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Abbreviations

2DEG/2DHG two-dimensional electron gas / two-dimensional hole gas

AHE anomalous Hall effect

AHC anomalous Hall conductivity

ANE anomalous Nernst effect

ANC anomalous Nernst conductivity

BIA bulk inversion asymmetry

BCD Berry curvature dipole

BMR bilinear magnetoresistance

CISP current-induced spin polarization

NLHE non-linear Hall effect

SHA spin Hall angle

SHC spin Hall conductivity

SHE spin Hall effect

SIA structure inversion asymmetry

SOC/SOI spin-orbit coupling / spin orbit interaction

TISP thermally-induced spin polarization
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Streszczenie

Postęp technologiczny w dziedzinie miniaturyzacji urządzeń elektronicznych w ostatnich dziesię-
cioleciach stwarza potrzebę głębszego zrozumienia zjawisk fizycznych zachodzących na poziomie
mikroskopowym. W rezultacie zaczęto badać układy o niskiej wymiarowości, takie jak cienkie
warstwy, które można traktować jako struktury dwuwymiarowe.

Obiecującym obszarem w tej dziedzinie jest spintronika, która uwzględnia nie tylko ładunek
elektronu, jak konwencjonalna elektronika, ale także jego spin. Jednym z kluczowych zagadnień
spintroniki jest oddziaływanie typu spin-orbita, które wpływa na zjawiska transportowe, takie
jak efekty Halla czy polaryzacja spinowa w układzie.

W ramach niniejszej pracy doktorskiej badano właściwości transportowe układów dwuwymi-
arowych z oddziaływaniem spinowo-orbitalnym (SO), wykorzystując metody teorii pola w fizyce
ciała stałego, w szczególności formalizm funkcji Greena z podejściem diagramowym. W pracy
analizowane są oddziaływania SO typu Rashby i Dresselhausa, ze szczególnym uwzględnie-
niem ich form kubicznych. Badany układ, dwuwymiarowy gaz elektronowy (2DEG), jest wyko-
rzystywany do modelowania heterostruktur półprzewodnikowych oraz interfejsów i powierzchni
tlenków perowskitowych.

Przedłożona dysertacja doktorska składa się z cyklu sześciu artykułów naukowych, poprzed-
zonych wstępem teoretycznym, uporządkowanych w kolejności ich publikacji.

W ramach rozprawy rozważana jest nierównowagowa polaryzacja spinowa wywołana zewnę-
trznym polem elektrycznym (CISP) w dwuwymiarowym gazie elektronowym z liniową i ku-
biczną formą oddziaływania SO typu Dresselhausa. Wykazano, że w takim układzie obec-
ność członu kubicznego zmniejsza polaryzację spinową. Z kolei, w przypadku magnetycznego
2DEG, przykładowo, gdy próbka jest umieszczona na podłożu magnetycznym, pojawia się do-
datkowa, odporna na domieszkowanie w układzie składowa polaryzacji spinowej.

W pracy analizowany jest także anomalny efekt Halla (AHE), charakteryzujący się przepływem
prądu ładunkowego w kierunku prostopadłym do zewnętrznego pola elektrycznego, w magne-
tycznym 2DEG z izotropową i anizotropową formą kubicznego oddziaływania SO typu Rashby.
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Wyniki, jakościowo podobne w obu modelach, wskazują na dominującą rolę wkładu do AHE
od stanów poniżej poziomu Fermiego.

Ponadto zbadano spinowy efekt Halla (SHE), czyli przepływ prądu spinowego w kierunku pro-
stopadłym do zewnętrznego pola elektrycznego, w 2DEG z izotropową formą kubicznego od-
działywania SO typu Rashby. Wykazano, że obecność magnetyzacji w kierunku prostopadłym
do płaszczyzny układu zmniejsza SHE, zwłaszcza gdy magnetyzacja dominuje nad oddziały-
waniem SO.

Część rozprawy poświęcona jest analizie nieliniowych zjawisk transportowych. Pokazano, że
w magnetycznym 2DEG z kubiczną formą oddziaływania SO typu Rashby, nieliniowy efekt
Halla można kontrolować za pomocą pola magnetycznego w płaszczyźnie, przy czym wkład od
stanów z morza Fermiego jest największy, gdy pole magnetyczne i elektryczne są przyłożone
prostopadle względem siebie. Z kolei biliniowy magnetoopór, wywołany nierównowagową po-
laryzacją spinową w układzie, jest proporcjonalny do wartości zarówno pola elektrycznego, jak
i magnetycznego.

Praca obejmuje także analizę efektów termoelektrycznych. Poprzeczna odpowiedź ładunkowa
wywołana gradientem temperatury, znana jako anomalny efekt Nernsta, nie różni się znacząco
zarówno w układzie z izotropową jak i anizotropową formą oddziaływania SO typu Rashby.
Zaobserwowana zmiana znaku anomalnego przewodnictwa Nernsta w funkcji potencjału chemi-
cznego odzwierciedla współzawodnictwo pomiędzy oddziaływaniem SO a magnetyzacją w ukła-
dzie. Z kolei składowa polaryzacji spinowej wywołanej gradientem temperatury (TISP) równole-
gła do kierunku siły wymuszającej, w 2DEG z oddziaływaniem SO typu Dresselhausa, jest
związana z CISP poprzez relację Motta. TISP przyjmuje większe wartości przy niższej gęs-
tości nośników i może być sterowana za pomocą magnetyzacji i wartości oddziaływania SO, tj.
poprzez napięcie bramkujące.

Podsumowując, niniejsza dysertacja stanowi wkład do zrozumienia własności transportowych
indukowanych oddziaływaniem spinowo-orbitalnym, które odgrywa kluczową rolę w projek-
towaniu urządzeń spintronicznych, umożliwiając tym samym rozwój technologii przetwarzania
i przechowywania danych.

Struktura niniejszego opracowania jest następująca. W rozdziale pierwszym (Chapter 1) przed-
stawiono cel oraz motywację badań, a także wprowadzono pojęcia charakteryzujące badane
układy dwuwymiarowe, w tym rozważane formy oddziaływania spinowo-orbitalnego. Rozdział
drugi (Chapter 2) został poświęcony opisowi metody, tj. formalizmowi funkcji Matsubary-
Green’a w reżimie liniowej odpowiedzi w podejściu diagramowym. W rozdziale trzecim (Chap-
ter 3) opisano analizowane w pracy efekty transportowe. Z kolei rozdział czwarty (Chapter 4) za-
wiera przedruki artykułów wchodzących w skład dysertacji, wraz z komentarzem. Opracowanie
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jest zakończone podsumowaniem (s. 109), gdzie zebrano najistotniejsze rezultaty badań.
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Abstract

Technological advances in electronic miniaturization have driven the need for a deeper insight
into microscopic physical phenomena. This has led to the emergence of low-dimensional sys-
tems, e.g., thin layers that can be considered as two-dimensional structures.

A promising field in this regard is spintronics, which explores both electron charge and spin.
One of the fundamental concepts in spintronics is the spin-orbit interaction impacting trans-
port phenomena such as the anomalous Hall effect, spin Hall effect or spin polarization in the
system.

The dissertation investigates transport properties in two-dimensional systems with spin-orbit
interaction (SOI), utilizing advanced field theory methods in solid-state physics, particularly
Green’s functions formalism with a diagrammatic approach. The author focuses on cubic SOI
forms, Rashba and Dresselhaus types, intrinsically related to the band structure describing prop-
erties of the system itself. The investigated system, a two-dimensional electron gas (2DEG),
is used to model semiconductor heterostructures and interfaces or surfaces of perovskite ox-
ides.

The doctoral dissertation includes a theoretical introduction followed by six articles published
in peer-reviewed journals arranged in chronological order.

Firstly, the dissertation considers non-equilibrium spin polarization induced by an external elec-
tric field in a 2DEG with both linear and cubic forms of Dresselhaus SOI. It shows that, in
such a system, the cubic term of the Dresselhaus SOI reduces the spin polarization. In turn,
in a magnetized 2DEG, e.g., when the sample is placed on a magnetic substrate, an additional
non-dissipative component of spin polarization appears, which is robust against impurities in
the system.

Secondly, the thesis examines an anomalous Hall effect (AHE), which is characterized by a charge
current appearing perpendicular to an applied external electric field, in a magnetized 2D sys-
tem with isotropic or anisotropic forms of cubic Rashba SOI. In both models, the results exhibit
qualitatively similar behavior, highlighting the dominant contribution to the AHE from the states
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below the Fermi level.

Moreover, the spin Hall effect (SHE), i.e., a spin current that flows perpendicular to an applied
external electric field, is investigated in a 2D system with an isotropic form of cubic Rashba SOI.
Additionally, the research demonstrates that out-of-plane magnetization in the system suppresses
the effect, particularly when the magnetization dominates over the Rashba SOI.

A significant part of the dissertation is devoted to the analysis of nonlinear transport phenomena.
In a magnetized 2DEG with cubic Rashba SOI, the nonlinear Hall effect can be controlled via an
in-plane magnetic field. The contribution from the states in the Fermi sea reaches its maximum
when the magnetic field is aligned perpendicular to the external electric field. In turn, the bilinear
magnetoresistace, induced by the non-equilibrium spin polarization in the system, exhibits linear
scaling with both the electric and magnetic field.

Additionally, this thesis covers the analysis of thermoelectric effects, such as an anomalous
Nernst effect (ANE) and thermally-induced spin polarization (TISP). ANE, i.e., transverse charge
response evoked by a temperature gradient, exhibits no qualitative difference between isotropic
and anisotropic Rashba models. The anomalous Nernst conductivity reverses with changes in
the chemical potential, indicating the interplay between spin-orbit interaction and magnetization
in the system. In turn, the longitudinal component of TISP in a 2DEG with Dresselhaus SOI
correlates with current-induced spin polarization via a Mott relation. TISP is stronger at lower
carriers densities and can be tuned with a strength of the magnetization and spin-orbit interaction
which is adjusted through the gate voltage.

In summary, this research contributes to understanding spin-related phenomena, crucial for
building the foundation of spintronic devices that drive modern electronic systems, advancing
in data processing and storage technologies.

The structure of the following work is as follows. In Chapter 1, the aim and motivation of the
research are presented, and basic concepts utilized in the thesis, such as cubic forms of spin orbit-
interaction, are introduced. Chapter 2 is devoted to the Matsubara-Green’s functions formalism
in the linear response regime, which constitutes the basic method of the conducted research. In
Chapter 3 the investigated transport effects are introduced. Chapter 4 includes reprints of the
articles comprising the dissertation, each with preface, and the summary is provided at page 109,
where the main outcomes are emphasized.
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1
Introduction

1.1 Motivation

Undoubtedly, technological progress in the miniaturization of electronic devices over the last few
decades creates the necessity for deeper insight into the physical phenomena at the microscopic
level. An important aspect regarding miniaturization is the size of the system, which inevitably
moves toward low-dimensionality. Furthermore, low-dimensional systems offer an intriguing
platform for physicists, as the quantum mechanical laws governing these systems manifest in
macroscopic behaviors, such as the quantization of the Hall effects in two-dimensional sys-
tem. On the other hand, the physical mechanisms standing behind the Hall phenomena such
as anomalous or spin Hall effects, are govern by the spin-orbit interaction. Spin-orbit inter-
action in solid-state physics can have an extrinsic origin, related to spin-dependent scattering
events on impurities, or an intrinsic one, related to the breaking of inversion symmetry in the
host crystal.

Furthermore, transport properties, including Hall effects, are among the most powerful tools for
characterizing materials. Resistivity measurements, for instance, allow one to extract not only
conductivity information but also, with the aid of theoretical analysis, data on carriers concentra-
tion, scattering processes, and band structure, as well as the identification of phase transitions.
Moreover, applying external forces such as a magnetic field, strain, or a temperature gradient
offers deeper insights into the material, enhancing its potential for application in electronic de-
vices.
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On the other hand, transport effects themselves hold significant potential for practical appli-
cations. Exempli gratia, the intrinsic nonlinear Hall effect, due to its sensitivity to spatial-
symmetry breaking, creates possibilities for its use in piezoelectric devices. Furthermore, non-
linear effects that result in a unidirectional response could be utilized in spin-logic devices.

Two-dimensional systems can be realized in semiconductor heterostructures, which are well-
known materials in solid-state physics with established fabrication methods and electronic prop-
erties that can be externally tuned through gating or doping. Additionally, the two-dimensional
electron gas that forms at their interfaces is characterized by spin-orbit coupling, which arises
due to the breaking of inversion symmetry in the underlying material. In recent years, scien-
tists have been particularly interested in the high-mobility two-dimensional electron gas found
at the interfaces and surfaces of perovskite oxides, such as LaAlO3/SrTiO3, which exhibits in-
triguing physical properties such as metallic conductivity, ferromagnetism, and low-temperature
superconductivity. Moreover, the inversion symmetry breaking at the interface leads to strong
Rashba spin-orbit coupling in the two-dimensional electron gas, making it an excellent platform
for investigating spin-to-charge interconversion effects.

Therefore, the aim of this dissertation is to investigate selected transport effects, such as the linear
and nonlinear anomalous Hall effects, the spin Hall effect, bilinear magnetoresistance, and non-
equilibrium spin polarization in two-dimensional systems (e.g., semiconductor heterostructures
and perovskite oxide interfaces) with different forms of spin-orbit interaction induced by the
breaking of inversion symmetry in the system.

1.2 Two-dimensional electron gas

The observed world around us on the macroscale is undoubtedly three-dimensional (3D). Nev-
ertheless, one can imagine a system with reduced dimensionality, where the motion of particles
is spatially confined in at least one direction. Exempli gratia, in a two-dimensional (2D) sys-
tem1, carriers are free to move in the xy-plane while being confined in the z-direction. Strictly
speaking, the length of the system along the z-axis is smaller than the elastic mean free path of
the electron. In such a scenario, carriers trapped in a potential quantum well (QW) grown in the
z-direction, form a two-dimensional electron gas (2DEG) [1–3].

To mathematically describe the electronic states in a QW, one can solve the eigenvalue problem
by assuming an infinite xy-plane and employing an envelope function with the effective-mass
approximation [4]. The Schrödinger equation then takes the form [1, 5]:[

−ℏ2

2

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
+ V (z)

]
Ψ(x, y, z) = EΨ(x, y, z). (1.1)

1In the case of thin-layer structures with a finite spatial extent in the growth direction, one has in mind a quasi-
2D system.
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mi, where i = {x, y, z}, represents the components of the effective mass of the electrons in
the conduction band, while V (z) denotes the potential that forms the QW. The electrons are
confined in the z-direction and move freely in the xy-plane. Thus, the solution can be postulated
in the form:

Ψ(x, y, z) = ϕn(z)e
ikxx+ikyy (1.2)

and the Schrödinger, eq. (1.1), can be separated into two independent differential equations:

−ℏ2

2

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2

)
eikxx+ikyy = Exye

ikxx+ikyy (1.3a)[
− ℏ2

mz

∂2

∂z2
+ V (z)

]
ϕn(z) = Ez,nϕn(z). (1.3b)

The solutions are:

Exy =
ℏ2

2m∥

(
k2x + k2y

)
(1.4a)

Ez,n
∼= ℏ2π2

2mz

n2

L2
, (1.4b)

where n = 1, 2, 3, ... and, for simplicity, mx = my = m∥. With infinite square-well approx-
imation, the solutions are standing waves in the QW growing along the z-direction. Thus, the
eigenvalues of the electron states in a 2DEG are given by [1, 5]:

En =
ℏ2

2m∥

(
k2x + k2y

)
+ Ez,n. (1.5)

For low carriers concentration, only the lowest band is relevant (n = 1), while the contributions
from higher bands can be neglected.

A 2DEG typically forms at the interface between two different materials, such as semicon-
ductor heterostructures, which are discussed in section 1.2.1. Additionally, a 2DEG has also
been observed at the interfaces and surfaces of perovskite oxides, briefly described in sec-
tion 1.2.2.

1.2.1 Semiconductor heterostructures

In retrospect, Wolfgang Pauli’s 1931 remark2 to Rudolf Peierls, stating, "One shouldn’t work on
semiconductors, that is a filthy mess; who knows whether any semiconductors exist", has proven
to be less accurate. The field of semiconductor electronics has since emerged as a groundbreak-
ing area of study with extensive device applications. For instance, the metal–oxide–semiconductor
field-effect transistor (MOSFET) catalyzed a revolution in electronics during the latter half of
the 20th century.

2Letter to Peierls, 29 September 1931; Wolfgang Pauli – Wissenschaftlicher Briefwechsel mit Bohr, Einstein,
Heisenberg u.a. Band II: 1930–1939, Springer, 1985, p. 94.
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Advancements in thin-film fabrication technology enable the deposition of multilayered struc-
tures through growth techniques such as molecular beam epitaxy (MBE) or metallorganic vapor
phase epitaxy (MOVPE) [1, 6]. The semiconductor heterostructure consists of alternating lay-
ers of different semiconductors deposited on top of each other using the epitaxial method, e.g.,
’layer A’ and ’layer B’ as depicted in Fig. 1.1a.

In thermodynamic equilibrium, the differing energy gaps in semiconductor building layers ’A’
and ’B’ lead to a band offset (band gap alignment), causing band bending at the intra-atomic dis-
tance and ultimately resulting in the formation of a quantum well. In an n-doped semiconductor
(a crystal lattice doped with atoms that have one additional valence electron), electrons from the
donors move from the valence band to the conduction band, accumulating in the energetically
more favorable quantum well and forming a two-dimensional electron gas (2DEG). Conversely,
in a p-doped semiconductor (a structure doped with atoms possessing fewer valence electrons
than the atoms constituting the crystal lattice), holes emerge due to the presence of acceptors in
the structure, leading to the formation of a two-dimensional hole gas (2DHG) in the quantum
well created in the valence band [5]. Additionally, in a superlattice, a series of quantum wells is
created, as illustrated in Fig. 1.1a.

The shape of QW can be controlled by applying a front gate bias (an external electric field per-
pendicular to the 2D sample plane) [7] or through doping [1, 5, 8]. For instance, in a GaAs/Ga1−xAlxAs
heterostructure, varying the parameter x allows tuning between a symmetric quantum well (for
x = 0) and an asymmetric quantum well (for x ̸= 0), see Fig. 1.1b [8].

Figure 1.1: (a) Conduction band profile of a symmetric quantum well (QW) formed by a potential differ-
ence at the interfaces; in xy-plane a 2DEG forms in the QW; L is the quantum well width and V stands
for QW potential. (b) Conduction band profile of an asymmetrically doped GaAs/Ga0.7Al0.3As quantum
well. For the sake of clarity, the valence band is not drawn on the sketch. Figure (b) is taken from [8]
© (1998) by the American Physical Society

Quantum wells can be realized using semiconductor alloys containing elements from groups III
(e.g., B, Al, Ga, In) and V (e.g., N, P, As, Sb) of the periodic table, such as GaAs, InSb, and InAs,
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collectively known as III-V semiconductor heterostructures. Another group, characterized by
generally wider energy gap, includes II-VI semiconductor heterostructures, such as ZnO, ZnS,
CdS, CdTe, and HgTe3. Semiconductor heterostructures from both groups exhibit sp3-orbital
hybridization, resulting in either a zinc-blende or wurtzite structure [5].

1.2.2 Perovskite oxides interfaces (LAO/STO)

Besides semiconductor heterostructures, another promising materials where 2DEG forms are the
surfaces and interfaces of perovskite oxides, which have garnered significant scientific attention
in recent years [11–15].

Perovskite oxides are insulators in their bulk form, but at the surface and interface of oxide
heterostructures, high-mobility 2DEG emerges, exhibiting intriguing physical properties such
as metallic conductivity4, ferromagnetism, and large spin-charge interconversion effect [13, 17,
18]. Additionally, phenomena such as low-temperature superconductivity and ferroelectricity
have been observed at perovskite oxide interfaces, which are not typically seen in semiconductor
heterostructures [13].

Bulk perovskite oxides have an empirical formula ABO3, where ’B’ represents a transition-metal
atom (an atom with partially filled d-orbital), e.g., Ti, Al, or Ta. The electronic properties of these
materials are influenced by material-dependent interfacial band bending [19]. More precisely, at
the microscopic level, the system’s properties are determined by the balance between transition-
metal d-orbitals, hybridized oxygen p-orbitals, and electronics correlations [15].

It turns out that in order to induce a 2DEG at the interface of perovskite composite, at least one of
the two insulating perovskites must be polar or ferroelectric [19, 20]. One of the most extensively
studied perovskite oxide heterostructures is LaAlO3/SrTiO3 (LAO/STO). Here, the mechanism
behind the formation of the 2DEG is as follows [12, 17, 21, 22]: the polar discontinuity at the
LAO/STO interface, i.e., (LaO)1+/(TiO2)0, causes a divergence in the electrostatic potential. To
counterbalance this divergence, a compensating charge ±0.5e is transferred from the charged
layer of LAO to the charge-neutral layer of STO. These transferred electrons partially occupy Ti
3d-orbitals near the interfacial region, leading to the formation of the 2DEG.

3HgTe is characterized by a zero-energy gap and exhibits a topologically non-trivial phase. In turn, CdTe/HgTe
semiconductor heterostructure provides an excellent platform for studying the properties of topological insulators [9,
10].

4It has been established that LAO/STO interfaces become conductive when the thickness of the polar layer
(LAO) exceeds 3-4 unit cells [16].
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1.3 Spin-orbit interaction (SOI)

In this dissertation, spin-orbit interaction (SOI) plays the leading role. Therefore, a deep un-
derstanding of its nature and physical background is crucial for accurately comprehending the
phenomena discussed. Section 1.3.1 introduces the concept of intrinsic angular momentum, i.e.,
spin. Section 1.3.2 discusses spin-orbit interaction in an atom, and section 1.3.3 provides a brief
review of different types of spin-orbit interaction (SOI) in the solid state. Sections 1.3.4 and
1.3.5 are dedicated to the Rashba and Dresselhaus types of SOI, respectively, focusing on their
cubic forms.

1.3.1 The concept of orbital and spin angular momenta – historical back-
ground

The orbital and spin angular momenta were introduced in the early 20th century, benefiting
from developments in quantum mechanics that allowed for a microscopic description of mag-
netism.

Starting from Faraday’s law, which states that a time-varying electric field,E, induces a magnetic
field, B [23, 24]:

∇× E = −∂B
∂t
, (1.6)

one concludes that an electric current circulating in a loop creates a magnetic field. In classical
mechanics, it is known that a rotating object possesses a mechanical moment. Combining these
two statements, one can associate a magnetic moment, µ, with a rotating charge, e.

According to the Bohr model of the hydrogen atom, part of the "old quantum theory" proposed
by Bohr and Sommerfeld in the early 1920s (referred to as a "semi-classical approach"), an
electron is treated as a charged particle orbiting the nucleus, and possessing an orbital magnetic
moment, µorb, related to the orbital angular momentum, l [23, 24]:

µorb = −e
2
r2ω = −e

2
r× v = − e

2me

l (1.7)

with me representing the electron mass. Quantum mechanics asserts that angular momentum,
l, is quantized, as demonstrated by the Stern-Gerlach experiment in 1922 [25]. (e.g., for a hy-
drogen atom l = ℏ). Furthermore, to explain the small splitting observed in the hydrogen atom
spectrum, Goldsmith and Uhlenbeck, building on Compton’s idea, introduced a new quantum
number known as spin angular momentum, or simply spin, s, an intrinsic property of the elec-
tron5 with a spin magnetic moment, µspin [26, 27]:

µspin = − e

m
s = gµBs, (1.8)

5By analogy to classical physics, spin is often depicted as a spinning particle. However, it has no connection
to any spatial movement; therefore, to avoid misunderstanding, the spin should be regarded as an intrinsic feature
of the particle itself.
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where g is the g-factor, µB = − eℏ
2m

denotes the Bohr magneton, and the spin s = ℏ/2 for an
electron.

As a consequence of the existence of orbital and spin angular momenta, µorb and µspin, the mag-
netic properties of a material are generally determined by three main effects: (i) electron-electron
interaction, which describes how the electron spins are oriented with respect to each other, (ii)
chemical environment, which specifies how the bonding between neighboring atoms influences
the orbital contribution to the magnetic moment, (iii) spin-orbit coupling, which refers to the in-
teraction (coupling) between spin and orbital angular momenta, describing the tendency of these
momenta to align with each other. These three effects collectively contribute to the magnetic
properties of materials, determining their magnetic behavior and characteristics [24].

1.3.2 Spin-orbit interaction in atom

If an electron moves in an electric field – whether orbiting the nucleus in atomic physics or
traveling through a periodic potential as an itinerant particle in solid-state physics – it experiences
a magnetic field in its rest frame, according to Faraday’s law, eq. (1.6). Since the electron carries
a magnetic moment that interacts with the magnetic field, it implies a direct coupling between
the electron’s spin and momentum, known as spin-orbit coupling (SOC) [4, 28].

The behavior of spin-1/2 fermions in relativistic quantum theory is accurately described by
Dirac’s theory [29, 30]. By taking the nonrelativistic approximation of the Dirac equation, which
is justified by the relatively low velocities of electrons in solids (v ≈ 106 m/s) compared to the
speed of light, v ≪ c, one obtains the Hamiltonian that describes the spin-orbit interaction [28,
31, 32]:

Hso,atom = − 1

2m2
0c

2
s · (p×∇Vat) , (1.9)

wherem0 stands for the free electron mass, c is the speed of light, and Vat represents the Coulomb
potential of the atomic core. The spin angular momentum of an electron can be described with
a vector of Pauli matrices s = ℏσ/2 acting on the spinor wave function of the electron, while
p = ℏk denotes the electron momentum. Thus, the Hamiltonian (1.9) can be expressed in
a different form as [28, 33]:

Hso,atom = − ℏ
4m2c2

σ · (p×∇V ) = −λ
2
C

4
σ · (k×∇V ) , (1.10)

where λ0 = ℏ/(mc), while λC = 2πλ0 corresponds to the Compton wavelength of a free
electron, and λ = −λ2C/4 represents the strength of the atomic SOC.

1.3.3 Spin-orbit interaction in solid state

In crystals, Bloch electrons experience an external potential in their rest frame, Ṽ = Vlat+V (r).
Here, Vlat represents the periodic potential of the crystal lattice, while V (r) denotes an aperi-
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odic component that varies slowly on the scale of the lattice constant, and includes contributions
from impurities, boundaries, confinement, and external electric field. In solid-state physics, the
behavior of carriers is described in terms of the band structure. For semiconductors, the mini-
mum of the energy spectrum typically occurs at a high-symmetry point, allowing the transport
properties of the material to be analyzed using an effective Hamiltonian that describes the sys-
tem near this point. The general form of the effective single-particle Hamiltonian that describes
spin-orbit coupling is given by [34]:

Hso,lat = λσ ·
(
k×∇Ṽ

)
. (1.11)

Since the impurities are considered to be the source of (extrinsic) spin-orbit interaction (SOI),
then λ depends on the crystal lattice, and Ṽ is the potential due to the impurities.

In turn, when SOI arises due to inversion symmetry breaking in the host crystal, the effective
Hamiltonian (1.11) can be expressed in terms of an intrinsic spin-orbital field, b(k), around
which electron’s spin precesses [34, 35]:

H int
so,lat =

1

2
b(k) · σ. (1.12)

Figure 1.2: Different types of spin-orbit interaction

Thus, the origin of spin-orbit coupling can be classified into extrinsic and intrinsic types, as
shown in Figure 1.2. Below, the physical background behind different types of SOI is dis-
cussed.

The extrinsic type is associated with scattering processes on the impurities, i.e., side-jump and
skew scattering [32]. In both extrinsic processes, carriers with opposite spins scatter in opposite
directions.

In the side-jump scattering process, depicted in Figure 1.3(a), the electron deflects under the
influence of the field created by an impurity. As it leaves the impurity field, it deflects back,
resulting in a transverse displacement (side step). However, the electron continues to move in its
original direction. The semiclassical interpretation of side-jump processes was first proposed by
Berger [37] in the context of the anomalous Hall effect. In contrast, the skew-scattering process,
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Figure 1.3: Extrinsic types of spin-orbit interaction include (a) side-jump scattering process and (b) skew
scattering process. Adapted from [36]

introduced by Smith [38], and shown in Figure 1.3(b), has an asymmetric character and leads to
a change in the electron’s direction of motion.

Intrinsic SOC is related to the internal properties of the system and requires the breaking of
inversion symmetry in the host crystal. In structures such as zinc blende or hexagonal wurtzite,
inversion symmetry is broken within the unit cell, leading to bulk inversion asymmetry (BIA),
which gives rise to the Dresselhaus type of SOC, discussed in Section 1.3.5. On the other hand, in
two-dimensional systems, if the confinement potential along the growth direction is asymmetric
– such as at the interfaces or surfaces of the sample – structure inversion asymmetry (SIA) occurs,
resulting in Rashba-type SOC, see Section 1.3.4.

Asymmetric 2D quantum wells (QWs), where inversion symmetry is broken due to the growth
process, provide a prominent platform for studying spin-orbit interaction (SOI) [39]. Such condi-
tions are observed at surfaces or interfaces of III-V semiconductor heterostructures with narrow
band gaps, like GaAs and InSb, II-VI semiconductor heterostructures with wide band gaps, like
ZnS and CdTe, (Sec. 1.2.1), or at interfaces of perovskite oxides (Sec. 1.2.2), where a 2DEG
forms.

Controlling the strength of spin-orbit interactions is essential for the development of spin-based
devices. The strength of Rashba-type interaction can be manipulated – or even switched off –
using a gate voltage [40–42], or by tuning the doping concentration ratio between the two sides
of the quantum well [43–45]. Modulation doping [1] enhances carriers mobility in 2D systems.
In this technique, the outer layers of a "QW sandwich" are doped, while the central layer remains
undoped. Carriers then diffuse from the adjacent layers into the well, where they remain and can
move freely. This approach contrasts with scenarios where the central layer itself acts as a donor
or acceptor, which reduces carrier mobility due to ionized-impurity scattering [1, 44–46].
On the other hand, the particular form of Dresselhaus SOC in a two-dimensional system de-
pends on the crystallographic grown direction of the quantum well [35, 47] (see Section 1.3.5).
Moreover, the strength of Dresselhaus SOC can be adjusted by selecting different materials or
altering the sample thickness, which correlates with the quantum well width6 [48].

6Assuming a quantum well with infinitely high potential, the quantum well width, L, is related to the size
quantization of the electron wavevector along the growth direction, z, see Fig. 1.1(a).
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The Rashba or Dresselhaus SOC strength parameter can be experimentally determined through
various techniques, such as angle-resolved photoemission spectroscopy (ARPES) [49, 50], or
quantum transport measurements, i.e., analysis of Shubnikov-de Haas oscillations [40, 51] or
through magnetoconductance measurements using weak antilocalization phenomena [52, 53].
For example, in InAs quantum well sandwiched by In0.52Al0.48As/In0.53Ga0.47As, a large lin-
ear Rashba coefficient tuned by the gate voltage in the range of ≈ 4 − 10 · 10−12 eV m has
been found [40, 51], while for perovskite oxides interfaces like LAO/STO, a comparable value
of approximately ≈ 0.5 · 10−11 eV m has been reported [42, 54]. In particular, when both
types of intrinsic SOC are present in the system, i.e., Rashba and Dresselhuas SOC, Ho Park
et al. [51] showed that by measuring and analyzing Shubnikov-de Haas oscillations for vari-
ous crystallographic directions, Rashba and Dresselhaus strength parameters can be extracted
separately.

1.3.4 Rashba-type SOI

If a 2DEG forms in xy-plane and the inversion symmetry is broken in the z-direction, the Rashba-
type SOC occurs. The effective Hamiltonian describing the k-linear spin splitting of the bands
at the high-symmetry point Γ in the 2DEG, where the quantum well grows along the z-direction,
takes the well-known form [31, 55]:

Ĥ = Ĥkin + ĤLR, (1.13)

where the kinetic energy of the quasiparticels in the 2DEG is described by Ĥkin = ℏ2k2
2m

σ0, and
the k-linear SOI term reads as:

ĤLR = λ (kxσy − kyσx) (1.14)

with λ standing for the Rashba strength parameter, k = (kx, ky, 0) is the wavevector, σ0 is the
identity matrix, and σx,y are the Pauli matrices acting in the spin space. Eigenvalues of the
Hamiltonian (1.13) are given by E± = ℏ2k2

2m
± λk.

The expectation value of the spin operator for the n-th band is given by:

⟨Ŝ⟩n =
1

⟨Ψn | Ψn⟩
(〈

Ψn

∣∣∣Ŝx

∣∣∣Ψn

〉
,
〈
Ψn

∣∣∣Ŝy

∣∣∣Ψn

〉
,
〈
Ψn

∣∣∣Ŝz

∣∣∣Ψn

〉)
,

with Ψn standing for the eigenfunction for the n-th band, and for the two-band k-linear Rashba
model described by Hamintonian (1.14), ⟨Ŝ⟩LR± takes the following form:

⟨Ŝ⟩LR± =
ℏ
2
(± sinϕ,± cosϕ, 0) , (1.15)

where ϕ is the angle in k-space, i.e., k = k(cos(ϕ), sin(ϕ), 0), and n = ± corresponds to the
band.
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Figure 1.4: (a) Fermi contours for the k-linear Rashba system, described by Hamiltonian (1.13): (top)
E+ subband for three different Fermi levels, and (bottom) E+ and E− for a fixed Fermi level. (b) Fermi
contours for anisotropic k-cubic Rashba system, described by Hamiltonian (1.17): (top) E+ subband for
three different Fermi levels, and (bottom) E+ and E− for a fixed Fermi level. (c) k-linear and anisotropic
k-cubed Rashba system: (top left) dispersion relation and indicated Fermi levels ’A’, ’B’, ’C’, which
correspond to (top right) Fermi contours for E+, (bottom left) Fermi contours for both subbands E± for
Fermi level ’A’, and (bottom right) E± for Fermi level ’C’. The arrows on the Fermi contours indicate
the expectation value of the spin. The parameters are: AL = 20 meV, BL = 50 meV, CL = 80 meV,
A = 10 meV, B = 40 meV, C = 80 meV, linear Rashba SOC parameter for (a) λ = 2 · 10−11 eV m, for
(c) λ = 0.5 · 10−11 eV m, α = 2.14 · 10−30 eV m3, and an effective mass for (a) m = 0.05m0, for (b)
and (c) m = 1.14m0

Figure 1.4(a) presents the expectation value of the spin, as given by eq. (1.15), marked on the
Fermi contours. Top panel illustrates ⟨Ŝ⟩LR± for the subband E+ at different Fermi levels, while
the bottom panel presents ⟨Ŝ⟩LR± for the both subbands, E±, at a single Fermi level. This result,
well-known in the literature, demonstrates that in the k-linear Rashba model, spins are locked
perpendicular to their momenta, k, with opposite spin orientation for the two spin-splitting
states.

Anisotropic k-cubed form of Rashba SOC

The k-linear Rashba spin splitting dominates at low carrier densities, near k = 0. However,
in a 2DHG in semiconductor heterostructures, for larger k, the spin splitting is dominated by
higher-order terms, particularly those proportional to k3, due to the HH-LH mixing [31]. Thus,
it is justified to take into account the cubic form of Rashba SOC, especially at higher carrier
densities. Furthermore, recent findings indicate that k-cubed corrections to the Rashba Hamil-
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tonian can lead to a reversal of spin-polarization near the Fermi level in non-centrosymmetric
semiconductors such as BiTeCl [56].

Moreover, using a low-energy tight-binding (TB) three-band Hamiltonian provided for per-
ovskite oxides interfaces LAO/STO and STO surfaces (see Sec. 1.2.2) it has been shown that
the lower bands for dxz/dyz orbitals exhibit a cubic form of Rashba SOI at the Γ point [57–
61]. The cubic form of Rashba in LAO/STO structures has also been confirmed in experimental
transport studies [54, 62]. The TB Hamiltonian describing the 2DEG at the LAO/STO interface
consists of three terms [57–61]:

Ĥ = Ĥkin + ĤASO + ĤR, (1.16)

where Ĥkin represents the kinetic term describing free electrons in 2DEG, ĤASO defines the
atomic-like SOC, and the third term, ĤR, accounts for the interorbital hopping related to the
mirror symmetry breaking at the interface. Both ĤASO and ĤR contribute to the splitting of the
middle and bottom band pairs. Figure 1.5(a) depicts the low-energy TB model for the LAO/STO

Figure 1.5: (a-c) The band structure of the conduction states at the LAO/STO interface, obtained using
the low-energy tight-binding model. (d,e) An effective model, described by Hamiltonian (1.17), for the
vicinity of the Γ-point, corresponding to (b,c). (c) and (e) show Fermi contours at 4 meV above the bands
minimum for the TB and the effective model, respectively. The parameters for the TB model are taken
from [61]. Figure is adapted from [63]

interface. The bands are formed by d-orbitals, specifically dxy, dxz and dyz, originating from the
t2g atomic orbitals of the transition-metal atom, Ti. The lowest-energy pair of bands reveals the
k-linear form of Rashba SOC, while the highest-energy bands are characterized by k-linear Dres-
selhaus SOC. In turn, the middle pair of bands corresponds to quasiparticle states determined
by the anisotropic k-cubed Rashba SOC, described by the Hamiltonian [61, 64]:

Ĥ = Ĥkin + ĤaniCR, (1.17)
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where the kinetic term Ĥkin = ℏ2k2
2m

σ0 and the anisotropic k-cubed SOI term reads as:

ĤaniCR = α
(
k2x − k2y

)
(kxσy − kyσx) , (1.18)

where k2 = k2x+k
2
y , kx = k cos(ϕ), ky = k sin(ϕ) and the eigenvalues of the Hamiltonian (1.17)

are given by E± = ℏ2k2
2m

±
√
α2k6 cos2(2ϕ).

The Rashba splitting described by Hamiltonian (1.18) is anisotropic in k-space. It is worth
noting that, according to group-theoretical analysis for systems characterized by C3v and C4v

point-group symmetry, an effective two-band Hamiltonian can only reveal the anisotropy of the
Rashba splitting in higher-order terms in k [65], that can be derived using k · p perturbation
theory [66]7.

The anisotropic cubic Rashba model, eq. (1.18), is characterized by the anisotropy of Fermi
contours in k-space, as depicted in Figure 1.5(e) and Figure 1.4(b) with the expectation value of
the spin, ⟨S̃⟩aniCR

± , marked on the sketch, where:

⟨S̃⟩aniCR
± =

ℏ
2

(
±sin(ϕ)− sin(3ϕ)

2
√

cos2(2ϕ)
, ±cos(ϕ) + cos(3ϕ)

2
√

cos2(2ϕ)
, 0

)
. (1.19)

On the other hand, some experiments suggest the presence of k-linear Rashba SOI at perovskite
oxides interfaces [68, 69]. Furthermore, the construction of the tight-binding model, supported
by DFT-calculated band structure, analyzed in conjunction with weak antilocalization measure-
ments, indicates that the form of RSOI, whether linear or cubic, can be controlled by the filling
of Ti orbitals by carriers [70].

Therefore, it is worthwhile to investigate an effective model that incorporates both forms of
Rashba SOC. The energy dispersion and Fermi contour, along with the expectation value of the
spin, for such a case are depicted in Figure 1.4(c). One can observe that the linear Rashba SOC
dominates at lower energies (referred to as energy level ’A’), whereas the cubic form modifies
the band structure and spin expectation value at higher energies (referred to as energy level
’C’).

Isotropic k-cubed form of Rashba SOC

As mentioned earlier, the k-linear form of Rashba spin-orbit coupling (SOC) is not valid for
describing the spin splitting of heavy-hole states with angular momentum 3/2 in a 2D hole sys-
tem [31, 71]. Liu et al. [71] derived from Luttinger-Kohn Hamiltonian [72, 73] an effective

7A different situation occurs for C2v point-group symmetry, describing, e.g., surface states at Au(110). In
this case, the k-linear term of the Rashba SOC reveals an anisotropic character due to two independent Rashba
parameters, i.e., HaniLR = λ1kxσy + λ2kyσx, cf. Hamiltonian (1.14) [67].
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model for the lowest heavy-hole valence subband with spin-3/2, where the Rashba SOC arises
in a cubic form in the Hamiltonian:

Ĥ = Ĥkin + ĤisoCR, (1.20)

where the kinetic term is Ĥkin = ℏ2k2
2m

σ0, and the isotropic k-cubed SOI term is given by:

ĤisoCR = iα
(
k3−σ+ − k3+σ−

)
. (1.21)

The eigenvalues of Hamiltonian (1.20) are E± = ℏ2k2
2m

±αk3. The Rashba SOC strength param-
eter, α, is determined by [71]:

α =
512eFL4

zγ
2
2

9π6(3γ1 + 10γ2)(γ1 − 2γ2)
, (1.22)

where γ1 and γ2 are Luttinger material parameters8. Hence, α is proportional to the strength of
the asymmetric quantum well potential, F , and depends on the QW width, Lz. The effective
mass is expressed as [71]:

m = m0

(
γ1 + γ2 −

256γ22
3π2(3γ1 + 10γ2)

)−1

. (1.23)

Figure 1.6(a) presents the energy dispersion for a 2DEG with isotropic cubic Rashba SOC, de-
scribed by Hamiltonian (1.20). Unlike the linear Rashba model, the spin splitting in the cubic
Rashba model is negligible near k ≈ 0 and increases with the Fermi energy.

Because the effective Hamiltonian (1.21) for the heavy-hole valence subband with spin-3/2 in
2DHG is derived from the Luttinger-Kohn Hamiltonian by the perturbation and truncation proce-
dure to higher orders, the same approach should be applied to the spin operator. This procedure
involves applying two canonical transformations on the 4x4 matrix representing the spinor for
spin-3/2. It is crucial to note that in the isotropic cubic Rashba model, the spin matrices are no
longer Pauli matrices, and the vector of spin matrices in the lowest heavy-hole basis is given by
S̃ = (S̃x, S̃y, S̃z), where [71]:

S̃x =

−s0ky s1k
2
−

s1k
2
+ −s0ky

 , (1.24a)

S̃y =

 s0kx −is1k
2
−

is1k
2
+ s0kx

 , (1.24b)

S̃z =
3

2
σz. (1.24c)

8The specific values of these parameters for different materials are collected in [74].
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with:
s0 =

512eFL4
zγ2m0

9π6ℏ2(3γ1 + 10γ2)(γ1 − 2γ2)
, (1.25)

s1 =

(
3

4π2
− 256γ22

3π4(3γ1 + 10γ2)2

)
L2
z. (1.26)

Figure 1.6: (a) Energy dispersion for a 2DEG with isotropic k-cubic Rashba SOC described by the
Hamiltonian (1.20). Fermi contours for the subbands (b) E− and (c) E+ with the expectation value of
the spin indicated by the arrows. The parameters are: A = 0.8 meV, B = 10 meV, C = 50 meV,
α = 3.96 · 10−29 eV m3, and an effective mass m = 0.123m0

Figures 1.6(b), and 1.6(c) illustrate the Fermi contours for the subbandsE− andE+, respectively,
(for the Hamiltonian (1.20)) at three different Fermi energies. At low-carrier densities (Fermi
level ’A’), the expectation value of the spin operator, Ŝ, for the n-th band (n = ±)

⟨Ŝ⟩isoCR
± = ℏ

(
−s0k sinψ ± s1k

2 sinψ, s0k cosψ ∓ s1k
2 cosψ, 0

)
(1.27)

indicated by the arrows, is the same for both bands. For lower energies, ⟨Ŝ⟩isoCR
± is determined

by the term proportional to s0, which is identical for both subbands. At higher Fermi energies,
the spin orientation locks perpendicularly to its momentum, similar to the behavior observed
in the linear Rashba model, where the two spin-splitting states have opposite spin values. This
issue is analyzed in [71].

Experimental evidence supports using the cubic Rashba model for 2D hole systems, such as
strained-Ge/SiGe, rather than the linear model [75]. Additionally, the cubic form of Rashba
SOC has been experimentally observed at the surface of perovskite oxide SrTiO3 and at the
LaAlO3/SrTiO3 interface [54, 62]. The possibility of describing 2DHG in semiconductor het-
erostructures and 2DEG at the interfaces of perovskite oxides becomes understandable in light
of the investigations provided by L. W. van Heeringen et al. [76]. In their work, the authors
highlighted the similarity between p-level valence states in III-V semiconductors and d-level
conduction states in SrTiO3.
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1.3.5 Dresselhaus-type SOI

III-V semiconductors with a zinc-blende structure exhibit bulk inversion asymmetry (BIA) due
to two nonequivalent atoms in the unit cell. This BIA leads to Dresselhaus-type spin-orbit inter-
action (SOI). The lowest-order contribution to the spin-orbital splitting in the conduction band
of a 3D system is described by the Hamiltonian [31, 77–79]:

ĤD = γ[(k2y − k2z)kxσx + (k2z − k2x)kyσy + (k2x − k2y)kzσz], (1.28)

where γ stands for the spin-orbit coupling parameter, pi = ℏki represents the i-th component
of the kinetic momentum (wavevector), and σi are the Pauli matrices with i = {x, y, z}. For
a quasi-2D system confined in the z-direction, representing a symmetric quantum well grown
in the [001] crystallographic direction, the z-component of the wavevector is kz = −i∂z, and
eq. (1.28) reads9 [31, 79]:

Ĥ = Ĥkin + ĤD, (1.29)

where the kinetic term Ĥkin = ℏ2k2
2m

σ0 and the SOI term reads as:

ĤD = β(kyσy − kxσx) + γ(kxk
2
yσx − kyk

2
xσy), (1.30)

where β = γ ⟨k2z⟩ = γ (π/L)2, and L is the quantum well width. The first term in eq. (1.30),
proportional to β, is linear in k and provides the dominant contribution to the Dresselhaus SOI.
The second one, proportional to γ and cubic in k, becomes significant at higher Fermi levels,
particularly in wider, highly doped quantum wells. Eignevalues of the Hamiltonian (1.29) are
E± = ℏ2k2

2m
±
√
β2k2 − k2xk

2
y(4βγ − γ2k2).

The Dresselhaus SOI in a 2D system strongly depends on the direction of the quantum well
growth [47]. Interestingly, for growth along the [111] direction, considering only k-linear terms
in the Hamiltonian (1.28), the spin orientation at the Fermi contours is the same as for the system
with SIA, depicted in Figure 1.4(a). In contrast, when the quantum well is grown in the [111]
direction, the spins are oriented perpendicular to the Fermi contour in the (001) plane, with the
amplitude varying along the Fermi contour. For a quasi-2D system with the quantum well grown
in the [001] direction, (corresponding to the Hamiltonian (1.30)), the spin orientation is perpen-
dicular to the plane, as depicted in Figure 1.7.
Figure 1.7 presents the Fermi contours for a 2DEG with both linear and cubic forms of Dressel-
haus SOC, as described by the Hamiltonian (1.29). The arrows indicate the expectation values
of the spin, ⟨Ŝ⟩D± , that reads:

⟨Ŝ⟩D± =
ℏ
√
2

2

(
±cos(ϕ) (2β + γk2 cos(2ϕ)− γk2)

ξk
,∓sin(ϕ) (2β − γk2 cos(2ϕ)− γk2)

ξk
, 0

)
,

9According to the first-order perturbation theory, the n-th power of kz = −i∂z is replaced by the expectation
value ⟨(−i∂z)

n⟩. Note that if n is odd, then ⟨(−i∂z)
n⟩ = 0, thus ⟨kz⟩ = 0. For infinitely-high potential well of

width L,
〈
k2z
〉
= (π/L)

2.
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where ξk =
√

8β2 + γ2k4 + γk2 cos(4ϕ) (4β − γk2)− 4βγk2. The cubic Dresselhaus term
influences the spin orientation, ⟨Ŝ⟩D± , at higher energies (contours ’B’ and ’C’), where the cubic
term becomes more significant, as shown in Fig. 1.7(a),(b).

Figure 1.7: Fermi contours at three different Fermi levels, denoted ’A’, ’B’, and ’C’, for a 2D system
with k-linear and k-cubed Dresselhaus SOC, described by the Hamiltonian (1.29). Panels show Fermi
contours for (a) the subband E+, (b) the subband E−, and (c) both subbands at energy ’B’. Arrows on the
Fermi contours indicate the expectation value of the spin. The parameters are: A = 20meV,B = 50meV,
C = 80 meV, m = 0.05m0, β = 1 · 10−11 eV m, γ = 200 · 10−30 eV m3 (the cubic Dresselhaus term is
set higher than in real materials known in the literature to clearly observe the influence of γ in the system)

Theoretical investigations using k ·p method have determined the cubic Dresselhaus SOC term
in GaAlAs/GaAs semiconductor heterostructure to be γ = 21.29 · 10−30 eV m3 [80]. In turn,
experimental determination of the cubic Dresselhaus SOC strength parameter can be conducted
through magnetoconductance measurements using weak antilocalization phenomena [52, 53].
In low-dimensional systems, conductivity is affected by quantum interference effect [81]. Specif-
ically, constructive interference between time-reversed closed-loop electron paths after scatter-
ing events, known as backscattering, results in a weak localization (WL) contribution to the
conductance, decreasing it. The phase difference of 2π in spin states for a pair of time-reversed
backscattering electron trajectories leads to a spin reverse, causing destructive interference (sup-
pressing backscattering). Consequently, a weak anti-localization (WAL) contribution to the con-
ductance appears, enhancing the conductance. However, an external magnetic field can suppress
both WL and WAL quantum corrections to the conductance by introducing a phase shift between
pairs of electron closed-loop trajectories. This results in negative magnetoresistance for WL and
positive magnetoresistance for WAL [53, 81, 82]. Miller et al. [53] determined the linear Rashba
and both linear and cubic Dresselhaus SOC parameters, considering WL/WAL phenomena in
GaAs/AlGaAs semiconductor heterostructure grown in the [001] direction, using magnetocon-
ductance measurements and 2D magnetotransport theory account for spin-orbit interaction. In
these systems, where both Rashba and Dresselhaus SOC are present, a gate-voltage-induced
transition between WL and WAL can differentiate the contributions of each SOC type. Miller
et al. found β ≈ 4± 1 · 10−13 eV m and γ ≈ 30 · 10−30 eV m3. Similarly, within magnetoresis-
tance measurements, Dresselhaus et al. found that in GaAs/Al0.3Ga0.7As (001) heterostructure
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γ = 26.1± 0.9 · 10−30 eV m3.
Walser at al. [48], employed time-resolved Kerr rotation to determine the linear and cubic Dres-
selhaus coefficients in (001)-grown GaAs/Al0.3Ga0.7As quantum wells. They found γ = −11±
2·10−30 eV m3, while the linear Dresselhaus term increased with decreasing quantum well width,
varying from β = 1.2 · 10−13 eV m to β = 9 · 10−13 eV m over a range of 6–30 nm. These γ
values are consistent with those obtained through Raman spectroscopy, where γ for quantum
wells in GaAs/AlGaAs semiconductor heterostructure ranges from γ = 11 · 10−30 eV m3 to
γ = 34.5 ·10−30 eV m3, see in the tabulated values in the Supplementary material of [83].

The cubic form of Dresselhaus SOC is particularly significant in materials with a zinc-blende
structure and an asymmetric quantum well, i.e., in the systems where both Rashba and Dressel-
haus types of SOC coexist [84–89]. When the k-linear forms of both SOC types are balanced,
a unique state known as the persistent spin helix (PSH) state emerges [84, 85, 87, 89]. The
PSH is characterized by a uniaxial alignment of the spin-orbital field along the [110] or [110]
direction, depending on the relative sign between the Rashba and Dresselhaus strength param-
eters. Such uniaxial alignment of the spins suppresses spin relaxation for components parallel
to the spin-orbital field, thus preserving spin precession. Consequently, the PSH state enables
simultaneous manipulation and preservation of spin information by the SO field [89]. However,
the presence of the cubic Dresselhaus term in such a system can disrupt the PSH state [84, 85,
87].
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2
Method

2.1 Introduction

The theoretical analysis of electron transport in solids in response to external fields can be pur-
sued through various methods. One commonly used approach involves identifying and solving
the transport equation known as the Boltzmann equation [1, 90]. Another method for analyzing
a system response to external perturbations, driving it out of equilibrium, is through the non-
equilibrium Green’s functions formalism [1, 91]. A third widely used approach employs correla-
tion functions, such as the Kubo formula, which includes current-current correlation functions.
In this case, equilibrium Green’s functions can be utilized within the Kubo formula alongside
diagrammatic perturbation theory [1, 90]. The following chapter provides a detailed descrip-
tion of evaluating the Kubo formula using Green’s and Matsubara-Green’s functions formalism
within the diagrammatic technique.

Green’s function

Green’s functions powerful tools for solving inhomogeneous differential equations in both clas-
sical physics and many-body systems [91].
The fundamental definition of the time-ordered (causal) single-particle Green’s function is given
by [90–92]:

G(λ, t, t′) = − i

ℏ
⟨ψ|T{Cλ(t)C

†
λ(t

′)}|ψ⟩
⟨ψ|ψ⟩ , (2.1)
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where |ψ⟩ represents the ground state of the system, and Cλ, C
†
λ denote the time-dependent

operators (in the Heisenberg representation) with λ standing for a quantum number, such as
wavevector or spin. The time-ordering operator for operators A(t) and B(t′) is defined as
T{A(t)B(t′)} = Θ(t− t′)A(t)B(t′)∓Θ(t′− t)B(t′)A(t) with the upper (lower) sign referring
to fermions (bosons), and Θ(t− t′) being the step function.

The Green’s function provides direct information about measurable quantities in physics. Specif-
ically, using Green’s function, one can define the quantum-mechanical expectation (average)
value of an operator Ôi as follows [91, 92]:

Oi(t) = −iTr
∑
k

ÔiGk(t, t+ δt). (2.2)

Another type of Green’s function, characterized by poles in only one half-plane, is particularly
useful for evaluating physical responses [91, 92]. To analyze the system response at time t to an
earlier perturbation at time t′, one should use the retarded Green’s function, which is non-zero
only for times t ≥ t′:

GR(λ, t, t′) = − i

ℏ
Θ(t− t′)

⟨ψ|Cλ(t)C
†
λ(t

′)|ψ⟩
⟨ψ|ψ⟩ . (2.3)

Alternatively, the advanced Green’s function, which is finite only for t ≤ t′, can be used:

GA(λ, t, t′) = − i

ℏ
Θ(t′ − t)

⟨ψ|Cλ(t)C
†
λ(t

′)|ψ⟩
⟨ψ|ψ⟩ . (2.4)

For a given non-interacting Hamiltonian, Ĥ , the causal Green’s function can be obtained by
performing a Fourier transform (thus transitioning from the time domain to the energy domain)
as follows [90]:

G(ε) =
[
(ε+ µ+ iδsgn(ε))Î − Ĥ

]−1

, (2.5)

where Î is the identity matrix, δ is an infinitesimal quantity, and the sign function, sgn(ε), de-
pends on the location of the poles in the complex plane.

Kubo formula

In principle, Kubo formula [93, 94] allows the examination of the linear response to any external
driving perturbation. The ac conductivity in Kubo formalism is given by [90, 91]:

σαβ(q, ω) =
i

ω

[
ΠR

αβ(q, ω) +
ne2

m
δαβ

]
, (2.6)

where α, β represent cartesian components, δαβ denotes the Kronecker delta and ΠR
αβ(q, ω)

is the retarded two-particle current-current correlation function defined with a Fourier trans-
form [91]:

ΠR
αβ(q, ω) = − i

V

� ∞

−∞
dt eiω(t−t′)Θ(t− t′)⟨ψ| [jα(−q, t), jβ(q, t

′)] |ψ⟩, (2.7)
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where V is the volume of a system, Θ(t−t′) stands for a step function maintaining the time order,
and jα(−q, t) and jβ(q, t′) are current operators. In the zero-temperature limit, |ψ⟩ indicates
the ground state of the analyzed Hamiltonian, whereas for finite temperatures – the trace over
thermal distribution at nonzero temperatures.

It is important to note that each current operator in eq. (2.7), jα(−q, t) and jβ(q, t′), involves
a product of creation and destruction operator, describing the creation and destruction of two
particles. Thus, the conductivity appears from the correlations between these two processes.
Therefore, one can evaluate eq. (2.7) with a two-particle Green’s function. Nevertheless, for
noninteracting electrons, two-particle Green’s function can be factorized into a product of two
single-particle Green’s functions.

2.2 Diagrammatic perturbation theory in the linear response
regime

The response of a system to an external driving force, such as the quantum-mechanical ex-
pectation value of the charge (or spin) current density operator, as given by eq. (2.2), i.e. [91,
92],

Oi(t) = −iTr
∑
k

ÔiGk(t, t+ δt),

is defined with a causal Green’s function, Gk(t, t+ δt) (eq. (2.1)). The ground state involved in
Gk(t, t+δt) corresponds to a many-body system, making it challenging to find its explicit form.
In most cases the Hamiltonian for an analyzed system can not be solved exactly1. A commonly
used approach, provided by many-body perturbation theory, involves dividing the Hamiltonian
into two parts [90]:

Ĥ = Ĥ + V, (2.8)

where the Hamiltonian Ĥ represents the noninteracting system, and V is a perturbation (describ-
ing the interaction between the perturbation field and the carriers in the system), small compared
to Ĥ . In the investigation of transport effects in the linear response regime, the external driving
force, such as an electric field or temperature gradient, is treated as a perturbation, V ≡ ĤA.
Consequently, Gk(t, t+ δt) in eq. (2.2) can be expanded in a series with respect to the perturba-
tion Hamiltonian, ĤA(t

′), where t < t′ < t+δt, and t′ represents the time when the perturbation
occurs. The Green’s function is then evaluated based on the unperturbed Hamiltonian, Ĥ . This
leads the expectation value of the operator Ôi taking the form [92]:

Oi(t) = −iTr
∑
k,t′

ÔiGk(t, t
′)ĤA(t

′)Gk(t
′, t+ δt). (2.9)

1Strictly speaking, the phrase "solving a Hamiltonian" is industry jargon. It refers to solving the Schrödinger
equation for the analyzed Hamiltonian. In other words, one seeks the eigenstates of the system.
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Equation (2.9) serves as a starting point for investigating transport effects and can be depicted
using the diagrammatic technique, as shown in figure 2.1. All the diagrams presented are utilized

side-jump skew-scattering

intrinsic contribution
bare bubble

...ladder diagrams

vertex function

Figure 2.1: Feynman diagrams corresponding to the different contributions

within the Kubo formalism. The Green’s functions correspond to the solid lines, the vertices of
the diagrams represent the response operator, Ôi, and perturbation Hamiltonian, ĤA, and the
dashed lines stand for scattering events. The diagram without disorder lines, the bare bubble,
resembles the intrinsic contribution (see also fig. 2.2). Spin-dependent scattering processes, such
as side-jump and skew-scattering, can be included with pairs of mutually conjugated diagrams.
In turn, the role of impurities in the system can be analyzed with the vertex correction, introduced
through the sum of ladder diagrams.

Green’s functions formalism allows obtaining results in the zero-temperature regime, enabling
observation of how included interactions influence the system, where temperature smearing does
not distort the view. Consequently, zero-temperature results provide a valuable starting point for
analyzing the system’s behavior. However, for experimental relevance and practical applica-
tions, it is essential to also consider the system’s thermodynamic properties at finite tempera-
tures.

2.2.1 Matsubara-Green’s functions formalism

The role of the temperature was implemented into the Green’s functions formalism by Matsubara
in 1955 through the imaginary-time formalism [95]. The general formula for the expectation
value of the operator Ôi in the linear response to an external perturbation, ĤA(iωm) (fig. 2.2a)
is given by [90, 96]:

Oi(iωm) = kBT
∑
k,n

Tr{ÔiGk(iεn + iωm)ĤA(iωm)Gk(iεn)}, (2.10)
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Figure 2.2: Single-loop diagram (bare bubble) in Feynman diagrammatic technique describing the ex-
pectation value of the operator Ôi in response to external perturbation ĤA in (a) finite-temperature and
(b) zero-temperature formalism

where i, j stand for cartesian coordinates and Gk(iεn + iωm), Gk(iεn) are Matsubara-Green’s
functions dependent on Matsubara energies: εn = (2n + 1)πkBT with n = 1, 3, 5, 7, . . . and
ωm = 2mπkBT with m = 1. The perturbation Hamiltonian ĤA(iωm) represents the external
driving force that brings the system out of equilibrium.
For electrically-induced transport effects, the driving force is an electric field applied in the j-
direction, represented by a perturbation Hamiltonian describing the interaction of electrons with
the electric field: ĤE

A (iωm) ≡ ĤE
Aj
(iωm) = −ĵjAE

j (iωm) with electromagnetic vector potential
AE

j (iωm) =
ℏ

iωm
(−iEj(iωm)), where the charge current density operator ĵj = ev̂j , and the ve-

locity operator v̂j = 1
ℏ
∂Ĥ
∂kj

.
For thermally-induced transport phenomena, one can introduce a sort of inhomogeneous gravi-
tational field [97] that induces heat current flow [98, 99]. The perturbation Hamiltonian for this
case is defined as a coupling of the heat current density operator to an auxiliary gravitational
vector potential amplitude, i.e., for driving force applied in the j-direction: Ĥ∇T

A ≡ Ĥ∇T
Aj

=

−ĵhjAh
j (iωm) where Ah

j (iωm) = ℏ
iωm

(
−∇iT

T

)
and ĵhj = 1

2

[
Ĥ − µÎ, v̂j

]
+

, with µ standing for

the chemical potential, and Î denoting the identity matrix. The driving force in this case is
the temperature gradient ∇T , a statistical force that drives transport as the system approaches
equilibrium through irreversible processes.

To study charge conductivity, one replaces the operator Ôi with the velocity operator v̂i. For spin
responses, such as the spin Hall effect or spin polarization, one should consider the spin current
density operator, ĵszi , or the spin operator, ŝi.
Exempli gratia, to find the non-equilibrium spin polarization induced by the external electric
field, the relevant operator is the spin operator, Ôi = ŝi. Then, the formula for the current-
induced spin polarization reads [90, 100]:

S
Ej

i (iωm) = kBT
eEjℏ
ωm

∑
k,n

Tr{ŝiGk(iεn + iωm)v̂jGk(iεn)}. (2.11)

The summation over Matsubara energies, εn, can be performed using contour integration meth-
ods [90], as illustrated in Fig. 2.3.
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Figure 2.3: ContourC in the complex z-plane used for summing over Matsubara energies, ε. The contour
includes two branch cuts: along z = ε and z = ε− iωm

Thus, one postulates that [90, 100]:

kBT
∑
n

ŝiGk(iεn + iωm)v̂jGk(iεn) = −
�
C

dz

2πi
f(z)ŝiGk(z + iωm)v̂jGk(z) = L, (2.12)

where contour integral has two branch cuts: along z = ε and z = ε − iωm. The parts of the
contour C where R → ∞ are equal to zero, and only the four horizontal lines along the branch
cuts remain. The integration over the contour C leads then to [90, 100]:

L = i

� +∞

−∞

dε

2π
f(ε)ŝiGk(ε+ iωm)v̂jGk(ε+ iδ)

− i

� +∞

−∞

dε

2π
f(ε)ŝiGk(ε+ iωm)v̂jGk(ε− iδ)

+ i

� +∞

−∞

dε

2π
f(ε− iωm)ŝiGk(ε+ iδ)v̂jGk(ε− iωm)

− i

� +∞

−∞

dε

2π
f(ε− iωm)ŝiGk(ε− iδ)v̂jGk(ε− iωm),

(2.13)

where f(ε) is the Fermi-Dirac distribution function, treated as a meromorphic function with
poles at odd integers z = iεn. Upon analytical continuation to the complex plane, iωm →
ω + iδ, and considering the complex half-planes for the corresponding advanced and retarded
Green’s functions, GA/R

k , one obtains the formula for the current-induced spin polarization,
S
Ej

i (ω) [101]:

S
Ej

i (ω) = −eEjℏ
ω

�
d2k
(2π)2

�
dε

2π
f(ε) Tr

{
ŝiG

R
k (ε+ ω)v̂j

[
GR

k (ε)−GA
k (ε)

]
+ ŝi

[
GR

k (ε)−GA
k (ε)

]
v̂jG

A
k (ε− ω)

}
,

(2.14)

where the summation over k is converted into an integral, and for a two-dimensional system∑
k →

�
d2k
(2π)2

with k = (kx, ky). The integration over the energy, ε, can be performed using
Cauchy’s residue integration method (see, e.g., [102, 103]).
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2.2.2 Green’s functions formalism

Figure 2.2b illustrates the single-loop diagram in the zero-temperature regime. In this diagram,
the Green’s functions of the non-interacting system, Gk(ε+ ω) and Gk(ε), are represented by
the solid lines. The vertices symbolize the perturbation Hamiltonian, ĤA(ω), which represents
the driving force, and the operator, Ôi, which denotes the system response. Applying the Fourier
transform with respect to the time variables on eq. (2.9) yields the formula corresponding to the
diagram [100]:

Oi(ω) = iTr

�
d2k

(2π)2

�
dε

2π
ÔiGk(ε+ ω)ĤA(ω)Gk(ε). (2.15)

When the perturbation Hamiltonian represents an external electric field, ĤA(ω) = −ev̂jAE
j (ω)

with the electromagnetic vector potentialAE
j (ω) = −i ℏ

ω
Ej(ω), the conductivity tensor, σij(ω) =

jEi /Ej(ω), is expressed by the Kubo-Středa formula [33, 93, 94] based on the diagram shown in
figure 2.2b, and is given by [104]:

σij(ω) =
e2ℏ
ω

�
d2k
(2π)2

�
dε

2π
Tr{v̂iGk(ε+ ω)v̂jGk(ω)}, (2.16)

where Gk is defined by eq. (2.5).

2.3 Self-energy

In a real system, carriers experience scattering processes such as electron-electron interaction,
electron-phonon interaction, and scattering on disorders due to impurities or defects in the crys-
tal lattice. These processes are captured by the proper self-energy, Σ∗

k, which describes how
interactions with the surrounding many-particle system affect the carriers. While the unper-
turbed (zero-ordered) Green’s function, G0

k, does not account for scattering processes, the exact
Green’s function, Ḡk, incorporates the self-energy. Dyson’s equation, which stands for the defi-
nition of the proper self-energy, includes an infinite-order approximate series expansion for the
Green’s function [1, 90–92, 105]:

Ḡk = G0
k +G0

kΣ
∗
kG

0
k +G0

kΣ
∗
kG

0
kΣ

∗
kG

0
k + . . . = G0

k +G0
kΣ

∗
kḠk. (2.17)

After a straightforward algebraic transformation, since Ḡk,G0
k, and Σ∗

k are all diagonal in matrix
indices, the relation simplifies to [1, 90–92, 105]:[

Ḡk
]−1

=
[
G0

k
]−1 − Σ∗

k, (2.18)

which is used to evaluate the proper self-energy.
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According to Bloch’s theorem, in the nearly-free electron model, an electron moving in an ideal
periodic crystal lattice does not change its velocity due to the interaction with ions (electron-
phonon interaction). In turn, the scattering processes on electrons, i.e., electron-electron (e-e)
interaction, are not considered in the non-interacting gas model. It is related to the fact that the
relaxation time2, τ , for e-e interactions is significantly longer than τ associated with deviations
in the periodic crystal lattice (mainly due to the Pauli exclusion principle), hence can be ne-
glected in this context [106]. In this thesis, the scattering processes considered are related only
to deviations from the periodicity of the crystal potential due to defects in periodic structure
or impurities. Consequently, the exact Green’s function here is called the impurity-averaged
Green’s function.

Born approximation

Here, impurities are assumed to be randomly distributed, spin-independent, and point-like, giv-
ing rise to short-range interaction. Since the impurities are much heavier than the electrons,
the impurities can be described with a static potential, V (r), and their collisions are consid-
ered elastic (i.e., the electrons scatter from from an initial state with wavevector k to a final
state with wavevector k′ without losing energy, only changing their momentum, see chapter 8.1
in [90]).

If the mean wavelength of the electron is smaller than the characteristic dimension of the impurity
field, (i.e, the impurity potential is weak and the momentum transfer (k − k′) is small), then
the scattering event can be approximated using the lowest-order Born approximation. In this
approximation, only the first-order contribution to the proper self-energy is considered, Σ∗

k ≈
Σ

∗(1)
k ≡ Σk [92], see fig. 2.4.

Figure 2.4: Zero-, first- and second-order contributions to the proper self-energy, Σ∗(n)
k for n = {0, 1, 2}.

Dashed lines represent the scattering amplitude, niV (k−k′), solid lines correspond to the Green’s func-
tion, G0

k, and the crosses denote the impurity

For a two-dimensional system, the self-energy in the Born approximation is given by [28]:

Σ
∗(1)
k ≡ Σk = ni

�
d2k′

(2π)2
V 2(k − k′)G0

k′ , (2.19)

2The electron scatters with probability 1/τ in a unit time, where τ is the mean free time between the collisions
called the relaxation time [106].
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where ni is the impurity concentration and V (k − k′) is the Fourier transform of the single
impurity potential. One assumes that electrons scatter off short-range impurities modeled as
δ-function scatters. Additionally, for weak impurity interaction (momentum-independent scat-
tering potential), the real part of the self-energy is negligible. Thus, one obtains [28]:

Im[Σk] = niV
2
0

�
d2k
(2π)2

G0
k = iΓ, (2.20)

where Γ denotes the relaxation rate, related to the relaxation time, τ , by Γ = ℏ/(2τ).

It is important to note that the scattering events are treated independently of all other impuri-
ties. Consequently, the approach provided above is applicable only at low impurity concentra-
tions.

2.4 Impurity vertex correction

Since the self-energy describes the influence of scattering processes on the carriers themselves, it
turns out that including the interaction with surrounding processes only in the self-energy is not
enough to analyze the transport properties of a system. Therefore, one must consider a correction
that describes the influence of scattering processes on the system response. In the diagrammatic
technique, including impurity scattering processes involves renormalizing the operators at the
vertices of the diagram, as shown in fig. 2.5, thus the name – vertex correction.

As was previously mentioned, the primary relaxation mechanism in this context is scattering on
point-like, spin-independent, and randomly distributed impurities located in points Ri. Thus,
assuming a white-noise distribution, the impurity potential can be modeled as δ-function scat-
ters: Vi(r) =

∑
i Viδ(r−Ri) which means that impurities are static objects with spherically

symmetric potentials. While the impurity potential vanishes on average3, ⟨Vi(r)⟩ = 0, the sec-
ond statistical cumulant is finite and has the form: ⟨|Vi(r)|2⟩ = niV

2
0 , where ni is the impurity

concentration.

The sketch in figure 2.5a depicts the sum of all ladder diagrams, which are sufficient in the
low-impurity regime and result in the vertex correction. The scattering events are represented
by dashed electron lines connecting the Green’s functions on both sides of the diagram. Each
dashed line represents various scattering events due to a single impurity. After summing all
scattering events, the vertex diagrams are consolidated into a single diagram where the vertex
operator is renormalized with the vertex function. The vertex function appears only at one end
of the diagram to avoid overvaluing the vertex terms [90].

To determine the impurity vertex function, Oi, one have to solve the self-consistent equation

3⟨. . .⟩ means the ensemble average over disorder configurations.
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Figure 2.5: (a) Ladder diagrams for vertex corrections to the bare operator ôi. (b) Diagrammatic rep-
resentation of the self-consistent impurity-renormalized vertex equation for the vertex function Oi. The
figure is taken from [107], © 2022 Elsevier

depicted in figure 2.5b. In general, the vertex function in the Matsubara-Green’s functions for-
malism depends on the Matsubara energies [90]:

Oi(iεn, iωm) = ôi + niV
2
0

�
d2k

(2π)2
Gk(iεn)Oi(iεn, iωm)Gk(iεn + iωm). (2.21)

In the dc limit, ω → 0, and when only the states at the Fermi level, εF , are taken into account4,
eq. (2.21) comes down to [108]:

OXY
i = ôi + niV

2
0

�
d2k

(2π)2
GX

k (εF )OiG
Y
k (εF ), (2.22)

whereGX,Y
k (εF ) are advanced or retarded impurity-averaged Green’s functions,X, Y = {A,R}.

4The vertex correction describes the influence of impurity scattering on the transport properties since only the
carriers at the Fermi level are scattered. In turn, the carriers in the Fermi sea, which contribute to the intrinsic part,
are robust against impurity scattering and do not need to be included in the vertex correction.
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3
Transport phenomena considered in the thesis

3.1 Non-equilibrium spin polarization

The idea of spin polarization dates back to the early days of the spin concept and involves a sce-
nario where spin magnetic moments (or just spins) are oriented in a specific direction1. In mag-
netic material, the exchange interaction between the spins of constituent atoms results in mag-
netic ordering. In ferromagnetic metals, for instance, the majority of spin magnetic moments
align parallel to a selected axis (e.g., spin-up), while less than half align antiparallel (spin-down).
This imbalance creates a non-zero net magnetization, and the terms majority and minority spins
are used to describe that case. If the quantities of spin-up and spin-down are equal, the system
is spin-unpolarized (nonmagnetic).
Spin polarization, i.e., magnetization, can also be induced in nonmagnetic materials by applying
an external magnetic field or through the proximity effect. In the latter case, when a nonmagnetic
material is deposited on a magnetic substrate, the exchange interaction between the spins of the
atoms in the nonmagnetic material (or the spins of carriers in a 2DEG formed on its surface) and
the localized magnetic moments in the substrate induces magnetization in the system.

In the context of current flow, when the spins of the carriers align parallel to a chosen axis, the
resulting current is referred to as spin-polarized current. One of the most promising phenomena
in spintronics is the ability to induce non-equilibrium spin polarization of carriers via spin-orbit

1It is noteworthy that, while it is impossible to measure all components of spin simultaneously, individual
components can be measured. For example, stating that a "spin-1/2 is in the z-direction" means that the spin vector
lies on a conical shell around the z-axis, with its z-component equal to ℏ/2 (see, e.g., chapter 2.1 in [109]).
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interaction (SOI) without requiring an external magnetic field. It turns out that, due to the pres-
ence of SOI in the system, a direct current can generate a non-equilibrium uniform spin polar-
ization of the carriers in the system, a phenomenon known as current-induced spin polarization
(CISP) [110]. It is worth noting that CISP is also referred to by various names in the literature,
including the inverse spin-galvanic effect, current-induced spin accumulation, magnetoelectric
effect, and (Rashba)-Edelstein effect. However, all of these terms describe the same microscopic
effect, which is the emergence of non-equilibrium CISP in response to an external electric field
(dc) in gyrotropic media with intrinsic spin-orbit coupling [111]. On the other hand, when the
driving force is a temperature gradient, thermally-induced spin polarization (TISP) arises.

3.1.1 Current-induced spin polarization (CISP)

The theoretical prediction of spin polarization by a charge current was made in 1978 by Ivchenko
and Pikus [112] for bulk-tellurium crystals, attributing this effect to the unique valence band
structure (hybridized spin-up and spin-down bands) in tellurium. In contrast, a distinct micro-
scopic mechanism of CISP in a 2DEG formed in semiconductor quantum wells, associated with
asymmetric spin relaxation, was predicted by Vas’ko and Prima, Edelstein, and Aranov and
Lyanda-Geller [113–115].

Figure 3.1: Current-induced spin polarization in a 2DEG with intrinsic spin-orbit coupling (a) Rashba
type and (b) Dresselhaus type for a quantum well grown along the [001] direction. The 2DEG is formed
in the xy-plane. Arrows indicate the expectation value of the carriers’ spin related to the SOI. jx denotes
the direction of charge carriers in response to an applied external electric field

The asymmetric scattering mechanism leading to spin polarization of the current is known in
the literature as Elliott-Yafet spin relaxation [116]. This effect plays a crucial role in systems
where spin-orbit coupling is present. In a 2DEG with intrinsic spin-orbit interaction (Rashba or
Dresselhaus type), the spin degeneracy of the bands is lifted. Since the external electric field is
applied in the −x-direction, charge carriers move along the direction of the applied field, and the
Fermi contours are shifted in k-space by ∆kx, see fig. 3.1. This results in a non-equilibrium spin
distribution, i.e., δs↓ ̸= δs↑. Consequently, spin-flip scattering processes become unbalanced,
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resulting in current-induced spin orientation along the y-direction for a 2D system with Rashba
SOC, as indicated in fig. 3.1a, and along the x-direction for a 2DEG with Dresselhaus SOC in
a QW grown along the [001] direction, see fig. 3.1b.

D’yakonov and Perel [47, 117] developed another concept for spin polarization of the current,
which involves spin precessional processes. Here, the current-induced shift of the Fermi contour
decouples the carriers’ spin orientation from their momenta, initiating spin precession around the
new expected spin orientation and resulting in an additional spin component. Furthermore, this
mechanism also contributes to the intrinsic spin Hall effect, a charge-to-spin conversion effect
discussed in sec. 3.2.3, which leads to nonuniform spin accumulation at the edges of the sys-
tem [118]. Thus, having common features in their microscopic origins, CISP often accompanies
spin Hall effect [110, 118–120]. Indeed, the first measurements of the CISP were made together
with SHE measurement in a strained semiconductor heterostructure n-InGaAs/GaAs using Kerr-
Faraday magneto-optical detection [110, 119], as well as in AlGaAs/GaAs heterostructure by
angle-resolved polarization detection [120] and spatially resolved scanning Kerr rotation mi-
croscopy [121].

Additionally, another source of the CISP is related to asymmetric in momentum space spin-
dependent carrier scattering by phonons and defects, due to the presence of an extrinsic spin-
orbit interaction in the system. This mechanism does not require spin-splitting the bands and can
dominate at higher temperatures [122–124]. It has been theoretically considered in (001)-grown
quantum wells in semiconductor heterostructures [122, 123] and experimentally observed in
InGaAs deposited on GaAs in the [001] direction with anisotropic spin-orbit field [124]. In these
experiment, the strength and orientation of the anisotropic spin-orbit field were tuned through
the direction of the electron drift momentum, altered by adjusting the voltage applied to the four
contacts at the edges of the sample. The researchers found that strong intrinsic SOC relates to
weak CISP and vice versa. Thus, the mechanism of spin-dependent scattering events must be
considered in such cases.

From an application perspective, an intriguing aspect of non-equilibrium spin polarization is
the coupling of the carrier’s spin with local magnetization in a magnetized system via exchange
interaction. This interaction results in a spin torque on the local magnetic moments [125, 126],
enabling efficient switching of magnetic domains using an electric current without an applied
magnetic field. The control of magnetization via spin-orbit field was experimentally demon-
strated in 2009 by Chernyshov et al. in p-type ferromagnetic semiconductor, (Ga,Mn)As. In the
presence of an external magnetic field and Rashba spin-orbit field (tuned by an external electric
field strength), the transverse resistance, and thus the magnetization, changes its sign with the
electric field strength. Spin torque induced by current flowing in a system with Rashba SOC was
also experimentally investigated in a metallic ferromagnetic system, Pt/Co/AlOx [127].
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3.1.2 Thermally-induced spin polarization (TISP)

Spin polarization in a system can also be induced by a temperature gradient, namely thermally-
induced spin polarization (TISP). Unlike electrically-induced spin polarization (CISP), where
a mechanical force drives the effect, TISP is driven by statistical forces that induce transport as
the system as a result of approaching the equilibrium through irreversible processes.

In the presence of a temperature gradient, the colder and hotter particles move towards a given
point from different sides. Due to the different density of states in the two subbands within
a 2DEG model with intrinsic spin-orbit interaction, the local distribution of particles with pos-
itive and negative wavevector components differs, resulting in nonzero spin polarization [128].
In a system with Rashba-type SOI, the spin polarization occurs in-plane and perpendicular to the
driving force, while in the case of Dresselhaus-type SOI, it aligns with the driving force. More-
over, in a 2DEG system with Dresselhaus (Rashba) SOI and an out-of-plane exchange field,
a transverse (longitudinal) component of spin polarization also appears.

3.1.3 Key finding in the literature related to the scope of the thesis

Current-induced spin polarization has been studied for a magnetized 2DEG with k-linear form of
Rashba SOI [101], as well as for systems with Rashba, Dresselhaus SOI, and extrinsic spin-orbit
interaction [129].

In the following thesis, CISP in a 2DEG with Dresselhaus spin-orbit interaction, taking into ac-
count also the k-cubic SOI term, is discussed. While CISP for a nonmagnetized 2DEG with the
k-linear form of Dresselhaus, or equivalent case with Rashba SOI, is well-known in the liter-
ature [101, 129, 130] and recalculated here using Matsubara-Green’s functions formalism, the
analytical results and detailed analysis for CISP in a magnetized 2DEG with k-linear DSOI, in-
cluding its correlation with experimental parameters such as quantum-well width, is the novelty
in this area. Moreover, a detailed analysis of the influence of the cubic term on the results in
both a nonmagnetized (with the analytical formulas) and a magnetized 2DEG is examined as an
original contribution to the field [107].

In turn, TISP has been discussed for a 2DEG with the k-linear form of Rashba SOI [98, 131,
132], including scenario with an external magnetic field [128]. However, this work focuses
on TISP in a 2DEG with both k-linear and k-cubic forms of Dresselhaus SOI, considering the
influence of an out-of-plane exchange field.
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3.2 Linear Hall effects

The story began in 1879 when Edwin Hall discovered a "new action of magnetism on electric
current," manifesting as the appearance of a potential that is transverse to the electric current
when it flows through a conductor in the presence of a steady magnetic field applied in an out-of-
plane direction [133]. Nowadays, this phenomenon is known as the ordinary Hall effect and has
become a valuable tool for material characterization, including resistivity or magnetoresistance
measurements, determining conductivity type (p or n), and measuring carriers concentration
in nonmagnetic conductors (metals with valence one, i.e., one electron in the valence shell of
a free atom). Additionally, it has found practical applications as Hall sensors in electronics and
motorization, among others [134, 135].

The empirical explorations that formed the basis of Edwin Hall’s Ph.D. dissertation opened a new
chapter in solid-state physics and established Edwin Hall as the father of a range of phenomena,
including integer/fractional quantum, anomalous, spin, and even non-linear Hall effects. The
common thread among all these phenomena is the transverse current response to an external
electric field.

Paying attention to the Hall effect has been highly fruitful, not only from an application point of
view but also in triggering the discovery of topological phases of matters. It is worth mentioning
the concept of Berry curvature (see p. 43), which not only aids in a better understanding of the
anomalous Hall effect (see sec. 3.2.1) but also enables the definition of intrinsic contributions
to transport properties that are robust against spin-independent impurities in the system.

3.2.1 Anomalous Hall effect (AHE)

Edwin Hall has already noticed that the transverse charge response was "several times greater"
in a plate of iron or nickel (magnetic metals) than in gold, silver, or platinum (non-magnetic
conductors) [136]. This observation sparked interest in exploring the role of internal magnetic
moments, i.e., spin, in transport properties.

The quest to unravel the origins of the extraordinary [137] or spontaneous [38] Hall effect
aroused a vivid discussion within the scientific community during the latter half of the 20th cen-
tury. Initially, Robert Karpulus and Joaquin M. Luttinger [137] proposed that the effect stemmed
from the "spin-orbit interaction of polarized conduction electrons", a phenomenon now recog-
nized as intrinsic spin-orbit interaction that alters the band structure. However, a young Dutch
theorist Jan Smith [38] questioned this idea, arguing that "the only effect which [...] remains
as a possible cause of Rs

2 is anisotropic scattering caused by spin-orbit interaction," indicating
on the skew-scattering contribution. Luttinger later acknowledged that skew-scattering could

2additional resistance coming from the anomalous Hall effect
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contribute to the effect but maintained that the intrinsic contribution was still significant [138].
Several years later, Swiss physicist Luc Berger [37] added two cents to the discussion by pointing
out an additional origin – the side-jump mechanism, an extrinsic type of spin-orbit interaction.
This mechanism involves a carrier’s displacement during scattering events caused by phonons
or impurities.

Nowadays, there is consensus that all three mechanisms mentioned above can induce a charge
Hall response in magnetic material, even in the absence of an external magnetic field. However,
the dominant contribution varies depending on different systems and operating regimes. In ex-
periments, the primary mechanisms can often be identified using a scaling relation (scaling-law
or power-law), which relates the transverse and longitudinal resistivity, expressed as ρxy ∝ ρaxx.
When a = 2, the intrinsic and side-jump contributions prevail, while a = 1 signifies the domi-
nance of the skew-scattering mechanism (see references in [37, 139] and [140]). Exempli gratia,
the extrinsic mechanism, skew-scattering, dominates in highly-conductive ferromagnets, such as
dilute alloys, whereas the intrinsic mechanism is the leading contribution in metallic ferromag-
nets with moderate conductivity, like pure iron [36, 37].

Intrinsic AHE

In their microscopic theory [137], Karpulus and Luttinger introduced the concept of carriers ac-
quiring an additional contribution to their group velocity, known as the anomalous velocity, vak,
that is perpendicular to an external electric field applied to the system. Specifically, in a 2DEG
with spin-orbit interaction (SOI), the velocity of the carriers reads as vk = v0k + vak, where
v0k = ℏk/m represents the velocity of Bloch fermions trapped in a potential well, and vak is
the anomalous velocity, which carriers acquire due to the presence of SOI in the system [141].
Therefore, the name anomalous Hall effect (AHE) was adopted, even though the transverse re-
sponse is also influenced by the scattering mechanisms mentioned above. However, the anoma-
lous velocity is solely dependent on the band structure (summed over all occupied band states)
and is thus considered an intrinsic contribution to AHE.

On the other hand, the introduction of topological concepts into solid-state physics, along with
Sir Michael V. Berry’s notion of geometrical phase [142], has allowed for a reinterpretation of
the AHE by linking the anomalous velocity to the Berry curvature, highlighting the topological
nature of the intrinsic AHE [143].

Using the wavepacket motion of electrons in the Bloch band, the contribution to the Hall effect
from the Berry curvature in momentum space was first provided by Ming-Che Chang and Qian
Niu [144] for a 2D periodic system with a strong magnetic field, as well as by Ganesh Sundaram
and Qian Niu [145] for slowly perturbed crystals. With these works, a connection between the
anomalous velocity and the Berry curvature was shown, therefore, utilizing the concept of Berry
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curvature to examine the intrinsic anomalous Hall effect became justified.

The connection between anomalous velocity and Berry curvature is particularly evident when
considering the Kubo formula for intrinsic anomalous Hall conductivity [36]:

σintAH
ij = e2ℏ

∑
n ̸=m

�
dk

(2π)d
[f (En(k))− f (Em(k))]

× Im
⟨Ψn(k) |vi(k)|Ψm(k)⟩ ⟨Ψm(k) |vj(k)|Ψn(k)⟩

[En(k)− Em(k)]
2

(3.1)

with |Ψn,m(k)⟩ andEn,m(k) being eignestates and eigenvalues of the Bloch Hamiltonian,H(k),
f(En,m(k)) representing the distribution functions, and {n,m} denoting different bands. The
components of the velocity operator v = 1

ℏ∇kH(k) are denoted as vi,j . Noting that [36]:

⟨Ψn(k) |∇k|Ψm(k)⟩ =
1

ℏ
⟨Ψn(k) |∇kH(k)|Ψm(k)⟩

Em(k)− En(k)
, (3.2)

the intrinsic AHC can be expressed as [36]:

σintAH
ij = −εijℓ

e2

ℏ
∑
n

�
dk

(2π)d
f (En(k))Bℓ

n(k), (3.3)

where εijℓ stands for antisymmetric tensor, and Bℓ
n(k) = i∇k × ⟨Ψn|∇k|Ψn⟩ denotes the ℓ-th

component of the Berry curvature for the n-th band.

Equation (3.3) indicates that the intrinsic AHC describes the motion of wavepackets (carriers)
in k-space within the Fermi sea, which endows this intrinsic contribution to the AHC with an
inherent topological character. Moreover, since the states in the Fermi sea do not interact with
impurities (unlike the states at the Fermi surface), this contribution is robust against impuri-
ties.

Berry curvature

In the 1980s, Sir Michael V. Berry systematized and popularized the concept of the geometric
phase, known as the Berry phase. The idea extends from the adiabatic theorem, which states
that a particle moving in a slowly-varying environment and tracing out closed loop3, acquires
an additional phase factor, γn, which is given by the path integral over the closed loop C in
parameter space [142, 148]:

γn =

�
C

dR · An(R),

whereR denotes a set of parameters describing the system. The vector-valued functionAn(R) =

i⟨Ψn|∇R|Ψn⟩ is known as the Berry connection or Berry vector potential, with Ψn standing for

3For an open path, the phase γ is gauge-dependent and accumulates along the path, ultimately canceling
out [147].
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the eigenvector of considered system. Analogous to electrodynamics, one defines a gauge-field
tensor referred to as the Berry curvature, which reads as [148]:

Bn(R) = ∇R ×An(R).

While considering a 2D system, e.g., xy-plane, in wavevector space, the Berry curvature has
only the z-component (∇k = x̂ ∂

∂kx
+ ŷ ∂

∂ky
), namely:

Bz
n(k) = i∇k × ⟨Ψn|∇k|Ψn⟩ (3.4)

with Ψn denoting the eigenvector for the n-th band.

Notably, the gauge-invariance of the Berry phase ensures that it is a physically observable quan-
tity. Moreover, due to its geometric nature, the Berry phase can be expressed in terms of geomet-
rical quantities in the parameter space. For example, when considering the transport properties
of systems, the Berry phase is defined for quasi-particles moving in wavevector space. However,
what makes Berry’s concept a powerful tool in solid-state physics is its close analogy to gauge
field theories and differential geometry. Thus, the idea of the geometric phase factor has proven
to be a fertile concept, shedding new light on already-known phenomena in physics.

Firstly, Michael V. Berry showed that the geometric phase factor can be considered as a special
case of the physical effect of the magnetic vector potential that exists even in the absence of fields,
as predicted by Aharonov and Bohm in 1959 [142, 149]. Here, the Berry phase is the equivalent
of the Aharonov-Bohm phase that a particle acquires when making a loop in magnetic flux, while
the Berry curvature acts like a "magnetic field".

Secondly, with the Berry curvature, one can explain the quantization of transverse conductance,
i.e., the quantum Hall effect (QHE). This requires an alliance between Berry’s concept and topol-
ogy4. Barry Simon initiated this connection [150], interpreting the integers in Hall conductance
(i.e., n in σH = n(e2/h)) introduced by Thouless et al. [151] using Berry’s ideas. The key point
is that the integral of the Berry curvature over a closed surface quantizes as integers called Chern
numbers. The Brillouin zone, considered as a closed surface, allows the integration of the Berry
curvature over the entire Brillouin zone, leading to the quantization of the Hall conductance.
It’s worth emphasizing that the effective models examined in this thesis, by assumption, do not
cover the entire Brillouin zone; hence, the evaluated Hall conductance is not quantized.

4Initially, topology was a branch of mathematics, and its concepts have been successfully adapted to solid-state
physics, as evidenced by the Nobel Prize in Physics awarded in 2016 to David J. Thouless, F. Duncan M. Haldane,
and J. Michael Kosterlitz "for theoretical discoveries of topological phase transitions and topological phases of
matter".
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3.2.2 Key finding in the literature related to the scope of the thesis

Thomas Jungwirth et al. [143] studied the anomalous Hall effect in ferromagnetic III-V semi-
conductors doping with Mn (e.g., InAs and GaAs) using the Luttinger theory and the Berry
curvature concept [138, 145], finding good agreement between their approach and experimental
results. Dimitrie Culcer et al. [152] later applied the same approach to a paramagnetic 2D sys-
tem with Rashba SOI. In their work, Culcer and co-authors discussed systems with a zinc-blende
structure, where the BIA occurs. However, they modeled such a system with Rashba Hamilto-
nian, which is appropriate for systems with SIA. Despite this, the results remain valid due to
the similar form of the Berry curvature in both cases – differing only in sign. Consequently,
in systems where both BIA and SIA are present, the opposite sign of the Berry curvature, and
hence the intrinsic AHE, reflect the relative strengths of these SOIs as they vary [153]. In turn,
a theoretical analysis of a 2DEG with SIA provided by Vitalii K. Dugaev et al. [154] demon-
strated the dominant role of the intrinsic mechanism in the AHE within systems exhibiting strong
SOC.

The intrinsic AHC, linked to the non-zero Berry curvature, has already been examined in a mag-
netized 2DEG with k-linear form of Rashba SOI [71, 154].

However, the anomalous Hall effect in a 2DEG with cubic forms of Rashba and Dresselhaus SOI
has not been widely discussed in the literature. Nevertheless, Li and Yi-Ming [155] investigated
the AHE in a magnetized 2DEG with the cubic form of Rashba SOC using the Kubo formula
and Green’s functions formalism, although their analysis focuses solely on the contribution from
states at the Fermi surface, omitting the intrinsic contribution.

This dissertation aims to fill that gap by providing both analytical and numerical results for the
AHC in a 2DEG with isotropic and anisotropic forms of Rashba SOI, with a specific emphasis
on the intrinsic contribution. Additionally, the influence of the cubic form of Dresselhaus SOI
on the transverse response in a 2DEG with k-linear and k-cubed forms of SOI is examined. The
results of this investigation were published in [63, 107, 156].

3.2.3 Spin Hall effect (SHE)

The spin Hall effect (SHE) highlights the use of electron spin in transport, where a charge current
is converted into a transverse spin current with spin polarization perpendicular to the charge and
spin current directions [118]. The SHE originates from spin-orbit coupling within the material.
Due to SOC, electrons with opposite spins bend in opposite directions, resulting in a spin current
flowing perpendicular to the direction of the charge current, as illustrated in figure 3.2(a).

Importantly, SHE can be observed even in nonmagnetic systems, giving rise to what is known
as a pure spin current – a flow of spin without an accompanying charge current. The concept
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Figure 3.2: (a) Spin Hall effect in a paramagnetic system. (b) Measurement of spin current in the inverse
spin Hall effect. Here, M⃗ = 0 represents a non-magnetic system, and SO indicates a material with spin-
orbit interaction. Figure (a) comes from [135], published with permission of the journal Postępy Fizyki

of electrically-induced spin current flow in a paramagnetic system was first theoretically pro-
posed in 1971 by Mikhail Dyakonov and Vladimir Perel [117, 157], and later named and more
precisely described in 1999 by Jorge E. Hirsch [158]. These early studies focused on extrinsic
SHE, originating from spin-dependent scattering processes, i.e., side-jump and skew-scattering
(extrinsic SOI).

Nevertheless, even without spin-dependent scattering centers, spin accumulation can occur due
to intrinsic SOI related to the band structure (i.e., Rashba and Dresselhaus types of SOI, caused
by inversion asymmetries in the host crystal), leading to what is known as intrinsic SHE [159,
160]. In this case, the mechanism leading to spin polarization of the current is based on spin
precessional processes developed by D’yakonov and Perel [47, 117]. Due to the current-induced
shift of the Fermi contour, the spin orientation of the carriers is no longer locked to their mo-
menta, causing spins to precess around the new expected spin orientation, resulting in an addi-
tional spin component. For example, in the Rashba model (see fig. 3.1a), spins acquire a com-
ponent parallel to the z-axis for ky > 0 and antiparallel to the z-axis for ky < 0, resulting in
a spin current polarized along the z-axis, flowing in the y-direction [159].

Spin Hall effect measurements detect spin accumulation at the sample edges, which results from
SOC-induced spin current flow. When these edges are linked by a conductor characterized by
a low spin-flip scattering rate, the spin current generated by the spin accumulation flows in the
opposite direction to the SOC-induced spin current, facilitating its measurement. The first ex-
perimental observations of the SHE in 2D semiconductor systems5, made in 2004, used optical
techniques to measure electrically induced spin polarization. Kato et al. [119] demonstrated
SHE in GaAs thin film using the magnetooptical Kerr effect, attributing spin accumulation to
spin-dependent scattering effects. Wunderlich et al. [120] fabricated two light-emitting diodes

5Although the SHE is not limited to semiconductors and was later observed in single-layered crystals such as
graphene [161–163], this discussion focuses on systems where a 2D electron gas forms.
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in (Al,Ga)As/GaAs heterostructure and detected spin polarization at the sample edges using
circularly polarized light, identifying intrinsic SOC as the primary contribution to SHE.

Direct electrical measurement of the SHE in paramagnetic systems is challenging due to the lack
of a transverse voltage associated with pure spin current. However, the first electrical measure-
ments of the inverse spin Hall effect (ISHE) in semiconductor systems, which detected a charge
current generated by a spin current, were conducted in 2006 [164, 165]. The principle behind
measuring ISHE using a double Hall bar device is illustrated in figure 3.2b. First, a spin current,
flowing in the x-direction, is generated by spin injection from a ferromagnet (the green part)
into a nonmagnetic system (the gray part). Then, due to SOI in the system, electrons with op-
posite spins bend their trajectories in opposite directions, resulting in voltage generation in the
y-direction on the right part of the device.

With the spin Hall effect, a new class of spintronic devices emerges, enabling spin manipulation
even in non-magnetic systems without requiring an external magnetic field. Exempli gratia,
a field-effect spin transistor based on spin current – rather than charge flow, as in traditional
transistors – has been proposed [166].

3.2.4 Key finding in the literature related to the scope of the thesis

The intrinsic spin Hall effect in semiconductor systems with Rashba SOI was initially described
by Jairo Sinova et al. [159], where Rashba SOI was assumed to be in k-linear form. Later,
Schliemann and Loss [167] derived the intrinsic SHE in zero-temperature limit for semiconduc-
tors hole systems, where the k-cubed form of Rashba SOI was found.

Here, the finite-temperature results for the intrinsic SOC induced by the cubic form of Rashba
SOC are provided, allowing for an analysis of the temperature dependence of SHE in semicon-
ductor hole systems. Moreover, the explicit formula for the spin Hall angle is derived, and the
influence of the temperature is studied. Finally, the influence of an out-of-plane magnetization
on the SHE is examined. Some of these findings were partially published in [168].

3.3 Thermoelectric effects

3.3.1 Anomalous Nernst effect (ANE)

Among various transport phenomena, the thermoelectric effects are particularly significant, as
they play a crucial role in room-temperature transport measurements. On one hand side, a system
can be subjected to several forces simultaneously, such as electric or magnetic field and thermal
gradient. Secondly, in general, a temperature gradient induces an electrical current, and vice
versa [169]. Consequently, a thermal signal can appear as an additional contribution to transport
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measurements, influencing the results.

In the linear response regime, one assumes that the temperature difference between the hottest
and the coldest edge of the sample is small. This means that the system is exposed to a tem-
perature gradient that is small and uniform across the sample, and the average temperature, T ,
tends to be constant on the scale of the carrier wavelengths. Under these conditions, the current
ji induced by a driving force Xj is given by [90]:

ji =
∑
j

Zij ·Xj, (3.5)

whereZij are measurable coefficients that satisfy the Onsager’s relations when the driving forces
are properly defined. Specifically, when the driving force is the electric field, then XE

j =

− 1
T
∇(µ̄) = 1

T
∇(µ + eV ) where µ stands for the chemical potential, e is the particle charge,

and V refers to the electric field potential. In turn, for the temperature gradient acting as the
driving force, X∇T

j = ∇
(
1
T

)
.

Thus, the electric (particle) current, jEi , and the heat current, jhi , in the presence of both an
electric field and a temperature gradient can be expressed as (see chapter 17.4.3 in [169], chapter
7.9 in [28] or chapter 3.9.2 in [90]):

jEi = −σij
∇(µ̄)

T
+ αij∇j

(
1

T

)
,

jhi = −ᾱij
∇(µ̄)

T
+ κij∇j

(
1

T

)
,

(3.6)

where the first-order kinetic coefficients are: σij – conductivity tensor, κij – heat conductivity
tensor, αij – thermoelectric tensor and ᾱij – Seebeck coefficient tensor.

The phenomenological reciprocal relations, derived by Lars Onsager6, reflect the time-reversal
invariance of the microscopic equation of motion at the macroscopic level, e.g., σij = σji,
κij = κji. In turn, in the presence of a magnetic field, B, Onsager’s reciprocal relations establish
the following relationships between the first-order kinetic coefficients, i.e., the conductivity, σij ,
heat conductivity, κij , thermoelectric, αij , and Seebeck coefficient, ᾱij , tensors as follows7 [28]:

6The initial extensive works on thermoelectric effects were conducted by William Thomson (Lord
Kelvin) [170–173] in the late 19th century. On behalf of his work, in 1931, a recognized chemist Lars Onsager
derived "reciprocal relations" [174, 175], linking coefficients describing irreversible processes (for more details see
also chapter 4.3 in [173]). Lars Onsager was awarded the Nobel Prize in Chemistry in 1968 "for the discovery of the
reciprocal relations bearing his name, which are fundamental for the thermodynamics of irreversible processes".

7Note, that if a magnetic field is applied to the system, the particle retraces its path only if both the magnetic
field and the particle angular velocity, ω, are reversed. If follows from the expression on the Lorentz force that acts
on the carrier moving in a magnetic field, F = qv ×B.
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σij(B,ω) = σji(−B,−ω), (3.7a)

κij(B,ω) = κji(−B,−ω), (3.7b)

ᾱij(B,ω) = Tαij(−B,−ω). (3.7c)

In 1853, Wiedemann and Franz observed that thermal conductivity, K, divided by electrical
conductivity, σ, and temperature, T , yields a constant (known as the Lorentz number) for met-
als [176]. This relation is known as the Wiedemann-Franz law (see also chapter 7.8 in [177] or
chapter 7.15 in [178]):

K =
π2

3

(
kB
e

)2

Tσ,

and is preserved in quite general conditions, i.e., in the linear response regime for non-interacting
electrons, assuming elastic scattering on impurities and phonons [179, 180], and even in strong
magnetic fields [181].

Another significant relation is the Mott rule [180–182], that enables to express a measurable
voltage in response to a temperature gradient, i.e., thermoelectric power, also called the Seebeck
coefficient, S, via the electrical conductivity tensor, σ [180–182],

S =
π2

3

k2BT

e

(
∂ lnσ(µ)

∂µ

)
, (3.8)

where µ is the chemical potential. The phrase ’Mott-like relations’ in the literature, generally
refers to such connection between the current responses to an electric field and the temperature
gradient [183].

Combining the electric field and temperature gradient with an external magnetic field yields
transverse thermoelectro-magnetic effects [28, 184], such as the Nernst effect. The Nernst effect
can be understood as the thermal counterpart of the Hall effect, where the driving current is
generated by a temperature gradient instead of an electric field.

3.3.2 Key finding in the literature related to the scope of the thesis

The application of the Mott relation, eq. (3.8), to the intrinsic contribution to the anomalous Hall
and Nernst effects, originating from the Berry curvature, was theoretically predicted by Di Xiao
et al. [185] and experimentally verified in Mn-doped GaAs ferromagnetic semiconductors [186],
ferromagnetic metals [187], and half-metallic ferromagnet LSMO thin films [188].
Furthermore, the temperature-dependent sign change of the ANE, experimentally observed in
ferromagnetic semiconductors and half-metallic ferromagnets [186, 188], can be understood in
light of the Mott relation.
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In this dissertation, the intrinsic (non-dissipative) contribution to both the anomalous Nernst ef-
fect and the anomalous Hall effect in a magnetized 2DEG with cubic forms of Rashba spin-orbit
interaction is considered [63, 168]. The sign change of the ANE and the connection between
ANE and AHE via the Mott relation are also analyzed.

3.4 Nonlinear effects

Nonlinear transport effects are characterized by a response current (or voltage) that scales non-
linearly with the driving force (represented by current or voltage). It is important to note that
the nonlinear phenomena considered in this thesis do not represent higher-order corrections in
perturbation theory. They have a different origin than the corresponding linear responses for
particular effects. As a result, the nonlinear effects can be observed even in the absence of their
linear counterparts. Exempli gratia, the nonlinear Hall effect can manifest in systems with time-
reversal symmetry, which should be broken to observe the linear Hall effect [189].

In this dissertation, two nonlinear transport phenomena are investigated: the nonlinear Hall ef-
fect, introduced in section 3.4.1, and the nonlinear magnetoelectric resistance, known as bilinear
magnetoresistance, described in section 3.4.2.

3.4.1 Nonlinear Hall effect (NLHE)

The main idea behind so-called nonlinear Hall effects (NLHE) is that the transverse current
(or voltage) scales non-linearly with the longitudinal current (or voltage) evoked by an external
electric field. Generally, the charge current density, ja, in response to the electric field, E, can
be expressed as a power series [190]:

ja = σabEb + χabcEbEc + . . . , (3.9)

where a, b, c ∈ {x, y, z} with a ̸= b. Here, σab denotes the off-diagonal component of the lin-
ear conductivity tensor, and χabc stands for the nonlinear (here quadratic) conductivity tensor.
The presence of higher-order terms (3rd, 4rd, etc.) was theoretically suggested and investigated
in [191–193]. Subsequently, both theoretical and experimental investigations have explored the
3rd ordered anomalous Hall effect induced by the Berry curvature quadruple in topological mag-
netic materials such as the kagome antiferromagnet (FeSn) [194, 195]. Nevertheless, this disser-
tation focuses primarily on nonlinear effects within the context of second-order responses.

The work that can be marked as a milestone in the field of non-linear responses was provided in
2015 by Intii Sodemann and Liang Fu [189]. They suggested that NLHE could be observed in
systems with time-reversal symmetry8, provided that inversion symmetry is broken. Intii Sode-
mann and Liang Fu proposed a simple model for topological crystalline insulators, namely tilted

8The presence of the Hall effect in time-reversal invariant systems is one of the advantages of phenomena
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Dirac cones, where NLHE can be realized. In this model, the tilting of Dirac cones breaks
the inversion symmetry, resulting in a non-zero first-order moment of the Berry curvature, i.e.,
Berry curvature dipole (BCD), which induces the nonlinear Hall response in the system (more
technical details about BCD are provided at p. 53). Due to the intrinsic character of the Berry
curvature dipole, i.e., relation to the band structure modification, the non-linear transverse re-
sponse induced by the BCD is called the intrinsic NLHE. Moreover, in time-reversal broken
systems, an intrinsic-type correction to the Berry curvature was identified, arising at the Fermi
surface from the field-induced positional shift of Bloch electrons [197, 198].

It was demonstrated in bulk WTe2 [198] that applying an external electric field lowers the spacial
symmetry of the material, thereby inducing a nonlinear response that can be tuned by the elec-
tric field. Further theoretical work [199–201] and experimental research [202] have highlighted
the extrinsic contributions to the nonlinear Hall effect, such as side-jump and skew-scattering
events. For instance, using the example of 2D tilted massive Dirac cones and applying the Boltz-
mann formalism [199, 201], it has been demonstrated that in systems where both intrinsic and
extrinsic contributions are significant, their competition leads to a sign change in the NLHE.
Moreover, by examining the gyrotropic Hall effect in two simple models – namely, a 3D non-
centrosymmetric Weyl semimetal and a strained 2D transition metal dichalcogenide monolayer
– it was found [200] that intrinsic and extrinsic contributions become comparable at frequencies
well below the band-splitting, typically within the terahertz (THz) range.

Consequently, due to the various mechanisms contributing to the NLHE, a key challenge in in-
terpreting experimental results is distinguishing between these contributions. For this purpose,
one can adopt the scaling law [201, 202], which has been successfully applied in the case of the
linear Hall effects. Another approach, proposed by Zongzheng Du et al. [203], involves sym-
metry analysis. In this method, components of the nonlinear conductivity tensor are classified
as either extrinsic or intrinsic based on the specified symmetry point group. Thus, for a de-
fined conductivity tensor, one can classify or predict the NLHE contributions in the analyzed
system.

Another significant aspect of the NLHE pertains to the theoretical methods employed to inves-
tigate the nonlinear response. According to the literature [189, 199–201, 204], one commonly
favored method is the semiclassical Boltzmann approach. In this approach, the distribution func-
tion is expanded in terms of the external electric field, E, i.e., f = f0 + f1 + f2 + . . ., where
fn ∝ En.
Alternatively, a quantum description developed by Zongzheng Du et al. [203], employs a di-
agrammatic technique for the nonlinear response regime. Unlike the Kubo formula and the

that extend beyond the linear response regime. Another way to achieve a transverse response in a system with
time-reversal symmetry is by utilizing the spin or valley degree of freedom [118, 196].

51



corresponding bubble diagrams in the linear response regime, in the quadratic response, it is
necessary to analyze triangular and two-photon diagrams that represent two inputs and one out-
put. When considering both intrinsic and extrinsic contributions in the weak-disorder limit, this
leads to the examination of dozens of charts.
The case study of the 2D Dirac model [203] reveals that the intrinsic contribution, arising from
the Berry curvature dipole, is fully consistent in both the semiclassical Boltzmann approach and
quantum description using diagrammatic technique. However, the extrinsic contributions, de-
scribing the disorder effects, differ in sign between the two approaches, resulting in distinct total
NLHE. It is noteworthy that the total NLHE in the quantum diagrammatic approach shares the
same sign and a similar behavior with the chemical potential as the intrinsic contribution, but it
has a greater magnitude.

When focusing solely on the intrinsic contribution from the Berry curvature dipole, the analysis
can be limited to this specific quantity (see p. 53). This approach is especially justified in systems
where the intrinsic contribution to the NLHE is predominant, meaning that scattering events can
be safely disregarded. Candidate materials for realizing intrinsic NLHE include low-symmetry
crystals where inversion symmetry can be readily broken, such as the surface of 3D topological
insulators, 2D transition metal dichalcogenides, or 3D Weyl semimetals [189]. Consequently,
a few years after the theoretical proposal of the BCD’s role in NLHE, this idea has been exper-
imentally confirmed in non-magnetic systems, specifically, in a few-layer WTe2 in the absence
of an external magnetic field [202, 205].

The experimental setup for NLHE measurements closely resembles that used for linear Hall
effect experiments. Typically, a low-frequency alternating current (i.e., ranging in 10–10 000
Hz) is applied, and the transverse voltage is measured at zero- or double-frequency using a lock-
in technique. This technique involves multiplying the measured signal, fs, in the frequency
domain (convolution in the time domain) by a reference signal tuned to the same frequency,
fr = fs yielding harmonics at fs = 0 and fs = 2fr.

Moreover, the ability to measure the transverse response at zero-frequency in response to alter-
nating current, allows NLHE to find applications in terahertz technology, particularly for high-
frequency rectification processes in broadband, long-wavelength photodetection devices [204,
206]. Additionally, NLHE holds the potential application for strain sensors by leveraging the
strain-tunable (or strain-induced) Berry curvature dipole [207].
Furthermore, quadratic dependence of the charge current density on the external electric field,
ja = χabbE

2
b (b = c in eq. (3.9)), results in a linear relationship between the measured9 off-

diagonal component of the quadratic conductance tensor, σNL
ab , and the electric field amplitude,

9Conductivity and resistivity are considered as the response functions, while conductance and resistance are
the physically measured quantities.
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i.e., ja/Eb = σNL
ab = χabbEb, and σNL

ab (Eb) = −σNL
ab (−Eb). In the measurements, the total con-

ductance can have both the linear and the nonlinear parts, i.e., σab = σL
ab(Eb = 0) + σNL

ab (Eb).
Thus, the presence of NLHE creates the possibility of obtaining a unidirectional response, where
measuring resistance in opposite directions yields different results. Such a behavior can be lever-
aged in the construction of spintronic logic devices, where lower and higher resistances corre-
spond to logic ’0’ and ’1’, respectively.

In addition to its device application, the sensitivity of the Berry curvature dipole to breaking of
the crystal symmetries offers the potential to use nonlinear response for material characteriza-
tion. This can be particularly useful for probing topological transitions, such as the transition
between trivial and topological insulators by applying pressure in BiTeI [208] or electrically-
induced topological transition in twisted doubled bilayer graphene [209].

The concept of nonlinear Hall effects can be extended to other phenomena where the nonlinear
response to the driving force takes different forms. Exempli gratia, investigating spin current
rather than charge current reveals the nonlinear spin Hall effect [210, 211]. On the other hand,
applying a temperature gradient instead of an electric field leads to nonlinear thermoelectric
(nonlinear Nernst effect – the response is the charge current) or thermal (when a heat current
becomes the response) transport effects [212–215].

Berry curvature dipole (BCD)

The a-th component of the charge current density can be expressed as an integral of the car-
riers’ velocity, va, multiplied by their distribution function, f(k), over the wavevector space,
i.e. [189]:

ja = −e
�

ddk

(2π)d
vaf(k) (3.10)

in d-dimensional system. The electron’s velocity, in turn, is a sum of the group velocity of the
electron wave and the anomalous velocity arising from the Berry curvature, B [189]:

va =
1

ℏ
∂ϵ(k)

∂ka
+ εabcBb

dkc
dt
, (3.11)

where εabc is the Levi-Civita symbol, and the canonical momentum of the electron changes in
time in response to the external electric field as dkc

dt
= − eEc(t)

ℏ . One assumes that the electric
field oscillates harmonically in time with frequency ω, i.e., Ec(t) = Re{Eceıωt} where Ec ∈ C.
Since the response up to the second order in the electric field is in one’s interest, the distribution
function is expanded up to the second order, i.e., f(k) = Re{f0 + f1 + f2}. Thus, the rectified
and second harmonic components of the a-th component of the charge current density ja =
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Re{j0a + j2ıωtz }, eq. (3.10), can be expressed as [189]:

j0a =
e2

2

�
k

εabcBbE∗
c f

ω
1 − e

ℏ

�
k

f 0
2

∂ϵ(k)

∂ka
, (3.12a)

j2ωa =
e2

2

�
k

εabcBbEcfω
1 − e

ℏ

�
k

f 2ω
2

∂ϵ(k)

∂ka
, (3.12b)

where for the sake of brevity
�
k
≡
�

ddk
(2π)d

, and functions f 0,ω,2ω
1,2 are components of the dis-

tribution function f(k) expressed in recursive structure, e.g., fω
1 = eτEa

1+iωτ
∂f0
∂ka

with τ denoting
relaxation time (all expressions detailed in [189]). The second terms in eqs. (3.12) are odd un-
der time reversal and thus vanish, leaving only the first terms in eqs. (3.12), related to the Berry
curvature.

In general, the zero- and second-harmonic response in the a-direction can be written as j0a =

χabcEbE∗
c and j2ωa = χabcEbEc. According to this analysis, the nonlinear conductivity tensor for

the Hall response reads [189, 216]:

χabc = −εadc
e3τ

2(1 + iωτ)

�
k

f0
∂Bd

∂kb
, (3.13)

where
�
k
f0

∂Bd

∂kb
represents the Berry curvature dipole10 (BCD). It is straightforward to verifythat

the BCD produces a current orthogonal to the applied electric field, e.g., assuming both applied
fields are in the x-direction (b = c = x), the response occurs only in the y-direction (a = y ̸=
0).

In a 2D system (within the xy-plane), the Berry curvature dipole for the n-th band is given
by [189]:

Dn
i =

�
dkxdky
(2π)2

f0
∂

∂ki
Bn
z (k), (3.14)

where i = {x, y}, f0 stands for the equilibrium distribution function in the absence of external
fields, and Bn

z (k) is the Berry curvature for the n-th band.

Key finding in the literature related to the scope of the thesis

Insightful theoretical works, supported by successfully performed experimental measurements
of the nonlinear Hall effect in 2D systems, create a valuable opportunity to explore a 2DEG with
strong spin-orbit coupling of the Rashba type for the nonlinear effects.

Edouard Lesne et al. [217] modeled a 2DEG at the interface of a (111)-oriented oxide het-
erostructure (LAO/STO) in the high-temperature trigonal phase with k-linear Rashba SOI and
a third-order momentum term allowed by crystalline anisotropy [218, 219]. Using this model,

10Origin of the name, Berry curvature dipole, can be considered as an analogy to the electric dipole defined as
the first-order term in the multipole expansion, i.e., the first-order term of a function described the field at some
distance from a point-source.
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they have reported, providing the experimental realization, a nonlinear Hall response induced
by a non-zero Berry curvature dipole.

In turn, Renato M. A. Dantas et al. [220] theoretically analyzed nonlinear transport in both 1D
and 2D systems with linear and cubic forms of Rashba SOI under an external magnetic field.
They proposed analytical expressions that allow the establishment of Rashba SOC parameters
from nonlinear measurements. However, the effective Hamiltonian they investigated includes
both isotropic and anisotropic forms of the cubic Rashba SOI. Due to the differences in spin
spaces [221], the isotropic cubic Rashba term should not be combined with the linear Rashba
term in an unchanged form within a single Hamiltonian.

In this dissertation, the focus is not on exploring nonlinear effects in time-reversal invariant sys-
tems but rather on tuning the nonlinear Hall effect using an external in-plane magnetic field
within a simple model of a 2DEG with a cubic form of Rashba SOI. Specifically, the Berry
curvature-induced nonlinear Hall effect is examined in a 2DEG with the isotropic k-cubed Rashba
SOI.

3.4.2 Bilinear magnetoresistance (BMR)

Magnetoresistance (MR), which refers to the change in resistance under different magnetic field
directions, has been a well-known phenomenon in condensed matter physics for decades [177,
222, 223]. In metals, MR typically scales quadratically with the magnetic field, B, in the low
magnetic field regime. Recent research has revealed that in single crystalline metals, the resis-
tance can scale linearly or quadratically withB, depending on the magnetic field direction [224].
Linear dependence on B has also been observed in density-wave materials (e.g., GdSi, SrAl4)
at low temperatures and in low magnetic field limits [225].

Nevertheless, an intriguing phenomenon emerges beyond the linear response regime, where
magnetoresistance depends not only on the magnetic but also on the electric field. Experi-
mental findings have demonstrated that in topological insulators (TI) [226–228] as well as in
a two-dimensional electron gas [68, 229], an additional magnetoresistance term can be mea-
sured, where resistance scales linearly with both the external magnetic and electric fields. This
component is named bilinear magnetoresistance (BMR). Due to the unidirectional response
characterizing BMR, its potential applications include the spin-logic devices mentioned in sec-
tion 3.4.1.

The physical mechanism standing behind the BMR can be different. In TIs at higher Fermi
energies, BMR is related to the hexagonal warping effect, leading to the nonlinear spin-to-charge
current conversion [226, 230]. At the lower Fermi energies in TIs, as well as in a 2DEG with
Rashba spin-orbit interaction, a different mechanism is at play [68, 227, 231, 232]. In these

55



cases, due to spin-momentum locking11, shifting the Fermi contours under an external electric
field causes a non-equilibrium spin polarization in the system. This induced non-equilibrium
spin polarization scales linearly with the current along the applied electric field direction. Then,
in the presence of an external magnetic field, one can measure the resistance component that is
proportional to both the electric and magnetic fields.

3.4.3 Key finding in the literature related to the scope of the thesis

The experimental-theoretical work provided by Diogo C. Vaz et al. [68] considers a 2DEG with
k-linear form of Rashba SOI. The mechanism leading to BMR, as introduced in [227], is ac-
complished due to the non-equilibrium spin polarization in the system.

Further experimental measurements of magnetoresistance in a 2DEG formed at the LAO/STO
interface were conducted by Zhang et al. [232]. They have found a BMR signal that scales sinu-
soidally with the in-plane magnetic field angle, attributing this phenomenon to spin-momentum
locking.

In this thesis, the BMR in a 2DEG with an isotropic cubic form of Rashba spin-orbit interaction
in the presence of an in-plane magnetic field is examined. The underlying mechanism leading to
BMR is assumed to be the same as in [68], where a 2DEG with a linear form of Rashba SOI was
under consideration, i.e., BMR is accomplished due to the non-equilibrium spin polarization in
the system.

11In a 2DEG the spin-momentum locking is related to the presence of Rashba SOI in the system. In the case of
TI, spin-momentum locking inhomogeneities arise from scattering by spin-orbit structural defects generates [227].
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4
Articles constituting the dissertation

In the following chapter, the articles constituting the thesis are attended in chronological or-
der, each accompanied by brief comme. All articles are reprinted with the permission of the
respective journals, see App. A.
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A-1

4.1 Reprint of the article A-1

In the attended manuscript, entitled "Temperature dependence of spin Hall effect in k-cubed
Rashba model" the spin Hall effect in a nonmagnetic 2DEG with an isotropic form of k-cubed
Rashba SOI is investigated.

The Matsubara-Green’s functions formalism and diagrammatic technique in the linear response
regime are employed to calculate the spin Hall conductivity at finite temperatures. Additionally,
an analytical result for zero-temperature, consistent with the findings in [167], is provided.
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1. Introduction

The spin Hall effect [1] is one of the hallmarks in the
field of spintronics offering the opportunity to generate
and control spin currents in a pure electrical way [2–7].
The detectors based on the inverse spin Hall effect have
become a standard tool for sensing spin currents and
were instrumental in the discovery of the spin Seebeck
phenomenon [8–10]. Recenty, it was also shown that
the spin currents generated via spin Hall effect can be
large enough to produce sizable spin torque effects (see
e.g. [11–14]).

The underlying physics of the spin Hall effect is very
rich depending on the nature of the intrinsic spin-orbit
coupling of the host material. Impurities and struc-
tural defects are further sources of spin-orbit couplings
that is of prime imporatnce for spin-dependent scatter-
ing phenomena (for review see: [15–17] and references
therein). A proper theoretical description of the funda-
mental physics responsible for the SHE in materials that
are potentially important for spintronics is crucial when
it comes to the control of spin currents driven by spin Hall
effect. Another important issue is the thermal behavior
of the spin Hall effect. The role of finite temperatures in
the theoretical description of spin-orbital phenomena has
been studied in few papers in the context of 2D k–linear
Rashba gas (for example [18–23]). However there is still
lack of a consistent theory of SHE which takes into ac-
count all microscopic mechanisms and describes the spin
Hall effects at high temperatures.

The spin Hall effect at zero-temperature is fairly well
understood in n-doped semiconductor heterostructures
where the simple model describing 2D electron gas with
k–linear Rashba and Dresselhaus spin-orbit interaction
seems to be valid approximation allowing an analyti-
cal description of spin-orbital phenomena. For n-doped
semiconductors the Luttinger Hamiltonian is a suitable

∗corresponding author; e-mail: adyrdal@amu.edu.pl

framework. Recently, a large Rashba spin-orbit cou-
pling has been experimentally observed at the interface of
LaAlO3/SrTiO3 (LAO/STO) [25]. The interfaces of ox-
ide perovskites such as LAO/STO, where the 2D electron
gas has been recently discovered are attracting a great
attention both experimentally and theoretically. The
transition metal oxides heterostructures show interest-
ing physical properties such as two-dimensional metal-
lic conductivity [26] metal-insulator transition [27, 28],
low-temperature superconductivity and ferromagnetism
as well as its coexistence [29, 30], or large negative mag-
netoresistance [31]. The physics for the formation of
the electron gas is still not settled for all compounds.
One of proposed theoretical models of Rashba 2D gas
in STO based heterostructures utilizes the effective k-
cubed Rashba Hamiltonian [32, 33] which is well known
from the case of heavy-hole model for semiconductor het-
erostructures [34].

In this paper we discuss the temperature dependences
of the spin Hall effect for the k–cubed Rashba Hamilto-
nian. Our results may be suitable for both p-doped semi-
conductor heterostructures and oxide perovskites thin
films or interfaces.

2. Model and methods

The effective Hamiltonian describing electrons or holes
in isotropic k–cubed Rashba gas can be written in the
matrix form [35]:

H �

�
~2k2

2m iλk3�
� iλk3�

~2k2

2m

�
, (1)

where k2 � k2x�k
2
y, k� � kx� iky, and m is the effective

mass of the particle defined by Luttinger parameters. λ
is the Rashba spin-orbital coupling parameters which de-
pends on Luttinger parameters, width and the potential
strength of the quantum well - see Ref. [35].

The casual Green function corresponding to the Hamil-
tonian (1) can be written in the form:

Gkpεq � Gk0σ0 �Gkxσx �Gkyσy (2)
with coefficients:

(558)
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Gk0 �
1
2
pGk� �Gk�q (3)

Gkx � sinp3φqpGk� �Gk�q (4)

Gky � � cosp3φqpGk� �Gk�q (5)
where Gk� � rε � µ � E� � iδsgnpεqs�1 and E� �
~2k2

2m � λk3 denote the energy eigenvalues; σ0 and σα
(α � x, y, z) are unit and Pauli matrices in spin space.

To obtain the spin Hall conductivity and discuss its
temeprature dependence we have used the Matsubara-
Green function formalism [36]. In the regime of linear
response to the external electromagnetic field the spin
Hall current derives from the expression

σszxyp iωmq � (6)

1

β

¸
k,n

Tr
!
ĵszx Gkp iεn � iωmqĤ

E
Ap iωmqGkp iεnq

)
,

where β � 1{kBT and ĤE
Ap iωmq � �ĵyAyp iωmq is the

perturbation Hamiltonian defined by the y-component
of the current density operator ĵy � ev̂y and the y-
component of electromagnetic vector potential Ayp iωmq.
Operator of the spin current density is defined as an
anticommutator of the velocity operator and the z-th
component of spin operator (sz � 3~σz{2), that is
ĵszx � rv̂x, ŝzs�{2 (note that the velocity operators are
defined as v̂x,y � BĤ{Bkx,y) and Gkp iεnq denotes Mat-
subara Green function. The equation above leads finally
to the frequency-dependent spin Hall conductivity in the
form [21]:

σszxypωq � �
e~
ω
Tr

»
d2k

p2πq2

»
dε

2π
fpεq

�
�
ĵszx G

R
k pε� ωqv̂yrG

R
k pεq �GAk pεqs

� ĵszx rG
R
k pεq �GAk pεqsv̂yG

A
k pε� ωq

�
. (7)

Upon tracing and integrating over ε we obtain an expres-
sion for the dc-limit

σszxy � e
9

16π

~2

m

�»
dkk

f 1pE�q � f 1pE�q

1� pλk3{Γ q2

�

»
dk

λk2
rfpE�q � fpE�qs (8)

This is our general result for spin Hall conductivity. Here
we should comment that the above expression is ob-
tained in a single-loop approximation which corresponds
to the quasi-ballistic limit. Assuming randomly dis-
tributed point-like impurities we may find that (i) the
relaxation rate Γ is the same for both subbands [35], and
(ii) the impurities vertex correction in the ladder approx-
imation vanishes [35, 37].

3. Results and discussion

In the low temperature limit we may find simple ana-
lytical expressions in the form

σszxy � �
9

16π
e
~2

mλ

kF� � kF�
kF�kF�

�
9

16π
e
~2

m

�
ν�

1� pλk3F�{Γ q
2
�

ν�
1� pλk3F�{Γ q

2



(9)

where kF� and ν� are the Fermi vawevectors and density
of states related to the E� subband respectively. Assum-
ing Γ ! λk3F� we obtain

σszxy � �
9

16π
e
~2

mλ

kF� � kF�
kF�kF�

. (10)

This result is consistent with result in Ref. [38].
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Fig. 1. Spin Hall conductivity as a function of carrier
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sumed that λ � 3.96 � 10�29 eV m3, Γ � 5 � 10�6 eV.
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Figures 1 and 2 present some numerical results for spin
Hall conductivity obtained based on Eq.(8) and expressed
in terms of carrier density n. In case of the model under
consideration the relations between kF�, n and chemi-
cal potential are simple and can be found e.g. in [38].
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In Fig. 1 we show the spin Hall conductivity plotted as
a function of carrier density for fixed values of tempera-
ture. The analytical result (for T Ñ 0) is also indicated.
Fig. 2 presents the spin Hall conductivity as a function
of the temperature for different charge concentrations.

To conclude, we considered theoretically the temper-
ature dependence of Spin Hall effect in 2D electron gas
with isotropic k–cubed Rashba interaction that formed
at the perovskite oxides interfaces. The model under
consideration is a basic model suitable not only for some
group of perovskite oxides but also for p-doped semicon-
ductor heterostructures.
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Discussion

Article A-1 is supplemented with calculations involving the spin Hall angle and spin Hall effect
in a magnetized 2DEG, presented below.

Spin Hall angle

Kubo formula for the longitudinal charge conductivity induced by an electric field applied in the
y-direction in Matsubara-Green’s functions formalism is as follows:

σEy
yy (ω) = −e

2ℏ
ω

�
dk k

(2π)2

�
dε

2π
f(ε)

�
dϕ
[
Tr
{
v̂y G

R
k (ε+ ω) v̂y [G

R
k (ε)−GA

k (ε)]
}

+Tr
{
v̂y [G

R
k (ε)−GA

k (ε)] v̂y G
A
k (ε− ω)

}]
.

(4.1)

In dc limit (ω → 0) one gets:

σyy = − e2ℏ
8πΓ

[
6α

m

�
dk k4 (f ′(E+)− f ′(E−))

+
9α2

ℏ2

�
dk k5

(
1 +

1

1 + (αk3/Γ)2

)
(f ′(E+) + f ′(E−))

+
ℏ2

m2

�
dk k3 (f ′(E+) + f ′(E−))

]
,

(4.2)

which in the low-temperature limit, T → 0, leads to:

σyy =
e2ℏ
8πΓ

[
6α

m

(
k3+ν+ − k3−ν−

)
+
9α2

ℏ2

[
k4+ν+

(
1 +

1

1 + (αk3+/Γ)
2

)
+ k4−ν−

(
1 +

1

1 + (αk3−/Γ)
2

)]

+
ℏ2

m2

(
k2+ν+ + k2−ν−

)]
.

(4.3)

In the low carriers concentration limit, n → 0, where the Rashba SOI plays a less significant
role, the third term in equation (4.3) is the dominant contribution. Therefore, the longitudinal
charge conductivity is given by:

σn→0
yy =

ℏ2

m2

(
k2+ν+ + k2−ν−

)
. (4.4)

In general, the spin Hall angle is expressed as the ratio between the spin Hall conductivity and
the longitudinal charge conductivity: θSH = σsz

xy/σyy.

Figure 4.1 shows the spin Hall angle, θSH , as a function of carriers density, n, in (a) for different
Rashba parameter, α, and in (b) for different temperature, T . Figure 4.1(a) was created using
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Figure 4.1: Spin Hall angle, θSH , as a function of carriers density, n. (a) θSH(n) for fixed Rashba
SOI parameter, α, plotted using zero-temperature formulae, eqs. (9) and (4.3). (b) θSH(n) for fixed
temperature, T , plotted with finite-temperature formulae, eqs. (8) and (4.2)

analytical zero-temperature formulas. One can observe a peak in the θSH(n) dependence that
flattens and shifts up to higher nwith a decrease in the strength of the Rashba SOI in the system.
The influence of temperature on θSH is presented in figure 4.1(b), where temperature smearing
leads to a non-zero spin Hall angle for lower carriers concentration, n→ 0, and flattens the peak
in n-dependence, decreasing the θSH value.

Spin Hall effect in a magnetized 2DEG with k-cubed Rashba SOC

The inclusion of an out-of-plane magnetization field in the system modifies the analyzed Hamil-
tonian in the following way:

H =
ℏ2k2

2m
σ0 + iα

(
k3−σ+ − k3+σ−

)
+Mσz, (4.5)

where Mσz represents the exchange interaction between the spin of quasiparticles and the mag-
netic substrate or external magnetic field, expressed in energy units (eV). Subsequently, the spin
Hall conductivity (SHC) takes the form:

σsz
xy = − 9

16π
e
ℏ2

m

[�
dk
k7α2 [f(E+)− f(E−)]

(M2 + α2k6)3/2
−
�

dk
k7α2Γ2 [f ′ (E+) + f ′ (E−)]

(M2 + α2k6) (M2 + α2k6 + Γ2)

]
,

(4.6)
which for M = 0 reduces to equation (9) in the paper.

Figure 4.2 presents the spin Hall conductivity as a function of saturation magnetization, M0,
temperature, T , and chemical potential, µ. It is observed that due to the presence of the ex-
change field in the system, SHC decreases, especially in the weak cubic Rashba SOI regime,
i.e., whenM0 dominates, see Fig. 4.2a, and for lower chemical potential values, see Fig. 4.2c. In
Figure 4.2b, Bloch’s law is assumed for the temperature dependence of magnetization preceding
the Curie temperature, Tc, i.e., M = M0

[
1− (T/TC)

3/2
]
. Thus, the magnetization field de-

creases with the temperature up to Tc, where the system becomes non-magnetic. This behavior
ofM is reflected in the σsz

xy(T ) dependence, where SHC is suppressed with increasingM .
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Figure 4.2: Spin Hall conductivity, σsz
xy, eq. (4.6). (a) σsz

xy as a function of saturation magnetization, M0,
for fixed Rashba SOI parameter, α/α0. (b) σsz

xy as a function of temperature, T , for different M0 value.
For temperature dependence of magnetization field, M , preceding the Curie temperature, Tc, the Bloch’s
law is assumed, M = M0

[
1− (T/Tc)

3/2
]
. (c) Normalized SHC, σsz

xy/σ
sz
xy(M = 0), as a function of

chemical potential for fixed saturation magnetization, M0. For non-magnetized system, M = 0, chemical
potential µ = 80meV corresponds to the carriers density n = 41.4·1011 cm−2. Parameters: Tc = 180K,
Γ = 5 · 10−6 eV

Summary

The zero-temperature, as well as finite-temperature results for the intrinsic spin Hall conductiv-
ity (SHC) and the spin Hall angle (SHA) in a 2DEG with an isotropic cubic form of SOI, are
provided.

It is worth noting that the analytical calculations provided by [221, 233] show that the vertex
correction due to impurity scattering on isotropic short-range potential vanishes in the analyzed
system. Thus, the spin Hall conductivity in a system with spin-independent impurities repro-
duces its intrinsic value, obtained from a clean system without impurities. This behavior is in
contrast to the model of a 2DEG with a linear form of Rashba SOC [159], where the vertex
correction cancels SHE [234, 235] and thus the intrinsic1 spin Hall effect vanishes in the weak
disorder limit.

The influence of temperature on the SHA is similar to that observed for the SHC with respect to
carrier density. As the strength of Rashba SOC increases in the system, the SHA peak is both
enhanced and shifted towards lower carrier densities.

The influence of out-of-plane magnetization on SHE was also investigated. One can conclude
that magnetization suppresses the spin Hall response in the system, especially if magnetization
dominates the cubic Rashba SOI, i.e., for lower Rashba parameter strength and at higher energies
(higher chemical potential).

1Besides, one can refer to the extrinsic spin Hall effect when the leading source of SOI has an external character,
i.e., is related to scattering events on spin-dependent impurities like side-jump and skew-scattering processes. Here,
in a clean limit, the extrinsic processes are not under investigation.
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4.2 Reprint of the article A-2

The article entitled "Anomalous Hall and Nernst effects in 2D systems: role of cubic Rashba
spin-orbit coupling" provides the analysis of the anomalous Hall conductivity (AHC) and its
thermal counterpart, anomalous Nernst conductivity (ANC) in a 2DEG where the isotropic k-
cubed form of Rashba spin-orbit interaction is present. The out-of-plane magnetization field in
the system can arise due to the proximity effect, i.e., the coupling of quasiparticles’ spin with
the magnetic substrate.

It is shown, using Matsubara-Green’s functions (MGF) formalism, that the non-dissipative com-
ponent of AHC, coming from the states in the Fermi sea, is linked to the Berry curvature. Thus,
both approaches to investigate the intrinsic AHC, i.e., MGF formalism and using the Berry cur-
vature concept, are equivalent.

Anomalous Hall conductivity takes the highest value where the cubic Rashba energy, ER, and
magnetization (in energy units), EM , are comparable, i.e., M ≈ k3α (see Fig. 1a, where for
µ = 60 meV, ER ≈ EM ≈ 3 meV). When one of these interactions, Rashba or exchange field,
dominates, the anomalous Hall response takes the lower values.

An intriguing feature of ANC is the change of the sign preceding the magnetic phase transi-
tion indicated by the Curie temperature, TC , observed for higher chemical potential, µ, and
saturation magnetization, M0, Fig. 2b,d. This behavior has already been observed experimen-
tally, e.g., in thin film of LSMO (La2/3Sr1/3MnO3) [188] and ferromagnetic semiconductors like
Ga1−xMnxAs [186].
The sign change of αxy with µ occurs when the Rashba SOC and exchange interaction are com-
parable. For example, in Fig. 2a, the green dashed line shows a sign change at µ ≈ 30 meV,
where ER = k3Fα = M (kF is the Fermi wavevector)2. Regarding the AHC, it reaches its max-
imum when M ≈ ER, which corresponds to the point where the ANC vanishes. This behavior
supports the Mott relation between AHC and ANC, as the Mott relation [186–188] indicates
that ANC (thermal counterpart of AHC) is proportional to the derivative of AHC with respect
to µ, eq. (3.8). Additionally, ANC takes negative (positive) values when the exchange interaction
(Rashba SOI) dominates.

2Here, one should take in mind the influence of the temperature on magnetization M = M0

[
1− (T/TC)

3/2
]
,

as well as the temperature smearing that blurs the ANC dependency.
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4.3 Reprint of the article A-3

The work entitled "Anomalous Hall and Nernst effects in a two-dimensional electron gas with
an anisotropic cubic Rashba spin-orbit interaction" addresses two transverse charge transport
effects, driven by an electric field or temperature gradient. The analyzed model, a 2D system
with an anisotropic form of k-cubed Rashba spin-orbit interaction, applies to both the interfaces
or surfaces of perovskite oxides and semiconductor heterostructures.

In low-impurity concentrations, the anomalous Hall effect exhibits an intrinsic character, where
only the states in the Fermi sea contribute to transport, and AHC can be described with the
Berry curvature. The change in the sign of ANC with temperature, chemical potential, and the
strength of both the Rashba SOC and exchange interaction has been demonstrated. This behavior
of ANC is associated with the interplay between Rashba spin-orbit interaction and exchange
interaction in the system. Furthermore, it has been observed that both investigated effects (AHC
and ANC) behave qualitatively similarly in both isotropic and anisotropic cubic Rashba models,
cf. [156].
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A B S T R A C T

The anomalous Hall and Nernst effects are considered theoretically within Matsubara Green’s function form-
alism. The effective Hamiltonian of a magnetized two-dimensional electron gas with cubic Rashba spin-orbit
interaction may describe transport properties of electronic states at the interfaces or surfaces of perovskite oxides
or another type of heterostructures that, due to symmetry, may be described by the same effective model. In the
quasi-ballistic limit, both effects are determined by the topological (Fermi sea) contribution whereas the states at
the Fermi level gives a negligibly small response. For a wide range of parameters describing the considered
system, the anomalous Nernst conductivity reveals a change of the sign before the magnetic phase transition.

1. Introduction

Spin-orbit interaction is the origin of various phases and phenomena
observed in the physics of solid-state providing pure electric control of
the spin degree of freedom [1]. Nowadays, the spin-orbit driven
transport phenomena, such as anomalous and spin Hall effects, has
become a fundamental tool for generation spin accumulation and de-
tection of spin currents and topological character of quasiparticles
states. Moreover, pure electrical control of the spin degree of freedom is
one of the crucial ideas of spintronics, according to which spin-based
electronics should provide smaller, cheaper and faster electronic de-
vices with high functionality (e.g., data storage and logic operations in
one material) and low energy consumption at room temperatures [2–6].

It is known that spin-orbit interaction strongly depends on the type of
impurities and the crystallographic potential of the host material and is
especially enhanced in low dimensional systems. In such a case the space
inversion symmetry is broken at the surfaces or interfaces what results in an
additional component of the spin-orbit interaction, called the Bychkov-
Rashba interaction [7–10]. This type of spin-orbit interaction, resulting from
structural inversion asymmetry, has been described initially in the context
of a two-dimensional electron gas forming at the interfaces of semi-
conductor heterostructures [8]. For symmetry reasons, Rashba Hamiltonian
is odd in quasiparticle momentum what leads in the simplest approximation
to the well known k-linear dependence. However, in various 2D systems,
terms with a cubic momentum dependence play also an important role. The
so-called cubic Rashba interaction is responsible, e.g., for spin and transport

properties of a two-dimensional hole gas formed at the interfaces of III-V
semiconductor heterostructures [11–16]. Recently, the cubic character of
Rashba interaction has also been found in a two-dimensional electron gas at
the perovskite oxides surfaces and interfaces such as LaAlO3/SrTiO3 (LAO/
STO) [17–20].

The thin films or heterointerfaces of perovskite oxides are a diverse
group of materials with intriguing aspects of fundamental physics. For in-
stance, the interfaces of insulating nonmagnetic oxide perovskites reveal
interesting physical properties such as two-dimensional metallic con-
ductivity, large negative magnetoresistance, metal-insulator transition, low-
temperature superconductivity, and ferromagnetism as well as their coex-
istence [21–24]. Moreover, experimental data indicate strong spin-to-charge
interconversion effects governed by spin-orbit coupling [25–28].

Here, we investigate anomalous Hall and Nernst effects in a two-di-
mensional electron gas with anisotropic k-cubed Rashba spin-orbit cou-
pling. Anomalous Hall effect has become nowadays one of the most im-
portant and commonly used experimental tools, delivering information
about magnetization, transport properties, and the system topology [29].
Although the behavior of anomalous Hall conductivity in the presence of
linear Rashba coupling has been investigated intensively, the influence of
the cubed Rashba coupling on it has got much less attention. Therefore, the
purpose of this paper is to provide the theoretical description of the
anomalous Hall and Nernst effects in magnetized 2D electron gas with cubic
Rashba coupling. Since perovskite oxides have become recently very pro-
mising materials for spintronics applications, the effective Hamiltonian
derived for 2DEG at LAO/STO interface is considered. However, the
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presented model and qualitative results may also be applied to other
structures that, due to symmetry arguments, can be described by the same
Hamiltonian.

In Section 2 the effective low-energy Hamiltonian describing electronic
states of 2DEG with cubic Rashba spin-orbit coupling is described. In this
section, the Matsubara Green’s function formalism is applied to the anom-
alous Hall and Nernst effects. The Berry phase approach is also introduced.
The discussion of numerical results is given in Section 3. Finally, Section 4
contains the final remarks and summary of this work.

2. Model and method

2.1. Effective Hamiltonian

The electronic energy spectrum describing STO surfaces and STO/
LAO interfaces has been calculated recently within the tight-binding
approach and DFT modeling [17,18,30–33]. Based on these calcula-
tions the effective Hamiltonian describing the neighborhood of the
point in the Brillouin zone has been derived [17–20]. This energy
spectrum is formed by three pairs of bands as presented in Fig. 1(a).
These bands are created by d-orbitals (d d,xy xz and dyz) originating from
t g2 atomic orbitals of Ti. The effective Hamiltonian describing the lowest
pair of bands is formed by dxy orbital and has a form of k-linear Rashba
Hamiltonian with a negative coupling constant. The middle pair of
bands around point is described by spin-orbit coupling term which is
not only anisotropic in a k-space but also has a cubic dependence on k
(Fig. 1(b)–(e)). The highest, in energy, pair of bands is characterized by
effective Hamiltonian with k-linear Dresselhaus-like form of spin-orbit
[20]. Since electronic transport characteristics in a system with con-
ventional Rashba term is rather well described, within this article, we
focus only on the transport properties of quasiparticles from the middle
pair of bands. Another word, the aim is to describe transport properties
related to quasiparticle states determined by anisotropic k-cubed
Rashba spin-orbit interaction. The effective Hamiltonian describing the
system under consideration has the following form:

H k
m

k k k k M
2

,x y x y y x z
2 2

0
2 2= + +

(1)

where k k kx y
2 2 2= + and k k k kcos( ), sin( )x y= = are the wavevector

components, m is an effective mass of quasiparticle. The Rashba cou-
pling constant is defined as a t t t( )/3

1 3 2= + , where a is the lattice
constant for perovskite oxides, and stands for the effective hopping
amplitude and energy difference between the dxy orbital and the dxz and

dyz orbitals, respectively while t1,2,3 are the tight-binding parameters
describing the virtual hopping between d-orbital states via p-orbitals of
the oxygen [20,30,31]. The last term in the Hamiltonian describes ef-
fective exchange interaction with parameter M describing effective
magnetization in energy units. The magnetization is oriented in z-di-
rection (out-of 2DEG plain) and depends on temperature according to
the Bloch relation [34]: M M T T[1 ( / ) ]C0

3/2= , where M0 is the sa-
turation magnetization, M M T T( 0),0 = = is the temperature and TC
denotes Curie temperature. Here it should be stressed that the above ef-
fective Hamiltonian is unbounded from below for large wavevectors what is
unphysical. Thus the considerations within this model are restricted only to
small quasiparticle densities. Thus, one needs to define the cut-off energy,
Ec (and corresponding to it cut-off wavevector) below which the states
might be occupied and require that chemical potential is far below the cut-
off energy, that is µ Ec. Accordingly, for numerical calculations, the
module of cut-off wavevector, kc, is defined as k m/(3 )c

2= and corre-
sponds to the local maximum of the energy dispersion for the lower (i.e.,
E ) branch (see inset in the upper right corner of Fig. 1(f)). Since the cut-off
wavevector depends on the effective mass and Rashba coupling constant,
thus the energy window related to the reasonable changes of the chemical
potential also strongly depend on them. This is shown in Fig. 1(f), where kc
is plotted as a function of the quasiparticle effective mass. Additionally, the
Fermi contours fixed for the same Fermi energy, for different values of ef-
fective mass are shown. Evidently, the anisotropy of energy bands is more
pronounced at higher effective masses.

The casual Green function corresponding to the Hamiltonian (1) has
the following explicit form:

G G G G( ) x x y yk k k k0 0= + + (2)

with coefficients:

G G G1
2

( ),k k k0 = ++ (3)

G k G G
4

sin( ) sin 3 ( ),xk
k

k k
3

= +
(4)

G k G G
4

sin( ) sin 3 ( ),yk
k

k k
3

= + +
(5)

G M G G
2

( ),zk
k

k k= +
(6)

where G µ E i[ sgn( )]k
1= + +± ± with the eigenvalues

E k k= ±± ( k m/2k
2 2= and M k cos (2 )k

2 2 6 2= + ).

Fig. 1. Band structure of the electronic states at the interface of LAO/STO obtained based on TB model (a)–(c) and effective model for close vicinity of the point (d),
(e). The lowest in energy pair of bands originates mainly from the dxy orbital, the middle pair of bands originates from the mixing of dxz and dyz orbitals, whereas the
highest in energy pair of bands is formed mainly by the orbital dxz. Figures (c) and (e) show constant energy contours at 4 meV above the bands minima in TB and
effective model respectively. The anisotropy of energy spectrum in the k-space is seen in both models. Figure (f) presents the cut-off wavevector as a function of the
effective mass, and Fermi contours obtained for selected values of effective mass. The TB model and parameters such as lattice constant a 4.05 Å= , hopping integrals:
t 0.2271 = eV, t 0.0312 = eV, t 0.0763 = eV, parameters 0.4= eV, 0.02= eV, and atomic spin-orbit coupling parameter 0.01ASO = eV are taken from Ref. [20].
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2.2. Anomalous Hall conductivity

To calculate the anomalous Hall conductivity (AHC), the Matsubara
Green’s function formalism has been used (see e.g. [35–39]). In the
linear response regime, the transverse charge current density induced
by external electric field can be derived based on the following ex-
pression:

j i k T j G i i H i G iTr{ ( ) ( ) ( )},x m B
n

x n m m n
k

k A k
,

= +
(7)

where G i( )nk denotes Matsubara Green’s function corresponding to the
unperturbed Hamiltonian (1) with n k T m k T(2 1) , 2n B m B= + =
being Matsubara energies, and kB is the Boltzmann constant. The charge
current density operator is defined as j evi i= where e is the electron
charge and the velocity operator is defined as v Hi k

1
i= . The per-

turbation Hamiltonian ĤA describing the coupling of quasiparticles
with an external electric field is given in the form:

H i j A i( ) ( ),m y y mA = (8)

where the amplitude of electromagnetic field is linked with the am-
plitude of electric field through the well known relation:
A i i E i i( ) ( )/y m y m m= . The sum over Matsubara energies has been
done using the method of contour integration and analytical con-
tinuation for Green’s function [35]. Finally, the expression for AHC
receives the following form:

where G µ i H[( ) ]R A
k

/
0

1= + ± stands for retarded/advanced
Green’s function, is a quasiparticle relaxation rate ( /2 ,= – re-
laxation time), µ is a chemical potential, and f ( ) denotes the Fermi-
Dirac distribution function. The Eq. (9) is a starting formula for further
numerical and analytical calculations.

2.3. Anomalous Nernst conductivity

The anomalous Nernst conductivity (ANC) can be also found based
on Matsubara Green’s function formalism. One can start from equation
similar to Eq. (7), but with the perturbation Hamiltonian defining as
follows:

H i j i( ) ( ),m y
h

y m= (10)

where j y
h

is a heat current density operator and is an artificial
gravitational vector potential amplitude related to the temperature
gradient by the following expression: i i T i i T( ) ( )/( )m y m m= (for
details see e.g. [38,40–42]).

In turn, it is also known that some thermal transport coefficients
obtained within the Kubo-like formalism behave unphysically when the
temperature tends to zero. Thus, to satisfy the Onsager relations, the
magnetization currents should be taken into account. Other words, for
the anomalous Nernst effect, to obtain results satisfying the third
thermodynamic law, one should add to the expression derived from the
Kubo formula an additional term related to the orbital magnetization
current density. In this manuscript, quite tedious calculations of the
orbital magnetization are omitted due to the fact that in the model
under consideration the AHE is determined by the topological compo-
nent. In such a case it is easier to calculate the transverse heat current
conductivity, xy, which intrinsic contribution is expressed by the en-
tropy density of the electron gas, S k( )n , and the Berry curvature, n

zB .
Since the transverse heat current conductivity is related to the trans-
verse heat conductivity by the Onsager relation, Txy xy= , ANC is

given by the following expression [43,44]:

ek d Sk k k
(2 )

( ) ( ).xy
B

n
n
z

n
2

2=
=±

B
(11)

The entropy density for the n-th subband is given by the equation:

S f E f E f E f Ek( ) ( )ln[ ( )] (1 ( ))ln[1 ( )]n n n n nk k k k= (12)

and the Berry curvature is calculated from the expression:

ik( ) ,n
z

n nk k= ×B (13)

with n standing for the eigenvector related to the n-th eigenvalue of
the Hamiltonian (1).

3. Results and discussion

Evaluation of the Eq. (9) for AHC and Eq. (11) for ANC allows to
obtain analytical and numerical results. Eq. (9) has to be integrated
analytically over and next the dc-limit ( 0) has to be taken.
Moreover, after a long discussion about different origins of AHE and
proper nomenclature related to its different origins (see, e.g., [29]), the
AHC is commonly expressed as a sum of two components:

.xy xy
I

xy
II= + (14)

The first component, f E[ ( )]xy
I

± , is the contribution from the states at
the Fermi level and the second one, f E[ ( )]xy

II
± , describes contribution

from all states below the Fermi level (so-called Fermi sea or topological

component).
Here we consider the quasi-ballistic limit, that means low impurities

concentration and weak scattering on impurities, which results in
0. In this case, we found that the component xy

I is a few orders of
magnitude smaller than the contribution from xy

II and can be neglected.
Thus, the electronic properties of the system described by anisotropic
k-cubed Rashba model is determined by the quasi-particle states from
the Fermi sea, and:

e M d dk k f E f E3
8

cos 2 [ ( ) ( )].xy
II

k

2 2

2

5

3
2= +

(15)

This result might be verified easily taking into account the fact that the
topological contribution to the AHC may be derived based on the
knowledge of the local value of the Berry phase in the system [45–47]:

e d f Ek k
(2 )

( ) ( ).xy
II

n
n
z

n
2 2

2=
=±

B
(16)

The Berry curvature for the considered model has the following
explicit form:

k Mk( ) 3
2

cos 2 .z

k
3

4 2 2=±B
(17)

Thus, inserting (17) into (16) gives immediately Eq. (15). In turn,
taking into account Eq. (11) the expression for ANC reads:

eM k d dk k S Sk k3
8

cos (2 ) [ ( ) ( )].xy
B

k

2

2

5 2

3= +
(18)

Fig. 2 presents numerical results for anomalous Hall conductivity as
a function of temperature, T, saturation magnetization, M0, and Rashba
coupling constant, . The AHC increases slightly with the temperature
reaching a maximum at certain value of T, and next decreasing to
vanish at T equal the Curie temperature (T TC= ), where the phase

e d d f v G v G G v G G v Gk( ) Tr
(2 ) 2

( )[ ( ) [ ( ) ( )] [ ( ) ( )] ( )],xy x
R

y
R A

x
R A

y
A

k k k k k k
2 2

2= + +
(9)
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transition occurs, and a system becomes nonmagnetic (Fig. 2(a)–(d)).
Moreover, one can easily see that the maximum value of AHC is shifted
to higher temperatures with increasing the saturation magnetization
(Fig. 2(a) and (b)). For higher temperatures and larger M0 the max-
imum of AHC is well pronounced and precedes the magnetic phase
transition. Furthermore, the competition between the strength of spin-
orbit coupling and saturation magnetization is clearly seen in
Fig. 2(e)–(h). AHC increases with the saturation magnetization, reaches
a maximum, and then saturates. In general, for the fixed M0 and µ, the
absolute value of the anomalous Hall conductivity increases with

increasing . Note that the chemical potential is fixed with changing the
temperature, that is, the number of quasiparticles may be changed.
With increasing the temperature the magnetization decreases and the
subbands splitting degeneracy also decreases. Moreover, the blurring of
quasiparticles distribution also increases. In consequence, the AHC
decreases with temperature. The AHC behave quite non-monotonous
with the variation of the chemical potential. For the fixed value of sa-
turation magnetization, we observe that AHC increases with increasing
the chemical potential but after reaching maximum it decreases and
becomes zero at T TC= (Fig. 3(a) and (b)). Moreover, the maximum of
the absolute value of AHC moves to higher values of µ and T if the
saturation magnetization, M0, in the system is higher (compare Fig. 3(a)
and (b) with (c) and (d)). Note also that the AHC is almost zero when
only one subband is occupied (that is, for Fermi level in the Zeeman
gap). Only when the temperature is sufficiently large, in comparison to
M0, the thermal smearing of charge carriers distribution in both bands
leads to nonzero AHC, also for negative values of µ, what is seen in
Fig. 3.

Fig. 4 shows the anomalous Nernst conductivity as a function of the
same parameters as for AHC, that is the temperature, T, saturation
magnetization, M0, and Rashba constant, . For fixed value of chemical
potential (here µ 60= meV), and sufficiently large saturation magne-
tization one can observe that the anomalous Nernst conductivity in-
creases almost linearly with temperature and then, for a certain value of
T, decreases abruptly and change the sign to reach well define pick for
temperatures preceding the Curie temperature (Fig. 4(a)–(d)). Both
maxima (maximal negative and positive values) occur for higher tem-
peratures when saturation magnetization, M0 is higher (Fig. 4(b)) or the
spin-orbit coupling parameter is smaller, (Fig. 4(d)). Moreover, one
can see very non-monotonous behavior of ANC as a function of both M0
and (Fig. 4(e)–(h)). When the spin-orbit coupling is sufficiently large
(i.e., it dominates the exchange interaction), ANC takes positive values
and increases with M0. After reaching a maximum, the ANC decreases,
and for a certain value of M0 it changes sign and approaches minimum.
Finally, the absolute value of ANC slightly decreases and saturates for
sufficiently large values of M0. When exchange interaction dominates
the Rashba one, the ANC is always negative. This is also very good seen
in Fig. 5 where ANC is presented as a function of temperature and

Fig. 2. Anomalous Hall conductivity as a function of temperature, T, and saturation magnetization, M0, (a), (b), (g); temperature and Rashba coupling constant, ,
(c), (d); Rashba constant and saturation magnetization (e), (f), (h); Other parameters (unless otherwise specified): µ 60= meV, M 100 = meV, 1.07·100

30= eV m3,
T 10= K, T 180C = K, 0.005= meV, m m1.14 0= .

Fig. 3. Anomalous Hall conductivity as a function of chemical potential, µ, and
temperature T (a), (c). The cross sections of the plots (a) and (c) at fixed values
of µ (b), (d). Other parameters are the same as in Fig.2.
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chemical potential for the two different values of M0.
One of the most important features in the behavior of ANC is the

change of its sign, that occurs for temperatures preceding the magnetic
phase transition. The similar sign reversal of ANC as a function of
temperature has been observed experimentally in different oxides ma-
terials (such as LSMO thin layers and SRO crystals) [48,49] as well as in
ferromagnetic semiconductors [50]. In the case of all these experi-
mental data, the intrinsic mechanism has been confirmed as a dominant
one. This behavior seems to be in agreement with our theoretical stu-
dies that show unambiguously that the topological contribution governs
the behavior of both anomalous Hall and anomalous Nernst effect.

Moreover, this is also consistent with our previous study for the two-
dimensional gas with isotropic cubic Rashba coupling [51].

4. Conclusions

The anomalous Hall and Nernst effect have been studied in the
magnetized two-dimensional electron gas with anisotropic k-cubed
Rashba spin-orbit interaction. It has been shown that the topological
term determines anomalous Hall and anomalous Nernst conductivity.
The contribution from the states at the Fermi level to both con-
ductivities are few orders of magnitude smaller and does not affect the
total system responses. Such behavior of AHE (ANE) in the systems
revealing k-cubic Rashba interaction is distinct in comparison to the
systems with k-linear Rashba coupling where AHE is nonzero only
when the carriers relaxation times are finite and spin-dependent (see,
e.g., [52]). Moreover, the change of sign in ANC has been observed in
temperature dependences. The sign reversal precedes the magnetic
phase transition and has been observed recently in experiments for
magnetic perovskite oxides. The system responses for the model studied
in this paper might be changed when one takes into account scattering
processes (taking corrections related to the vertex correction, skew-
scattering, and side-jump, randomness of spin-orbit coupling, etc.) re-
lated to the impurities with a magnetic moment and spin-orbit cou-
pling. All these processes (that will be studied separately elsewhere)
may modify the contribution from the states at the Fermi level re-
maining the topological contribution unchanged.
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A-4

4.4 Reprint of the article A-4

The presented article entitled "Non-equilibrium spin polarization in magnetic two-dimensional
electron gas with k-linear and k-cubed Dresselhaus spin-orbit interaction" provides the analysis
of spin polarization induced by the external electric field in a 2D system of zinc-blende structure
with symmetric quantum well grown in the [001]-direction.
In general, the exchange field in the out-of-plane direction is assumed.The exchange field emerges
when the electron gas forms at the interfaces, e.g., n-type diluted magnetic semiconductor het-
erostructures (n-type DMS). Another possibility is that the magnetization in the 2DEG results
from a proximity effect, i.e., due to coupling with a magnetic substrate.

The Kubo formula within Matsubara-Green’s functions formalism is used to analyze current-
induced spin polarization (CISP) in both non-magnetic and magnetic systems. Specifically, the
influence of the cubic Dresselhaus term on the results is investigated. Additionally, the intrinsic
contribution to the system’s response, namely, the transverse component of non-equilibrium spin
polarization and anomalous Hall effect, is identified.
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A B S T R A C T

The current-induced spin polarization (CISP) of charge carriers is one of the main mechanisms of spin-to-
charge interconversion effects that can be used in new spintronics devices. Here, CISP is studied theoretically
in symmetric quantum wells growing in [001] crystallographic direction, where both 𝑘-linear and 𝑘-cubed
Dresselhaus spin–orbit interactions are present. The exchange interaction responsible for perpendicular to plane
net magnetization is also taken into account. The main focus is on the influence of cubic Dresselhaus term
on CISP and the interplay between spin–orbit interaction (SOI) and the exchange field. The analytical and
numerical results are derived within the linear response theory and Matsubara Green’s function formalism.
Apart from detailed numerical results, we also provide some analytical expressions that may be useful
for interpretation of experimental results and for characterization of quantum wells with Dresselhaus SOI.
Analytical expressions for the relevant Berry curvature are also derived, and it is shown that the Berry
curvature in magnetic 2DEG with cubic Dresselhaus interaction oscillates in the 𝑘-space, while its averaged
value is reduced. We also analyze the temperature behavior of CISP and calculate the low-temperature spin
polarizability due to heat current.

1. Introduction

The efficient control of the spin degree of freedom is nowadays one
of the most important aspect of solid state physics and cornerstone
for further development of spin electronics. The spin–orbit interaction
couples intrinsically orbital and spin degrees of freedom and provides a
variety of phenomena enabling all-electric control of the spin. The spin
Hall effect (SHE) is probably the most prominent example where the
charge current (i.e., external electric field) in a non-magnetic sample
generates pure transverse spin current (or spin accumulation at the
sample edges) [1–3]. Additionally the electric current flowing through
the sample induces a non-equilibrium spin polarization of charge car-
riers. This phenomenon is known as the Edelstein effect or inverse
spin galvanic effect [4–7]. Both effects after only fifteen years of their
experimental observation [8–11], have become widely used tools for
generation and control of spin currents and spin accumulation. They
are also strong enough to induce magnetoresistance effects and spin
dynamics [12–14].

The semiconductor heterostructures, with a two-dimensional elec-
tron gas (2DEG) forming at the interface, serve as a platform for
the spin-to-charge interconversion effects. This is mainly due to well
established methods of fabrication and externally tunable electronic
properties (via doping, gating or strain). Moreover, structural and bulk
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inversion asymmetries lead to spin–orbit interactions of different nature
(depending on gate voltage and growth direction with respect to the
crystallographic axes), and in consequence, to various spin textures
and spin dependent system responses [15–19]. The Rashba spin–orbit
interaction is a consequence of the so-called structural inversion asym-
metry. Here, the confinement potential of quantum well is asymmetric.
Importantly, the strength of Rashba coupling can be tuned by the gate
voltage or doping. In turn, the spin–orbit interaction related to the bulk
inversion asymmetry of the underlying crystal is known as Dresselhaus
spin–orbit coupling [20] and its form depends on the growth direction
with respect to the crystallographic axis. Both Rashba and Dresselhaus
spin–orbit couplings are proportional to odd powers of wavevector 𝐤
with the dominant contribution of 𝑘-linear and 𝑘-cubed terms.

Recently, in the context of spin-to-charge interconversion phenom-
ena, the Rashba spin–orbit coupling focuses enormous attention [21,
22]. It is studied not only in semiconductor heterostructures but also
in other structures without inversion symmetry, i.e., at the interfaces of
perovskite oxides, perovskite halides thin films, surface or subsurface
states of germanium Ge[111], gold Au[111], bismuth Bi[111], and
Bi/Ag alloys [111] [23–29]. The anomalous and spin Hall effect, as
well as the current-induced spin polarization have been extensively
discussed within the Rashba 2DEG in the presence and absence of
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Fig. 1. Dispersion curves in nonmagnetic ((a), (c)) and magnetic ((b), (d)) 2DEG with linear Dresselhaus spin–orbit interaction in the presence ((c), (d)) and absence ((a), (b))
of cubic Dresselhaus spin–orbit coupling term 𝛾. The right side of each part shows the corresponding expectation values of spin for two different values of chemical potential
(𝜇 = {10, 60} eV m). The linear and cubic Dresselhaus coupling constants are equal respectively 𝛽0 = 1 ⋅10−11 eV m, and 𝛾0 = 20 ⋅10−30 eV m3, effective mass 𝑚 = 0.05𝑚0 and 𝑘0 = 108
m−1.

external magnetic field, or different types of scattering potentials (see
reviews e.g., [3,30] and references therein).

Here we focus on 2D electron gas with Dresselhaus spin–orbit
interaction, as a basic model describing symmetric semiconducting
quantum wells, and present detail characteristics of the current-induced
spin polarization. In case of quantum wells growing in the [001]
crystallographic direction, build by semiconductors with zinc-blende
structure, the lowest order contribution to conduction band spin–orbital
splitting is given by the following Hamiltonian [19,20]:

̂𝐷 = 𝛾[(𝑘2𝑦 − 𝑘2𝑧)𝑘𝑥𝜎𝑥 + (𝑘2𝑧 − 𝑘2𝑥)𝑘𝑦𝜎𝑦 + (𝑘2𝑥 − 𝑘2𝑦)𝑘𝑧𝜎𝑧],

where 𝛾 is spin–orbit coupling parameter. Since the quantum well is
confined in the 𝑧-direction it is assumed for the lowest energy subband
that ⟨𝑘𝑧⟩ = 0 and ⟨𝑘2𝑧⟩ = 𝜋2∕𝐿2, where 𝐿 is a thickness of the quantum
well. Accordingly, the dominant contribution to the Dresselhaus spin–
orbit interaction comes from the linear in 𝑘 term proportional to the
coupling constant 𝛽 = 𝛾⟨𝑘2𝑧⟩. The 𝑘-cubed term manifests in wider,
highly doped quantum wells, where its presence, in addition to 𝑘-linear
Rashba and/or Dresselhaus term, can have important consequences.
It leads, e.g., to the nonvanishing spin Hall effect in nonmagnetic
2DEG with scalar impurities, and nonzero anomalous Hall effect under
uniform exchange field when two subbands are occupied [31–33].
It plays also an important role in the case of persistent spin-helix
state detuning. Current-induced spin–orbit interaction in 2DEG with
the linear in 𝐤 Dresselhaus coupling has been studied, especially in
the context of its interplay with linear Rashba interaction [34–36].
However, detailed characteristics of CISP for the model with both 𝑘-
linear and 𝑘-cubic terms have got less attention [32,33,37]. Thus, we
present results of detailed study of 2DEG with Dresselhaus spin orbit
interaction defined by the above Hamiltonian. We focus, among others,
on the role of the 𝑘-cubed Dresselhaus term and the role of temperature
and net magnetization on the system response.

The paper is organized as follows. In Section 2 we introduce the
model and formalism used for description of the non-equilibrium spin
polarization. In Section 3 we consider nonmagnetic 2DEG with linear
and cubic spin–orbit interaction, whereas in Section 4 we analyze in
details the magnetic 2DEG in the presence of linear Dresselhaus SOC as

well as the most general case, i.e., magnetic 2DEG with both 𝑘-linear
and 𝑘-cubic Dresselhaus terms. We discuss also the relation between the
Berry curvature and anomalous Hall effect, as well as the component
of spin polarization that appears only in the presence of exchange
field. In Section 5 we discuss the thermally-induced spin polarization,
that is related to the electrically-induced spin polarization at the low
temperature by the Mott relation. The final discussion and summary is
provided in Section 6.

2. Model and method

Here we focus on a magnetic two-dimensional electron gas forming
at the interfaces in a symmetric quantum well. In such a case the
Rashba spin–orbit coupling is reduced and the leading source of spin–
orbit interaction originates from the bulk inversion asymmetry. The
model Hamiltonian can be written as follows [18,19]:

̂ = ̂𝐾𝐼𝑁 + ̂𝐷 + ̂𝑀 , (1)

where the kinetic term, 𝐾𝐼𝑁 has the well known form:

̂𝐾𝐼𝑁 = 𝜀𝑘𝜎0, (2)

where 𝜀𝑘 = ℏ2𝑘2

2𝑚 with 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 and 𝑚 being an effective mass of
quasiparticles. The second term describes spin–orbit interaction of the
Dresselhaus type, which in the case of 2DEG at the surface [001] has
two components, i.e., 𝑘-linear and 𝑘-cubed respectively:

̂𝐷 = ̂𝐿𝐷 + ̂𝐶𝐷 (3a)

̂𝐿𝐷 = 𝛽(𝑘𝑦𝜎𝑦 − 𝑘𝑥𝜎𝑥), (3b)

̂𝐶𝐷 = 𝛾(𝑘𝑥𝑘2𝑦𝜎𝑥 − 𝑘𝑦𝑘
2
𝑥𝜎𝑦). (3c)

The spin–orbit coupling parameters 𝛽 and 𝛾 are related to each other,
i.e., 𝛽 = 𝛾⟨𝑘2𝑧⟩, where ⟨𝑘2𝑧⟩ is the expectation value of 𝑘2𝑧 with respect
to the subband wave functions of quasiparticles in the quantum well,
and 𝛾 depends on the underlying semiconductor bulk material. The
last term in (1), ̂𝑀 , describes the exchange interaction between spins
of conduction electrons and localized magnetic moments, i.e., a net
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magnetization 𝐌 oriented in the 𝑧-direction (normal to the plane of
2DEG), and takes the following explicit form:

̂𝑀 = 𝑀𝜎𝑧. (4)

Here, the exchange energy is given by the parameter 𝑀 in energy units.
The matrices 𝜎0 and 𝜎𝛼 (where 𝛼 = {𝑥, 𝑦, 𝑧}) are the identity and Pauli
matrices acting in the spin space.

The eigenvalues corresponding to the Hamiltonian (1) have the fol-
lowing form: 𝐸± = 𝜀𝑘±𝜉𝐤, where 𝜉𝐤 =

[
𝑀2 + 𝛽2𝑘2 − 𝑘2𝑥𝑘

2
𝑦(4𝛽𝛾 − 𝛾2𝑘2)

]1∕2
.

Fig. 1 presents the energy spectra corresponding to the all cases con-
sidered in this paper, that is: nonmagnetic (Fig. 1(a),(c)) and magnetic
(Fig. 1(b),(d)) Dresselhaus 2DEG in the presence (Fig. 1(c),(d)) and
absence (Fig. 1(a),(b)) of 𝑘-cubic correction to the Dresselhaus spin–
orbit interaction. The expectation values of quasiparticles spin are also
presented to emphasize how the out-of plane magnetization and the
cubic Dresselhaus interaction modify equilibrium orientations of spins
at the Fermi contours, and therefore the spin-dependent properties of
2DEG.

The non-equilibrium current-induced spin polarization may be
found in the linear response to the external electric field within the
Matsubara Green’s function formalism [38]:

𝑆𝑖(i𝜔𝑚) = 𝛯
∑
𝐤,𝑛

Tr
{
�̂�𝑖𝐺𝐤(i𝜀𝑛 + i𝜔𝑚)̂𝐀(i𝜔𝑚)𝐺𝐤(i𝜀𝑛)

}
, (5)

where 𝛯 = 𝑘𝐵𝑇 (𝑘𝐵 — Boltzmann constant, 𝑇 — temperature), �̂�𝑖 =
ℏ
2 𝜎𝑖 is 𝑖-th component of the spin operator, and ̂𝐀 is a perturbation
Hamiltonian describing the interaction of electrons with an external
electric field:

̂𝐀(i𝜔𝑚) = −�̂�𝑗𝐴𝑗 (i𝜔𝑚). (6)

Here �̂�𝑗 is a 𝑗-th component of the velocity operator, and the amplitude
of the electromagnetic vector potential has the following explicit form:
𝐴𝑗 (i𝜔𝑚) = ℏ

𝐸𝑗 (i𝜔𝑚)
i(i𝜔𝑚)

. 𝐺𝐤(i𝜀𝑛) stands for the Matsubara Green’s functions,
were 𝜀𝑛 = (2𝑛 + 1)𝜋 𝛯 and 𝜔𝑚 = 2𝑚𝜋 𝛯 define Matsubara energies.

Eq. (5), after summation over Matsubara energies, takes the form:

𝑆𝑖 = 𝜒𝑖𝑗𝑒𝐸𝑗 , (7)

where the response function, 𝜒𝑖𝑗 , also called the spin polarizability, can
be written as follows:

𝜒𝑖𝑗 (𝜔) = − ℏ
𝜔
Tr ∫ 𝑑2𝐤

(2𝜋)2 ∫ 𝑑𝜀
2𝜋

𝑓 (𝜀)𝑖𝑗 (𝐤, 𝜀). (8)

Here 𝑓 (𝜀) is the Fermi–Dirac distribution function, and:

𝑖𝑗 (𝐤, 𝜀) = Tr
{
�̂�𝑖
[
𝐺𝑅
𝐤 (𝜀 + 𝜔)�̂�𝑗 [𝐺𝑅

𝐤 (𝜀) − 𝐺𝐴
𝐤 (𝜀)]

+ [𝐺𝑅
𝐤 (𝜀) − 𝐺𝐴

𝐤 (𝜀)]�̂�𝑗𝐺
𝐴
𝐤 (𝜀 − 𝜔)

]}
(9)

with 𝐺𝑋=𝑅,𝐴
𝐤 defining retarded or advanced Green’s function. The ex-

pression (8) is the starting point for detailed analysis of spin polariza-
tion in our model. Without loosing the generality one can assume that
electric field is oriented in the �̂� direction, and therefore we discuss the
response functions 𝜒𝑖𝑥.

In our considerations the main source of relaxation is the scatter-
ing on randomly distributed, spin-independent, point-like impurities.
Accordingly, assuming white-noise distribution, the impurity poten-
tial is given in the form: 𝑉0(𝐫) =

∑
𝑖 𝑉0𝛿(𝐫 − 𝐑𝑖) and vanishes on

average, i.e., ⟨𝑉0(𝐫)⟩ = 0, whereas the second statistical cumulant is
finite ⟨|𝑉0𝐤𝐤′ |2⟩ = 𝑛𝑖𝑉 2

0 (𝑛𝑖 — impurity concentration). The scattering
on impurity potential is taken into account by averaging the quantum–
mechanical expectation value for spin polarization over impurities
configuration. This has been done, by averaging the combination of
operators in Eq. (9) over impurities configuration, i.e., ⟨�̂�𝑖𝐺𝑋 �̂�𝑗𝐺𝑌 ⟩.
The localization corrections, as vanishingly small in the low impurity
concentration, are not taken into account. Thus, the disorder average
is evaluated here in the ladder approximation, that is ⟨�̂�𝑖𝐺𝑋 �̂�𝑗𝐺𝑌 ⟩ =
𝑖⟨𝐺𝑋⟩�̂�𝑗⟨𝐺𝑌 ⟩, where 𝑖 is the renormalized spin vertex function, and

Fig. 2. Spin susceptibility 𝜒𝑥𝑥 as a function of (a), (b) chemical potential 𝜇, (c)
linear Dresselhaus spin–orbit parameter 𝛽, and (d) temperature 𝑇 . The effective mass
𝑚 = 0.05𝑚0 and other parameters as indicated.

⟨𝐺𝑋⟩ = [𝜀 − ̂ − 𝛴𝑋 ]−1 is the configurational averaged Green’s
function, that contains the impurity self-energy 𝛴𝑋 . Information about
derivation of self-energy and spin vertex function, 𝑖, is provided
in Appendix A.

In next sections we study in details the behavior of current-induced
spin polarization in 2DEG with Dresselhaus spin–orbit interaction. In
Section 3 we will focus on nonmagnetic 2DEG, whereas in Section 4
we present results for magnetic systems.

3. CISP in nonmagnetic 2DEG

The non-equilibrium spin-polarization has been studied in details
for Rashba systems, and partially for Dresselhaus spin–orbit interac-
tion [39,40]. However, according to our knowledge, there is still a
lack of detailed studies of CISP for systems with both linear and cubic
Dresselhaus spin–orbit interaction. Thus, for the consistency of this
paper we study the Dresselhaus 2DEG described by the Hamiltonian (1)
for some special limits. In this section we consider the nonmagnetic
case, i.e., we assume that the exchange field 𝑀 vanishes.

3.1. 2DEG with linear Dresselhaus SOC (𝛽 ≠ 0 and 𝛾 = 0)

We start our considerations assuming that the linear Dresselhaus
spin–orbit interaction dominates whereas the cubic term may be ne-
glected. In such a case the Hamiltonian (1) takes the following form:̂ = ̂𝐾𝐼𝑁 + ̂𝐿𝐷, with eigenvalues: 𝐸± = 𝜀𝑘 ± 𝛽𝑘. The corresponding
energy dispersion is presented in Fig. 1(a). In this case, only the 𝑥-
component of non-equilibrium spin polarization appears, that is the
component in plane of 2DEG and collinear to the external electric field.
This is also easy to understand when we plot the equilibrium expecta-
tion values of spin for fixed energy and wavevector 𝐤 (right panel of
Fig. 1(a)). The average spin in each subband vanishes at equilibrium.
When external electric field is applied in the 𝑥-direction, the Fermi
contour is shifted. In consequence of spin-momentum locking, triggered
by linear Dresselhaus spin–orbit coupling, one observes a nonzero 𝑥-
component of spin density. The Eqs. (7) and (8) (i.e., single loop or
’bare bubble’ approximation [38]) leads to the following formula:

𝑆0
𝑥 = 𝑒𝐸𝑥ℏ

𝛽
8𝛤 ∫ 𝑑𝑘 𝑘

2𝜋

[
𝑘2𝛽2 + 2𝛤 2

𝑘2𝛽2 + 𝛤 2 [𝑓 ′(𝐸−) + 𝑓 ′(𝐸+)]
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Fig. 3. Spin susceptibility 𝜒𝑥𝑥 as a function of set of parameters. (a)–(c) 𝜒𝑥𝑥 as a function of chemical potential 𝜇, for selected values of parameters 𝛽, 𝛾, and 𝑇 respectively; (d)
𝜒𝑥𝑥 as a function of temperature 𝑇 for selected values of chemical potential, and (e) as a function of parameter 𝛾 for selected temperatures; (f) 𝜒𝑥𝑥 presented as a function of the
quantum well width for different positions of Fermi level 𝜇. (g), (h) The 𝜅 parameter normalized to 𝜅𝑝𝑒𝑟𝑡, as a function of 𝜇 and 𝛽 respectively. Effective mass as in Fig. 2 and
other parameters as indicated.

+𝑘ℏ2

𝑚𝛽
[𝑓 ′(𝐸+) − 𝑓 ′(𝐸−)]

]
. (10)

The above equation, in the limit of low impurity concentration and at
low temperatures (i.e., 𝑇 → 0), takes the following form for 𝜇 > 0:

𝑆0 (𝑇=0)
𝑥 = 𝑒𝐸𝑥

𝑚𝛽
8𝜋ℏ𝛤

≡ s𝑥 , (11)

where the relaxation rate, 𝛤 , is:

𝛤 = 𝑛𝑖𝑉
2
0

𝑚
2ℏ2

≡ 𝛤0 . (12)

Taking into account the averaging over impurities configuration by the
renormalization of the spin vertex operator (see Appendix A.2) one
gets:

𝑆𝑥 = 𝜂𝑆0
𝑥 , (13)

where 𝜂 is a numerical factor renormalizing the spin vertex function.
In this case 𝜂 is equal to two (details of calculations are given in the
end of Appendix A). The Eq. (13), in the limit 𝑇 → 0 and 𝛤 → 0, gives
us the final analytical result for non-equilibrium spin polarization in
2DEG with linear Dresselhaus spin–orbit interaction:

𝑆𝑥 = 𝑒𝐸𝑥
𝑚𝛽

4𝜋𝛤ℏ
≡ 2s𝑥 . (14)

The non-equilibrium spin polarization, in this case, is indeed 𝜇 inde-
pendent and constant for specific system (for constant 𝛽, 𝑚, 𝑛𝑖, and
𝑉0).

When Fermi level lies below the subbands crossing point, that is for
the range − 𝛽2𝑚

2ℏ2 < 𝜇 < 0, the relaxation rate takes the following explicit
form:

𝛤 = 𝛤0
𝑚𝛽√

2𝑚𝜇ℏ2 + 𝑚2𝛽2
= 𝛤0

𝑛∗

𝑛
, (15)

where 𝑛 is quasiparticle density at the Fermi level, i.e., 𝑛(𝜇 < 0) =
𝑚𝛽
𝜋ℏ4

√
𝑚2𝛽2 + 2ℏ2𝑚𝜇 and 𝑛∗ = 𝑛(𝜇 = 0) = 𝑚2𝛽2∕𝜋ℏ4. In this case the

non-equilibrium spin polarization can be expressed as follows:

𝑆𝑥 = 2s𝑥
𝑛
𝑛∗

. (16)

These results are in agreement with those in the previous litera-
ture [40], and show the linear dependence of the non-equilibrium
spin polarization on the relaxation time, and the spin–orbit coupling

parameter. Moreover, CISP in such system is oriented in the plane of
2DEG and collinear with the external electric field.

Fig. 2(a) and (b) present the spin polarizability 𝜒𝑥𝑥 of the non-
magnetic 2DEG when the cubic Dresselhaus spin–orbit coupling is
neglected, i.e., 𝛾 = 0. Here 𝜒𝑥𝑥 is plotted as a function of chemical
potential, 𝜇, for several values of the coupling parameter 𝛽. The solid
lines in Fig. 2(a) correspond to the numerical results, obtained based
on Eqs. (10) and (13), whereas the dashed lines correspond to the ana-
lytical expressions (Eq. (14) and (16)). The range of negative chemical
potential is very narrow and presented separately in Fig. 2(b). Here,
the numerical results are plotted for two cases, i.e., when (i) 𝛤 is a
𝜇-dependent function (as in Eq. (15)), and when (ii) 𝛤 is treated as a
constant, 𝜇-independent, parameter. Note, that in the second case, the
constant value of 𝛤 when 𝜇 changes means that the concentration of
impurities or the impurity potential are variable.

At this point it should be stressed that in general, when chemical
potential approaches the edge of the lower subband (i.e., 𝜇 → 𝜇min and
𝑛 → 0), the relaxation rate diverges (according to Eq. (15)) and the
role of disorder increases. In such a case the Ioffe–Regel localization
criterion imposes a constrain on 𝜇. Therefore, from the equation 𝜇∗ −
𝜇𝑚𝑖𝑛 ≃ 𝛤 (𝜇∗) one can find the chemical potential, 𝜇∗, below which
the states become localized and the conductivity is suppressed. Since
we do not consider in this paper the localization processes, in the
following sections we restrict our considerations mainly to the range
of positive values of chemical potential or far above the bottom of the
lower subband. Accordingly, everywhere we present the 𝜇 dependence,
the relaxation rate 𝛤 is treated as a constant parameter independent on
𝜇 (i.e., the impurity concentration changes) and we do not determine
𝜇∗, below which the conductivity and also the spin polarization is
suppressed. Note, this happens above the bottom of the lower band,
i.e., for chemical potentials larger than the temperature smearing of
Fermi–Dirac distribution function.

Fig. 2(c) shows the spin polarizability as a function of the spin–orbit
coupling parameter 𝛽. Thus, 𝜒𝑥𝑥 is almost a linear function of 𝛽. For
sufficiently large values of chemical potential the rate of increase of
𝜒𝑥𝑥 as a function of 𝛽 does not change, what coincides with Fig. 2(a).
Finally, Fig. 2(d) presents the spin susceptibility as a function of tem-
perature. One can see that 𝜒𝑥𝑥 is reduced by approximately half when
the temperature increases. The decrease of 𝜒𝑥𝑥 is abrupt for smaller
chemical potentials, whereas for large chemical potentials it is only
slightly modified.
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3.2. 2DEG with linear and cubic Dresselhaus SOC (𝛽 ≠ 0 and 𝛾 ≠ 0)

In a more general case, when both 𝑘-linear and 𝑘-cubed terms of
Dresselhaus spin–orbit interaction are nonzero, the Hamiltonian (1) has
the following components ̂ = ̂𝐾𝐼𝑁 + ̂𝐿𝐷 + ̂𝐶𝐷. The eigenvalues
corresponding to this Hamiltonian can be written in the form: 𝐸± =
ℏ2𝑘2

2𝑚 ± 𝜉𝐤(𝑀 = 0). The corresponding energy spectrum is presented
in Fig. 1(c). The influence of the 𝑘-linear Dresselhaus term on the
electronic states is mostly visible around the subbands crossing point,
i.e. for small values of chemical potential (low carrier concentration). In
turn, the 𝑘-cubed Dresselhaus term might be important at larger values
of 𝜇, that is for quantum wells with higher electron concentration. Since
the expressions that follow from Eq. (8), as well as the impurity vertex
function are rather cumbersome, (for the details see Appendix A.2),
they are evaluated numerically and presented in Fig. 3.

Fig. 3(a)–(d) present spin polarizability 𝜒𝑥𝑥, plotted as a function of
chemical potential 𝜇 (note that 𝛤 is fixed here). Comparing Fig. 3(a),(b)
and Fig. 2(a) one can clearly see how the nonzero cubic Dresselhaus
term modifies the spin polarizability. Namely, for the positive chemical
potentials (two subbands occupied) one observes almost linear drop in
the value of spin susceptibility with an increase in the value of chemical
potential. The modification is also evident in temperature dependences
and for higher values of chemical potentials (compare Fig. 3(c)–(e) and
Fig. 2(d)).

When 𝛾𝑘2𝐹 ≪ 𝛽, the cubic Dresselhaus term in the Hamiltonian can
be treated perturbatively. Performing the expansion of the Green’s func-
tions with respect to ̂𝐶𝐷 one can continue our calculations analytically
(see Appendix B). As a result, in the low temperature regime, one finds
(up to the linear term in 𝛾) the final expression in a simple analytical
form. Thus, for 𝜇 > 0:

𝑆𝑥 ≅ 2s𝑥
(
1 − 𝛾

𝛽
𝑘2𝐹0

)
, (17)

where 𝑘𝐹0 =
√
2𝑚𝜇∕ℏ is a Fermi wavevector of a degenerate 2DEG.

Based on this expression, it is clear that the cubic Dresselhaus spin–
orbit coupling modifies the current-induced spin polarization through
the term proportional to the chemical potential, 𝜇. Taking into account
the relation between parameters 𝛽 and 𝛾, the Eq. (17) can be written
as:

𝑆𝑥 ≅ 2s𝑥
(
1 − 𝐿2

𝜋2 𝑘
2
𝐹0

)
. (18)

These approximate formulas may be useful as they combine CISP with
the quantum well width, 𝐿, and Fermi wavevector 𝑘𝐹0 (or electron
mobility), that is with the quantities provided by typical transport
experiments. The dependence of spin susceptibility on the quantum
well width is presented in Fig. 3(f). The fact that 𝜒𝑥𝑥 in symmetric
quantum wells can be tuned by 𝜇 or 𝐿 seems to be important for
possible applications, making it controllable by external means.

One can also introduce a parameter 𝜅 defined as:

𝜅 =
𝜒𝑥𝑥(𝛾 = 0) − 𝜒𝑥𝑥(𝛾 ≠ 0)

𝜒𝑥𝑥(𝛾 = 0)
. (19)

Thus, 𝜅 is a characteristic parameter that describes directly the influ-
ence of cubic Dresselhaus SOC on non-equilibrium spin polarization.
Regarding to the analytical result obtained perturbatively, i.e., Eqs. (17)
and (18), one finds immediately the 𝜅 parameter in the following form:

𝜅 ≅ 𝑘2𝐹0
𝛾
𝛽
= 𝑘2𝐹0

𝐿2

𝜋2 ≡ 𝜅pert . (20)

Fig. 3(g),(h) present 𝜅 normalized to 𝜅pert . One can see that the per-
turbative treatment of cubic Dresselhaus spin–orbit interaction leads
to the revalued influence of this term on the total non-equilibrium
spin polarization. The ratio 𝜅∕𝜅pert is a slowly varying function of 𝜇,
for 𝜇 ≫ 0 and for small values of spin–orbit coupling parameter 𝛾.
In turn, when 𝜇 → 0 it increases rapidly. Similarly, when 𝛾 is larger

than 𝛾0 = 20 ⋅ 10−30 eV m3, the linear increase of 𝜅 with increasing 𝜇
becomes visible (see Fig. 3(g)). The cubic Dresselhaus term changes the
spin polarization about 10% − 30% for higher values of 𝜇 with respect
to the 𝜇-independent spin polarization.

4. CISP in magnetic 2DEG

Now, let us discuss the influence of exchange field on CISP. Similarly
as in the previous section we start our discussion assuming that the
cubic Dresselhaus term is vanishingly small, and can be neglected. Then
we discuss the case of magnetic 2DEG in the presence of both linear
and cubic Dresselhaus spin–orbit coupling. We will focus, among other,
on temperature behavior of spin polarization. We assume here that 𝑀
varies with temperature according to the Bloch’s law, i.e., 𝑀(𝑇 ) =
𝑀0

[
1 − (𝑇 ∕𝑇𝐶 )3∕2

]
, where 𝑀0 = 𝑀(𝑇 = 0), and 𝑇𝐶 denotes the Curie

temperature.

4.1. Magnetic 2DEG with linear Dresselhaus SOC (𝛽 ≠ 0, 𝛾 = 0)

The Hamiltonian (1) is now reduced to the following form ̂ =̂𝐾𝐼𝑁 + ̂𝐿𝐷 + ̂𝑀 and the eigenvalues take simple form: 𝐸± =
𝜀𝑘 ±

√
𝛽2𝑘2 +𝑀2 ≡ 𝜀𝑘 ± 𝜆𝑘. In this case, we get, in the single loop

approximation, the following expressions:

𝑆0
𝑥 =

𝑒𝐸𝑥ℏ𝛽
8𝜋𝛤 ∫ 𝑑𝑘 𝑘

[
(𝑘2𝛽2 + 2𝛤 2)

𝜆2𝑘 + 𝛤 2
[𝑓 ′(𝐸+) + 𝑓 ′(𝐸−)]

+𝑘2ℏ2

𝑚𝜆𝑘
[𝑓 ′(𝐸+) − 𝑓 ′(𝐸−)]

]
, (21)

𝑆0
𝑦 = 𝑒𝐸𝑥ℏ∫ 𝑑𝑘 𝑘

𝜋
𝑀𝛽
(2𝜆𝑘)3

[
𝑓 (𝐸+) − 𝑓 (𝐸−)

−𝛤 2

𝜆𝑘

[𝑓 ′(𝐸+) + 𝑓 ′(𝐸−)][
1 + (𝛤∕𝜆𝑘)2

]
]
, (22)

and 𝑆0
𝑧 = 0. Note, that in the limit of low impurity concentration,

the second term in expression describing 𝑆0
𝑦 vanishes. Thus, the non-

equilibrium spin polarization has two components: The 𝑥-component
which survives even if 𝑀 vanishes, and the 𝑦-component that appears
only in the presence of 𝑀 . Moreover, the 𝑦-component, as originating
from the Fermi sea contribution, is independent of relaxation processes
and can be easily linked to Berry curvature.

The detailed calculations show that the impurity vertex function
modifies only the 𝑥-component of spin polarization, whereas the 𝑦-
component remains unchanged. Thus, one can write:

𝑆𝑥 = 𝜂 𝑆0
𝑥 , 𝑆𝑦 = 𝑆0

𝑦 . (23)

As in the previous section, 𝜂 is a factor that comes from the impurity
vertex correction. In this case, 𝜂 ranges between 1 and 2 and its
value reflects the interplay between exchange interaction and spin–
orbit coupling. When Fermi level crosses only one subband, i.e., it lies
in the energy gap which appears as a consequence of the exchange
interaction, 𝜂 → 1. Thus, 𝜂 reflects the fact that the exchange interaction
dominates the spin–orbital one (there is no renormalization of the
spin vertex function when SOC disappears). In turn, 𝜂 → 2 when two
subbands are occupied, and is equal 2 in the range of 𝜇, where the
spin–orbit interaction completely dominates the exchange one. This
behavior is shown in Fig. 4, where the vertex correction, 𝜂, is plotted as
a function of chemical potential 𝜇 and spin–orbit coupling parameter 𝛽
(Fig. 4(a)), chemical potential and magnetization 𝑀 (Fig. 4(b)), and as
a function of 𝛽 and 𝑀 (Fig. 4(c)). Moreover, Fig. 4(d) presents the cross
sections of Fig. 4(c). The numerical results for 𝜂 are obtained assuming
𝛤 as a constant parameter. This simplification may be not adequate
when 𝜇 approaches the bottom of the lower subband, where 𝛤 and 𝜂
are energy dependent functions (as discussed in Section 3.1).

In low temperature limit, the Eq. (21) and (22) can be evaluated
analytically. Thus, in the low concentration of impurities, the analytical
expressions are presented below, where 𝑠𝑥 is defined in Eq. (11).

A-4

83



Physica E: Low-dimensional Systems and Nanostructures 135 (2022) 114961

6

A. Krzyżewska and A. Dyrdał

Fig. 4. Renormalized spin vertex function 𝜂 plotted as a function of (a) spin–orbit
coupling parameter 𝛽 and chemical potential 𝜇, (b) magnetization 𝑀 and chemical
potential, and (c) magnetization and spin–orbit coupling parameter; (d) 𝜂 as a function
of 𝑀 for different ratio of 𝛽 to 𝛽0. The other parameters as indicated, whereas the
effective mass, 𝑚, is the same as in Fig. 2.

For the 𝑆𝑥 component of spin polarization one finds:

𝑆𝑥 = 𝜂 s𝑥

(
𝜀𝑘−
𝜆𝑘−

−
𝜀𝑘+
𝜆𝑘+

)
(24)

for 𝜇 ≥ 𝑀 ,

𝑆𝑥 = 𝜂 s𝑥
𝜀𝑘−
𝜆𝑘−

(25)

for −𝑀 ≤ 𝜇 < 𝑀 , and

𝑆𝑥 = 𝜂 s𝑥

(
𝜀𝑘+−
𝜆𝑘+−

−
𝜀𝑘−−
𝜆𝑘−−

)
(26)

for − 𝜀𝛽
2

(
1 + 𝑀2

𝜀2𝛽

)
≤ 𝜇 < −𝑀 , where 𝜀𝛽 = 𝑚𝛽2

ℏ2
.

The 𝑆𝑦 component is given by the following equations, where s𝑦 =
𝑒𝐸𝑥ℏ
8𝜋𝛽 :

𝑆𝑦 = −s𝑦 𝑀
(

1
𝜆𝑘+

− 1
𝜆𝑘−

)
(27)

for 𝜇 ≥ 𝑀 ,

𝑆𝑦 = −s𝑦
(
1 − 𝑀

𝜆𝑘−

)
(28)

for −𝑀 ≤ 𝜇 < 𝑀 , and

𝑆𝑦 = −s𝑦 𝑀

(
1

𝜆𝑘+−
− 1

𝜆𝑘−−

)
(29)

for − 𝜀𝛽
2

(
1 + 𝑀2

𝜀2𝛽

)
≤ 𝜇 < −𝑀 . In the above equations, the Fermi

wavevectors take the form
𝑘± =

[
2𝑚

(
𝜀𝛽 + 𝜇 ∓ [𝜀2𝛽 + 2𝜇𝜀𝛽 +𝑀2]1∕2

)]1∕2
for 𝜇 ≥ −𝑀 , and 𝑘±− = 𝑘∓

for 𝜇 ∈
[
− 𝜀𝛽

2

(
1 + 𝑀2

𝜀2𝛽

)
; −𝑀

]
(see Fig. 12 in Appendix C).

The analytical results given by Eqs. (24)–(29) are presented in
Fig. 5. The spin susceptibilities, 𝜒𝑥𝑥 and 𝜒𝑦𝑥, are plotted as a function

Fig. 5. Current-induced spin polarizability 𝜒𝑥𝑥 and 𝜒𝑦𝑥 as a function of (a),(c) chemical
potential 𝜇, for selected values of linear Dresselhaus coupling parameter 𝛽 and (b),(d)
as a function of temperature 𝑇 for selected values of 𝜇. Solid lines correspond to the
temperature 𝑇 = 50 K and dashed lines correspond to zero-temperature formulas given
by Eqs. (24)–(29). The Curie temperature is set to 𝑇𝐶 = 180 K. The results include
the vertex correction. The other parameters are indicated and the effective mass is the
same as in Fig. 2.

of chemical potential 𝜇 for fixed value of 𝑀 and the temperature
𝑇 = 50 K (solid lines), as well as in the limit of 𝑇 → 0 (dashed
lines) (Fig. 5(a)–(c)). In the low impurity concentration regime the spin
susceptibility 𝜒𝑦𝑥 is robust to impurity scattering processes. Precisely,
we found that 𝜒𝑦𝑥 does not depend on the relaxation time and impurity
vertex correction. Additionally, one can see that 𝜒𝑦𝑥 increases rapidly
when only single band is occupied, reaches maximum and next slowly
decreases with increasing 𝜇. In turn, 𝜒𝑥𝑥 is only slightly modified
by magnetization in comparison to the nonmagnetic case when both
subbands are occupied. The main difference between dependences pre-
sented in Fig. 3(a) and Fig. 5(a) is pronounced in the low temperature
regime when chemical potential lies in the range −𝑀 < 𝜇 < 𝑀 . In this
case the only single subband is occupied and the 𝑥-component of the
spin polarization increases linearly with 𝜇. This behavior is however
blurred at higher temperatures due to the smearing of Fermi contours
by Fermi–Dirac distribution function. It should be stressed that 𝜒𝑦𝑥 is
about three orders of magnitude smaller than 𝜒𝑥𝑥. Indeed, comparing
s𝑥 and s𝑦 one finds:

s𝑦 =
𝛤
2𝜀𝛽

s𝑥. (30)

Thus, as long as we keep the limit 𝛤 ≪ 𝜀𝛽 , the 𝑆𝑦 component of spin
polarization is always negligibly small in comparison to 𝑆𝑥 component.

The non-equilibrium spin polarization depends also on temperature.
In general, within the model considered in this paper, the temperature
affects the system response in two ways: (i) by thermal broaden-
ing of Fermi surface, and (ii) by thermal decrease of magnetization.
Fig. 4(b),(d) presents temperature dependences of 𝜒𝑥𝑥 and 𝜒𝑦𝑥. In
numerics, 𝑀 decreases with temperature according to the Bloch’s law
and the Curie temperature is assumed to be 𝑇𝐶 = 180 K. This is easy
to observe, since 𝜒𝑦𝑥 approaches 0 above 𝑇𝐶 (where 𝑀 = 0), and 𝜒𝑥𝑥
reaches values observed for the nonmagnetic case.

4.2. Magnetic 2DEG with linear and cubic Dresselhaus SOC (𝛽 ≠ 0, 𝛾 ≠ 0)

In this section we present the most general case in our consid-
erations, i.e., magnetic 2DEG with 𝑘-linear and 𝑘-cubic Dresselhaus
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Fig. 6. Temperature dependences for the renormalized spin vertex function 𝜂. (a) 𝜂
as a function of zero-temperature magnetization 𝑀0 ≡ 𝑀(𝑇 = 0) and temperature 𝑇 .
(b) The temperature dependences for selected values of 𝑀0. The Curie temperature
𝑇𝐶 = 180 K. The magnetization 𝑀 is dependent on the temperature according to the
Bloch’s law. The effective mass is the same as in Fig. 2 and other parameters are as
indicated. .

spin–orbit coupling. We trace the numerical results and discuss the
behavior of Berry curvature in 2DEG with 𝑘-cubed contribution to SOC.

Numerical results: As discussed in the preceding section, the net
magnetization in the system is in general a temperature dependent.
In such a case the impurity vertex function is also temperature de-
pendent via the 𝑀(𝑇 ) dependence. This is shown in Fig. 6, where
the vertex function, 𝜂, is presented as a function of temperature, 𝑇 ,
and zero-temperature magnetization, 𝑀0. The parameter 𝜂 increases
with increasing 𝑇 , and reaches 𝜂 = 2 when 𝑇 = 𝑇𝐶 . However, since
the presence of 𝑘-cubic Dresselhaus term does not change qualitatively
the general dependences of impurity vertex function presented in the
previous subsection (Fig. 5), numerical results for the impurity spin
vertex function when 𝛾 ≠ 0 are presented only in Appendix D.

Fig. 7 contains the full information about spin polarizability, i.e., the
impurity vertex function is included. The dependence of 𝜒𝑥𝑥 on the
chemical potential 𝜇 (Fig. 7(a),(b),(d),(e)) is modified by the cubic
Dresselhaus spin–orbit coupling when 𝜇 ≫ 𝑀 . However, the general
dependences do not change qualitatively with regard to the previous
case, when 𝛾 = 0. Thus, we describe in more details only the depen-
dences for 𝜒𝑦𝑥, i.e. the spin polarizability related to the 𝑦-component of
spin polarization that are presented in Fig. 7(g),(h),(j),(k). Accordingly,
when only a single subband is occupied, that is when −𝑀 < 𝜇 < 𝑀 ,
𝜒𝑦𝑥 is almost a linear function of 𝜇. The absolute value of 𝜒𝑦𝑥 takes
maximum when 𝜇 = 𝑀 , and decreases with further increase of 𝜇.
As a consequence, 𝑆𝑦 component reveals a sharp asymmetric peak at
lower temperatures and for chemical potential ranging in the vicinity of
𝜇 = 𝑀 , whereas it vanishes for largest values of 𝜇. This peak is the most
visible when Dresselhaus SOC dominates the exchange interaction.

Fig. 7 presents also the temperature dependences of 𝜒𝑥𝑥 and 𝜒𝑦𝑥 for
the fixed range of zero-temperature magnetization 𝑀0 (Fig. 7(c), (f)
and (i), (l) respectively). The spin polarizability 𝜒𝑥𝑥 decreases with in-
creasing temperature similarly as in the case of nonmagnetic 2DEG. The
qualitative difference in temperature dependence of 𝜒𝑥𝑥 with respect to
the nonmagnetic case appears for temperatures preceding the transition
between magnetic to nonmagnetic phase, where spin polarizability
reveals local minimum. In turn, the absolute value of 𝜒𝑦𝑥 decreases
with temperature for small values of 𝑀0. This local maximum moves to
higher temperature range (close vicinity of 𝑇 = 𝑇𝐶 ). The absolute value
of 𝜒𝑦𝑥 reveals the local maximum, that moves from lower to higher
temperatures when 𝑀0 increases.

Berry curvature, 𝐒𝐲 and anomalous Hall effect: The 𝑦-component
of spin polarization, in low impurity concentration limit, is robust to
scattering processes. That is, the dissipative part of 𝜒𝑦𝑥 vanishes, and
only nondissipative component remains. This is clearly seen in Eq. (22)

describing the magnetic Dresselhaus 2DEG with 𝛾 = 0. In the weak
scattering limit, 𝛤 → 0, this equation reduces to:

𝑆𝑦 = 𝑒𝐸𝑥ℏ∫ 𝑑𝑘 𝑘
8𝜋

𝛽𝑀
𝜆3𝑘

[
𝑓 (𝐸+) − 𝑓 (𝐸−)

]
(31)

Interestingly, the 𝑦-component of the non-equilibrium spin polarization
can be expressed directly by the Berry curvature of the 𝑛-th subband
𝐁𝑛(𝐤) = ∇𝐤 ×𝐀𝑛(𝐤), where 𝐀𝑛(𝐤) = i⟨𝛹𝑛|∇𝐤|𝛹𝑛⟩ is Berry connection, and
|𝛹𝑛=±⟩ are normalized eigenvectors of the investigated Hamiltonian.
For 2D systems Berry curvature has only 𝑧-component. Indeed, in the
case of magnetic 2DEG with linear Dresselhaus spin–orbit interaction
one gets:

𝐵𝑧
𝑛=± = ±𝑀𝛽2

2𝜆3𝑘
. (32)

Combining this result with Eq. (31) one finds immediately:

𝑆𝑦 =
𝑒𝐸𝑥ℏ
4𝜋𝛽

∑
𝑛=±∫ 𝑑𝑘 𝑘𝐵𝑧

𝑛𝑓 (𝐸𝑛) . (33)

In the general case, i.e., for the system described by the Hamilto-
nian (1), the Berry curvature can be written in the following form:

𝐵𝑧
𝑛 = ± 𝑀

2𝜉3𝐤

[
𝛽(𝛽 − 𝛾𝑘2) − 3𝛾2𝑘2𝑥𝑘

2
𝑦

]
. (34)

Berry curvature corresponding to the 𝐸+ subband is presented in
Fig. 8(a), and (b). The cubic Dresselhaus spin–orbit interaction intro-
duces anisotropy of the energy subbands and therefore anisotropy in
Berry curvature. Moreover, 𝐵𝑧

± integrated over angle decreases with
increasing 𝛾.

In Matsubara Green’s function formalism we get the formula for 𝑆𝑦
component of non-equilibrium spin polarization that can be expressed
by Berry curvature in the following way:

𝑆𝑦 = 𝑆𝑦[𝑓 (𝐸±)] + 𝑆𝑦[𝑓 ′(𝐸±)], (35)

where

𝑆𝑦[𝑓 (𝐸±)] = 𝑒𝐸𝑥ℏ
∑
𝑛=±∫

𝑑2𝐤
(2𝜋)2

(𝐤)𝐵𝑧
𝑛𝑓 (𝐸𝑛) (36)

with:

(𝐤) =
𝛽 − 𝛾𝑘2𝑦

2[𝛽(𝛽 − 𝛾𝑘2) − 3𝛾2𝑘2𝑥𝑘2𝑦]
, (37)

and 𝑆𝑦[𝑓 ′(𝐸±)] is the dissipative part of 𝑆𝑦, i.e., it depends on deriva-
tives of Fermi–Dirac distribution:

𝑆𝑦[𝑓 ′(𝐸±)] = −𝑒𝐸𝑥ℏ
∑
𝑛=±∫

𝑑2𝐤
(2𝜋)2

𝛤 2

4𝜉2𝐤

𝑀
(
𝛽 − 𝛾𝑘2𝑦

)
(
𝛤 2 + 𝜉2𝐤

) 𝑓 ′(𝐸𝑛) (38)

In the limit of low impurity concentration, 𝛤 → 0, one finds
𝑆𝑦[𝑓 ′(𝐸𝑛)] → 0 and 𝑆𝑦 is determined wholly by Eq. (36).

As we mentioned before, 𝑆𝑦 component is few orders of magnitude
smaller than the 𝑆𝑥 component, and therefore it has a negligible role
in the total non-equilibrium spin polarization. However, the fact that
𝑆𝑦 is nonzero and robust to impurities may be important in systems
with higher impurity concentrations. In such a case 𝑆𝑥 component
decreases and, in consequence, the amplitudes of both components are
comparable. Additionally, 𝑆𝑦 can be important in spin dynamics.

Our study also shows that Berry curvature is decreased by the cubic
Dresselhaus component. Interestingly this has a negligible impact on
𝑆𝑦 component of spin polarization (see Fig. 8(c)), but leads to a visible
decrease in the anomalous Hall conductivity (Fig. 8(d)), especially
at higher values of chemical potential, 𝜇. Note, that anomalous Hall
conductivity has been derived in the same approach as CISP. The
numerical results presented in Fig. 8(d) are achieved based on the
formulas given in Appendix E.
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Fig. 7. Spin polarizability (a)–(f) 𝜒𝑣
𝑥𝑥 and (g)–(l) 𝜒𝑦𝑥 as a function of different parameters. The first row presets 𝜒𝑥𝑥 and 𝜒𝑦𝑥 as a function of chemical potential 𝜇 and linear

Dresselhaus coupling parameter 𝛽, and as a function of chemical potential and magnetization 𝑀 . The second row presents the corresponding horizontal cross sections (for a
few parameters 𝛽 or 𝑀 respectively). Spin polarizability 𝜒𝑥𝑥 and 𝜒𝑦𝑥 is also plotted as a function of temperature 𝑇 and zero-temperature magnetization 𝑀0 — Fig. (c) and (i)
respectively. Fig. (f) and (l) show the corresponding cross sections for a few values of 𝑀0. The Curie temperature 𝑇𝐶 = 180 K, and effective mass is the same as in Fig. 2.

5. Thermally-induced spin polarization

In systems with spin–orbit interaction one can define not only the
spin polarization induced by the electric field, but also the thermally-
induced spin polarization. In such a case the non-equilibrium spin
polarization appears as a system response to heat current (temperature
gradient). At finite temperatures, the spin polarization is calculated as a
linear response to ∇𝑇 ∕𝑇 . However, to work within the linear response
formalism, one needs to assume that the temperature gradient is small
and uniform across the whole sample, and the average temperature 𝑇 is
basically constant on the scale of the carrier wavelengths. Accordingly,
one can define the spin polarizability 𝜒𝑇

𝑖𝑗 as:

𝑆𝑖 = 𝜒𝑇
𝑖𝑗

∇𝑗𝑇
𝑇

. (39)

The thermal spin polarizability can be determined within the linear
response theory and Green function formalism in a similar way to
the electric spin polarizability, as presented recently [41,42]. On the
other hand, neglecting the non dissipative 𝑆𝑦 component, one can
apply the relation between thermal spin polarizability and its elec-
trical counterpart. That is, one can define the so-called Mott relation
between zero-temperature spin polarizability, 𝜒𝑖𝑗 , and thermal spin
polarizability, 𝜒𝑇

𝑖𝑗 , as follows [41]:

𝜒𝑇
𝑖𝑗 = −𝜋2

3
(𝑘𝐵𝑇 )2𝜕𝜇𝜒𝑖𝑗 . (40)

Fig. 9(a),(b) presents the heat current polarizability as a function of
chemical potential for a few different values of linear Dresselhaus
spin–orbit coupling parameter, and for a few different values of 𝑀 ,
respectively. The heat spin polarizability is nonzero only for a well
defined range of chemical potential, that is for −𝑀 < 𝜇 < 𝑀 . Moreover
the peak of 𝜒𝑇

𝑥𝑥 increases with increasing 𝛽. It also decreases when 𝑀
increases. Thus, similarly to the Rashba 2DEG [41,42], the thermal spin
susceptibility reveals the well defined energetic window 2𝑀 , for which
it takes nonzero value, with the peak width and height controllable by
material parameters 𝛽 and 𝑀 .

6. Summary and outlook

In this work we have considered the non-equilibrium spin polar-
ization in the two-dimensional electron gas forming at the interface
of symmetric semiconductor quantum wells. Precisely, we presented
analytical and numerical results for the nonmagnetic and magnetic
2DEG in the presence of magnetization oriented perpendicularly to
the plane of the electron gas. We have focused on the role of 𝑘-
cubed Dresselhaus interaction on the system responses. As we have
shown, the cubic Dresselhaus term seems to be important for higher
values of chemical potential, leading to the almost linear decrease
of spin polarization with increasing chemical potential. In magnetic
2DEG the cubic Dresselhaus interaction introduces Berry curvature
oscillations in the 𝐤-space and reduction of its averaged value. This,
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Fig. 8. Berry curvature plotted (a) in the wavevector space and (b) as a function of the
azimuthal coordinate of the wavevector 𝜙, for isoenergetic surface being the solution
of 𝐸+(𝑘, 𝜙) = 𝜖, where 𝜖 = 60 meV. (c) The spin polarizability 𝜒𝑦𝑥 and (d) the intrinsic
anomalous Hall conductivity as a function of chemical potential 𝜇 for a few values of
spin–orbit coupling parameter 𝛾. Effective mass is the same as in Fig. 2 and the other
parameters are indicated.

Fig. 9. Thermally-induced spin polarizability 𝜒𝑇
𝑥𝑥 as a function of (a) chemical

potential 𝜇 for selected values of linear Dresselhaus coupling parameter 𝛽 and fixed
magnetization 𝑀 ; (b) 𝜒𝑇

𝑥𝑥 for a few selected values of 𝑀 when 𝛽 is fixed. The effective
mass is the same as in Fig. 2 and the other parameters are indicated.

in turn, reduces anomalous Hall conductivity. We have also studied
the temperature behavior of CISP. Finally, using Mott-like relation, we
calculated the low-temperature spin polarizability due to heat current.
Notably, the thermal spin polarizability reveals the well-defined range
of chemical potential where it is nonzero. Presented numerical results
and analytical expressions may be useful for interpreting experimental
results and further theoretical study of spin-to-charge interconversion
phenomena in semiconductor structures.
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Appendix A. Self-energy and impurity vertex correction

A.1. Self-energy and relaxation time

The impurity-averaged Green’s function, 𝐺𝑅∕𝐴
𝐤 , can be found from

the Dyson equation:
[
𝐺𝑅∕𝐴
𝐤

]−1
=
[
𝐺0𝑅∕𝐴
𝐤

]−1
− 𝛴𝑅∕𝐴, (41)

where 𝛴𝑅∕𝐴 denotes the impurity self-energy. In case of point-like spin-
independent impurity potential the self-energy can be calculated in
Born approximation based on the following expression:

𝛴𝑅 = 𝑛𝑖𝑉
2
0 ∫ 𝑑2𝐤

(2𝜋)2
𝐺0𝑅
𝐤 , (42)

where 𝑛𝑖 is the impurity concentration and 𝑉0 represents the scattering
potential of the impurities. For the momentum-independent poten-
tial (s-wave scatterers) one can neglect the real part of self-energy,
i.e., 𝛴𝑅 ≈ −i| Im𝛴𝑅|.

Thus, for the nonmagnetic 2DEG with linear Dresselhaus spin–orbit
interaction described by the zero-order Green’s functions:

𝐺0𝑅∕𝐴
𝐤 =𝐺0𝑅∕𝐴

𝐤0 𝜎0 + 𝐺0𝑅∕𝐴
𝐤𝑥 𝜎𝑥 + 𝐺0𝑅∕𝐴

𝐤𝑦 𝜎𝑦, (43a)

𝐺0𝑅∕𝐴
𝐤0 =1

2

[
𝐺0𝑅∕𝐴
+ + 𝐺0𝑅∕𝐴

−

]
, (43b)

𝐺0𝑅∕𝐴
𝐤𝑥 =

−𝑘𝑥
2𝑘

[
𝐺0𝑅∕𝐴
+ − 𝐺0𝑅∕𝐴

−

]
, (43c)

𝐺0𝑅∕𝐴
𝐤𝑦 =

𝑘𝑦
2𝑘

[
𝐺0𝑅∕𝐴
+ − 𝐺0𝑅∕𝐴

−

]
, (43d)

with 𝐺0𝑅∕𝐴
𝑛=± =

[
𝜀 + 𝜇 − 𝐸𝑛 ± i0+

]−1 (𝐸𝑛=± stands for the 𝑛-th eigenvalue),
one finds 𝛴𝑅 ≈ −i𝛤𝜎0, where 𝛤 has the meaning of the relaxation rate,
i.e., 𝛤 = ℏ

2𝜏 and 𝜏 is the relaxation time. The relaxation rate evaluated,
based on Eq. (42), for nonmagnetic 2DEG for 𝜇 > 0 and 𝜇 < 0 is
given by Eqs. (12) and (15) respectively. The impurity-averaged Green’s
functions take the following form: 𝐺𝑅∕𝐴

𝐤 =
[
𝜀 − 𝜇 − 𝐸± ± i𝛤

]−1.

A.2. Impurity vertex correction

The self-consistent equation presented in Fig. 10 has to be solved to
find the impurity spin vertex function 𝑖:

𝑖 = �̂�𝑖 + 𝑛𝑖𝑉
2
0 ∫ 𝑑2𝐤

(2𝜋)2
𝐺𝑅
𝐤 (𝜀𝐹 )𝑖𝐺

𝐴
𝐤 (𝜀𝐹 ), (44)

where impurity-averaged Green’s functions can be expressed as 𝐺𝑋
𝐤 =

𝐺𝑋
𝐤0𝜎0 + 𝐺𝑋

𝐤𝑥𝜎𝑥 + 𝐺𝑋
𝐤𝑦𝜎𝑦 + 𝐺𝑋

𝐤𝑧𝜎𝑧. Assuming the following form of the
impurity vertex function:

𝑖 = 𝑎𝜎0 + 𝑏𝜎𝑥 + 𝑐𝜎𝑦 + 𝑑𝜎𝑧 (45)

and inserting it into Eq. (44) one can find the set of algebraic equations
for the coefficients 𝑎, 𝑏, 𝑐, 𝑑. This set of equations can be written as
follows:
⎡⎢⎢⎢⎢⎣

0
− ℏ

2
0
0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝐴0 − 1 𝐵0 𝐶0 𝐷0
𝐴𝑥 𝐵𝑥 − 1 𝐶𝑥 𝐷𝑥
𝐴𝑦 𝐵𝑦 𝐶𝑦 − 1 𝐷𝑦
𝐴𝑧 𝐵𝑧 𝐶𝑧 𝐷𝑧 − 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐
𝑑

⎤⎥⎥⎥⎥⎦
, (46)

where the coefficients denoted by the capital letters are determined by
certain integrals of the products of Green’s functions, as presented in
the following. In our case for 𝑥, after some algebraic transformations
end evaluation of the integrals one finds the following solution for the
coefficients 𝑎 − 𝑑:

𝑎 = 0, (47a)
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Fig. 10. Ladder diagrams for vertex corrections to the bare spin operator �̂�𝑖 (upper
line) and the diagrammatic representation of the self-consistent impurity-renormalized
vertex equation for the renormalized spin vertex 𝑖.

𝑏 = ℏ
2

𝐶𝑦 − 1
(−𝐵𝑥𝐶𝑦 + 𝐵𝑥 + 𝐵𝑦𝐶𝑥 + 𝐶𝑦 − 1)

, (47b)

𝑐 = ℏ
2

−𝐵𝑦

(−𝐵𝑥𝐶𝑦 + 𝐵𝑥 + 𝐵𝑦𝐶𝑥 + 𝐶𝑦 − 1)
, (47c)

𝑑 = 0, (47d)

where:

𝐵𝑥 = 𝐶𝑦 = 𝑛𝑖𝑉
2
0 ∫ 𝑑2𝐤

(2𝜋)2
[
𝐺𝐴
𝐤0𝐺

𝑅
𝐤0 − 𝐺𝐴

𝐤𝑧𝐺
𝑅
𝐤𝑧
]
, (48a)

𝐶𝑥 = −𝐵𝑦 = 𝑛𝑖𝑉
2
0 ∫ 𝑑2𝐤

(2𝜋)2
i
[
𝐺𝐴
𝐤0𝐺

𝑅
𝐤𝑧 − 𝐺𝐴

𝐤𝑧𝐺
𝑅
𝐤0
]
. (48b)

In the limit of low impurity concentration, the integral 𝐶𝑥 is also
negligible, so the vertex function takes the following form:

𝑥 = ℏ
2

1
(1 − 𝐵𝑥)

𝜎𝑥 = ℏ
2
𝜂𝜎𝑥. (49)

The factor 𝜂 is the renormalization of the spin vertex function and has
the meaning of 𝜏𝑠𝑜∕𝜏 where 𝜏 is the momentum relaxation time and 𝜏𝑠𝑜
is the spin relaxation due to spin–orbit coupling (see also Ref. [6]).

Considering, as an example, the nonmagnetic 2DEG with linear
Dresselhaus SOC one can find 𝜂 analytically. Thus, combining Eq. (48a)
with Eqs. ((43)a–d), one finds the integral 𝐵𝑥 in the following form:

𝐵𝑥 =
𝑛𝑖𝑉 2

0
4 ∫ 𝑑2𝐤

(2𝜋)2
[
𝐺𝐴
+𝐺

𝑅
+ + 𝐺𝐴

+𝐺
𝑅
− + 𝐺𝐴

−𝐺
𝑅
+ + 𝐺𝐴

−𝐺
𝑅
−
]

=
𝑛𝑖𝑉 2

0
8𝛤

𝑚(𝑘+ + 𝑘−)√
𝛽2𝑚2 + 2𝜇𝑚ℏ2

= 1
2

(50)

where relaxation rate, 𝛤 , and Fermi wavevectors, 𝑘±, are defined in
Section 3.1. Accordingly, we get immediately that the renormalization
of the spin vertex function is:

𝜂 = 1
1 − 𝐵𝑥

= 2. (51)

Appendix B. CISP in the presence of linear and cubic Dresselhaus
SOC. Perturbative approach

Here we present some details of the calculations leading to analyt-
ical expressions discussed in Section 3.2. Assuming that cubic Dressel-
haus interaction is only a small perturbation with respect to the linear
one the Hamiltonian describing our system is: ̂ = ̂𝐾𝐼𝑁+̂𝐿𝐷 ≡ ̂0. In
such a case, one can perform series expansion of the Green’s functions
with respect to ̂𝐶𝐷 given by Eq. (3c). Fig. 11 presents Feynman dia-
grams, including impurity vertex functions, that have to be calculated
in this case. The current-induced spin polarization corresponding to
these diagrams can be written as:

𝑆𝑣
𝑖 = −

𝑒𝐸𝑥ℏ
𝜔 ∫ 𝑑2𝐤

(2𝜋)2 ∫ 𝑑𝜀
2𝜋

(
𝑇 𝑣
1 + 𝑇 𝑣

2 + 𝑇 𝑣
3

)
, (52)

where 𝑇 𝑣
1−3 correspond to diagrams (1)–(3) presented in Fig. 11. After

evaluation of the diagrams we get:

𝑇 𝑣
1 =𝑇 𝑣

11 + 𝑇 𝑣
12 + 𝑇 𝑣

13 , (53a)

Fig. 11. Diagrammatic representation of the conductivity up to first order in cubic
Dresselhaus spin–orbit term.

Fig. 12. Schematic energy spectrum for magnetized 2DEG with linear Dresselhaus
spin–orbit interaction.

𝑇 𝑣
11 =𝑓 (𝜀) Tr

{
�̂�𝑖𝐺

𝑅
𝐤 (𝜀 + 𝜔)𝑅𝑅

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝑅
𝐤 (𝜀)

}
, (53b)

𝑇 𝑣
12 = [𝑓 (𝜀 + 𝜔) − 𝑓 (𝜀)]

× Tr
{
�̂�𝑖𝐺

𝑅
𝐤 (𝜀 + 𝜔)𝑅𝐴

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝐴
𝐤 (𝜀)

}
, (53c)

𝑇 𝑣
13 = − 𝑓 (𝜀 + 𝜔) Tr

{
�̂�𝑖𝐺

𝐴
𝐤 (𝜀 + 𝜔)𝐴𝐴

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝐴
𝐤 (𝜀)

}
, (53d)

𝑇 𝑣
2 =𝑇 𝑣

21 + 𝑇 𝑣
22 + 𝑇 𝑣

23 , (54a)

𝑇 𝑣
21 =𝑓 (𝜀) Tr

{𝑅𝑅
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝑅
𝐤 (𝜀 + 𝜔)̂𝐶𝐷

× 𝐺𝑅
𝐤 (𝜀 + 𝜔)𝑅𝑅

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝑅
𝐤 (𝜀)

}
, (54b)

𝑇 𝑣
22 = [𝑓 (𝜀 + 𝜔) − 𝑓 (𝜀)] Tr

{𝐴𝑅
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝑅
𝐤 (𝜀 + 𝜔)̂𝐶𝐷

× 𝐺𝑅
𝐤 (𝜀 + 𝜔)𝑅𝐴

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝐴
𝐤 (𝜀)

}
, (54c)

𝑇 𝑣
23 = − 𝑓 (𝜀 + 𝜔) Tr

{𝐴𝐴
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝐴
𝐤 (𝜀 + 𝜔)̂𝐶𝐷

× 𝐺𝐴
𝐤 (𝜀 + 𝜔)𝐴𝐴

𝐤,𝑥 (𝜀, 𝜔)𝐺
𝐴
𝐤 (𝜀)

}
, (54d)

and

𝑇 𝑣
3 =𝑇 𝑣

31 + 𝑇 𝑣
32 + 𝑇 𝑣

33 , (55a)

𝑇 𝑣
31 =𝑓 (𝜀) Tr

{𝑅𝑅
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝑅
𝐤 (𝜀 + 𝜔)

× 𝑅𝑅
𝐤,𝑥 (𝜀, 𝜔)𝐺

𝑅
𝐤 (𝜀)̂𝐶𝐷𝐺𝑅

𝐤 (𝜀)
}

, (55b)

𝑇 𝑣
32 = [𝑓 (𝜀 + 𝜔) − 𝑓 (𝜀)] Tr

{𝐴𝑅
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝑅
𝐤 (𝜀 + 𝜔)

× 𝑅𝐴
𝐤,𝑥 (𝜀, 𝜔)𝐺

𝐴
𝐤 (𝜀)̂𝐶𝐷𝐺𝐴

𝐤 (𝜀)
}

, (55c)

𝑇 𝑣
33 = − 𝑓 (𝜀 + 𝜔) Tr

{𝐴𝐴
𝐤,𝑖 (𝜀, 𝜔)𝐺

𝐴
𝐤 (𝜀 + 𝜔)

× 𝐴𝐴
𝐤,𝑥 (𝜀, 𝜔)𝐺

𝐴
𝐤 (𝜀)̂𝐶𝐷𝐺𝐴

𝐤 (𝜀)
}

. (55d)

One finds that in the limit of low impurity concentration 𝑅𝑅
𝐤,𝑖 =

𝐴𝐴
𝐤,𝑖 = �̂�𝑖 and 𝑅𝑅

𝐤,𝑥 = 𝐴𝐴
𝐤,𝑥 = �̂�𝑥. Thus, there is no vertex correction
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Fig. 13. The density plots presenting the impurity vertex function, 𝜂, in magnetic system with linear and cubic Dresselhaus SOC as discussed in Section 4.2. The effective mass
is the same as in Fig. 2 and the other parameters are indicated.

to non equilibrium spin polarization for the equations containing the
product of two retarded or two advanced Green’s functions. In the low
temperature limit, 𝑇 → 0, the spin polarization takes the following
form:

𝑆𝑣,(𝑇=0)
𝑥 = 𝑒ℏ

2𝜋
𝐸𝑥 ∫ 𝑑2𝐤

(2𝜋)2
{
Tr

[
�̂�𝑥𝐺

0𝑅
𝐤 (𝜀𝐹 )𝑥𝐺

0𝐴
𝐤 (𝜀𝐹 )

]

+Tr
[𝑥𝐺

0𝑅
𝐤 (𝜀𝐹 )̂𝐶𝐷𝐺0𝑅

𝐤 (𝜀𝐹 )𝑥𝐺
0𝐴
𝐤 (𝜀𝐹 )

]

+Tr
[𝑥𝐺

0𝑅
𝐤 (𝜀𝐹 )𝑥𝐺

𝐴0
𝐤 (𝜀𝐹 )̂𝐶𝐷𝐺0𝐴

𝐤 (𝜀𝐹 )
]}

,

(56)

where 𝑥 = ℏ𝜎𝑥 and 𝑥 = ℏ𝑘𝑥
𝑚 𝜎0 are spin and velocity vertex func-

tions renormalized by scalar point-like impurity potential, and the
impurity-averaged retarded/advanced Green’s function are 𝐺0𝑅∕0𝐴

𝐤 (𝜇) =[
𝜇 − ̂0 ± i𝛤

]−1 where 𝛤 is the relaxation rate. The Eq. (56) leads to the
following formula:

𝑆𝑣,(𝑇=0)
𝑥 = 𝑒ℏ

2𝜋
𝐸𝑥 ∫ 𝑑𝑘 𝑘

(2𝜋)2

[
𝑘𝜋ℏ2

2𝑚
(𝐺𝐴

−𝐺
𝑅
− − 𝐺𝐴

+𝐺
𝑅
+ )

+𝑘4𝜋ℏ2𝛾
8i𝛤𝑚

(
𝐺𝐴
−𝐺

𝐴
− − 𝐺𝑅

−𝐺
𝑅
− + 𝐺𝐴

+𝐺
𝐴
+ − 𝐺𝑅

+𝐺
𝑅
+
)]

,
(57)

where 𝐺𝑅
± =

[
𝜇 − 𝐸± + i𝛤0

]−1 and 𝐺𝐴
± =

[
𝜇 − 𝐸± − i𝛤0

]−1. Finally
one finds the current-induced spin polarization in the perturbative
approach, which for 𝜇 > 0 takes the form:

𝑆𝑣,(𝑇=0)
𝑥 = 𝑒ℏ𝐸𝑥

𝑚𝛽
4𝜋𝛤ℏ2

−
𝑒𝐸𝑥𝑚2𝛾𝜇
2𝜋𝛤ℏ3

. (58)

Appendix C. Magnetic 2DEG with linear Dresselhaus spin–orbit
interaction

The schematic picture of the energy dispersion curves in magnetic
2DEG with linear Dresselhaus spin–orbit interaction (Fig. 12), as dis-
cussed in Section 4.1. The picture presents Fermi wavevectors 𝑘±−, 𝑘∓
that appear in Eqs. (24)–(29).

Appendix D. Magnetic 2DEG with linear and cubic Dresselhaus
spin–orbit coupling: Numerical results for the impurity vertex
function

Fig. 13 presents the numerical results for impurity vertex function
in the most general case considered in this paper, i.e., for magnetic
2DEG with both linear and cubic Dresselhaus spin–orbit coupling. The
results clearly show that the coupling parameter of cubic Dresselhaus
spin–orbit coupling does not affect qualitatively the impurity vertex
function.

Appendix E. Anomalous Hall conductivity

The formalism introduced in Section 2 can be applied to the anoma-
lous Hall conductivity. Thus, the general expression describing the off-
diagonal element of the conductivity tensor within Matsubara Green’s
function formalism has the following form:

𝜎𝑦𝑥(i𝜔𝑚) = 𝛯
∑
𝐤,𝑛

Tr
{
�̂�𝑦𝐺𝐤(i𝜀𝑛 + i𝜔𝑚)̂𝐀(i𝜔𝑚)𝐺𝐤(i𝜀𝑛)

}
. (59)

Note that we keep the same notation as in Section 2. Similar proce-
dure as described in this paper for CISP leads to the anomalous Hall
conductivity in the dc limit:

𝜎𝑦𝑥 = 𝜎𝑦𝑥[𝑓 (𝐸±)] + 𝜎𝑦𝑥[𝑓 ′(𝐸±)], (60)

where

𝜎𝑦𝑥[𝑓 (𝐸±)] = − 𝑒2

ℏ
∑
𝑛=±∫

𝑑2𝐤
(2𝜋)2

𝐵𝑧
𝑛𝑓 (𝐸𝑛) (61)

and

𝜎𝑦𝑥[𝑓 ′(𝐸±)] =
𝑒2

ℏ
∑
𝑛=±∫

𝑑2𝐤
(2𝜋)2

𝛤 2

2𝜉2𝐤

𝑀(𝛽2 − 𝛽𝛾𝑘2 − 3𝛾2𝑘2𝑥𝑘
2
𝑦)

𝜉2𝐤 + 𝛤 2
𝑓 ′(𝐸𝑛). (62)
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The above expressions are analogous to Eqs. (35)–(38) for the 𝑦-
component of spin polarization. The dissipative part of anomalous Hall
conductivity vanishes in the limit of 𝛤 → 0 and 𝜎𝑦𝑥 ≈ 𝜎𝑦𝑥[𝑓 (𝐸±)].
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Discussion
Anomalous Hall effect

Eq. (61) in A-4, the intrinsic anomalous Hall conductivity (AHC) in a magnetized 2DEG with
k-linear Dresselhaus SOI, can be written as:

σII
xy = −e

2Mβ2

2πℏ

�
dk k

f(E+)− f(E−)

2(M2 + β2k2)3/2
. (4.7)

The above result can be compared with the intrinsic AHC for a magnetized 2DEG with a k-linear
Rashba-type spin-orbit interaction, as analyzed in the work by Dugaev et al. [154]. It turns out
that the result aligns in both models (c.f. eq. (4.7) and eq. (25) in [154]). Therefore, one can
conclude that for both types of spin-orbit interaction – Rashba and Dresselhaus – the intrinsic
transverse charge response in a magnetized 2DEG is the same, regardless of the sign, which is
consistent with [153].

In the low-temperature limit, eq. (4.7) is formulated through the analytical expression:

σ(T=0)
xy =

e2M

4πℏ
×



(
1

λk+
− 1

λk−

)
for µ ≥M,(

1
M

− 1
λk−

)
for −M ≤ µ < M,(

1
λ
k+−

− 1
λ
k−−

)
for − εβ

2

(
1 + M2

ε2β

)
≤ µ < −M.

(4.8)

If both forms of Dresselhaus SOI are included, i.e., β ̸= 0 and γ ̸= 0, the intrinsic AHC is
expressed in the form [107]:

σxy = −e
2M

2πℏ

�
dk k

β(β − γk2)− 3γ2k2xk
2
y

2(M2 + β2k2)3/2
[f(E+)− f(E−)] . (4.9)

Summary

Applying an external electric field in (001)-plane to a 2D system with symmetric quantum well
grown in the [001]-direction, modeled by a 2DEG with Dresselhaus SOI, results in an in-plane
carrier’s spin orientation. In a nonmagnetic system, the spins are polarized parallel to the elec-
tric field, and the non-equilibrium current-induced spin polarization (CISP) appears. Figure 4.3
illustrates the longitudinal spin polarizability3, χxx, plotted as a function of chemical poten-
tial, µ, in the weak cubic Dresselhaus SOI limit, βk ≫ γk3, (solid orange and dashed blue
lines), and beyond this limit (solid red and dashed green lines). Solid (dashed) lines represent
cases with (without) the inclusion of the impurity vertex correction. Zero-temperature results
are shown in Figures 4.3a,c, while finite-temperature outcomes are depicted in Figures 4.3b,d.

3Spin polarizability (the response function) is expressed via spin polarization, Sx, as: χxx = Sx/(eEx), where
e – charge of an electron, Ex – amplitude of an external electric field in x-direction.
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Figure 4.3: Spin polarizability, χxx, as a function of chemical potential, µ, with (a),(b) corresponding to
a nonmagnetic 2DEG and (c),(d) including an out-of-plane exchange field in the system. Solid (dashed)
lines represent outcomes with (without) impurity vertex correction. In (a) and (c), χxx is obtained using
a formula derived for the zero-temperature limit, while (b) and (d) display χxx for T = 20 K, calculated
using the finite-temperature Matsubara-Green’s functions formalism. The solid orange and dashed blue
lines present the results in the weak cubic Dresselhaus SOC limit, βk ≫ γk3.

Figures 4.3a,b display χxx for a nonmagnetized 2DEG, and Figures 4.3c,d present results for
a magnetized 2DEG. One can observe, that the cubic term of Dresselhaus SOI reduces the CISP
as the chemical potential, µ, increases. Moreover, in the limit of weak cubic Dresselhaus SOI,
βk ≫ γk3, there is an underestimation of the CISP, which corresponds to an overestimation of
the influence of the cubic Dresselhaus SOC term (this is illustrated by the differences between
the dashed lines and the solid lines in each plot of Figure 4.3). The influence of the impurity
vertex correction on χxx indicates, that the scattering processes at short-range spin-independent
impurities increase the dissipative CISP component (parallel to the applied electric field) up to
twice when spin-orbit coupling dominates the exchange field (Fig. 4.3a,b).

Additionally, in a system with an out-of-plane exchange interaction, a response perpendicular
to the driving force emerges. Specifically, the transverse components of non-equilibrium spin
polarization and anomalous Hall conductivity are identified. The main contribution to both
of these transverse effects originates from the states in the Fermi sea, which makes them non-
dissipative, and having an intrinsic character linked to the Berry curvature.

If a temperature gradient is applied to the system instead of an electric field, thermally-induced
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spin polarization (TISP) appears. The dissipative component of TISP, determined by the states
at the Fermi level, is connected through a Mott-like relation with electrically-induced spin po-
larization.The TISP takes non-zero values in the energy gap and can be easily tuned with the
out-of-plane exchange field. In turn, TISP vanishes for higher µ, where the cubic Dresselhaus
SOI influences the results; thus, the cubic term does not distinctly modify TISP. Furthermore, the
behavior of TISP is similar to the case of a 2DEG trapped in an asymmetric quantum well, where
Rashba-type SOC occurs. The key difference is that the dissipative component of the spin po-
larization in the Rashba model is not perpendicular but parallel to the driving force [128].
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4.5 Reprint of the article A-5

The manuscript titled "Bilinear magnetoresistance in a 2DEG with isotropic cubic Rashba spin-
orbit interaction" provides analytical results on the magnetoresistance term that scales linearly
with both external electric and magnetic fields in a 2DEG with isotropic cubic form of Rashba
spin-orbit interaction.

The bilinear magnetoresistance (BMR) term is evoked by an effective spin-orbital field that cou-
ples to the electron spin. The spin-orbital field, in turn, originates from the non-equilibrium
spin polarization induced by the external electric field. Here, Green’s functions formalism is
utilized, where the external in-plane magnetic field is treated as a perturbation. This assumption
is justified by the fact that the considered effect, BMR, depends on the presence of Rashba SOI
in the system and is expected to manifest even in a weak magnetic field.

It was found that the BMR signal varies sinusoidally with the angle of the in-plane magnetic
field, reaching its maximum amplitude when the magnetic field is applied perpendicular to the
electric field. Furthermore, the BMR contribution is most pronounced at lower carrier con-
centrations and increases with a stronger Rashba spin-orbital field. Finally, while a stronger
magnetic field enhances the BMR values, observing the BMR effect does not require a large
magnetic field.
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4.6 Reprint of the article A-6

The manuscript entitled "Nonlinear Hall effect in isotropic k-cubed Rashba model: Berry-
curvature-dipole engineering by in-plane magnetic field" is devoted to the nonlinear anomalous
Hall effect, which is controlled via an in-plane magnetic field in a model describing a magnetized
2DEG with isotropic cubic form of Rashba spin-orbit interaction.

Here the role of both the intrinsic and dissipative components of the linear and nonlinear contri-
butions to the anomalous Hall conductivity (AHC) are investigated. The intrinsic component,
related to the states in the Fermi sea, originates in Berry curvature and Berry curvature dipole
for linear and nonlinear AHC components, respectively.

It was found that in low in-plane magnetic field regime (the value of the in-plane magnetic field
is lower than the out-of-plane magnetization component), the linear AHC is dominated by the
intrinsic part, while for higher values of the in-plane magnetic field, the dissipative component
originating from the states at the Fermi level begins to influence the results. Interestingly, in the
case of the nonlinear component of the AHC, the dissipative component governs the transport
in both regimes.

Furthermore, the intrinsic part of the linear AHC reveals π-periodicity with respect to the angle
of the in-plane magnetic field, while the nonlinear AHC exhibits a 2π-periodicity with the in-
plane magnetic field angle. It is worth noting that the AHC is governed by the intrinsic part
when the in-plane magnetic field is applied perpendicular to the external electric field.
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Summary

The subject of this doctoral dissertation is the transport properties of a two-dimensional elec-
tron gas (2DEG) characterized by cubic forms of Rashba and Dresselhaus spin-orbit interac-
tions. The main goal of the thesis was to theoretically investigate the intrinsic contribution to
transport effects arising from the band structure of the analyzed system. The study focused on
non-equilibrium spin polarization in the system, linear and nonlinear spin-orbit driven trans-
port phenomena from the family of Hall effects, along with their thermal counterparts, such as
the Nernst effect and thermally-induced spin polarization. Additionally, the interplay between
spin-orbit interaction and the exchange field in magnetic systems was explored.

The cubic forms of Rashba spin-orbit interaction describe a 2D electron gas that forms at inter-
faces or surfaces of perovskite oxides. Recently, these materials have garnered scientific atten-
tion due to their interesting physical properties, including metallic conductivity, ferromagnetism,
low-temperature superconductivity, and large spin-charge interconversion effect, making them
promising for constructing spintronic devices. Additionally, the isotropic cubic Rashba model
also applies to a 2D hole gas in p-doped semiconductor heterostructures. In turn, semiconduc-
tor heterostructures characterized by symmetric quantum wells exhibit the Dresselhaus type of
spin-orbit interaction. Here, we consider the influence of the cubic Dresselhaus term on transport
properties, particularly significant at higher chemical potentials.

The dissertation is based on six articles published in peer-reviewed journals, preceded by the
introductory part. The introduction to the basic concepts utilized in the thesis provided in Chap-
ter 1, concerns the investigated two-dimensional electron gas and the idea of spin-orbit interac-
tion, focusing on the cubic forms of Rashba and Dresselhaus types. Chapter 2 introduces the
theoretical method used in the investigations, namely Matsubara-Green’s functions formalism
and diagrammatic approach. Chapter 3 is dedicated to the transport phenomena considered in
the dissertation, i.e., non-equilibrium spin polarization, linear anomalous, Nernst and spin Hall
effects, nonlinear Hall effect, and bilinear magnetoresistance. In Chapter 4, the publications that
constitute the thesis are presented along with short summaries.

The spin Hall effect in a magnetized and a nonmagnetized 2D system with an isotropic cubic
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form of Rashba SOI is considered in the article A-1. It was shown that an out-of-plane oriented
exchange field suppresses the spin Hall response.

Articles A-2 and A-3 were dedicated to the linear anomalous Hall and Nernst effects. The anal-
ysis of the intrinsic anomalous Hall effect in a 2D system with cubic forms of Rashba spin-orbit
interaction and out-of-plane oriented magnetization field (sec. 3.2.1) indicates that the contribu-
tion from the states in the Fermi sea related to the Berry curvature dominates in a weak-scattering
regime and when the impurity concentration in the system is low. The anomalous Hall effect is
most pronounced when the strength of the cubic Rashba SOI and exchange interaction are com-
parable. Moreover, the anisotropy of the Fermi contours in wavevector-space in the considered
models does not affect the results qualitatively. The examination of the intrinsic anomalous Hall
effect in a 2D system with both linear and cubic forms of Dresselhaus SOI indicates the main
intrinsic contribution that is robust against impurities and signifies the diminishing influence of
the cubic term on the value of the anomalous Hall effect at higher chemical potentials.

Investigation of the anomalous Nernst effect in 2DEG with cubic forms of Rashba SOI (A-2
and A-3) shows that the Kubo formula is not valid at low temperature as long as the orbital
magnetization current is not considered. However, using the Mott and Onsager relations one
can treat the anomalous Hall effect as a thermal counterpart of the anomalous Hall effect. For
higher chemical potential, experimentally observed change of the sing preceding the magnetic
phase transition indicated by the Curie temperature, was found. It appears when the strength of
the Rashba and saturation magnetization interactions are comparable.

The current-induced non-equilibrium spin polarization (CISP) in a symmetric quantum well
growing in [001] crystallographic direction with both linear and cubic forms of Dresselhaus
spin-orbit interactions was investigated in the article A-4. The study reveals that at higher chem-
ical potential, µ, the cubic term of the Dresselhaus reduces the spin polarization in the system
by 10%-30% compared to the µ-independent relation that arises when only the linear term is
present. Furthermore, incorporating an out-of-plane exchange interaction, possibly originating
from the magnetic substrate, introduces an additional transverse contribution to the spin polar-
ization from the states in the Fermi sea. Additionally, the scattering processes on short-range
spin-independent impurities do not affect the intrinsic contribution. However, these processes al-
ter the dissipative component of CISP by a factor of 2 when the spin-orbit interaction dominates
the exchange field.

Moreover, in the paper A-4 the analysis of thermally-induced spin polarization (TISP) in mag-
netized 2DEG with linear and cubic forms of Dresselhaus SOI is provided. It was found that the
dissipative component of the TISP, determined by the states at the Fermi level, is linked with
the current-induced spin polarization via Mott relation. TISP is most pronounced in the energy
gap and can be tuned with a magnetization field. Thus, the cubic Dresselaus SOI term, which
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influences the results at higher Fermi levels (higher carriers density), does not modify the TISP
distinctly.

In the manuscript A-5, bilinear magnetoresistance in a 2DEG with an isotropic cubic form of
Rashba SOI and in-plane magnetic field applied is considered. Here, using Green’s functions for-
malism, the analytical results were obtained. The bilinear term of magnetoresistance is evoked
by the non-equilibrium spin polarization in the system and is the most pronounced in a weak
magnetic field regime.

In the work A-6, the role of both the intrinsic and dissipative components of the linear and
nonlinear contributions to the anomalous Hall conductivity (AHC) in a magnetized 2D electron
gas with isotropic cubic form of Rashba SOI is investigated. Two regimes were examined: the
low in-plane magnetic field regime, where the value of the in-plane magnetic field is lower than
the out-of-plane magnetization component, and the opposite situation. It was found that in the
low in-plane magnetic field regime, the linear AHC is dominated by the intrinsic part, originating
in the Berry curvature. In turn, for higher values of the in-plane magnetic field, the dissipative
component, related to the states at the Fermi level, begins to influence the results. Interestingly,
for the nonlinear component of the AHC, the dissipative component governs the transport in
both regimes.

Moreover, utilizing the Zeeman-field engineering concept, it was shown that in the investigated
system, the nonlinear Hall effect can be induced and tuned by the value and angle of the in-
plane magnetic field. Furthermore, the intrinsic part of the linear AHC reveals a π-periodicity
with respect to the angle of the in-plane magnetic field, while the nonlinear AHC, originating
in the Berry curvature dipole, exhibits a 2π-periodicity with the in-plane magnetic field angle.
Finally, the AHC is governed by the intrinsic part when the in-plane magnetic field is applied
perpendicular to the external electric field.

The analyzed linear and nonlinear transport phenomena are known in the literature and have
mostly been studied in the systems with linear form of Rashba and Dresselhaus spin-orbit inter-
action. In contrast, the presented thesis contributes to the field by describing these phenomena
in systems where the cubic form of Rashba or Dresselhaus spin-orbit interaction exists.

The cases where the cubic form of SOC leads to different results than the linear form of SOC, as
seen in the case of the spin Hall effect, have been analyzed. Here, in the presence of randomly
distributed spin-independent impurities, the SHE vanishes in a 2DEG with the linear form of
Rashba, but it remains unaffected when the cubic form of Rashba SOC is present (article A-1).
Additionally, there are cases where the linear and different cubic forms of Rashba SOC yield
similar outcomes, such as the anomalous Hall effect described in the papers A-2 and A-3. In
addition, both forms of cubic Rashba SOC, isotropic and anisotropic, are analyzed, and it was
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shown that both lead to similar results in the case of the anomalous Hall and Nernst effects (A-2
and A-3). Moreover, the influence of the cubic Dresselhaus SOC term on transport properties is
presented in a system where the linear form of SOC also exists, see A-4.

In general, the results presented in the dissertation cover transport phenomena described by zero-
temperature analytical formulas, which are important for the conceptual description of a system,
as well as the numerical results for finite-temperatures. Moreover, the analytical outcomes facil-
itate the description of the transport properties of the system with exact expressions, where the
dependencies on system parameters and external forces are directly visible. Additionally, such
results allow the study of the system properties without the influence of temperature smearing.
On the other hand, the numerical results in the finite-temperature regime provide the opportunity
to understand how temperature affects the results, which is significant from both an experimental
and an applied perspective.

However, it should be noted that the results were derived using effective Hamiltonians, describ-
ing only a part of the band structure. On the one hand, the effective Hamiltonian allows for the
description of classes of structures rather than individual systems and aids in identifying the min-
imal set of significant parameters needed to effectively describe the physical system. However, it
cannot accurately model the system at higher carrier concentration, where other bands, not cov-
ered by the effective model, influence the results. Thus, an interesting extension of the presented
results could be achieved using the first-principles (ab initio) electronic structure methods, where
the whole band structure is examined. This approach allows for observing how the other bands,
at higher carrier concentrations, influence the obtained results. Moreover, the first-principles
method based on density functional theory produces outcomes for specific materials, which, at
low carrier concentrations, can be compared with the obtained results.

Another way to extend the presented studies is to include spin-dependent scattering processes,
such as side-jump and skew-scattering, in the considered models. This extension allows for
investigating how phenomena like the spin or anomalous Hall effects are modified, and for com-
paring the results with those known in the literature for systems with k-linear Rashba SOI [154,
236].

Recently, nonlinear effects have become a hot topic due to their sensitivity to breaking spatial
symmetry, which enables potential applications in material characterization and current rec-
tification. Moreover, the unidirectional response offers a promising platform for constructing
spin-logic devices. The thesis covers the nonlinear Hall effect and bilinear magnetoresistance in
systems with a cubic form of Rashba SOC. However, the study could be extended to explore the
intrinsic contribution to the temperature-induced transport effects in the nonlinear regime [214,
215].
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In summary, the thesis contributes to the field of two-dimensional spintronics by characterizing
the transport properties of a 2DEG with cubic forms of the intrinsic spin-orbit interaction. Exist-
ing scientific research primarily addresses the linear forms of Rashba and Dresselhaus spin-orbit
interaction. In contrast, the results presented in the dissertation focus on transport in systems
with the cubic forms of these interactions. Combining the knowledge from the literature with
the thesis outcomes may help to distinguish the form of intrinsic spin-orbit interaction based on
the transport properties of the system, such as linear and nonlinear Hall effects and their thermal
counterparts.
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