-2-enal 3913-81-3 1265 1265 Fatty, Green 0.250000b - - - Low 

68 18.50 acetophenone 98-86-2 1312 1308 Foxy, Bitter 

almond-like, 

0.170000b Low Low Low Low 

69 18.60 (E,E)-deca-2,4-dienal 25152-84-5 1318 1310 Fatty, Deep-

fried 

0.000070b High High - - 

70 20.30 cis-4,5-epoxy-(E)-

dec-2-enal 

134454-31-2 1369 1369 Metallic 0.000220b - High - - 

71 20.40 (Z)-2-butyloct-2-enal 99915-14-7 1374 1380 Citrus-like, 

Soapy, Green 

0.020000b Low Low - - 

72 20.50 indole 120-72-9 1391 1391 Fecal, 

Mothball-like 

0.011000a - - - Low 

*OT expressed based on the: a Leibniz-LSB@TUM Odorant Database or bvan Gemert, L.J. Odor thresholds. Compilations of odor threshold values in air, water 

and other media (Edition 2011).
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The uniquely complex aroma of black coffee and green tea is due to the presence of many 

aromatically active ingredients in these extracts. Changes in the amount of odor active compounds in 

coffee and tea samples served in various FCMs can cause aroma differences between them. Aroma-

active compounds that migrate from FCMs into roasted black coffee and green tea were identified and 

quantified to evaluate the effect of FCMs on the sensory profile of beverages. 

Odor Activity Value (OAV) is measured by dividing the concentration of an odor-active compound 

in a sample by its odor threshold (OAV = concentration / odor threshold). A high OAV (greater than 1) 

means the compound is present at a concentration above its odor threshold and likely contributes to 

the overall aroma, while an OAV below 1 suggests the compound is present at a concentration too low 

to be perceived and is unlikely to influence the odor. OAV was determined for the identified compounds, 

which is a measure of the importance of a specific compound to the overall odor of a sample (including 

coffee and tea). Odor-active compounds with OAVs that were identified in the beverages (coffee and 

tea) as FCM-derived compounds (after removed the blank samples) are presented in Fig. 14. The results 

clearly indicate that the FCMs analyzed can affect the sensory properties of the beverages served. The 

dominant aroma-active compounds (with OAV > 1000) mainly include compounds from the group of 

saturated and unsaturated aldehydes, such as. 3-methylbutanal, 2-methylbutanal (Strecker aldehydes; 

Maillard reaction products), (E)-non-2-enal, hexanal, nonanal, acetaldehyde, (E)-oct-2-enal, furfural, 

(E,E)-nona-2,4-dienal, (E,E)-octa-2,4-dienal and saturated alcohols, e.g., hexan-1-ol, heptan-2-ol, octan-

3-ol. These compounds are mainly responsible for malty, fatty, cereal, green, grassy, citrus and fruity 

notes (according to the Leibniz-LSB@TUM Odorant Database), which can shape the undesirable, foreign 

aroma bouquet of coffee and tea. 

Comparing the OAV values of compounds migrating from FCMs to beverages, it can be concluded 

that the sensory profile of coffee can change more than the sensory profile of tea. The OAVs of 

compounds migrating into coffee are much higher, which can be observed in particular by comparing 

the OAVs of compounds migrating into coffee and tea from palm leaves and paper (Fig. 14). Black coffee 

has an acidic pH, while green tea has a slightly alkaline pH. The reason for the observed differences in 

the migration intensity of aroma-active compounds may therefore be the higher stability of volatile 

compounds at acidic pH. Similar correlations in the migration intensity of IAS and NIAS from PET bottles 

were observed for carbonated (acidic pH) and non-carbonated (neutral pH) water (Dehghani et al, 2018; 

Cardozo et al., 2021; Abe et al 2021). 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

73 
 

 

 

         

4685

1760

1019
620

179 109 97 77 40 34 24 8 6 4 4 3 3 3 3 1 1
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

O
A

V

2553

2275
2057

371
191 151 98 61 16 13 11 4 1 1

0

500

1000

1500

2000

2500

3000

O
A

V

tea served in wheat bran

6901

3893

2940
2328

1072
424 327 279 249 136 122 93 55 40 39 25 13 13 11 6 6 3 2

0

1000

2000

3000

4000

5000

6000

7000

8000

O
A

V

coffee served in wood
2917

2058

14081308

550
314 281 181 113 109 97 23 18 15 13

0

500

1000

1500

2000

2500

3000

3500

O
A

V

tea served in wood

coffee served in wheat bran 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

74 
 

 

           

        

  Fig. 14. Odor active compounds with OAV values that were identified in beverages (coffee and tea) as FCM-derived compounds
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Based on the results, it is clear that the FCMs analyzed can affect the sensory properties of the 

beverages served. In the case of coffee, the presence of aroma-active compounds was noted, mainly 

responsible for malty, fatty, green, grassy, citrus and fruity notes, which can shape the undesirable final 

aroma bouquet of coffee.  

It has been observed that most of the aroma-active compounds (characterized by OAV >1000) 

can migrate from the paper and the key compounds include saturated and unsaturated aldehydes:  

3-methylbutanal and 2-methylbutanal (malt aroma), (E)-non-2-enal (oily, green aroma), nonanal (citrus, 

soapy aroma), hexanal (grassy aroma), acetaldehyde (green, fresh aroma) and (E)-oct-2-enal (oily, nutty 

aroma). This may be due to the effect of the degree of moisture in the paper on the amount of aroma-

active compounds released. Similarly, Wolf et al. (2023) presented a proportional correlation between 

the degree of material moisture and the intensity of VOCs released. Authors showed that the paper's 

odor profile at 33 and 58 % relative humidity was described as cardboard-like, sweet and smoky. The 

substances influencing these olfactory sensations were (E)-non-2-enal, vanillin and 2-methoxyphenol. 

Increasing relative humidity to 75 and 100 % resulted in additional astringency/stain and fatty/rancid 

sensations, which were mainly caused by short-chain fatty acids and unsaturated aldehydes (Wolf et al., 

2023). It has been observed that (E)-non-2-enal, hexanal and (E,E)-nona-2,4-dienal (oily, green aroma), 

2-methylbutanal (malt aroma) and hexan-1-ol (grassy aroma) can migrate into coffee from wood. In 

addition, furfural (grain aroma), hexanal and heptan-1-ol (fruit aroma) were identified in coffee served 

in wheat bran, while 3-methylbutanal (malt aroma), (E)-non-2-enal and hexanal were identified in coffee 

served in palm leaves. 

A significant factor influencing the intensity of migration process is the type of FCMs. The most 

active aroma compounds (characterized by OAV >1000) can migrate to coffee from paper and the key 

compounds include saturated and unsaturated aldehydes: 3-methylbutanal (OAV=49480) and 2-

methylbutanal (OAV=34830) (malty aroma), (E)-non-2-enal (OAV=26980) (fatty, green aroma), nonanal 

(OAV=6126) (citrus, soapy aroma), hexanal (OAV=2468) (grassy aroma), acetaldehyde (OAV=1909) 

(green, fresh aroma) and (E)-oct-2-enal (OAV=1660) (fatty, nutty aroma). In the case of wood, it may 

migrate to coffee (E)-non-2-enal (OAV=6901), hexanal (OAV=3893) and (E,E)-nona-2,4-dienal 

(OAV=2940) (fatty, green aroma), 2-methylbutanal (OAV=2328) (malty aroma) and hexan-1-ol 

(OAV=1072) (grassy aroma). Moreover, furfural (OAV=4685) (cereal aroma), hexanal (OAV=1760) and 

heptan-1-ol (OAV=1019) (fruit aroma) were identified in coffee served in wheat bran. Additionally, a 

strong influence of palm leaf on the aroma of coffee was noted, in which malty, fatty, green and grassy 

notes can be detected due to the presence of 3-methylbutanal (OAV=115571), (E)-non-2-enal 

(OAV=17263) and hexanal (OAV=2530). 
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PCA was used to determine the influence of the type of FCMs on the sensory characteristics and 

important aroma compounds of black coffee and green tea. Multivariate analysis confirmed that the 

type of FCMs has a significant impact on the sensory profile of these beverages. The clear clustering was 

achieved for the analyzed data (Figs. 15 I - coffee and 15 I - tea). It is visible that the sensory profile of 

coffee brewed in paper, wheat bran, palm leaf and wood are completely different (Fig. 15 I -coffee). 

Interestingly, PCA showed that coffee brewed in wood had the most similar sensory profile to coffee 

brewed in glass (blank sample). Most of the identified aroma-active compounds were similar in all 

brews, but some were specific to selected samples. Hierarchical analysis of components (HA) confirmed 

the clustering of the FCMs analyzed into two main groups: the first FCMs from wheat bran and palm 

leaves and the second FCMs from paper, glass and wood (Fig. 15 II - coffee).  

The effect of the type of FCMs on the sensory profile of the tea was also confirmed (Fig. 15 I - 

tea). All of the FCMs analyzed differ from each other in their effects on the sensory profile of tea and 

none of them is similar to tea served in glass (blank sample). HA confirmed the clustering of the FCMs 

analyzed into two main groups. In the first are FCMs from paper and wood and in the second are FCMs 

from wheat bran, palm leaves and glass (Fig. 15 II – tea). 

 

 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

77 
 

 

 

 

 

I - coffee 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

78 
 

 

 

 

 

I -tea 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

79 
 

 

 

 

 

 

II - coffee 

 

II - tea 

Fig. 15. Multivariate analysis of odorant concentrations and sensory attributes of coffee or tea brewed 

in different FCMs. Results of multivariate analysis of concentrations of important odorants and sensory 

attributes of beverages obtained using different technologies. (I) Biplot from principal component 

analysis (PCA). PC1 and PC2 explain 64% (for coffee) and 82 % (for tea) of the variance. Different colors 

represent different FCM samples (grey) and migrating odor-active compounds (green), according to: 

(1) furfural, (2) hexanal, (3) 2-methylbutanal, (4) pentan-1-ol, (5) 3-methylbutanal, (6) (E)-oct-2-enal, 

(7) octanal, (8) nonanal, (9) heptanal, (10) heptan-2-ol, (11) pentanal, (12) hexanoic acid, (13) hex-1-
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en-3-one, (14) (E,E)-hepta-2,4-dienal, (15) octan-2-one, (16) heptanoic acid, (17) acetone,  

(18) acetophenone, (19) hexan-1-ol, (20) methyl hexanoate, (21) 3-methylbutanoic acid, (22) (E)-hex-2-

enal, (23) pentan-2-one, (24) pentanoic acid, (25) benzothiazole, (26) butanoic acid,  

(27) 2-methylbutanoic acid, (28) (Z)-2-butyloct-2-enal, (29) butyrolactone, (30) decan-2-one,  

(31) (E,E)-octa-3,5-dien-2-one, (32) (E)-non-3-en-2-one, (33) nonan-2-one, (34) oct-3-en-2-one,  

(35) (E,E)-nona-2,4-dienal, (36) (E)-non-2-enal, (37) 2-methylpropanal, (38) (E,E)-deca-2,4-dienal,  

(39) butane-2,3-dione, (40) heptan-2-one, (41) benzaldehyde, (42) oct-1-en-3-ol, (43) decanal,  

(44) acetic acid, (45) (E)-dec-2-enal, (46) isoborneol, (47) borneol, (48) limonene, (49) eucalyptol,  

(50) α-pinene, (51) methyl benzoate, (52) camphene, (53) cis-α-terpineol, (54) benzyl alcohol,  

(55) octan-3-ol, (56) pent-1-en-3-one, (57) pentyl acetate, (58) 3-carene, (59) (E,E)-octa-2,4-dienal,  

(60) acetaldehyde, (61) maltol, (62) camphor and (63) methyl octanoate  

(II) Dendrogram from hierarchical analysis. Different colors represent different clusters 

 

In order to confirm the influence of FCMs on the sensory properties of black coffee and green 

tea, a sensory evaluation was carried out. The results are summarized in Figs. 16 I and 16 II. 
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II 

Fig. 16. Sensory profile of (I) coffee and (II) tea served in different FCMs 

 

Based on the obtained aromagrams, it is clear that all the analyzed FCMs affect the sensory profile 

of black coffee and green tea (compared to glass). This indicates that the overall aroma of coffee and 

tea depends on the FCMs in which it is served. In the case of black coffee served in a glass vessel, the 

desired coffee notes (4) are strongly felt, while the roasted (1), bitter (1), cereal (1), earthy (1) and 

woody (1) notes are less intense, which is caused by the presence of natural aroma-active compounds 

present in the beverage. In general, coffee brewed in the analyzed FCMs was characterized by a reduced 

coffee aroma (intensity 2 or 1), which may be caused by the FCMs absorbing key aroma-active 

compounds characteristic of this beverage. In addition, the sensory profiles of coffee brewed in different 

FCMs differ significantly. The most undesirable effect on the aroma of coffee is exerted by wood FCMs, 

from which compounds that shape woody (3), cardboard (2), earthy (2), musty (2), grassy (1) and cereal 

(1) aromas can migrate. Similarly, in coffee brewed in wheat bran FCMs, cereal (2), cardboard (2), grassy 

(1) and musty (1) notes were noticeable. In the case of coffee brewed in paper and palm leaf, foreign 

cardboard, grassy and musty notes were noticeable. Similar observations were noted for green tea, 

which, served in a glass, was characterized by the desired grassy (2), fruity (1) and citrus (1) notes. On 

the other hand, other FCMs reduced the desired grassy note (1) for this infusion and the appearance of 

foreign musty, cereal and woody notes.  

0

1

2

3

4
Grassy

Fruity

Bitter

Roasted

Musty

Cereals

Earthy

Woody

Cardboard

Citrus

Glass (blank sample) Paper Palm leaf Wheat bran Wood



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

82 
 

 

The sensory analysis shows that glass is the most desirable material, which does not affect the 

sensory profile of black coffee and green tea to as great an extent as the analyzed FCMs. Moreover, as 

the research shows, one of the most frequently identified active sensory compounds characteristic of 

FCMs are carbonyl compounds. They include a large group of reactive chemical compounds, among 

which there are also toxic compound. It means that their concentration levels in food must be 

controlled. 

 

5.2.2 Migration study of carbonyl compounds 

Low-molecular weight carbonyl compounds can be easily released from the FCMs into food. 

Many previous works have described the contamination with carbonyl compounds of mineral waters 

stored in PET bottles (Cincotta et al., 2018; Dehghani et al., 2018; Abe et al., 2021; Cardozo et al., 2021; 

Dhaka et al., 2022). For example, Abe et al. (2021) identified formaldehyde in 61 of 105 tested samples 

of PET packaged mineral waters on the Japanese market, with average concentrations of the compound 

ranging from 2.6 to 31.4 µg/L. Similarly, Cardozo et al. (2021) identified formaldehyde in all of the 17 

sparkling and still mineral water samples analyzed in the Brazilian market, with an average concentration 

of 10.4 125.5 µg/L. In turn, Dehghani et al. (2018) determined formaldehyde in the Iranian market in 

the concentration range of 12-45 µg/L. The presence of aldehydes can affect the uncontrolled growth 

of bacteria in mineral water and change its sensory properties. The number of aldehydes migrating from 

plastic bottles depends on the quality of the material and can differ significantly from one production 

batch to another. The type of resins used has a significant impact on the release of unwanted organic 

compounds from packaging. Bottle material can be contaminated with recycled pellets, which adversely 

affects water quality. In addition, the aldehyde content of carbonated waters has been found to be 

significantly higher than that of non-carbonated waters (Nawrocki, Dąbrowska & Borcz, 2002). The 

reasons for this phenomenon can be explained by the greater biological stability of carbonated waters, 

as the carbon dioxide introduced into the water lowers the pH of the water, sometimes even to pH=5. 

Aldehydes migrating from the bottle material, which are readily bioavailable compounds, are consumed 

by bacteria that naturally inhabit and reproduce in the aquatic environment. In CO2-saturated water, at 

lower pH, bacterial growth is limited, so the demand for available organic carbon is also reduced. In still 

water, autochthonous bacteria consume aldehydes and have good conditions for growth. Therefore, 

there is a paradox: bottled carbonated waters are biologically stable, but may contain increased 

amounts aldehydes undesirable for health, while still waters contain smaller amounts of aldehydes, but 

these are waters with an increased number of autochthonous bacteria.   
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New FCMs can be also a source of food contamination with carbonyl compounds. The analyzed 

FCMs were divided into plant-based materials (including wheat bran, palm leaf, bamboo, sugar cane, 

wood, plant residues and recycled and bleached paper) and bio-based plastics (including polylactide, 

bio-polypropylene (transparent and colored), thermoplastic starch and expanded polypropylene) 

(abbreviations for FCMs are summarized in the Table 1). 

Based on the conducted migration studies (Fig. 17), it can be observed that currently popular 

FCMs can be a source of food contamination with carbonyl compounds, especially low weight aldehydes 

and ketones. The intensity of migration process depends evidently on the type of FCMs and food. Figs. 

17 I-17 VI present the total concentrations of carbonyl compounds (aldehydes and ketones) that were 

identified in food simulants after a short contact time with FCMs, i.e., 2h, 70oC (conditions 

recommended by the Commission Regulation (EU) No 10/2011). The food simulants used included 

distilled water (Fig. 17 I), 10 % ethanol (Fig. 17 II), 3 % acetic acid (Fig. 17 III), 20 % ethanol (Fig. 17 IV), 

50 % ethanol (Fig. 17 V) and Tenax (Fig. 17 VI).  
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    V        VI   

Fig. 17. Total carbonyl compounds concentration determined in various food simulants (I) distilled water, (II) 10 % ethanol, (III) 3 % acetic acid, (IV) 20 % 

ethanol, (V) 50 % ethanol and (VI) Tenax from FCMs under contact conditions: 2 h, 70°C (average values from three repetitions per sample; for abbreviations of 

FCMs see Table 1) 
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The obtained results clearly show that the type of FCMs (plant-based, bio-based plastic) has a 

significant impact on the amount of carbonyl compounds released into food. Particularly high amounts 

of this compounds can be released from plant-based FCMs, especially from wheat bran (PWB), palm 

leaf (PLB), bamboo (BAM), plant residues (PLR) and wood (WB) into food simulants. This is particularly 

visible in Fig. 17 II. The predominant carbonyl compounds can include acetaldehyde, propanal, pentanal, 

hexanal, heptanal, benzaldehyde, methylglyoxal and pentan-2-one. Migration of these compounds from 

plant-based FCMs can be caused by the process of plant vegetation (allelopathy), carbonyl compounds 

are also the part of essential oils, giving plants a pleasant taste and smell. The presence of certain volatile 

organic compounds in plants and their emission during environmental stress creates a defense system 

against pests, bacterial infections and is also a way to deter competition (Dabrowska & Nawrocki, 2013). 

On the other hand, carbonyl compounds can also be formed as by-products of thermal processing 

(Marín-Morocho et al., 2021). Most of them can be treated as NIAS (Cincotta et al., 2018; Kato & Conte-

Junior, 2021). Carbonyls can be residues from the manufacturing process of recyclable vessels, 

especially those conducted at elevated temperatures. They can also be components of inks or paints 

and polymeric protective coatings applied to the surface of the vessel (Aznar et al., 2020). Aznar et al. 

(2020) showed the influence of the heating method on VOC emissions from kitchen bags. Bags heated 

in a conventional oven had a greater impact on the increase in odor emission from the packaging than 

bags heated in a microwave oven. The main causes of odors detected were aldehydes and ketones. In 

turn, Wrona et al (2024) identified aldehydes (e.g., undecanal, dodecanal, hexadecanal and 

octadecanal) as compounds migrating from various silicone FCMs to 50 % EtOH. The authors found that 

the presence of the aldehydes were fragrances or degradation products. 

The obtained results also clearly show that the nature of food (i.e., neutral, acidic, alcoholic, fatty 

and dry) is important in migration intensity (Figs. 17 I-VI). The highest concentrations of carbonyl 

compounds were observed in Tenax, which represents dry food. The total concentrations of this 

contaminants ranged from 7.342 µg/g of food (from TPS) to even 24.720 µg/g of food (from PLB). 

However, high concentrations of migrating aldehydes and ketones may be due to the nature of Tenax. 

Some studies report disadvantages of Tenax as a food simulant, because may lead to overestimated IAS 

and NIAS concentrations compared to real food samples (Rubio et al., 2019; Baele et al., 2020; Elizalde 

et al., 2020; Almeida Soares et al., 2023). These reports suggest that the interpretation of migration 

studies results with Tenax should be cautious. However, it should be noted that the results of such 

studies can provide an understanding of contaminants that may not necessarily migrate from FCMs into 

real food. They can be a warning sign for taking early preventive measures. 
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Comparing the intensity of carbonyl compound migration from FCMs to other simulants, the 

following trend can be observed: fatty food > alcoholic food > acidic food > neutral food. In the case of 

fatty and alcoholic food, the highest total concentrations of migrating carbonyl compounds were 

recorded for PWB (24.527 µg/g and 18.990 µg/g, respectively). The most frequently identified carbonyl 

compounds include: benzaldehyde, pentan-2-one, hexan-2-one, acetaldehyde, acetone and propanal. 

It can be expected that acidic foods (e. g. vegetable soups, fruit juices, pickled vegetables and etc.) can 

be more contaminated with carbonyl compounds than products with neutral pH. It should be noted that 

acidic foods is more often preferred by consumers due to the desired taste and dietary properties.  

Some carbonyl compounds are suspected of having carcinogenic, mutagenic and cancerogenic 

properties (WHO, 2011). These include formaldehyde and acetaldehyde and their migration from FCMs 

to food may be considered particularly undesirable. These carbonyl compounds are classified as IAS, 

therefore the SML for formaldehyde was set at 15 µg/g of food and for acetaldehyde 6 µg/g of food, 

respectively (Table 6). The conducted studies on the migration of carbonyl compounds from currently 

popular FCMs to food of various types have shown that none of the FCMs exceeds the permitted SML 

for formaldehyde and acetaldehyde, although the most formaldehyde can migrate to dry food and 

acetaldehyde to fatty food. This means that short contact of heated food (2h, 70°C) with plant-based 

and bio-based plastic FCMs does not pose a risk of formaldehyde and acetaldehyde migration, which 

have a potential, undesirable carcinogenic effect. 

However, the contact of FCMs with food and the temperature of the food consumed are often 

different, i.e., in the case of fast-food bars, the contact of food with FCMs is short (15 min/30 min), 

including the meal time. FCMs are also often used for short-term storage of food (5 h/10 h). In addition, 

food can be served at room temperature (20°C) or hot (70°C). In order to illustrate the intensity of 

migration of carbonyl compounds under different contact conditions (temperature and time) of FCMs 

with food, migration studies were carried out using distilled water and 3% acetic acid as food simulants 

(Fig. 18).  

Based on the obtained results, contact time and temperature can have huge impact factor on the 

migration intensity (Figs. 18 I-18 XIII) which is in accordance with the other studies (Aznar et al., 2020; 

Kato & Conte-Junior, 2021). Thermal degradation reactions of FCMs can occur during contact with food, 

especially hot food. Carbonyl compounds can be easily released from FCMs as degradation products of 

coatings, paints and varnishes that are added to FCMs. Therefore, carbonyl compounds can be identified 

in food even after short contact of FCMs with food (after 15 min/30 min) at ambient temperature 

(20°C). In these conditions, the most carbonyl compounds can be released from palm leaf (PLB), paper 

(PC and PCW), plant residues (PLR), especially to acidic food. For most of the analyzed FCMs, a 
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proportional increase in the total concentration of carbonyl compounds was observed with increasing 

temperature (from 20 to 70°C) and contact time (from 15 min to 300 min) between the FCMs and the 

food simulant, e.g., an almost fourfold increase in the concentration of carbonyl compounds was noted, 

both in distilled water and 3 % acetic acid after extended contact with PLB (from 15 min to 300 min) 

(Fig. 18 II). However, volatile, simple organic compounds (including carbonyl compounds) are thermally 

unstable and can decompose at elevated temperatures, especially over a long period (600 min).  
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XIII 

Fig. 18. Total carbonyl compound concentrations determined in distilled water and 3 % acetic acid after contact with different FCMs under different 

temperature and time conditions 
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Another factor that may determine the intensity of migration of carbonyl compounds may be 

heating by microwave radiation (usually at 700 W). Currently, it is one of the most popular method of 

quick and easy meal preparation (Chandrasekaran, Ramanathan & Basak, 2013; Guzik, Szymkowiak, 

Kulawik, Zając & Migdał, 2022). Additionally, the amount of water used is reduced, which means that 

microwaves can be considered as an ecological way of cooking (Krongworakul, Naivikul, Boonsupthip & 

Wang, 2020). 

On the other hand, the heat generated in a microwave oven can be distributed unevenly 

(Tepnatim et al., 2021) and can also affect the FCMs. As a result, various chemical compounds can 

migrate into the heated food (Kim et al., 2023; Conchione, Lucci & Moret, 2020; Whitt et al., 2016; 

Sapozhnikova, Nunez & Johnston, 2021), including carbonyl compounds. The targeted study clearly 

showed that the key factors influencing the intensity of migration include: the length of time the food 

was stored in the refrigerator and the length of time it was heated with electromagnetic radiation. Total 

concentration of carbonyl compounds that were identified in the neutral food simulant and acidic food 

simulant after different storage periods in the refrigerator (without storage, 12 h, 24 h, 192 h of storage) 

and heating with microwave radiation (1 min) are presented in Figs. 19 I and 19 II. 
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II 

Fig. 19. Total concentrations of carbonyl compounds identified in (I) distilled water or (II) 3 % acetic 

acid after different times of storage of samples in a refrigerator and heating by microwave radiation at 

700W 
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food), sugar cane (280 µg/L to neutral food and 400 µg/L to acidic food), thermoplastic starch (TS) 

(255 µg/L to neutral food and 462 µg/L to acidic food), white paper (PCW) (190 µg/L to neutral food and 

446 µg/L to acidic food) and brown paper (PC) (128 µg/L to neutral food and 561 µg/L to acidic food). 

Predominant carbonyl compounds include formaldehyde, acetone, pentanal, hexanal, decanal, glyoxal, 

methylglyoxal and pentan-2-one.  

Migration of carbonyl compounds from glass (GLA) and bio-based plastics (BIOPP and EPP) occurs 

at lower concentration levels under these conditions. Total concentration of carbonyl compounds, 

which can migrate from glass (GLA) is 114 µg/L for neutral food and 273 µg/L for acidic food, from 

polypropylene (PP) is 120 µg/L for neutral food and 285 µg/L for acidic food and from expanded 

polypropylene (EPP) is 65 µg/L for neutral food and 181 µg/L for acidic food. Glass is a material still used 

globally. It is produced at high temperatures, so it is considered a safe material for food. Soda-lime glass, 

popularly used for the production of FCMs, was tested in this study. Chemically pure glass (borosilicate) 

showed twice lower migration of carbonyl compounds. On the other hand, EPP is a foam material 

(obtained using the Steam Chest Molding method) and BIOPP is a thermoplastic. Both materials are 

resistant to high temperatures, therefore the smallest amount of carbonyl compounds are released 

from these materials when rapidly heated with microwave radiation. The predominant carbonyl 

compounds identified for this group of materials include formaldehyde, acetaldehyde, acetone, 

propanal, butanal and pentanal.  

However, the migration of carbonyl compounds changes during sample storage (12 h, 24 h, or 

192 h) in the refrigerator (Figs. 19 I and 19 II). A significant increase in the amount of migrating carbonyl 

compounds was observed for all analyzed FCMs. The highest concentrations of carbonyls were noted in 

neutral food after 24 hours of storage. A particular increase in the total concentration of carbonyl 

compounds was observed for palm leaf (PLB) in these conditions (from 62 µg/L to 843 µg/L) (Fig. 19 I). 

On the other hand, a significant increase in the concentration of carbonyl compounds was noted after 

just 12 hours of storage for acidic food (Fig. 19 II). Only for glass (GLA) there was an increase in the 

concentration of carbonyls after 24 hours of storage.  

In addition, it has been observed that longer storage of neutral food in the refrigerator (up to 

about a week) reduces the concentration of carbonyl compounds by about 40 % (for TS and PLR), about 

70 % (for PC and PCW), about 80 % (for EPP) and about 95 % (for GLA). This means that carbonyl 

compounds can biodegrade over time. These low-molecular compounds can be a source of easily 

available organic carbon for the microflora present in the neutral food simulant. It is clear that the 

biodegradation of carbonyl compounds in acidic food is difficult. Even after storing food in the 

refrigerator for a week, high concentrations of these compounds were identified in acidic food. Some 
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materials (e.g., BIOPP and TS) showed an increase in concentration. This means that the contact time of 

the materials with food and pH of the food have a significant impact on the amount of migrated carbonyl 

compounds.  

The effect of heating time (1-4 min) on the intensity of migration processes of carbonyl 

compounds from the FCMs into the food simulants was also investigated. As shown in Fig. 20, the 

highest total concentrations of carbonyl compounds were observed after 1 min of heating the analyzed 

samples with electromagnetic microwave radiation (food temperature was about 60°C), both for neutral 

and acidic food. However, the pH of food may affect the changes in carbonyl compound concentrations 

under the influence of heating time. Longer heating of neutral food (2, 3, or 4 min) causes a decrease in 

the concentration of carbonyl compounds, probably due to their thermal degradation. For some 

samples (e.g., TS and PLR), degradation of carbonyl compounds was noted only after 4 min of heating. 

It may be related to the gradual release of carbonyl compounds from the material to food under the 

influence of the electromagnetic radiation. On the other hand, for acidic food, stabilization of the 

concentration of carbonyl compounds was observed from 1 min to 3 min of heating for majority of the 

analyzed samples. This suggests that low pH of food affects the stability of carbonyl compounds, so that 

acidic food may be more exposed to carbonyl compounds than neutral food. 
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Fig. 20. The total concentration of carbonyl compounds identified in the distilled water and 3 % acetic acid after storage in 24 h in the refrigerator and heating 

with microwave radiation in different times (1-4 min) 

 

0

100

200

300

400

500

600

700

800

900
T

o
ta

l 
co

n
ce

n
tr

at
io

n
 o

f 
ca

rb
o

n
y
l 

co
m

p
o

u
n

d
s 

(µ
g
/l

)

0 min 1 min 2 min 3 min 4 min



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

98 
 

 

The presence of formaldehyde in food heated in a microwave oven can be dangerous. The 

tolerable daily intake (TDI) of this compound was set at 150 µg/kg body weight per day (EFSA 2007) to 

estimate the risk of formaldehyde exposure through food. The largest group exposed to this 

cancerogenic carbonyl compound are children, based on their relatively low body weight. The level of 

consumer exposure to undesirable formaldehyde was evaluated during heating of food with microwave 

radiation for 1 min after 24 h of storage in the refrigerator. It was assumed that the heated neutral or 

acidic food had a total volume of 250 mL. Tested materials differ in the amount of formaldehyde 

released into the food, as presented in Fig. 21. Most of this undesirable compound can migrate from 

FCMs made of expanded polypropylene (EPP) or plant residues (PLR). The concentration of migrating 

formaldehyde can exceed 100 μg for acidic food. Assuming an average child weight of 10 kg, a child can 

consume more than 10 µg/kg of formaldehyde with a microwave-heated meal. Although this value is 

significantly lower than the recommended TDI for formaldehyde (150 µg/kg), it should be considered 

that formaldehyde is a ubiquitous compound in the environment. There are many sources of exposure 

(e.g., children are exposed to formaldehyde through synthetic toys). Safer materials used for microwave 

radiation heating include glass or paper in these terms. 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

99 
 

 

 

Fig. 21. Simulated assessment of consumer exposure to formaldehyde after storing neutral or acidic 

foods in different FCMs in the refrigerator for 24 h and heating with a 700 W microwave oven for 

1 min; estimated volume of food 250 mL 
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5.2.3 Migration study of high-molecular weight contaminants  

Dry and frozen foods (represented in this study by Tenax) can be particularly exposed to 

contamination due to their long shelf life. PAHs can easily adsorb to the surface of solids due to their 

poor solubility in water, low vapor pressure and aromatic nature. Plastic waste, especially polystyrene, 

can be a source of PAHs pollution in the aquatic environment (Si-Qu, Hong-Gang & Hui, 2017). Although 

the study showed that polyaromatic hydrocarbons do not migrate from the analyzed plant materials 

under the conditions tested, it is possible that Tenax may be contaminated with EDCs (Table 12).  

BPA and BPS are commonly used as epoxy resins and polycarbonate precursors to improve the 

strength, hardness, thermal stability, grease and oil resistance of packaging materials and vessels during 

manufacturing process (Ma et al., 2019). Moreover, benzophenones are UV stabilizers and ingredients 

of inks, paints and printed FCMs. In turn, phthalates are added to packaging and vessel materials to 

improve their functional properties (flexibility, softness and elasticity). They are also used in the 

production of varnishes and prints and as additives that improve adhesion to surfaces (Moraes da Costa 

et al., 2023). All of these material additives should be used in moderation. Some of them (e.g., BPA/BPS) 

exhibit pro-estrogenic effects and are defined as EDCs (Ma et al., 2019; Sawadogo et al., 2023; Prueitt 

et al., 2023). Substitutes, including BPS, are often used to reduce BPA content. However, in vivo and in 

vitro studies have shown the effect of BPS on endocrine disorders, which means that commonly used 

BPA analogues may also be hazardous food contaminants (Heindel et al., 2022). Benzophenone 

derivatives, as ECDs, may have a toxic effect on hormonally controlled processes, including fertility, 

development of the nervous system and sexual differentiation. They can interact with enzymes, leading 

to digestive disorders and also adversely affect the proliferation and migration of cancer cells (Ma et al., 

2023). Moreover, exposure to phthalates (DBP, DiBP and DEHP) and their metabolites, are particularly 

dangerous for pregnant women and teenagers (Topdas, 2023; Tsochatzis et al., 2023). These 

compounds can cause oxidative stress, which leads to premature birth (Ferguson et al., 2016) and 

pancreatic β-cell dysfunction. Phthalates as ECDs may lead to the development of obesity and asthma, 

especially in adolescents (Hu et al., 2017; Dong et al., 2022; Zhu et al., 2024).  
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Table 12. Determined concentrations (µg/g material) of environmental and production contaminants (x) in Tenax after contact with different materials under 

different time and temperature conditions: I (2 h, 70°C) and II (10 days, 40°C), respectively 

Migrants PWB BAM PLR WB TS PLA EPP PC 

Conditions I II I II I II I II I II I II I II I II 

BPA <LOD 0.016 <LOD 0.019 <LOD 0.019 0.115 0.014 <LOD 0.011 <LOD 0.030 0.086 0.007 <LOD 0.009 

BPS <LOD 0.004 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.018 <LOD <LOD <LOD <LOD 

2,4-DHBP <LOD <LOD 0.033 0.024 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.034 0.014 

2,2,4,4'-THBP <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

2-H-4-MBP <LOD <LOD 0.028 0.005 0.017 0.003 0.115 0.005 0.015 0.002 0.028 0.004 0.032 0.004 0.011 0.005 

 

Table 12. continued 

Migrants PLB PCW PSC BIO-PP 

Conditions I II I II I II I II 

BPA 0.086 <LOD <LOD <LOD <LOD 0.049 <LOD <LOD 

BPS <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

2,4-DHBP <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

2,2,4,4'-THBP <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

2-H-4-MBP 0.028 <LOD <LOD 0.007 0.014 0.007 0.018 <LOD 
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Migration studies showed that BPA can migrate from wood (WB) (0.115 µg/g food) and expanded 

polypropylene (EPP) (0.086 µg/g food) at 2 h, 70°C into food. Both values exceed the SML for BPA 

(0.050 µg/g food). The cause of BPA migration from bio-based plastic FCMs into food may be due to 

protective coatings based on polycarbonates and peroxide resins, which can be thermally degraded at 

elevated temperatures and form monomers, including BPA. Similarly, Sawadogo et al. (2023) found that 

the intensity of BPA migration is influenced by the contact temperature between the packaging and the 

food. This means that exposure of bottled water to sunlight can accelerate the migration of BPA into 

water by up to 55 times. Scientists attribute the causes of these phenomena to possible thermal 

degradation (fragmentation and depolymerization) of polycarbonate coatings and peroxide resins 

contained in plastics, which leads to the production of monomers, including: BPA. Additionally, it was 

found that depolymerization did not occur suddenly, but rather as a function of time, as BPA was 

identified even after 35 days of storage. However, longer storage (up to 8 weeks) may cause the 

degradation of BPA, which oxidizes and decomposes in contact with oxygen, especially in the presence 

of water. Dissolved oxygen plays a major role in the degradation of BPA and is one of many factors that 

can also act in this way in packaged water.  

BPA migration from some plant-based FCMs to food may seem surprising. However, there have 

been many reports on the serious problem of BPA contamination in the environment recently (Datta et 

al., 2024). The reason for this phenomenon may be the highly developed plastic industry and thermal 

paper recycling, which inevitably led to the leaching of BPA into the environment in large quantities, 

polluting the soil, air and aquatic environment (Ramakrishna, Girigoswami, Chakraborty & Girigoswami, 

2022). Moreover, uncontrolled open burning of household waste containers may contribute to high BPA 

emission rates (Vasiljevic & Harner, 2021). Significant BPA environmental contamination may have a 

significant impact on the occurrence of this compound in trace amounts in plant- and bio-based plastics 

FCMs as residues/contaminants in the environment. 

In contrast, increasing the contact time of the vessel with food (10 days, 40°C) results in an 

approximately ten-fold decrease in the concentration of BPA migrating from wood (WB) and expanded 

polypropylene (EPP), which is likely related to the degradation of BPA over time in the presence of 

oxygen (aerobic degradation). Guart, Bono-Blay, Borell and Lacorte (2011) identified BPA as a compound 

migrating into fresh bottled water and after one year of aging from various packaging materials (glass, 

PP, PC, PET, HDPE, LDPE). They reported lower concentrations of BPA in older samples, which confirmed 

the possibility of BPA degradation over time. Based on the results, temperature has a greater effect on 

BPA migration than contact time. This means that food served hot (e.g., pasta) may be more 

contaminated with BPA than food served cold (e.g., ice cream). In some FCMs (e.g., wheat bran (PWB), 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

103 
 

 

bamboo (BAM), plant residues (PLR), thermoplastic starch (TS), polylactide (PLA), paper (PC)) BPA was 

identified in foods after a longer period, but at concentrations that do not exceed the SML.  

It was also observed that BPS can only migrate into food after prolonged contact with wheat bran 

(PWB), bamboo (BAM), plant residues (PLR) and polylactide (PLA), but the concentrations do not exceed 

the SML. BPA contamination of food can be much higher than BPS. The European Food Safety Authority 

(EFSA) has set the TDI for BPA at 0.20 ng/kg body weight per day (EFSA, 2023). Based on the BPA 

concentrations determined for WB and EPP at 2h, 70°C and assuming a child's weight of 40 kg and a 

meal weight of 150 g, it can be estimated that the child will consume about 431.3 ng/kg body weight of 

BPA from WB and about 320.6 ng/kg body weight of BPA from EP. These values significantly exceed the 

recommended TDI for BPA.  

Migration of benzophenone derivatives into food is also an undesirable phenomenon. Studies 

have shown the presence of 2,4-DHBP and 2-H-4-MBP in Tenax (Table 12). The migration of these 

compounds is mainly favored by the elevated contact temperature of the food with the vessel (70°C). 

2,4-DHBP can migrate from bamboo (BAM) (0.033 µg/g food) and paper (PC) (0.034 µg/g food). In 

contrast, 2-H-4-MBP was identified as a migrating contaminant from all materials analyzed, except 

wheat bran (PWB). These compounds, similar to BPA, are susceptible to degradation over time. In 

addition, 2,2,4,4'-THBP was not identified as a compound migrating to Tenax from the analyzed 

materials. 

Another group of food contaminants are phthalates. The presence of DBP, DiBP and DEHP was 

confirmed in most of the analyzed samples (Table 13). Only thermoplastic starch (TS), polylactide (PLA) 

and brown paper (PC) do not cause the migration of these compounds into dry and frozen foods. 

However, they can release 2,4-ditertbutylphenol (2,4-DTBP), which is a commonly used antioxidant food 

additive. This compound has anti-inflammatory, cytotoxic, insecticidal, antibacterial, antiviral and 

antifungal properties and is therefore used as an environmentally friendly herbicide (Zhao, Wang, 

Lucardi, Su & Li, 2020). Squalene, a natural bioactive compound from the triterpenoid group, commonly 

found as a component of vegetable oils (amaranth oil, olive oil), can migrate from wood (WB) and plant 

residues (PLR). It occurs as a bioactive component of plants, such as papyrus (Cyperus Papyrus L.) 

(Rosado et al., 2022) and apples (Scortichini et al., 2022). Prolonged contact between the vessel and 

food can cause migration of octocrylene from wood (WB), wheat bran (PWB), bamboo (BAM) and 

polylactide (PLA).  
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Table 13. Presence of environmental and production contaminants (x) in Tenax after contact with different materials under different time and temperature 

conditions: I (2 h, 70°C) and II (10 days, 40°C), respectively 

Migrants PWB BAM PLR WB TS PLA EPP PC 

Conditions I II I II I II I II I II I II I II I II 

DBP x x x x x x  x     x    

DiBP x x x x x x  x     x    

DEHP  x x x   x x         

2,4-DTBP         x x  x     

Octocrylene  x  x    x    x     

Squalene     x x x x         

 

Table 13. continued 

Migrants PCW PSC BIO-PP 

Conditions I II I II I II 

DBP x x     

DiBP  x   x  

DEHP  x x  x  

2,4-DTBP       

Octocrylene       

Squalene       
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Octocrylene is a ubiquitous and persistent substance in the environment because it is not 

biodegradable. This compound has found many applications in the industrial sector, e.g., it is used as a 

common UV stabilizer in various materials. It is often considered a precursor to benzophenone (BP) in 

the retroaldol condensation (Fig. 22) (Downs, DiNardo, Stien, Rodigues & Lebaron, 2021). For this 

reason, it is considered an undesirable compound in foods (Lestido-Cardama et al., 2020; Su, Vera, 

Nerin, Lin & Zhong, 2021). Moreover, octocrylene is one of the global environmental pollutants, since it 

has been identified in sewage, surface waters and bottom sediments (Kameda, Kimura & Miyazaki, 

2011). For these reasons plant-based FCMs, e.g., wheat bran, bamboo or wood, may contain 

octocrylene at trace levels. 
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Fig. 22. An example mechanism leading to the preparation of BP from octocrylene (based on Downs et 

al., 2021) 

In order to compare the migration intensity of contaminants from FCMs to Tenax and real food 

samples, the physical properties of solid samples were characterized and a spiking experiment was 

conducted. 

The parameters characterizing the porous structure of the materials tested were determined 

from the BET isotherms (Fig. 23). According to the IUPAC classification, the tested materials 

demonstrate a type IV isotherm. It is characterized by a hysteresis loop, which is related to capillary 

condensation occurring in mesopores and limited absorption in the high p/p0 range (Sing et al., 1985). 

The specific surface area, total pore volume and average pore diameter were determined from these 

isotherms (Table 14). Their specific surface area and pore volume can be ranked from largest to smallest 

for Tenax > powdered milk > baby cereal > oat flakes. Based on the average pore diameter, all analyzed 

samples can be classified as mesoporous materials (50 nm > d > 2 nm). 
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I          II 

   

III          IV 

Fig. 23. BET isotherms of the tested materials: (I) Tenax, (II) powdered milk, (III) baby cereal and (IV) oat flakes 
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Table 14. Specific surface area (m2/g), pore volume (cc/g) and average pore diameter (nm) determined 

for the tested materials 

Material Surface area 

(m2/g) 

Pore volume 

(cc/g) 

Average pore 

diameter (nm) 

Tenax 27.325 a1.748e-1 25.590 

Powdered milk 25.218 b1.705e-2 2.704 

Baby cereal 3.016 c1.357e-2 17.990 

Oat flakes 0.047 d3.578e-3 302.400 

a Total pore volume for pores with diameter less than 273.12 nm at p/p0 = 0.992919 

b Total pore volume for pores with diameter less than 428.32 nm at p/p0 = 0.995502 

c Total pore volume for pores with diameter less than 699.28 nm at p/p0 = 0.997252 

d Total pore volume for pores with diameter less than 346.89 nm at p/p0 = 0.994437 

 

The migration of contaminants including 2,4-DHBP, 2,2,4',4'-THBP, 2-H-4-MBP, PHE and ANT to 

Tenax and real foods such as powdered milk, baby cereal and oat flakes were compared. Percentage of 

migration of each contaminant identified in Tenax and food is presented in Fig. 24. Based on the results, 

the highest percentage of contaminant migration was observed for Tenax (t-test at p < 0.05 level), which 

is in accordance with previous reports (López, Batlle, Salafranca & Nerín, 2008; Rubio et al., 2019; Cai et 

al., 2017; Ji et al., 2019; Otoukesh, Vera, Wrona, Nerin & Es’haghi, 2020; Baele et al, 2020; Elizalde et 

al., 2020). This means that studies conducted with Tenax as a simulant may lead to overestimated results 

of contaminant migration, but at the same time constitute a warning signal about hazardous FCMs. 

Although even half as many contaminants may get into food, studies checking the safety of new FCMs 

should be conducted using Tenax. In addition, Tenax does not contain any additional ingredients that 

could contribute to the intensity of contaminant migration. Therefore, comparing the intensity of 

contaminant migration to Tenax allows for a clear assessment of the influence of the physicochemical 

properties of migrants and their structure on the migration intensity. The migration sequence for Tenax 

was as follows: ANT≈PHE > 2,4-DHBP≈2-H-4MBP > 2,2,4,4-THBP. In the presented series of pollutants 

analyzed, their hydrophobicity decreases, which may be an important factor determining the intensity 

of migration (all pollutants are classified as compounds that are rather poorly soluble in water). The high 

migration of ANT and PHE to Tenax may be due to the high values of the octanol-water partition 

coefficient (for ANT 4.5 and for PHE 4.65, respectively) (Vera, Aznar, Mercea & Nerín, 2011; Elizalde et 
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al., 2020). Additionally, it is clearly seen that 2,4-DHBP and 2-H-4-MBP show similar migration to Tenax, 

despite the large difference in molecular weight (182.22 and 228.24 Da, respectively). This means that 

the structure of the molecule and the size of the substituents have a greater impact on migration 

efficiency than the molecular weight. The lowest migration to Tenax was recorded for 2,2',4,4'-THBP, 

probably due to the lowest hydrophobicity among the pollutants studied and large branching of this 

molecule. Similar conclusions were reached by Cai et al. (2017), who showed that the low migration of 

2-methylbenzophenone compared to 3-methylbenzophenone and 4-methylbenzophenone may result 

from steric barriers between the functional groups of the molecule. 

 

Fig. 24. Migration percentage of the contaminants into the Tenax and real food samples: powdered 

milk, baby cereal and oat flakes at 2h, 70°C (average values from three repetitions per sample) 

 

On the other hand, the influence of the type of food and its components can be clearly observed 

for molecules that have similar physicochemical properties and structures, such as PHE and ANT  

(Fig. 24). The highest migration of these contaminants can be observed for oat flakes, followed by 

powdered milk and baby cereal. This means that the composition of the food can have a greater 

influence on the migration of contaminants than the specific surface area, structure and pore 

distribution of the food for the migration of ANT and PHE. According to Table 14, powdered milk has a 

specific surface area most similar to Tenax (for powdered milk is 25.218 m2/g and for Tenax is 

27.325 m2/g, respectively). The powdered milk contains the lowest amount of fat (0.8 g/100 g of 

product) of all the food samples tested, according to the product label (Table 7). The significant 

difference in migration of ANT and PHE into these two sorbents (to Tenax 12.4 % for PHE and 11.4 % for 
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ANT and to powdered milk 4 % for PHE and 4.2 % for ANT, respectively) may suggest that the fat content 

has a large impact on the intensity of migration (López et al., 2008; Baele et al., 2020). Baele et al. (2020) 

observed clear differences in the migration of 1,2,5-tri-t-butylbenzene and other contaminants. It shows 

that fat content can be an important determinant of the intensity of migration processes. 

 

5.2.4 Migration study of inorganic contaminants  

Environmental pollution with toxic and potential toxic elements is an increasing challenge on a 

global scale (Cakaj et al., 2023). Accumulated toxic elements can negatively affect every element of the 

environment and cause a decrease in the quality of air, water, soil and food. The treatments used during 

the FCMs production process and the ability of plants to absorb contaminants from the environment 

means that new FCMs can be one of the links in the chain of elements entering packaged/served foods. 

 

Fig. 25. Percentage content of individual elements in the analyzed FCMs 

 

The percentage content of each element in the FCMs analyzed is presented in Fig. 25. It can be 

clearly seen that FCMs differ in elemental composition. The presence of elements such as Mg, Al, Ca 

and Fe in FCMs may be related to the use of inorganic fillers during the manufacturing process, e.g., 

CaCO3, kaolin, talc, commonly used to improve processing, stiffness and dimensional stability (Klockner, 

Reemtsma & Wagner, 2021). In addition, high concentrations of Cu, Ba and Sr may be associated with 

the use of inorganic pigments (Crema et al., 2024). Moreover, Al is a widely distributed component in 
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the environment (it is found in the earth's crust) and can be taken up from the environment by plants, 

especially from acidic soils. Al is often identified in drinking water, due to the widespread use of Al2(SO4)3 

as a coagulant in physical particulate water purification processes (Stahl, Falk, Taschan, Boschek & 

Brunn, 2018). 

Other elements (Ti, V, Mn, Co, Ni, Zn, Sr, Cd, Sb, Ba and Pb) accounted for about 1% of the content 

of all FCMs analyzed. The highest Ti content was recorded in TS (2362.8 µg/g of material), which may 

be due to the use of titanium white (TiO2) in the manufacturing process. TiO2 is a natural inorganic 

compound and was considered a food additive (E171) - according to Annex II of Regulation (EC) No. 

1333/2008. However, in 2022 EFSA issued a ban on the use of TiO2 in food, due to suspected genotoxic 

properties (Commission Regulation (EU) 2022/63; Dand, Bajaj & Wairkar, 2025). Although the direct 

addition of TiO2 to food as a colorant has been banned, its presence in FCMs can affect the quality of 

packaged foods, where TiO2 can enter as a result of FCM-food interactions. On the other hand, in plant-

based FCMs, Ti may come from the growth environment, as a result of the cultivation treatments used. 

Pérez-Zavala et al. (2022) indicate that Ti and its compounds are used as fertilizers due to the 

improvement of crop yields, as a result of increased plant nutrient uptake and photosynthetic efficiency. 

This paradoxical effect (hormesis) is related to the positive effects of low doses of toxic elements on 

plants, which secrete increased amounts of organic acids and phytochelatins in response to the 

presence of the toxic agent. These compounds increase the availability of nutrients in the soil (such as 

P and Fe) and facilitate their uptake by the plant. However, plants can also readily accumulate Ti in their 

roots and stems, resulting in the presence of this element in plant-based FCMs. A hormetic effect was 

also observed when Zn was excessively added to two different wheat varieties (Chang et al., 2022).  

The presence of a numerous group of elements in FCMs means that they can migrate into food 

and affect its quality (Terbeche et al., 2022). For this purpose, it is necessary to check the migration level 

and concentrations of individual elements from FCMs into different foods (neutral and acidic), replaced 

by food simulants (distilled water and 3 % acetic acid). Distilled water can be used to replace 10% EtOH 

in studies on the migration of elements from FCMs, which facilitates the analytical procedure (Corona, 

Iglesias & Antico, 2014). 

The percentage migration of individual elements from the analyzed FCMs to neutral (distilled 

water) or acidic (3 % acetic acid) food, after different contact times (30 min, 10 h) is presented in Fig. 

26. Migration studies were conducted at elevated temperature (60°C), in accordance with the 

assumption that the intensity of element migration increases linearly with the increase in the 

temperature of contact of FCMs with food (Dong, Lu, Liu, Tang & Wang, 2014).  
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Fig. 26. The percentage migration of individual elements from the analyzed FCMs to neutral (distilled water) or acidic (3 % acetic acid) food, after different 
contact times (30 min, 10 h) at 60oC 
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The results presented in Fig. 26 clearly show that the migration of most elements to neutral and 

acidic food does not exceed 1.5 % of the total content of elements in FCM. However, a high migration 

of Ti from PWB (> 10%) was observed, corresponding to the migration of Ti from PWB in the amount of 

1.05 µg/g of neutral food and 7.66 µg/g of acidic food, respectively. Moreover, it is clearly seen that low 

pH of food promotes the migration of elements from FCM. These observations are in agreement with 

the observations of Ghuniem (2024), who analyzed thirty samples of plastic food packaging for the 

migration of metals, such as Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb and Zn into distilled water, 2% 

HNO3 and 3% acetic acid after different contact times of FCM with simulant (24h, 48h, 72h and 96h) at 

room temperature (23 ± 3°C). The author found that the intensity of element migration from FCM 

decreases in the sequence: 3% acetic acid > 2% HNO3 > distilled water and increases up to 72 h of 

contact of FCM with simulant, after which it stabilizes. Similarly, Forooghi, Ahmadi, Farhoodi and 

Mortazavian (2022) studied the release kinetics of TiO2 from laminated packaging for Doogh (famous 

Iranian drink) and observed a proportional relationship between the contact time and migration 

intensity of TiO2 from FCMs to food, which was released even after 60 days of contact between FCMs 

and 3 % acetic acid. 

In general, it was observed that Na, Mg, Ca, Ti, V, Mn, Zn, Sr and Ba are more easily released into 

food from plant-based FCMs than bio-based plastics FCMs. This is in accordance with Bouma et al. 

(2024), who included Al, Mn, Fe, Zn and Ba as the main elements migrating from plant-based FCMs. Al 

is most easily released from paper (PC and PCW), probably due to the printing inks and paints found on 

these FCMs. Sb is primarily released from bio-based plastics FCMs (e.g., PLA). Antimony trioxide (Sb2O3) 

is commonly used as a catalyst in the polycondensation step in polymer production. The recovery of this 

catalyst in the production process is not complete, which means that some Sb may be retained in the 

FCMs (Ozaki et al., 2022; Kiyataka, Dantas, Brito, Júnior & Pallone, 2025). Van-Trong, Truong, The-Ky, 

Quoc-Hung and Thanh-Khue (2023) identified Zn (8.38 %), Al (0.41 %) and Pb (0.19 %) as the main 

elements migrating from plastics to 3 % acetic acid after 30 min of contact at 60°C. The authors did not 

detect any migration of Co, As, Cd and Sb under these conditions. The remaining elements (Co, Ni, Fe, 

Pb) migrated to food in comparable amounts from plant-based FCM and plastic-based FCM. 

Inorganic contaminants that have potential carcinogenic properties or other undesirable effects 

on human health have a particular impact on food quality. The comparison between concentration of 

elements determined in water or 3% acetic acid as migrants from FCMs in the worst contact condition 

(10h, 60°C) during migration studies and specific migration limit (SML) for elements is presented in Table 

15. Based on the results obtained, it can be concluded that most FCMs meet the regulatory 

requirements for the migration of inorganic contaminants. 
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Table 15. Comparison between concentration of elements determined in water or 3% acetic acid as migrants from FCMs in the worst contact condition (10h, 

60°C) during migration studies and specific migration limit (SML) for elements  

FCMs Food simulant Elements 

Al Mn Fe Co Ni Cu Zn As Cd Sb Ba Pb 

SML (µg/g of food)* 1.000b 0.600b 48.000b 0.050b 0.020b 5.000b 5.000b 0.002a 0.002a 0.040b 1.000b 0.010a 

PWB** Distilled water 0.048 1.903 <LOD 0.001 0.067 <LOD 0.255 <LOD 0.002 <LOD 0.071 0.002 

3 % acetic acid 0.101 22.282 7.610 0.002 0.084 <LOD 11.479 <LOD 0.011 <LOD 0.716 <LOD 

BAM Distilled water 0.032 0.027 0.070 <LOD 0.001 <LOD <LOD <LOD <LOD <LOD <LOD 0.004 

3 % acetic acid 0.069 0.250 0.345 <LOD 0.003 <LOD 0.162 <LOD <LOD <LOD <LOD 0.006 

WB Distilled water 0.001 0.018 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.022 <LOD 

3 % acetic acid 0.023 0.108 0.009 <LOD 0.002 <LOD 0.115 <LOD 0.001 <LOD 0.062 0.003 

PLR Distilled water <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

3 % acetic acid <LOD 0.015 0.072 <LOD 0.003 <LOD 0.363 <LOD <LOD <LOD 0.077 <LOD 

PC Distilled water 0.544 0.014 <LOD <LOD 0.001 <LOD <LOD <LOD <LOD <LOD 0.017 0.001 

3 % acetic acid 22.084 0.345 2.016 0.001 0.005 0.014 0.098 <LOD 0.001 <LOD 0.048 0.003 

PCW Distilled water 0.566 0.001 0.011 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.003 

3 % acetic acid 15.630 0.105 1.069 0.001 0.005 0.003 0.018 <LOD <LOD <LOD <LOD 0.004 

PLA Distilled water <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

3 % acetic acid <LOD <LOD 0.023 <LOD 0.001 <LOD 0.002 <LOD <LOD <LOD <LOD 0.001 

BIOPP Distilled water <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.001 
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3 % acetic acid 0.029 <LOD 0.173 0.002 0.004 <LOD 0.003 <LOD <LOD <LOD 0.002 0.001 

TS Distilled water <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.001 0.001 

3 % acetic acid <LOD 0.012 0.071 <LOD 0.001 0.008 0.008 <LOD <LOD <LOD 0.002 0.003 

 

*SML in according to Appendix II, Commission Regulations: a(EU) No 10/2011 and b(EU) No 2020/1245 

** the results of element migration tests after 30 minutes and 60 oC are presented for PWB sample 

LOD for Al 0.0002573; Mn 0.0000178; Fe 0.0036472; Co 0.0000031; Ni 0.0000474; Cu 0.0000208; Zn 0.0000983; As 0.0000051; Cd 0.0000011; Sb 0.0000070; 

Ba 0.0000074; Pb 0.0000139 µg/g of food simulant, respectively. 
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However, it has been observed that paper FCMs can contaminate acidic food with Al at 

concentrations significantly exceeding the SML for this element (more than 22 µg/g of food can migrate 

from PC and more than 15 µg/g of food can migrate from PCW, respectively). Al is considered a 

neurotoxic agent that disrupts Ca and Fe metabolism in nervous tissue and can also alter 

neurotransmission, affecting the synthesis and transport of neurotransmitters (e.g., acetylcholine, 

serotonin, dopamine and others) (Huat et al., 2019; Przybysz et al., 2024). Some researchers presented 

that Al may be responsible for the development of Alzheimer's disease (Exley, 2017; Klotz et al., 2017) 

and respiratory tract and bladder cancers (IARC, 2012; McClure et al., 2020). The tolerable intake 

defined by EFSA is 1 mg aluminum/kg body weight/week for all groups of people. Assuming 

consumption of acidic food (250 g) by an average 70 kg person, in paper FCMs, it can be estimated that 

the weekly exposure to Al is 550 µg from PC and 375 µg from PCW, respectively. However, assuming an 

average child weight (15 kg), the weekly exposure is more than 2.5 mg from PC and 1.75 mg from PCW, 

respectively. Therefore, children and the elderly are particularly exposed to Al. Similarly, Zhang et al. 

(2022) conducted studies on Al migration from aluminum FCMs to 4 % acetic acid and 5 g/L citric acid 

and found that Al exposure could exceed the TDI in some cases and ranged from 0.65 to 51.21 mg/(kg 

body weight/week), depending on the FCM. Additionally, Stahl et al. (2017a) showed that regular 

consumption of 500 ml of tea or apple juice with aluminium FCMs can exceed the TDI for a 15 kg child 

and in another study (Stahl et al. (2017b)) observed that Al can migrate from aluminium FCMs to fish in 

acidic marinade at concentrations exceeding the TDI for adults by more than 180 % (assuming a meal 

weight of 250 g and a person weight of 70 kg). The same study noted that for a 15 kg child, the migrated 

Al value from this sample exceeded the weekly TDI by almost nine times. Furthermore, Windisch, 

Keppler and Jirsa (2020) compared the amount of migrated Al to coffee prepared in different FCMs, 

e.g., aluminum and steel. The authors found that the highest Al was released into coffee from aluminum 

FCMs. Additionally, they observed a higher concentration of Al in pure water prepared in aluminum 

FCMs than in coffee, which may be related to the sorption of contaminants by ground coffee beans. The 

authors estimated that daily consumption of 500 mL of coffee prepared in aluminum FCMs would 

provide less than 0.50 % of the weekly TDI for Al. In turn, Alabi and Adeoluwa (2021) showed a 

proportional relationship between the amount of Al released from FCMs into food and the duration of 

FCMs use and the quality of the internal coating of FCMs. 

Moreover, high migration of Mn, Ni, Cd and Zn was observed from the PWB. 1.903 µg/g of food 

Mn, 0.067 µg/g of food Ni and 0.002 µg/g of food Cd can migrate to distilled water, while 22.282 µg/g 

of Mn food, 22.282 µg/g of food of food Ni, 0.011 µg/g of food of Cd and 11.479 µg/g of food of Zn can 
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migrate to 3 % acetic acid. All these values exceed the SMLs for Mn (0.600 µg/g), Ni (0.020 µg/g) and Cd 

(0.002 µg/g), respectively.  

The high Mn content in PWB (9220 µg/g of FCMs) and the high migration of Mn into neutral and 

acidic foods may be due to the fact that Mn is one of the essential elements for plant growth and is 

involved in photosynthesis and seed germination (Li, Santos, Butler, Herndon, 2021). Mn accumulates 

mainly in leaves in the form of hydrated or organic Mn(II), which can be readily oxidized to insoluble 

Mn(III/IV) oxides, facilitating its accumulation in surface soils and thus its absorption by plants (Herndon, 

Martínez & Brantley, 2014). Consequently, Mn concentrations in plant leaves often exceed the nutrient 

requirements of the resulting in oxidative stress and impaired photosynthesis in various plant species. 

Moreover, Wang, Li, Zhang, Zhao and Dong, (2022) stated that the combined climate warming and 

drought stress may have unequal effects on the dynamic accumulation and distribution of i.e., Mn in 

wheat seedlings at different levels, which may ultimately threaten the food supply balance. 

High Ni content in PWB (123.514 µg/g of FCM) was also recorded. Ni is a widespread element in 

plants, it is involved in signal transduction and catalyzes biochemical reactions at active sites of 

metalloenzymes (Yang & Ma, 2021). However, excess Ni can affect the activity of nonmetalloenzymes, 

resulting in oxidative stress. In addition, an important carcinogenic mechanism caused by Ni may be 

direct DNA binding and stimulation of reactive oxygen species (ROS), which leads to DNA damage (Guo 

et al., 2019). Ni may also be an estrogenic active factor that affects the hormonal balance. 

In turn, Cd is considered one of the most toxic heavy metals in soil. The concentration of Cd in 

soil is on average 0.1-10 mg/kg. Anthropogenic activities have caused excessive release of Cd into the 

environment, including transport, industrial, mining and agricultural activities (Liang, Ye & Shi, 2024). In 

particular, the use of Cd found in phosphate rocks in the production of fertilizers has contributed to the 

widespread problem of Cd presence in soil (Adams, 2016). Moreover, Cd could be derived from natural 

sources in deep soil of conventional farmland (Jifu et al., 2022). As a result, Cd can be easily absorbed 

from the soil by plants (e.g., wheat) and accumulate in their tissues (Rizwan et al., 2016; Xiao et al., 

2024). The appearance of Cd in particular in packaged/served food is an undesirable phenomenon, due 

to its small biological function and high problem with excretion from the human body. Even low 

concentrations of Cd in the body can negatively affect human fertility and increase the risk of 

osteoporosis - Cd can lead to bone decalcification, because it competes with Ca and blocks the action 

of vitamin D3. In addition, increased consumption and accumulation of Cd can increase the carcinogenic 

risk for susceptible organs, e.g., lungs and kidneys.  



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

120 
 

 

In addition, based on the obtained results (Table 15), it can also be concluded that the analyzed 

FCMs do not cause the migration of Sb and As to neutral and acidic food under the test conditions. 

In order to determine the correlation of the element’s migration from FCM to neutral and acidic 

food, a statistical analysis was performed – first, the selected variables were checked for normal 

distribution. As a result of the tests, it was found that they did not meet the conditions of normal 

distribution according to the Shapiro-Wilk and Kolmogorov-Smirnov criteria. Therefore, a 

nonparametric test was used - Spearman's R rank correlation. For this purpose, the analyzed FCMs were 

divided into two groups: plant-based FCMs (PWB, PLB, PSC, BAM, WB, PLR, PC, PCW) and bio-based 

plastics FCMs (PLA, BIOPP, TS, EPP, PPB,). The analysis carried out for all analyzed FCM groups showed 

a number of strong positive and negative relationships, at the significance level of p < 0.001, p < 0.01 

and p < 0.05 between the concentrations of individual elements (Tables 16 I and 16 II). In the case of all 

tested plant-based FCMs, strong positive correlations (p < 0.001) were demonstrated, e.g., between 

Mg-Ti (distilled water, 30 min, 60°C); Mg-Ca (distilled water, 10 h, 60°C); Al-Mg (3% acetic acid, 30 min, 

60°C), Ca-Sr (distilled water, 30 min, 10 h, 60°C), Ti-Sr (distilled water, 30min, 10 h, 60°C), Ti-Mn (3% 

acetic acid, 30 min, 60°C), V-Cr (3% acetic acid, 30min, 60st.), Mn-Cr (distilled water, 30 min, 60 oC), Cu-

Zn-As (distilled water, 30 min, 10h, 60°C) and Cu-As (3 % acetic acid, 30 min, 10 h, 60°C). No strong 

negative correlations (p < 0.001) were noted. 

In turn, in the case of all tested bio-based plastics FCMs, no strong positive and negative 

correlations were noted at the significance level of p , 0.001, but positive correlations appeared at the 

significance level of p < 0.01, e.g., between Mg-Ti (distilled water, 30 min, 10 h, 60°C), Al-Ti (distilled 

water, 30 min, 10 h, 60°C), Ti-Mg-Al-Fe-Sr (distilled water, 30 min, 10 h, 60°C), Sr-Ti-Ba (distilled water, 

30 min, 10 h, 60°C) and negative correlations, e.g., Cu-Cd (3 % acetic acid, 30 min, 10 h, 60°C). 

 

Table 16. Spearman's R rank correlation analysis ((+) (-)) for the concentrations of individual elements 

migrating into neutral or acidic food from (I) plant-based FCMs and (II) bio-based plastics FCMs at 

different significance levels (ap < 0.05; bp < 0.01; cp < 0.001) 

I 

Element Migration studies 

condition 

Distilled water 3 % acetic acid 

Na 30 min, 60°C (+)Cua,(+)Sba,(-)Cda (+)Cua, (+)Sba, (-)Cda 

10 h, 60°C (+)Cua,(+)Sba,(-)Cda (+)Cua, (+)Sba, (-)Cda 
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Mg 30 min, 60°C (+)Tic,(+)Mnb,(+)Nia,  

(-)Asa (+)Crb 

(+)Tib,(+)Mna, 

(+)Nia,(+)Znb, (+)Fea, 

(+)Cra 

10 h, 60°C (+)Cac, (-)Zna, (-)Asa (+)Caa, (+)Feb 

Al 

 

30 min, 60°C - (+)Mgc  (+)Cua, (+)Caa, 

(+)Feb 

10 h, 60°C - (+)Caa, (+)Feb, (+)Cua 

Ca 30 min, 60°C (+)Src, (+)Cob (+)Ala 

10 h, 60°C (+)Src,(+)Mga,(+)Coa,  

(-)Asa 

(+)Mga,(+)Ala, (-)Asa 

Ti 30 min, 60°C (+)Mnb,(+)Src (+)Mgb,(+)Mnc, (+)Nia, 

(+)Zna 

10 h, 60°C (+)Src - 

V 30 min, 60°C - (+)Crc 

10 h, 60°C - (+)Crc 

Mn 30 min, 60°C (+)Mgb, (+)Tib, (+)Cob, 

(+)Nib, (+)Znb, (+)Cda, 

(+)Crc (-)Asa 

(+)Mga, (+)Tic, (+)Nib, 

(+)Zna, (-)Asa, 

10 h, 60°C (+)Cob, (+)Cra, (-)Asa (-)Asa 

Fe 30 min, 60°C (+)Nib (+)Mga, (+)Nia 

10 h, 60°C (+)Nib, (+)Pba (+)Mgb 

Co 30 min, 60°C (+)Cab, (+)Mnb, (+)Srb, 

(+)Cdb, (+)Baa, (-)Asa 

(-)Asa, (-)Sba, 

10 h, 60°C (+)Caa, (+)Mnb, (+)Srb, 

(+)Cdb, (+)Baa, (-)Asa 

(-)Asa, (-)Sba 

Ni 30 min, 60°C (+)Mnb, (+)Feb (+)Pbb (+)Mga, (+)Tia, (+)Mnb, 

(+)Fea, (+)Zna, (+)Crb 

10 h, 60°C (+)Feb, (+)Pba, - 

Cu 30 min, 60°C (+)Znc (+)Asc, (+)Ala, (+)Asc 

10 h, 60°C (+)Znc, (+)Asc, (+)Ala, (+)Asc 

Zn 30 min, 60°C (+)Tic,(+)Mnb,(+)Cuc. 

(+) Nic, (+)Asc 

(+)Tia,(+)Mna,(+)Nia, 

(+)Asc 

10 h, 60°C (+)Cuc, (+)Asc (+)Asc 



Faculty of Chemistry 
Adam Mickiewicz University in Poznań 
 

122 
 

 

As 30 min, 60°C (-)Mga,(-)Coa,  (+)Cuc, 

(+)Sbb, 

(-)Mna,(-)Coa, (+)Cuc, 

(+)Sbc 

10 h, 60°C (-)Mga, (-)Caa, (-)Mna, 

(-)Coa,(+)Cuc, (+)Sbb, 

(-)Caa, (-)Mna, (-)Coa, 

(+)Cuc, (+)Sbb, 

Sr 30 min, 60°C (+)Tic,(+)Cob, (+)Cda, - 

10 h, 60°C (+)Tic,(+)Cob, (+)Cda, 

(+)Bac 

- 

Cd 30 min, 60°C (-)Naa (+)Mna, (+)Cob, 

(+)Sra 

(-)Naa 

10 h, 60°C (-)Naa, (+)Cob, (+)Sra (-)Naa 

Sb 30 min, 60°C (+)Naa, (+)Asb (+)Naa,(-)Coa,(+)Asc 

10 h, 60°C (+)Naa, (+)Asb (+)Naa,(-)Coa,(+)Asb, 

Ba 30 min, 60°C (+)Coa - 

10 h, 60°C (+)Coa, (+)Src - 

Pb 30 min, 60°C (+)Nib - 

10 h, 60°C (+)Fea, (+)Nia, - 

Cr 30 min, 60°C (+)Mnc, (+)Nic (+)Vc, (+)Nib 

10 h, 60°C (+)Mna, (+)Vc 

 

II 

Element Migration studies 

condition 

Distilled water 3 % acetic acid 

Mg 30 min, 60°C (+)Baa, (+)Tib (+)Ala 

10 h, 60°C (+)Baa, (+)Tib (+)Ala 

Al 30 min, 60°C (+)Tib,(+)Baa,(+)Mna (+)Mga,(+)Baa,(+)Mna 

10 h, 60°C (+)Tib,(+)Baa,(+)Mna, (+)Mga,(+)Mna,(+)Baa 

Ca 30 min, 60°C - (-)Sba 

10 h, 60°C - (-)Sba 

Ti 30 min, 60°C (+)Mgb,(+)Alb,(+)Feb, 

(+)Srb, (+)Baa 

(+)Cra 

10 h, 60°C (+)Mgb,(+)Alb,(+)Feb, 

(+)Srb, (+)Baa 

(+)Sra, (+)Cra 
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V 30 min, 60°C (+)Baa - 

10 h, 60°C (+)Baa - 

Mn 30 min, 60°C (+)Ala, (+)Cra (+)Ala 

10 h, 60°C (+)Ala, (+)Cra (+)Ala 

Fe 30 min, 60°C (+)Tib, (+)Baa (-)Cra 

10 h, 60°C (+)Tib, (+)Baa (-)Cra 

Co 30 min, 60°C - (-)Sba 

10 h, 60°C - (-)Sba 

Cu 30 min, 60°C (+)Baa (-)Cdb 

10 h, 60°C (+)Baa (-)Cdb 

Sr 30 min, 60°C (+)Baa (+)Cra 

10 h, 60°C (+)Tib,  (+)Bab, (+)Cra (+)Tia,  (+)Cra 

Sb 30 min, 60°C (+)Cda (-)Caa, (-)Coa 

10 h, 60°C - (-)Caa, (-)Coa 

Ba 30 min, 60°C (+)Mga,(+)Ala, (+)Tia, 

(+)Va,  (+)Cua, (+)Fea, 

(+)Sra 

(+)Ala 

10 h, 60°C (+)Mga,(+)Ala, (+)Tia, 

(+)Va, (+)Fea, (+)Cua, 

(+)Srb 

(+)Ala 

Cr 30 min, 60°C (+)Mna, (+)Tia , (+)Sra, (-)Fea 

10 h, 60°C (+)Mna, (+)Tia , (+)Sra, (-)Fea 
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6. Summary and conclusions 

In summary, the migration studies presented in the doctoral thesis constitute a comprehensive 

characterization of interactions occurring between FCMs and food of various nature. Plant-based FCMs 

and bio-based plastic FCMs can be a source of migration of odor-active compounds and organic and 

inorganic contaminants exhibiting toxic properties to food. Some FCMs (especially wheat bran, palm 

leaves, wood, paper) can change the sensory profile of roasted black coffee and green tea and the 

compounds responsible for the identified and perceptible changes include saturated and unsaturated 

carbonyl compounds. Migration studies have clearly shown that carbonyl compounds can be treated as 

markers of FCM-food interactions, because monitoring their concentration levels in simulants allowed 

to determine a number of factors determining the intensity of migration processes. These include: the 

type of FCMs, food pH, contact time and temperature, refrigerator storage time and microwave heating 

time. In addition, migration studies have shown that Tenax (as a simulant) can lead to falsely elevated 

results of migrating contaminant concentrations in relation to real food (e.g., milk powder, infant 

porridge, oat flakes), which may be due to the influence of food components (e.g., fat) and 

physicochemical properties of migrating particles on the intensity of migration processes. Furthermore, 

some plant-based FCMs can contaminate food with elements (e.g., Mn, Ni, Cd, Zn) in concentrations 

exceeding the SML. It has also been reported that paper FCMs can be a source of migration of high 

concentrations of Al to food. Pearson correlation analysis showed a number of strong positive and 

negative relationships, at the significance level of p < 0.001, p < 0.01 and p < 0.05 between the 

concentrations of individual elements migrating to neutral/acidic food from plant-based FCMs and bio-

based plastic FCMs.  

Based on the above conclusions, it can be stated that the main theses of the doctoral dissertation 

have been confirmed. The presented results provide a basis for better knowledge and understanding of 

the characteristics of interactions between new FCMs and food and the environment. Plant-based FCMs 

can be especially a link in the chain of movement of toxic organic and inorganic contaminants between 

the environment and humans. Research conducted by EFSA (European Food Safety Authority) 

emphasizes the need for scientific support in assessing the safety of food chain innovations and 

sustainable food systems. Research conducted as part of the dissertation can play a key role in the 

development of safety regulations for packaged/served foods by identifying risks, improving assessment 

methods, and supporting innovation. In addition, research helps improve methods for evaluating the 

socioeconomic impacts of regulations, ensuring their efficiency and effectiveness. These research 

findings can help policymakers create regulations that protect public health with a balanced approach 

to meeting industry needs. 
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An important and urgent challenge in food safety assessment is also the search for and 

development of rapid, screening methods to estimate the safety of various materials commonly used 

as FCMs. In this approach, low-cost, commercially available electrochemical sensors to monitor the 

levels of contaminants released from FCMs may be a promising solution. I am currently conducting 

research within the National Science Centre project Preludium 23 “Fast method for pre-testing the 

safety of new ecological materials used for food packaging” (2024/53/N/ST4/02325), which focuses on 

the multi-stage calibration process of electrochemical sensor readings based on reference 

chromatographic methods. The research goals included in the Preludium project are a continuation of 

the research and discussions presented in this doctoral dissertation. 
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UAM, Poznan; 

2022, Member of the Conference Organizing Committee (Challenges in food flavor and volatile 

compounds analysis); 

2023, Active participation in the 26th Poznań Festival of Science and Art. Delivering a lecture and leading 

a workshop entitled: “Let's protect the environment from littering with plastic, let's learn more about 

dishes made of ecological materials”; 

2023, Member of the Conference Organizing Committee (26th Signal Processing: Algorithms, 

Architectures, Arrangements, and Applications (SPA)); 

2024, Member of the Conference Organizing Committee (9th Chemometrics and Metrology in 

Analytics); 
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2024, participant of “Workshops on the principles of using metrology in chemical measurements” 

(organized as part of the 9th Chemometrics and Metrology in Analytics conference); 

2024-2025, Teaching postgraduate students “Calibration curve and detector response factor in gas 

chromatography”; 

2024, Active participation in the 27th Poznań Festival of Science and Art. Delivering a lecture with a 

demonstration entitled: “The use of artificial intelligence (AI) in monitoring environmental pollution”; 

2024, Member of the Service of the 66th Congress of the Polish Chemical Society; 

2024, Member of the Conference Organizing Committee (27th Signal Processing: Algorithms, 

Architectures, Arrangements, and Applications (SPA)); 

2024-2025, Member of the Scholarship Committee for Doctoral Students, Doctoral School of Science, 

UAM, Poznan. 


