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Z powodu swoich właściwości fale spinowe są 
uważane za obiecującą bazę pod nowe 
technologie przetwarzania informacji. Wynika to z 
faktu, iż są one niskoenergetycznymi oscylacjami, 
nie doznają rozpraszania ciepła Joula oraz mają 
znacznie mniejsze długości fal w porównaniu do 
mikrofal. Wykorzystanie fal spinowych jest 
hamowane przez ich wysokie tłumienie oraz 
czułości na fluktuacje termiczne. Dodatkowo, wciąż 
potrzebne jest opracowywanie nowych metod 
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rozpraszania wiązek fal spinowych. Następstwem 
ich jest powstanie nowych wiązek o zmienionej 
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częstotliwości, które propagują się pod innymi 
kątami oraz doznają przesunięcia przestrzennego 
na interfejsie. Dodatkowo, gdy odpowiednie 
warunki są spełnione, w układzie zaobserwowano 
występowanie kaskady efektów nieliniowych, 
których jednym z rezultatów jest powstanie 
płaskich fal spinowych propagujących się w 
układzie. Badania stanowiące rdzeń dysertacji są 
zawarte w pięciu publikacjach naukowych. 
Przedstawione publikacje są poprzedzone opisem 
magnoniki i teorii symulacji numerycznych. 
Dysertacja jest zakończona krótkim 
podsumowaniem badań oraz wykazem osiągnięć 
Autora. 

Streszczenie pracy w jęz. 
angielskim (max 1400 
znaków) 

Spin waves are coherent magnetic oscillations, the 
field of physics describing them is called 
magnonics. Spin waves are considered a 
promising replacement for, or addition to, current 
electronic technologies. This potential is due the 
fact that spin waves represent low-energy 
oscillations, lack of Joule heating, and wavelengths 
smaller in comparison to microwaves. However, to 
fully exploit the potential of spin waves, several 
obstacles must be overcome, including high 
magnetic damping, sensitivity to thermal 
fluctuations, the limited number of methods for 
spin-wave excitation, and new methods for spin-
wave propagation control. This thesis addresses 
the last of mentioned challenges. New spin-wave 
propagation control methods have been developed 
by investigations of linear and nonlinear resonance 
effects in spin-wave dynamics. Linear resonance 
effects, demonstrated in magnonic interferometers, 
provide control over the spin-wave. Nonlinear 
effects were observed during the inelastic 
scattering of spin waves, producing new spin 
waves with altered frequencies that propagate at 
different angles and experience lateral shifts. 
Moreover, under specific conditions, a cascade of 
nonlinear effects is triggered, resulting in the 
generation of plane spin waves. The findings are 
presented across five publications that constitute 
the core of the thesis. The publications are 
preceded by descriptions of magnonics and 
micromagnetic employed in the investigations. The 
thesis concludes with a summary offering an 
outlook for future investigations and a list of the 
author's achievements. 
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Abstract 
 

Spin waves are coherent magnetic oscillations whose quanta are called magnons; thus, the 

field of physics describing spin waves is known as magnonics. Spin waves are considered to be a 

promising replacement for, or addition to, current electronic technologies. This potential stems from 

the fact that spin waves represent low-energy oscillations, they do not cause heat dissipation due to 

Joule heating, and their wavelengths are smaller compared to microwaves of the same frequency. 

However, to fully exploit the potential of spin waves, several obstacles must be overcome, including 

high magnetic damping in most magnetic media, sensitivity of low-energy oscillations to thermal 

fluctuations, the limited number of reliable methods for spin-wave excitation and detection, and new 

methods for spin-wave propagation control. 

This thesis addresses the last of these challenges by presenting new methods for controlling 

spin-wave propagation. These methods have been developed through investigations of linear and non-

linear resonance effects in spin-wave dynamics. Linear resonance effects, demonstrated in magnonic 

interferometers, provide control over the spin-wave phase and enable redirection of spin waves by 

exciting an interferometer’s eigenmode by the obliquely incident spin wave. Non-linear effects were 

observed during the inelastic scattering of spin waves on a localized edge mode, producing new spin 

waves with altered frequencies that propagate at different angles, experience lateral shifts analogous 

to the Goos-Hänchen effect and amplitude change analogous to Wood’s anomaly. Moreover, under 

specific conditions, a cascade of non-linear effects is triggered, resulting in the generation of plane spin 

waves at the system’s edge. 

The findings are presented across five publications that constitute the core of this thesis. 

Additionally, two other publications concerning spin waves, which do not directly address the primary 

research question, are also briefly discussed. The publications are preceded by synthetic descriptions 

of magnonics and micromagnetic simulations necessary for a full understanding of the presented 

results. The thesis concludes with a brief summary offering an outlook for future investigations and a 

list of Author’s achievements. 

 

 

 

 

 

 

 

 

 

 

 



Streszczenie 
 

Fale spinowe są koherentnymi oscylacjami namagnesowania, których kwanty nazywane są 

magnonami. Stąd pochodzi nazwa magnonika, która odnosi się do działu fizyki zajmującego się falami 

spinowymi. Fale spinowe, z powodu swoich właściwości, są uważane za obiecujący nośnik informacji 

w nowych technologiach komunikacji i przetwarzania danych, które mogą wyprzeć technologie 

bazujące na elektronach bądź też wspomóc starsze technologie. Wynika to z faktu, iż fale spinowe są 

niskoenergetycznymi oscylacjami, nie powodują rozpraszania energii w postaci ciepła Joula oraz 

cechują się znacznie krótszymi długościami fal dla częstotliwości mikrofalowych od fal 

elektromagnetycznych. Jednakże wykorzystanie potencjału fal spinowych jest hamowane przez ich 

wysokie tłumienie w większości znanych materiałów magnetycznych, ich czułości na fluktuacje 

termiczne medium w którym się przemieszczają oraz ograniczonej liczbie metod na efektywne 

wzbudzenie i detekcję fal spinowych. Dodatkowo, wciąż potrzebne jest opracowywanie nowych metod 

kontroli propagowania się fal spinowych bazujących na geometrii elementów układów magnonicznych 

lub zmianie zewnętrznych parametrów układu. 

W tej dysertacji są przedstawione nowe metody kontroli propagowania się fal spinowych, 

które bazują na liniowych i nieliniowych efektach rezonansowych w dynamice fal spinowych. Liniowe 

efekty rezonansowe, zademonstrowane za pomocą  magnonicznych interferometrów, zapewniają 

kontrolę nad fazą fal spinowych oraz zmianą kierunku ich propagowania się poprzez wzbudzanie 

stanów własnych interferometrów przy ukośnym padaniu fal spinowych. Efekty nieliniowe zostały 

zaobserwowane podczas nieelastycznego rozpraszania wiązki fal spinowych na modzie 

zlokalizowanym na krawędzi układu magnonicznego. Następstwem tychże efektów nieliniowych jest 

powstanie nowych wiązek o zmienionej częstotliwości, które propagują się pod innymi kątami, doznają 

przesunięcia przestrzennego na krawędzi układu, co jest magnonicznym analogiem efektu Goosa-

Hänchen, oraz dochodzi do obniżenia amplitudy odbitych wiązek co jest magnonicznym 

odpowiednikiem anomalii Wooda. Wielkości rezultatów tych efektów zależą od częstotliwości i 

wektora falowego zlokalizowanego modu na którym następuje rozproszenie wiązek padających. 

Dodatkowo, gdy odpowiednie warunki opisane w dysertacji są spełnione w układzie zaobserwowano 

występowanie kaskady efektów nieliniowych, których jednym z wyników jest powstanie w układzie 

płaskich fal spinowych propagujących się od krawędzi układu. 

Badania stanowiące rdzeń tej dysertacji są zawarte w pięciu publikacjach naukowych 

załączonych w niniejszej pracy. Dodatkowe dwie publikacje z zakresu badań nad innymi aspektami fal 

spinowych są również krótko przedstawione, nie należą one jednak do głównych badań w ramach tej 

dysertacji. Przedstawione publikacje są poprzedzone syntetycznym wstępem do magnoniki i teorii 

symulacji numerycznych potrzebnym do zrozumienia metodologii i wyników. Dysertacja jest 

zakończona krótkim podsumowaniem badań, planami na przyszłość oraz wykazem osiągnięć Autora 

podczas studiów doktorskich. 
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the way. Nikodem Leśniewski for being an office-mate one can only dream of, always reacting
to the memes I have sent, having great conversations about science and shared interests, and
playing the guitar together on a couple of occasions. Katarzyna Kotus-Kozyra for being a great
friend, all of help I have got from her, and all conversations about science and life in general
that we had. Sara Memarzadeh for brining a great atmosphere in the group and for introducing
me to the Persian cuisine. I would also like to thank the other members of my group for all
of the great time during my PhD studies, during breaks next to the coffee machine, meetings
outside the university and conference trips; in this number especially Mathieu Moalic, Grzegorz
Centała, and Uladzislau Makartsou. I would also like to thank my friends from the earlier stages
of my university education, especially Hanna van Loon, Marcin Buszka, Adam Zenker, Viktoriia
Drushlyak, Yaroslav Harkavyi, and Bassam Mufeed for all of their friendship, help, and the good
times we shared together. Before thanking my family and friends outside of university life, I
would also like to express my gratitude to all the teachers who set me on the right path to the
place where I am today. I want to thank Krzysztof Kopij, who ignited my interest in physics. I
am especially grateful to Danuta and Jerzy Baranowski for providing me with a solid foundation
in mathematics and physics, which opened the path to university for me, and for creating a



vi

family-like atmosphere in the high school, thanks to which I have only good memories of that
time.

Now, I would like to thank my parents, Marzanna and Czesław, for their unwavering love,
encouragement, and support throughout my life and during my time at university. I also wish to
thank my sister, Natalia, for her constant support. And last but not least, I am deeply grateful to
my best friend, Mikołaj, who was always there whenever I needed help, and who helped me stay
(relatively) sane during my PhD journey.



Abstract

Spin waves are coherent magnetic oscillations whose quanta are called magnons; thus, the
field of physics describing spin waves is known as magnonics. Spin waves are considered to
be a promising replacement for, or addition to, current electronic technologies. This potential
stems from the fact that spin waves represent low-energy oscillations, they do not cause heat
dissipation due to Joule heating, and their wavelengths are smaller compared to microwaves
of the same frequency. However, to fully exploit the potential of spin waves, several obstacles
must be overcome, including high magnetic damping in most magnetic media, sensitivity of
low-energy oscillations to thermal fluctuations, the limited number of reliable methods for
spin-wave excitation and detection, and new methods for spin-wave propagation control.

This thesis addresses the last of these challenges by presenting new methods for controlling
spin-wave propagation. These methods have been developed through investigations of linear and
non-linear resonance effects in spin-wave dynamics. Linear resonance effects, demonstrated
in magnonic interferometers, provide control over the spin-wave phase and enable redirection
of spin waves by exciting an interferometer’s eigenmode by the obliquely incident spin wave.
Non-linear effects were observed during the inelastic scattering of spin waves on a localised
edge mode, producing new spin waves with altered frequencies that propagate at different angles,
experience lateral shifts analogous to the Goos-Hänchen effect and amplitude change analogous
to Wood’s anomaly. Moreover, under specific conditions, a cascade of non-linear effects is
triggered, resulting in the generation of plane spin waves at the system’s edge.

The findings are presented across five publications that constitute the core of this thesis.
Additionally, two other publications concerning spin waves, which do not directly address the
primary research question, are also briefly discussed. The publications are preceded by synthetic
descriptions of magnonics and micromagnetic simulations necessary for a full understanding of
the presented results. The thesis concludes with a brief summary offering an outlook for future
investigations and a list of Author’s achievements.





Streszczenie

Fale spinowe są koherentnymi oscylacjami namagnesowania, których kwanty nazywane są
magnonami. Stąd pochodzi nazwa magnonika, która odnosi się do działu fizyki zajmującego
się falami spinowymi. Fale spinowe, z powodu swoich właściwości, są uważane za obiecujący
nośnik informacji w nowych technologiach komunikacji i przetwarzania danych, które mogą
wyprzeć technologie bazujące na elektronach bądź też wspomóc starsze technologie. Wynika to
z faktu, iż fale spinowe są niskoenergetycznymi oscylacjami, nie powodują rozpraszania energii
w postaci ciepła Joula oraz cechują się znacznie krótszymi długościami fal dla częstotliwości
mikrofalowych od fal elektromagnetycznych. Jednakże wykorzystanie potencjału fal spinowych
jest hamowane przez ich wysokie tłumienie w większości znanych materiałów magnetycznych,
ich czułości na fluktuacje termiczne medium w którym się przemieszczają oraz ograniczonej
liczbie metod na efektywne wzbudzenie i detekcję fal spinowych. Dodatkowo, wciąż potrzebne
jest opracowywanie nowych metod kontroli propagowania się fal spinowych bazujących na
geometrii elementów układów magnonicznych lub zmianie zewnętrznych parametrów układu.

W tej dysertacji są przedstawione nowe metody kontroli propagowania się fal spinowych,
które bazują na liniowych i nieliniowych efektach rezonansowych w dynamice fal spinowych.
Liniowe efekty rezonansowe, zademonstrowane za pomocą magnonicznych interferometrów,
zapewniają kontrolę nad fazą fal spinowych oraz zmianą kierunku ich propagowania się poprzez
wzbudzanie stanów własnych interferometrów przy ukośnym padaniu fal spinowych. Efekty
nieliniowe zostały zaobserwowane podczas nieelastycznego rozpraszania wiązki fal spinowych
na modzie zlokalizowanym na krawędzi układu magnonicznego. Następstwem tychże efektów
nieliniowych jest powstanie nowych wiązek o zmienionej częstotliwości, które propagują się pod
innymi kątami, doznają przesunięcia przestrzennego na krawędzi układu, co jest magnonicznym
analogiem efektu Goosa-Hänchen, oraz dochodzi do obniżenia amplitudy odbitych wiązek co
jest magnonicznym odpowiednikiem anomalii Wooda. Wielkości rezultatów tych efektów zależą
od częstotliwości i wektora falowego zlokalizowanego modu na którym następuje rozproszenie
wiązek padających. Dodatkowo, gdy odpowiednie warunki opisane w dysertacji są spełnione
w układzie zaobserwowano występowanie kaskady efektów nieliniowych, których jednym z
wyników jest powstanie w układzie płaskich fal spinowych propagujących się od krawędzi
układu.

Badania stanowiące rdzeń tej dysertacji są zawarte w pięciu publikacjach naukowych załączo-
nych w niniejszej pracy. Dodatkowe dwie publikacje z zakresu badań nad innymi aspektami fal
spinowych są również krótko przedstawione, nie należą one jednak do głównych badań w ramach



x

tej dysertacji. Przedstawione publikacje są poprzedzone syntetycznym wstępem do magnoniki i
teorii symulacji numerycznych potrzebnym do zrozumienia metodologii i wyników. Dysertacja
jest zakończona krótkim podsumowaniem badań, planami na przyszłość oraz wykazem osiągnięć
Autora podczas studiów doktorskich.
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Chapter 1

Introduction to magnetism and magnonics



2 Introduction to magnetism and magnonics

Magnetic interactions were known to the humankind from the dawn of time. The tales of
stones that attract one other via an unknown force come from the antiquity and can be found in
the texts of ancient philosophers such as Plato and Aristotle. As there was no explanation on the
nature of magnets many, as it is usual among people, attributed magical properties to them. Thus
magnetism for a long time remained shrouded in mystery with notable exceptions of medieval
physicist Petrus Peregrinus and renaissance physicist William Gilbert who left behind extensive
descriptions of their experiments with magnets. Later, in the time of Scientific Revolution and
Enlightenment, magnetism or more precisely electromagnetism became one of the primary topic
of investigations for many physicists whose name become etched in history such as Gauss,
Coulomb, Ampėre, Oersted, Faraday, Maxwell. However, the proper explanation of the nature
of magnetism came from quantum physics and can be found in works of Pauli, Hund, Ising,
Lenz, Weiss, Curie, Néel to name a few. Modern investigations on magnetism focus heavily on
magnetisation precession as a new mean for data transmission and processing. The basis of these
investigations come from seminal works of von Neumann, Landau, Lifshitz, Gilbert, Aharoni,
Thiele, Slonczewski and many more.

This Chapter starts with a compact introduction to the concept of magnetism with its origin.
Then the description of magnetic wave propagation is provided with its properties. The Chapter
ends with a brief presentation of certain non-linear processes observed in magnetic wave motion.

1.1 Origin of magnetism

The source of magnetism lies in the structure of an atom. To be more precise, the dual angular
momentum of electrons which are one of the atom’s building elements. The electrons, bonded
with the atom’s nucleus primarily by the electromagnetic interaction display total angular
momentum J, Fig. 1.1, which consists of two components [1][p. 10]

J = L + S, (1.1)

where L describes the orbital angular momentum of electron and S stands for electron’s intrinsic
angular momentum called spin. The name ’spin’ is problematic as it may invoke a picture of
spinning subatomic particle. Such an image is incorrect when taking into account the uncertainty
principle of quantum mechanics [2]. Nevertheless, for the historical and practical reasons, the
name spin is widely used in science and will be used in this thesis as well.

The spin creates around itself a dipole-like magnetic field as sketched in Fig. 1.3. The arrows
indicate the field’s flow from the ’South’ pole to the ’North’ pole of the spin. In quantum physics
the spin is described by the spin quantum number which takes integer or half-integer values. The
particles with integer spin quantum number are called bosons and obey Bose-Einstein statistics
[3], while the particles with half-integer spin quantum number are called fermions which obey
Fermi-Dirac statistics [4, 5]. The electrons display spin quantum number s = ±1

2 what was
shown in the famous Stern–Gerlach experiment [6]. The quantum nature of spin also manifest
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Figure 1.1 Rutherford model of an atom. The electron, depicted with the green sphere, has two types of
angular momenta. The orbital angular momentum L is related to electron’s orbital movement around the
nuclei. The intrinsic angular momentum S is an inherent property of electrons. The main contribution to
magnetic properties of a body comes from S as the average orbital angular momenta in a system consisting
of may atoms is close to zero because of so called quenching phenomenon.

itself also in the uncertainty principle for angular momentum. In this case of spin the uncertainty
principle states that only one of its spatial components can be measured at a given time.

The angular momentum of the electrons gives rise to the magnetic moment defined as

µ = γJ, (1.2)

where to proportionality factor γ , which later will be called the gyromagnetic ratio, is defined as

γ = g
q

2mq
. (1.3)

The charge and mass of the electron are represented by q and mq respectively, g stands for
so called Landé factor which provides the information on the contributions to the angular
momentum [1][p. 12]. The numerical value of Landé factor is in range between 1 and 2,
where 1 means contribution from the orbital angular momentum only and 2 indicates a sole
contribution from the spins. In the majority of magnetic materials the main contribution to
magnetic moments comes from the spins. This situation is a result of phenomenon known as
quenching of orbital angular momentum caused by self-cancelling of electric fields generated
by the periodic arrangement of ions in magnetic materials [7]. In this thesis the value of
gyromagnetic ratio |γ| is assumed as 176 radGHz/T in the International System of Units (SI),
which corresponds to pure spin contribution to the magnetic moment.

The magnetisation of a given material is the space average of all its magnetic moments. The
overall vector of net magnetisation M can be defined in a discreet approach as a sum of magnetic
moments per unit volume

M =
1
V ∑

i
µ(ρi) (1.4)
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where ρi is vector of a particular atom position in the magnetic body and V is the volume
of magnetic body. In SI units magnetisation is defined as ampere per metre (A/m). The
magnetisation is of great importance as it is a quantity that can be relatively easily measured in
experiments. As stated in the previous paragraph the spins of electrons give rise to the magnetism.
Thus, the order of spins determines the magnetic character of a given material. The magnetic
order in turn depends on number of factors such as the interactions among the spins, the applied
external magnetic field, the temperature, and the internal structure of material. The following
sections of this Chapter are devoted to the description of the most prevalent interactions between
spins and most common types of magnetic materials.

1.2 Types of magnetic interactions

In this section chosen types of interactions between spins will be described. The focus will be
on the interactions encountered in the main part of the research presented in this thesis. Also a
smaller list of other interactions will be presented shortly. These interactions were either used
in the auxiliary studies carried out in parallel to the main research or will be used in the future
investigations.

1.2.1 Zeeman interaction

The spin can be imagined as the smallest possible magnet unit with two magnetic poles, North
(N) and South (S). When placed in an external magnetic field Hext, as shown in Fig. 1.2, a torque
τ acts on the spin that try to align it with the field’s direction. Such a situation occurs to minimise
the potential energy of the spin submerged in Hext. The strength of magnetic field has SI unit of
(A/m). In terms of energy density the interaction between spin and external magnetic field can
be written as [1][p. 37]

EZeeman = −µ0Hext ·M, (1.5)

where µ0 is the permeability of vacuum which numerical value is µ0 = 1.26 µH/m in SI units.
The interaction, named after the Dutch physicist Pieter Zeeman who first described it, favours
then a parallel alignment of the magnetisation vector to the applied external magnetic field.

1.2.2 Dipolar interaction

A spin can be associated with a magnetic dipole moment, analogous to an electric dipole in
electrostatics. This magnetic dipole moment generates a dipolar field through which the spin
interacts with other nearby spins. If we define the distance between two spins as a vector r,
Fig. 1.3, we can describe the energy of dipole-dipole interaction as

Edip = −B1(r) ·µ2, (1.6)
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Figure 1.2 Illustration of Zeeman interaction. When magnetisation vector M is placed in the external
magnetic field Hext a torque τ appears that aligns M parallel with the direction of Hext. The energy
associated with this interaction scales as a negative scalar product of M and Hext.

where µ2 is magnetic moment of a second spin and B1(r) is magnetic flux density, which SI unit
is Tesla (T), created by the first spin of magnetic moment µ1. The relation between magnetic
flux density and magnetic field intensity may be described with a formula [8][p. 35], [9][p. 280]

B = µ0 (H + M) . (1.7)

The field B1(r) is given as [10][p. 148]

B1(r) =
µ0

2π

3(µ1 · r)r− r2µ1
r5 . (1.8)

The dipolar interaction, as evident in Eq. 1.6, favours the anti-parallel alignment of spins.
However, its energy is relatively low. In typical magnetic materials, the dipolar interaction
between two spins involves energies on the order of ∼ 10−21 J [8][p. 50] [11][p. 7]. Comparing
this with the energy of thermal fluctuations given by the Boltzmann formula, Eth = kbT , where
kb is the Boltzmann constant, it is evident that the dipolar interaction corresponds to temperatures
only slightly above the absolute zero. Because of this, one might expect its influence on spin
ordering in magnetic materials to be negligible. However, as it will be demonstrated later in this
dissertation, the dipolar interaction plays a crucial role in long-range spin ordering despite its
seemingly weak nature.

When considering a mesoscopic description of a magnetic material, the anti-parallel align-
ment of spins within a given volume leads to a vanishing net magnetisation. However, at the
boundaries of a uniformly magnetised body, there are not enough opposing dipoles to cancel the
magnetic field produced by the surface dipoles. These uncompensated dipoles are referred to as
magnetic surface charges, and the magnetic field they generate is described in two ways: as the
demagnetising field Hdemag inside the magnetic body, and as the stray field Hstray outside it.
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Figure 1.3 Illustration of magnetic dipole-dipole interactions. Two spins generate around themselves
dipolar fields through which they interact with each other. Dipolar interaction favours anti-parallel
configuration of spins, the opposite poles of spins are attracted to one another. The strength of interaction
scales as r−3 thus it can be regarded as long ranged interaction.

The demagnetising field always opposes the magnetisation inside the sample, as indicated by
the formula [12, 13]

Hdemag = −N̄ ·M, (1.9)

where N̄ is the demagnetising tensor which depends on the shape of magnetic sample and may
be defined as

N̄ =




Nxx 0 0
0 Nyy 0
0 0 Nzz


 , (1.10)

where Nxx, Nyy, Nzz are called demagnetisation factors [14][p. 380]. Then the internal field
experienced by a magnetic body in the presence of external magnetic field can be written as
Hint = Hext −Hdemag. The calculation of the demagnetising field is, in most cases, complex as
the dipolar interactions are anisotropic and long-range in nature. Nonetheless, for the simple
geometries such as thin films, spheres, or ellipsoids the demagnetising field can be derived
relatively easy because of the shape symmetries. In other cases the demagnetising field has to be
calculated numerically with some degree of error. The importance of demagnetising field lies in
its alteration of parameters of the magnetic body at its boundaries, what was exploited in the
investigations presented in Section 5.6.

Outside of the magnetic material Gauss equation for the magnetism states that ∇ ·B = 0. The
magnetic flux is defined as [8][p. 33]

B = µ0(Hstray + M). (1.11)
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For the purpose of this derivation it is assumed that the magnetic body which creates the stray
field is placed in a vacuum where there are no magnetic particles and no electric currents. Then,
according to Ampère’s law, the rotation of stray field should be zero,

∇×Hstray = 0. (1.12)

Solving this equation yields an expression for Hstray in the terms of a scalar potential field [8][p.
46]

Hstray = −∇φ . (1.13)

The potential φ , known as the magnetostatic potential, extends throughout the magnetic body
and into the surrounding space. Its presence enables interactions between magnetic bodies that
are not in direct physical contact. This long-range character of the magnetostatic potential gives
rise to rich physical phenomena, particularly in magnetic interferometers, which are explored in
detail later in this dissertation, especially in Sections 5.2, 5.3, 5.4 and 5.5.

1.2.3 Exchange interaction

The exchange interaction originates from the Pauli exclusion principle and electrostatic Coulomb
interaction. Heisenberg [15] and Dirac [5] developed the theoretical framework for this interac-
tion to explain the spontaneous order of magnetisation observed in certain metals and their alloys
(the types of magnetisation ordering will be described in Section 1.3). This interaction depends
on the spatial overlap of adjacent electrons’ wave-functions. The mathematical description of
the exchange interaction energy can be written as a Hamiltonian [1][p. 46]

Hex = − 2
ℏ2 ∑

i̸=j
JijSi ·Sj, (1.14)

where Jij is the exchange integral that depends on the energy difference between parallel and
antiparallel spin configurations, and S is the spin operator. The exchange interaction is typically
short-ranged, as Jij is significant for nearest-neighbour spins only. Additionally, the sign of Jij

determines the type of spin ordering in magnetic materials. A positive Jij favours parallel spin
alignment, while a negative Jij favours antiparallel alignment.

To simplify the derivation it can be assumed that Jij has a constant value for all spins in the
system and that only interaction with the nearest neighbours provides a substantial input to the
exchange energy, then

Eex = −2JSi ·∑
n.n

Sj, (1.15)

in discreet notation, where n.n. expression means "nearest neighbours". Defining the magnetic
moment in term of spin µ = −gµBS, where µB = eℏ

2me
is Bohr magneton, the magnetic field
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created by the exchange interaction can be written as

Hex =
2J

gµ0µB
∑
n.n

Sj. (1.16)

In the case of magnetic materials regarded in this thesis it can be assumed that the materials
exhibit cubic lattice and non-uniform magnetisation. Then the effective magnetic field related to
the exchange interaction is defined as

Hex = λ
2
ex∇

2M, (1.17)

where λex is the exchange length which characterises magnetic materials and is defined as [16,
17]

λex =

√
2Aex

µ0M2
S
. (1.18)

The new parameter Aex is called the exchange stiffness constant, has an SI unit (J/m) and depends
on the material’s atomic structure as Aex = nS2J

a where n is number of the nearest neighbouring
spins and a is the lattice constant. The parameter MS is called magnetisation saturation and
describes the magnetisation of a magnetic body with all spins aligned in one direction. The
Laplacian operator ∇2 in Eq. 1.17 is introduced by using an approximation of Sj regarded as
S(ri) shifted by an infinitesimal distance dri [1][p. 83]

Sj = S(ri + dri) ≈ a2
∇

2S(ri)+ 6S(ri). (1.19)

The term 6S(ri) can be omitted as contribution from the magnetisation non-uniformities is mainly
responsible for exchange interaction. In the end the magnetisation vector can be introduced using
a formula

M = gµB⟨S⟩V , (1.20)

where ⟨S⟩V is an average of spins over a space.

The magnetic interactions presented in this Section were the cornerstone of the main investi-
gations shown in this thesis which are described in Chapter 5.

1.2.4 Other components of effective magnetic field

1.2.4.1 Magnetocrystalline anisotropy

The crystallographic lattice of magnetic materials may favour certain directions along which
the magnetisation vector M aligns spontaneously. These directions are known as easy axes.
Conversely, there are directions along which a strong external magnetic field is required to
align M; these are referred to as hard axes. The existence of such energetically favourable
and unfavourable directions of magnetisation is known as magnetocrystalline anisotropy. Its
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origin lies in the symmetry breaking of electron orbitals within periodic lattices. As mentioned,
anisotropy depends on the crystallographic structure of the magnetic body, but it can also
be influenced by lattice imperfections, the shape of a magnetic sample, or externally applied
conditions such as strain or temperature [18].

In the case of uniaxial magnetocrystalline anisotropy the energy density can be described
with a formula [1][p. 84]

Eua = Ku1sin2(θ)+ Ku2sin4(θ)+ ..., (1.21)

where Kui are anisotropy constants (unit J/m3), θ is a polar angle with regard to the anisotropy
easy axis direction and sin(θ) functions raised to even powers assure symmetry of the anisotropy.
The ellipsis in Eq. 1.21 indicates that for better accuracy of anisotropy calculations higher order
components can be added to the expression. The positive value of Kui parameter indicates the
easy-axis in the system and the negative value indicates the hard-axis.

Figure 1.4 Anisotropy energy as a function of direction in (x,y) plane. The function is described by
an ellipse which minor axis represents system’s easy axis and major axis represents the hard axis. The
energetically favourable magnetic configuration will align with the easy axis in the absence of the external
magnetic field as it is shown.

The effective magnetic field created by the anisotropy in a magnetic material can be expressed
as a variation of anisotropy energy functional with respect to the magnetisation vector [11][p.
37], [1][p. 85].
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Ha = − 1
µ0

δEua

δM
. (1.22)

To derive the effective magnetic field in the case of a material with uniaxial anisotropy along its z-
axis we can simplify the expression Eq. 1.21 by using the trigonometric unity formula sin2(θ) =

1− cos2(θ) and by approximating cos(θ) by an expression mz/MS. This approximation is done
with an assumption of small angle θ (θ ≪ 5◦). Then, by taking into account only contribution
from Ku1 the expression for the anisotropy energy density is

Eua ≈ Ku1

(
1− mz

2

M2
S

)
. (1.23)

After using expression Eq. 1.23 in Eq. 1.22 the effective uniaxial anisotropy field takes the from
of

Ha =
Ku1

1
2 µ0M2

S
mzẑ, (1.24)

where ẑ is a unit vector pointing along the z-axis.

1.2.4.2 Shape anisotropy

The anisotropy can also be induced in the magnetic body by its shape [19][p. 88], [8][p. 168]. It
is a results of the dipolar interaction that creates the demagnetising field at the magnetic bodies’
surfaces along which magnetic charges align. This phenomenon is especially prevalent in the
thin magnetic bodies where there is not enough magnetic dipoles in the bulk of the magnetic
body to separate demagnetising fields induced at the layer’s surfaces. In the thin layers the shape
anisotropy favours in-plane (IP) spin alignment which requires application of a strong external
magnetic field to change the spins alignment to out-of-plane (OOP) configuration.

1.2.4.3 Dzialoshinskii-Moriya interaction

Due to spin-orbit coupling and broken inversion symmetry, Dzialoshinskii-Moriya interaction
(DMI) introduces an antisymmetric exchange interaction that favours a canted or chiral spin
arrangement, leading to non-collinear magnetic structures [20–22]. This interaction can be
described with a following Hamiltonian [8][p. 139]

HDMI = −D · (Si ×S j), (1.25)

where D is the Dzyaloshinskii-Moriya vector. This form of interaction is antisymmetric, as
it arises from the cross product of neighbouring spins, leading to a preferred chirality in spin
alignment. Opposite to the other mentioned interactions DMI does not favour either parallel or
anti-parallel alignment of the neighbouring spins but an orthogonal one. Additionally, DMI also
introduces chirality to the spin ordering (whether spins are aligned counter- or clockwise), what
is indicated by the negative sign in Eq. 1.25. Thus when DMI appears in a magnetic system it
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allows for more complex magnetic textures such as skyrmions, hopfions, etc. DMI can occur in
two distinct forms: bulk DMI, which arises in magnetic materials with non-centrosymmetric
crystal structures [23]; and interfacial DMI, observed at interfaces between thin films when one
of the materials exhibits strong spin–orbit coupling [24].

Both magnetocrystalline anisotropy and DMI have been taken into account in additional
studies presented in Chapter 6.

1.3 Classification of magnetic materials

1.3.1 Diamagnets

Diamagnets constitute a class of materials with zero net magnetic moment. When placed in an
external magnetic field the electrons in diamagnetic atoms start to rotate in such a way that their
orbits induce their own magnetic field which is opposite to the applied one. This phenomenon is
the result of Lenz’s law [1][p. 3]. Hence diamagnets weaken locally the magnetic field in which
they are placed [19][p. 10].

The relation between magnetisation vector and the external magnetic field can be expressed
as [1][p. 1]

M = M0 + χ̄H, (1.26)

where M0 is the spontaneous magnetisation vector (magnetisation which is present in the absence
of the applied external magnetic field) and χ̄ is the susceptibility tensor. In the case of isotropic
diamagnets χ̄ is a scalar of negative value which can be calculated with so-called Langevin
formula of diamagnetism [1][p. 69].

It is also important to note that all materials possessing magnetic moments exhibit dia-
magnetic behaviour to some extent [25][p. 459]. However, in many materials, other magnetic
phenomena—such as paramagnetism, ferromagnetism, or antiferromagnetism—dominate the
overall magnetic response, effectively overshadowing the underlying diamagnetism. Some of
these magnetic behaviours will be discussed in the following subsections. Nonetheless, diamag-
netism remains a universal and intrinsic property of all matter in the presence of the external
magnetic field.

1.3.2 Paramagnets

The next class of magnetic materials is known as paramagnets. These materials contain atoms
or ions with intrinsic magnetic moments due to unpaired electrons. However, in the absence of
external magnetic field, thermal fluctuations prevent long-range magnetic order in paramagnets.
When an external magnetic field is applied, the magnetic moments of paramagnet tend to align
with the field. This occurs because aligning with the external field lowers Zeeman energy.
However, due to persistent thermal agitation, full alignment is not achieved, resulting in only
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a weak net magnetisation [19][p. 12]. The partial alignment of magnetic moments slightly
enhances the external magnetic field, although the effect is relatively weak. For isotropic
paramagnets, the magnetic susceptibility tensor χ̄ , Eq.1.26 , reduces to a positive scalar quantity
[1][p. 72].

1.3.3 Ferromagnets

Figure 1.5 Examples of magnetic configuration order in different magnetic materials. (a) presents the
ferromagnetic order where all spins within one domain point to the same direction. Such a system
appears when the exchange integral J is positive. (b) shows the antiferromagnetic order, the spins are
arranged alternatively and can be regarded as two sublattices. The antiferromagnetic order occurs when
J is negative. (c) displays the ferrimagnetic order, which resembles antiferromagnetic but one of the
sublattices has smaller magnetisation magnitude, thus system in total has non-zero net magnetisation.

Ferromagnets, similarly as paramagnets, are made of intrinsic magnetic moments. The
permanent magnetic moments come from the unfilled electron shells of certain atoms [25][p.
435]. According to the Hund’s rule, electron shells are filled with electrons in such a way to
assure the lowest possible energy state of an atom [26][p. 765]. In the case of most atoms
it means that each shell is filled by a pair of electrons with different spin numbers with zero
net angular momentum. However, for certain elements Hund’s rule actually favours leaving
some inner shells unfilled. The ramification of this fact is that these elements have non-zero
angular momentum which is unaffected even when these elements create bonding with other
elements. These few elements and their alloys have ferromagnetic or ferrimagnetic (this class of
materials will be the topic of one of the next subsections) nature. The notable representants of
these elements are Fe, Co, Ni and rare earth metals such as Nd [8][p. 375]. Examples of widely
used alloys with ferromagnetic nature are Permalloy (Py, an alloy made of Fe and Ni in different
proportions) and CoFeB.

The key difference between ferromagnets and paramagnets is that ferromagnets exhibit
spontaneous magnetisation. When no external magnetic field is applied, the magnetisation in
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Figure 1.6 A scheme of hysteresis loop of a ferromagnet that is obtained by measuring system’s magneti-
sation vector in changing external magnetic field. The relation starts with so called initial magnetisation
curve at point (0,0) with refers to non-magnetised state. Then with an increase of the external magnetic
field the order of spins appears which causes an increase of magnetisation vector magnitude up to certain
value called magnetisation saturation, MS. For higher applied magnetic fields changing the magnitude
and direction of the external magnetic field does not affects the order of spins in ferromagnetic, only
their direction. The crucial property of M(Hext) is the fact that it depends on the previous magnetic
configuration of the system. Because of that M(Hext) dependency resembles a loop. The value of field
needed to reset system’s magnetic order is called coercive field and is marked with Hc. The area enclosed
by a loop contains information on the energy needed to change the direction of system’s magnetisation.
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a ferromagnet consists of multiple magnetic domains. Within each magnetic domain, spins
are aligned in parallel due to the strong exchange interaction among them [19][p. 16]. The
division into multiple magnetic domains is favoured due to dipole interactions, cf. Section 1.2.2.
If a ferromagnet consisted of only one large domain, the dipole interaction energy would be
substantial. To minimise the dipolar energy, the system naturally breaks into microscopic
domains with lower energy [14][p. 352], [19][p. 120]. Even though the domains themselves are
not exactly parallel to one another, the ferromagnet may still exhibit a net magnetic moment in
the absence of an external field. This net magnetic moment is called remanence.

When an external magnetic field is applied the magnetic domains start to align with the field.
At a certain value of the magnetic field all of the domains align with the field and the ferromagnet
reaches the state of saturation, cf. Section 1.2.3. When the value of external magnetic field
is decreased the magnetisation does not take the same values as during increasing of the field.
This phenomenon is called hysteresis and is typical for the ferromagnetic materials, because
their magnetisation at a given value of Hext depends also on the previous magnetic state M0.
When dependency M(Hext)

1 is plotted as in Fig. 1.6 it it a closed curve, which is called a
hysteresis loop [27]. The shape and features of hysteresis loop provides significant amount of
information about the ferromagnetic material. For instance, they reveal the coercive field, HC,
the magnitude of the external magnetic field that must be applied in the opposite direction to
reduce the remanent magnetisation to zero. Furthermore, the area enclosed by the hysteresis loop
provides insight into the ease of re-magnetisation. A small area indicates a soft ferromagnet,
whose magnetisation can be readily reoriented, while a large area signifies a hard ferromagnet,
requiring much stronger fields for magnetisation reversal [8][p. 8].

The magnetisation order in a ferromagnet depends also on temperature. The long-range
order of ferromagnet’s exists only when thermal fluctuations of spins are relatively small. It
means that above certain temperature the energy of random thermal fluctuations is high enough
to destroy the magnetic order. This temperature is called Curie temperature (TC) and differs for
particular ferromagnets [1][p. 73]. At TC ferromagnets undergo a phase transition to paramagnet
state [11][p. 7]. A sketch of M(T ) dependency with marked TC temperature is shown in Fig. 1.7.

1.3.4 Antiferromagnets

For certain magnetic materials the exchange integral J from Eq. 1.15 takes negative values [19][p.
20]. It means that the exchange interaction in this case favours the anti-parallel configuration
of spins, see Fig. 1.5(b). Such a configuration can be regarded as two sublattices of spins with
opposite magnetisations. When the magnitudes of magnetisation in these sublattices are equal,
the material is referred to as an antiferromagnet. Antiferromagnets display only a small net
magnetisation if temperature is above the absolute zero. Only then the thermal fluctuations
disturb the ordering of spins in both sublattices and the net magnetisation can differ from
zero [1][p. 5]. When antiferromagnet is placed in an external magnetic field parallel to the plane

1Mark here that, the dependency M(Hext) operates on scalars and not on the vectors. In measurements of the
hysteresis usually only one of the field and one of magnetisation components are measured.
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Figure 1.7 Magnetic susceptibility χ of a ferromagnetic as a function of temperature. At certain value
of temperature, called Curie temperature TC, phase transition happens when ferromagnetic looses its
magnetic ordering due to strong thermal fluctuations. In the temperatures above TC systems resembles a
paramagnetic.

of spin ordering small or no torque can be measured as two opposite sublattices create opposite
torques which cancel each other. When a perpendicular magnetic field above certain threshold is
applied to the antiferromagnet its spins align with the field. Such a phenomenon is called spin
flop transition [28–30].

Similarly as in the case of ferromagnets, thermal fluctuations also can destroy the spin
order in antiferromagnets when the temperature is too high. The critical temperature below
which antiferromagnetic ordering appears is called Néel temperature [1][p. 79] and it is a direct
analogue to the Curie temperature for ferromagnets. When temperature is higher than Néel
temperature antiferromagnets behave like paramagnets.

1.3.5 Ferrimagnets

Ferrimagnets display two sublattices ordering of spins as antiferromagnets. Unlike for the antifer-
romagnets however, two sublattices in ferrimagnets differ in their net magnetisation, as shown in
Fig. 1.5(c) [19][p. 27]. Because of that ferrimagnets have an uncompensated net magnetisation
and for low frequencies (for microwaves and lower) they behave like ferromagnets [1][p. 4].
A ferrimagnet of particular interest in magnetic investigations is yttrium iron garnet (YIG),
Y3Fe5O12 [8][p. 201]. In this material five iron atoms provide the ferromagnetic nature in YIG,
where three atoms belong to one lattice and two to the other. Thus in YIG effectively only one
atom of iron provides an input to the net magnetisation. The most important property of YIG is
its low magnetic damping (magnetic damping will be described in the next Section) what makes
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it a very promising material for applications. Additionally, YIG exhibit relatively low MS what
makes easier to excite magnetic precession in this material [1][p. 333].

1.4 Dynamics of magnetic moment

1.4.1 Magnetisation equation of precession

The precession of the angular momentum Eq. 1.2 placed in an effective magnetic field Heff is
defined as [1][p. 91]

dJ
dt

= γµ0J×Heff. (1.27)

This equation can be rewritten in terms of magnetisation vector by using formula M = γNJ,
where N is number of the magnetic moments under consideration. Then Eq. 1.27 takes form of

dM
dt

= γGM×Heff. (1.28)

The equation Eq. 1.28 is called the Landau-Lifshitz (LL) equation and it is the cornerstone of
investigations on magnetisation dynamics [31]. The new parameter γG is defined as γG = γµ0.
The LL equation preserves the magnitude of magnetisation vector ∥M∥ in time. The effective
magnetic field, Heff, is a sum of magnetic fields derived from the dipole interaction Hdemag

(Eqs. 1.9, 1.13), the exchange interaction Hex (Eq. 1.17), magnetocrystalline anisotropy Ha

(Eq. 1.24), external magnetic field Hext, DMI interaction, ect...
In the simplified approach where the only contribution of effective magnetic field comes

from the external magnetic field Heff = Hext it is possible to describe the precession of the
magnetisation vector as a sum of the saturation magnetisation vector MS pointing in the direction
of effective magnetic field and a dynamic magnetisation vector m(t) 2

M(t) = MSẑ + m(t). (1.29)

After introduction of this expression to the Eq. 1.28 the equation of precession takes form

dm
dt

= γGm×Hext, (1.30)

because dMS
dt = 0 and MS ×Hext = 0. Assuming that the precession of magnetisation vector is

harmonic, m(t) = m0eiωt , the solution of Eq. 1.30 in the frequency domain is

ω = ωL = γGHext. (1.31)

2with an assumption that MS ≫∥m∥
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This solution is called the Larmor frequency ωL and it is the frequency of harmonic precession of
magnetisation vector in the presence of external magnetic field. This precession is schematically
presented in the Fig. 1.8.

Figure 1.8 Scheme of magnetisation vector M precession around the effective magnetic field Heff. The
vector M precesses around Heff with M×Heff tangential to the precession orbit being traced. In isotropic
materials M draws circle around Heff, in the case of anisotropic materials M trajectory is elliptical.

However, in more general approach, where additional contributions to the effective magnetic
field are included, the precession of magnetisation vector becomes more complex as it changes
dynamically the magnetic field around it. Additionally, in real magnetic bodies also their shape
anisotropy plays a significant role in influencing the precession of magnetisation. To make the
derivation Eq. 1.30 more general also the vector of effective magnetic field has to be separated
into the static and dynamic parts

Heff(t) = Hext + Hdemag + h(t), (1.32)

M(t) = MSẑ + m(t). (1.33)

With this generalisation Eq. 1.28 can be rewritten as

dm
dt

= γG[m× (Hext + Hdemag)+ MSẑ×h + m×h]. (1.34)

The last term in Eq. 1.34 can be discarded as it is a multiplication of two small fields3, therefore
it can be neglected. Thus Eq. 1.34 simplifies to the form

dm
dt

= γG[m× (Hext + Hdemag)+ MSẑ×h]. (1.35)

3∥H(stat)
eff ∥≫ ∥h∥ and MS ≫∥m∥
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Further calculations demand proper assumptions of dipolar interaction in the system. This leads
to the determination of demagnetising tensor in Eq. 1.9.

For the purpose of this derivation a popular in the magnetisation investigations thin film shape
is selected. Additionally, similarly as in the case of Larmor frequency, the harmonic oscillation of
the magnetisation is chosen m(t) = m0eiωt . This means that the frequency of derived precession
will describe a uniform magnetic mode of a thin magnetic layer with zero momentum. Such a
mode is called ferromagnetic resonance (FMR) mode and was theoretically described by Kittel
after its experimental observation by Griffiths [32, 33].

Figure 1.9 Illustration of external magnetic field configurations used in derivation FMR frequencies of
thin ferromagnetic layers, (a) the field is directed IP, (b) the field is directed OOP.

In the case of the thin film two distinctly different magnetisation configurations are possible.
In the first configuration the external magnetic field is applied IP to the film, as presented in
Fig. 1.9(a). Then the static component of the effective magnetic film is Hext and magnetisation
saturation MS are directed along the x axis, Hext = [Hext,0,0]T, M =

[
MS,my,mz

]T. Additionally,
in this configuration the elements of demagnetisation tensor of Eq. 1.10 are as follows Nxx =

Nyy = 0 and Nzz = 1. Then the demagnetising field, according to Eq. 1.9 is Hdemag = [0,0,−mz]
T.

In such a case the Eq. 1.35 yields

ω = ω
(IP)
FMR = γG

√
Hext(Hext + MS). (1.36)

For the second configuration the external magnetic field is applied OOP, Fig. 1.9(b). Then the
parameters of the system are Hext = [0,0,Hext]

T and M =
[
mx,my,MS

]T. The demagnetising
tensor is the same in this configuration as it only depends on the shape of magnetic body. The
demagnetising field is Hdemag = [0,0,−MS]T. With the new parameters the frequency of FMR is

ω = ω
(OOP)
FMR = γG(Hext −MS). (1.37)

In both configuration the component MSẑ×h in Eq. 1.35 is omitted as it is assumed that
h = 0 [1][p.145,146].

The presented results derived by solving LL equation for the uniform modes provide im-
portant information about the magnetic materials. They are the base on which more complex
behaviour of magnetisation precession will be described in the following Section 1.5.
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1.4.2 Introduction of damping in magnetisation precession equation

The precession of magnetisation vector described by Eq. 1.28 is endless contrary to the experi-
mental results which show that magnetisation vectors eventually align with the direction of the
effective magnetic field. This is due to the presence of damping in real systems, which causes the
energy dissipation of precessing magnetisation vector. The process in which the magnetisation
vector loses its energy to reach the equilibrium state is called relaxation. The phenomenological
addition of damping to the equation of magnetisation vector precession proposed by Gilbert [34,
35] takes form of 4

dM
dt

= γGM×Heff −
α

MS

(
M× dM

dt

)
, (1.38)

where α is Gilbert damping parameter. In this form the equation of magnetisation precession
is called Landau-Lifshitz-Gilbert (LLG) equation and is used in the numerical simulations of
magnetic precession [37]. The precession of magnetisation vector governed by the LLG equation
is presented in Fig. 1.10. After the introduction of damping the tip of magnetisation vector draws
a spiral path on a surface of a virtual sphere of radius ∥MS∥ with the spiral ending spot in space
that aligns with the effective magnetic field vector direction.

Figure 1.10 The movement of magnetisation vector M around the effective magnetic field Heff in a
material with magnetic damping. M is pulled towards the direction of Heff by a torque proportional to
−M×M×Heff and is rotated by an another torque proportional to M×Heff. In result M moves on spiral
trajectory to its equilibrium position which is aligned with Heff direction.

4Thomas L. Gilbert first proposed his formulation of damping in LL equation in his PhD thesis in 1956 when
he worked in Illinois Institute of Technology. However, this thesis was not openly available thus, over the years
citing his contribution was difficult. For that reason he decided to publish a paper dedicated to his implementation
of magnetic precession damping almost 50 years after publishing his thesis [36].
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As both of Eq. 1.28 and Eq. 1.38 preserve the magnitude of the magnetisation vector ∥M∥
and are equivalent it is possible to transform Eq. 1.38 to the form

dM
dt

= γ[M×Heff −
α

MS
(M× (M×Heff))], (1.39)

which is the original formulation of LL equation with damping which is widely used in numerical
calculations of magnetic precession [37]. In this form it is evident that the second component of
Eq. 1.39 is a vector directed towards the effective magnetic field vector and is perpendicular to
the rotational precession of the magnetisation vector. Thus, it causes the magnetisation vector to
align with the direction of the effective magnetic field vector.

1.5 Spin waves

In the previous Section a special type of magnetisation precession was described. Both LL
and LLG equations, respectively Eqs. 1.28 and 1.39, allow a uniform, in-phase oscillations of
all spins within a magnetic body5. What is more important, both equations also provide the
description of a more complex and coherent spin precession with phase varying over space and
time. Such a precession resembles a wave and thus is called spin wave (SW). A quantum of SW
is called a magnon, thus the study on SWs if often referred to as magnonics [14][p. 330]. The
parameters of the SWs depend strongly on the magnetic interactions among spins that create the
waves, the external magnetic field strength and the magnetic configuration of the system. This
Section outlines the mathematical description of these dependencies.

1.5.1 Dispersion relation

The dispersion relation is a dependency between the wavelength and the frequency of waves.
Usually, the dispersion relation is presented in a form of ω(k), where k is the wavenumber
defined as k = 2π/λ , λ being the wavelength of SW, and ω is the angular frequency of SW.
Depending on the wavelengths of the SWs there is a possibility to distinguish two main regimes
of SWs. In the regime of small wavenumber k SWs have long wavelengths thus, the impact
of the exchange interaction is significantly smaller than the long-range dipole interaction. For
the spins with short wavelengths and big k values the situation is reversed and the short-ranged
exchange interaction plays the main role in interactions among spins.

The derivation of the SWs dispersion relation can be done by using LL equation, Eq. 1.28.
Similarly like in the case of deriving FMR frequencies the vectors of effective magnetic field and
magnetisation can be split into static and dynamic parts. However to derive dispersion relation
the dynamical parts of these vectors have to vary both in time and space. Assuming harmonic

5Eq. 1.39 allows such a precession only where there is an additional source of energy involved which compensates
the dissipation of energy due to damping.
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oscillations of the magnetic field and magnetisation

heff,i(r, t) = hiei(k·r−ωt), (1.40)

mi(r, t) = miei(k·r−ωt), (1.41)

where hi and mi are the amplitudes and k is the wavevector.

Figure 1.11 The geometry of thin Py layer used in SW dispersion relation derivation. The external
magnetic field µ0Hext is marked with a blue arrow. SWs propagate under angle θ to the external magnetic
field. The thickness of Py layer is d.

In this example the system under consideration is a thin magnetic film with thickness d, mag-
netised IP along its y axis, Fig. 1.11. The effective magnetic field consists of the exchange, dipole
and external fields. The dynamic exchange field will be introduced using formula Eq. 1.17. The
dynamic dipole field is approximated by the formula hdip = [−sin2(θ)ξ (kd)mx,0,−(1−ξ (kd))mz]

T

valid for small d, where ξ (x) = 1− (1− e−|x|)/|x| and θ is an angle between SW propagation
and the external magnetic field direction [38, 39]. The effective magnetic field can be written in
a matrix form as

Heff =




λ 2
ex∂ 2mx − sin2(θ)ξ (kd)mx

Hext

λ 2
ex∂ 2mz − (1−ξ (kd))mz


 . (1.42)

Eq. 1.28 in matrix form takes form



∂tmx

∂tMS

∂tmz


= −γG




MSHeff,z −mzHeff,y

mzHeff,x −mxHeff,z

mxHeff,y −MSHeff,x


 , (1.43)

where ∂t denotes partial derivative over time. As the static component of magnetisation does not
vary with time ∂tMS = 0 and in the linear approximation both mx and mz components are much
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smaller than MS thus, the middle row in Eq. 1.43 can be omitted
(

∂tmx

∂tmz

)
= −γG

(
MSHeff,z −mzHeff,y

mxHeff,y −MSHeff,x

)
. (1.44)

Next, when the matrix equation is rewritten as a set of equations and the components of the
magnetic field are taken from Eq. 1.42 the problem transforms to solving two linear differential
equations 




∂tmx = −γG
(
MSλ 2

ex∂ 2mz −MS (1−ξ (kd))mz −Hextmz
)

∂tmz = −γG
(
Hextmx −MSλ 2

ex∂ 2mx + MSsin2(θ)ξ (kd)mx
) (1.45)

Taking into account the assumption of harmonic oscillations, Eq. 1.41, partial derivatives works
as operators ∂tm = −iωm, ∂ 2m = −(k2

xmx ,k2
ymy ,k2

z mz). Then the equations change to




−iωmx = −γG

(
−MSλ 2

exk2
z −MS (1−ξ (kd))−Hext

)
mz

−iωmz = −γG
(
Hext + MSλ 2

exk2
x + MSsin2(θ)ξ (kd)

)
mx

(1.46)

After solving this set of equations for ω the dispersion relation is expressed as

ω = ωw

√
(λ 2

exk2 +(1−ξ (kd))+ Hext/MS)
(
λ 2

exk2 + sin2(θ)ξ (kd)+ Hext/MS
)
, (1.47)

where ωw = γGMS. Fig. 1.12 presents dispersion relation for in the case of d = 10 nm Py layer
(MS = 800 kA/m, Aex = 13 pJ/m) with SWs propagating perpendicularly to the external magnetic
field, θ = 90◦, of µ0Hext = 50 mT. The dispersion relation obtained by simplified analytical
approach is presented with a solid green line. The colourmap in the background was derived
by performing micromagnetic simulations with Finite Difference Method (FDM, more details
in Chapter 3.) where full LL equation, Eq. 1.39, is solved. The dots display the results of
simulations with Finite Element Method (FEM, more details in Chapter 3.) where linearised LL
equation, Eq. 1.28, was solved. All methods of deriving the dispersion relation in this case are in
good agreement in the small k range where the dipolar interaction is prevalent.

In the case of SWs propagating in a magnetic thin film three special configurations of the
effective magnetic field and SW propagation directions can be distinguished:

• The effective magnetic field IP and SW propagating perpendicularly to the field, called
Damon-Eshbach configuration [40], Fig. 1.13(a),

• The effective magnetic field IP and SW propagating parallel to the field, called backward
volume configuration [41], Fig. 1.13(b),

• The effective magnetic field OOP and SW propagating IP, perpendicularly to the field,
called forward volume configuration [42], Fig. 1.13(c).

The following subsections will be devoted to the descriptions of the dispersion relations in these
configurations.
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Figure 1.12 Comparison of three methods for obtaining the SW dispersion relation in a 10 nm-thick Py
layer subjected to IP external magnetic field µ0Hext = 50 mT. The solid line corresponds to the analytical
expression given in Eq.1.47. Discrete data points represent results from micromagnetic simulations
performed in the frequency domain using the linearised LL equation, which will be discussed in detail
in Chapter 3. The colourmap shows the dispersion extracted from the time domain micromagnetic
simulations based on the full LL equation, also described in Chapter 3. In this specific case, all three
methods yield consistent results for the SW dispersion relation.

The knowledge of the dispersion relation allows for derivation of two velocities that charac-
terise SWs. The first one is phase velocity given by the formula

vph =

(
ω

kx
,

ω

ky
,

ω

kz

)
. (1.48)

This velocity describes how quickly a part of a wave of given phase moves through the space.
The second velocity is the group velocity defined as

vph =

(
∂ω

∂kx
,

∂ω

∂ky
,

∂ω

∂kz

)
. (1.49)

This velocity in turn specifies the velocity of energy which the SW carries.
If those two velocities are not equal to each other in given magnetic medium then this medium

is regarded as dispersive. It means that in such a medium a wavepacket spreads out in space
during propagation as its components have different group velocities.

1.5.2 Damon-Eshbach configuration

In Damon-Eshbach configuration (DE) SWs propagate perpendicularly to the direction of thin
film IP magnetisation. SWs in DE characterise by an imaginary wavevector along the thickness
of the film [1][p. 162]. It means that the SWs decay exponentially across film’s thickness.
Moreover, SWs in DE are non-reciprocal, depending on the direction of their propagation SWs
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Figure 1.13 Special configurations of external magnetic field and SW propagation direction that can
be distinguished in thin film geometry. (a) depicts Damon-Eshbach configuration where SW propagate
perpendicular to IP applied external magnetic field, (b) shows configuration for backward-volume SWs
where SW propagate parallel to applied IP external magnetic field, (c) presents configuration of forward-
volume SWs which propagate perpendicular to external magnetic field applied OOP.

have the highest amplitude at different film’s surfaces. Because of that direction-dependent
amplitude concentration at thin film’s surfaces these SWs are also called magnetostatic surface
spin waves. The dispersion relation for SWs in this configuration was derived by Damon and
Eshbach [40, 43], hence the name of configuration, and is described by the formula [1][p. 163]

ωDE(k) =

√

ωH(k) · (ωH(k)+ ωM)+
ω2

M
4
(
1− e−2kd

)
, (1.50)

where d is the thickness of thin film. The parameters ωM and ωH denote the frequencies of spin
precession corresponding to the system’s material properties and are defined as ωM = γµ0MS

and ωH(k) = γµ0(Hext−MSλexk2). The part of ωH(k) expression proportional to k2 corresponds
to the exchange interaction in the system. In the limit of k → 0 Eq. 1.50 reduces to the expression
for the FMR frequency of the IP magnetised thin film Eq. 1.36.

1.5.3 Backward volume configuration

Backward volume (BV) magnetostatic spin waves propagate parallel to the direction of IP
magnetisation of thin film. The dispersion relation of this SW precession is given by the
formula [1][p. 159]

ωBV(k) =

√
ωH(k) ·

(
ωH(k)+ ωM · 1− e−kd

kd

)
. (1.51)
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The name of this configuration stems from the fact that SWs, of certain k wavevector range,
propagating in this configuration exhibit negative group velocity, Eq. 1.49. With the phase
velocity being positive, the energy seems to move backwards with respect to the direction of
moving SW wavefronts. Another important information in the name of configuration is attached
with the word "volume". In this configuration SWs do not concentrate at one of the film’s
surfaces but their amplitude is distributed uniformly in the volume of the film.

1.5.4 Forward volume configuration

In the last regarded configuration the film is magnetised OOP and the direction of SW propagation
lies in the film, thus is perpendicular to the magnetisation vector. For this configuration the
dispersion relation takes form [1][p. 155]

ωFV(k) =

√
ωH(k) ·

(
ωH(k)+ ωM ·

(
1− 1− e−kd

kd

))
. (1.52)

In forward volume (FV) configuration both phase and group velocities are positive, thus the
energy flows in the same direction as the SWs. Also in this case SW spread uniformly in the thin
film as the word "volume" indicates. In this configuration any direction of SW propagation in the
thin film magnetised OOP is perpendicular to the magnetisation, hence the dispersion relation is
valid for all the direction of SWs propagating IP in this configuration.

1.5.5 General expression

In year 1986 Kalinikos and Slavin [44] derived more general expression for the SW dispersion
relation. They used the perturbation theory to investigate SWs propagation in a thin ferromagnetic
film where dipolar and exchange interactions were taken into account. The generality of their
formulation lies in a possibility to chose arbitrarily the direction of external magnetic field.
Additionally, in this derivation so called mixed-boundary conditions were used what means that
the spins were not pinned to the edges of the considered system what was the difference with
previous works on SW dispersion relations [45, 46].

The formula proposed by Kalinikos and Slavin can be written as

ωK =
√

(ωH(k)+ ωMλexk2)(ωH(k)+ ωMλexk2 + ωMF), (1.53)

where

F = P + sin2
θ

(
1−P(1 + cos2

ϕ)+ ωM
P(1−P)sin2

ϕ

ωH(k)+ ωMλexk2

)
, (1.54)

P = 1− 1− e−kd

kd
, (1.55)
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where θ is the angle between SW propagation direction and system’s z axis and ϕ describes
the angle between SW propagation direction and the external magnetic field Hext direction.
Thickness of the ferromagnetic layer under consideration is d.

Figure 1.14 SW dispersion relations comparison for the special magnetic configurations, namely Damon-
Eshbach configuration in red, backward volume configuration in blue, forward volume configuration
in green. The solid lines were plotted using Eqs. 1.50, 1.51, 1.52 and the dashed lines were obtained
from formula Eq. 1.53. All presented dispersion relations were derived for following material parameters,
µ0Hext = 100 mT, MS = 800 kA/m, Aex = 13 pJ/m, d = 250 nm (these parameters have been chosen to
highlight the nature of the dispersion relations for main magnetic configurations, e.g. the global minimum
in dispersion relation of backward volume configuration).

The Fig. 1.14 shows examples of dispersion relation of 250 nm thick Py layer in three
magnetic configurations. The dispersion relations have been prepared based on Eqs 1.50, 1.51,
1.52 (solid lines) and Eq. 1.53 (dashed lines) where the angles θ and ϕ were chosen to correspond
to main magnetic configurations. It is evident that the general expression for SW dispersion
relation in thin magnetic layer proposed by Kalinikos and Slavin coincides with the expressions
derived for the individual magnetic configurations with a high degree of accuracy. The relative
difference between the formulas in each case is smaller than 1% in presented wavevector ranges.

1.6 Non-linear processes in magnonics

For the purpose of deriving SW dynamics from LL equation, Eq. 1.28 the magnetic interactions
were expressed in terms of effective magnetic field components that they induce. However, this
expression is not suitable for analysis of non-linear processes in magnonics. Because of that the
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magnetic interactions may be presented in form of a Hamiltonian with S as a spin operator

H = −µ0µBg∑
i

Hext,i ·Si −J∑
i̸= j

Si ·Sj+

−µ0(µBg)2

4π
∑
i< j

3(Si · eij)(Sj · eij)−Si ·Sj

|rij|3
+Ha,

(1.56)

where the first component of the equation’s right side corresponds to Zeeman energy, the second
term comes from the energy of exchange interaction, the third from dipolar interaction and the
last one comes from the energy of anisotropy.

According to Holstein–Primakoff transformation [47] Hamiltonian of magnetic interaction
can be transformed into a series

H = H(0) +H(2) +H(3) +H(4) + . . . , (1.57)

where H(0) is the energy of system in the ground state and H(n) are Hamiltonians of n-th order
processes in the system. There are two three-magnon processes investigated in the main part
of this thesis which are presented schematically in Fig. 1.15. The first one is called stimulated
splitting process (SSP) during which a magnon described with frequency ω and wavevector
k is split in two new magnons: the first of frequency ν and wavevector κ , and the second of
parameters (ω −ν ,k−κ), as shown in Fig. 1.15(a). The second process is called the confluence
process (CP) where a magnon (ω,k) scattered on (ν ,κ) magnon result in creation of a new
magnon with (ω + ν ,k + κ), Fig. 1.15(b).

Figure 1.15 Scheme of three magnon processes which are investigated in the main part of the thesis. (a)
depicts stimulated splitting process, during which an incoming wave (ω,k) splits into two new waves
characterised by (ν ,κ) and (ω −ν ,k−κ). (b) shows confluence process where two waves (ω,k) and
(ν ,κ) combined create a new wave of (ω + ν ,k + κ).
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The description of three-magnon process Hamiltonian involves expressing spin operators in
terms of annihilation and creation operators, â and a† respectively. It can be written as [48]

Si,x =

√
2S
2

(
âi + a†

i −
a†

i âiâi + a†
i a†

i âi

4S

)
, (1.58)

Si,y =

√
2S

2i

(
âi −a†

i −
a†

i âiâi −a†
i a†

i âi

4S

)
. (1.59)

These operators should be used in Eq. 1.56 to express the Hamiltonian in terms of annihilation
and creation operators. Subsequently, the components of Hamiltonian in the new representation
can be grouped depending on the order of annihilation/creation operators, this order in turn
corresponds to n-th order magnonic process. For three-magnon process the Hamiltonian takes
from of

H(3) = ∑
k,κ

(
V ′(k,κ)âka†

κa†
k−κ

+V ′†(k,κ)âkâκa†
k+κ

)
. (1.60)

The first term of Eq. 1.60 refers to SP and the second term to CP, V ′(k,κ) is the coupling strength.
The representation of annihilation/creation operators were changed to the reciprocal space by
using a discreet Fourier transform âk = 1/

√
N ∑i âie−ik·ri .



Chapter 2

Optics effects



30 Optics effects

In this chapter several concepts and effects from the field of optics will be described. The
results of main investigations presented in this thesis show many parallels between optics and
magnonics. Thus it is beneficial to create a theoretical base of chosen optical concepts before
moving on to presentation of the main results.

2.1 Isofrequency contours

The dispersion relations discussed in Sec. 1.5 were presented as functions of wavevector magni-
tude k. However, SW wavevectors, like any other vector, can be broken down into components,
thus an expression of dispersion relation as a multidimensional function of wavevector’s com-
ponents is also possible. In the case of two-dimensional waves the dispersion relation can be
presented as a colourmap which coordinates denote wavevector components (kx,ky) and the
colour at a given point expresses the frequency of SW.
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Figure 2.1 Dispersion of light presented as a two dimensional colourmap. The coordinates along x
and y axes correspond to the components of light wavevector and the colour shows the frequency for
given combination of wave components. The dashed, red curve indicates points of the same frequency
f = 1.5 THz, called the isofrequency contour.

An easy to follow example of two-dimensional dispersion relation representation can be
made for light. The dispersion relation of light in vacuum is

ω (k) = clightk, (2.1)

where clight is the speed of light. To include the components of light wavevector in two-
dimensional space Eq. 2.1 has to be rewritten in a from of

ω (kx,ky) = clight

√
k2

x + k2
y . (2.2)
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In Fig. 2.1 the formula Eq. 2.2 is presented. Additionally, the red dashed line corresponds to the
points of the same frequency on dispersion relation, thus such a line is called an isofrequency
contour [39].

The analysis of isofrequency contours provides important information on the waves at a given
frequency in the investigated system. Especially important is the analysis of waves transmitted
to a new medium, Fig. 2.2(a). In two different media the isofrequency contours corresponding to
the same frequency will be different as shown schematically in Fig. 2.2(b). Because of the energy
conservation principle, while entering the new medium, a wave cannot change its frequency
as it would change its energy as well. Moreover, to satisfy the continuity rule the component
of wavevector tangential to the interface between media has to be constant. With these two
constraints the only parameter that is allowed to change is the wavevector’s component normal
to the interface. Fig. 2.2(b) presents the geometrical solution of this problem. The wavevectors
presented there share the same tangential component but end on different isofrequency contours.
With such an analysis it is possible to derive both the angles of waves propagation in different
media and their wavelengths.

Figure 2.2 (a) Refraction of light entering a medium with different refraction index ni. (b) Derivation of
wavevectors during refraction presented on isofrequency contours.

In the case of light waves propagating in isotropic media the method of deriving wavevectors
using isofrequency contours is equivalent to Snell’s law of refraction. However, the isofrequency
method provides much greater generality than Snell’s law [49]. For example, the use of isofre-
quency method enables derivation of refracted wavevectors in anisotropic media as well since it
allows to obtain information of both k and vg of reflected and refracted waves. Such a possibility
is extremely important in the investigations on SWs because of their anisotropic nature, as it
has been shown in Sec. 1.5, their dispersion relation heavily depends on the direction of SW
propagation with respect to the direction of external magnetic field.



32 Optics effects

The justification for using the isofrequency method for derivation of SW wavevectors is
shown in Fig 2.3. Two isofrequency contours corresponding to f = 22 GHz are shown for CoFeB
and YIG. The isofrequency contour of CoFeB, blue curve, is not circular at chosen frequency.
This means that SWs in CoFeB are subject to the anisotropic propagation and their refraction
cannot be described with any simple analogue to Snell’s law. Then the geometrical solution based
on isofrequency contours method provides the wavevector of the SWs transmitted from CoFeB
to YIG as presented in Fig 2.3. Additionally, the isofrequency contours provide information on
waves group velocities. As it is presented in Fig 2.3(b) with orange arrows, the group velocities
vectors are perpendicular to isofrequency contour at allowed f (kx,ky). For anisotropic waves,
eg. SW propagating in YIG as presented in Fig 2.3(b), it is possible that the wavevector and
group velocity vector do not align what causes that the wavefronts are not perpendicular to the
direction of wave’s propagation.

Figure 2.3 (a) A scheme of SW transmission from a thin (10 nm) CoFeB layer to another thin layer
(10 nm) of YIG. The system is placed in the external magnetic field of µ0H0 = 300 mT directed along
system’s X axis. (b) Isofrequency contours for YIG (black contour) and CoFeB (blue contour) at frequency
f = 22 GHz. The figure presents an example of SW transmission from CoFeB to YIG media in wavevector
space. The derivation of wavevectors is analogous to the case of light refraction. However, as f (kx,ky)
depends on the wave propagation direction, is anisotropic, there is no straightforward analogue to the
Snell’s law for SWs. The red arrows indicate the wavevectors of waves sketched in (a), the orange arrows
represent group velocities of the waves. The group velocity vector directions are derived as vectors normal
to the isofrequency curvature for given wavevector.

Another advantage of using isofrequency contours is they applicability to derive wavevectors
of inelastically scattered SWs [50]. In the non-linear processes described in Sec. 1.6 scattered
SWs change their frequency and tangential wavevector components. The non-linear processes can
be shown on the isofrequency contours as in Fig. 2.4, where the contours correspond to different
frequencies instead of different media, as it was the case of refraction analysis. Additionally,
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during the non-linear processes the tangential components of wavevector change what has to
be taken into account in the isofrequency analysis. Then the derivation of the inelastically
scattered wavevector is the same as in previously described case of wave refraction. Namely, the
wavevector component orthogonal to the altered tangential component has to be chosen in such a
way so the resulting wavevector will end on the isofrequency contour corresponding to changed
SW frequency. Fig. 2.4 displays geometrical construction for wavevectors in both SSP and CP.
Such an analysis was used in Section 5.6 to interpret the results of inelastic scattering of SW
beam on a localised SW mode.

2.2 Interferometers

The interferometers are a wide-spread optical device which operation is based on interference of
waves. The basic principle of interferometer operation is splitting an incoming wave in two and
redirecting them into different paths. Depending of the type of interferometer these paths have
uneven distances or different directions of propagation. Then the split waves are directed to a
particular spot in space where they merge and are measured by a detector. Depending on the
paths’ lengths that waves travelled they acquire different phases. The relative difference of phases
causes either constructive interference, destructive interference or certain intermediate state at the
detector [51]. The interferometers have found applications in the waves analysis, measurements
of distances [52], examination of various textures surfaces [53–55], and investigation of materials
optical properties [56, 57].

In physics the interferometers were used in some of the most famous physical experiments.
Michelson employed interferometers to disprove the concept of ether [58]. The interferometer
system proposed by Mach and Zender contributed significantly to development of quantum
physics [59, 60]. Relatively recently the interferometers were also used to measure gravitational
waves propagating in the universe [61].

As the realisation of interferometer requires a carrier of wave-like nature, the magnonic
interferometers for SWs were also introduced. A significant part of the investigations presented
in this thesis is devoted to the influence of the interferometers’ geometry and parameters on the
propagation of SWs. The focus is on two geometries of interferometers, namely Gires-Tournois
and Fabry-Perot geometries.

The geometry of Gires-Tournois interferometer (GTI) is presented in Fig. 2.5(a). It consist of
two reflective surfaces. One of them has reflectivity close to unity and the other is semitransparent.
The waves cast on GTI are reflected almost without any loses but they undergo phase shift which
depends on the spacing between reflective surfaces and the wavelength of cast waves.The SW
reflected from the left interface is described as sin(k1x + φ1) and the wave reflected from the
right interface of GTI with width w is described as sin(−k2x−φ2). cf. Fig. 2.5(c). The criterion
of constructive or destructive interference of the incoming and reflected waves depends on the
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Figure 2.4 (a) Example of isofrequency construction for inelastic scattering of SWs. The reflected
beam is presented with blue colour and is described by frequency f and wavevector (kx,ky). The wave is
scattered on an edge mode of frequency ν and wavevector (κ,0), marked with red colour. The inelastically
scattered SWs are presented with green (SSP, f − ν) and violet (CP, f + ν) colours, cf. Sec. 1.6. (b)
Representation of the inelastic scattering in the reciprocal space with isofrequency contours. The blue
contour corresponds to the reflected wave, according to the conservation laws its frequency and tangential
wavevector component are preserved. Two additional isofrequency contours correspond to two non-linear
processes SSP and CP, green and violet contours respectively, with frequencies f ±ν . In the derivation of
inelastically scattered waves the tangential wavevector component is not preserved and also the waves’
frequencies change. The derivation of scattered wavevectors is done by finding k′y and k′′y components on
proper isofrequency contours for kx ±κ values if it is possible.
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Figure 2.5 Two types of interferometers investigated in the main part of the thesis. (a,c) An interferometer
in Gires-Tournois geometry, where the resonator’s edge is aligned with the edge of layer. Such a geometry
guarantees total reflection of waves from one side of the interferometer. (a) shows the interferometer from
a broad perspective and (c) in the xz cutplane. The interferometer modulates the waves by introducing
a phase shift which depends on resonator’s width w and separation between interferometer’s elements
s. (b,d) display a scheme of Fabry-Perot interferometer. This type on interferometer introduces two
interfaces in a system and thus modulates both the reflected and transmitted waves.

difference of the arguments of the functions describing the waves and can be expressed as

(k1 + k2)w + φ1 + φ2 = 2nπ, (2.3)

The constructive interference happens when n is an even integer and the destructive interference
occurs when n is an odd integer. GTI can be realised in magnonics by placing a magnetic res-
onator above the edge of layer in which SW propagate as it is presented in Sections 5.2, 5.3, 5.5.
GTI was proposed by French physicists F. Gires and P. Tournois hence the name of geome-
try [62]. When the positions of reflective surfaces are fixed, parameter w becomes constant and
interferometer transforms into an etalon [63][p. 438].

The second geometry of interferometer investigated in this thesis is Fabry-Perot (FPI) ge-
ometry. An example of FPI is shown in Fig. 2.5(b). FPI differs from GTI by the fact that both
of its reflective surfaces are semitransparent, Fig. 2.5(d). It means that FPI modulates not only
reflected but also the transmitted waves. The intensity of transmitted waves IT can be calculated
from the formula [63]

IT = Ii
T 2

1 + R2 −2Rcosδ
, (2.4)

where Ii is the amplitude of incoming waves, T is transmittance, R is reflectance and δ is the
phase change caused by passing through FPI. Transmittance and reflectance are related to each
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other by simple formula T + R + A = 1, where A stands for absorbance of the interferometer.
The realisation of magnonic FPI may be done by placing a magnetic resonator in the middle of
medium where SWs propagate, what is shown in Section 5.4.

In the case of both GTI and FPI the desired widths of the resonators should be a multiple of
wavelength λ of the wave cast on interferometer. It can be expressed by a formula [63][p. 622]

2w = mλ , (2.5)

where m is an integer. However in magnonics, because of high magnetic damping in most of
the magnetic materials, short propagation distances are preferred what may constrain the use of
interferometers. In Sections 5.2, 5.3, 5.4 it is shown that magnonic interferometers are able to
create the resonances even with resonators narrower than the incoming SW wavelength, due to
the possibility of excitation of much shorter wavelength SWs in the resonator. These findings
allow for greater miniaturisation of magnonics elements. Additionally, the coupling between
magnetic resonator and the layer is done by stray field which quickly dissipates in space, cf.
Section 1.2.2. Thus the spacing between the elements of magnonic interferometers should be
relatively small to harness the interaction between them effectively.

2.3 Goos-Hänchen effect

The Goos-Hänchen effect (GHE) manifest itself as a lateral shift of reflected waves from an
interface. Fig. 2.6 presents a scheme of GHE with the lateral shift of reflected wave beam denoted
as ∆X . The effect was first observed by German physicists F. Goos and H. Hänchen for the
total internal reflection of a light beam [64]. A thorough analysis of total internal reflection, as
illustrated in Fig. 2.6, explains the GHE. Since multiple layers of atoms at the edge are influenced
by the propagating wave, they all contribute to the reflection. It appears as if the incident wave
penetrates the interface to a certain depth δ , and the actual reflection occurs at a new interface
behind the real one. If the trajectories of incident and reflected beams are drawn as shown in
Fig. 2.6, the reflected waves appear shifted at the interface by a distance denoted as ∆X and
the incident and reflected waves are connected by an evanescent wave propagating along the
interface [63][p. 137]. The scope of GHE can be expressed with a formula [65, 66]

∆X = − ∂φ

∂kx
, (2.6)

where φ is the phase shift of reflected wave at the interface and kx is the tangential to the interface
component of the wavevector.

The presence of GHE has been confirmed in many areas of physics involving waves. As
mentioned, the original work on GHE had been done on beams of electromagnetic waves in
the linear regime. However, the spatial shift of inelastically scattered electromagnetic waves
was also reported [67, 68]. GHE was measured for the acoustic waves [69], neutron waves [70]
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Figure 2.6 Illustration of Goos-Hänchen effect. When the trajectories of the incident and reflected beams
are drawn, it appears that the reflection happens behind the real interface, at a distance δ , and because of
that the reflected beam is shifted with respect to the incidence spot by a distance of ∆X at the interface.

and SWs. The first analytical prediction of GHE for SWs were shown in [66] with numerical
simulation of this effect presented [71]. Later, the experimental confirmation of GHE for SWs
was published by Stigholer [72]. GHE of SW beams is one of the topics presented in Section 5.5
and an analogue of GHE for inelastically scattered SW beams is shown in Section 5.6.

2.4 Wood’s anomaly

In 1902, R. W. Wood observed a phenomenon which science at his time was unable to explain.
Specifically, he showed that the amplitude of light reflected from a grating rapidly decreases at
certain angles of incidence [73–75]. Unable to properly interpret the effect he observed, Wood
referred to it as an anomaly. Lord Rayleigh [76] and Fano [77], among others, attempted to
explain Wood’s anomaly (WA), but their interpretations did not fully account for the effect. Only
with the advent of the new field of physics, plasmonics was WA finally clarified.

Plasmonics is a field of physics which studies the excitation of electron density waves at
metallic or dielectric interfaces at optical frequencies [78]. It explains WA as the excitation of
surface plasmons on a grating. A metallic grating, such as the one used by Wood, possesses
eigenstates that include surface modes. When light, with its magnetic field component polarised
parallel to the grating, strikes the grating at a critical angle θc, phase matching occurs between
the incident wave and the grating eigenstate. Under this condition, a portion of the incident
light’s energy is transferred to the grating’s surface plasmons when the tangential wavevector
component of the light, k||, matches that of the plasmons, and both share the same frequency.

The excitation of surface plasmons is illustrated schematically in Fig.2.7. In Fig.2.7(a), the
phase matching condition is not met, as the angle of incidence is inappropriate, and no plasmon
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excitation occurs. In contrast, when the phase matching condition is fulfilled, as shown in
Fig. 2.7(b), surface plasmon excitation takes place.

Although the origin of WA has been explained, the name of the phenomenon has remained
unchanged for historical reasons. WA continue to be investigated in modern physics and have
been observed in acoustic waves [79], photonic metamaterials [80], and time gratings [81].
However, WA has not been extensively studied in magnonics. In Section 5.5, we present one of
the first studies of WA in magnonics.

Figure 2.7 Sketch of Wood’s anomaly. When a beam reflects from a grating at an arbitrary angle θi the
amplitude of the reflected waves is the same as of the incident waves and the angles of propagation are the
same (a). Wood’s anomaly occurs when the incident waves cast at the critical angle θc excite grating’s
eigenmode which takes part of the incident wave energy. It results in the reflected waves having smaller
amplitude (marked with thinner line) in comparison with the incident waves (b).



Chapter 3

Numerical simulations
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In physics the changes in a given system are described by partial differential equations (PDE).
Usually, these are second order PDEs and, depending of the physical problem, they are solved
in time, space or frequency domains. Solving these equations in the vast majority of cases is
cumbersome because as, the real physical systems consist of innumerable degrees of freedom.
In the case of magnonics one can imagine that each spin in the system may be regarded as a
separate degree of freedom. Thus, solving LLG equation for all the spins in the system at once
would prove to be an unfeasible feat. To overcome this obstacle, not only in magnonics but in
any other field of physics, special numerical methods were developed to make solving PDEs
possible in a finite amount of time and with a finite amount of computational power. However,
the cost of using the numerical approach to solving PDEs is reduced accuracy of the obtained
results.

In the case of theoretical investigations on magnetism so called continuum theory was
introduced to increase the feasibility of numerical simulations. According to the micromagnetic
approximation, also known as the continuum theory, magnetisation is regarded as a continuous
function in space and not as a set of separate magnetic moments [82, 83]. The value of M(r) in a
particular point in space is an average of magnetic moments in a small volume around this point
where magnetisation is approximately uniform. In the micromagnetism the magnitude of M(r)

is preserved during computation and numerical simulations based on this approach are called
micromagnetic simulations.

The research presented in this thesis is based on two numerical methods. The first was finite
element method, where the calculations were performed in the real space and frequency domain
in COMSOL Multiphysics software. The second method was finite difference method which
simulations were carried out in the real space and time domain in an open-source MuMax3
environment. In this Chapter the detailed description of these two methods and software
corresponding to them will be presented.

3.1 Finite element method

In FEM a physical problem is defined by its geometry, proper PDEs corresponding to the
investigated physics and the boundary conditions that limit the number of possible solutions.
The geometry of the system is divided into cells called finite elements, hence the name of the
method itself [84]. The division of the geometry into finite elements transforms the problem of
solving PDEs in a continuous space to a discrete set of equations that is much easier to compute.
All of the finite elements with their vertices and edges create a web called mesh that represents
system’s geometry in FEM. An example of mesh used in FEM calculations is presented in
Fig. 3.1(a). For the purpose of micromagnetic simulations the size of mesh should be smaller
than the exchange length, λex, of the investigated magnetic material, Eq. 1.18. as this is the
length of the shortest-ranged interaction in the system. Because of using discrete meshes to map
a system, the final results of FEM are approximations of the real solutions. However, this is a
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compromise that has to be accepted in order to obtain the solution to a physical problem while
being limited by the time and given computational possibilities.

Figure 3.1 The difference between discretisation meshes used in FEM and FDM for the same type of
simulated geometry. In FEM the discretisation mesh may consist of elements of different dimensions what
in an example in (a) is presented with triangles (in 2D) of different shapes. However, FDM requires mesh
with regular-sized elements, e.g. squares (in 2D), as shown in (b). The Figure shows also an important
limitation of the regular meshes, namely the difficulty of discretising curved geometries.

After creating the mesh, the next step of FEM is to define so called shape functions inside
the finite elements, which are mostly polynomials of low order such as linear functions. The
purpose of these functions is to interpolate the results of PDEs among the nodes [85]. In FEM
the shape functions are combined, each with particular coefficient, to create the base functions
that stretch over whole system’s geometry. The linear combination of base functions is used to
approximate the result of PDEs. Thus, solving the system changes into solving a set of linear
equations. The coefficients in this set of equations create so called the stiffness matrix, which
elements correspond to the nodes in the system’s mesh and their numerical values are obtained
by integrating PDE’s in the nodes. The proper definition of base functions causes that most of
the elements of the stiffness matrix are zeros, because of that the matrix is also called the sparse
matrix[86]. The fact that most of the sparse matrix elements are zero makes computation of the
system’s solution faster.

In the end the results of FEM have to be scrutinised for errors that might arise as a result of
wrong definitions of systems properties, mistakes in defining PDEs and boundary conditions, and
numerical errors related to used integration methods and definition of the base functions. If the
numerical error is considered as an acceptable, the FEM results should be further processed. This
usually involves retrieving a part of FEM solution that is of interest in particular investigation.
Later this part of solution is postprocessed either by a self-developed code or with the tools
provided by commercial programs dedicated to solve FEM.
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3.2 Simulations in COMSOL Multiphysics

The results of numerical simulations in FEM presented in this thesis were done in COMSOL
Multiphysics environment [87]. COMSOL Multiphysics is a commercial software dedicated
to solving predefined PDEs corresponding to a wide range of different physical, chemical and
engineering problems. One of the biggest advantages of COMSOL Multiphysics is the possibility
to solve different PDEs describing various phenomena in the investigated system simultaneously.
On top of that COMSOL Multiphysics allows users to define their own PDEs. This feature was
crucial for the investigation presented in this thesis as it facilitated user-made implementation
of LL equation what is not, at the time of writing this thesis, officially included in COMSOL
Multiphysics software1.

The definition of custom PDE in COMSOL Multiphysics is done by proper definition of
coefficients of Sturm-Liouville equation which has a form of2

ea
∂ 2u
∂ t2 −da

∂u
∂ t

+ ∇ · (−c∇u− εu + ρ)+ β ·∇u + au = f , (3.1)

where u is a dependent variable vector, ea is a mass coefficient, da is the damping coefficient, c
is the diffusion coefficient, ε is the conservative flux convection coefficient, ρ is the conservative
flux source, β is the convection source, a is the absorption coefficient and f is the source term.
In the investigations the linearised version LL equation, Eq. 1.28, in two dimensional case was
used, where u = (mx,my). To implement such a version of LL equation the coefficients in Eq. 3.1
were defined as

da =

(
1 0
0 1

)
, (3.2)

c =

(
2γAex

MS
0

0 2γAex
MS

)
, (3.3)

a =

(
−γµ0Hext iω

−iω −γµ0Hext

)
, (3.4)

f =

(
γµ0MS

−γµ0MS

)
. (3.5)

The coefficients ea, ε , ρ , β are set to zero.
In this implementation the dipolar interactions were not defined explicitly in the LL equation.

The influence of the dipolar interaction was added in terms of the magnetostatic potential created
by the magnetic dipoles in the system [88]. The behaviour of the magnetostatic potential is

1An example of unofficial implementation of LLG equation in COMSOL can be found in
https://www.comsol.com/blogs/micromagnetic-simulation-with-comsol-multiphysics (access 13.01.2025).

2Sturm-Liouville equation presented in this thesis has two different symbols when compared to its implementa-
tion in COMSOL documentation. These two symbols were changed to not to duplicate notation used previously in
this thesis.
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described by Poisson equation which is defined in COMSOL Multiphysics as

∇ · (−c∇φ + ρ) = f , (3.6)

where φ is magnetostatic potential and coefficients c, ρ and f have the same meaning as in
Eq. 3.1. The expression for magnetostatic potential, Eq. 3.6, is defined separately for magnetic
and non-magnetic domains of the system. In the case of magnetic domains the coefficients of
Eq. 3.6 are defined as c = 1, f = 0 and ρ = (mx,my) and in the non-magnetic domains as c = 1,
f = 0 and ρ = 0.

Another important feature of COMSOL Multiphysics software is its ability to create a non-
uniform mesh in the investigated system. The definition of mesh is not direct in COMSOL. The
user can define general parameters of desired mesh in the simulation domains such as finite
element shape and the range of shapes’ dimensions. COMSOL offers two types of finite elements
shapes, in two-dimensional simulations these are triangles and squares and in three-dimensional
simulations these are tetrahedrons and cuboids. The dimensions of mesh elements can vary
across the investigated system. This feature allows for significant reduction of computational
resources demand in the simulations. The usual procedure is to define a dense mesh in the
areas of interest. In micromagnetic simulations these are magnetic domains and in the case
of the simulation of interacting magnetic bodies the space between them. To the rest of the
simulation space a sparse discretisation may be assign as away from the magnetic domains only
vanishing fields are expected. The use of a low-density discretisation grid at the periphery of the
investigated system provides needed reduction in computational costs in the FEM simulations.
Fig. 3.2 illustrates such a procedure with an example of mesh used in the investigations presented
in Sections 5.2 and 5.3.

Figure 3.2 (a) Picture of the discretisation mesh employed in the investigations on magnonic interfer-
ometers conducted in COMOSOL Multiphysics. The denser mesh is applied in the middle of simulated
space as the magnonic elements are placed there (marked with red rectangle). The area away from the
magnonic elements is filled with sparser mesh as no magnetisation precession is predicted there, only
potentials fading with the distance. (b) A zoom in on the area marked with the red rectangle. A very fine
mesh structure is presented which is assigned to the investigated magnonic elements in the simulation.
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The simulations performed in COMSOL Multiphysics were done in the eigenfrequency
domain. It means that the results were the real space distributions of magnetisation and magneto-
static potential that correspond to a particular eigenfrequency of the system. Such calculations
are much faster comparing to the calculations in time domain which require system to reach its
steady-state. Additionally, the simulations in eigenfrequency domain were used to calculate the
investigated systems’ dispersion relations after applying Bloch boundary condition depending on
wavevector k in the system, for example in the case of magnetisation mi|x=0 = mi|x=LeikL, where
L is the width of the system along its x axis. The results of simulations carried out in FEM in
COMSOL Multiphysics are presented in Sections 5.2, 5.3.

3.3 Finite difference method

Finite difference method (FDM) is another numerical technique used to solve PDEs. The
main idea behind FDM is to convert continuous PDEs into a discrete problem by using an
approximation formula for differential operator derived from Taylor’s theorem

∂ f (ζ )

∂ζ
≈ f (ζ + ∆ζ )− f (ζ )

∆ζ
, (3.7)

where f (ζ ) is the solution to the problem and ζ is the domain in which calculations are done [89].
In FDM calculations are usually performed in space and time domains. The expression ∆ζ

denotes the difference between neighbouring points in the chosen domain. For the purpose of
FDM this difference is always finite, thus the name of the method. Only in the limit of ∆ζ → 0
Eq. 3.7 the expression is strictly differential, hence FDM yields approximated results depending
primarily on the scope of chosen finite difference ∆ζ . The use of Eq. 3.7 to represent differentials
allows to treat given physical problem as a linear algebra problem which is much easier to
compute [90].

Similarly as for FEM, in FDM the system is divided into a discrete set of nodes; however,
the difference is that the nodes have to be distributed on a regular grid, Fig. 3.1(b). In the
two-dimensions simulations the grid is made of squares or rectangles and in three-dimensions
is made of cubes or cuboids. The division into the uniform grid renders a few inconveniences
in the numerical calculations. The first is a greater restriction on the possible shapes in the
simulations. The grid made of rectangular units is not well suited to represent continuous
curves thus simulations of spheres, cylinders and alike shapes are less accurate. The use of
regular discretisation grid also does not allow to assign sparser discretisation in less important
simulation’s areas. For this reason saving the computational resources by defining coarse mesh
in non-magnetic domains as is the case in FEM simulations is not accessible in FDM. The size
of the discretisation units has observe the principle of being smaller than the distance of the
shortest-ranged interaction in the investigated system. As described previously in Subsection 3.1,
in the case of micromagnetic simulations this is the exchange length λex, described by Eq. 1.18.
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After establishing the discretisation in the investigated system, the next step in FDM is
the choice of numerical method to compute the equations describing physics in the system.
The approximation presented in Eq. 3.7 is the base of recursive Euler method, schematically
presented in Fig. 3.3, which can be written as

fn+1 = fn + f ′n∆ζ . (3.8)

This method allows to calculate the values of function f in all grid points when the initial value
f0 is known. However, this method is a subject to large numerical error which scales linearly
with the ∆ζ and additionally is prone to numerical instabilities. Thus, to achieve a satisfactory
accuracy with Euler method, an extremely fine discretisation mesh is needed that causes huge
demand for computational resources[91]. What is contrary to the aim of introducing numerical
methods to solve PDEs.

Figure 3.3 Illustration of Euler method for numerically solving of a differential equation f ′(x). Knowing
the previous state f (xn) and the step between states ∆x it is possible to derive the next steps following
the formula f (xn+1) = f (xn) + ∆x f ′(x). Because of relatively high numerical errors and tendency for
numerical instabilities this method is rarely used in numerics but still serves as a good, starting example in
explanations of numerical solving of differential equations.

As the Euler method proves unreliable in many simulation cases, another, more sophisticated
numerical methods were developed to provide higher calculation accuracy with lower computa-
tional costs. These methods include Heun, backward differentiation formula, Bogaki-Shampine,
Dormand-Prince, Fehlberg [92, 93]. However the prevailing numerical method used in this thesis
in FDM simulations was Runge-Kutta method (RKM) [94, 95]. The main idea behind RKM is to
add intermediary points in the finite difference ∆ζ at which the derivatives are evaluated. Such
a treatment provides more symmetry to the calculations when compared to the Euler method
leading to reduced numerical errors. In the case of 4th-order RKM four intermediary points are
chosen. In two dimensional space (x, t) 4th-order RKM calculated with a discreet time steps ∆x
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and ∆t can be described by a relation [91][p. 108]

dx
dt

= f (x, t), (3.9)

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
, (3.10)

where

k1 = ∆t f (xn, tn) , (3.11)

k2 = ∆t f (xn + k1/2, tn + ∆t/2) , (3.12)

k3 = ∆t f (xn + k2/2, tn + ∆t/2) , (3.13)

k4 = ∆t f (xn + k3, tn + ∆t) . (3.14)

The numerical error related to the use of 4th-order RKM scales as ∆ζ 5, thus this method provides
satisfactory accuracy. RKM of higher order are also possible to implement but as they involve
more intermediary points in calculations they also require more computational power. Because
of this reason 4th-order RKM is widely used as it is a good compromise between the accuracy of
calculations and computational requirements.

3.4 Simulations in MuMax3

MuMax3 is an open-source, GPU-accelerated environment written in C++ and Go languages
specialised to solve LLG equation [37]. It employs FDM to perform micromagnetic simulations
in time and space domains. In comparison with other environments for FEM micromagnetic
simulation such as TetraX [96], TetraMAG [97], FastMag [98], Nmag [99] and magpar [100],
MuMax3 offers better performance at a cost of lower flexibility with possible shapes in the
simulations.

The simulation script for MuMax3 is prepared using Go language syntax. There the user
defines the discretisation grid on which the system’s geometry is built. In contrast to COMSOL
Multiphysics the user does not have to define LLG equation by themselves as the full version of
LLG equation is already implemented in MuMax3. The magnetic interactions are introduced
in the simulations by defining proper material parameters of the magnetic domains such as the
exchange stiffness constant Aex or anisotropy constant Ku1, cf. Eqs. 1.18, 1.21 respectively. Not
defining one of the coefficients related to a particular magnetic interaction will be interpreted
by MuMax3 as an absence of this interaction in the system. Additionally, MuMax3 allows to
manually disable the dipolar interaction in the system to accelerate the calculations if there is a
need for such a treatment. MuMax3 requires also to define the vector of the external magnetic
field B0 and the initial magnetic configuration. To solve LLG equation MuMax3 uses several
possible solvers based on different numerical methods. In the investigations presented in this
thesis the 4th-order RKM was mostly used.
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MuMax3 offers a possibility to define different material parameters to different domains
in the simulated system. The only exception is γG parameter which definition is universal in
the system. The ability to define different material parameters in different parts of the system
allows for very high damping parameter α values to be assigned in the vicinity of the edges of
the system. With that feature a gradient of α defined close to the system’s edge may be used to
prevent reflections of SWs from these edge, what otherwise would cause an interference of the
reflected waves in the simulation that would decrease the quality of results.

After defining the geometry, material parameters and the external magnetic field, the initial
magnetic configuration in simulations have to be chosen. The initial magnetic configuration can
be defined as a uniform distribution of magnetisation or as a complex magnetisation state, such
as vortex. MuMax3 provides several predefined complex magnetisation distributions. In the
case of multi-element systems there is possibility to assign different magnetisations saturation
MS to different elements. Additionally, for sophisticated simulations the initial magnetisation
configuration can be uploaded from an external file.

When all of the system’s parameters are set, the simulations in MuMax3 start with derivation
of the magnetic configuration with lowest energy. This part of the simulations is called relaxation
and MuMax3 has two predefined function that can be used to obtain relaxed magnetisation state.
The first function is called relax() and disables the precessional movement of the spins in LL
equation. Then the spins align with the direction of effective magnetic field that points to the
minimum energy state. The second function is minimize() that employs the steepest gradient
energy minimisation method. In this method the steepest change of the system’s energy is sought
iteratively, with the assumption that at the end of steepest energy change trajectory lies the global
energy minimum of the system. Even with this two provided functions finding the relaxed state
of the system is a non-trivial task. The system’s energy depends on several parameters thus, the
system’s energy landscape is described by a multidimensional function. Not only calculation of
the steepest gradient in this case would be difficult but additionally, the steepest gradient may
points towards local minima or metastable states instead of a global maximum. Also the analysis
of the direction of the effective magnetic field may be misleading. The addition of anisotropy to
the system will create two directions along the easy-axes that point to the minimum energy states.
One of the possible solutions to these problems is an additional relaxation of the system after
applying a small dynamic magnetic field. Then the system will be removed from the initially
found local minimal energy state. If after the subsequent relaxations of the system will reach the
same relaxed state it will indicate that the system is indeed in the minimum energy state.

Finding of the system’s minimal energy state concludes the static part of the micromagnetic
simulations. The magnetic configuration of the relaxed system may be saved by MuMax3
as an external file for further postprocessing. In general, the results of MuMax3 simulations
are snapshots of reduced magnetisation vector M/MS distribution in the investigated system.
However, if spins dynamics is the subject of investigations then a driving magnetic field has
to be added to the simulations. In MuMax3 it can be done by several different approaches.
It might include defining domains in the system where dynamic magnetic field is assigned
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or adding a space-constrained dynamical component to the external magnetic field, so called
mask. An another approach my be uploading a profile of magnetic field from an external file,
for example when the profile of magnetic field induced by a particular model of antenna is
calculated analytically or numerically using a different simulation. The next step is to choose
time-dependent expression for the magnetic field. The most popular for this task is sin function
which provides harmonic oscillations of the SWs. Time-dependent harmonic function can be
additionally modulated by an another function of gradual amplitude increase, e.g. in form of
(1− e−t). Such an addition is important to avoid transient states associated with a sudden field
activation in the simulations. In the simulations with the numerical derivation of dispersion
relation, dynamic magnetic field is described by sinc function. In the subsection 3.4.2 in-depth
description of such an excitation is provided.

After defining the dynamics in the system, MuMax3 allows the user to adjust the solver’s
parameters. These correspond to maximal and minimal time step used in numerical calculations,
respectively MaxDt and MinDt. Usually, they are defined with respect to dynamic field oscilla-
tion period. There is also a possibility to set desired toleration for numerical error with parameter
MaxErr. In the end, user has to define the simulation time. The time needed for system to reach
steady-state is chosen in most of the cases. After the simulation time MuMax3 saves the results
of simulation as snapshots of reduced magnetisation, M/MS. The number of these snapshots
and time spacing between them depends on the research needs and are defined by the user.

In contrast to COMSOL Multiphysics, MuMax3 does not provide built in tools to postprocess
simulation results. In the case of micromagnetic simulations the postprocessing usually involves
calculating FMR spectra, dispersion relations (in one and two dimensions) and visualisation of
magnetic modes. Such a postprocessing of MuMax3 simulation results is usually done with a
self-made code. The results presented in this thesis were prepared in self-made codes written in
Python language.

In the following subsections several examples of codes used in MuMax3 simulations are will
be presented with explanations.

3.4.1 Implementation of gradient of damping parameter

The code snippet shown below was used to define the gradient of damping parameter at the edges
of simulated system. This code was prepared for the two-dimension simulations, the damping
parameter gradient was defined along x and y directions.
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1 grad_up := yrange (1,0)
2 grad_down := yrange (1,0)
3 grad_left := xrange (1,0)
4 grad_right := xrange (1,0)
5 grad0 := xrange (1,0)
6

7 grad := 60
8 gr_step := 2
9 for i:=2; i<(grad +2); i++{

10 grad_up = yrange( ( (Ny*cy/2)- gr_step *(grad)*cy+i*gr_step*cy),
11 ( (Ny*cy/2)- gr_step *(grad)*cy+gr_step *(i+1)*cy) )
12

13 grad_down = yrange( (-(Ny*cy/2)+ gr_step *(grad)*cy-gr_step *(i+1)*cy),
14 (-(Ny*cy/2)+ gr_step *(grad)*cy -gr_step*i*cy) )
15

16 grad_left = xrange( (-(Nx*cx/2)+ gr_step *(grad)*cx-gr_step *(i+1)*cx),
17 (-(Nx*cx/2)+ gr_step *(grad)*cx -gr_step*i*cx) )
18

19 grad_right = xrange( ((Nx*cx/2)- gr_step *(grad)*cx+gr_step*i*cx),
20 ((Nx*cx/2)- gr_step *(grad)*cx+gr_step *(i+1)*cx) )
21

22 grad0 = grad_up.add(grad_down.add(grad_left.add(grad_right )))
23

24 DefRegion(i, grad0 )
25 }

The discretisation of system is described by four parameters, Nx and Ny indicate the number
of discretisation cells along the x and y axes respectively and cx and cy are spacing between
neighbouring cells expressed in metres. The gradients of damping parameters are defined as
ranges with xrange and yrange functions. In the lines 1− 5 the initiation of the ranges is
presented. Then two additional parameters are defined. The parameter grad describes how many
discretisation cells the gradient will consist of and the parameter grstep specifies the width of a
damping parameter cell in units of discretisation defined in a particular simulation. Because of
limitation of MuMax3 grad parameter has to be smaller than 256, MuMax3 cannot simulate
more regions in the system than that number. The total width of damping gradient along i
direction is given by a simple formula

Ldamp,i = grad ·grstep · ci, (3.15)

where ci is the discretization along the desired direction. The f or loop is used to define all steps
of the gradient starting from the edges of simulate system. All of the gradient components in
each loop’s iteration are added to create a new region in the system, which in MuMax3 also
require assigning an ordinal number. This definition is done with DefRegion() function. The
picture of the defined regions that create damping gradient is shown in Fig. 3.4.

In the last step of this definition the numerical values of the damping parameter α has to be
chosen. It can be done using the following code
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Figure 3.4 Illustration of damping coefficient α gradient created in MuMax3.

1 alpha0 := 0.001
2 alpha_edge := 0.5
3 for i:=2; i<(grad +2); i++{
4 dmp := alpha0 + (alpha_edge -alpha0 )*((i-2)/ grad )*((i-2)/ grad)
5 alpha.setRegion(i, dmp )
6 }

where al pha0 is the damping parameter value of the investigated ferromagnetic layer and
al pha_edge is the maximal damping value assigned at the edges. The variable dmp describes
the value of damping parameter at each gradient step. In the research presented in this thesis the
value of damping parameter changes parabolically with space. This particular function shape
was chosen as the value of damping parameter grows slow enough to minimise the reflections of
SWs from the gradient [101]. The value of damping parameter is assigned to the proper gradient
step with function al pha.setRegion() just as any other material parameter assigned in MuMax3.

3.4.2 Excitation of SWs for dispersion relation calculations

As described in Section 1.5 derivation of system’s dispersion relation is crucial in the magnonic
research. In the same Section a derivation of dispersion relation in special cases was presented
with several formulas derived for main magnetic configurations. However, solving the full
LLG equation to obtain dispersion relations in more complex magnetic structures would prove
to be either cumbersome or impossible. Because of that it is much more sensible to employ
micromagnetic simulations which provide numerical solutions of the investigated systems.

In the case of micromagnetic simulations carried out in COMSOL Multiphysics obtaining
the dispersion relation of a given system is relatively simple. COMSOL Multiphysics is able to
perform calculations in the frequency domain, thus it can derive the desired number of eigenfre-
quencies of the system for given value of SW wavevector. The examples of dispersion relation
calculated in the frequency domain by COMSOL Multiphysics are presented in Sections 5.2, 5.3.
The micromagnetic simulations in MuMax3 are performed in the time domain but obtaining the
eigenmodes of the system is not as straightforward as in calculation with COMSOL Multiphysics.
To derive the dispersion relation of a system in MuMax3 one has to define a proper SW excita-
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tion in the system that would simultaneously excite SWs with wide ranges of frequencies and
wavevectors and only then the response of the system can be calculated and further processed to
extract the dispersion relation.

The excitation scheme which is able to induce a wide range of SWs simultaneously is
described by sinc function that is defined as

sinc(ζ ) =
sin(ζ )

ζ
, (3.16)

where ζ is function’s domain. An example of this function in the time domain is presented in
Fig. 3.5(a). The mathematical method to change the representation of a function to its reciprocal
domain is called Fourier transform (FT) and is given by the formula

f (η) = F{ f (ζ )} =
1√
2π

∫
∞

−∞

f (ζ )e−iηζ dζ , (3.17)

where η is function’s modulation parameter in reciprocal space. The inverse Fourier transform
(IFT) has a formula

f (ζ ) = F−1{ f (η)} =
1√
2π

∫
∞

−∞

f (η)eiηζ dη . (3.18)

Following the example of Fig. 3.5(a) its representation in the reciprocal space, here the frequency
space, is shown in Fig. 3.5(b). It is evident that the signal described with sinc function in the
reciprocal space is given by a rectangular function3 what means that sinc-like signal consists of
waves with equal amplitudes for frequencies up to certain value fcut that will be called the cutoff
frequency in this thesis. To derive the dispersion relation of a system the SW excitation scheme
has to vary in time and space as sinc functions simultaneously. Such a formula for a microwave
magnetic field perpendicular to the system’s magnetisation can be expressed as

brf = b̂sinc(2π fcut(t − t0))sinc(kcut · (r− r0)), (3.19)

where b̂ is the magnetic field vector which magnitude is the field’s amplitude and is directed
b̂ ⊥ M, fcut and kcut are respectively the frequency and wavenumber cutoffs, and t0 and is the
time shift of excitation scheme and r0 is the position of the excitation scheme centre. The
parameter t0 plays an important role in the dispersion relation calculations. The time shift has
to be long enough so the sinc function will not start with its maximum at the beginning of
simulation. Instead the excitation formula should start with a slow increase of the amplitude to
avoid the transient states of magnetic configuration created by an abrupt change of the magnetic
field.

3The disturbances visible around the frequencies f = − fcut and f = fcut in 3.5(b) are the evidence of so-
called Gibbs phenomenon [102][p. 93], which occurs when a discontinuous point is approximated by a series of
trigonometric functions as it is done in Fourier transform.
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Figure 3.5 (a) An example of time dependent signal described with sinc function with cutoff frequency
fcut = 1 Hz, with its representation in the frequency domain (b). The signal is shifted in time by 20 s
so the signal’s maximum does not occur at the time of its excitation what prevents transients states
from occurring. The representation in frequency domain, calculated with Fourier transform, is given
as a rectangle function with the edge at f = fcut, meaning that the time signal consists of signals with
frequencies f ≤ fcut with equal amplitudes. Such an excitation function is thus perfectly suited for
dispersion relation calculations which demand parallel excitation of waves with different frequencies.

In MuMax3 simulations the resolution of dispersion relation, i.e. d f - frequency resolution
and dk - wavevector resolution, depends on the discretisation defined in the simulations. In time
domain the number of taken samples Nt and time spacing between them dt define the resolution
in frequency domain according to the formulas

d f =
1

Ntdt
, (3.20)

fmax =
1

2dt
, (3.21)

where fmax is the maximum frequency derived in Fourier transform. Analogously, in the space
domain, parameters describing space discretisation, the number of cells Nr and spacing between
them cr, are responsible for dispersion relation resolution in the wavevector space. It can be
expressed as

dk =
2π

Nrcr
, (3.22)

kmax =
π

cr
, (3.23)

here kmax is the biggest wavevector in reciprocal space domain.
The dispersion relations derived with micromagnetic simulations are presented in the Sec-

tions 5.2, 5.5, 5.6. In each of these cases however the dispersion relations were calculated with
use of slightly amended procedures than described earlier in this Section. The reason for applying
these amendments was to reflect better different characteristics of the studied systems and thus
the different SWs propagating in them. In the following paragraphs the changes applied to the
dispersion relation derivations are described.
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Figure 3.6 Illustration of the space profiles of width quantised modes. In both cases the modes are
quantised in a space of width L , that can be understood as the width of magnonic interferometer. The
even and odd modes are shown in subfigures (a) and (b), respectively. The even modes are symmetric with
respect to the x = 0 point, i.e. there is an antinode in the middle of the space, thus they can be described
with cos(nπ

x
L) functions. In contrast the odd modes are antisymmetric and have nodes at x = 0, they are

described as sin(nπ
x
L) functions. In both cases the parameter n informs on the number of mode’s antinodes

in space. By using the presented space profiles of quantised waves in the micromagnetic simulations it is
possible to enhance the higher bands of the SW dispersion relation. For the simplicity of illustration all
presented modes have nodes at the space edges, however for real SWs it is not always the case.

3.4.2.1 Excitation of quantised modes

In the case of magnonic interferometers investigations, Section 5.5, SWs can be additionally
quantised in the width of interferometer’s resonator. Examples of these modes are presented in
Fig 3.6, where in (a) the even (symmetric) modes are shown in red and (b) the odd (antisymmetric)
modes are displayed in blue colours and they differ whether they have a node in the middle of the
quantised space (odd modes) or an antinode (even modes). In different systems it is also possible
to quantise the modes along the thickness of magnetic domain. In Fig. 3.6 all the presented
modes have nodes at the edges of the quantised space which is not always the case. A more
common picture involves SW that have non-zero amplitude at the edges. In such cases it is said
that the pinning of SWs is not ideal what may influence the dispersion relation [45, 103].

These quantised modes constitute new SW bands in the dispersion relation. However, the
higher bands are poorly excited by the driving magnetic field as described by Eq. 3.19. To
overcome this problem the additional components in the dynamic field formula have to be
added that correspond to the higher bands. Namely, previously described Eq. 3.19 has to be
multiplied by sin and cos functions with modulations corresponding to the higher SW modes.
The simulation code used in MuMax3 to excite the higher, width-quantised modes can be written
as
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1 x00 := (Nx*cx/2) - rez_width /2
2 mask := newVectorMask(Nx,Ny,Nz)
3 for i := 0; i<Nx; i++{
4 for j := 0; j<Ny; j++{
5

6 r := index2coord(i,j,2)
7 x := r.x()
8 y := r.y()
9 z := r.z()

10

11 Bxyz = 0.5* sinc(kcut*y)
12 x00 := (Nx*cx-rez_width )/2
13

14 // even modes
15 for n := 1; n < 6; n+2{
16 Bxyz = Bxyz + sinc(kcut*y)*cos( n*pi*(x-x00)/ rez_width )
17 }
18

19 // odd modes
20 for n := 2; n < 7; n+2{
21 Bxyz = Bxyz + sinc(kcut*y)*sin( n*pi*(x-x00)/ rez_width )
22 }
23

24 mask.setVector(i,j,2,vector(0, 0, Bxyz))
25

26 }
27 }

where n is the order number of excited higher SW mode and rez_width is the width of resonator.
The even and odd modes are defined by the sin and cos spatial profiles, respectively, along the
investigated resonator’s width (the x axis in this case). The excitation along the longitudinal direc-
tion of resonator, y axis, is described as an ordinary sinc function with predefined wavenumber
cutoff, kcut.

3.4.2.2 Excitation of omnidirectional spin waves

So far the dispersion relations for only particular magnetic configurations were discussed.
However, in the investigations of so called extended waves [104], the waves that are not confined
in any part of the system, it is also beneficiary to develop a method for deriving the dispersion
relation of waves propagating in all directions at the same time. From the analytical point of
view it is equivalent to calculating the Kalinikos formula, Eq. 1.53 for all possible angles of
SW propagation and summing up the results. In the micromagnetic simulations, the analogous
derivation of dispersion relation may be realised by placing an omnidirectional antenna in the
system. Such an antenna, described in space by e.g. a two-dimensional Gaussian envelope,
excites the dynamic magnetic field in all directions at the same time. The system’s response to
such an excitation yields the dispersion relation of the extended SWs, showing the continuum of
SWs in the system. This procedure was employed in the investigations of inelastic scattering
of SW beams presented in Section 5.6 where presented dispersion relation consists of the SW
continuum corresponding to waves propagating freely in a ferromagnetic layer and a distinctive
band of SWs localised in the system.
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3.4.3 Spin-wave modes visualisation

After performing micromagnetic simulations, the dispersion relation of investigated system can
be obtained by calculating fast Fourier transforms [102][p. 243] in the time and space domains.
As it was described in Section 1.5 the dispersion relation is expressed as a function f (k). In
the one-dimensional case this relationship can be calculated with Fourier transform over time
and space for one of the dynamic magnetisation components. The result of such calculation
is presented in Fig 1.12, where the colourmap was obtained by performing a micromagnetic
simulation in MuMax3. The knowledge of dispersion relation enables the visualisation of
SW modes. In Fig. 3.7(a) a numerically-derived dispersion relation for thin YIG layer in
DE configuration is presented. The dispersion relation is shown as f (kx) as the excited SWs
propagate only along the X axis. The green circle indicates the SW mode of frequency 3.5 GHz
and with positive wavevector. In Fig. 3.7(b) a cutline at f = 3.5 GHz is presented which shows
two distinctive peaks of FT(mx)( f = 3.5GHz,ky) function. The visualisation of the desired
SW mode is done by calculating IFT at wavevector kx = 14 rad/µm which corresponds to the
investigated peak. Fig. 3.7(c) shows SW mode visualisation in the space domain which in the
presented case is a plane wave4. The analysis of SW modes and their visualisations as presented
in this paragraph were used throughout the papers included in this thesis with emphasis on
investigations presented in Sections 5.5, 5.6.
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Figure 3.7 (a) Dispersion relation of SWs propagating in a thin YIG layer in DE configuration, (b) cutline
through the dispersion relation at frequency f = 3.5 GHz indicated in (a) with the green dashed line, (c)
visualisation of SW mode in the two-dimensional space domain. This picture was obtained by extending
the result of IFT, calculated for the peak marked in (b) with the green rectangle, along the Y axis (SWs
without any wavevector component along Y axis were assumed).

In the investigation of SWs propagating obliquely it is beneficial to represent the dispersion
relation as a function of wavevector components f (kx,ky). Then contributions of SWs propa-
gating under different angles are evident. In an example of the incident and reflected beams as
presented in Fig. 3.8(a) the representation of SW amplitude in the wavevector space takes form
as presented in Fig. 3.8(b). In consist of two distinctive peaks in the wavevector domain with
the same value of kx and ky wavevector component of different signs. To visualise one of these

4The SWs are presented in two-dimensional space in this picture as their wavefronts are extended along the
Y axis, even though the Fourier analysis was performed in one-dimensional case. Such a treatment is justified as in
this example SWs with wavevector components along the X axis only were assumed.
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peaks an analogous method to the one described in the previous paragraph has to be used with
an important alteration. The dispersion relation should be multiplied by a two-dimensional mask
which cancels out all of the unwanted contributions in the dispersion relation. In the example
presented in Fig. 3.8(b) the peak with coordinates kx0,ky0 corresponding to the reflected beam
(both components of k vector are positive) is marked with a green circle. The mask that would
preserve the input from this peak only may be defined as

Ξ(kx,ky) = e
− (kx−kx0)2

2∆k2x e
− (ky−ky0)2

2∆k2y , (3.24)

where ∆kx and ∆ky denote the spread of mask around the point kx0,ky0. The choice to use
Gaussian functions as the mask is not arbitrary because this function does not change its shape
under FT thus it will not generate any additional numerical errors in the further calculations.
Then the SW amplitude distribution in wavevector space from Fig. 3.8(b) has to be multiplied
by the mask described as Eq. 3.24 centred at the investigated peak and only then the end IFT is
calculated. The result of this calculation is presented in Fig. 3.8(c) where only the reflected beam
is evident. This procedure was used in Section 5.6 to determine the wavevectors of scattered SW
beams and to visualise those beams.
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Figure 3.8 (a) Space distribution of the SW amplitude of incident and reflected beams, (b) representation
of the SW amplitude in the wavevector space where two distinctive peaks are evident. These two peaks
share the same kx wavevector component and have ky wavevector components of opposite signs. The
amplitude distribution for only the reflected beam can be obtained from (a) by calculating IFT of the peak
in (b) that corresponds to this beam, the peak is highlighted in green in (b). The results of the selective
IFT is shown in (c) where only the reflected beam is present.

3.4.4 Unidirectional excitation of SWs

The plane SWs are not well suited to be used in investigations on GHE or WA described in
Sections 2.3 and 2.4, respectively. Even though, the plane waves are relatively easy to excite,
their use come with certain problems that hinder the analysis of investigated effects. For example,
plane waves occupy a significant amount of space, thus the analysis of their reflection from an
interface is difficult as it involves working with a broad SW interference pattern. Under such
conditions the determination of SWs trajectories, necessary for GHE analysis, is arduous. Also
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the analysis of interface mode’s excitation with the plane wave is tedious as with the broad
wavefront adds interference at the interface that can drown out processes taking place there.

To avoid such problems associated with the use of plane waves, SW beams were chosen
in the investigations on GHE and WA in this thesis. The derivation of SW beam trajectory
is relatively easy, especially when the beam is well-collimated and the medium in which it
propagates is weakly dispersive. Then calculations of spatial shifts of reflected SWs at the
interface are significantly less demanding. In addition, the beams reflect from the interface in a
narrow space, making the analysis of the interfacial effects easier.

In MuMax3 micromagnetic simulations the excitation formula used to create the SW beam
was inspired by the work of Whitehead [105]. The essence of this formula is to excite simultane-
ously two magnetic fields which vary in time and space. These fields induce SWs that interfere
constructively only in one direction of propagation while interfering destructively in the other
direction. The sum of such fields can be written as

Bdyn(x,y, t) = b0[sin(k0x)sin(2π f0t)+ cos(k0x)cos(2π f0t)]Rect(x/W )G(y/L), (3.25)

where b0 is excited field amplitude, k0 and f0 are the parameters of the excited SW beam,
Rect(x/W ) is the rectangular function which parameter W defined antenna’s width along the
x axis, and G(y/L) is Gaussian function which described antenna’s length L along the y axis.

The implementation an antenna operating on the principle summarised by Eq. 3.25 in
MuMax3 can be done as follows
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1 field_1 := newVectorMask(Nx, Ny, Nz)
2 field_2 := newVectorMask(Nx, Ny, Nz)
3

4 for i := 0; i<Nx; i++{
5 for j := 0; j<Ny; j++{
6 for k := 0; k<Nz; k++{
7

8 r := index2coord(i,j,k)
9 x := r.x()

10 y := r.y()
11 z := r.z()
12 x_i := (x+x0)*cos(theta) + (y+y0)*sin(theta)
13 y_i := -(x+x0)*sin(theta) + (y+y0)*cos(theta)
14

15 gauss_y := exp( -0.5*pow((y_i/sigma_y ),2) )
16 xi00 := -antWidth
17

18 field_1.setVector(i,j,k,
19 vector(
20 stimAmp*sin(k0*x_i)* gauss_y*heaviside(-(x_i)-xi00 /2)* heaviside ((x_i)-xi00/2),
21 0, 0) )
22

23 field_2.setVector(i,j,k,
24 vector(
25 stimAmp*cos(k0*x_i)* gauss_y*heaviside(-(x_i)-xi00 /2)* heaviside ((x_i)-xi00/2),
26 0, 0) )
27

28 }
29 }
30 }
31 B_ext.add(field_1 , sin(omega*t)*(1-exp( -0.1*t*omega ) ) )
32 B_ext.add(field_2 , cos(omega*t)*(1-exp( -0.1*t*omega ) ) )

The variables f ield_1 and f ield_2 contain the spatial distribution of magnetic fields, the
fields are separated in terms of their modulation by either sin or cos function. In the f or loops
the spatial distributions of magnetic fields are defined. In the lines 11 and 12 modulation of the
system’s coordinates is presented. The new coordinates are not only shifted in space by values
x0 and y0 but also rotated by an angle θ . Such a modulation of coordinates allows for an easy
placing of the antenna in simulation system and pointing of the excited SW beam.

In the next step the shape of antenna is defined. The Gaussian envelope of the excited SW
beam is described by the variable gauss_y which specifies the beam’s shape along y_i direction.
The length of the antenna along y_i direction in this example is governed by a_2 variable. Along
its x_i axis the antenna is constrained by two Heaviside step-functions, thus has a rectangular
shape in this direction with the width described by antWidth parameter. The antenna’s width
along x_i axis as to be in range of at least a few wavelengths to assure proper interference of the
excited SWs so the antenna would excite an unidirectional beam.

At the last step both spatial modulations are multiplied by the sin or cos functions in the time
domain and are added to the external magnetic field. Additionally, they are also modulated by
the exponential increase function. This modulation causes the amplitude of the excited SWs to
rise slowly and thus limits the excitation of the undesired frequencies during the initiation of
excitation.
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The Fig. 3.9(a) presents the unidirectional SW beam excited in a micromagnetic simulation.
The figure was taken after the system has reached the steady-state. Additionally, with slightly
amended simulation code it is also possible to excite SW wavepacket. The only difference is
in defining time dependence of the dynamic field to disappear in time, e.g. time-dependent
Gaussian function can be used such as

Gwavepacket(t) = e−
1
2 (

t−t0
σt

)2
, (3.26)

where σt is the time modulation of the excited wavepacket and t0 is the excitation time shift.
The FWHM of excited wavepacket in the time domain is given by an approximated formula
2
√

2ln(2)σt. An example of SW wavepacket excitation is shown in Fig. 3.9(b). The unidirec-
tional excitation of SWs was used in investigations presented in Sections 5.5 and 5.6.
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Figure 3.9 (a) An example of SW beam excited by an antenna defied with Eq. 3.25. (b) A SW wavepacket
excited by the antenna described by Eq. 3.25 modified by Eq. 3.26.
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4.1 Motivation

SWs described at length in Chapter 1 are believed to be a promising carrier of information
in future data processing technologies [106]. The search for new approaches to data process-
ing is needed as currently used technologies based on CMOS (Complementary Metal-Oxide-
Semiconductor) are approaching their physical limits [107]. These limitations include problems
such as circuitry miniaturisation caused by the Heisenberg uncertainty principle and overheating
of CMOS based circuitry as a result of Joules heating related to the movement of electrons.

Science explores several alternative information carriers to replace the electrons used in
CMOS technology. Among them are plasmons (studied in plasmonics) [108, 109], photons
(photonics) [110], and SWs in magnonics. Plasmonics and photonics are developed alongside
magnonics, as they offer higher operational frequencies compared to electronics. However, the
key advantage of magnonics is that SWs operate at microwave frequencies similar to those used
in the wireless communication, but with significantly shorter wavelengths. Theoretically, this
enables an easier integration of magnonic devices with electronics while also allowing for a
greater miniaturisation compared to electronic counterparts.

Miniaturisation is not the only advantage provided by of using SWs. Another key benefit
is that information transmission via SWs does not involve Joule heating, unlike in electronics
or plasmonics [111]. Joule heating is not an issue in magnonics, eliminating the problem of
device overheating during operation. Additionally, SWs carry less energy than moving electrons,
further reducing the energy consumption of magnonic-based technology. Moreover, magnon-
ics, similar to photonics, enables a novel approach to computing based on wave interference.
The combination of interference-based computing and the inherent non-linear nature of SWs
makes them highly promising candidates for advanced data processing applications, such as the
implementation of artificial neural networks [112].

Despite all of the advantages provided by using SWs the technology based on magnonics
has not been implemented in everyday life devices, at the time of writing this thesis. There are
several issues associated with using SWs that hinder development of magnonic technologies.
Among them are sensitivity of low-energetic SWs to thermal fluctuations in the magnetic media,
high SW damping in most of known magnetic materials, not enough of methods to reliably
excite, control, and detect SW propagation in space. The aim of research presented in this thesis
is to provide a theoretical base for the new methods of SW propagation control using magnonic
interferometers. This task involves investigating both linear and non-linear resonance effects
which accompany SW reflection from and transmission through magnonic interferometers. This
research is a part of wider attempts to develop methods for SW propagation control by using
magnonic interferometers. The theoretical works on magnonic resonators can be found also
in [113, 114], while examples of experimental papers are represented by [115, 116].
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4.2 Overview of scientific publications included in thesis

The following two chapters of this thesis present seven scientific papers published during the
Author’s PhD studies. Five of these papers form a cohesive series of investigations on resonance
effects in both linear and non-linear SW dynamics and are included in Chapter 5. The remaining
two papers, whose first pages are displayed in Chapter 6, explore additional SW-related topics
beyond the Author’s initial research plan. These studies were also published during the course of
the PhD studies.

The first publication, presented in Section 5.2, opens the investigations on SW propagation
control by describing the influence of GTI on reflected SWs. This paper contains both the results
of numerical simulations and the results of a semi-analytical model based on LL equation to
describe the change of SW parameters by magnonic interferometers. The second paper, Sec-
tion 5.3, expands the results presented in the first paper by exploring different geometries of GTI.
The third paper, Section 5.4, presents a detailed description of the semi-analytical model which
results are shown in the first paper. In all of these three papers the numerical simulations were
done in DE magnetic configuration, cf. Subsection 1.5.2, and in two-dimensional space as it was
allowed by magnonic interferometers symmetry (infinitely wide interferometers were assumed).
Both COMSOL Multiphysics and Mumax3 environments were used for these simulations, were
COMSOL was more favoured for the first two papers as these simulations were done in the
eigenfrequency domain.

The next paper, Section 5.5, was also devoted to investigation of GTI but in three-dimensional
simulations carried out in the time domain, thus done in Mumax3 environment only. For purpose
of the paper in Section 5.5 the magnetisation of GTI was uniform and the reflection of oblique
SW beam was investigated.

In the last paper included in this thesis, Section 5.6, the non-linear resonance effects of
scattered SWs were investigated. These simulations did not include magnonic interferometers,
the localisation of SW modes required for inelastic scattering was realised by introducing a
magnetisation field non-uniformity in the system. Additionally, again Mumax3 environment
was chosen to perform simulations as full LLG equation implementation employed by Mumax3
allows for investigation of non-linear effects in magnonics.

The evolution of magnonics research presented in Chapter 5 may be understood as scientific
path starting from simplified micromagnetic simulations of linear resonance effects governed by
simplified LLG equation towards micromagnetic simulation with full LLG equation that focus
on the non-linear effects of SW scattering.

The two papers presented in Chapter 6 are the result of Author’s collaborations in different
scientific projects. The paper in Section 6.1 presents the results of investigation on eigenstates of
a complex, three-dimensional magnetic structure called a hopfion. The publication in Section 6.2
is devoted to the SW confinement in an external magnetic field non-uniformity created by a
presence of a superconductor in the vicinity of a magnetic layer.
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5.2 Resonant subwavelength control of the phase of spin waves
reflected from a Gires–Tournois interferometer

Ferromagnetic nanoresonators are believed to be a promising building block of magnonics
devices as they can be used to shift phase of propagating SWs. Resonators placed in the vicinity
of a magnetic layer where SWs propagate are realisation of magnonic interferometers which
influence SWs. When the resonator is placed at the edge of magnetic layer an interferometer
in so-called Gires-Tournois geometry is created. In this paper the main research goal was to
investigate the influence of subwavelength-width magnonic interferometers on reflected SWs,
which was a part of broader investigations on possibility to design magnonic metasurfaces.
The investigation was conducted by means of numerical simulations. A strongly non-linear
dependency between phase shift of reflected waves and the width of interferometer was described.
It was shown that magnonic Gires-Tournois interferometers of width smaller than the incident
SW wavelength were able to induce Fabry-Perot resonances, in contrast to the theory known in
optics which states that the interferometer should have at least the width of incident wavelength.
The induction of the Fabry-Perot resonance in subwavelength magnonic interferometer was
possible as magnonic interferometers harbour multiple SW modes including short-wavelength
SW modes that may be excited by the incoming SWs. During the resonances described magnonic
interferometers significantly influence the reflected SWs, e.g. shift their phase by 360◦. In the
paper also an explanation of this behaviour is provided by a semi-analytical model. The model
elucidates an influence of two types of interferometer’s eigenmodes on phase shift and occurrence
of the resonances in the system.

In this publication Author has carried out all numerical simulations both in COMSOL
Multiphysics and MuMax3 environments, apart from dispersion relation calculations, and
processed the data with self-developed code. The Author has written bulk of the manuscript as
well as prepared all of the figures included in the manuscript apart from Fig. 2. The Author was
responsible for communication with the journal together with Paweł Gruszecki.
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Resonant subwavelength control 
of the phase of spin waves 
reflected from a Gires–Tournois 
interferometer
Krzysztof Sobucki1*, Wojciech Śmigaj2, Justyna Rychły3, Maciej Krawczyk1 & 
Paweł Gruszecki1*

Subwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, 
which have revolutionized photonics. Despite similarities between different wave phenomena, 
other types of interactions can make subwavelength coupling significantly distinct; its investigation 
in their context is therefore of interest both from the physics and applications perspective. In this 
work, we demonstrate a fully magnonic Gires–Tournois interferometer based on a subwavelength 
resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film. The 
bilayer formed by the stripe and the film underneath supports two propagative spin-wave modes, one 
strongly coupled with spin waves propagating in the rest of the film and another almost completely 
reflected at the ends of the bilayer. When the Fabry–Perot resonance conditions for this mode are 
satisfied, the weak coupling between both modes is sufficient to achieve high sensitivity of the phase 
of waves reflected from the resonator to the stripe width and, more interestingly, also to the stripe-
film separation. Such spin-wave phase manipulation capabilities are a prerequisite for the design 
of spin-wave metasurfaces and may stimulate development of magnonic logic devices and sensors 
detecting magnetic nanoparticles.

The recent years have been marked by a rapidly growing demand for interconnected mobile devices. This emerg-
ing ecosystem of connected devices, preferably communicating wirelessly, is referred to as the Internet of Things. 
There are estimations that within the next few years, the number of WiFi-enabled devices will be at least four 
times larger than the total population of the world1. One of the essential components of the Internet of Things 
are small and energetically efficient devices processing signals converted from and then back to microwaves, 
within the edge computing paradigm. In this field, the application of spin waves (SWs), which are collective 
disturbances of magnetization oscillating at the same frequency range as microwaves and thus able to couple to 
them, opens up a new opportunity to increase the efficiency and functionality of microwave devices. Compared 
to exsisting microwave devices, SW components offer prospects for increased miniaturization (SWs can have 
wavelengths 3–5 orders of magnitude shorter than microwaves of the same frequency), easy external control of 
SW signals, reprogrammability, and significant decrease of energy demands due to lack of Joule heating related 
to SWs propagation2–4. In order to use this kind of waves as an information carrier, efficient methods of their 
excitation and control over their amplitude and phase must be developed.

In modern photonics, a breakthrough in the control of reflected and transmitted waves at subwavelength 
distances has recently been achieved through the use of arrays of nanostructured antennas absorbing and ree-
mitting modified electromagnetic waves5,6. These arrays, so-called metasurfaces, are used to obtain anomalous 
refraction of incident waves or to design flat, ultra-narrow lenses able also to form holograms. Moreover, such 
nanostructured antennas can serve as color filters with subwavelenght pixels for printing purposes, as a replace-
ment of chemical dyes7,8.

There are several reports on the SW coupling of an uniform ferromagnetic film with small magnetic ele-
ments. Kruglyak et al. have shown that a narrow ferromagnetic element placed on top of a magnetic waveguide 
can be used to emit SWs, to control the phase of SWs passing below the resonator, and under some conditions 
even to absorb the energy of propagating SWs9–11. Yu at al. have demonstrated chiral excitation of SWs in a thin 

OPEN

1Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61‑614  Poznan, Poland. 2Met 
Office, FitzRoy Rd, Exeter  EX1 3PB, UK. 3Institute of Molecular Physics, Polish Academy of Sciences, Mariana 
Smoluchowskiego 17, 60‑179 Poznan, Poland. *email: krzsob@amu.edu.pl; gruszecki@amu.edu.pl

76 Papers representing the main research



2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4428  | https://doi.org/10.1038/s41598-021-83307-9

www.nature.com/scientificreports/

film through its dipolar coupling with a single nanowire or a grating of nanowires placed in a spatially uniform 
microwave-frequency magnetic field12,13. Subsequently, the existence of Fano resonances and their influence 
on the amplitude and phase of transmitted waves in a single-mode waveguide has been studied further by Al 
et al.14, and Zhang et al. have demonstrated the application of a single dynamically tunable resonator in zero bias 
field placed on top of a waveguide to tune the phase of the transmitted SWs15. A grating coupler made up of an 
array of resonators has been used to excite short-wavelength SWs16,17, and Graczyk et al.18 have demonstrated 
that dynamical coupling of a homogeneous ferromagnetic film with a periodic array of ferromagnetic stripes 
placed underneath can lead to the formation of a magnonic band structure in the film. However, the effect of a 
resonator on the phase of the reflected wave has not yet been studied in magnonics; moreover, the conditions 
for the existence of Fabry–Perot resonances and their effect on both reflected and transmitted SWs, especially 
at subwavelength distances, remain almost unexplored19, while both may be key ingredients in creating a mag-
nonic metasurface.

In this paper, we investigate theoretically the interaction of a narrow, subwavelength-width stripe placed 
above the edge of a homogeneously magnetized film with propagating SWs, study its influence on the phase 
shift of reflected SWs, and finally demonstrate a magnonic Gires–Tournois interferometer20. Using frequency-
domain finite-element (FD-FEM) calculations and micromagnetic simulations we find that this shift depends 
on the width of the stripe in a non-trivial way: an overall slow and steady increase of the phase shift with stripe 
width is repeatedly interrupted by sharp phase jumps by 360◦ . Treating the stripe and the underlying film as a 
non-reciprocal waveguide supporting two pairs of counter-propagating modes, we formulate a semi-analytical 
model that explains this behavior as a consequence of Fabry–Perot resonances produced by one of these mode 
pairs. We also show that by varying the film-stripe separation it is possible to switch between resonances of 
different order. Our results point to the importance of Fabry–Perot resonances appearing in locally bilayered 
ferromagnetic elements, with potential applications for the control of SW propagation in magnonic devices at 
subwavelength distances.

Results and discussion
Structure under consideration.  We consider a system composed of non-magnetic and ferromagnetic 
materials. Its geometry is independent of the y coordinate and piecewise constant along x, as shown schemati-
cally in Fig. 1. The system consists of a semi-infinite permalloy (Py) film of thickness 50 nm and a ferromag-
netic stripe of thickness 40 nm and finite width w. Both elements are separated by a distance s and their right 
edges are aligned to x = w . Throughout the paper, we will vary the width w of the stripe and its separation s 
from the film. We are interested in manipulating the phase of the reflected SWs using subwavelength elements; 
therefore the width of the stripe will be smaller than or comparable to the wavelength of SWs in the Py film at 
the frequency of operation. The system is magnetized by a uniform in-plane bias magnetic field of magnitude 
µ0H0 = 0.1 T directed along the y axis. In all calculations we have taken the saturation magnetization of the film 
to be MS = 760 kA/m and its exchange constant, Aex = 13 pJ/m. The stripe is made of a material (called FM2 
from here on) with MS = 525 kA/m and Aex = 30 pJ/m; lowering its saturation magnetization and increasing 
the exchange constant with respect to Py will allow us to exploit interactions of local resonances of the stripe with 
propagating waves in Py at frequencies characteristic for the dipolar and dipole-exchange SWs. Such a choice of 
the stripe’s material shifts the SW spectrum down and flattens the first band for lower wavevectors with respect 
to the Py, as will be discussed in the next section. The gyromagnetic ratio of both ferromagnets is γ = −176 rad 
GHz/T.

Figure 1.   Geometry of the system used in simulations. A ferromagnetic stripe of width w and thickness d2 is 
separated from a semi-infinite permalloy film of thickness d1 by a distance s. The right edges of both layers are 
aligned at x = w . The whole system is placed in an external magnetic field µ0H0 = 0.1 T parallel to the y axis. 
The geometry of the system is independent from y.
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Dispersion relation of bilayers.  Before we study the coupling of a film with a finite-width stripe and SW 
reflection, let us first analyze the interaction between modes in infinitely extended films, i.e., in bilayers com-
posed of an infinite Py film separated by a non-magnetic spacer from another infinite film made of FM2. Two 
example dispersion relations calculated using micromagnetic simulations and FD-FEM (see the “Methods” sec-
tion for details) for bilayers with separations s = 200 nm and s = 10 nm are presented in Fig. 2a,b, respectively. 
It is clear that for a 200 nm-wide separation, the SW modes in Py and FM2 almost do not interact with each 
other: the calculated dispersion curve coincides with the analytical dispersion curves of isolated Py and FM2 
films calculated using [21, Appendix C.7]:

where d is the film thickness, ω = 2π f  is the angular frequency of SWs (f denotes the frequency), k is the wave-
number, ω0 = |γ |µ0(H0 +MSl

2k2) [22, Chapter  7.1], l =
√

2Aex/(µ0M
2
S ) is the exchange length, and 

ωM = |γ |µ0MS.
The only visible difference occurs at frequencies above 14 GHz where we can see a hybridization between the 

fundamental SW mode and the first mode quantized across the thickness, a so-called perpendicular standing 
SW21. This hybridization and perpendicular standing SWs, however, are not considered in the analytical model 
and in investigations presented in the following part of the paper.

At frequencies below 14 GHz the modes in the bilayered structure can be classified according to their ori-
gin and group velocity. The fast modes are related to SW dynamics in Py (see Fig. 2e,f) and are characterized 
by steeper dispersion (therefore higher group velocity) and longer wavelengths. In contrast, the slow modes 
originating in FM2 (see Fig. 2d,g) have lower group velocity and shorter wavelengths. It is worth noting that 
the wavelengths of SWs in separated layers do not depend on the direction of propagation, while the dynamic 
dipolar coupling between SW modes in both layers combined with the nonreciprocal nature of surface SW modes 
introduces asymmetry23–25. For s = 200 nm the coupling is still very weak and at the frequency of 11 GHz, which 
is used in further analysis and marked with the white horizontal line in Fig. 2a, the fast and slow modes have 
wavelengths of 2660 nm and 590 nm, respectively, for both propagation directions.

Reduction of the non-magnetic spacer width to s = 10 nm causes strong interaction between the modes. 
The wavelength of the slow modes decreases significantly and their dispersion relation becomes strongly non-
reciprocal; at 11 GHz, the slow mode propagating leftwards has wavelength 390 nm and the one propagating 
rightwards, 270 nm. Fig. 2c shows that the asymmetry of the dispersion relation for slow modes grows as the 
films are brought closer to each other.

(1)ω2 = ω0(ω0 + ωM)+
ω2
M

4

[

1+ e−2kd
]

,

Figure 2.   (a,b) Dispersion relations calculated for two infinite films made of Py and FM2 separated by a non-
magnetic spacer of width (a) 200 nm and (b) 10 nm. Colormaps in the background present results obtained by 
means of micromagnetic simulations, whereas green points correspond to the results of FD-FEM calculations. 
The dashed blue and the dash-dotted red lines are the analytical dispersion relations of SWs supported by 
isolated FM2 and Py films, respectively. The horizontal line marks the frequency f = 11 GHz used in further 
calculations. (c) Dependence of the wavenumber of the slow modes, marked with d and g in (b), located 
predominantly in FM2, on the separation between films at frequency 11 GHz. (d–g) Profiles of the dynamic mx 
component of the magnetization (normalized to a maximum of 1) of the (d), (g) slow and (e,f) fast modes of the 
Py/FM2 bilayer with spacer width 10 nm at frequency 11 GHz. The positions of these modes on the dispersion 
diagram are marked with letters d–g in panel (b).
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Eigenmodes of finite‑width stripes.  The dependence of the eigenmode spectrum of an isolated finite-
width FM2 stripe on its width is displayed in Fig. 3a. These calculations were made with FD-FEM for the first 
thirty modes of stripes with widths up to 2800 nm; note that SW wavelength in uniform Py films at 11 GHz is 
2660 nm. As intuitively expected, mode frequency decreases with increasing stripe width. The horizontal dashed 
line in Fig. 3 marks f = 11 GHz. It is visible that stripes of multiple widths support modes at this frequency. 
Profiles of three successive modes (for stripes of width 656 nm, 936 nm, and 1200 nm) are shown in Fig. 3b–d. 
Successive resonances appear for stripes of widths differing by approximately half of the wavelength of the eigen-
mode of a homogeneous FM2 film, i.e., �w ≈ 280 nm ≈ 0.5�FM2.

Lateral mode confinement in a reciprocal medium leads to formation of standing waves and quantization 
of the wavenumber. The standing waves have the form exp(iknx)+ exp(−iknx) , where n is the mode index, 
kn = rnπ/w and rn = n+ δ ( 0 ≤ δ ≤ 1 ). For the Dirichlet (magnetic wall) boundary conditions, with the 
dynamic magnetization vanishing at the edges, we get rn = n+ 1 , whereas for “free spins” at the edges, rn = n . 
However, due to dipolar interactions, in magnetic stripes neither of these boundary conditions is correct and 
the magnetization is partially pinned at the stripe edges, 0 < δ < 126,27. This can also be interpreted as the 
effective width of the waveguide being slightly larger than the real one, or in terms of a non-zero phase shift ϕ 
being experienced at the stripe edges by the SWs forming the standing wave. Thus, resonances occur when the 
following condition is met:

According to this equation, successive resonances at frequency 11 GHz should appear for stripes of widths dif-
fering by ca. �/2 ≈ 280 nm; this is confirmed by the FD-FEM calculations. 

Phase shift of the reflected SWs.  Before studying the influence of the stripe’s presence on the SW reflec-
tion, let us first discuss SW reflection from the edge of an isolated truncated film. According to Stigloher et al.28, 
dynamic dipolar interactions induce a phase shift between the incident and reflected SWs. This phase shift is a 
natural consequence of the previously discussed dipolar pinning occurring at the boundaries of thin ferromag-
netic film26. Interestingly, Verba et al.29 have recently shown that a phase shift may also be introduced by a polari-
zation mismatch between incident and reflected SW modes. Regardless of the physical mechanism responsible 
for the phase shift, we can extract its magnitude from the steady-state solutions formed far away from the edge. 
The phase shift manifests itself in the resulting interference pattern as a displacement of nodes with respect to 
the interface from which the waves are reflected. If the interface is located at x = x0 and the reflection coefficient 
is eiϕ , where ϕ is the phase shift, the standing wave pattern sufficiently far from the interface (at x ≪ x0 ) will be

where A and a(t) are scaling coefficients independent of x. The change in the standing wave pattern due to vary-
ing phase shift is illustrated in Fig. 4a,b.

In practice, we calculate ϕ by fitting the expression on the right-hand side of Eq. (3) to a snapshot of mx on 
the symmetry axis of the Py film obtained from micromagnetic or FD-FEM simulations. To avoid distortions 
caused by evanescent waves excited at the interface, only points lying at least one stripe width from the left of 
the interface are taken into account. The phase shift occurring at the edge of a 50-nm-thick Py film at frequency 
11 GHz is found numerically to be 230◦ . The resulting standing wave pattern is shown in Fig. 4b.

(2)kw + ϕ = πn, n = 1, 2, . . .

(3)m(t; x) = Re
{

Ae−i2π ft[eik(x−x0) + eiϕe−ik(x−x0)]
}

= a(t) cos[k(x − x0)− ϕ/2],

Figure 3.   (a) Dependence of the frequency of stripe modes on the stripe width. The dashed line marks the 
frequency f = 11 GHz. (b–d) Profiles of modes supported by stripes of width 656 nm, 936 nm, and 1216 nm at 
frequency 11 GHz.
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Phase shift dependence on stripe width.  The introduction of a stripe over the Py film edge locally 
modifies the environment in which SWs propagate due to dynamic dipolar interactions between the film and 
the stripe. In consequence, it influences also the phase shift of reflected waves. The variation of this phase shift 
with a stripe width at frequency 11 GHz, calculated using FD-FEM, is plotted in Fig. 5a. In general, this phase 
shift, defined according to Eq. (3) with the interface located at the left edge of the stripe, at x = 0 , grows steadily 
with stripe width, however with periodic jumps by 360◦ . These jumps occur approximately every 160 nm and are 
accompanied by an increase of the amplitude of SWs in the Py film underneath the stripe, as shown in Fig. 5b. In 
fact, at these stripe widths SWs are amplified in the whole bilayer, indicating that a resonant mode of the bilayer 
is excited. This can be seen by comparing snapshots of mx for stripes of width 1270 nm (slowly changing phase 
shift) and 1350 nm (rapidly changing phase shift) presented in Fig. 5c,d, respectively.

In addition to the enhancement of SW amplitude in the bilayer, Fig. 5c shows that the SWs in the stripe 
and in the underlying Py layer have approximately opposite phases. In view of the profiles of the fast and slow 
modes shown in Fig. 2d–g, we conclude that the slow modes dominate at observed resonances. However, the 
magnetization pattern in both layers is more complex than that of a typical standing wave composed of two 
counter-propagating waves with the same wavelength. Indeed, as discussed in “Dispersion relation of bilayers”, 
the bilayer modes have an asymmetric dispersion relation30. For such a scenario, we can generalize the resonance 
condition Eq. (2) to

where ku and kd are the wavenumbers of right- and left-propagating modes, and ϕl and ϕr are the phase shifts 
occurring at the left and right interfaces of the stripe. For ku = kd = k and ϕr = ϕl this equation reduces to 
Eq. (2). Substituting here the wavelengths of the slow modes of a bilayer with s = 10 nm given in “Dispersion 
relation of bilayers”, we conclude that successive resonances should occur every 160 nm, which matches very 
well with the results of FD-FEM calculations shown in Fig. 5.

We have cross-checked these results against micromagnetic simulations made with a finite damping coefficient 
α = 0.0001 , see Fig. 6a for phase-width relation and Fig. 6b for amplitude-width relation. Due to computational 
demands, these have been performed for a narrower range of stripe widths, 0–490 nm, 1000–1650 nm, and 

(4)(kl + kr)w + ϕl + ϕr = 2πn, n = 1, 2, . . . ,

Figure 4.   (a) Incident and reflected plane waves at an arbitrary time, and resulting interference pattern, in the 
zero phase shift case, i.e., ϕ = 0

◦ . The dotted orange line and the dashed blue line correspond to the incident and 
reflected plane waves, respectively. The solid green line corresponds to the interference pattern. (b) The same for 
a phase shift of ϕ = 230

◦ , i.e., the value obtained for SW reflection from the edge of a semi-infinite 50-nm-thick 
Py film.

Figure 5.   (a) Phase shift of SWs at frequency 11 GHz as a function of the stripe width, calculated by the 
FD-FEM. The stripe-film separation is s = 10 nm. Resonances (rapid changes of the phase shift, marked 
with vertical dotted lines) appear periodically with a period of ca. 160 nm. (b) SW amplification factor in Py 
below the stripe, obtained by dividing the maximum of |mx| in the part of the film lying below the stripe by 
the maximum of |mx| in the far field. (c) Snapshot of the dynamic magnetization mx in a plateau region (stripe 
width: 1270 nm). (d) Snapshot of the system in resonance at 11 GHz (stripe width: 1350 nm). The distance 
between the red dashed lines in (c,d) corresponds to the SW wavelength in a uniform Py film at the same 
frequency.
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2350–2720 nm, encompassing several resonances. The obtained results are consistent with those of FD-FEM 
calculations: the positions of resonances are the same as obtained by FD-FEM and the slope of the curve in 
intermediate regions is virtually identical. The almost perfect alignment of those results obtained by two different 
numerical methods confirms their correctness.

Snapshots of mx in systems with stripes of width 1270 nm and 1350 nm are displayed in Fig. 6c,d, respectively. 
The former does not have a resonance at the chosen frequency, whereas the latter does. The obtained magnetiza-
tion patterns are qualitatively similar to those calculated by FD-FEM [Fig. 5c,d].

Two‑mode model analysis.  The results presented above indicate that the bilayered part at the edge of the 
semi-infinite ferromagnetic film allows an efficient control of the phase of the reflected SWs. The phase changes 
rapidly when the width of the bilayered part fulfils the Fabry–Perot resonant condition, and thus the whole ele-
ment can be treated as a magnonic Gires–Tournois interferometer20. In this section we develop a detailed semi-
analytical model providing a clear justification and explanation of this process.

Wave scattering on the interface x = 0 separating the film and the bilayered part (see Fig. 1) can be described 
by a scattering matrix S linking the complex amplitudes of the incoming and outgoing modes on both sides of the 
interface. If both parts are sufficiently long for the amplitudes of all incoming evanescent modes to be negligible, 
the amplitudes of the outgoing propagative modes are given by

Here, u1 and d1 are the amplitudes of the right- and left-propagating modes of the Py film, u2 and d2 are the 
amplitudes of the right- and left-propagating slow modes of the bilayer, and u3 and d3 are the amplitudes of 
the right- and left-propagating fast modes of the bilayer (see the dispersion relation shown in Fig. 2). All these 
amplitudes are measured at the interface between the film and the bilayer. The elements of the scattering matrix S 
can be calculated using the finite-element modal method (see “Numerical methods”). At 11 GHz, their numeri-
cal values are

(these values are obtained for modes normalized to carry unit power, with the phase at the interface chosen so 
that mx is real and positive on the symmetry axis of the Py layer). It can be seen that the film mode is coupled 
primarily with the fast mode of the bilayer. The slow bilayer mode is strongly reflected. There is only weak, though 
non-negligible, coupling between the fast and slow bilayer modes.

Likewise, the interface x = w between the bilayer and the vacuum can be described by a scattering matrix S′:

Here, u′2 and d′2 are the amplitudes of the right- and left-propagating slow modes of the bilayer, and u′3 and d′3 
are the amplitudes of the right- and left-propagating fast modes of the bilayer, all measured at the bilayer-vacuum 
interface (hence the prime, used to distinguish them from the amplitudes measured at the film-bilayer interface). 
The numerical values of these scattering coefficients calculated at 11 GHz are

(5)

[

d1
u2
u3

]

= S

[

u1
d2
d3

]

≡

[

S11 S12 S13
S21 S22 S23
S31 S32 S33

][

u1
d2
d3

]

.

(6)S =

[

0.100− 0.011i 0.135+ 0.016i 0.986+ 0.008i
−0.104− 0.168i − 0.290+ 0.929i 0.035− 0.113i
0.975− 0.023i 0.119+ 0.143i − 0.118− 0.0273i

]

(7)
[

d′2
d′3

]

= S′
[

u′2
u′3

]

≡

[

S′22 S′23
S′32 S′33

] [

u′2
u′3

]

.

Figure 6.   (a) Phase shift of SWs at frequency 11 GHz as a function of the stripe width obtained with 
micromagnetic simulations. (b) SW amplification factor in Py below the stripe, defined as in Fig. 5b. (c) 
Snapshot of the dynamic magnetization mx in a system without a resonance at 11 GHz (stripe width: 1270 nm). 
(d) The same in a system possessing a resonance at 11 GHz (stripe width: 1350 nm). The distance between 
the red dashed lines in (c,d) corresponds to the SW wavelength in a uniform Py film at the same frequency.
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Both modes are strongly reflected and there is only weak cross-coupling.
Mode amplitudes at the two interfaces are linked by 

 where kiu and kid are the wave numbers of the right- and left-propagating modes, numerically determined to be 
k2u = 16.2 , k3u = 2.22 , k2d = −23.1 and k3d = −1.90 rad/µm.

Together, Eq. (5), Eq. (7) and Eq. (9) form a system of nine equations for as many unknown mode amplitudes 
(the amplitude u1 of the mode incident from the input film is treated as known). To obtain an intelligible expres-
sion for the reflection coefficient r ≡ d1/u1 , it is advantageous to start by eliminating the amplitudes u3 , d3 , u′3 
and d′3 of the fast bilayer mode, which is only weakly reflected at the interface with the Py film and hence will 
not give rise to strong Fabry–Perot-like resonances. This mimics the approach taken by Lecamp et al.31 in their 
model of pillar microcavities. This procedure reduces the second row of Eq. (5) and the first row of Eq. (7) to 

 where 

 and

The fast bilayer mode is only weakly reflected at the interface with the film: |S33| ≈ 0.12 ≪ 1 . Therefore multiple 
reflections of the fast mode at bilayer interfaces do not give rise to strong Fabry–Perot resonances and the coef-
ficient κ remains close to 1 for all bilayer lengths. Together with the fact that the cross-coupling coefficients S23 , 
S32 , S′23 and S′32 are small, this means we can expect the scattering coefficients with a tilde defined in Eq. (11) 
to be well approximated by

Solving the equations remaining after elimination of the amplitudes of the fast mode for the amplitudes of the 
slow mode and substituting the resulting expressions to the formula for d1 in the first row in Eq. (5), we arrive 
at the following formula for the reflection coefficient:

where 

 and β represents the effect of multiple reflections of the slow mode:

To facilitate the interpretation of Eqs. (14)–(16), the scattering coefficients with magnitude much smaller than 1 
have been underlined.

It can be seen that the reflection coefficient r is made up of two terms. The first, a, is dominated by the phase 
shift acquired by the fast mode of the bilayer during a single round-trip across it. This term produces the slow 
but steady increase of the phase shift visible in Fig. 5a (also in Fig. 7). The second term, βb , is proportional to 
b, which is a superposition of six small terms, each containing a product of two scattering coefficients of small 
magnitude. Therefore βb has an appreciable effect on the reflection coefficient b only when the factor β , repre-
senting the combined effect of multiple reflections of the slow mode on both ends of the bilayer, is much greater 
than 1. This happens at stripe widths w corresponding to Fabry–Perot resonances of the slow mode, where 

(8)S′ =

[

−0.043+ 0.975i − 0.103+ 0.190i
0.189+ 0.105i − 0.561− 0.799i

]

.

(9a)u′i = exp(ikiuw) ui ≡ �iuui ,

(9b)di = exp(−ikidw) d
′
i ≡ �idd

′
i , i = 2, 3,

(10a)u2 = S̃21u1 + S̃22d2,

(10b)d′2 = S̃′22u
′
2 + S̃′23�3uS31u1,

(11a)
[

S̃21 S̃22
]

≡
1

1− κS23�3dS′32�2u

[

S21 + κS23�3dS
′
33�3uS31 S22 + κS23�3dS

′
33�3uS32

]

,

(11b)
[

S̃′22 S̃′23
]

≡
1

1− κS′23�3uS32�2d

[

S′22 + κS′23�3uS33�3dS
′
32 αS′23

]

(12)κ ≡ (1− S33�3dS
′
33�3u)

−1.

(13)
[

S̃21 S̃22
S̃′22 S̃′23

]

≈

[

S21 + S23�3dS
′
33�3uS31 S22

S′22 S′23

]

.

(14)r ≡ d1/u1 = (a+ βb),

(15a)a ≡ S11 + S13�3dκS
′
33�3uS31,

(15b)
b ≡ S12�2d(S̃

′
22�2uS̃21 + S̃′23�3uS31)

+ S13�3dκ
[

S′33�3uS32�2d(S̃
′
22�2uS̃21 + S̃′23�3uS31)+ S′32�2u(S̃21 + S̃22�2dS̃

′
23�3uS31)

]

(16)β ≡ (1− S22�2dS
′
22�2u)

−1.
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[arg S22 + arg S′22 + (k2u + k2d)w] is a multiple of 2π , justifying the postulated resonance condition Eq. (4). 
Since b is a combination of multiple terms of similar magnitude, its dependence on the stripe width is rather 
complicated. This explains the variability of the shapes of individual resonances in Fig. 5a (also in Fig. 7a).

To confirm this interpretation of the role of the various terms in Eq. (14), let us visualize and compare 
the effects of applying successively stronger approximations to it. In Fig. 7a,b, the golden symbols show the 
variation of the phase of the reflection coefficient obtained directly from numerical calculations made with the 
finite-element modal method (in close agreement with the FD-FEM results from Fig. 5a). The red solid curve 
in Fig. 7a shows the phase of the reflection coefficient calculated from Eq. (14). The only approximation made 
in its derivation was to neglect evanescent coupling between the left and right end of the bilayer; clearly, this 
approximation is very well satisfied everywhere except for stripes narrower than 250 nm. The black dashed curve 
in Fig. 7a shows the effect of applying the approximation Eq. (13) and setting κ to 1 in the formula Eq. (15b) 
for b (but not in the formula Eq. (15a) for a). This corresponds to neglecting terms proportional to products of 
more than two small scattering coefficients; the resulting curve is almost indistinguishable from the previous 
one. Neglecting the second term βb in Eq. (14) produces the red solid curve in Fig. 7b. The resonances are gone, 
but the long-term increase in phase shift with stripe width is still reproduced faithfully. Finally, the black dashed 
curve in Fig. 7b shows the result of approximating κ by 1 also in the formula Eq. (15a) for a. Its small deviation 
from the red curve confirms the minor role played by multiple reflections of the fast mode. 

Figure 7.   Comparison of the reflection coefficient phase calculated numerically using the finite-element modal 
method FD-MM (points) with the semi-analytical model from Eq. (14) at varying degrees of approximation 
(lines). Details in the plot legends and in the text.

Figure 8.   (a) Phase shift dependence on the separation between the FM2 stripe and Py film, calculated 
by the FD-FEM. (b–e) Snapshots of the dynamic magnetization mx at separations 10, 28, 50 and 106 nm, 
corresponding to the resonances marked in plot (a). The dashed red lines mark the SW wavelength in the Py 
film. (f) Red line: dependence of the resonance index n calculated from Eq. (4) on the separation s, with ϕl + ϕr 
set to the fitted value 0.12. Resonances are predicted to occur at integer values of n. Black circles: positions of 
resonances found in FD-FEM calculations.
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Phase shift dependence on the layer separation.  In “Dispersion relation of bilayers” we observed 
that the separation influences the strength of the dynamical dipolar coupling between the infinitely wide stripe 
and Py film. It affects the SW dispersion relation, especially the wavelengths of the slow modes propagating 
leftwards and rightwards. Therefore, according to Eq. (4), by varying the separation s, and hence ku and kd , while 
keeping the stripe width w constant, it should be possible to sweep over resonances of different orders n. Indeed, 
we have found multiple resonances in dependence of the phase shift on the separation s, for a stripe of width 
w = 1676 nm, as shown in Fig. 8a.

Resonances do not appear periodically; the spacing between subsequent Fabry–Perot resonances increases 
with the altitude of the stripe, and for the chosen stripe width the last resonance occurs at the separation 
s = 106 nm. This is because with increasing s the coupling between the Py film and the stripe weakens and the 
wavenumbers ku and kd approach their asymptotic limits. Snapshots of the magnetization at the resonances found 
at separations 10, 28, 50 and 106 nm are shown in Fig. 8b–e. These figures demonstrate a clear enhancement of 
the SW amplitude below the stripe and a decrease in the number of nodal point with increasing separation, in 
line with the shift of the dispersion relation of the slow mode towards smaller wavenumbers shown in Fig. 2c.

Combining the Fabry–Perot resonance condition, Eq. (4), with the numerically calculated dispersion rela-
tions and setting ϕl + ϕr to the fitted value of 0.12, we calculate the dependence of n on the separation between 
the stripe and the Py film, plotted with the red line in Fig. 8f. In the range from 106 down to 5 nm, we find six 
integer values of n, corresponding to successive resonances. These values agree well with the results of FD-FEM 
calculations, where six resonances, marked with black points in Fig. 8f, are detected in that range of separation.

Conclusions
We have studied theoretically the influence of a narrow ferromagnetic stripe of subwavelength width placed at 
the edge of a ferromagnetic film on the phase of reflected SWs. At the considered frequency (11 GHz) the bilayer 
formed by the film and the stripe supports two pairs of slow (short wavelength) and fast (long wavelength) guided 
SW modes propagating in opposite directions; these modes couple with the SW mode of the Py film. This allowed 
us to interpret the numerical results by modelling the system as a series of waveguides linked by junctions at 
which waveguide modes are scattered into each other.

We have found a strong nonlinear dependence of the phase shift on the stripe width. In particular, we 
have shown that the reflection coefficient, from which the phase shift can be derived, consists of two terms, 
each having a different origin. One produces a slow but steady increase of the phase shift with increasing bilayer 
width and is dominated by the phase accumulated by the fast mode during a single round-trip across the bilayer. 
The other term has an appreciable effect on the reflection coefficient only when multiple reflections of the slow 
mode on both edges of the bilayer interfere constructively, which corresponds to Fabry–Perot resonances of 
this mode. Interestingly, the incoming wave from the Py film couples strongly only to the fast mode, but at 
Fabry–Perot resonances, the phase of the reflected SW is controlled by the slow mode only weakly coupled to 
the propagating wave and to the fast mode of the bilayer. Essentially, this system is a realization of a Gires–Tour-
nois interferometer20 operating on SWs. However, in our design, its width is smaller than the wavelength of the 
incident wave and the interferometer utilizes two nonreciprocal SW modes present in the bilayer, thus offering 
further prospects for the design of subwavelength resonant elements with nonreciprocal properties for SW phase 
control and development of magnon logic.

We have also found that the phase shift of the reflected SW passes through a series of resonances as the sepa-
ration between the stripe and the Py film is increased. This unexpected effect originates from the dependence of 
the wavelength of the slow SW in the bilayer on the strength of the dipolar coupling between the two layers. As 
a result, the bilayer width at which the Fabry–Perot condition is satisfied changes with the coupling strength as 
well, giving rise to the separation-dependent resonances. Increasing the stripe-film separation by 1 nm produces 
a 360-degree shift of the phase of the reflected wave; this high sensitivity is favorable for sensing applications.

Overall, this research shows that SW Gires–Tournois interferometer can be used to modify the phase of 
reflected SWs in a wide range by tiny changes of the bilayer part width or stripe-film distance. This is significant 
for the further development of magnonic devices where SW phase control is of key importance, in particular 
in integrated systems with components smaller than the SW wavelength. This may include the use of arrays of 
resonators in tunable SW optical elements, such as lenses, magnonic metasurfaces and phase shifters, as well 
as the sensing applications of magnonics, for example the development of magnonic counterparts of sensors 
utilizing surface plasmon resonances.

Methods
Governing equations.  The magnetization dynamics is described by the Landau-Lifshitz equation:

where M is the magnetization vector, µ0 is the permeability of vacuum, α is a dimensionless damping parameter, 
and Heff = H0 +HM +Hex is the effective magnetic field. The latter is the sum of the external magnetic field 
H0 , the magnetostatic field HM , and the isotropic Heisenberg exchange field Hex = ∇ · (l2∇M).

The magnetostatic field fulfils the magnetostatic Maxwell’s equations 

(17)∂tM = −
|γ |µ0

1+ α2

[

M×Heff +
α

MS
M× (M×Heff )

]

,

(18a)∇ · (M+HM) = 0,

(18b)∇ ×HM = 0;
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 the latter makes it possible to write it as HM = −∇ϕ , where ϕ is the magnetic scalar potential.
Assuming a harmonic time dependence [ exp(−iωt)], zero damping ( α = 0 ) and alignment of the external 

magnetic field H0 with the y axis, splitting the magnetization M and magnetostatic field HM into static ( MSŷ,H0ŷ ) 
and dynamic (radio-frequency) components ( m = [mx , 0,mz] , hM = [−∂xϕ, 0,−∂zϕ] ), linearizing the Landau-
Lifshitz equation (17) (applicable only in the ferromagnetic layers) and coupling it with the Gauss law for 
magnetism, Eq. (18a) (applicable everywhere), we arrive at the following system of equations for the magnetic 
potential ϕ and the dynamic magnetization component m : 

Numerical methods.  We have used three complementary numerical methods to study SW dynamics. 
First, we use micromagnetic simulations performed in the open-source mumax3 environment32, which solves 
the full Landau-Lifshitz equation [Eq. (17)] with the finite-difference time-domain (FDTD) method. We use this 
method to calculate the dispersion relations of SWs and steady states obtainable after long continuous excitation 
of SWs by a specified source. Micromagnetic simulations were performed for magnetic parameters and geom-
etry described in “Structure under consideration” and damping α = 0.0001 . The simulated structure was discre-
tized with a mesh consisting of regular 5× 100× 5 nm3 (along the x, y, z axis) unit cells. In order to model a film 
infinitely extended along the y axis, we imposed periodic boundary conditions along the y axis with assumed 
1024 repetitions of the system along this axis. After stabilizing the system with a magnetic field of value 0.1 T 
applied along the y axis, SWs were excited in the film by a local source of microwave-frequency magnetic field of 
frequency 11 GHz and amplitude 0.1 mT placed at 3.6 µm from the right edge. To prevent wave reflections from 
the left edge of the film, an absorbing zone with gradually increasing damping was defined on the left side of 
the system. A continuous harmonic SW excitation was maintained for 162.6 ns in order to reach a fully evolved 
(steady-state) interference pattern of the incident and reflected waves. The main disadvantage of this method is 
its high computational cost. Resonant systems can take a long time to reach steady state, and the cost of a single 
time step is pushed up by the need to discretize the whole system on a uniform grid whose resolution is dictated 
by the size of the smallest geometric features.

In order to avoid these limitations, we rely primarily on calculations using the frequency-domain finite ele-
ment method (FD-FEM). Its major advantage is the possibility of refining the mesh locally, e.g. only around small 
geometric features, rather than globally. In addition, it allows direct and fast calculation of the eigenfrequencies 
and eigenmodes (mode profiles) of the system, which can be identified with its steady states. To perform the 
calculations, we have used the COMSOL Multiphysics software33 to solve the linearized Landau-Lifshitz equa-
tion coupled with the Gauss law, Eqs. (19), as described in Refs.34,35. At the edges of the computational domain 
(far from the ferromagnetic materials) the Dirichlet boundary conditions, forcing the magnetic potential to 
vanish, are imposed.

In “Two-mode model analysis” we have formulated a semi-analytical model dependent on the numerical 
values of scattering matrices associated with interfaces separating parts of the system with different cross-sections. 
Calculation of these matrices with the methods mentioned above is cumbersome and produces results of rela-
tively low accuracy. The scattering matrices must be obtained by fitting superpositions of complex exponentials 
to calculated field distributions; the results are affected by the presence of evanescent fields near material discon-
tinuities and by spurious reflections from boundaries of the computational domain. Therefore we calculate the 
scattering matrices using a finite-element modal method; this technique, inspired by similar approaches used 
in photonics36 will be described in detail in a forthcoming paper37. In essence, we proceed in two steps. First, 
Eq. (19) describing each x-invariant part of the system (a SW waveguide with a fixed cross-section) is trans-
formed into an eigenproblem whose solutions are the wavenumbers and profiles of propagative and evanescent 
modes of that waveguide. This problem is then discretized by expanding the magnetic potential and dynamic 
magnetization profile in a finite-element basis and solved numerically. Second, fields in each x-invariant section 
are represented as a superposition of the eigenmodes calculated in the previous step. Imposition of the standard 
continuity conditions on the interface separating a pair of adjacent sections leads to a linear system whose solu-
tion yields the scattering matrix linking the complex amplitudes of modes impinging onto the interface with the 
amplitudes of outgoing modes. The scattering matrices of individual interfaces and finite-length sections can then 
be concatenated together using standard algorithms38 to produce the scattering matrix of the complete system. 
In contrast to the previous two methods, the modal method produces results unaffected by spurious reflections 
from boundaries truncating the computational domain along x, since the radiation conditions at x −→ ±∞ are 
fulfilled analytically. In addition, no fitting is required to obtain the scattering coefficients.
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Control of the Phase of Reflected Spin Waves From Magnonic
Gires–Tournois Interferometer of Subwavelength Width

Krzysztof Sobucki 1, Paweł Gruszecki 1, Justyna Rychły 2, and Maciej Krawczyk 1

1Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
2Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland

The phase is one of the fundamental properties of a wave that allows to control interference effects and can be used to efficiently
encode information. We examine numerically a magnonic resonator of the Gires–Tournois interferometer type, which enables the
control of the phase of spin waves (SWs) reflected from the edge of the ferromagnetic film. The considered interferometer consists
of a Py thin film and a thin, narrow Py stripe placed above its edge, both coupled magnetostatically. We show that the resonances
and the phase of the reflected SWs are sensitive for a variation of the geometrical parameters of this bi-layered part of the system.
The high sensitivity to film, stripe, and non-magnetic spacer thicknesses offers a prospect for developing magnonic metasurfaces
and sensors.

Index Terms— Fabry–Perot interferometer, Gires–Tournois interferometer (GTI), magnonics, metasurfaces, spin waves (SWs),
spin-wave phase.

I. INTRODUCTION

CONTROLLING the phase of waves, regardless of their
type, is very important from the application’s point of

view. Among other things, phase control enables to encode
information, e.g., in phase shift keying digital modulation
scheme, widely used in modern wireless communication [1],
while a wavefront modulation makes it possible to control the
direction of propagation and a wave focusing. Furthermore,
by controlling the phase of the reflected waves, chromatic
dispersion can be generated, which found application in laser
pulse compression [2]. A commonly used optical system for
this purpose is the Gires–Tournois interferometer (GTI) [3].
GTIs are Fabry–Perot interferometers operating in a reflection
mode rather than a transmission mode. In practice, a GTI
can be made of two mirrors, the first partially reflecting and
the second completely reflecting the incident radiation. For
wavelengths close to those satisfying the Fabry–Perot reso-
nance condition, a strong phase dependence of the reflected
waves on the wavelength of the incident radiation appears.

The subject of controlling the phase and amplitude of elec-
tromagnetic waves by 2-D surfaces composed of resonators of
sub-wavelength dimensions has become central to the devel-
opment of the concept of metasurfaces for electromagnetic
waves [4]–[7]. This has contributed to the rapid development
of photonics in recent years.

The concept of metasurfaces has also recently received
attention in magnonics [8]–[10], which is a subfield of mag-
netism focused on spin waves (SWs), particularly in the
context of their applications to information transfer and signal
processing. The pioneering theoretical demonstration of meta-
surfaces acting on SWs enabled their focusing by applying
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ary 20, 2022. Corresponding author: K. Sobucki (e-mail: krzsob@amu.edu.pl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMAG.2021.3088298.

Digital Object Identifier 10.1109/TMAG.2021.3088298

modulation of the exchange interaction alongside the interface
between two interconnected ferromagnetic layers [11]. In the
later studies, it was shown that continuously varying the value
of the magnetocrystalline anisotropy or saturation magnetiza-
tion in a narrow region between a ferromagnetic waveguide
and a thin film, an anomalous refraction can be obtained for
SWs, allowing SWs to be efficiently bent in the waveguides
[12]. This closely connects the magnonic metasurface studies
with the graded-index approach in the design of magnonic
devices [13], [14].

Several reports are showing that the placement of ferro-
magnetic stripes over a ferromagnetic film or waveguide can
be used to emit SWs or affect the amplitude and phase of
SWs passing below that stripe [15]–[21]. Recently, we have
demonstrated with micromagnetic simulations that the phase
of reflected SWs can be controlled by using a resonator
with a sub-wavelength width placed over the edge of a thin
film [22]. In that study, a resonator made of a material with a
lower saturation magnetization value than the thin film was
considered, which allowed obtaining an additional pair of
short-wavelength modes in the bi-layered region, being crucial
for effective phase modulation. This was the demonstration of
a GTI operating on SWs [22]. In this work, we continue the
idea of the magnonic GTI and analyze the system suitable
for the experimental realization. We study the interferometer
composed of Permalloy (Py) and analyze how the thick-
ness of the film and resonator, the width of the resonator,
and the separation between them affect the phase of the
reflected SWs.

This paper is organized as follows. Section II contains
the definition of equations used in the calculations and an
explanation of the post-processing of the raw data obtained
in numerical simulations. In Section III, the geometry of
the system under consideration is presented and there is
an extensive description of the results obtained from our
calculations. Section IV includes the final conclusions of our
results.

0018-9464 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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II. METHODS

SW dynamics in ferromagnetic layers can be studied in a
frame of the linearized Landau–Lifshitz equation with damp-
ing neglected, coupled with the Gauss law for magnetism.
In the case of SW propagating along the x-axis, being per-
pendicular to the direction of the static magnetization (aligned
along the y-axis) in the in-plane, uniformly magnetized layers,
these equations read as

∂xψ − ∇ · (l2∇mx)+ H0

MS
mx − iω

|γ |μ0 MS
mz = 0 (1a)

∂zψ − ∇ · (l2∇mz)+ H0

MS
mz + iω

|γ |μ0 MS
mx = 0 (1b)

∂x(mx − ∂xψ) + ∂z(mz − ∂zψ) = 0. (1c)

Solving these equations allows us to find the values of the
dynamical components of magnetization mx and mz and
the magnetostatic potential ψ of the eigenmodes, as well
as corresponding to them angular frequency ω = 2π f .
Coefficients in (1) are as follows: H0 is the static, uniform
external magnetic field directed along the y-axis, MS is the
saturation magnetization of the ferromagnetic material, γ is
the gyromagnetic ratio, μ0 is the vacuum permeability, and
l = (2Aex/(μ0 M2

S ))
1/2 is the exchange length, where Aex

is the exchange constant. The terms, including magnetostatic
potential, represent the influence of the dipolar interactions,
the terms with the exchange length—the exchange interac-
tions. Further method details and the approximations used can
be found in [23] and [24].

To solve (1), we use the frequency-domain finite-element
method (FD-FEM) defined in COMSOL Multiphysics soft-
ware [25], as described in [23]. At the edges of the com-
putational domain (far from the ferromagnetic materials),
the Dirichlet’s boundary conditions, forcing the magnetostatic
potential to vanish, are imposed.

The phase of SWs reflected from the interface located at
x = x0 can be extracted from the SW mode profiles (eigen-
modes) calculated by FD-FEM. These mode profiles corre-
spond to the steady state that forms the standing SWs. We can
extract the phase from these steady-state solutions formed far
away from the edge. In the interference pattern, the phase shift
ϕ is related to a displacement of nodes with respect to the
interface from which the waves are reflected. If the interface
is located at x = x0 and the refection coefficient is eiϕ ,
the standing wave pattern sufficiently far from the interface
(at x � 0) will be

mx(t; x) = a(t) cos[kx(x − x0)− ϕ/2] (2)

where a(t) is independent of x and represents time dependence
of mx , i.e., a(t) ∝ cos(2π f t). The phase of the reflected wave
is later obtained by fitting (2) to the real part of mx results
from simulations. Results closer than 1 μm to the interface
were discarded to avoid interference with an evanescent wave,
which can be present near the interface [30]. Further details
of post-processing can be found in [22].

Noteworthy, to numerically calculate the dispersion relations
and, therefore, to obtain explicitly eigenfrequency dependence
on kx (the wave vector of SWs propagating along the x-axis),

Fig. 1. Geometry of the system used in simulations. A Py stripe of
thickness d2 and width w is separated by a distance s from a semi-infinite Py
layer of thickness d1. Both elements have their right edges set at x = w. The
system is placed in a uniform external magnetic field H0, which is parallel
to the y-axis.

we have implemented the Bloch boundary conditions at the
lateral edges of an elementary cell of width w = 30 nm:
mx(x, z) = m̃x(x, z)eikx x , mz(x, z) = m̃z(x, z)eikx x , and
ψ(x, z) = ψ̃(x, z)eikx x , where the functions with tilde on the
right-hand side of equations are periodic functions of x , with
the period w.

The dispersion relation of SWs propagating perpendicularly
to the direction of the effective magnetic field in a single
in-plane, uniformly magnetized infinite thin film can also be
described analytically [26]

ω2 = ω0(ω0 + ωM)+ ω2
M

4
[1 + e−2kx d] (3)

where d is the film thickness, ω0 = |γ |μ0(H0 + MSl2 k2
x), and

ωM = |γ |μ0 MS (see [27, Ch. 7.1]).

III. RESULTS

A. Description of the System

Let us consider a system presented in Fig. 1 that consists of
two magnetic elements, a semi-infinite Py layer of thickness
d1, and a Py stripe of thickness d2. The separation between
the layer and the stripe is described by s. Both ferromagnetic
elements are infinitely long along the y-axis direction and
are submerged in a uniform external magnetic field of value
μ0 H0 = 0.1 T, which is parallel to the y-axis. Material
parameters of Py were chosen as follows: MS = 760 kA/m,
Aex = 13 pJ/m, and γ = −176 radGHz/T. To avoid the
influence of the left edge of the system on the reflection of
SWs from the right edge with the resonator, in the calculations,
we considered a Py layer with the width 50 μm, being
significantly longer than the wavelength of investigated SWs.

B. Dispersion Relations

Before analyzing how the presence of a stripe influences
the reflection of SWs, let us examine how the dispersion
relation of an infinitely extended bi-layered system changes
with respect to the dispersion of a single Py film. The
analytically derived dispersion using (3) for a 10 nm-thick
Py film is presented in Fig. 2 by the black solid line. The
FD-FEM computed dispersions for three bi-layered systems
with three combinations of Py-layer thicknesses and separation
between them is presented by color dots in Fig. 2, with the
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Fig. 2. Black solid line represents the dispersion calculated for a layer
of thickness d1 = 10 nm using 3. The blue and orange dots represent the
dispersion relations calculated numerically for layer d1 = 10 nm (stripe d2 =
50 nm and separation s = 10 nm) and for a layer d1 = 50 nm (stripe
d2 = 50 nm and separation s = 10 nm), respectively. The green dots show
the dispersion calculated for separation s = 50 nm (in this case, d1 = d2 =
50 nm). In all the cases, the dispersion was calculated for infinitely long
and wide layers and stripes. The dashed, horizontal line indicates 11 GHz
frequency used in the subsequent calculations. Inset: sketch of the system used
in the dispersions calculations with simplified visualization of antisymmetrical
short-wavelength (on the left) and symmetrical long-wavelength (on the right)
modes.

inset explaining the geometry and the symmetry of the modes.
For frequencies below 14 GHz, we have two bands instead
of one in the case of a single Py film. The band of smaller
wavenumber at a selected frequency is related to the symmetric
mode of the bi-layer (see the schematic representation in the
inset), and it resembles a typical Damon–Eshbach dispersion.
Therefore, this band is very similar to the band of a single Py
film. The second band is related to the antisymmetric mode
for which magnetization oscillates in antiphase in the layers
(see the schematic in the inset), the dispersion of which is
parabolic, and has much shorter wavelengths in comparison
to the previous band.

Comparing the dispersion for different bi-layers shown
in Fig. 2, we find that in the case of a bi-layer with a
smaller value of d1 = 10 nm, the SWs associated with the
short-wavelength band are shorter than in the case of d1 =
50 nm. One may conclude that while the separation increases,
the wavelengths of the short-wavelength band also increase
since the interaction between both layers decreases (see results
obtained for d1 = d2 = 50 nm, s = 10 nm, and s = 50 nm
in Fig. 2 represented by orange and green dots, respectively).
As expected, in the case of symmetric geometry (d1 = 50 nm,
s = 10 nm, and d2 = 50 nm) dispersion relation is fully
reciprocal, i.e., a mirror symmetry of dispersion with respect
to k = 0 is present. Interestingly, for the geometry d1 = 10 nm,
s = 10 nm, and d2 = 50 nm, a small nonreciprocity is
visible (see frequencies above f = 14 GHz), although the
system is composed only of Py. Overall, it means that even
in the case of bi-layers composed of the same material, one
may easily modify the wavelength of SWs corresponding
to short-wavelength bands by changing a separation or the
thickness of one of the layers.

The analysis of dispersion relations in single- and bi-layered
Py films shows that if we consider a system presented in Fig. 1,

we have one long-wavelength mode of SWs in a single Py film
and two, short- and long-wavelength modes in the bi-layered
part. In Section III-C, we will analyze the effect of the reso-
nance related to the short-wavelength mode on the phase of the
reflected SWs for the finite width of the bi-layered part. For
these investigations, we selected the frequency 11 GHz, which
is well below the perpendicular standing SWs frequency.
Notably, the wavelength of SW in Py film of thickness 10,
50, and 90 nm is 584, 2651, and 4724 nm, respectively.
These wavelengths are almost the same as the wavelengths
of long-wavelength SW mode in the bi-layer, i.e., 590 nm for
d1 = 10 nm, 2650 nm for d1 = 50 nm, and 4600 nm for
d1 = 90 nm.

C. Influence of the Py-Layer’s Thickness and Bi-Layer
Geometry on the Phase of Reflected SWs

Let us examine how the ferromagnetic layer, stripe, and
non-magnetic spacer thicknesses influence the phase shift
dependence on the resonator’s width, w. For this purpose,
we have performed several FD-FEM computations for geom-
etry presented in Fig. 1. In each simulation, a sweep over
the stripe’s width w is performed in the range from 2 to
500 nm with the 2 nm step. Thicknesses of the layer and
the stripe, as well as separation, were changed separately for
each simulation.

First, we analyze how the thickness of the layer d1 influ-
ences the phase at constant separation s = 10 nm and the
thickness of stripe d2 = 50 nm (see Fig. 3). In Fig. 3(a),
the phase shift as a function of the stripe’s width is shown for
five different layer thicknesses equal to 10, 50, 70, and 90 nm.

Overall, the phase width dependence has the same features
regardless of the layer thickness. Every dependence is char-
acterized by areas of rapid, resonance-like, phase changes,
which appear periodically. Those areas are divided by regions
of smaller phase change. In Fig. 3(d), the visualization of the
mode in the resonance area is presented. Here, an amplitude of
SW below the resonator is noticeably bigger compared with
the rest of the system and an alternating pattern of SW is
visible. We found also an anti-symmetrical character of the
mode in the bi-layer (SWs in Py film and stripe oscillate in
antiphase). Moreover, the wavelength of SWs in the bilayer
is shorter than in the Py film, indicating that the resonance
effect is related to the short-wavelength antisymmetric mode.
Fig. 3(c) presents the mode in the region out of resonance,
and in this case, an increase of the amplitude is absent.

Analyzing how the layer’s thickness influences ϕ(w), one
may conclude that with increasing thickness of the layer,
the subsequent resonances appear for greater values of w.
This result can be explained by referring to the dispersion
relations (see Fig. 2), which show that with decreasing the
layer thickness, the wavelength associated with short SW
mode decreases. Therefore, the subsequent resonances appear
for shorter w. In addition, for the thinner layer, the areas where
phase changes abruptly are wider. In Fig. 3(b), the position
of the first resonance as a function of the layer’s thickness
is presented. Position of the first resonance at 11 GHz shifts
to wider stripes with increasing the layer thickness, starting
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Fig. 3. (a) Phase shift as a function of stripe width for layers of
different thicknesses at fixed both the separation s = 10 nm and the stripe
thickness d2 = 50 nm for frequency f = 11 GHz. (b) Width of the
stripe for which the first resonance occurs as a function of layer thickness.
(c) and (d) Visualization of the real part of mx of the SW modes in the system
(d1 = 50 nm, s = 10 nm, and d2 = 50 nm). (c) Stripe w = 260 nm—the
system is out of resonance. (d) Stripe w = 370 nm—the system is in the
resonance.

from w < 70 nm up to w ≈ 175 nm with the increase of d1

from 10 to 90 nm, respectively. The stripe’s widths with the
first resonances are significantly smaller than wavelengths in a
single Py layers of checked thicknesses what emphasizes the
subwavelength character of the interferometer (see dispersion
presented in Fig. 2). For bigger thicknesses, the dependence
becomes too complex to clearly identify the first resonance,
due to the quantization of the SWs across the layer thickness.

In Fig. 4, the results of simulations with different stripe
thicknesses d2 are shown for fixed d1 = 50 nm and s =
10 nm. Fig. 4(a) shows the phase of the SW as a function
of the stripe width. Here, increasing the thickness of the
stripe shifts the position of the first resonance similar to
the case presented in Fig. 3(a). This results from the fact
that the thinner one of the layers (d1 or d2) in the bi-layer
is, the shorter the wavelength of the short-wavelength SW
mode is (see also Fig. 2). The main difference between the
results in Figs. 3(a) and 4(a) is the fact that the shape of
the function ϕ(w), in particular the width of resonances, does
not change significantly with changing the thickness of the
magnetic element. Resonance areas are separated by plateau

Fig. 4. (a) Phase shift as a function of stripe width for the stripes of different
thicknesses, with fixed both the separation s = 10 nm and the layer thickness
d1 = 50 nm and frequency of f = 11 GHz. (b) Width of the stripe at which
the first resonance occurs as a function of stripe thickness.

Fig. 5. (a) Phase shift as a function of the stripe width for different
separations s between the layer and the stripe at d1 = d2 = 50 nm and
frequency of f = 11 GHz. (b) Width of the stripe for which the first resonance
occurs as a function of separation.

areas with the same slope, regardless of the stripe thickness.
The position of the first resonance [Fig. 4(b)] shifts toward the
wider stripes (from 100 nm) and reaches a plateau (≈170 nm)
for the stripe of thickness 60 nm and then remains constant
for stripes up to 100 nm. For thicker stripes, a complex phase
width dependence is observed again.

Fig. 5 shows the results of the simulations with differ-
ent separations between the layer and the stripe at fixed
d1 = d2 = 50 nm. An increase of separation shifts the
position of the first resonance to larger widths of the stripe
and the shape of dependence evolves as well, as shown
in Fig. 5(a). In this case, the shape changes in the opposite
manner compared to the results in Fig. 3(a), namely with the
increase of separation, the plateau region becomes steeper,
while in Fig. 3(a), it becomes flatter. In addition, as shown
in Fig. 5(b), the position of the first resonance shifts con-
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tinuously with the increase of separation, and for maximal
considered values of s, a maximum shift was not found.

IV. CONCLUSION

We investigated the reflection of SWs from the bilayer
part of a Py film with a narrow Py stripe. We show with
FD-FEM numerical simulations that the phase of the reflected
SWs can change by 2π with dependence on the stripe width.
This demonstrates a resonance character which we attribute
to the Fabry–Perot resonance of the short-wavelength mode
in the bi-layered part of the system. Thus, the proposed
system operates as a GTI offering control of the SW phase at
sub-wavelength distances, the property important for magnonic
applications [28], [29].

We showed that using a single-material-based system,
the widths, and the positions of resonances in the magnonic
GTI can be controlled over a wide range. In particular, the res-
onance character depends on the ferromagnetic layer thickness,
showing 2π-phase change in a narrow and wide range of the
stripe widths, for thick and thin films, respectively. The system
with the phase steadily varying with the width of the resonator
may find application in the design of a metasurface lens for
SWs by proper modulation of the stripe width along its length.
In addition, the GTI with a sharp phase change in dependence
on the stripe width and its sensitivity for separation between
the layers may find application in the design of sensors.
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5.4 Modal approach to modeling spin wave scattering

In this paper a semi-analytical model for derivation of SWs reflected from and transmitted
through a magnonic interferometer is presented. This model divides a magnonic system with
an interferometer into several segments. Then in each segment its eigenmodes are calculated
numerically. With the knowledge of the system’s eigenmodes different scattering parameters
are derived such as reflectance, transmittance and phases of reflected and transmitted waves.
The paper provides an example of SW scattering on a magnonic interferometer in Fabry-Perot
geometry. The results of the semi-analytical model are compared with the results obtained with
micromagnetic simulations performed in MuMax3 environment.

The Author contributed to this paper by performing the micromagnetic simulations in
MuMax3 which results were used to validate the semi-analytical model results, presented in Fig.
5. The Author also provided the description of the simulations in the paper and prepared the
figures regarding the results of micromagnetic simulations.
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Efficient numerical methods are required for the design of optimized devices. In magnonics, the primary
computational tool is micromagnetic simulations, which solve the Landau-Lifshitz equation discretized in time
and space. However, their computational cost is high, and the complexity of their output hinders insight into
the physics of the simulated system, especially in the case of multimode propagating-wave-based devices. We
propose a finite-element modal method allowing an efficient solution of the scattering problem for dipole-
exchange spin waves propagating perpendicularly to the magnetization direction. The method gives direct access
to the scattering matrix of the whole system and its components. We extend the formula for the power carried by
a magnetostatic mode in the Damon-Eshbach configuration to the case with exchange, allowing the scattering
coefficients to be normalized to represent the fraction of the input power transferred to each output channel.
We apply the method to the analysis of spin wave scattering on a basic functional block of magnonic circuits,
consisting of a resonator dynamically coupled to a thin film. The results and the method are validated by
comparison with micromagnetic simulations.

DOI: 10.1103/PhysRevB.108.014418

I. INTRODUCTION

In recent years, we have observed rapid progress in the
development of components for magnonic circuitry. Con-
duits for single-mode and multimode spin wave transfer
[1–5], phase control [6–9], spin wave valves [10], couplers
[11,12], resonators [13–15], transducers, diodes [16], and
logic gates [17,18] are only selected examples based on var-
ious physical principles. To understand the physics of the
spin wave phenomena behind the observed functionalities,
increase the effectiveness of their operation, and find their new
realizations, researchers need suitable models and numerical
methods.

The primary approach used in magnonics is micromag-
netism, where the nonlinear Landau-Lifshitz (LL) torque
equation is used to describe magnetization dynamics. It is usu-
ally solved in time and space with micromagnetic simulations
based on the continuum model [19,20]. These methods offer a
faithful description of the experimental realizations, including
nonlinear and temperature effects. There are two principal
implementations of micromagnetic solvers, one based on
the finite-difference method [21,22] and the second based
on the finite-element method [23]. However, micromagnetic

*Present address: Optopol Technology, Żabia 42, 42-400 Zawier-
cie, Poland; w.smigaj@optopol.com.pl

†krzsob@amu.edu.pl
‡gruszecki@amu.edu.pl
§krawczyk@amu.edu.pl

simulations are time-consuming and require extensive com-
putational power. Their outputs are raw time- and space-
dependent data, and extensive postprocessing is necessary to
elucidate the physical mechanisms underlying complex mag-
netic systems. In addition, simulations of wave dynamics over
time require selecting a source of these waves; the obtained
spectrum is source dependent, and mode identification may
be ambiguous.

Other approaches are based on solving the LL equation in
the frequency domain and either wave-vector or real space;
they are commonly referred to as spectral methods. Spectral
methods enable calculation of the response of a magnetic
system to a time-harmonic excitation with high precision
and at a lower computational cost, though at the price of
approximations, one of which is linearization. An example
of a spectral method is the plane wave method, applicable
to systems with discrete translational symmetry. It was intro-
duced and used to calculate the band structure of bulk [24]
and thin-film magnonic crystals [25–27] as well as magnonic
quasicrystals [28,29]. In the latter case, full magnetic satura-
tion and homogeneity across the film thickness were assumed.
Here, the LL equation is transformed into an infinite set of
algebraic equations in the frequency and wave-vector domain.
The equations are indexed by the reciprocal lattice vectors.
The eigenproblem formed by the truncated system is solved
numerically with standard numerical routines.

The dynamical matrix method [30,31] overcomes some
limitations of the plane wave method. It uses the finite-
difference method to solve the LL equation formulated in
real space and linearized about the magnetization ground state

2469-9950/2023/108(1)/014418(15) 014418-1 ©2023 American Physical Society
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FIG. 1. Steps required for the solution of a scattering problem
with the proposed modal method. Inputs and outputs are denoted
with parallelograms, and processes are denoted with rectangles.

derived from micromagnetic simulations. This is a powerful
method used to calculate normal modes in isolated nanoele-
ments [30] and thin-film magnonic crystals with nanoscale
periodicity [31]. However, the large matrices involved here
make the solution of the eigenproblem and analysis of the
normal modes time-consuming. Furthermore, the method
does not make it possible to study spin wave scattering
and transmission. An extension of the normal mode calcu-
lation method proposed in Ref. [32] allows damping and,
to some extent, nonlinear effects to be taken into account.
The resulting eigenproblem can be discretized either with
finite differences or finite elements [33]. However, these
methods do not encompass calculation of the transmission,
reflection, or scattering matrices for spin waves in nanoscale
objects.

In this paper, we develop an efficient finite-element modal
method to solve the scattering problem for dipole-exchange
spin waves propagating in a system composed of one or more
ferromagnetic layers or stripes magnetized perpendicularly to
the wave propagation direction. The proposed computational
procedure is outlined in Fig. 1. We decompose the system
into segments with a constant cross section and find the nor-
mal modes of each segment by solving the linearized LL
equation discretized with finite elements. We expand the dy-
namical components of the magnetization and magnetostatic
potential in each segment in the basis of its normal modes.
These expansions are tied together by imposing appropriate

boundary conditions on each interface. The resulting system
of linear equations is solved for the amplitudes of outgo-
ing (transmitted and reflected) modes produced by incoming
modes with known amplitudes. Optionally, the subset of these
equations associated with a particular interface can also be
solved for the scattering matrix of that interface. Interfacial
scattering matrices supply valuable information about the con-
tribution of individual scattering pathways to the output signal
and the role of particular normal modes excited within each
segment. This yields deeper insight into the physics of the
system under consideration and can help its designer optimize
its geometry for a specific application.

Another contribution of this paper is the generalization
of the Lorentz reciprocity theorem, the mode orthogonality
relations, and the formula for the power carried by propagat-
ing spin wave modes of a tangentially magnetized multilayer
to the case of dipole-exchange waves. These results enable
propagative normal modes used in field expansions to be nor-
malized to unit power, letting squared scattering coefficients
be identified with the power passed to the corresponding scat-
tering channels.

We use the proposed method to study the transmission and
reflection of spin waves on a ferromagnetic stripe coupled
with a ferromagnetic film. This system can be considered as a
basic building block of magnonic circuits possessing various
functionalities [10,13,14,16,34–38]. We elucidate the impor-
tant role played by pairs of modes with contrasting group
velocities supported by the bilayer formed by the film and
the stripe. The validity of the modal method is confirmed
by an excellent agreement of its predictions with results of
micromagnetic simulations.

The paper is organized as follows. In the next section, we
describe the finite-element modal method, discussing first the
determination of eigenmodes (Sec. II B) and then the mode-
matching equations (Sec. II C). In Sec. III and Appendix B
we derive the Lorentz reciprocity theorem, the mode orthog-
onality relations, and a formula for the power carried by
dipole-exchange spin waves in the Damon-Eshbach configu-
ration. In Sec. IV we use the proposed method to analyze the
scattering of spin waves propagating along a thin ferromag-
netic film on a resonant element placed in its vicinity. After
validating its predictions against results of micromagnetic
simulations, we feed the calculated mode propagation con-
stants and scattering coefficients into a semianalytical model
of the system under consideration, which allows us to explain
the physical origin of notable features visible in its reflection
and transmission spectra.

II. FINITE-ELEMENT MODAL METHOD

A. Introduction

We consider a system composed of ferromagnetic and non-
ferromagnetic materials. Its geometry is independent of the
y coordinate and piecewise constant along x. The system is
placed in an external static magnetic field oriented along the y
axis; this field is assumed to be sufficiently strong to saturate
all magnetic materials and orient their static magnetization
along y. An example of such a system is shown schematically
in Fig. 2.

014418-2
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FIG. 2. An example system whose geometry satisfies the as-
sumptions made in Sec. II A. The system contains four segments with
uniform cross sections in the xy plane. FM, ferromagnetic.

In a modal method, each x-invariant region is treated
as a finite or semi-infinite segment of a waveguide with a
uniform cross section. The fields inside each segment are
expressed as a superposition of eigenmodes of the correspond-
ing waveguide. These eigenmode expansions are coupled
through boundary conditions imposed on the interfaces x = xi

(i = 2, 3, . . . , n, where n is the number of segments) sep-
arating adjacent segments; imposition of these conditions
produces a linear system of equations for the mode amplitudes
(excitation coefficients). Typically, the excitation coefficients
of modes incoming from the left and right are known, and
the quantities of interest, obtained by solving the system of
equations, are the coefficients of the outgoing modes in the
first and last segment.

B. Determination of waveguide eigenmodes

As stated above, the fields in each x-invariant segment of
the system are expanded in the eigenmodes, both propagative
and evanescent, of an x- and y-invariant waveguide whose
profile along z matches that of the segment. These eigenmodes
are determined numerically using the finite-element method.
The waveguide is governed by the Gauss law for magnetism
(applicable everywhere),

∇ · B = 0, (1)

and the LL equation with a Gilbert damping term (Ref. [39],
Sec. 3.8 therein; applicable only in the ferromagnetic layers),

∂t M = γμ0M × Heff + α

MS
M × ∂t M, (2)

where M is the magnetization, Heff is the effective magnetic
field, γ is the gyromagnetic ratio, µ0 is the vacuum per-
meability, MS is the saturation magnetization, and α is the
damping coefficient. The effective magnetic field is taken to
be a superposition of the static external magnetic field H0, the
magnetostatic magnetic field Hm, and the exchange magnetic
field Hex:

Heff = H0 + Hm + Hex. (3)

Assuming a harmonic time dependence [exp(−iωt)], split-
ting the magnetization M and magnetostatic magnetic field
Hm into static and dynamic (radio frequency) components,
expressing the latter as a gradient of the magnetostatic po-
tential (h = −∇φ), writing the exchange magnetic field as
Hex = ∇ · (l2∇m) (with l denoting the exchange length) [40],
and linearizing the LL equation, we arrive at the following
system of equations:

∂x(mx − ∂xφ) + ∂z(mz − ∂zφ) = 0, (4a)

∂xφ − ∇ · (l2∇mx ) + H0

MS
mx + iω

γμ0MS
(mz + αmx ) = 0, (4b)

∂zφ − ∇ · (l2∇mz ) + H0

MS
mz − iω

γμ0MS
(mx − αmz ) = 0, (4c)

where all material coefficients are functions of z only. The φ, mx, and mz fields of a waveguide eigenmode have a harmonic
dependence on x: ⎧⎨

⎩
φ(x, z)
mx(x, z)
mz(x, z)

⎫⎬
⎭ =

⎧⎨
⎩

φ(z)
mx(z)
mz(z)

⎫⎬
⎭ exp(ikxx), (5)

where kx is the mode wave number. Taking advantage of this fact and introducing the symbols m̃x := imx, ωM := −γμ0MS , and
ω0 := −γμ0H0, we can rewrite the equations in the form

kx(m̃x + kxφ) + ∂z(mz − ∂zφ) = 0, (6a)

kxφ + ∂z(l2∂zm̃x ) − k2
x l2m̃x − ω0 − iαω

ωM
m̃x − ω

ωM
mz = 0, (6b)

∂zφ − ∂z(l2∂zmz ) + k2
x l2mz + ω0 − iαω

ωM
mz + ω

ωM
m̃x = 0. (6c)
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This is a quadratic eigenvalue problem in kx; its approximate
solution can be found by discretizing the above equations with
the finite-element method. This requires transforming them
into a weak form, which forces the integrals of their resid-
uals weighted with an appropriate set of test functions to
vanish [41,42]. To this end, we multiply the equations by
test functions ψ , ñx, and nz, respectively, and integrate by
parts over z to reduce the order of differentiation and thus
lower the smoothness requirements on the trial functions into

which φ, m̃x, and mz will be expanded. Application of the
boundary and continuity conditions—(i) limz→±∞ φ(z) = 0,
(ii) bz ≡ mz − ∂zφ is continuous along z, and (iii) l2∂zmx and
l2∂zmz are continuous along z (which implies, in particular,
that ∂zmx = ∂zmz = 0 on interfaces between layers with and
without exchange magnetic field)—annihilates the boundary
terms produced by integration by parts and leads to the fol-
lowing weak form: Find kx, φ, m̃x, and mz such that for all ψ ,
ñx, and nz

〈∂zψ, ∂zφ〉 + k2
x 〈ψ, φ〉 + kx〈ψ, m̃x〉 − 〈∂zψ, mz〉 = 0, (7a)

kx〈ñx, φ〉 − 〈∂zñx, l2∂zm̃x〉 − k2
x 〈ñx, l2m̃x〉 −

〈
ñx,

ω0 − iαω

ωM
m̃x

〉
−

〈
ñx,

ω

ωM
mz

〉
= 0, (7b)

−〈nz, ∂zφ〉 −
〈
nz,

ω

ωM
m̃x

〉
− 〈∂znz, l2∂zmz〉 − k2

x 〈nz, l2mz〉 −
〈
nz,

ω0 − iαω

ωM
mz

〉
= 0, (7c)

where

〈 f , g〉 :=
∫

f (z) g(z) dz. (8)

The solutions (φ, m̃x, mz ) and the test functions (ψ, ñx, nz )
are required to satisfy the essential boundary and continuity
conditions, i.e., those not involving derivatives.

This weak form can be discretized using the Galerkin
method. The fields φ, m̃x, and mz are expressed as finite linear
combinations of appropriate basis functions [defined on a
sufficiently long but finite interval zmin � z � zmax in the case
of φ and on the union of the intervals where l2(z) > 0 in the
cases of m̃x and mz], and the weak form is evaluated with the
test functions ψ , ñx, and nz set to each of these basis func-
tions in turn. This leads to a quadratic algebraic eigenvalue
problem

Ax + kxBx + k2
x Cx = 0, (9)

where x is the vector of expansion coefficients of φ, m̃x, and
mz, and A, B, and C are matrices independent from kx. This
quadratic eigenvalue problem can be rewritten as a general-
ized linear eigenvalue problem:

[
A B

I

][
x
y

]
= kx

[ −C
I

][
x
y

]
, (10)

which can be solved using the standard QZ algorithm [43].
When damping is neglected, all matrices in the eigenproblem
written in terms of φ, m̃x, and mz are real; so the phases
of eigenvectors corresponding to propagative modes (modes
with real kx) can be chosen so that the profiles φ(z) and mz(z)
are real whereas mx(z) is imaginary.

C. Mode matching

The fields in the ith x-invariant waveguide segment, sand-
wiched between the planes x = xi and x = xi+1, are expanded
in the basis of eigenmodes determined as described in the

previous section:

φ(x, z) =
∑

j

U i
j (x) φiu

j (z) +
∑

j

Di
j (x) φid

j (z)

for xi � x � xi+1, (11)

and similarly for mx and mz. The first sum runs over modes
propagating or decaying rightwards (towards x = ∞); the
second sum runs over modes propagating or decaying left-
wards (towards x = −∞). The symbol U i

j (x) denotes the
position-dependent excitation coefficient of the jth rightward
mode of the ith segment with magnetostatic potential profile
φiu

j (z). Analogous symbols containing the letter d are used for
leftward modes. Within each segment, U i

j (x) and Di
j (x) vary

harmonically and can be written as

U i
j (x) = U i

j (x
iu) exp

[
ikiu

x j (x − xiu)
]
, (12a)

Di
j (x) = Di

j (x
id ) exp

[
ikid

x j (x − xid )
]
, (12b)

where kiu
x j and kid

x j are mode wave numbers. It is convenient to
choose the reference positions xiu and xid as

xiu = xmax(i,2), xid = xmin(i+1,n). (13)

This ensures that imposition of boundary conditions on seg-
ment interfaces leads to equations [Eq. (14) below] containing
exponentials whose magnitude does not exceed 1, which
could compromise numerical stability.

The fields in adjacent waveguide segments are linked by
the following boundary conditions that must hold on the in-
terfaces between these segments: (i) φ is continuous along x
on the whole interface, (ii) bx is continuous along x on the
whole interface, (iii) mx and mz are continuous along x on
interfaces separating pairs of layers such that l2 > 0 in both
layers, and (iv) l2∂xmx and l2∂xmz are continuous along x on
interfaces separating pairs of layers such that l2 > 0 in at least
one layer.

These boundary conditions are imposed by multiplying
them with the basis functions used to expand the fields in
all layers (for the first two boundary conditions) or in the
layers fulfilling the specified criteria (for the last two boundary
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conditions) and integrating over z. For each interface, this
leads to a set of linear equations that can be written symboli-
cally as

[Viu Vid ]

[
Eiu(xi+1 − xiu)

I

][
ui

d i

]

= [Wi+1,u Wi+1,d ]

[
I

Ei+1,d (xi+1 − xi+1,d )

][
ui+1

d i+1

]
,

(14)

where i + 1 is the index of the interface. In this formula,
E···(�x) are diagonal matrices of exponentials dependent on
the length of segments adjacent to xi+1, whereas the matri-
ces V··· and W··· are independent from that length. Explicit
expressions for these matrices are provided in Appendix A.
The symbols ui and d i denote vectors of the excitation coef-
ficients ui

j := U i
j (x

iu) and di
j := Di

j (x
id ) ( j = 1, 2, . . . ) at the

reference positions xiu and xid .

D. Solution of the scattering problem

The excitation coefficients of the outgoing modes of the
semi-infinite waveguide segments—as well as the excita-
tion coefficients of modes of any finite segments—can be
calculated by solving the system of equations obtained by
combining equations of the form (14) for i = 2, 3, . . . , n,
with the coefficients of the incoming modes, u1 and dn,
treated as known. Alternatively, the scattering matrices of
individual interfaces can be calculated independently and then
concatenated using the algorithm from Ref. [44] to reduce the
computational expense.

III. MODE NORMALIZATION AND POWER FLUX

Frequently, the main quantities of interest in the solution of
a scattering problem are the reflectance and transmittance of
the structure in question. As we show below, in the absence of
damping, these can be identified with the squared magnitudes
of the elements of d1 and un corresponding to propagating
modes, provided that the mode profiles are normalized to unit
power.

Stancil and Prabhakar (Ref. [39], Sec. 6.1 therein) identify
the time-averaged Poynting vector of exchange-free magneto-
static waves with

〈Sex.-free〉 = 1
2 Re(−iωφ∗b). (15)

It follows that, in the exchange-free approximation, the power
carried by time-harmonic spin waves propagating along the x
axis of an x- and y-invariant waveguide is given by

Pex.-free =
∫ ∞

−∞
〈Sex.-free,x〉 dz

= 1

2

∫ ∞

−∞
Re(−iωφ∗bx ) dz

= 1

2

∫ ∞

−∞
Im(ωφ∗bx ) dz. (16)

We will now generalize this expression to dipole-exchange
spin waves (in the Damon-Eshbach configuration). In
Appendix B we derive an orthogonality relation between a

pair of dipole-exchange eigenmodes of an x- and y-invariant
waveguide with negligible damping:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax ) + il2(kxa + k∗
xb)ma · m∗

b

]
dz = 0

if kxa �= k∗
xb. (17)

Here, φa(z), ma(z), and kxa are the field profiles and the wave
number of eigenmode a; φb(z), mb(z), and kxb are those of
eigenmode b; and bix (z) = μ0(mix − ∂xφi ) for i = a, b. Us-
ing the identities ikxama = ∂xma and ikxbmb = ∂xmb, we can
rewrite this relation in a wave-number-free form:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax )

+l2(−ma · ∂xm∗
b + m∗

b · ∂xma)
]

dz = 0 if kxa �= k∗
xb. (18)

When a and b refer to the same mode, the integral from
the above equation (omitting the now redundant mode index)
reduces to

P′ :=
∫ ∞

−∞

[
μ−1

0 (−φb∗
x + φ∗bx )

+ l2(−m · ∂xm∗ + m∗ · ∂xm)
]

dz

= 2i
∫ ∞

−∞
Im

(
μ−1

0 φ∗bx + l2m∗ · ∂xm
)

dz. (19)

Comparison with Eq. (16) shows that

P := −1

4
iμ0ωP′ = 1

2

∫ ∞

−∞
Im(ωφ∗bx + ωμ0l2m∗ · ∂xm) dz

(20)
reduces to the expression from Eq. (16) when the exchange
interaction is neglected, i.e., when l = 0. This motivates iden-
tifying P with the power carried by a dipole-exchange spin
wave in the Damon-Eshbach configuration.

In general, the spin wave will be a superposition of multiple
waveguide modes:{

φ(x, z)
m(x, z)

}
=

∑
i

ai exp(ikxix)

{
φi(z)
mi(z)

}
, (21)

where [φi(z), mi(z)] are the field profiles of the ith mode, kxi

is its wave number, and ai is its excitation coefficient. From
Eq. (20), the total power carried by these modes will be

P = iμ0ω

4

∫ ∞

−∞

[
μ−1

0 (φb∗
x − φ∗bx )

+ l2(m · ∂xm∗ − m∗ · ∂xm)
]

dz

=
∑
i, j

aia
∗
j Pi j, (22)

where

Pi j := iμ0ω

4

∫ ∞

−∞

[
μ−1

0 (φib
∗
x j − φ∗

j bxi )

+ l2(mi · ∂xm∗
j − m∗

j · ∂xmi )
]

dz. (23)

The orthogonality relation (18) implies that, in the absence of
damping and of degenerate modes, the integral Pi j vanishes
unless (a) i = j and mode i is propagative (kxi is real) or
(b) mode i is an evanescent mode (kxi is not real) and mode
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j is its complex-conjugate counterpart (kx j = k∗
xi). Therefore

under these assumptions the total power carried by a super-
position of waveguide modes is the sum of powers carried by
individual propagative modes and pairs of evanescent modes
with complex-conjugate wave numbers:

P =
∑

propagative modes i

|ai|2Pii

+
∑

evanescent modes i

Re[aia
∗
conj(i)Pi,conj(i)], (24)

where conj(i) denotes the index of the mode with wave num-
ber k∗

xi. In practice, it is convenient to normalize mode profiles
so that Pii = 1 for propagative modes and Pi,conj(i) = 1 for
evanescent ones, since this makes it possible to obtain the
power carried by individual modes or pairs of modes directly
from their excitation coefficients.

Importantly, Eq. (23) enables unit-power mode normaliza-
tion even when the profiles of the incoming and outgoing
modes in a system are neither identical nor related by
symmetry, e.g., when the input and output waveguides are
multimodal or have different geometries.

If degenerate modes exist, Eq. (24) is still valid provided
that such modes have been suitably orthogonalized. On the
other hand, when damping is present, Eq. (18) loses its valid-
ity, and so the total power cannot in general be decomposed
into a simple sum of powers carried by individual modes: The
cross terms proportional to Pi j with i �= j do not disappear.
However, if the damping is low enough, such a decomposition
may still be accurate enough for practical purposes, as will be
shown numerically in the next section.

IV. APPLICATIONS

A. Introduction

In this section we use the finite-element modal method
described above to simulate the scattering of spin waves trav-
eling along a thin ferromagnetic film on a stripe of another
ferromagnetic material placed above the film. We validate the
method by comparing its predictions against results of micro-
magnetic simulations. Finally, to understand the variation of
the scattering coefficients with the stripe width, we develop a
semianalytical model elucidating the roles played by the two
pairs of modes supported by the bilayer made of the film and
the stripe. The numerical inputs required by the model—mode
wave numbers and scattering matrices—are obtained directly
from simulations made with the modal method.

B. The system under consideration

Figure 3 shows the geometry of the system under con-
sideration. It is composed of a film of thickness 30 nm
made of a CoFeB alloy [45] with static magnetization
MS = 1270 kA/m and exchange constant A ≡ μ0M2

S l2/2 =
15 pJ/m and a stripe of the same thickness made of
permalloy with MS = 760 kA/m and exchange constant
A = 13 pJ/m, separated from the film by a nonmag-
netic gap of thickness 10 nm. The stripe width w will
be varied in the calculation described below. The gy-
romagnetic coefficient of both materials is taken to be
γ = −176 GHz/T, and the damping coefficient α = 0.0002.

FIG. 3. xz-plane cross section of the y-invariant system analyzed
in Sec. IV.

The whole system is placed in a uniform external magnetic
field µ0H = 0.1 T directed along the negative y axis and
parallel to the stripe.

C. Eigenmodes

Evidently, this system is composed of three x-invariant seg-
ments, two of which (the first and the third) are identical. The
eigenmodes of each segment are calculated in the manner de-
scribed in Sec. II B: Eqs. (7a)–(7c) are discretized and turned
into an algebraic generalized eigenvalue problem [Eq. (10)] by
expanding the fields φ, m̃x, and mz into fifth-order Lagrange
finite elements defined on a one-dimensional (1D) mesh cov-
ering an interval of length 12.19 µm with the film at the center.
The same mesh is used in all three x-invariant segments. Mesh
nodes are distributed so that the mesh is geometry-conforming
in all segments; node spacing increases away from the fer-
romagnetic films. Dirichlet boundary conditions are imposed
on φ at the top and bottom of the computational domain. In
total, 224 degrees of freedom are used for φ, and 6 degrees of
freedom per ferromagnetic layer are used for m̃x and mz.

All calculations are done at the frequency 17 GHz. At this
frequency, we find that the CoFeB film supports a pair of
counterpropagating propagative eigenmodes with wavelength
1020 nm and (amplitude) attenuation length 123 µm. The
CoFeB-permalloy bilayer supports two pairs of counterpropa-
gating propagative eigenmodes; those propagating to the right
have wavelengths 1299 and 108 nm and attenuation lengths
165 and 39 µm, whereas those propagating to the left have
wavelengths 973 and 145 nm and attenuation lengths 99 and
27 µm. These values agree (to the number of digits shown)
with ones obtained with the method of De Wames and Wol-
fram [46], which does not require any domain truncation or
discretization.

The bilayer eigenmodes with wavelengths 1299 and
973 nm are concentrated primarily in the CoFeB layer and
have larger group velocities than the modes with wavelengths
108 and 145 nm, concentrated in the permalloy layer. There-
fore, in the following, we shall call the former pair of modes
the fast modes and the latter the slow modes.

The φ(z), mx(z), and mz(z) profiles of all propagative
modes of the film and the bilayer are plotted in Fig. 4.
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FIG. 4. Profiles of the magnetostatic potential φ(z) and the x and
z components of the dynamic magnetization m(z) of the eigenmodes
of (a)–(c) the CoFeB film and (d)–(f) the bilayer. Solid lines, right-
propagating modes; dashed lines, left-propagating modes. The areas
taken by the CoFeB film and the permalloy film are shaded in red and
blue, respectively. All plots show only the dominant real or imaginary
component; the L2 norm of the other one is over 100 times smaller.

Here and throughout the rest of this paper, the phases of all
mode profiles are chosen so that mz is real and negative at
the midplane of the CoFeB film.

D. Scattering: Numerical simulations

Suppose a right-propagating mode of the CoFeB film is
excited by an antenna located to the left of segment 2. In
that case, it will be scattered on the bilayer, giving rise to a
reflected mode propagating to the left along segment 1 and a
transmitted mode propagating to the right along segment 3.
We are interested in the dependence of the power and phase
of the reflected and transmitted modes on the width of the
bilayer. We calculate the scattering coefficients in the man-
ner described in Sec. II D, setting u1 to [1, 0, 0, . . . ]T (i.e.,
assuming the incident field in segment 1 consists solely of
its right-propagating propagative eigenmode with unit power,
arriving at the interface between segments 1 and 2 with phase
0◦) and d3 to [0, 0, . . . ]T (i.e., assuming there is no wave
incident from the right in segment 3). The results of these cal-
culations are plotted in Fig. 5 (solid curves). The four subplots
show the reflectance and transmittance (|d1

1 /u1
1|2 and |u3

1/u1
1|2,

respectively) and the phase shifts of the reflected and transmit-
ted waves, defined as arg(d1

1 /u1
1) and arg{u3

1/[u1
1 exp(ik1u

x1w)]}.
(The phase shift of the transmitted wave is defined as
the difference of the phase of the transmitted wave and the
phase that would be acquired by the incident wave if the
stripe was removed.) As mentioned at the end of Sec. III,
in the presence of damping, waveguide eigenmodes are not
strictly power orthogonal. However, in the system under

FIG. 5. (a)–(d) Dependence of the scattering coefficients of the bilayer, obtained from numerical simulations done with the finite-element
modal method and micromagnetic simulations, on the stripe width. All calculations were performed at frequency 17 GHz.

014418-7

5.4 Modal approach to modeling spin wave scattering 101
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FIG. 6. Convergence of (a) the transmittance and (b) the phase
shift of the transmitted wave with increasing polynomial degree p of
the finite elements used in calculations.

consideration the damping is small, and the total cross power
[the sum of the terms proportional to Pi j , i �= j, in the expan-
sion from Eq. (22)] on both sides of the stripe never rises
above 1% of the incident power; so we neglect it in the
following discussion.

On the reflectance curve from Fig. 5(a), we can see a
regularly spaced series of narrow asymmetric peaks followed
by zero crossings (the familiar Fano resonance shape), super-
imposed on a slow oscillation with a period of approximately
500 nm. As expected from the energy conservation principle,
the transmittance curve in Fig. 5(b) is a mirror image of the
reflectance curve. The narrow peaks and dips in the reflectance
and transmittance curves are accompanied by rapid changes in
the phase shifts of the reflected and transmitted waves. Away
from these narrow features, the phase shift of the transmitted
wave decreases steadily with increasing stripe width, indicat-
ing that the phase of the transmitted wave lags more and more
behind that of the unscattered incident wave.

The red circles in Fig. 5 are data points obtained from
micromagnetic simulations performed with MUMAX3 [21],
described in detail in Appendix C. The results of these simu-
lations agree well with those obtained with the finite-element
modal method. The latter can produce a highly precise so-
lution to the linearized Landau-Lifshitz equations (4a)–(4c).
Figure 6 shows the effect of increasing the polynomial de-
gree of elements on the positions and shapes of two narrow
features in the curves from Figs. 5(b) and 5(d). The curves
obtained with elements of order 4 and 5 are visually almost
indistinguishable. We have also verified that increasing the
size of the computational domain in the z direction by a
factor of 4 makes no perceptible difference to the shape of

the curves. Computation of the scattering coefficients of the
system under consideration (using the mesh and element order
described in Sec. IV C) with the finite-element modal method
on a laptop PC takes 1.5 s. Over 97% of this time is spent
on the calculation of waveguide eigenmodes and interface
scattering matrices, which needs to be done only once even
if the scattering coefficients are to be computed for multiple
stripe widths; the method is therefore particularly well suited
for the modeling of structures containing waveguide segments
whose lengths are allowed to vary. In contrast, micromagnetic
simulations of the same system take approximately 1 h for
each value of w.

E. Scattering: Semianalytical model

To understand the origin of the features visible in the plots
from Fig. 5, we formulate a semianalytical model similar to
that presented in Ref. [14] for a system with segment 3 con-
taining no magnetic materials. We start by noting that wave
scattering on an interface x = xi+1 separating segments i and
i + 1 can be described by a scattering matrix Si+1 linking the
complex amplitudes of the incoming and outgoing modes on
both sides of the interface,[

Di(xi+1)
U i+1(xi+1)

]
= Si+1

[
U i(xi+1)

Di+1(xi+1)

]
. (25)

This matrix can be easily calculated using the finite-element
modal method; in the notation of Eq. (14),

Si+1 = [−Viu Wi+1,d ]−1[Vid −Wi+1,u]. (26)

If segments i and i + 1 are long enough, all incoming
evanescent modes decay away and become negligible before
reaching the interface between these segments. To obtain the
amplitudes of the outgoing propagative modes, it is therefore
sufficient to consider only the rows and columns of Si+1

corresponding to propagative modes.
Consider first the interface x = x2 at the left end of the

bilayer. To simplify the notation, let us denote with ui and
di the complex amplitudes of the right- and left-propagating
modes of the input film (segment 1) and with us and ds (uf and
df) the amplitudes of the right- and left-propagating slow (fast)
modes of the bilayer (segment 2), all measured at x = x2.
If the bilayer is wide enough for the evanescent coupling
between its ends to be negligible, then⎡

⎣di

us

uf

⎤
⎦ =

⎡
⎣Sii Sis Sif

Ssi Sss Ssf

Sfi Sfs Sff

⎤
⎦

⎡
⎣ui

ds

df

⎤
⎦, (27)

where Sii, etc., are appropriate elements of the scattering ma-
trix S2. At 17 GHz, their numerical values found with the
finite-element modal method are⎡

⎣Sii Sis Sif

Ssi Sss Ssf

Sfi Sfs Sff

⎤
⎦

=
⎡
⎣0.117e−0.04i 0.089e−0.78i 0.989e0.03i

0.145e−1.35i 0.984e2.95i 0.095e0.80i

0.983e−0.05i 0.149e1.17i 0.111e−3.00i

⎤
⎦ (28)

(these values are obtained for modes normalized to carry unit
power, with phases chosen so that mz is real and negative on
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the midplane of the CoFeB film). It can be seen that the film
mode is coupled primarily with the fast mode of the bilayer.
The slow bilayer mode is strongly reflected. The fast and slow
bilayer modes are only weakly coupled.

Likewise, amplitudes of the incoming and outgoing modes
at the right end of the bilayer (x = x3) are tied by⎡

⎢⎣
d ′

s

d ′
f

u′
o

⎤
⎥⎦ =

⎡
⎢⎣

S′
ss S′

sf

S′
fs S′

ff

S′
os S′

of

⎤
⎥⎦

[
u′

s

u′
f

]
, (29)

where u′
s and d ′

s (u′
f and d ′

f ) are the amplitudes of the right- and
left-propagating slow (fast) modes of the bilayer and u′

o is the
amplitude of the right-propagating mode of the CoFeB film,
all measured at x = x3. Numerically [47],⎡

⎢⎣
S′

ss S′
sf

S′
fs S′

ff

S′
os S′

of

⎤
⎥⎦ =

⎡
⎣ 0.984e2.95i 0.149e1.17i

0.095e0.80i 0.111e−3.00i

0.145e−1.34i 0.983e−0.05i

⎤
⎦. (30)

Mode amplitudes at the two ends of the bilayer are linked by

u′
i = exp(ikiuw) ui =: 	iuui, (31a)

di = exp(−ikidw) d ′
i =: 	id d ′

i for i = s, f, (31b)

where kiu and kid are the wave numbers of the right- and
left-propagating modes, numerically determined to be ksu =
58.3 + 0.026i, kfu = 4.84 + 0.006i, ksd = −43.4 − 0.037i,
and kfd = −6.46 − 0.010i rad/µm.

Together, Eqs. (27), (29), (31a), and (31b) form a system
of ten equations for as many unknown mode amplitudes (the
amplitude ui of the mode incident from the input film is treated
as known). To obtain intelligible expressions for the scattering
coefficients r ≡ di/ui and t ≡ uo/ui, it is advantageous to start
by eliminating the amplitudes uf, df, u′

f, and d ′
f of the fast

bilayer mode, which is only weakly reflected at the interface
with the CoFeB film and hence will not give rise to strong
Fabry-Pérot-like resonances. This mimics the approach taken
by Lecamp et al. [48] in their model of pillar microcavities.
This reduces the second row of Eq. (27) and the first row of
Eq. (29) to

us = S̃siui + S̃ssds, (32a)

d ′
s = S̃′

ssu
′
s + S̃′

sf	fuSfiui, (32b)

where

S̃si := Ssi + αfSsf	fd S′
ff	fuSfi

1 − αfSsf	fd S′
fs	su

, (33a)

S̃ss := Sss + αfSsf	fd S′
ff	fuSfs

1 − αfSsf	fd S′
fs	su

, (33b)

S̃′
ss := S′

ss + αfS′
sf	fuSff	fd S′

fs

1 − αfS′
sf	fuSfs	sd

, (33c)

S̃′
sf := αfS′

sf

1 − αfS′
sf	fuSfs	sd

(33d)

and

αf := (1 − Sff	fd S′
ff	fu)−1. (34)

The fast bilayer mode is only weakly reflected at the interface
with the film: |Sff| = |S′

ff| ≈ 0.111 � 1. Therefore multiple

reflections of the fast mode at bilayer interfaces do not give
rise to strong Fabry-Pérot resonances, and the coefficient αf

remains close to 1 for all bilayer widths. Given that, in addi-
tion, all reflection coefficients except Sss and S′

ss are small, we
can expect the scattering coefficients with a tilde defined in
Eqs. (33a)–(33d) to be close to the corresponding coefficients
without a tilde.

Having eliminated the amplitudes of the fast modes, we
solve the remaining equations for the amplitudes of the slow
modes and substitute the resulting expressions into the formu-
las for di in the first row of Eq. (27) and u′

o in the last row of
Eq. (29). This yields the following formulas for the reflection
and transmission coefficients:

r ≡ di/ui = rf + αsrs, (35a)

t ≡ uo/ui = tf + αsts, (35b)

where

αs := (1 − S̃ss	sd S̃′
ss	su)−1 (36)

represents the effect of multiple reflections of the slow mode
and

rf := Sii + αfSif	fd S′
ff	fuSfi, (37a)

rs := Sis	sd (S̃′
ss	suS̃si + S̃′

sf	fuSfi)

+αfSif	fd
[
S′

fs	su(S̃si + S̃ss	sd S̃′
sf	fuSfi)

+ S′
ff	fuSfs	sd (S̃′

ss	suS̃si + S̃′
sf	fuSfi)

]
, (37b)

tf := αfS
′
of	fuSfi, (37c)

ts := S′
os	su(S̃si + S̃ss	sd S̃′

sf	fuSfi)

+αfS
′
of	fu

[
Sfs	sd (S̃′

sf	fuSfi + S̃′
ss	suS̃si )

+ Sff	fd S′
fs	su(S̃si + S̃ss	sd S̃′

sf	fuSfi)
]

(37d)

(to facilitate interpretation, scattering coefficients of magni-
tude much less than 1 have been underlined). It can be seen
that both scattering coefficients are made up of two terms.

The first term, rf or tf, is free from the resonant factor αs and
the rapidly varying phase factors 	sd and 	su. Both terms in
rf contain one small reflection coefficient, whereas tf contains
none. Therefore the transmittance |t |2 is usually larger than
the reflectance |r|2.

The other term, αsrs or αsts, is proportional to the factor
αs, which is normally close to unity but whose magnitude can
grow to over 60 near Fabry-Pérot resonances of the slow mode
of the bilayer. These occur approximately at stripe widths

wn = 2πn − arg(SssS′
ss )

Re(ksu + ksd )
where n = 1, 2, . . . (38)

(neglecting the small difference between SssS′
ss and S̃ssS̃′

ss).
Away from these resonances, this term is small, since each
of the terms making up rs or ts is proportional to a product
of at least two scattering coefficients of small magnitude (less
than 0.15). All these terms also contain the phase factors 	su

and/or 	sd ; so their phases vary rapidly.
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FIG. 7. (a)–(d) Comparison of the values of the bilayer’s scattering coefficients predicted by the model from Sec. IV E with results of
numerical simulations done with the finite-element (FE) modal method. The dashed vertical lines are the positions of resonances predicted
with Eq. (38).

In Fig. 7 we compare the power and phase shift of the
reflected and transmitted modes calculated from Eqs. (35a)
and (35b) (red dashed curves) with results of full numerical
simulations made with the finite-element modal method (blue
solid curves). The two data series agree very well except for
very narrow stripes, for which evanescent coupling between
the two ends of the bilayer, neglected in the model from which
Eqs. (35a) and (35b) were derived, plays a large role. The
dashed vertical lines indicate the positions of resonances pre-
dicted from Eq. (38); their agreement with the full numerical
simulations justifies approximating S̃ssS̃′

ss with SssS′
ss in the

derivation of that equation.
The green dotted curves in Fig. 7 show the result of ne-

glecting the terms proportional to αs in Eqs. (35a) and (35b).
As expected, the sharp resonances are gone; however, the
curves continue to reproduce faithfully long-term trends. Thus
the slow oscillations of the reflectance and transmittance as
a function of stripe width are due to the weak Fabry-Pérot
resonances of the fast mode encapsulated in the αf factor.
The propagation constant of the right-propagating fast mode is
smaller than that of the eigenmodes of the CoFeB film; hence
the phase shift of the transmitted wave decreases steadily with
stripe width.

V. CONCLUSIONS

We have introduced a finite-element modal method for the
simulation of spin waves in the dipole-exchange regime and
the Damon-Eshbach configuration. We have complemented it
with a derivation of the Lorentz reciprocity theorem and mode
orthogonality relations applicable to this class of systems and
extended the formula for the power carried by magnetostatic

modes to the case of dipole-exchange spin waves. We have
used a system composed of a CoFeB thin film decorated
with a dynamically coupled permalloy stripe to illustrate the
usefulness of the proposed method for the calculation of
spin wave transmittance, reflectance, and the phase shift of
scattered waves. Its predictions were successfully validated
against micromagnetic simulations. We found the calculation
of scattering coefficients with our method to be over 1000
times faster than calculation with micromagnetic simulations,
clearly demonstrating its potential in the design of elements
of magnonic circuits. Table I highlights the main differences
between the modal method and micromagnetic simulations.

We have formulated a detailed semianalytical model of
spin wave propagation in the system mentioned above.
The only numerical inputs required by the model, namely,
propagation constants of individual waveguide modes and
normalized mode scattering coefficients associated with inter-
faces separating waveguide segments with different geometry,
were obtained directly with the modal method (with no post-
processing required). The model highlights the contrasting
roles played by the two pairs of normal modes supported by
the bilayered part of the system and makes it possible to quan-
tify the contributions of individual scattering pathways. In
particular, we have found the slow modes to be responsible for
the formation of sharp Fabry-Pérot-like resonances observed
in the transmission spectra, as in the Gires-Tournois interfer-
ometer [14], and the fast modes to account for low-amplitude
transmittance oscillations with a larger spatial period. This
provides a deepened physical interpretation of the results of
recent experiments [13] and a tool for future research and
optimization of magnonic devices.
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TABLE I. Comparison between the finite-element modal method and micromagnetic simulations.

Aspect Modal method Micromagnetic simulations

Physically relevant outputs
(scattering coefficients and matrices)

Obtained directly without any
postprocessing

Require postprocessing (see Appendix C)

Outgoing boundary conditions in
input and output waveguides

Fulfilled automatically Fulfillment requires introducing boundary
layers with a suitable damping profile

Individual mode excitation Straightforward (via the u1 and dn

amplitude vectors)
Nontrivial (requires designing an appropriate
antenna) unless the mode to be excited is the
only one with a specific symmetry

Number of unknowns Low (a few hundred per segment) High (864×106 for the three-segment system
simulated in this paper)

Simulation time Short (1 s per point for the system studied
in this paper)

Long (1 h per point for the system studied in
this paper)

Potential for reuse of precalculated
results

Segment eigenmodes can be precalculated
and reused in simulations of multiple
systems containing segments with the
same cross section; simulations at each
frequency must be done separately

Each change in geometry requires running the
simulation from scratch; a single simulation
with a wideband source provides information
about system behavior at multiple frequencies

Precision High: only a modest computational cost is
required to reduce numerical errors
(caused by the finite mesh size and density
and finite polynomial expansion order) far
below those resulting from the adopted
mathematical model (e.g., linearization of
the LL equation, piecewise constant
material properties, idealized geometry)

Typically low: numerical errors are difficult to
eliminate especially when lowest-order finite
differences are employed

Temporal behavior Time-harmonic field variation assumed
and exploited to simplify and accelerate
computations

Not limited to time-harmonic field variation
but unable to exploit it if present (requires
time integration until steady state)

Nonlinearity of the LL equation Neglected (small-perturbations regime
assumed)

Fully taken into account

System geometry Limited to systems that can be split into
segments with constant cross sectionsa

Arbitrary

Static magnetization Required to be spatially piecewise constant
in terms of both magnitude and orientationa

Arbitrary

aSegments with variable cross sections or non-negligible spatial variability of static magnetization could, however, be discretized with standard
nonmodal finite elements, as in photonics (Ref. [42], Sec. 11.1.3 therein).
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APPENDIX A: MODE-MATCHING MATRICES

Let { fq(z)}N f

q=1 be the set of (continuous) basis functions
used to expand the magnetostatic potential profiles of the
eigenmodes of all waveguide segments. Let {gL

q (z)}Ng(L)
q=1 be

the (possibly empty) set of basis functions obtained by re-
stricting all basis functions fq(z) to a set of intervals L ⊂
[zmin, zmax] and keeping only those that are not identically
zero. Let Li ⊂ [zmin, zmax] be the set of intervals with nonva-

nishing l2(z) in the ith segment. The set {gLi

q (z)}Ng(Li )
q=1 is then

the set of basis functions used to expand the magnetization
profiles of the eigenmodes of the ith waveguide segment.

The solution of the eigenproblem (10) for each segment
i yields a family of 2[N f + 2Ng(Li )] eigenmodes; the field
profiles of the jth mode propagating or decaying to the right
with wave number kiu

x j are

φiu
j (z) =

N f∑
q=1

fq(z)F iu
q j , (A1a)

m̃iu
x j (z) =

Ng(Li )∑
q=1

gLi

q (z)M̃iu
xq j, (A1b)

miu
z j (z) =

Ng(Li )∑
q=1

gLi

q (z)Miu
zq j, (A1c)
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where F iu
q j , M̃iu

xq j , and Miu
zq j are elements of one of the eigenvec-

tors (optionally scaled to normalize the mode to unit power).
Replacement of the superscript u with d yields analogous
expressions for the jth mode propagating or decaying to the
left.

Imposition of the boundary conditions listed in Sec. II C at
the interface x = xi+1 between segments i and i + 1 produces
Eq. (14) with Eiu(�x) defined as the diagonal matrix whose
jth diagonal element is exp(ikiu

x j�x) and the Viu and Wi+1,u

matrices defined as

Viu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JφφFiu

Jφmi M̃iu
x − iJφφFiuKiu

x

Jmi∩i+1mi M̃iu
x

Jmi∩i+1mi Miu
z

Jmi∪i+1mi

l2 M̃iu
x

Jmi∪i+1mi

l2 Miu
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

and

Wi+1,u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JφφFi+1,u

Jφmi+1M̃i+1,u
x − iJφφFi+1,uKi+1,u

x

Jmi∩i+1mi+1M̃i+1,u
x

Jmi∩i+1mi+1Mi+1,u
z

Jmi∪i+1mi+1

l2 M̃i+1,u
x

Jmi∪i+1mi+1

l2 Mi+1,u
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

In the equations above, Fiu, M̃iu
x , and Miu

z are matrices of the
mode field expansion coefficients F iu

q j , M̃iu
xq j , and Miu

zq j intro-
duced in Eqs. (A1a)–(A1c), whereas the elements of matrices
J··· are defined as

Jφφ
pq =

∫
fp(z) fq(z) dz, (A4a)

J
φmj
pq =

∫
fp(z) gL j

q (z) dz, (A4b)

J
mi∩i+1mj
pq =

∫
gLi∩Li+1

p (z) gL j

q (z) dz, (A4c)

J
mi∪i+1mj

l2,pq =
∫

l2
j (z) gLi∪Li+1

p (z) gL j

q (z) dz, (A4d)

with l2
j (z) representing the profile of the squared exchange

length in segment j. Finally, Kiu
x is the diagonal matrix of

mode wave numbers kiu
x j . The formulas for Eid (�x), Vid , and

Wi+1,d can be obtained by replacing the superscript u with d .

APPENDIX B: MODE ORTHOGONALITY RELATIONS

In this Appendix, we derive a version of the Lorentz reci-
procity theorem applicable to dipole-exchange spin waves
in the Damon-Eshbach configuration and a number of or-
thogonality relations binding pairs of eigenmodes of such
structures. In this paper, these relations are utilized to deduce
the formula for mode power [Eq. (23)]. However, they can
also be useful in their own right, for instance, to extract the
contribution of a particular mode to the total magnetization
calculated with a nonmodal method [49].

1. Lorentz reciprocity theorem for dipole-exchange spin waves

Consider a magnetostatic potential φa and magneti-
zation ma satisfying the system of equations (4a)–(4c),
comprising the Gauss law for magnetism and the
linearized LL equation with a damping term, which can
be rewritten in the following form:

∇ · (ma − ∇φa) = 0, (B1a)

∇φa −
∑
i=x,z

ei[∇ · (l2∇mai )]

+ω0 − iωα

ωM
ma − i

ω

ωM
ey × ma = 0, (B1b)

where ei (i = x, y, z) denotes the unit vector directed along
axis i. Consider also another magnetostatic potential φ′

b and
magnetization m′

b satisfying the corresponding equations in
the complementary system, i.e., one obtained by reversing the
direction of the static external magnetic field and the static
magnetization and replacing damping with gain:

∇ · (m′
b − ∇φ′

b) = 0, (B2a)

∇φ′
b −

∑
i=x,z

ei[∇ · (l2∇m′
bi )]

+ω0 − iωα

ωM
m′

b + i
ω

ωM
ey × m′

b = 0. (B2b)

Multiplying Eq. (B1a) by φ′
b and Eq. (B2a) by φa and sub-

tracting the results, we obtain

φ′
b∇ · ma − φa∇ · m′

b − φ′
b∇2φa + φa∇2φ′

b = 0. (B3)

Similarly, multiplying Eq. (B1b) by m′
b and Eq. (B2b) by ma

and subtracting the results, we obtain

m′
b · ∇φa − ma · ∇φ′

b −
∑
i=x,z

m′
bi∇ · (l2∇mai )

+
∑
i=x,z

mai∇ · (l2∇m′
bi ) = 0. (B4)

Subtraction of Eq. (B3) from Eq. (B4) yields

m′
b · ∇φa − ma · ∇φ′

b − φ′
b∇ · ma + φa∇ · m′

b

+φ′
b∇2φa − φa∇2φ′

b −
∑
i=x,z

m′
bi∇ · (l2∇mai )

+
∑
i=x,z

mai∇ · (l2∇m′
bi ) = 0. (B5)

Using the relationship b = μ0(m + h) = μ0(m − ∇φ) and
the identity ∇ · ( f g) = (∇ f ) · g + f ∇ · g, this equation can
be reduced to

∇ ·
[
μ−1

0 (φab′
b − φ′

bba) +
∑
i=x,z

l2(mai∇m′
bi − m′

bi∇mai )

]
= 0.

(B6)

This is an analog of the Lorentz reciprocity theorem, known
from classical electromagnetism [50], for magnetostatic
waves with exchange interaction. As in electromagnetism
[51], it can be used to derive orthogonality relations for
waveguide modes.
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2. Orthogonality relation between modes
of complementary waveguides

Let φa and ma be the magnetostatic potential and magne-
tization of an eigenmode of an x-invariant waveguide, with
kxa being the mode wave number, and φ′

b and m′
b be the

corresponding fields of an eigenmode of the complementary
waveguide, with wave number k′

xb. Applying the Lorentz reci-
procity theorem (B6) to these fields and taking advantage of
the fact that they can be written as a product of exp(ikxax) or
exp(ik′

xbx) and a z-dependent factor, we get

i(kxa + k′
xb)

[
μ−1

0 (φab′
bx − φ′

bbax ) − il2(kxa − k′
xb)ma · m′

b

]
+∂z

[
μ−1

0 (φab′
bz − φ′

bbaz ) + l2(ma ∂zm′
b − m′

b ∂zma)
] = 0.

(B7)

Integrating over z and noting that φ, bz, and m · l2∂zm are
continuous functions of z and (at least when any magnetic
layers have finite thickness) φ and m decay to 0 as z → ±∞,
we see that the second term

∫ ∞
−∞ ∂z(· · · ) dz vanishes, leaving

us with

(kxa + k′
xb)

∫ ∞

−∞

[
μ−1

0 (φab′
bx − φ′

bbax )

−il2(kxa − k′
xb)ma · m′

b

]
dz = 0. (B8)

This implies the following orthogonality relation:∫ ∞

−∞
[μ−1

0 (−φab′
bx + φ′

bbax ) + il2(kxa − k′
xb)ma · m′

b] dz = 0

if kxa �= −k′
xb. (B9)

3. Orthogonality relation between modes of a single waveguide
(without conjugation)

Let [φa(z), max(z), maz(z)] and [φb(z), mbx(z), mbz(z)] be
the field profiles of two eigenmodes, with wave numbers
kxa and kxb, of the same waveguide. Direct inspection of
Eqs. (6a)–(6c) shows that [φb

′(z), mbx
′(z), m′

bz(z)] := [φb(z),
−mbx(z), mbz(z)] are the field profiles of an eigenmode with
wave number kxb

′ = −kxb of the complementary waveguide.
Substitution of these field profiles into Eq. (B9) yields an
orthogonality relation between two modes of the same waveg-
uide:∫ ∞

−∞

[
μ−1

0 (φabbx + φbbax )

+ il2(kxa + kxb)(−maxmbx + mazmbz )
]

dz = 0

if kxa �= kxb. (B10)

4. Orthogonality relation between modes of a single waveguide
(with conjugation)

Comparison of Eqs. (B1a) and (B1b) with Eqs. (B2a) and
(B2b) shows that, in the absence of damping, if (φ, m) satisfy
Eqs. (B1a) and (B1b), then the complex-conjugate fields (φ∗,
m∗) satisfy Eqs. (B2a) and (B2b) governing the complemen-
tary system. Therefore if [φb(z), mbx(z), mbz(z)] are the field
profiles of a waveguide mode with wave number kxb, then
[φ∗

b (z), m∗
bx(z), m∗

bz(z)] are the field profiles of a mode with
wave number −k∗

xb of the complementary waveguide. Substi-

tution of these profiles into Eq. (B9) yields another orthogo-
nality relation between two modes of the same waveguide:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax ) + il2(kxa + k∗
xb)ma · m∗

b

]
dz = 0

if kxa �= k∗
xb, (B11)

which is Eq. (17). It should be stressed once again that this
relation holds only when damping is neglected.

APPENDIX C: MICROMAGNETIC SIMULATIONS

To perform micromagnetic simulations, we use the open-
source MUMAX3 environment [21], which solves the full LL
equation

∂t M = − |γ |μ0

1 + α2

[
M × Heff + α

MS
M × (M × Heff )

]
, (C1)

with the finite-difference time-domain (FDTD) method.
We carry out simulations for the geometry presented in

Fig. 3 modeled with two rectangular ferromagnetic slabs with
dimensions and parameters described in Sec. IV B. We dis-
cretize the system into unit cells of size 2×100×5 nm3 along
the x, y, and z axes, respectively. Additionally, to make the
system independent of the y coordinate, we impose periodic
boundary conditions along the y axis with 1024 repetitions
of the system image. We place the system in a spatially uni-
form in-plane magnetic field of value µ0H0 = 0.1 T aligned
along the y axis. The damping coefficient α from Eq. (C1)
is set to α0 = 0.0002 in both magnetic domains. The length
of the computational domain along the x axis is 37.5 µm. To
prevent reflections from the outer boundaries of the modeled
system, we introduce absorbing boundary conditions. Within
each 9-µm-wide absorbing boundary layer, the damping co-
efficient increases quadratically up to the value of αedge =
0.5 at the outer domain boundaries, α(ξ ) = α0 + (αedge −
α0)ξ 2/L2, where ξ is the distance from the domain boundary
and L is the width of the absorbing boundary layer.

We perform the simulations with a sweep over the stripe’s
width in the range from 0 to 500 nm with a step of 2 nm.
The initial stage of each simulation is the relaxation, which
finds a stable magnetic configuration required in each sim-
ulation’s dynamic part. We excite spin waves by a steady
microwave field at frequency f0 = 17 GHz, locally applied in
an 8-nm-wide region. The antenna is placed 9.25 µm from the
left boundary of the system. To achieve the steady state, we
continuously excite the spin waves for 100 ns. After this time,
MUMAX3 saves 40 snapshots of the dynamic out-of-plane
component of magnetization of the system with the sampling
interval 0.003 ns.

The results of micromagnetic simulations are saved in
the form of a matrix that contains the x component of the
magnetization as a function of time and space, m(t ; x, y, z).
The elements of the matrix are real numbers. In the first step
of the postprocessing, we perform the fast Fourier transform
over time. This operation transforms the initial matrix from
time dependent to frequency dependent, and m̃( f , x, y, z) and
its elements become complex numbers. In the following cal-
culations we only consider the slice of m̃ at the pumping
frequency f = f0. Fourier transform calculations show that
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only spin waves with frequency f0 are excited, since the only
peak in the Fourier spectrum appears at this frequency. This
operation reduces the visibility of undesired numerical noise
and transforms the data to a more easily interpretable form.
It enables us to easily separate the amplitude and phase of
propagating waves, |m̃| and arg(m̃).

We calculate the transmittance in the system by dividing
maximal values of the squared absolute value of magnetiza-
tion (|m̃|2) obtained from simulations with the stripe and the
reference simulation without the stripe. In each calculation
step, values from the same interval x ∈ (2.5; 7.5) µm placed
in segment 3 (cf. Fig. 3) are compared. We obtain the phase
shift of the transmitted wave �t by comparing phases of spin
waves from the reference simulation and the simulation with
a stripe of a given width. The phases of these waves are
calculated as a mean value of arg(m̃) for reference simulation
results and simulation with the stripe results in the interval
x ∈ (2.5; 7.5) µm. Finally, we define �ϕt as the difference
between the phases of the transmitted and reference waves,
�ϕt = φt − φref, normalized to the interval (−180°, 180°].

Calculations of the reflected wave parameters are more
complicated, since the interference of incident and reflected
waves is present in segment 1. Before calculating the re-
flectance, the contribution of the incident wave needs to be

canceled. We achieve this by subtracting the reference sim-
ulation results from each result of the simulation with the
stripe. The reflectance is then obtained by comparing the
maximal absolute value of the spin wave amplitude of the
reflected wave in the interval x ∈ (−7.5; −2.5) µm in segment
1 with an analogous value from the reference simulation but
from another interval placed in segment 3. The new interval
x ∈ (2.5; 7.5) µm is positioned at a distance from the stripe
that is similar to the distance from the stripe of the interval
in segment 1, and the new interval has the same length as the
interval in segment 1. This method ensures that the attenuation
in the layer influences both reflected and reference waves in
the same magnitude in the calculations.

To calculate the phase shift of the reflected spin wave �ϕr,
we use a similar approach to that used in Ref. [14]. In this
paper, very high reflectance is assumed, which is not the case
in the current calculations. Thus we assume different ampli-
tudes of the incident and reflected waves. We obtain �ϕr by
fitting a formula (I − R) + 2R cos(2kx + �ϕr ) to the absolute
value of simulation results m̃ in an interval x ∈ (−5; −2.5) µm
in segment 1. Here, I denotes the amplitude of the incident
wave, and R denotes the amplitude of the reflected wave.
Like �φt , the phase shift �φr is normalized to the interval
(−180°, 180°].
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[14] K. Sobucki, W. Śmigaj, J. Rychły, M. Krawczyk, and P.
Gruszecki, Resonant subwavelength control of the phase of spin
waves reflected from a Gires–Tournois interferometer, Sci. Rep.
11, 4428 (2021).

[15] A. Grachev, E. Beginin, S. Sheshukova, and A. Sadovnikov,
Tunable Fano resonances in irregular magnonic structure,
IEEE Trans. Magn. 58, 1 (2022).

[16] K. Szulc, P. Graczyk, M. Mruczkiewicz, G. Gubbiotti, and M.
Krawczyk, Spin-Wave Diode and Circulator Based on Unidi-
rectional Coupling, Phys. Rev. Appl. 14, 034063 (2020).

[17] M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven, and
B. Hillebrands, Spin-wave logical gates, Appl. Phys. Lett. 87,
153501 (2005).

[18] T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I.
Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and
A. V. Chumak, Experimental prototype of a spin-wave majority
gate, Appl. Phys. Lett. 110, 152401 (2017).

014418-14

108 Papers representing the main research



MODAL APPROACH TO MODELING SPIN WAVE … PHYSICAL REVIEW B 108, 014418 (2023)

[19] D. Kumar and A. O. Adeyeye, Techniques in micromagnetic
simulation and analysis, J. Phys. D: Appl. Phys. 50, 343001
(2017).

[20] C. Abert, Micromagnetics and spintronics: models and numeri-
cal methods, Eur. Phys. J. B 92, 120 (2019).

[21] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-
Sanchez, and B. Van Waeyenberge, The design and verification
of MuMax3, AIP Adv. 4, 107133 (2014).

[22] S. Lepadatu, Boris computational spintronics—High perfor-
mance multi-mesh magnetic and spin transport modeling
software, J. Appl. Phys. 128, 243902 (2020).

[23] T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, and J. Fidler,
Numerical methods in micromagnetics (finite element method),
in Handbook of Magnetism and Advanced Magnetic Materials
(Wiley, New York, 2007), Vol. 2, pp. 765–794.

[24] M. Krawczyk and H. Puszkarski, Plane-wave theory of three-
dimensional magnonic crystals, Phys. Rev. B 77, 054437
(2008).

[25] M. L. Sokolovskyy and M. Krawczyk, The magnetostatic
modes in planar one-dimensional magnonic crystals with
nanoscale sizes, J. Nanopart. Res. 13, 6085 (2011).

[26] R. A. Gallardo, T. Schneider, A. Roldán-Molina, M. Langer, J.
Fassbender, K. Lenz, J. Lindner, and P. Landeros, Dipolar inter-
action induced band gaps and flat modes in surface-modulated
magnonic crystals, Phys. Rev. B 97, 144405 (2018).

[27] C. L. Chang, S. Mieszczak, M. Zelent, V. Besse, U. Martens,
R. Tamming, J. Janusonis, P. Graczyk, M. Münzenberg, J. Kłos,
and R. I. Tobey, Driving Magnetization Dynamics in an On-
Demand Magnonic Crystal via the Magnetoelastic Interactions,
Phys. Rev. Appl. 10, 064051 (2018).

[28] J. Rychły, S. Mieszczak, and J. Kłos, Spin waves in planar
quasicrystal of Penrose tiling, J. Magn. Magn. Mater. 450, 18
(2018).

[29] S. Watanabe, V. S. Bhat, K. Baumgaertl, M. Hamdi, and
D. Grundler, Direct observation of multiband transport in
magnonic Penrose quasicrystals via broadband and phase-
resolved spectroscopy, Sci. Adv. 7, eabg3771 (2021).

[30] M. Grimsditch, L. Giovannini, F. Montoncello, F. Nizzoli, G. K.
Leaf, and H. G. Kaper, Magnetic normal modes in ferromag-
netic nanoparticles: A dynamical matrix approach, Phys. Rev.
B 70, 054409 (2004).

[31] S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G.
Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A. O.
Adeyeye, and N. Singh, Band Diagram of Spin Waves in a Two-
Dimensional Magnonic Crystal, Phys. Rev. Lett. 107, 127204
(2011).

[32] M. d’Aquino, C. Serpico, G. Miano, and C. Forestiere, A novel
formulation for the numerical computation of magnetization
modes in complex micromagnetic systems, J. Comput. Phys.
228, 6130 (2009).

[33] S. Perna, F. Bruckner, C. Serpico, D. Suess, and M. d’Aquino,
Computational micromagnetics based on normal modes: bridg-
ing the gap between macrospin and full spatial discretization,
J. Magn. Magn. Mater. 546, 168683 (2022).

[34] T. Yu, Y. M. Blanter, and G. E. Bauer, Chiral Pumping of Spin
Waves, Phys. Rev. Lett. 123, 247202 (2019).

[35] T. Yu, C. Liu, H. Yu, Y. M. Blanter, and G. E. W.
Bauer, Chiral excitation of spin waves in ferromagnetic films

by magnetic nanowire gratings, Phys. Rev. B 99, 134424
(2019).

[36] H. Wang, J. Chen, T. Yu, C. Liu, C. Guo, S. Liu, K. Shen, H.
Jia, T. Liu, J. Zhang, M. A. Cabero, Q. Song, S. Tu, M. Wu, X.
Han, K. Xia, D. Yu, G. E. W. Bauer, and H. Yu, Nonreciprocal
coherent coupling of nanomagnets by exchange spin waves,
Nano Res. 14, 2133 (2021).

[37] P. Roberjot, K. Szulc, J. W. Kłos, and M. Krawczyk, Multi-
functional operation of the double-layer ferromagnetic structure
coupled by a rectangular nanoresonator, Appl. Phys. Lett. 118,
182406 (2021).

[38] K. G. Fripp, A. V. Shytov, and V. V. Kruglyak, Spin-wave
control using dark modes in chiral magnonic resonators,
Phys. Rev. B 104, 054437 (2021).

[39] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Appli-
cations (Springer, New York, 2009).

[40] M. Krawczyk, M. L. Sokolovskyy, J. W. Kłos, and S. Mamica,
On the formulation of the exchange field in the Landau-Lifshitz
equation for spin-wave calculation in magnonic crystals,
Adv. Condens. Matter Phys. 2012, 764783 (2012).

[41] T. J. R. Hughes, The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis (Dover, Mineola, NY, 2000).

[42] J.-M. Jin, The Finite Element Method in Electromagnetics
(Wiley, New York, 2015).

[43] In practice, for better numerical stability, it is advantageous
to rewrite the weak form in terms of the scaled variables
m̃′

x := am̃x , m′
z := amz, and k′

x := akx , where a is a length
comparable to the thickness of the ferromagnetic layers. This
ensures that the elements of all matrix blocks have similar
magnitude.

[44] L. Li, Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings, J. Opt.
Soc. Am. A 13, 1024 (1996).

[45] A. Conca, E. T. Papaioannou, S. Klingler, J. Greser, T.
Sebastian, B. Leven, J. Lösch, and B. Hillebrands, Annealing
influence on the Gilbert damping parameter and the exchange
constant of CoFeB thin films, Appl. Phys. Lett. 104, 182407
(2014).

[46] R. E. De Wames and T. Wolfram, Dipole-exchange spin waves
in ferromagnetic films, J. Appl. Phys. 41, 987 (1970).

[47] Owing to the geometrical symmetry of the system, S′
kl ≈ Slk

and S′
ok ≈ Ski for k, l = f, s. The equality would be exact if the

modes were orthonormalized with respect to the unconjugated
inner product defined in Eq. (B10) rather than normalized to
unit power.

[48] G. Lecamp, P. Lalanne, J. P. Hugonin, and J. M. Gérard, Energy
transfer through laterally confined Bragg mirrors and its impact
on pillar microcavities, IEEE J. Quantum Electron. 41, 1323
(2005).

[49] P. R. McIsaac, Mode orthogonality in reciprocal and nonrecip-
rocal waveguides, IEEE Trans. Microwave Theory Tech. 39,
1808 (1991).

[50] A. T. Villeneuve and R. F. Harrington, Reciprocity relationships
for gyrotropic media, IRE Trans. Microwave Theory Tech. 6,
308 (1958).

[51] A. T. Villeneuve, Orthogonality relationships for waveguides
and cavities with inhomogeneous anisotropic media, IRE Trans.
Microwave Theory Tech. 7, 441 (1959).

014418-15

5.4 Modal approach to modeling spin wave scattering 109



110 Papers representing the main research

5.5 Magnon-Optic Effects with Spin-Wave Leaky Modes: Tun-
able Goos-Hänchen Shift and Wood’s Anomaly

This paper is devoted to the investigation of oblique SW beam incidence on Gires-Tournois
magnonic interferometer. The investigations were performed by means of micromagnetic
simulations in MuMax3 environment. In the presented system two magnonic effects were
observed which are analogues to two effects known in optics. The first one being Goos-Hänchen
effect which manifests as a lateral shift of waves reflected from an interface, here a magnonic
interferometer. The second effect is so called Wood’s anomaly which is a decrease of reflected
wave’s amplitude due excitation of an eigenmode at the interface. In the paper the condition
for magnonic Wood’s anomaly was established and additionally, it was shown that under the
same conditions lateral shift of reflected SW beam also increases. The interferometer eigenmode
excited by the incident SW beam proves to be weakly confined and emits the SWs back to the
system, thus it was named ’leaky-mode’.

The Author’s contribution to this paper was to perform all of micromagnetic simulations
which results are presented in the paper. The simulations carried out by the Author were
performed in MuMax3 environment exclusively. The Author processed the results of the micro-
magnetic simulations. The Author also has written the bulk of manuscript with supplementary
materials as well as prepared all of the figures and movies included with the publication. The
Author has maintained an e-mail contact with the journal during the publication process.
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ABSTRACT: We demonstrate numerically how a spin wave (SW)
beam obliquely incident on the edge of a thin film placed below a
ferromagnetic stripe can excite leaky SWs guided along the stripe.
During propagation, leaky waves emit energy back into the layer in
the form of plane waves and several laterally shifted parallel SW
beams. This resonance excitation, combined with interference
effects of the reflected and re-emitted waves, results in the magnonic Wood’s anomaly and a significant increase of the Goos-
Han̈chen shift magnitude. This yields a unique platform to control SW reflection and transdimensional magnonic router that can
transfer SWs from a 2D platform into a 1D guided mode.
KEYWORDS: spin waves, magnonics, magnon-optics, leaky modes, Goos-Han̈chen effect, Wood’s anomaly

In wave physics, extended and bound modes can be
recognized due to their amplitude spatial distribution. The

most common are the extended states, which propagate freely
in a system. Examples of the second type, which do not
necessarily require a structural constraint, include bound states
in the continuum (BICs) and leaky modes (LMs).1 BIC is a
state that exists in the continuous part of the spectrum but is
perfectly localized. It was predicted by von Neumann and
Wigner for electron waves2 and later experimentally observed
for photons3−5 and phonons.6,7 LMs are another type of mode,
which are localized but can store energy only for a limited time
due to their coupling with extended states. Therefore, LMs can
be excited by propagating modes and leak energy into them.
Hence, the LM wavenumber is complex, and its imaginary part
expresses the rate of energy leakage.8−10 The LMs facilitate the
occurrence of Wood’s anomaly, which manifests itself as a
decrease in the amplitude of reflected waves and is caused by
the excitation of an evanescent wave at the interface with some
element. It was first reported for light reflected from a
grating.10−12

An intriguing wave type is the spin wave (SW), that is, a
collective precessional disturbance of magnetization in
magnetic materials, which is believed to be a promising
candidate for information carriers in beyond-CMOS devi-
ces.13−16 SW optics is more complex than its electromagnetic
counterpart and rich in optical phenomena.17−25 Many effects
from photonics have already been transferred to magnonics, for
instance, negative refraction,26 anomalous refraction,25 graded
refractive index effects,27−29 and the Goos-Han̈chen (GH)
effect,30 i.e., the lateral shift of the waves’ reflection point at an
interface.31−35 While the GH effect has been predicted
theoretically, it has not yet been experimentally observed for
SW beams. Also, the BICs,36 LMs, Wood’s anomalies, and

resonance effects widely explored in photonics37 remain poorly
investigated in magnonics.

The use of nanoresonators in the form of ferromagnetic
stripes placed over a thin film to modulate SWs has recently
attracted attention.38−50 In this letter, we numerically study the
oblique reflection of a SW beam from the edge of a
ferromagnetic film ending with a resonant stripe element45,46

[see Figure 1(a)]. We find that a SW beam can excite an LM
when resonance conditions are met. The LM emits SWs back
into the film while propagating along the stripe. As a result, we
observe a decrease in the amplitude of reflected waves, which
we interpret as a magnonic counterpart of the Wood’s
anomaly. Moreover, we detect multiple reflected beams with
tunable positions. Thus, the excitation of LMs allows tuning of
the GH shift by several wavelengths. Our results open a route
for the exploitation of the demonstrated effects in various
magnonic applications, including designing resonant SW
metasurfaces in planar structures suitable for integration with
magnonic devices, converting extended SWs into waves guided
along a stripe and exploiting the third dimension in integrated
magnonic systems.

We consider a half-infinite CoFeB layer of thickness d1 = 5
nm with a saturation magnetization of 1200 kA/m and
exchange constant of 15 pJ/m. Above the film lies a
ferromagnetic stripe of width w = 155 nm and thickness d2
= 5 nm aligned with the layer’s edge. We assume that the
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exchange constant in the stripe equals 3.7 pJ/m, and the value
of its saturation magnetization MS varies. Both elements are
separated by a dielectric nonmagnetic layer of thickness s = 5
nm; see Figure 1(a). We will refer to the stripe and the layer
directly below it as the bilayer. The system is uniformly
magnetized by an external magnetic field B0 = μ0H0 = 0.01 T
directed along the stripe (the y-axis). We set the damping
parameter α to 0.0004 and the gyromagnetic ratio γ to −176
rad GHz/T. At normal SW incidence, this geometry is a
magnonic realization of the Gires−Tournois interferometer,
offering multiple Fabry−Peŕot resonances.45 We analyze the
oblique incidence of a 775-nm-wide SW beam at the frequency
f 0 = 17.4 GHz (wavelength λ = 103 nm) and at an angle of 45°
(angle of the phase velocity with respect to the x-axis). We
employ MuMax351 to perform micromagnetic simulations of
the dynamics of the magnetization m(r,t) in the system (for
more details see Supporting Information).

The dispersion relations of SWs propagating along the stripe
placed above the layer for two selected values of the stripe
magnetization MS, i.e., 350 kA/m and 550 kA/m, are shown by
the blue colormaps in Figure 1(b) and (c), respectively. The
hatched area is the continuum spectrum of propagating SWs in
the CoFeB film, calculated analytically,52 and the red line is the
dispersion of the SW beam (see Supporting Information). For
MS = 550 kA/m, the analytical dispersion crosses the bilayer
dispersion at the frequency of the SW beam f 0 = 17.4 GHz; see
the green square in Figure 1(c). Here, the wavevector
component ky of the incident wave matches the wavenumber
of a stripe mode; therefore, we expect the incident SW beam to

excite that mode. For MS = 350 kA/m, there is no phase
matching at f 0 = 17.4 GHz; thus, the coupling between the
incident SW and stripe modes is suppressed.

To verify our predictions, we examine the reflection of the
SW beam from the bilayer edge for the two considered values
of MS in the stripe. In the simulations, we use a continuous
excitation of the SW beam and analyze the linear response for
the steady-state SW distribution in the system (see Supporting
Information). Figure 2 presents the steady-state |mx| amplitude
distributions for the stripe magnetizations MS = 350 and 550
kA/m, respectively.

In the case of MS = 350 kA/m [Figure 2(a)], the SWs are
excited, but oscillations are present only in the region directly
above the incident spot. Their amplitude is an order of
magnitude smaller than in the layer. In the far field, we see only

Figure 1. (a) Geometry of the system. Color represents the SW
amplitude and indicates the incident and reflected SW beams in the
film as well as the LM in the stripe. (b,c) Dispersion relation of SWs.
The blue colormaps in the background represent dispersion relations
of the resonant-stripe element of the SWs propagating along the stripe
with (b) MS = 350 kA/m and (c) MS = 550 kA/m. The hatched
region displays the continuum of SWs in the CoFeB layer. The thick
red line represents the analytical dispersion relation of SWs
propagating in the film at an angle of φ = 45° to B0. The horizontal
black dashed line indicates the frequency f 0 = 17.4 GHz used in the
steady-state simulations. The green square in (c) shows the crossing
at f 0 = 17.4 GHz of the beam and stripe dispersion relations.

Figure 2. (a,b) Colormaps of the SW amplitude distribution of
magnetization’s in-plane dynamic component |mx| . Middle panels
show |mx| in the CoFeB layer. The colormaps in the bars on the right
present |mx| in the stripe. The panels on the left show |mx| in the layer
in a cutline through the layer at the position x = −7.5 μm indicated
with a red-dashed line in the central panel. Results for the system with
a stripe of (a) MS = 350 kA/m and (b) MS = 550 kA/m. (c) Averaged

| | = | |( )m m xdx x w

w
x

1
0

as a function of y in the stripe (solid lines)

and in the layer directly under the stripe (dashed lines). The black
and red lines represent results for the system with MS = 350 kA/m
and MS = 550 kA/m, respectively.
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a single reflected SW beam (cf. the left panel in Figure 2(a)).
Both the incident and reflected beams have Gaussian
envelopes with an apparent increase in width due to beam
divergence.

We observe a different behavior in the case of MS = 550 kA/
m. First, the SW amplitude in the stripe is comparable with
that of the SW beam in the layer. Moreover, we observe the
propagation of SWs along the stripe in the direction opposite
to the y-axis, which is consistent with the group velocity
direction extracted from the dispersion relation for SWs in the
stripe. The mode in the bilayer emits SWs back to the layer
during its propagation, which is a clear indication of its LM
nature. Furthermore, we observe the formation of new SW
beams in the layer that are parallel to the primary beam (see
Figure 2(b)). Two new beams are clearly visible in the left
panel, which shows the SW intensity cross-section taken at x =
−7.5 μm. Note that there are also plane waves propagating
outward from the interface.

Let us examine the change in the SW amplitude as it
propagates along the bilayer. In Figure 2(c) we see a significant
difference between the SW modes in the two considered cases.
As expected, for the stripe with MS = 350 kA/m, the SW
amplitude in the stripe is negligible. However, when the phase-
matching condition is fulfilled at MS = 550 kA/m, we see an
efficient excitation of the LM that propagates in the −y-
direction (see the solid red line in Figure 2(c)). Note that the
distribution of the amplitude ⟨|mx|⟩x in the layer below the
resonator along the y-axis can be decomposed into several
superimposed Gaussian functions (discussed in detail in the
following paragraph), namely, a dominant one associated with
the primary reflected SW beam and several additional ones
with smaller amplitudes (see the dashed red line). This opens
channels for energy leakage from the LM to the film.

To gain a deeper insight into how LM emission occurs over
time, we perform simulations of a SW packet to complement
the steady-state simulations discussed previously (see also
Supporting Information). The full width at half-maximum
(FWHM) of the packet is 0.5 ns and the angle of incidence is
45°. In Figure 3, we present two snapshots of the reflected

wavepacket from the simulation with the stripe magnetization
MS = 550 kA/m (the video in Supporting Information, Movie
S5). These simulations confirm that the leaky mode excited by
the incident SWs propagates along the bilayer and reemits SWs
in the form of plane waves without a constant supply of SWs
from the incident SW beam. In addition, Movie S5 shows that
the amplitude of the excited mode in the stripe bounces

obliquely between the edges of the stripe (this is apparent
especially at lower SW amplitudes). We stipulate that this
bouncing in the stripe is the source of a spatial shift of the third
and next reflected beams. The bouncing mode re-emits its
energy at a higher rate when it reflects from the left edge of the
resonator, giving rise to new reflected beams in the system.

To understand the formation of multiple reflected beams at
resonance [Figure 2 (b)] we perform the analysis proposed by
Tamir and Bertoni10 to explain the formation of an additional
reflected beam in the case of electromagnetic waves. The
reflectance coefficient of the incident SW beam at an interface
with the LM can be described as ρ(ky) = eiΔ(ky − kp*)/(ky −
kp), where Δ is the phase shift between the incident and
reflected beams; ky is the tangential component of the incident
wavevector; and kp = κ + iν is the LM wavenumber. Because of
the tangential component conservation rule, both ky and kp
have the same direction of propagation with respect to the y-
axis. As the Tamir−Bertoni model shows, when the stripe
mode has a bound (non-leaky) character, i.e., ν = 0, the LM is
not excited by the incident beam; thus, it has no effect on the
reflected beam. Excitation of the stripe mode occurs when it
takes on a leaky character and becomes more effective as the
imaginary component ν increases. Concurrently, an increase in
ν accelerates the transfer of energy back into the layer; hence,
at a specific value of ν, the secondary beam overshadows the
main reflected beam. This is qualitatively reflected in our
simulation results (Supporting Information). However, our
simulations show the presence of several reflected beams
instead of two, as in the Tamir−Bertoni model. This
discrepancy may be due to some differences between the
Tamir−Bertoni model and our system, such as neglecting the
higher-order poles of the reflection coefficient in the Tamir−
Bertoni model, the finite stripe width, and bouncing of the SW
amplitude between the edges of the stripe described in the
previous paragraph.

Let us examine how the reflection is affected by the change
of the stripe’s MS while going through resonance. Figure 4(a)
illustrates the dependence of the average SW amplitude within
the stripe, ⟨|mx|⟩stripe, on MS in the range 350−750 kA/m. It
shows an increase of the amplitude for MS ∈ (450−650) kA/m
with a maximum reached at 590 kA/m. Therefore, a band
crossing occurs near 17.4 GHz for a wide range of MS. The
origin of this broadband resonance effect together with
dispersion relations for various values of MS can be found in
the Supporting Information.

In Figure 4(b), we superimpose several cutlines through the
layer’s |mx| distributions in the far field for different values of
MS. We quantify the positions and amplitudes of reflected
beams by fitting Gaussian curves to the cutlines in the far field;
more details are given in Supporting Information. We mark the
positions of the maxima of the primary reflected beam with
black squares and those of the secondary beam with red
triangles. The position y = 0 represents the position of the
reflected beam for MS = 350 kA/m at x = −7.5 μm. It is
evident that the positions and amplitudes of the reflected
beams change with MS. As we approach the resonance and LM
excitation is observed, the primary beam becomes weaker (see
Figure 4(c)), its amplitude decreasing by almost 40% at MS ≈
615 kA/m. We interpret this decrease as a magnonic analogue
to the Wood’s anomaly11 since the amplitude of the reflected
beam decreases due to the excitation of the stripe’s localized
mode. As the primary beam amplitude decreases, the
amplitude of the secondary beam increases, and for MS ≈

Figure 3. Reflection of the SW wavepacket on the bilayer resonant-
stripe element (MS = 550 kA/m) for (a) t = 10.9 ns and (b) t = 12.6
ns. Note that the amplitudes of SWs are amplified to better visualize
SWs reemited by a leaky mode in the stripe; see the colorbars.
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615 kA/m, it is even higher than the amplitude of the primary
beam. These facts adequately reflect the Tamir−Bertoni
analytical model and indicate an increase of the imaginary
part of the LM wavenumber, meaning that more energy is
leaked by the LM and that the energy of the incident beam is
more efficiently directed to the secondary reflected beams.

As shown in Figure 4(d), the reflected beams are shifted
with respect to the reference nonresonant scenario, i.e., MS =
350 kA/m. This implies the possibility of manipulating the
value of the GH shift, which for MS = 350 kA/m takes the
value of +12 nm, namely, around 10% of the incident SW
wavelength. It is a typical value of GH shifts for SWs, which are
usually smaller than the SW wavelength.31,32,34 The positions
of the primary and secondary reflected beams change when
LMs are excited (cf. Figures 4(a) and (d)). The primary and
secondary beams move toward positive and negative y-
coordinates, respectively. The displacement of the primary
beam ranges from −71 to 300 nm, reaching a maximum at MS
= 615 kA/m. Therefore, by adding a stripe above the edge, we
can profit from the resonance effect to significantly enhance
and manipulate the value of the GH shift, reaching the value of
up to almost three wavelengths. This is already a measurable
value, which is essential for the experimental verification of the
GH shift for SW beams. Moreover, the shift of the secondary
beam is even larger and reaches up to −1600 nm. Notably, for
MS ≈ 615 kA/m (the case where the amplitude of the
secondary beam is greater than the amplitude of the primary
beam), the lateral beam displacement is −456 nm.

In conclusion, we have shown a new way to control SW
propagation in a thin ferromagnetic film using a magnonic
resonance element formed by depositing a ferromagnetic stripe
on top of the film. We found a magnonic counterpart to

Wood’s anomaly as well as a GH shift measurable with state-
of-the-art experimental techniques. Our results have several
important implications for magnonics and its application. First,
our system is a platform for studying the controlled reflection
and scattering of SWs. Under certain conditions, the incident
SW beam can excite an LM in the resonance element, which
emits a portion of its energy in the form of new SW beams.
Note that the resonance criterion is fulfilled in the system not
for a specific MS but for quite a broad range of MS, covering
standard values of Py. This indicates the feasibility of an
experimental realization of such an interferometer. Moreover,
our system allows an easy change of the GH shift magnitude by
several wavelengths, up to 450 nm for the primary beam and
1600 nm for the secondary beam. The resonant coupling
described in this paper adopts properties from a spectrum
between a mode strictly confined to the bilayer and an SW
from the continuum of modes in the film. Thus, the same
effects are expected for other angles of incidence and other
confined modes at different frequencies. Although the analysis
in the main part of the paper was done by varying the stripe
magnetization MS, in the Supporting Information we show that
similar effects can be observed when the modulated parameter
is the frequency or the stripe width, which can be changed
more easily in experiments. Moreover, for the near-resonance
scenario, the amplitude of the secondary beam can exceed the
amplitude of the primary reflected beam to an even greater
extent. Finally, the proposed geometry allows transferring the
energy of a SW beam propagating in the film to the stripe; i.e.,
it allows a high-efficiency transfer of SWs from 2D platforms
into 1D waveguides, forming a transdimensional magnonic
router in a similar manner to the one that was proposed for
plasmons.53 This is crucial for designing magnonic circuits and
exploiting the third dimension for signal processing.
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2Met Office, FitzRoy Rd, Exeter, EX1 3PB, UK
3Institute of Molecular Physics, Polish Academy of Sciences,

Mariana Smoluchowskiego 17, 60-179 Poznań, Poland

I. SUPPLEMENTARY MATERIALS

1. Numerical methods

To perform numerical simulations, we employ the open-source environment Mumax3 [1]. This environment solves
Landau-Lifshitz-Gilbert equation using the finite-difference method in the time domain. The simulated system has
dimensions 12.7 µm, 10.2 µm and 15 nm (along the x, y, z axis, respectively). We discretize the simulated domain
with a regular mesh of unit cell 5 × 5 × 5 nm3 (along the x, y, z axes). In order to simulate an infinitely long system
in y-axis and half-infinite system along the x-axis, we impose at all edges of the system except the one where the
stripe is located, absorbing regions where the damping constant α increases quadratically to the value αedge = 0.5 at
length of L = 625 nm.

We perform three types of simulations:

• calculations of the dispersion relation of the system for different values of stripe’s MS,

• calculations of the steady-state for oblique incidence of continuously emitted spin-wave (SW) beam,

• reflection of a wave-packet with step-by-step observation of SWs reflection from the bilayer interface.

2. Dispersion relation computations

To accelerate dispersion relation computation for SWs propagating along the stripe, we perform simulations for
a narrower system of width 1270 nm along the x-axis since, as we verified, it provides exactly the same results as
simulations for the system of widths 12.7 µm. In this type of simulations, we place the SW source in the stripe
parallel to the x-axis in the central part of the stripe. To excite SWs for all wavevectors up to the cut-off wavevector
kcut = 150 rad/µm and frequencies up to the cut-off frequency fcut = 20 GHz, we use the following spatial and
temporal distribution of the microwave field being linearly polarized along the z-axis

hz(t;x, y) =h0sinc(kcuty)sinc(2πfcut(t− 8/fcut)

×
N∑

n=0

[
cos(2πn x/w) + sin(2πnx/w)

]
,

(S1)

where the summation of n is used to increase the efficiency of the higher order modes excitation (we assume N = 5).
We use the time sampling tsampl = (2.2fcut)

−1 and save first 1000 snapshots of the system’s response to the microwave
excitation. To obtain the dispersion relation D(f, ky) we employ following formula

D(f, ky) = ⟨|Ft,y{mx(t, y, x)}|⟩x∈⟨0,w⟩, (S2)

where Ft,y is the two-dimensional (t, y) fast Fourier transform (FFT), mx(t, y, x) is the magnetic response taken only
from the stripe. The absolute value of the outcome of FFT (|Ft,y{mx(t, y, x)}|) is a space-averaged along resonator’s
width x ∈ ⟨0,w⟩ and represents D(f, ky).

∗ krzsob@st.amu.edu.pl
† gruszecki@amu.edu.pl
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The results of the dispersion relation calculations for different values of stripe MS are compiled into a short video
that can be found in supplementary materials, Movie S3. With an increase in the value of MS, the positions and
shape of the dispersion relation bands change. For easier analysis, the dashed lines indicate the parameters of the SW
beam excited in the simulations. We show in the video that only in a specific range of MS values, the bands cross the
lines that represent the parameters of the incident SW beam. We interpret this range of MS as a region of efficient
SW excitation in the magnetic stripe.

3. Steady-state simulations

In order to excite SW beam, we use microwave magnetic field located at the left upper quarter of the layer. The
spatial distribution of the dynamic magnetic field is in the rotated coordinate system (x′, y′) by 45◦ with respect to
the y-axis. The spatio-temporal function of the dynamic magnetic field is given by a formula

Bext,x(t, x′, y′) = A(1 − e−0.2πf0t)R(x′)G(y′)

×[sin(k0x
′)sin(2πf0t) + cos(k0x

′)cos(2πf0t)],
(S3)

where A = 0.1B0 is the amplitude of the dynamic field (B0 is the external magnetic field set along the system’s
y-axis of magnitude B0 = 0.01 T), R(x′) = Θ(−x′ + wa

2 )Θ(x′ + wa

2 ) is a rectangle function, which describes antenna’s

shape along its x′ coordinate (Θ is Heaviside step function, antenna’s width wa = 30 nm), G(y′) = exp(− y′2

4σ2
y
) is a

Gaussian function defining antenna’s shape along the y′-axis (σy = 330 nm), k0 = 60.96 rad
µm is the wavevector and

f0 = 17.4 GHz is the frequency of the excited SWs. Eq. (S3) enables unidirectional emission of SWs[2]. We use the
antenna to constantly emit the SW beam for 41 ns, after this time the system reaches the steady-state. Subsequently,
we store time and space dependence of magnetization distribution for one period of SWs excitation in form of 25
snapshots of magnetization distribution in the system with a sampling interval 1/(25f0).

The stored magnetization dependence on time in the steady-state can be converted into complex SW amplitude
distribution at frequency f0. It simplifies the analysis of the SW amplitude and phase. To make such a conversion,
we calculate pointwise FFT over time and select results only for f0.

4. Simulations of the reflection of wave-packet

To simulate the wave-packet reflection, we use the same spatial distribution of the dynamic magnetic field as in
Eq. (S3). However, the time dependence of the formula is multiplied by the Gaussian envelope described by the
expression exp(−( t

2σf
)2), with σf = 0.05f0. It provides the packet with full width at half maximum (FWHM) in the

time domain of 0.5 ns. As the result of the simulations, we save 250 snapshots of the propagating wave-packet with a
time step of 0.057 ns. The results of simulations with stripe’s MS = {350, 550} kA/m are compiled into short movies
that can be found in supplementary materials, Movies S4 and S5. In the movie for the MS = 350 kA/m stripe, the
packet is reflected from the interface without any substantial excitation of the SWs in the stripe. However, in the
movie with the MS = 550 kA/m stripe, the excitation of the SWs in the stripe is evident. The mode formed in the
stripe propagates along the stripe, and the re-emission of additional SWs to the layer is visible in the magnification.

5. Influence of the beam width on excitation of modes in the stripe

We check the influence of the beam width on excitation of the modes in stripe for MS = 460 kA/m as for this
value of MS for a beam with FWHM = 775 nm, used in the main simulations, we observe the beginning of stripe’s
mode excitation. We perform series of simulations with beam of varying FWHM. In Fig. S1 we show the results of
simulations for beams with FWHM = {517, 775.5, 1551} nm. In Figs. S1(a,b) we present SW intensity distributions
in the layer for two beams with FWHM = 517 nm (a) and FWHM = 1551 nm (b). In Fig. S1(a) with the narrow
beam several reflected beams are evident. Their number is bigger than we presented in the main body of the paper.
Conversely for a wide beam, as in Fig. S1(b), no reflected beam stratification is visible. For easier analysis in Fig.
S1(c) we provide a plot with cutlines through SW intensity distributions for different SW beams, the cutlines are
marked with red dashed lines in Figs. S1 (a,b). The result of the narrowest beam is presented with the orange line. In
this case the amplitude of the primary beam is the smallest but a phalanx of additional reflected beams are well visible.
The results for the widest beam is shown with red line, here the reflected beam has regular Gaussian envelope and
no additional reflected beams are visible. The green line presents the results for the beam with FWHM = 775.5 nm,
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(a)

(b)

(c)

(d)

FIG. S1. Beam width sweep. (a) SW intensity distribution in the layer with SW beam with FWHM 517 nm at the antenna.
(b) SW intensity distribution in the layer with SW beam with FWHM 1551 nm at the antenna. (c) Comparision between SW
intensity cutlines (marked with red dashed lines in (a,b)) for SW beam with FWHM 517, 775.5 and 1551 nm (orange, green
and red lines respectively). The increase of the amplitude for the red line at y > 1.5 µm is caused by the widened incident
beam. (d) Overlap of the beams width in the inverse space with the system’s dispersion relation at f = 17.4 GHz (blue line).

used in the main simulations. This case is intermediary between previously presented narrow and wide beams. The
secondary reflected beams are present although there are not as distinctive as in the case of the narrowest beam.

We propose following explanation to the fact that narrow SW beam is able to excite the resonator’s mode more
efficiently than a wide beam. We bind the efficiency of mode excitation with an overlap between the beam’s dispersion
relation and the bilayer’s dispersion relation. In Fig. S1(d) we show the cutlines through bilayer’s dispersion relation
at frequency f = 17.4 GHz and dispersion relations of the beams. The dispersion relations of the beams are presented
as Gaussian curves, which centres are calculated from the Kalinikos-Slavin formula [3], and their widths are obtained
by calculating beam’s widths in the reciprocal space. It is evident that the narrowest beam has the biggest width in
the reciprocal space and because of that has the biggest overlap with bilayer’s dispersion relation. Such a situation
leads to more efficient coupling between the beam and the bilayer than in any other case presented in this analysis.
Thus, the narrower beams have possibility to excite resonator’s mode more efficiently in our system. The analysis
presented here is more qualitative rather than quantitative as the beams widen during their propagation and during
reflections have bigger FWHM than at the antenna. Thus the overlap of dispersion relation at the reflection is even
smaller than presented in Fig. S1(d). However, the ratio between the overlap and the width of particular beam is the
same as presented, so our explanation is justified.

6. Results of comparision with Tamir-Bertoni model

In this section we compare the results of our simulations with an analytical model proposed by Tamir and Bertoni[4]
in more detail. Tamir and Bertoni showed that an incident beam of light is able to excite a leaky mode (LM) at the
edge of the system. The excited edge mode propagates along the edge and emits waves back to the system. As our
findings are a close analog to Tamir-Bertoni model but in the realm of magnonics, we try to apply Tamir-Bertoni
mathematical description to our simulation’s results. Tamir and Bertoni proposed the reflectance coefficient in the
form of ρ(ky) = ei∆(ky − k∗p)/(ky − kp), where kp = κ + iν is a complex wave vector of the LM. They solved the
system analytically under assumptions of well collimated beam incident and an angle of perfect coupling between the
beam and edge mode. Additionally they also assumed that only the first pole in reflectance coefficient ρ(ky) provides
a substantial input to the calculations. Their formula of the reflected light amplitude has two components which
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FIG. S2. Comparision between simulation results (blue line mean values of SW intensity in the layer under the stripe, orange
line SW intensity cutline in the layer under the left edge of the stripe) and Tamir’s model numerical fit (red dashed line) to
the SW intensity mean value.

describe the primary E0 and the secondary beam E1

Erefl = E0 + E1,

E0 = Ae−((y−y0)/wb)
2

,

E1 = −E0(2 − π
1
2 νwbe

(γ′)2erfc(γ′)),

(S4)

where A is the amplitude of the primary beam, y0 is the centre of primary beam, wb is the width of beam at 1
e of its

amplitude, ν is the imaginary part of the LM wave-vector, γ′ is a new coordinate system defined for the secondary
beam as γ′ = νwb

2 − y−y0

wb
and erfc is the Gauss error function.

In Fig. (S2) we present a numerical fit of Eq. (S4) to the simulation data. The blue line in Fig. (S2) shows the
mean value of SW intensity averaged in the volume of the layer directly under the stripe. The dashed red line is
the numerical fit to this data. It is evident that the analytical model provided by Tamir and Bertoni agrees only
qualitatively with the results of our simulation. Namely, Tamir-Bertoni model describes properly the primary beam in
our simulations but fails to precisely fit to the secondary beam. In this case analytical model only indicates separation
between the primary and secondary reflected beams. However, it does not recreate the shape of secondary beam, it
only shows a long tail of nonzero amplitude left to the primary beam. We see a several reasons why Tamir-Bertoni
model does not work properly with our simulation’s results. Firstly, Tamir-Bertoni model was developed for the light
beam, which physics is governed by Helmholtz equation, while in our case we deal with SWs that are described by
Landau-Lifshitz equation. Secondly, in Tamir-Bertoni model the edge of the system is infinitely narrow but in our
simulations we regard the bilayer with finite width as an edge. We show the difference between the approach of wide
and narrow edges in Fig. (S2). Here, the blue line describes average SW intensity under the stripe and the orange
line is a cutline through SW intensity in the layer under the left edge of the stripe. The results of the edge cutline
have more distinctive peaks with bigger amplitudes nevetherless in our calculations we have to choose the average
values of SW intensity to take into account contribution from whole bilayer width. At last Tamir-Bertoni model is
based on several assumptions, such as choosing an optimal incident beam angle to couple with the edge mode, that
are not met in our numerical simulations. We did not look for the ideal conditions for the SW beam incident in our
simulations as their are impractical in designing experiments to confirm our numerical findings.

7. Influence of stripe’s width on reflection

We explored new resonances cases by performing simulations with fixed material parameters but with varying
resonator’s width. We chose MS = 550 kA/m value as in the paper’s main body which corresponds to the case with
the most pronounced spread among the secondary beams. Then we run several simulations with stripes of widths w
in a range from 100 nm to 205 nm. In Fig. S3(a) we present the SW intensity density in the stripe as a function of
stripe’s width (the values in the plot are normalised to the highest value for w = 155 nm). In Fig. S3(a) we can see
several peaks for certain values of w = {110, 135, 155, 175, 200} nm. For each of these cases there is an excitation of
LM in the stripe and creation of the secondary beams in the layer below the stripe, Fig. S3(b-d). Thus we prove that
the resonance conditions in described system can be also achieved by changing other parameters of the system than
its material parameters.
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(c) (d)
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(b)

FIG. S3. (a) Intensity of SW in the stripe as a finction of stripe’s width. (b-d) Visualisations of the modes excited in the stripe
for different values of stripe’s width as SW intensity distribution, (b) width 110 nm, (c) width 155 nm, (d) width 175 nm. All
(b-d) figures have the same colour scale normalized to the highest value in case 155 nm (c).

8. Influence of SW frequency on reflection

We obtain parameters of the reflected beams by fitting a sum of Gaussian functions to the cutline through SW
intensity distribution in the far-field. The far-field is defined at x = −7.5 µm and is indicated with a red dashed line
in Figs. S1(a,b). We present our method of calculating reflected beams parameters in Fig. S4, where the blue solid
line shows the simulation results, the dashed lines indicate component Gaussian functions and the orange solid line is
the sum of all Gaussian curves in a given case. In the ranges of stripe’s MS when LM starts and ends to be excited
the beams in the far-field strongly overlap as we show in Figs. S4(a,c) where MS = 475 kA/m and MS = 615 kA/m.
In these cases we need to use a sum of six Gaussian functions to precisely fit our function to the simulation results.
For the stripe’s MS values between these regions three distinctive beams and a range with plane waves are visible in
the far-field as shown in Fig. S4(b) for MS = 550 kA/m. Hence, we use as a fitting function the sum of four Gaussian
curves only in this range of MS (three to describe the beams and one to describe the plane waves).

In Fig. S5 we plot amplitudes and positions of the primary and secondary beams in the far-field as functions of
stripe’s MS. The blue colour represents parameters of the primary beams and the red colour depicts the secondary
beam. Additionally in Fig. S5 we also confront the results for simulations with different frequencies, namely the dots
show results for f = 17.3 GHz and the diamonds represent the results for f = 17.4 GHz. The change in frequency
affects overlap between dispersion relations of the SW beam and the bilayer thus changing the excitation properties
of LM in the stripe. We chose only a small change in frequency to avoid bigger change of SW wavelength which would
affect the wavelength-discretization ratio in the numerical simulations. The change of frequency in the system affects
the amplitudes of reflected beams as presented in Fig. S5(a). The increase of frequency to f = 17.4 GHz leads to
increase of the primary beam’s amplitude, compare blue dots and diamonds, and decrease of the secondary beam’s
amplitudes, compare red dots and diamonds. The same increase of frequency affect the spatial shift of the primary
beam only slightly, as shown in Fig. S5(b) with blue dots and diamonds. However, the frequency increase causes
substantial increase in spatial shift of the secondary beam, shown with red dots and diamonds. For f = 17.4 GHz
the maximal shift of the secondary beam is equal to −1.6 µm and it is 0.35 µm bigger than spatial shift calculated
for f = 17.3 GHz and the same value of stripe’s MS.

9. Movie S1–steady-state with a sweep over resonator’s MS value

The movie. S1 represents the colourmaps of the distribution of |mx| at frequency f = 17.4 GHz as the dependence
of the stripe’s value of MS similarly as displayed in Fig. 2(a,b). You can see that the distribution of |mx| is strongly
affected by MS and 3-6 reflected parallel laterally shifted beams can be seen depending on the MS value.
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FIG. S4. Calculating parameters of the reflected beams by fitting Gaussian curves in the far-field marked in Fig. S1 with
dashed-red line. (a) Fitting a sum of six Gaussian curves to the simulation results for resonator MS = 475 kA/m. (b) Fitting a
sum of four Gaussian curves to the simulation results for resonator MS = 550 kA/m. (c) Fitting a sum of six Gaussian curves
to the simulation results for resonator MS = 615 kA/m.
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FIG. S5. Parameters of the reflected beams in simulations with different SW frequencies. (a) Amplitudes of the primary (blue)
and the secondary (red) beams calculated by fitting Gaussian functions to simulation data, cf. S4, dots represent results for
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(red) beams calculated by fitting Gaussian functions to simulation data, symbols as represent frequencies as in (a).
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10. Movie S2–steady-state with a sweep over frequency

The movie. S2 depicts the colourmaps of the distribution of |mx| as the dependence on the value of frequency for
resonator with MS = 550 kA/m. We assume frequencies in the range from 17.0 to 18.0 GHz. Although, it is a narrow
range, we can see that mx distribution changes significantly. While entering the resonance multiple reflected beams
emerges and than again disappears. It is very similar result as for the sweep over resonator’s MS.

11. Movie S3–dispersion relation dependence on resonator’s MS

The movie. S3 depicts how the dispersion relation in the stripe depends on the value of stripe’s MS. For the values
of MS from 420 kA/m to 650 kA/m we can see the crossing at f = 17.4 GHz and ky = −53.5 rad

µm of the dispersion

relation plotted for the stripe (colourmap in the background) and the dispersion plotted for SWs propagating in the
layer with φ = 45◦ (bold black line). For this particular band crossing in the dispersion for SWs in the layer, at the
considered MS range, the decrease in exchange energy is compensated by an increase of the magnetostatic energy.
Namely, the exchange energy is proportional to M−1

S , while the magnetostatic energy is proportional to MS. It
explains the origin of the broad range of MS showed in Fig. 4 in the main part of the manuscript where the resonance
condition are fulfilled.

12. Movies S4-S5–reflection of wavepackets for different MS

The movie. S4 shows the reflection of wavepacket from the resonant-stripe element in case of stripe MS = 350 kA/m.
In Movie. S4 the antenna in simulation has width wa = 200 nm. The movie. S5 shows SWs wavepacket reflection in
case of stripe’s MS = 550 kA/m. Comparing the results of wavepacket simulations for cases MS = 350 kA/m and
MS = 550 kA/m it is evident that for latter the excitation of the SWs in the stripe is much more efficient. Without
the constant SWs pumping by the SWs beam we can see propagation of a mode in the stripe as an obliquely bouncing
between stripe’s edges and reemition of SWs back to the layer clearly. Interestingly, in MS = 350 kA/m stripe
case we still are able to see excitation of a mode in the stripe and the SWs reemition, however with much smaller
magnitude comparing to the case with MS = 550 kA/m stripe. We explain this particular result by pointing that a
SW wavepacket contains a range of frequencies described by a gaussian curve in our case centred at f0 = 17.4 GHz
with FWHM ≈ 2 GHz. It means that the part of wavepacket spectrum still overlaps with the frequencies of resonant-
stripe element’s modes. This effect has small magnitude and is therefore virtually invisible in simulation results with
continuous SW beam excitation.
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5.6 Goos-Hänchen-like shift of inelastically scattered spin-
wave beams

In this paper, the inelastic scattering process of SW beams on edge-localised SW mode is
presented. The result of the inelastic scattering is creation of new SWs with frequencies that are
linear combinations of the incident SW beam and edge-mode frequencies. The main focus was
put on two processes, namely, stimulated splitting and confluence processes, which produce new
SWs whose frequency is lowered and increased, respectively. It was shown that scattered SWs
take a form of beams and undergo lateral shift at the interface analogous to the Goos-Hänchen
effect. The paper presents several different cases of SW scattering with different angles of
SW beam incidence and edge modes propagating in different directions. Additionally, it was
shown that in certain cases a cascade of non-linear processes happens which results in creation
of SW plane waves propagating away from the interface behind the SW beam incidence point.
Moreover, the cascade process is accompanied by a noticeable increase of lateral shift of the
scattered SW beam in the confluence process.

The Author contributed to this paper by carrying out all of the micromagnetic simulations
using the MuMax3 environment and analysing the results of simulations. The Author drafted the
manuscript, excluding the introduction, and prepared all the figures in the paper. The Author
prepared the responses to the reviews which required performing additional simulations. The
Author also managed the correspondence with journal throughout publication process.
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Impact Factor (2024): 3.8



Goos–Hänchen shift of inelastically 
scattered spin-wave beams 
and cascade nonlinear magnon 
processes
Krzysztof Sobucki1, Igor Lyubchanskii2, Maciej Krawczyk1 & Paweł Gruszecki1

We study, using micromagnetic simulations, the inelastic scattering of spin-wave beams on edge-
localized spin-wave modes in a thin ferromagnetic film. In the splitting and confluence processes, 
the new spin-wave beams are generated with frequencies shifted by the edge-mode frequency. We 
report that inelastically scattered spin-wave beams in both processes not only change their direction 
of propagation but also undergo lateral shifts along the interface, analogous to the Goos–Hänchen 
effect known in optics. These shifts of inelastically scattered beams, for a few special cases described 
in the paper, can be in the range of several wavelengths, which is larger than the Goos–Hänchen shift 
of elastically reflected beam. Unexpectedly, at selected frequencies, we found a significant increase in 
the value of the lateral shifts of the scattered spin-wave beams formed in the confluence process. We 
show that this effect is associated with the cascading nonlinear processes taking place at the edge of 
the film and involving the primary edge spin wave. Our results make an important contribution to the 
understanding of the nonlinear nature of spin waves and provide a way to exploit it in signal processing 
with magnons.

Spin waves (SWs), propagating precessional magnetization disturbances, are a promising candidate for 
information carriers, especially in the context of their applications in beyond-CMOS1 and artificial neural 
networks2,3. One of the SWs advantages is their intrinsic nonlinearity, a key element for their advanced applications 
such as neuromorphic computing4,5. Another advantage is the possibility of the SWs confinement in a small part 
of a magnetic material allowing for the large miniaturization of the magnonic devices. For instance, SWs may be 
confined in a nanoscale-wide potential well induced by the static demagnetization field near the layer’s edge6–9. 
Such edge-localized SW modes are called edge SWs or edge modes, and usually, their frequencies are lower 
compared with the SWs propagating outside of the well. Recently, there has been considerable attention devoted 
to the research on inelastic scattering of SWs on localized modes, mostly to obtain frequency combs10–13, but 
also for other applications, like sensing14 or SW demultiplexing15. Several spatially localized modes on which 
propagating SWs are inelastically scattered have been considered. These include, nonlinear scattering on the 
skyrmion gyrotropic mode11,16,17, azimuthal SWs in vortex13,18–20, domain wall mode12,21,22, and the SW edge 
mode15. In the last case, the inelastic scattering of an obliquely incident SW beam of frequency f at the edge of a 
Permalloy (Py) thin film on a propagating SW edge mode of frequency ν results in two primary three-magnon 
processes, i.e., stimulated splitting process23–25 (SSP) and confluence process23,24 (CP). CP causes two modes at 
frequencies f and ν to merge (confluence) into a new SW at frequency f + ν. On the other hand, SSP causes the 
splitting of the mode at frequency f into two modes at frequencies f − ν and ν with the assistance of the edge 
mode at frequency ν, which stimulates this process and increases the intensity of the new waves. It has been 
shown that SSP could be used to realize the magnon-based transistor26, while both SSP and CP could be used 
for demultiplexing15. In the second example, the scattered SW beams created in nonlinear processes propagate 
under different angles compared to the reflected SW beam and the angles of propagation depend on the edge 
mode frequency ν. The mechanism of this phenomenon was explained by employing the isofrequency contours 
analysis and conservation of the tangential component of beam wavevectors27,28.

The reflection of the wave beam from the edge of the material is in some cases associated with non-
specular behavior well-known as the Goose-Hänchen (GH) effect as first predicted, observed and described 
in optics29–32 and manifests itself as a spatial shift of a totally internally reflected light beam along the interface. 
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The origin of this effect is the phase acquisition of the waves during reflection. In optical experiments, the GH 
shift ranges from a few nanometers (fractions of light wavelengths) up to a few micrometers33–36. In magnetic 
materials the magneto-optical GH effect was theoretically studied in Refs.37–41 and experimentally observed 
for BK7 prism/Fe/Au42 and Ni-based magneto-plasmonic crystals43. Since the GH effect is due to the wave 
nature, the analogous effect has been observed for different types of waves. For instance, the GH effect has been 
confirmed for plasmons44–46, electrons47, neutrons48, seismic waves49 and SWs50–55. Theoretical predictions have 
recently shown that an analogous phenomenon to the GH shift can also be found for inelastically scattered 
electromagnetic waves during Brillouin scattering on phonons56. However, to date, there has been no report on 
the GH effect of the inelastically scattered SWs.

In this paper, we report the GH shift for the SW beam that is inelastically scattered on the propagating edge 
mode. We numerically demonstrate this effect in an in-plane magnetized thin Py film for the beams generated 
in the SSP and CP processes taking place at the very edge of the film. We show that the edge mode frequency 
and wavevector, as well as the angle of propagation of the incident SW beam, affect the GH shift. Unexpectedly, 
we found a significant enhancement of the GH shift of the SW beam generated in the CP process at a certain 
frequency of the edge mode. We show that this effect is related to the cascade of three nonlinear processes 
involving the edge mode and generated high-frequency SW leaky waves propagating into the film. These results 
demonstrate new effects in magnonics and provide a basis for unexplored methods of SW beam control in 
thin ferromagnetic films, which can be exploited for practical applications in magnonic technology for high-
frequency and low-energy computing systems.

Results
We analyze the dynamics of SWs in a 10 nm thick Py layer using micromagnetic simulations performed in 
the Mumax3 environment57. We use typical material parameters of Py (Ni80Fe20), namely MS = 800 kA/m, 
Aex = 13 pJ/m, but with reduced damping parameter α = 0.0001 for easier analysis of SW propagation in the 
far field. The layer is semi-infinite, i.e., it has only one sharp edge and is nominally infinite in all other in-plane 
directions, Fig. 1(a). The external uniform magnetic field B0 = µ0H0 = 300 mT is applied perpendicular to 
the layer’s edge, H0 = H0ŷ, which induces a demagnetizing field on the edge that locally lowers the effective 
static field, Fig. 1(b). This non-uniformity serves as a potential well in which the SW-localized mode can be 
confined9,58,59. Accordingly, the dispersion relation shown in Fig. 1(c) consists of a part representing a continuum 
of SWs freely propagating far from the interface and a distinct band representing the edge mode with frequencies 
downshifted with respect to the SW continuum. The gap between the modes is from 11 GHz to 15.5 GHz at 
wavenumber kx = 0. This implies that in this frequency range, the propagating SWs are confined to the system’s 
edge. This situation provides us with a straightforward way to excite only edge modes at low frequencies and to 
study the inelastic scattering of higher frequency SWs incident from the thin layer on the layer edge.

We study the inelastic scattering of a SW beam of frequency 45 GHz (corresponding to the wavelength of 
35.7 nm), full width at half maximum 760 nm, incident obliquely at the edge where an edge mode of frequency 
ν is localized. Throughout the paper, the frequency of the SW edge mode is kept below the bottom of the SW 
continuum, 15.5 GHz, so the edge mode cannot leak the energy to the bulk of the Py layer. We place two antennas, 
which emit local oscillating magnetic fields to excite both types of SWs (see yellow stripes in Fig. 1a). The first 
antenna is placed at the very edge of the system and is responsible for exciting edge mode with frequency ν. The 
second antenna is placed about 3.84 µm from the edge and excites the SW beam with frequency f = 45 GHz. 
The second antenna excites unidirectionally propagating SW beam towards the edge60,61 at a specific angle of 
incidence (angle between the wavevector of incident SW beam and the normal to the interface, i.e., the y-axis). 
More details are given in the “Methods” section.

In the numerical simulations, we change three parameters, the angle of SW beam incidence θ and edge mode 
frequency (which also changes the wavenumber of the edge mode κ), and the sign of κ. The angle of incidence 
is controlled by the orientation of the antenna relative to the edge of the layer. We use the following set of 
angles θ = {30◦, 32.5◦, 35◦, 37.5◦, 40◦, 45◦}. We choose the sign of the edge mode wavevector by changing 
the position of the edge antenna with respect to the incident beam spot at the edge. If the edge antenna is placed 
to the left of the incident SW beam spot, the edge mode wavevector κ is positive. If the antenna is to the right, κ 
is negative. For each configuration with the chosen θ and sign of κ, we run a series of simulations with different 
edge mode frequencies. These frequencies are in the range of ν ∈ ⟨11, 15.5⟩ GHz.

Figue 1d shows the SW spectrum of the system obtained in the steady state in the case of f = 45 GHz, 
ν = 12.5  GHz, κ > 0, θ = 30◦. We display the maxima of the mz  magnetization component at a given 
frequency, calculated with Fourier transform. Two peaks highlighted in blue correspond to the frequency of 
SW beam f and its second harmonics. Several peaks highlighted in red represent the edge mode ν and its higher 
harmonics9. Two peaks of the main interest are marked with green and purple colors. These correspond to the 
frequencies of SSP f − ν and CP f + ν respectively, which confirms the existence of these phenomena in the 
studied system. We focus on these waves throughout the paper. Apart from the mentioned peaks, we also see 
several other peaks at frequencies corresponding to higher-order nonlinear processes (e.g. f − 2ν = 20 GHz). 
These are beyond the scope of this paper and will be omitted in further analysis.

For edge modes propagating to the right (i.e., κ > 0), the angles of the group velocity of the inelastically 
scattered beams incident at θ = 30◦ change monotonically with the change of ν, see Fig. 2a (green circles and 
purple squares). Later in the text, we call the angle of the group velocity Θi as the angle of propagation. The 
angle of propagation of the beam generated in SSP (green circles) decreases monotonically with increasing ν, 
and changes by 17◦ in the examined range of ν. The changes for the CP beams (purple squares) are opposite to 
SSP. Here the angle increases with increasing ν, and in the investigated range of ν the angle changes by 10◦. The 
results for other angles of propagation of the incident SW beams are qualitatively the same. These changes in the 
angle of the propagation of inelastically scattered beams can be explained using isofrequency contour analysis15. 
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Figure 1.  System’s geometry and dispersion relation with isofrequency contours construction. (a) Geometry 
of the investigated system, i.e., Py layer with thickness 10 nm placed in a uniform external magnetic field 
µ0H0 = 300 mT along the y axis with a schematic representation of SWs propagating at different frequencies. 
The blue color represents incident and elastically reflected beams. The purple and green colors represent 
inelastically scattered beams as a result of CP and SSP, respectively. The red color depicts the edge mode. The 
black arrows denote the directions of the group velocities vg associated with the respective SWs. The orange 
lines represent the antennas used to excite the incident SW beam and the edge modes. ∆X , ∆X−, and ∆X+ 
represent the lateral displacement between the incident beam spot and the beams from reflection, SSP, and 
CP, respectively. (b) Demagnetization field drops at the edge of the system, facilitating the localization of the 
SW edge mode in the system. (c) Numerically calculated dispersion relation in dependence on the tangential 
to the interface component of the wavevector. The color-shaded areas on the plot indicate investigated ranges 
of frequencies. (d) Spectrum of the SWs for the system response to the incident SW beam at a frequency 
f = 45 GHz on the edge mode at a frequency ν = 12.5 GHz. The blue highlighted peaks correspond to the 
incident SW beam and its second harmonic. The red peaks represent the edge mode and its harmonics. SSP 
and CP are highlighted in green and purple, respectively. These frequencies are also marked with horizontal 
lines in (c). (e) Isofrequency construction illustrating the principle of selecting wavevectors of inelastically 
scattered SW beams on the edge mode propagating to the right, i.e., with κ > 0. The blue, green, and purple 
curves represent isofrequency contours for SWs at frequencies of the incident SW beam f = 45 GHz, reduced 
in frequency by the edge mode frequency (f − ν or f − ν′) corresponding to SSP, and increased in frequency 
by the edge mode frequency (f + ν or f + ν′) corresponding to CP. The green and purple isofrequency 
contours are plotted for two edge mode frequencies, i.e., solid lines for ν = 11 and dashed lines for ν′ = 15.5 
GHz. We keep the same color code as in the previous figures to represent the undergoing processes. The red, 
blue, green, and purple arrows represent successively the wavevectors of the edge SWs, the incident SW beam, 
and the inelastically scattered SW beams resulting from SSP and CP. In addition, we mark the group velocities 
of the SW beams with yellow vectors, which are normal to the curvatures of the contours. The angle between 
the group velocity and the normal to the interface of a given SW beam is denoted as Θ and it is the angle of 
beam propagation.
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We present the considered inelastic scattering of SW beams on edge mode with κ > 0 on isofrequency plots 
in Fig. 1e. The blue curve represents all available solutions for the frequency f and kx > 0. The blue dashed 
arrow represents the wavevector associated with the incident SW beam (ki). The solid blue arrow marks the 
opposite quadrant of (kx, ky) space and is plotted according to the rule of the conservation of wavevector 
tangential component (kx), i.e., Snell’s law. It represents the wavevector associated with the reflected SW beam 
(kr), which must be located on the isofrequency contour for frequency f. The beam propagation directions are 
related to the directions of the group velocities vg(f, k) (marked with orange arrows), which are perpendicular 
to the constant frequency contour for the corresponding wavevectors. Taking into account the conservation 
of energy (f ′ = f + ν for CP and f ′ = f − ν for SSP) and the conservation of the tangential component of 
the wavevector to the interface (kc,x = kx + κ for CP and ks,x = kx − κ for SSP), a similar construction can 
be made for inelastically scattered SWs. These contours, for SSP (green curves) and CP (purple curves), are 
marked for two examples of edge mode frequencies ν = 11 GHz and ν′ = 15.5 GHz, solid and dashed lines, 
respectively. It can be seen that for the lower edge mode frequency, the propagation angle relative to the normal 
to the interface (y-axis) is smaller, which is consistent with the simulation results shown in Fig. 2a. A similar 
construction is done for SSP for the isofrequency contour f − ν and for the x-component of the wavevector 
equal to ks,x = kx − κ. Therefore, we observe that for the lower value of the edge SWs frequency, the angle of 
propagation of the inelastically scattered beam increases, which is also in agreement with Fig. 2a. Later in the 
text, we present dependencies of angles of propagation on the edge mode frequency for other simulation cases.

In the case of the left propagating edge mode, i.e. κ < 0, the SSP can only exist at frequencies ν below some 
critical value (see green dots in Fig. 2b where the waves formed in the SSP are only below 12  GHz), which 
depends on the angle of incidence. As shown in the isofrequency contour construction in Fig. 2c for θ = 30◦, 
for ks,x = kx − (−|κ|) corresponding to f − ν frequencies, there are solutions only for small κ vectors. The 
angles of propagation of these rays are above 70◦, i.e., their amplitude distribution overlaps with the interface, 
and therefore it is difficult to derive their trajectories. For the CP, the angle of propagation of the inelastically 
scattered beam decreases with increasing edge mode frequency (Fig. 2b) and varies by 14◦ in the considered 
range of ν. This is in agreement with the analysis of the changes in the group velocity directions shown in Fig. 2c. 
This situation is the opposite of the results obtained in the simulations with the positive value of the wavevector 
of the edge SW.

A detailed analysis of the rays of inelastically scattered SW beams shows that they are laterally shifted along 
the interface relative to the incident SW beam spot. This effect is analogous to the GH effect, which appears as a 
lateral shift of the elastically reflected wave beam with respect to the incident wave beam, e.g., electromagnetic 
waves29–31 or SWs50,51,53. The results of simulations with edge mode of wavevector κ > 0 and for κ < 0 for 
different incident beam angles are displayed in Fig. 3a,b and in c–f, respectively.

The value of the spatial shift for the elastically reflected SW beam, i.e., standard GH shift, weakly depends 
on the frequency of the edge mode besides one case described later in the paper. We report the smallest 
∆X = −3.8 nm for the angle of incidence 35◦ and the biggest −14.5 nm at 45◦ with κ > 0 (see, Fig. S1. in 
the Supplementary), for κ > 0 the GH shift variation is similar, i.e., between 4 nm (for θ = 35◦) and 15 nm 
(θ = 45◦) as shown in Fig. 3c–f. These are rather small values of the GH shift but close to the expectations. In a 
paper with conditions similar to those presented in this work, the scope of GH shift for SWs was reported to be 
up to 40 nm in a system SW wavelength of 60 nm52. Some other papers have reported significant values of GH-
shift but for special cases, e.g., in strong magnetic fields and with incident SWs propagating at grazing angles to 
the interface50,62. However, there is no report so far on the GH shift of beams generated in inelastic scattering.

The scope of spatial shifts of the beams created in SSP scattered on the edge mode with κ > 0 depends on 
the angle of the SW incidence beam and the edge mode frequency, see Fig. 3a (additional more detailed plots 

Figure 2.  Dependencies showing the SW beams group velocity angles Θi. (a,b) Angles of the group velocity 
of SW beams (angles of propagation) as a function of edge mode frequency ν, blue triangles represent the 
reflected beam, green circles display SW beam created in SSP, and purple squares represent the SW beam 
created in CP. The results were obtained for the angle of incidence θ = 30◦ and for both, the edge modes 
with (a) κ > 0 and (b) κ < 0. (c) Isofrequency construction in the case of κ < 0. Here, for −|κ′| there is no 
geometric solution in the SSP, which would correspond to SWs scattered on the higher frequency edge mode. 
Thus, for κ < 0 there is a critical value of κ (and ν) above which SSP is not allowed, as shown in (b).
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are also shown in Fig. S1. in the Supplementary). Interestingly, the function ∆X−(ν) is not monotonous. For 
instance, for θ ≤ 37.5◦ the function ∆X−(ν) has in the analyzed ν range a maximum corresponding to a very 
small positive value of the GH shift with negative values (approx. −20 and -50 nm) at the sides of the considered 
range (11 and 15 GHz, respectively).

As the angle of incidence θ increases above 37.5◦, the position of the extreme shifts towards the greater edge 
mode frequencies. Therefore, for angles 40◦ and 45◦, the ∆X− dependence becomes monotonic in the analyzed 
edge mode frequency range. With decreasing θ from 37.5◦, the maximum shifts to lower frequencies. Although 
the observed dependencies are regular, the reason for this behavior is unclear and difficult to explain without an 
appropriate analytical model.

Although the dependencies of ∆X−(ν) have maximum, the largest absolute magnitudes of the shifts ∆X− 
are negative, and in the range of tens of nanometers. Thus, the spatial shifts are relatively small compared to the 
incident beam width. However, the wavelengths of the scattered beams generated in the SSP are in the range of 
48 nm to 58 nm, varying slightly with different angles and edge mode frequencies. Thus, the reported spatial shifts 
are comparable to the scattered SW wavelengths. Exceptions to this rule are the results for θ = 45◦ and low edge 
mode frequencies which are in the range of hundreds of nanometers, e.g. for ν = 11 GHz ∆X− = −215 nm, 
which are several wavelengths of the scattered SWs. In the results presented in Fig. 3(a) we omit the edge mode 
frequency ν = 15 GHz as the frequency resulting in SSP is f − ν = 30 GHz, which is the second harmonic of 
edge mode excitation that overlaps with the bulk SW spectra thus interfering with the derivation of SW beam 
trajectory.

The dependencies of the spatial shifts of the beams generated in CP at κ > 0 on ν are shown in Fig. 3b 
(additional more detailed plots are also shown in Fig. S1. in the Supplementary). For all angles of incidence 
θ, despite the variation in the lateral shift value ∆X+(ν), there is a general tendency for the magnitude of the 
negative ∆X+(ν) to decrease as the edge SW frequency increases. The scope of ∆X+ is smaller in comparison 
to the spatial shifts calculated for beams created in SSP, and are in the range from -35 nm to 0. These values are 
comparable or smaller in comparison to scattered SWs wavelengths, which are in the range of 28 nm and 30 nm 
for CP. In Fig. 3b, the results for frequencies ν = 13 GHz and ν = 13.5 GHz are not displayed because for these 
frequencies the amplitudes of the scattered beams are very low, and derivation of their trajectories is unreliable. 

Figure 3.  Dependencies of the lateral shifts ∆Xi along the interface of reflected and inelastically scattered 
beams for different angles of SW beam incidence (θ), and edge SWs frequencies (ν), and wavevector sign 
κ > 0 and κ < 0. On the left side of the black dashed line (subfigures (a,b)), lateral shifts of the scattered 
beams are presented in the case of edge mode with κ > 0. (a) Lateral shifts of the beams generated in SSP, and 
(b) in CP for all simulated angles of SW beam incidence. To the right of the black dashed line (subfigures (c)–
(f)) the lateral shifts of the edge modes with κ < 0. The blue triangles show the lateral shifts of the elastically 
reflected beams and purple squares show the results corresponding to CP. The empty squares indicate the 
frequencies with the enhanced magnitude of |∆X+|.
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The analysis of scattered SWs amplitude dependency on the edge mode frequency is beyond the scope of this 
paper and will be the subject of a further forthcoming study.

Figure 3c–f show the results of spatial shift of SW beams scattered on the edge mode with κ < 0. In most of 
the cases, the SSP does not occur, as was explained before, and in the few cases where this process does occur 
the scattered beams are almost grazing the edge thus, the derivation of their spatial shifts is inaccurate. For that 
reason in the case of κ < 0, we only present spatial shifts of beams created in CP. In all simulations with different 
angles of incidence, the derived spatial shifts of the scattered beams in CP are very small, in the range of a few 
nanometers, where the wavelengths of the scattered SWs are in the range of 26 nm to 29 nm. However, we can 
find a certain value of the edge mode frequency (14, 13, 12.25, and 11.5 GHz at θ = 30◦, 35◦, 40◦ and 45◦, 
respectively) for which a significant enhancement of the GH shift value appears, see purple squares in Fig. 3c–f. 
The origin of this phenomenon will be explained in the following paragraphs.

Let us first focus on the case shown in Fig. 3c, i.e., for the angle of incidence 30◦ and the frequency of the edge 
mode ν = 14 GHz. The spatial distributions of the SW amplitude at frequencies ν = 14 GHz, f = 45 GHz, and 
f + ν = 59 GHz are shown in Fig. 4d, f, g, respectively. Surprisingly, in addition to the beams (incident and 
reflected at 45 GHz, and scattered at 59 GHz), we can also see a brightened region representing the plane waves 
with the same wavevector as the SWs from the beam. This effect can be explained as a result of a cascade nonlinear 
excitation of plane waves at the layer’s edge. Figure 4a shows a scheme of the proposed nonlinear cascade process 
in the case of an incident SW beam propagating at the angle θ = 30◦ and scattered on a propagating edge 
mode of frequency ν = 14 GHz. The first phase of this process is the SSP of the incident SW beam, marked 
by the blue oval, on the edge mode I, dashed red oval. As described before, there is no allowed solution to this 
process in the bulk of the Py layer. However, in this particular case, the result of the SSP is the generation of 
SWs with frequency f − ν = 31 GHz and wavevector kx − | − κ| = 130 rad/µm, which coincides with one of 
the allowed edge states in the system, as shown in Fig. 4b, later in this paper we will call this mode as the edge 
mode II. Figure 4e shows the spatial distribution of the SW amplitude of this mode, confirming its existence. 
According to the conservation of energy and momentum laws, this SSP must also generate SWs with frequency 
ν = 14 GHz and wavevector |κ| = −40 rad/µm corresponding to the primary excited edge mode (edge mode 
I, marked in red with an asterisk). The analysis of this edge mode I amplitude presented in Fig. 4c shows a 2.5% 
boost just behind the spot where the incident beam reaches the edge. It indicates the creation of new edge SWs 
that propagate along and oscillate in phase with the antenna-excited edge mode I, and can be considered as an 
amplification of the propagating edge mode15. In Fig. 4e, where edge mode II is presented, there is a distinctive 
gap left to the point of SW beam incidence (x = −3.7 µm), which indicates that edge mode II is created at the 
SW beam incidence spot and propagates in opposite direction to edge mode I, Fig. 4d. It is evident by calculating 
the Fourier transform from the space to wavevector domain, as presented in Fig. 4h,i. Both of the edge modes 
have wavevectors of opposite signs and their numerical values agree with the analytically derived values shown 
in scheme Fig. 4a.

The excited edge mode II propagating along the edge interacts with the edge mode I excited directly by 
the antenna, Fig.  4a, it is Phase II. It causes CP to occur along the length of the edge beyond the point of 
SW beam incidence. The outcome of this process is the creation of a new SW at the edge with f = 45 GHz 
and wavevector kx = 90 rad/µm, which corresponds to the incident SW beam. Taking into consideration the 
isofrequency contours, newly-created SWs at the edge also have to gain a wavevector component perpendicular 
to the edge, since there is no such solution for pure edge mode. For that reason, these SWs leak the energy from 
the edge and propagate into the bulk of the system with their wavefronts parallel to the reflected SW beam. It 
is shown in Fig. 4f, where an area of nonzero SW amplitude is right to the reflected beam. Additionally, the 
spatial Fourier transform of that distribution, shown in Fig. 4j, consists of only two distinctive peaks that overlap 
with isofrequency at f = 45 GHz and correspond to the incident and reflected SWs. Thus, no SWs with new 
wavevectors at this frequency are excited in the system. Since we are dealing with a nonlinear cascade process 
in which the interaction of two edge modes of different frequencies ultimately leads to energy leakage from the 
edge, this process is a nonlinear analog of a leaky mode excitation, which we have already reported61. Therefore, 
we refer to this phenomenon as nonlinear cascade leaky mode excitation.

Furthermore, this newly created SW at the edge interacts with the antenna-excited edge mode I, Phase III. 
This interaction is yet another CP occurring at the system’s edge right to the incidence spot. In this CP new SW 
plane waves are excited, which propagate parallel to the scattered SW beam, Phase IV. We show this wave in 
Fig. 4g where the distribution of |mz| at frequency f = 59 GHz has nonzero amplitude only to the right of the 
scattered SW beam created in CP, i.e., in the direction of propagating edge mode II. Fig. 4k presents the space-
domain Fourier transform of the |mz| distribution. There is only one peak that coincides with the isofrequency 
contour of f = 59 GHz confirming that the new SW plane wave has the same wavevector as the inelastically 
scattered SW beam.

In the scheme in Fig. 4a we wrote down the amplitudes (A) of all SWs types considered in the described 
cascade process. It points out that the amplitudes of created SWs in each phase are proportional to the product 
of the amplitudes in the previous phase. In Figs. 4d-g we mark positions where the |mz| amplitude values have 
been taken from the simulation results with circles, which colors correspond to the SWs modes shown in the 
Fig. 4a. The comparison between the incident beam and  plane waves created in CP amplitudes of the plane 
waves created in CP shows a decrease in the range of 104 factor over the course of three process phases. Despite 
such a minuscule magnitude of new SWs they seem to have a noticeable impact on the lateral shift of scattered 
beams as shown in Fig. 3c-f. Indeed, a closer analysis of Fig. 4f,g shows that there is a narrow, yet distinctive drop 
in SW amplitude between the beams and plane waves. Such a drop in amplitude is a result of the destructive 
interference of these two kinds of SWs, thus the newly excited SWs at the edge have to be significantly shifted 
in phase.
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We also confirmed numerically that the nonzero amplitude background behind the scattered SW beams 
does not cause a false illusion of the beam shift. To confirm that adding a small-amplitude background to only 
one side of the Gaussian curve does not contribute the most to the calculated beam shift, we set up a numerical 
test. Namely, we added to a Gauss curve (with dimensions corresponding to the simulation results) a Heaviside 
step function with a height smaller by two orders of magnitude in comparison to the maximal amplitude of the 
Gauss curve. Then we run the same post-processing for this data as for simulated scattered beams. In the case of 
a numerically plotted Gauss curve, the addition of amplitude background alters the derived lateral shift by only 
a few nanometers. In the simulations, the scattered beams undergo lateral shifts up to tens of nanometers. These 

Figure 4.  Cascade nonlinear excitation of SW leaky modes. (a) Scheme of nonlinear cascade process 
explaining the excitation of edge and plane SW in the system with an incident SW beam of frequency 
f = 45 GHz propagating under angle θ = 30◦. The SW modes are symbolized with ovals whose colors 
indicate the modes of the same characteristics. The proposed cascade process is divided into four phases 
connected by SSP and two CPs. (b) Dispersion relation of the system with the marked modes shown in (a) (the 
color of the dots corresponds to the colors of the ovals). (c) Amplitude |mz| of the edge mode I (red, solid line) 
at the layer edge in the vicinity of the incidence spot of the incident SW beam. The black, dashed line is the 
extrapolation of the antenna-excited edge mode I behind the incident beam spot, i.e., for x > −3 µm. (d–g) 
Space distributions of |mz| at frequencies ν = 14 GHz, f − ν = 31 GHz, f = 45 GHz, f + ν = 59 GHz, 
respectively. The dots indicate spots where SW modes amplitudes, A indicated in (a), were taken. (h–k) Results 
of the two-dimensional Fourier transform from the space to wavevector domain of SW amplitude distribution 
are shown in (d–g). Figures (j,k) additionally contain isofrequency contours that correspond to frequencies 
of SWs presented in these pictures. (l) Investigated system’s dispersion relation with marked frequencies for 
which excitation of SW plane waves occurs at different angles of incidence (this picture shares the colorbar 
with Fig.1b).
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calculations confirm that adding a small-amplitude background does not change substantially the obtained 
values of lateral shifts of simulated SW beams.

In Fig. 4l we show a part of the system’s dispersion relation where the parameters of edge modes II are marked 
for all simulated angles of SW beam incidence. It is evident that in the investigated cases of SW beams scattered 
on the edge mode I with κ < 0 only a limited number of (ν, κ) and (f, kx) combinations will yield excitation of 
new edge modes. The reason for this is the relatively small width of the edge mode band in dispersion relation 
which allows only a narrow range of SWs to be excited at the edge. For that reason the enhancement of the GH 
shifts in Fig.3c-f exists only at a narrow range of edge mode I frequencies.

Conclusions
In summary, we showed that the inelastically scattered SW beams on the edge wave confined to the edge of the 
ferromagnetic film undergo spatial shifts ∆X−,+ along the film edge, which we interpret as an analog of the GH 
effect. The obtained GH-like shifts are negative in the majority of cases, but dependencies of the ∆X−,+(ν) for 
the beams formed in SSP and CP processes are different. For beams generated in SSP and positive wavevector of 
the edge wave, the ∆X−(ν) dependence is parabolic like, with ∆X− ≈ 0 at maximum and decreasing values 
for larger and smaller ν. We found that for high-incidence angles, e.g., 45◦, and edge modes of low-frequency 
with positive wavevectors, the spatial shifts of the beams created in SSP can even reach 200 nm, i.e., several 
wavelengths of the scattered SWs. For the beams generated in CP, the GH-like shift is small and there is a weak 
dependence of ∆X+ on ν. However, we found a peculiar phenomenon at certain edge mode frequencies when 
the wavevector κ < 0. In these cases, we observed an enhancement of the GH shift from a few nm to even tens of 
nm. Interestingly, this effect is associated with the excitation of new higher-frequency edge modes in a cascading 
nonlinear process, consisting of two additional CPs. In these CPs, there are generated SWs with frequencies and 
wavevectors that overlap with the band of the propagating SWs in the film, i.e., they radiate from the film edge 
and propagate as plane waves. Thus, the proposed process can be considered as a nonlinear version of magnonic 
leaky-mode excitation61. Even though the lateral shifts of scattered beams have small magnitudes and are not a 
significant factor in the physical realization of magnonic devices, they still serve as indirect indicators of other 
phenomena happening in the system. As presented in this paper, a visible increase of lateral shift of SW beams 
created in CP hinted an occurrence of the cascade process that, up-to-date, has not been described.

The results presented in this work contribute with nonlinear effects to a new subfield of magnonics called SW 
optic63–67. This paves the way for the development of optically-inspired magnonic logic devices68,69, especially 
for neuromorphic and edge computing components that require nonlinearity2,3, with high microwave frequency 
operation at the nanoscale, and, most importantly, low power consumption.

Methods
Micromagnetic simulations
In our research, we employ micromagnetic simulations performed in Mumax3 environment57 
to solve the Landau-Lifshitz equation in the time domain. The system is modeled as a cuboidal 
layer of Py with dimensions 5.12 µm × Y µm × 10 µm (along x, y, z axes respectively). 
The value Y varies in simulations with different incident SW beam’s angle of propagation, 
namely Y = {10.24 µm, 11.33 µm, 12.42 µm, 13.65 µm, 14.88 µm, 17.73 µm for angles 
θ = {30◦, 32.5◦, 35◦, 37.5◦, 40◦, 45◦} respectively. The material parameters of Py used in the simulations are 
α = 0.0001, MS = 800 kA/m, Aex = 13 pJ/m, which yield the exchange length of λex = 5.69 nm. We use the 
discretization grid 5 nm × 5 nm × 10 nm (along x, y, z axes respectively), which is shorter than λex in the in-
plane coordinates of the layer. We place the Py layer in a uniform external magnetic field B0 = 300 mT directed 
in-plane, opposite to the direction of the y axis. To simulate the infinitely long system along both directions of 
the x axis and positive direction of the y axis we increase the value of the damping parameter α up to value 0.5 
parabolically over the width of 600 nm to prevent reflections at these edges.

The dispersion relation presented in Fig. 1c was obtained as described in Ref. 9. A small, two-dimensional 
antenna was placed at the edge of the system. The antenna introduces a locally oscillating external magnetic 
field with time and space distribution described by sinc functions with cut-off parameters fcut = 100 GHz and 
kcut = 300 rad/µm. This magnetic field excites omnidirectional SWs in the system thus, the SWs propagate both 
in the bulk of the system and in the demagnetizing magnetic field dip at the edge. For the dispersion relation 
calculation, 1000 snapshots of the magnetization configuration were saved with a time step of 0.5/(1.1fcut).

To excite the SWs in the scattering simulations we use two antennas, one placed in the bulk of the Py layer 
and the second at the system’s edge. The first antenna has a rectangular-like shape and is rotated by an angle 
θ thus can be regarded in terms of (x′, y′) coordinates. It creates the incident SW beam aimed at the edge-
localized mode. We used a mathematical formula to create this antenna in the simulations inspired by Ref. 60

	

Bext,y(t, x′, y′) = Aant(1 − e−0.2πft)R(y′)G(x′)
×[sin(ky′)sin(2πft) + cos(ky′)cos(2πft)],

� (1)

where Aant = 0.01B0 is the amplitude of the dynamic field, R(y′) = H(−y′ + wa
2 )H(y′ + wa

2 ) is a rectangle 
function, which describes antenna’s shape along its y′ coordinate (H(y) is Heaviside step function, antenna’s 
width wa = 360  nm), G(x′) = exp(− x′2

4σ2
x

) is a Gaussian function defining antenna’s shape along the x′-
axis (σx = 320 nm), k is the wavevector and f is the frequency of the excited SWs. Such a formula creates a 
unidirectional SW beam of Gaussian envelope with FWHM= 760 nm. The incident SW beam in all simulations 
has frequency f = 45 GHz and the corresponding wavevector for this SW beam is derived from Kalinikos-
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Slavin formula for SW dispersion relation70 for each incident SW beam’s angle of propagation. We control the 
angle of the incident SW beam propagation (angle of the wavevector) by changing the rotation of the antenna, θ, 
with respect to the edge of the system. In these investigations, we limit ourselves to the range of θ ∈ ⟨30◦, 45◦⟩. 
However, the calculated angles of propagation of the incident and reflected SW beams, Θi are different because 
of the SW anisotropy of propagation. This means that beams’ wavevectors and group velocities are not parallel. 
The second antenna is defined as a point source of Gaussian shape (σedge = 15 nm) placed at the very edge of 
the system. The purpose of this antenna is to excite the localized edge modes characterized by frequencies in 
range ν ∈ ⟨11, 15.5⟩ GHz. Depending on the desired wavevector of the edge mode κ we place this antenna 
either below the point where the incident SW beam reaches the edge (positive κ) or above this point (negative 
κ).

The numerical simulations consist of three phases. In the first, we obtain a stable static magnetic configuration 
at the defined external magnetic field by minimizing the energy of the initial magnetic state. In the next phase, 
we run the dynamic part of the simulation when both antennas are turned on until the system reaches a steady 
state. The simulation time varies with the system’s length along its y-axis, t = {240 ns, 270 ns, 300 ns, 325 ns
, 350 ns, 420 ns} for the incident SW beam angles θ = {30◦, 32.5◦, 35◦, 37.5◦, 40◦, 45◦} respectively. 
Finally, we save 800 snapshots of the magnetic configuration with dt = 5 ps time step. We have also performed 
simulations of the described system with finer discretization through layer thickness to investigate the 
convergence of our results. For this purpose, we have used the following discretizations 5 nm × 5 nm × 5 nm 
and 5 nm × 5nm × 1 nm. The obtained results differ only slightly (for almost all the cases the difference 
in lateral shifts are below 1 nm)  in the numerical values but dependencies presented in the paper remain 
qualitatively the same.

Data postprocessing
To process the data obtained in the micromagnetic simulations we use a self-developed code. We start with 
the spectral analysis of the scattered SWs by calculating the Fourier transform in the time domain using saved 
magnetic configuration snapshots for each simulation case. From this analysis, we obtain an insight into the 
frequencies of the processes that undergo in our system and the distribution of complex SW amplitude at a given 
frequency (mz(f) ∈ C), therefore, allowing us to analyze both the amplitude and phase of SWs in each point of 
the simulated area. The time sampling was chosen to provide such resolution in the frequency domain to analyze 
the system’s response in all anticipated frequencies of f ± nν, n ∈ N+ configurations, namely δt = 5 ps time 
step. In our calculations, we investigate the following frequencies f = 45 GHz corresponding to the incident 
and reflected SW beams, f − ν corresponding to scattered beam in SSP, and f + ν corresponding to scattered 
beam in CP. Even though higher-order nonlinear processes are also present in the spectral analysis we omit them 
as they are beyond the scope of this paper.

The simulation results for κ > 0 and low edge mode frequency ν = 11 GHz proved to be problematic in 
further postprocessing. The reason for that was the unexpected reflection of low-frequency edge mode from 
the absorbing boundary conditions, where up to 10% of edge mode amplitude was reflected. It caused a 
secondary scattering in the system and the creation of an additional SW beam of frequency corresponding to 
SSP but propagating under a different angle, as shown in Fig. 5a |mz| amplitude for SSP in θ = 30◦, κ > 0 and 
ν = 11 GHz case. This new beam is a result of a CP with negative values of edge mode frequency and wavevector, 
as the reflected edge mode propagates in the opposite direction to the excited edge mode, thus resembling SSP 
in frequency but differing in wavevector of the scattered beam. To limit the effect of secondary scattering in our 
analysis we use an additional numerical filter that cuts off the contribution of SWs with different wavevectors 
than predicted by the investigated inelastic scattering processes. For that, we only take the contribution from 

Figure 5.  Numerical wavevector filter. (a) The |mz| amplitude space distribution of scattered SWs in SSP for 
θ = 30◦, κ > 0 and ν = 11 GHz case with visible waves that are the result of secondary scattering on reflected 
edge mode. (b) Fourier transform of the scattered waves presented in (a). Two distinctive peaks are evident, 
one marked with a purple circle corresponds to SSP and the second, a green circle, corresponds to secondary 
scattering. (c) The simulation results after applying the wavevector filtering where only contribution from the 
wavevector of SSP is taken into consideration (purple circle in (b)).
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the peak and its vicinity in spectral analysis that corresponds to the investigated process, as shown with the 
purple circle in Fig. 5b. To extract only the contribution for the desired peak and avoid numerical errors in the 
further steps of postprocessing we multiply the amplitude distribution by an amplitude mask in the shape of a 
two-dimensional Gaussian curve centered over the peak with a small spread. Then the inverse Fourier transform 
of the product of amplitude distribution and mask yields the SW amplitude space distribution without any 
undesired distortions in the system, as shown in Fig. 5c. This procedure was applied to the simulation results 
with low edge mode frequency, ν = 11 GHz to increase the precision of derivation of beams’ trajectories.

Derivation of SW beams trajectories
To derive the trajectories of the investigated SW beams we use distributions of SW intensity in space for a given 
frequency and wavevector corresponding to incidence, reflection, SSP, and CP. We calculate all of the beams’ 
trajectories in the far field, in terms of geometry used in the simulations, 2 µm away from the edge. We fit the 
Gaussian function to the cross-sections of the SW |mz| intensity distributions at fixed y-coordinate. We used 200 
cross-sections with an interval 5 nm, as the discretization grid used in the simulations. After fitting the Gaussian 
function to each cutline we save the position of the curve’s center of all the beams. Later, we use these coordinates 
to perform linear regression to fit line functions to them that we interpret as beams’ trajectories. In all simulation 
cases, the uncertainty of beam trajectory derivation depends on the spread of the beams’ center positions. In the 
simulation, we obtained well-collimated SW beams thus the uncertainty trajectory derivation is within 0.01 nm 
in all of the simulation cases. The derived trajectories are extended from the far field to the system’s edge where 
the position of the beams’ interception with the edge is determined. To calculate the spatial shifts of the scattered 
beams we take as a point of reference the position where the incident beam reaches the system’s edge. Thus 
the negative value of spatial shifts means that the given beam has its origin left to the incidence spot and the 
positive value means that the beam shifts to the right of the incidence spot. As the linear regression method 
calculates linear function fit in the continuous space, the final values of calculated space shifts of SW beams are 
not constrained by the discretization used in the simulations.

Data availability
Correspondence and requests for the data regarding this paper should be addressed to Krzysztof Sobucki (email 
address krzsob@amu.edu.pl). An example of simulation script in Mumax3 can be found in Zenodo repository, 
K. Sobucki, 2024, Zenodo, 10.5281/zenodo.13384164 (access via link https://zenodo.org/records/13384165).
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In this section two additional papers are presented. These works are not included in the
main research line showed in Chapter 5. They were done in parallel to the investigation planned
before the author’s PhD program when the author was invited to collaborate in different research
projects.

6.1 Magnon spectrum of Bloch hopfion beyond ferromagnetic
resonance

Hopfions are complex magnetic textures that can be regarded as a three-dimensional expression
of skyrmions. Because of the complexity of such structures their spectra are rich in eigenmodes
which can be measured in ferromagnetic resonance measurements. In this theoretical paper
eigenmodes of certain hopfions were investigated by means of numerical micromagnetic simula-
tions. Simulations in the frequency domain provided eigenmode amplitudes and sense of rotation
while simulations in the time domain provided spectra of averaged magnetisation response which
can be measured in the experiment. The paper provides information how to prepare numerically
benchmarks for future experiments of hopfions observation.

The Author performed micromagnetic simulation in the time domain using MuMax3 envi-
ronment and postprocessed the data. Author has written all of the parts of the manuscript related
to the micromagnetic simulations as well as prepared Figures 1, 5, 6.
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ABSTRACT

With the development of new nanofabrication technologies and measurement techniques, the interest of researchers is moving toward 3D
structures and 3D magnetization textures. Special attention is paid to the topological magnetization textures, particularly hopfions. In this
paper, we investigate the magnetization dynamics of the hopfion through the numerical solution of the eigenvalue problem. We show that the
spectrum of spin-wave modes of the hopfion is much richer than those attainable in ferromagnetic resonance experiments or time-domain
simulations reported so far. We identified four groups of modes that differ in the character of oscillations (clockwise or counter-clockwise
rotation sense), the position of an average amplitude localization along the radial direction, and different oscillations in the vertical cross
section. The knowledge of the full spin-wave spectrum shall help in hopfion identification, understanding of the interaction between spin
waves and hopfion dynamics as well as the development of the potential of hopfion in spintronic and magnonic applications.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100484

I. INTRODUCTION

The resonant spectrum of any object can be seen, from the
point of view of its energy states around equilibrium, as its char-
acteristic signature. This holds for different types of systems and
forms a ground for various spectroscopic techniques. In the context
of the magnetic nanostructures,1 the spin-wave modes are collective
small-amplitude oscillations of the magnetization around its equilib-
rium orientation. They characterize the magnetic systems, reflect the
existing symmetries, and provide information about basic magnetic
properties.2–5

The spin-wave resonance spectrum in the homogeneous and
uniformly magnetized ferromagnetic systems is quite well-known,
and it is described by the Kittel formula.6 In thin films, the fer-
romagnetic resonance (FMR) spectrum is dependent on the mag-
netization orientation and may consist of a fundamental mode
and perpendicular standing spin waves. In ferromagnetic rods, the
spectrum strongly depends on the magnetization orientation. In
homogeneously axially magnetized circular nanorods, the azimuthal

and radial modes were identified.7–9 Interesting spin-wave spec-
trum exists in planar ferromagnetic nanosystems. It depends on
the element shape (e.g., dots, rings, and nanovolcanoes)2,10–14 and
magnetization configurations.15,16 Nanostructures with topologi-
cally protected magnetization textures, like vortexes and skyrmions,
are particularly interesting.17–24 Here, the spectrum consists of the
gyrotropic modes, usually at low-frequencies, but at thicker dots,
higher-order gyrotropic modes at GHz frequencies can exist as
well.25 There is a family of the azimuthal and radial spin-wave exci-
tations, which reflect a circular symmetry of the system, also, the
breathing mode in the skyrmion and the curled modes in the vor-
tex state25 were identified. Interestingly, in various ferromagnetic
nanostructures, the Dzialoshynski–Moriya interactions (DMI), but
also dipolar or topological phase, can lift the degeneracy between
clockwise and counter-clockwise azimuthal modes.8,9,21,22,26

When the system becomes thick enough, the magnetization can
also form stable, inhomogeneous configurations in the third dimen-
sion, providing further features to the spin-wave spectrum.27,28

Recently, an interest in the magnetic research community focuses

APL Mater. 10, 091103 (2022); doi: 10.1063/5.0100484 10, 091103-1
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6.2 Spin wave confinement in hybrid superconductor-ferrimagnet
nanostructure

One of the newest ideas in magnonics is to propose novel types of systems where ferrimagnetic
elements are combined with superconductors. In this paper a static magnetic field induced by a
superconducting stripe is used to lower external magnetic field in which thin ferrimagnetic layer
is placed. Such a local decrease of magnetic field provides a condition for spin-wave localisation
in the system. The paper presents a semi-analytic model which describes localised spin-wave
modes in the ferrimagnetic layer. This model is corroborated by the results of micromagnetic
simulations performed in MuMax3 environment. The localisation of spin-wave modes was
investigated as a function of external magnetic field magnitude and the width of superconductor
in the system.

The Author performed all micromagnetic simulation in MuMax3 environment. The Author
has described the simulation and their results in the manuscript and prepared Figures 4., 6.
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Eddy currents in a superconductor shield the magnetic field in its interior and are responsible for the for-
mation of a magnetic stray field outside of the superconducting structure. The stray field can be controlled
by the external magnetic field and affect the magnetization dynamics in the magnetic system placed in its
range. In the case of a hybrid system consisting of a superconducting strip placed over a magnetic layer,
we theoretically predict the confinement of spin waves in the well of the static stray field. The number of
bound states and their frequencies can be controlled by an external magnetic field. We present the results
of semianalytical calculations complemented by numerical modeling.

DOI: 10.1103/PhysRevApplied.21.064007

I. INTRODUCTION

The states of superconductivity and ferromagnetism are
very rarely observed in a single material. Their intrinsic
coexistence (i.e., in one uniform phase for the same elec-
trons) was found for triplet pairing in a proximity to a
magnetic quantum critical point (e.g., for UGe2) [1,2]. The
other possibility, known for a long time and more conven-
tional [3,4], is the coexistence of two phases where large
and localized moments of 4f electrons (Er, Gd) provide
long-range strong ferromagnetism whereas 3d conduction
electrons are responsible for superconductivity.

The hybrid systems [5–8], where the superconductor
and ferromagnet are part of the same structure and inter-
act with each other, usually offer much more flexibility
both in the design and implementation of new features.
Superconductor-ferromagnet hybrids can be divided into
two categories: both subsystems are in direct contact [9]
or separated by a nonmagnetic, nonconducting material. In
the latter case, the coupling at a distance results from the
fact that both the eddy currents in the superconductor and
the magnetic moments in the ferromagnet generate a mag-
netic field. The coupling provided by the magnetic field
can be controlled by the external magnetic field and can be
tailored by the geometry, since both the distribution of the
eddy currents and the magnetization configuration depend
on these factors.

In electromagnetically coupled hybrids, the ferromagnet
can modify the properties of the superconductor, e.g., the
magnetic screening can increase the value of the critical
current density in the superconductor [10], or the presence

*Corresponding author: klos@amu.edu.pl

of the stray field produced by ferromagnetic nanoelements
can affect the nucleation of vortices [11] or pin and guide
the vortices in the superconductor [12]. Similarly, the pres-
ence of the superconductor can influence the ferromagnet,
e.g., by controlling the magnetization dynamics [13,14].
In this research field, we can find reports about induction
of magnonic crystals and nonreciprocal spin-wave (SW)
transmission in uniform magnetic layers due to the screen-
ing of the dynamic demagnetizing field by a superconduc-
tor [15,16], magnon-phonon interaction [17,18], the gating
of magnons induced by a superconducting current [19,20],
enhancement of nonlinear SW dynamics [21], Bragg scat-
tering of SWs on the field produced by the Abrikosov
vortex lattice [22,23], or SW generation by moving vor-
tices [24–26]. Undoubtedly, superconductor-ferromagnet
hybrids offer many possibilities for controlling the dynam-
ics of SWs. One of the topics not fully explored is the
problem of localization of SWs in these systems.

In this study, we conduct a theoretical and numerical
investigation of the SW confinement induced in a uniform
ferrimagnetic (FM) layer by the stray field of a supercon-
ducting (SC) strip. We demonstrate that by adjusting the
applied field, we can control the depth of the stray field
to modify the number of confined SW modes and their
frequencies.

II. MODEL

The considered hybrid system consists of an FM
gallium-doped yttrium iron garnet (Ga:YIG) thin film and
an SC Nb strip in the Meissner state, electrically isolated
from each other by a thin nonmagnetic spacer (see Fig. 1).
According to the Meissner effect, an SC strip expels a
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Chapter 7

Summary and Outlook

7.1 Summary and future plans

Magnonics as a subfield of physics holds a great promise of developing a low energy consuming
technologies and miniaturisation of devices because of unique properties of SWs. The theoretical
foundations of magnonics have been developed in the last century, however the development
of a usable, magnonic-based technology is hampered by various factors such as difficulty in
manufacturing low-damping magnetic materials [117, 118], a shortage of accurate sensors for
SW detection [119, 120], a relatively small number of reliable methods for controlling SW
propagation [121, 122].

The scientific work presented in this thesis is in line with the research on new means
to control SWs. Namely, two methods for SW propagation control were investigated, by
employing magnonic interferometers and by inelastic scattering of SWs on localised modes.
While investigating the first method, linear resonance effects have been observed such as Fabry-
Perot resonances and excitation of the interferometers leaky-modes. In both of these effects
an increase of phase shift of the reflected waves was observed. Especially, when Fabry-Perot
resonances conditions were met in magnonic interferometers the significant phase shift was
observed. As GHE depends on the phase shift of reflected waves presented linear resonance
effects are accompanied by the lateral shift of SWs. It was shown in the investigations on the
leaky-modes excitation where the reflected SW beams were spatially shifted when the resonance
condition was fulfilled.

The research on inelastic scattering of SW beams on localised modes also presented resonance
effects but in non-linear regime. There, when the resonance conditions in the demagnetising
field deep were met, a cascade of several non-linear processes created new SWs with altered
frequencies that propagated both in the bulk of system and at its edge. Again, these processes
enhanced significantly the lateral shift in space what resembles GHE but in the non-linear case.

The investigations presented in this thesis contribute to exploration of new means to control
propagation of SWs. The use of magnonic resonators to shift SW phase is investigated by
numerical simulations and experiment by other scientific groups which results can be found
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in [114, 115]. The examples of research on bound and leaky states in magnonics are published
in [123]. While examples non-linear effects for SW propagation control and modulation are [50,
124, 125].

Looking into the future magnonics resonators could be used as elements of artificial neural
networks based on SWs. By proper choice of resonator’s shape and dimensions the resonator
could scatter incoming SWs in desired directions. Such a treatment resembles a node, basic
neural network building block, where the azimuthal distribution of scattered SW amplitude
may be interpreted as the weights in classical artificial neural networks. On the day of writing
this thesis the Author is a part of European Union project, MANNGA 101070347, that aims to
propose a realisation of such a system. In this project, among other ideas, nanoresonators with
non-uniform magnetisation are investigated which are in line of Author’s interests and scientific
plans.

An additional area of research considered by the Author is creation and use of spatio-temporal
magnetic patterns for control of scattered SWs. The idea behind these investigations is realisation
and programming of magnetic patterns that can be assigned to magnonic resonators. These
resonators could be used to scatter SWs in a programmable manner that would change in time
and space providing a more advanced way to control SW propagation.
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Będlewo, Poland, oral presentation,
titled: “Spin-Wave Scattering On Localized Modes: Harnessing Three Magnon Processes
For Frequency And Trajectory Control”
VII 2023



150 Summary and Outlook

4. IEEE Summer School 2023,
Carovigno, Italy, poster presentation,
titled: “Confluence and Stimulated Splitting Processes of Spin Waves Scattered on Local-
ized Modes”
VI 2023

5. 4th International Advanced School on Magnonics – MAGNETOFON,
Porto, Portugal, poster presentation,
titled: “Spin Waves Leaky-Modes In Magnonic Gires-Tournois Interferometer”
VII 2022

6. MagIC+ (online workshop),
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